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Abstract: This paper presents new perspectives and methodological instruments for verifying the
validity of Benford’s law for a large given dataset. To this aim, we first propose new general tests
for checking the statistical conformity of a given dataset with a generic target distribution; we also
provide the explicit representation of the asymptotic distributions of the relevant test statistics. Then,
we discuss the applicability of such novel devices to the case of Benford’s law. We implement
extensive Monte Carlo simulations to investigate the size and the power of the introduced tests.
Finally, we discuss the challenging theme of interpreting, in a statistically reliable way, the conformity
between two distributions in the presence of a large number of observations.
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1. Introduction

Data regularities are relevant properties of many datasets whose elements maintain
their individuality while creating a unified framework. One of the most illustrative exam-
ples of such statistical features is that of Benford’s law, introduced in [1] and successfully
tested and described in [2]. Benford’s law is a sort of magic rule, for which the first digit(s)
of the elements of a given dataset follow a specific distribution—hereafter called Benford’s
distribution. For all the details on such a law, we refer the interested reader to [3–6].

Benford’s law is not at all intuitive; however, over the years, long after Frank Benford’s
paper appeared (see [2]), several solid theoretical motivations and explanations have been
found, mathematically validating the phenomenon (see, among others, refs. [4,5,7–12]).
Surprisingly, this digital pattern holds true in a large number of cases, with datasets in
the fields of economics (e.g., [13–16]), accounting (e.g., [17–19]), finance (e.g., [20–25]),
geophysics and hydrology (e.g., [26–28]), as well as social sciences (e.g., [29–31]).

A methodological aspect of Benford’s law lies in how to test the compliance of the
empirical distribution of a given sample with Benford’s variable. The root of such an
issue lies in the definition of a statistical distance between two random variables, the most
popular being the chi-square and the mean absolute deviation (MAD).

This paper deals with this challenging research theme. Specifically, we advance herein
some new tests for verifying the compliance of the empirical distribution obtained from
a given population. In this respect, we mention the recent contribution [32], where the
authors suggested a statistical test based on the mean. Following the quoted paper, we start
by introducing a mean-based conformity test. Moreover, we also developed a variance-
based and a joint mean and variance-based test for verifying the compliance of a given
distribution with a target one. Furthermore, we also present a test based on Wald’s statistic
and a new version of a MAD-based test. We explored the asymptotic distributions of the
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proposed tests; furthermore, we pay specific attention to their size and power, which were
investigated through a large set of Monte Carlo simulations.

We also focus the so-called “excess of power problem”. In this respect, we mention
Kossovsky’s criticism ([12], in this Special Issue), where the author refers to the “mistaken
use of the Chi-Square test in Benford’s law”. From this perspective, we also mention the
theme of the selection of the critical thresholds for having perfect/marginal/acceptable
conformity with Benford’s law (see [3,4] and the recent study developed by [33]). Finally,
the problem of the “excess of power problem” is treated using resampling techniques.

The rest of the paper is organised as follows: the next Section introduces the new tests
and derives their asymptotic null distribution; Section 3 illustrates the extensive Monte
Carlo analysis carried out to investigate the size and power properties of the proposed
tests in the relevant cases of the first digit and first two digits Benford’s law; the “excess
of power problem” is addressed in Section 4; the last Section draws some conclusions.
An Appendix reports some further technical details.

2. New Tests of Conformity with Benford’s Law

In this Section, we report the analytical derivations of the new test statistics of confor-
mity to Benford’s law and their asymptotic distributions.

Proposition 1. Consider a random sample x1, . . . , xn from a population with mean µ, variance
σ2, and third and fourth central moments µ3 and µ4. All moments up to the fourth are assumed to
be finite. Let x̄n and s2

n be the sample mean and the sample variance, respectively. Then:

x̃n :=
√

n(x̄n − µ)

σ

d−→ N(0, 1) ; (1)

s̃2
n :=

√
n
(
s2

n − σ2)√
µ4 − σ4

d−→ N(0, 1) ; (2)

nµσ :=
x̃n + s̃2

n[
2
(

1 + µ3

σ
√

µ4−σ4

)] 1
2

d−→ N(0, 1) ; (3)

wµσ :=
(

x̃n, s̃2
n

) 1 µ3

σ
√

µ4−σ4
µ3

σ
√

µ4−σ4
1

−1(
x̃n
s̃2

n

)
= z′nΣ−1zn

d−→ χ2(2) , (4)

with z′n denoting the transpose of zn.

Proof. To prove (1) and (2) see, e.g., [34] (Theorem 10.1).
To prove (3), first note that:

cov(x̃n, s̃2
n) =

√
n

σ

√
n√

µ4 − σ4
cov(x̄n, s2

n) (5)

=
n

σ
√

µ4 − σ4

µ3

n
(6)

=
µ3

σ
√

µ4 − σ4
(7)

where cov(x̄n, s2
n) = µ3/n see [35]; (3) then follows from (1) and (2) and from the rule of

the variance of a sum of correlated random variables.
Let us now define zn := (x̃n, s̃2

n)
′. The Cramér–Wold device implies that zn is (asymp-

totically) multivariate normal if λ′zn is (asymptotically) univariate normal for every λ ∈ R2.
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However, every λ ∈ R2 defines a linear combination of two (asymptotically) normal vari-
ables and λ′z is trivially (asymptotically) univariate normal. Therefore:

√
n
(

x̃n
s̃2

n

)
d−→ N

[(
0
0

)
,

(
1 µ3

σ
√

µ4−σ4
µ3

σ
√

µ4−σ4
1

)]
∼ N(0, Σ) (8)

and (4) follows.

Remark 1. The results stated in Proposition 1 can be used to test conformity (goodness of fit)
with any given distribution with finite moments up to the fourth. If µ, σ, µ3, and µ4 are those of
Benford’s distribution, then Equation (1) can be used to build a conformity test based on the mean:
such a test has indeed recently been suggested by Hassler and Hosseinkouchack [32]. Equation (2)
is the basis for a normal conformity test based on the variance, whereas (3) can be used to build
a normal conformity test jointly based on the mean and the variance. Finally, (4) is a chi-square
conformity test which jointly considers the mean and the variance.

Remark 2. When conformity is tested with reference to the normal distribution, (4) is simplified
because µ3 = 0: indeed, under normality, the sample mean and the sample variance are independent:
the sample mean and the sample variance are not independent random variables for any other
distribution, as can be seen in [36].

Proposition 2. Consider a random sample x1, . . . , xn from a discrete random variable with k� n
classes with individual probabilities p := (p1, . . . , pk)

′, with pj 6= 0 ∀j ∈ {1, . . . , k}. Let
fn := ( fn1, . . . fnk)

′ be a consistent estimate of p and define en := (en1, . . . , enk)
′ = fn − p and

Σ := diag(p)− pp′. Then:

w := ne∗n
′Σ∗−1e∗n

d−→ χ2(k− 1) (9)

where e∗n := (en1, . . . , en,k−1)
′ and Σ∗ is made of the first k− 1 rows and columns of Σ. Furthermore:

MAD? :=
√

n
k

k

∑
j=1

∣∣ fnj − pj
∣∣√

pj(1− pj)

d−→ N

(√
2
π

,
1
k2

k

∑
i=1

k

∑
j=1

rij

)
(10)

where:
rij =

2
π

(
ρij arcsin(ρij) +

√
1− ρ2

ij

)
− 2

π
(11)

and:

ρij = −
√

pi pj

(1− pi)(1− pj)
. (12)

Proof. To prove (9), let Yij := 1Xi=j with 1κ being the indicator function which is equal
to 1 when condition κ is satisfied and 0 otherwise. Furthermore, Yij ∼ Bern(pj) and
Snj := ∑n

i=1 Yij ∼ Binom
(
npj, npj(1− pj)

)
. Then:

e†
nj :=

Snj − npj√
npj(1− pj)

=

√
n
( Snj

n − pj

)
√

pj(1− pj)

=

√
n
(
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)√
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√
n enj√

pj(1− pj)

d−→ N(0, 1) (13)
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by the central limit theorem. Furthermore, the covariance matrix of en is Σ = diag(p)− pp′,

as can be seen in [37]. Again invoking the Cramér–Wold device
√

n e d−→ N(0, Σ) and (9)
is a Wald-like statistic with a χ2(k− 1) limiting distribution under the null [38] (p. 71).

To prove (10), we exploit the fact that if Y ∼ N(0, 1), then see [36]:

E |Y| =
√

2
π

. (14)

Furthermore:

var(|Y|) = E(|Y|2)− E(|Y|)2

=

√
2
π

∫ ∞

0
y2e−

y2
2 dy− 2

π

= 1− 2
π

. (15)

Therefore, by (13):

√
ne?nj :=

√
n
∣∣ fnj − pj

∣∣√
pj(1− pj)

d−→ N

(√
2
π

, 1− 2
π

)
. (16)

Furthermore,
√

ne?n :=
√

n(e?n1, . . . , e?nk)
′ d−→ N

(
ı
√

2
π , R

)
by the Cramér–Wold de-

vice, with ı a k-vector of ones.
Using the fact that when (X, Y) have a bivariate normal distribution with means 0,

variances ı and correlation θ, then [39]:

E(|X| |Y|) = 2
π

(
θ arcsin(θ) +

√
1− θ2

)
(17)

and therefore:
E
(
|e†

ni| |e†
nj|
)
=

2
π

(
ρij arcsin(ρij) +

√
1− ρ2

ij

)
(18)

where ρij is the correlation between e†
ni and e†

nj:

ρij = −
√

pi pj

(1− pi)(1− pj)
. (19)

Then, note that:
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(
|e†
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)
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. (20)

Therefore, the covariance matrix R is:

R =


r11 r12 . . . r1k
r12 r22 . . . r2k
...

...
. . .

...
r1k r2k . . . rkk

 =
{

rij
}

(21)

with:
rij =

2
π

(
ρij arcsin(ρij) +

√
1− ρ2

ij

)
− 2

π
. (22)
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Finally: √
n

k

k

∑
j=1

e?nj =
1
k

k

∑
j=1

√
n
∣∣ fnj − pj

∣∣√
pj(1− pj)

d−→ N

(√
2
π

,
1
k2 ı′Rı

)
. (23)

Remark 3. The results stated in Proposition 2 can be used to test conformity (goodness of fit)
with any given discrete distribution and specialise to the first digit or first two digits Benford’s
law when pi = log10(1 + 1/d), with either d = 1, . . . , 9 or d = 10, . . . , 99. Here, (9) is a
Wald-like test, whereas (10) is a modification of the mean absolute deviation (MAD) statistic
advocated in [3,40], where each absolute deviation is adjusted by the factor 1/

√
pj(1− pj) thereby

emphasising deviations from smaller expected frequencies, as well as incorporating (the square root
of) the sample size n as a factor in the measure of deviation.

Remark 4. The Wald-like χ2 statistic in (9) is equivalent to the usual χ2 computed as n ∑k
j=1 e2

nj/pj.
A proof, which also proves that Σ∗ is nonsingular, is offered in Appendix A.

Remark 5. Equation (10) makes it clear that, contrarily to what is commonly asserted, as can be
seen in, e.g., [3] (p. 158), the MAD statistic:

MAD :=
1
k

k

∑
j=1

∣∣ fnj − pj
∣∣ (24)

is not independent of n and is, in fact, Op

(
n−

1
2

)
.

3. Monte Carlo Simulations

The size (the probability of falsely rejecting the null hypothesis) and power (the ability
of the test to reject the null when it is false) of the proposed tests are investigated over
25,000 Monte Carlo replications for varying sample sizes n, under the null and under
selected interesting alternatives (all computations and graphics were produced using R,
version 4.0.5 [41] and ggplot2, version 3.3.3 [42]). Each alternative is expressed in terms of
the mixture:

p = λpB + (1− λ)pA (25)

where pB := (pB1, . . . , pBk)
′ is the vector of Benford’s probabilities, pA := (pA1, . . . , pAk)

′

is the vector of probabilities of some “contaminating” distribution, and k is the number
of digits. λ ∈ {0.75, 0.80, . . . , 0.95} is the mixing parameter. When dealing with data
manipulation issues, 1− λ can be interpreted as the fraction of manipulated data.

The following mixtures were used in the simulations:

1. Uniform mixture: pA describes the discrete uniform distribution with the same sup-
port as the considered Benford’s distribution;

2. Normal mixture: pAi are the probabilities of N(µB, σ2), with µB the mean of Benford’s
distribution and σ =

√
4µB;

3. Randomly perturbed mixture: Benford’s law is perturbed by a random quantity in
correspondence to each digit. More precisely, pAi = ui pBi with ui ∼ U(0, 2pBi ). Since
this mixture contains elements of randomness, each Monte Carlo iteration uses a
different mixture. However, the mixtures are the same across all tests;

4. Under-reporting mixture: under the alternative, Benford’s distribution is modified
by putting to zero the probability of “round” numbers and giving this probability to
the preceding number: for example, pA20 = 0 and pA19 = pB19 + pB20. This mixture
is only considered with reference to the first two digits case.

The above mixtures are plotted in Figure 1 for the first two-digit case. The corre-
sponding data for each mixture are generated from a multinomial distribution with vector
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probability p. In order to reduce Monte Carlo variability, all tests were applied to the same
data, and larger samples include observations from the smaller ones.

Under−reporting Uniform

Normal Perturbed

10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90

0.00

0.01

0.02

0.03

0.04

0.00

0.01

0.02

0.03

0.04

Figure 1. Probability function of the first-two-digits Benford’s law (red) compared to the probability
functions of the mixtures used under the alternative hypothesis (blue). In the figure, a mixing
parameter λ = 0.6 was used to exaggerate the visual effect. Larger values of λ were used in
the simulations, with the consequence that the distribution under the alternative is closer to the
distribution under the null.

Rather than reporting long and difficult-to-compare tables of outcomes, we summarise
the simulation results by relying on a graphical approach (as can be seen in, e.g., [43,44]).
In order to summarise the size properties of the tests, we plot the size deviations (i.e.,
actual size − nominal size) against nominal size. When no size distortions are present,
actual size = nominal size, and this graph coincides with a horizontal line with the ordinate
equal to zero; however, this is a theoretical case only, since in practice, size deviations
will tend to reflect experimental randomness. To report power results, we use size–power
curves: these curves allow us to easily visualise the power of each test in correspondence of
its actual (rather than nominal) size and to compare the power of different tests on perfectly
fair grounds. The line power = actual size is also reported as a reference, representing
the performance of a test of no practical use (the fraction of rejections under the null and
under the alternative is the same); the more distant the size–power curve is from this line,
the more powerful the test is.

3.1. First-Digit Law

The tests generally have very good size properties, irrespective of the sample size,
with size deviations of approximately zero (see Figure 2). Only the modified MAD test
tends to over-reject slightly under the null (with a +0.01 deviation with respect to nominal
size) in correspondence of the 5% nominal size. In other words, the actual size of the
modified MAD test in correspondence of the 5% nominal size is around 6%, and the
discrepancy tends to reduce for larger nominal sizes.

As far as power is concerned, the performance of the different tests depends on the
specific alternative hypothesis considered. The normal mean test (1) is the most powerful
in the presence of a uniform mixing alternative (Figure 3), followed by the χ2(2) test on the
mean and the variance (4) and the normal test on the mean and the variance (3).
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In the presence of a normal mixing alternative (Figure 4), the χ2(2) (4) and the normal
test on the mean (1) perform the best, followed by the adjusted MAD (10) and the Wald-like
χ2(d− 1) test (9).
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Figure 2. First digit tests: deviation of the actual size from the nominal size. Tests are as follows: “Adj.
MAD”, adjusted MAD (10); “Chi-sq(2)”, χ2(2) test on mean and variance (4); “Chi-sq(d-1)”, χ2(8)
test (9); “Mean”, normal test on the mean (1); “Mean & var.”, normal test on mean and variance (3);
“Variance”, normal test on variance (2). The number of observations is indicated on top of each panel.
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Figure 3. First digit tests: size–power curves of the tests against the uniform mixing alternative with
λ = 0.9. Tests are as follows: “Adj. MAD”, adjusted MAD (10); “Chi-sq(2)”, χ2(2) test on the mean
and variance (4); “Chi-sq(d-1)”, χ2(8) test (9); “Mean”, normal test on the mean (1); “Mean & var.”,
normal test on mean and variance (3); “Variance”, normal test on variance (2). The dashed line is
power = actual size. The number of observations is indicated on top of each panel.
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Finally, in the presence of a perturbed Benford distribution (Figure 5), the highest
power is reached by the χ2(d− 1) (9) and the adjusted MAD (10) tests, followed by the
χ2(2) test (4).
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Figure 4. First digit tests: size–power curves of the tests against the normal mixing alternative with
λ = 0.9. Tests are as follows: “Adj. MAD”, adjusted MAD (10); “Chi-sq(2)”, χ2(2) test on mean
and variance (4); “Chi-sq(d-1)”, χ2(8) test (9); “Mean”, normal test on the mean (1); “Mean & var.”,
normal test on mean and variance (3); “Variance”, normal test on variance (2). The dashed line is
power = actual size. The number of observations is indicated on top of each panel.
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Figure 5. First digit tests: size–power curves of the tests against the perturbed mixing alternative
with λ = 0.75. Tests are as follows: “Adj. MAD”, adjusted MAD (10); “Chi-sq(2)”, χ2(2) test on mean
and variance (4); “Chi-sq(d-1)”, χ2(8) test (9); “Mean”, normal test on the mean (1); “Mean & var.”,
normal test on mean and variance (3); “Variance”, normal test on variance (2). The dashed line is
power = actual size. The number of observations is indicated on top of each panel.
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3.2. First Two Digits Law

All the tests have approximately the correct size, even in the presence of fairly small
samples (see Figure 6). All deviations with respect to the nominal size are within ±0.005,
with the only exception of the ordinary chi-square test which shows a deviation around
0.010 in correspondence with values of the nominal size of common usage for n = 250.
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Figure 6. First two digits tests: deviation of the actual size from the nominal size. Tests are as follows:
“Adj. MAD”, adjusted MAD (10); “Chi-sq(2)”, χ2(2) test on mean and variance (4); “Chi-sq(d-1)”,
χ2(89) test (9); “Mean”, normal test on the mean (1); “Mean & var.”, normal test on mean and
variance (3); “Variance”, normal test on variance (2). The number of observations is indicated on top
of each panel.

As anticipated, the power performance of the tests crucially depends on the alternative.
The normal test based on the mean (1) is the most powerful test among those considered
here, in the presence of a uniform mixing alternative (see Figure 7). The χ2(2) test on
the mean and variance (4) and the normal test on the mean and variance (3) followed at
short distance.

In the presence of a normal mixing alternative (see Figure 8), the χ2(2) test (4) is the
most powerful one, followed by the normal variance test (2). It is interesting to note that in
the first digit case, the normal variance test had no power; here, the normal mean test has
no power. The other tests are generally more powerful in the first two digits than in the
first digit case.

When the alternative can be described as a “perturbed Benford” distribution (Figure 9)
or in terms of a rounding behaviour (Figure 10), then the χ2(d− 1), either in the “classical”
or in the equivalent Wald’s formulation (9), and the modified MAD (10) perform very
closely and are by far the most powerful tests. The ordering of the tests is the same as in
the first digit case; however, the tests are generally more powerful in the first digit case.

These results suggest that in applications it is generally a good idea not to rely on a
single test, but to use a battery of different tests designed to detect particular deviations
from the null.
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Figure 7. First two digits tests: size–power curves of the tests against the uniform mixing alternative
with λ = 0.9. Tests are as follows: “Adj. MAD”, adjusted MAD (10); “Chi-sq(2)”, χ2(2) test on mean
and variance (4); “Chi-sq(d-1)”, χ2(89) test (9); “Mean”, normal test on the mean (1); “Mean & var.”,
normal test on mean and variance (3); “Variance”, normal test on variance (2). The dashed line is
power = actual size. The number of observations is indicated on top of each panel.
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Figure 8. First two digits tests: size–power curves of the tests against the normal mixing alternative
with λ = 0.9. Tests are as follows: “Adj. MAD”, adjusted MAD (10); “Chi-sq(2)”, χ2(2) test on mean
and variance (4); “Chi-sq(d-1)”, χ2(89) test (9); “Mean”, normal test on the mean (1); “Mean & var.”,
normal test on mean and variance (3); “Variance”, normal test on variance (2). The dashed line is
power = actual size. The number of observations is indicated on top of each panel.
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Figure 9. First two digits tests: size–power curves of the tests against the perturbed mixing alternative
with λ = 0.75. Tests are as follows: “Adj. MAD”, adjusted MAD (10); “Chi-sq(2)”, χ2(2) test on mean
and variance (4); “Chi-sq(d-1)”, χ2(89) test (9); “Mean”, normal test on the mean (1); “Mean & var.”,
normal test on mean and variance (3); “Variance”, normal test on variance (2). The dashed line is
power = actual size. The number of observations is indicated on top of each panel.
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Figure 10. First two digits tests: size–power curves of the tests against the rounding mixing alternative
with λ = 0.75. Tests are as follows: “Adj. MAD”, adjusted MAD (10); “Chi-sq(2)”, χ2(2) test on mean
and variance (4); “Chi-sq(d-1)”, χ2(89) test (9); “Mean”, normal test on the mean (1); “Mean & var.”,
normal test on mean and variance (3); “Variance”, normal test on variance (2). The dashed line is
power = actual size. The number of observations is indicated on top of each panel.
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4. Statistical versus Practical Significance

In 1998, Granger [45] (p. 260) pointed out that in the presence of very large datasets:

“Virtually all specific null hypotheses will be rejected using present standards. It
will probably be necessary to replace the concept of statistical significance with
some measure of economic significance.”

This is obviously related to the fact that the power of any consistent test increases
with the sample size n, i.e., π → 1 as n → ∞ (with π denoting the power of the test).
Of course, consistency is a desirable property of any statistical test. The symmetrical case,
with small n, is somewhat less relevant in empirical applications of Benford’s law where
typical sample sizes are large. However, it has been observed that standard conformity
tests may substantially lack power in the presence of small sample sizes (see, e.g., [12]).
In our context, a large n is required to approximate the test asymptotic distributions).

In fact, the “large n problem” and some related apparently paradoxical implications
were already highlighted in a paper by Lindley in 1957 [46]. The idea that a “large n
problem” plagues empirical tests of conformity with Benford’s distribution is widespread
in the literature on Benford’s law (as can be seen in, e.g., Nigrini’s contributions [3,40] and
Kossovsky’s paper in this Special Issue [12]). In fact, Nigrini [3] (p. 158) claims that:

“What is needed is a test that ignores the number of records. The mean absolute
deviation (MAD) test is such a test, and the formula is shown in Equation 7.7.
[. . . ] There is no reference to the number of records, N, in Equation 7.7.”

However, Nigrini’s statement that the MAD does not depend on the number of
observations would only be valid if the relative frequencies of the digits for the data were
given, not estimated. The fact that the relative frequencies must be estimated from the
observed data makes the MAD dependent on the sample size, despite the sample size not
explicitly appearing in the MAD formula. In fact, in proposition 2, we show that Nigrini’s
MAD is Op

(
n−

1
2

)
under Benford’s distribution (see Remark 5 above). Indeed, Figure 11

clearly shows that the behaviour of the estimated MAD is perfectly consistent with 1/
√

n
under the null: therefore, taking a fixed “critical value” for the MAD irrespective of the
sample size may lead to biased conclusions.

The risk of rejecting the (Benford’s law) null hypothesis for tiny uninteresting devi-
ations in the presence of large datasets can be dealt with in two different ways: (i) using
significance levels αn decreasing with increasing n; and (ii) using a sort of “m out of n
bootstrap” procedure [47] to assess significance. In what follows, we explain this second
route with specific reference to the “first two digits” case.

If the available sample is very large (e.g., n > 3000), then the idea is to repeatedly
test for conformity on a large number of smaller samples randomly resampled from the
original data. If the observations are independent, identically distributed (IID), then the
smaller samples will have the same distribution as the original data, making it possible to
check conformity on the smaller datasets. In doing so, we are sacrificing some power in
order to only detect “interesting” (or sizeable) departures from the null. The fact that the
test statistics are computed over a large number of random sub-samples allows us to derive
the distribution of the statistics and not to rely on a single outcome. The whole procedure is
exemplified in Figure 12 in the case of data conforming with the “first two digits” Benford’s
law (first row in the Figure) as well as for a possibly uninteresting deviation from the null
(second row) and a more substantial deviation from the null (third row). In this example,
the random subsamples were made of 1750 observations, consistently with Figure 11,
indicating that jointly using 0.0022 as the “critical value” for the MAD with n = 1750
ensures an approximate size of 5% to Nigrini’s test. The tests considered are the MAD
and those that, according to our simulations, are the most powerful in the presence of
a perturbed Benford’s alternative (see Figure 9). The third column (panels C, F, I) of
Figure 12 reports the estimated densities of the conventional (or Wald) chi-square test
statistic over 5000 random subsamples of length n = 1750 (blue curve) along with the χ2(89)
null distribution (red). The probability of superiority (a measure of the effect size that
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corresponds to the probability that a randomly chosen point under the experimental curve
is larger than a randomly chosen point under the null curve: see, e.g., [48] (Chapter 11)) is
also reported to compare the two distributions.

0.001

0.002

0.003

0.004

0.005

0 2500 5000 7500 10000
n

M
A

D

Figure 11. Average estimated MADs over 1000 replications under the (Benford’s law) null hypothesis
(blue points) and α/

√
n (black curve) for varying sample sizes n ∈ (250, 500, . . . , 10, 000). α is a scale

factor used to report 1/
√

n on the same scale as MAD. The shaded area represents the central 90% of
the distribution of estimated MADs. The horizontal dashed line corresponds to Nigrini’s suggested
critical value (0.0022). The vertical dashed line corresponds to n = 1750.

Panels A–C in Figure 12 show that the null of conformity is not rejected: this conclusion
carries over using the full sample (panel A) as well as using a single subsample (panel B)
or 5000 random subsamples (panel C). The null is rejected in the full sample under the
“uninteresting” alternative using either the chi-square or the adjusted MAD test, but it
is not rejected using the fixed “critical value” 0.0022 for the MAD (panel D). Using the
subsamples, none of the criteria are able to decidedly reject the null, suggesting that the
deviation of the data from the null is tiny. When the deviation is substantial (panels G–I),
the MAD still cannot reject the null in the full sample (panel G) whereas the p value of the
other two tests is virtually zero. In the single subsample, all three criteria correctly reject
the null of conformity (panel H) and panel I shows that the “effect size” on the chi-square
test is substantial, with the probability of superiority being approximately 0.9.
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Figure 12. Behaviour of conformance tests across samples. In the first row (panels A–C), data conform to the “first two
digits” Benford’s law. In the second row (panels D–F), data follow a perturbed Benford’s law with λ = 0.95. In the third row
(panels G–I), data are consistent with a perturbed Benford’s law with λ = 0.75. The first column (panels A,D,G) reports the
results computed over the full sample, with n = 15,000. The second column (panels B,E,H) is relative to a single random
subsample with n = 1750. The third column (panels C,F,I) reports the estimated densities (blue) of the conventional (or
Wald) chi-square test statistic over 5000 random subsamples of length n = 1750 along with the χ2(89) distribution under the
null distribution (red). P(χ2

89) and P(Adj.MAD) denote p values of the conventional (or Wald) chi-square test and of the
adjusted MAD test, respectively. Prob. o f sup. is an estimate of the probability of superiority.

5. Conclusions

This paper introduces new tests of conformance with a given distribution with first
four finite moments. The tests are then specialised to the special case of the first digit and
first two digits Benford’s law. An extensive Monte Carlo analysis was carried out to study
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the size and power properties of the tests. The results show that it can be advisable to
use different tests in real applications, given that the different tests perform differently,
according to the nature of the alternative hypothesis.

This paper also addresses the “excess of power” problem of the tests in the presence
of very large samples: the proposed solution, based on resampling techniques, seems to be
able to reconcile the evidence stemming from the MAD criterion (as can be seen in, e.g., [3])
with firmly statistically based tests.
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Appendix A

Proof of Remark 4. For simplicity and without loss of generality, we consider k = 3 classes.
p := (p1, p2, p3)

′ and fn := ( fn1, fn2, fn3)
′ are such that pi 6= 0 ∀i, and ı′p = ı′ fn = 1 with

ı := (1, 1, 1)′.
The “classical” chi-square statistic is:

χ2 =
3

∑
i=1

(n fni − npi)
2

npi

= n

[
( fn1 − p1)

2

p1
+

( fn2 − p2)
2

p2
+

( fn3 − p3)
2

p3

]
=

n
p1 p2 p3

[
( fn1 − p1)

2 p2 p3 + ( fn2 − p2)
2 p1 p3 + ( fn3 − p3)

2 p1 p2

]
=

n
p1 p2 p3

{[
( fn1 − p1)

2 p2 + ( fn2 − p2)
2 p1

]
(1− p1 − p2)

+[(p1 − fn1) + (p2 − fn2)]
2 p1 p2

}
=

n
p1 p2 p3

[
( fn1 − p1)

2 p2 − ( fn1 − p1)
2 p1 p2 − ( fn1 − p1)

2 p2
2 + ( fn2 − p2)

2 p1

−( fn2 − p2)
2 p2

1 − ( fn2 − p2)
2 p1 p2 + ( fn1 − p1)

2 p1 p2

+( fn2 − p2)
2 p1 p2 + 2(p1 − fn1)(p2 − fn2)p1 p2

]
=

n
p1 p2 p3

[
( fn1 − p1)

2 p2 − ( fn1 − p1)
2 p2

2 + ( fn2 − p2)
2 p1

−( fn2 − p2)
2 p2

1 + 2(p1 − fn1)(p2 − fn2)p1 p2

]
. (A1)

Notice that Σ in this case is:

Σ = diag(p)− pp′

=

 p1 − p2
1 −p1 p2 −p1 p3

−p1 p2 p2 − p2
2 −p2 p3

−p1 p3 −p2 p3 p3 − p2
3

 (A2)
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and that the determinant of Σ∗ is:

|Σ∗| =
(

p1 − p2
1

)(
p2 − p2

2

)
− p2

1 p2
2

= p1 p2 − p1 p2
2 − p2

1 p2

= p1 p2(1− p1 − p2)

= p1 p2 p3 (A3)

which is different from zero unless at least one of the pis is zero, which is excluded by the
hypothesis. Therefore, Σ∗ is always invertible.

The Wald statistic χ2
W can be explicitly written as

w := n( fn1 − p1, fn2 − p2)Σ
∗−1
(

fn1 − p1
fn2 − p2

)
=

n
p1 p2 p3

( fn1 − p1, fn2 − p2)

(
p2 − p2

2 p1 p2
p1 p2 p1 − p2

1

)(
fn1 − p1
fn2 − p2

)
=

n
p1 p2 p3

(
( fn1 − p1)

(
p2 − p2

2
)
+ ( fn2 − p2)p1 p2

( fn2 − p2)
(

p1 − p2
1
)
+ ( fn1 − p1)p1 p2

)′( fn1 − p1
fn2 − p2

)
=

n
p1 p2 p3

[
( fn1 − p1)

2
(

p2 − p2
2

)
+ ( fn1 − p1)( fn2 − p2)p1 p2

+( fn2 − p2)
2
(

p1 − p2
1

)
+ ( fn1 − p1)( fn2 − p2)p1 p2

]
=

n
p1 p2 p3

[
( fn1 − p1)

2
(

p2 − p2
2

)
+ ( fn2 − p2)

2
(

p1 − p2
1

)
+2( fn1 − p1)( fn2 − p2)p1 p2]

=
n

p1 p2 p3

[
( fn1 − p1)

2 p2 − ( fn1 − p1)
2 p2

2 + ( fn2 − p2)
2 p1

−( fn2 − p2)
2 p2

1 + 2( fn1 − p1)( fn2 − p2)p1 p2

]
(A4)

which is equal to (A1).
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