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The effects of genotoxic stress can be mediated by activation of the Ataxia
Telangiectasia Mutated (ATM) kinase, under both DNA damage-dependent (including
ionizing radiation), and independent (including hypoxic stress) conditions. ATM activation
is complex, and primarily mediated by the lysine acetyltransferase Tip60. Epigenetic
changes can regulate this Tip60-dependent activation of ATM, requiring the interaction
of Tip60 with tri-methylated histone 3 lysine 9 (H3K9me3). Under hypoxic stress,
the role of Tip60 in DNA damage-independent ATM activation is unknown. However,
epigenetic changes dependent on the methyltransferase Suv39H1, which generates
H3K9me3, have been implicated. Our results demonstrate severe hypoxic stress (0.1%
oxygen) caused ATM auto-phosphorylation and activation (pS1981), H3K9me3, and
elevated both Suv39H1 and Tip60 protein levels in FTC133 and HCT116 cell lines.
Exploring the mechanism of ATM activation under these hypoxic conditions, siRNA-
mediated Suv39H1 depletion prevented H3K9me3 induction, and Tip60 inhibition (by
TH1834) blocked ATM auto-phosphorylation. While MDM2 (Mouse double minute 2)
can target Suv39H1 for degradation, it can be blocked by sirtuin-1 (Sirt1). Under
severe hypoxia MDM2 protein levels were unchanged, and Sirt1 levels depleted.
SiRNA-mediated depletion of MDM2 revealed MDM2 dependent regulation of Suv39H1
protein stability under these conditions. We describe a novel molecular circuit regulating
the heterochromatic state (H3K9me3 positive) under severe hypoxic conditions,
showing that severe hypoxia-induced ATM activation maintains H3K9me3 levels by
downregulating MDM2 and preventing MDM2-mediated degradation of Suv39H1. This
novel mechanism is a potential anti-cancer therapeutic opportunity, which if exploited
could target the hypoxic tumor cells known to drive both tumor progression and
treatment resistance.
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INTRODUCTION

The genome is constantly exposed to exogenous and endogenous
factors that can affect its function and stability. One of the most
important cellular mechanisms that safeguards genome integrity
is the DNA damage response pathway (DDR) (Shiloh, 2003;
Ciccia and Elledge, 2010). DDR is a chromatin-associated process
that is activated in response to different types of cellular stress.
One of the key factors of DDR is the phosphatidylinositol-3-
kinase (PI3K)—like kinase Ataxia Telangiectasia Mutated (ATM)
(Zou and Elledge, 2003; Ciccia and Elledge, 2010).

The genome, through chromatin structure, is regulated by
posttranscriptional modifications (PTM) of histones, including
phosphorylation, methylation and acetylation (Cedar and
Bergman, 2009; Bannister and Kouzarides, 2011; Zhou et al.,
2011). Heterochromatic DNA is characterized by the presence
of tri-methylation of lysine 9 of histone 3 (H3K9me3). ATM
is essential for the repair of DNA double strand breaks (DSB)
in the heterochromatic region of the genome (Nakayama et al.,
2001; Di Micco et al., 2006; Goodarzi et al., 2008). Following
DSB, ATM is activated by trans auto-phosphorylation at S1981
forming active ATM monomers. This event is mediated by lysine
acetyltransferase Tip60-dependent acetylation of ATM (Sun et al.,
2005, 2007). Additionally, DSB induce direct interactions of
Tip60 with the H3K9me3 (Sun et al., 2009). ATM can be activated
(independent of DDR signaling) in response to hypotonic
stress, chromatin modifying agents, heat shock and hypoxia
(Hunt et al., 2007; Kanu and Behrens, 2007; Guo et al., 2010).
Hypoxia induced ATM activation has been associated with stalled
replication forks, H3K9me3 and DDR gene expression (including
BRCA1 and MLH1) (Bencokova et al., 2009; Lu et al., 2011,
2014; Olcina et al., 2013, 2015). Under hypoxic conditions Tip60
is catalytically active (Perez-Perri et al., 2016). However, it is
unknown if hypoxia-induced ATM activation remains Tip60-
dependent. Interestingly, inducing chromatin relaxation using
histone deacetylase inhibitors (HDACi) increases DDR signaling,
apoptosis and tumor regression in vivo (Di Micco et al., 2011).

Hypoxia is a common feature of most solid tumors and
is associated with poor prognosis, a more aggressive tumor
phenotype, and radio- and chemo-resistance (Bertout et al.,
2008). The cellular adaptation to hypoxic stress alters the
histone epigenetic profile, contributing to tumorigenic genomic
instability and resistance to therapy (Falk et al., 2008; Watson
et al., 2009, 2010; Krieg et al., 2010; Perez-Perri et al., 2011;
Takata et al., 2013; Allshire and Madhani, 2018). Recently,
H3K9me3 was identified as the most efficient barrier to cellular
reprogramming, preventing cellular dedifferentiation (Jehanno
et al., 2017). H3K9me3 is catalyzed predominantly by the
ubiquitously expressed methyltransferase Suv39H1 (Rea et al.,
2000; Hagemann et al., 2000). Aberrant Suv39H1 expression has
been reported in a number of solid tumors (Ozdağ et al., 2006).
The protein levels of Suv39H1 are regulated by posttranslational
modifications (Bosch-Presegue et al., 2011; Mungamuri et al.,
2016; Kim et al., 2021) and the ubiquitin E3 ligase murine double
minute 2 (MDM2) (Bosch-Presegue et al., 2011; Mungamuri
et al., 2016). It has been shown that Suv39H1 promotes
heterochromatin formation in response to different types of

stress, including ionizing radiation (IR) (Bosch-Presegue et al.,
2011; Wang et al., 2013; Sidler et al., 2014). However, little is
known about Suv39H1 regulation in response to hypoxic stress.

It has been demonstrated that hypoxia induces a global
increase in H3K9 methylation in cancer cell lines (Chen et al.,
2006; Tausendschon et al., 2011; Olcina et al., 2013). Suv39H1
induction in response to hypoxia has been correlated with
the levels of H3K9me3 in human fetal lung epithelial cells
(Benlhabib and Mendelson, 2011) as well as in mouse embryonic
fibroblasts (MEFs) (Olcina et al., 2013). However, its role in
regulating H3K9me3 in hypoxic cancer cells is unknown, and the
molecular network(s) orchestrating potential correlations have
not been elucidated.

Hypoxia is known to cause ATM activation that is
independent of DNA damage (Olcina et al., 2013). Additionally,
ATM has been implicated in suppressing MDM2 function
(Gannon et al., 2012). However, whether these events coincide
in hypoxia is currently unclear. Considering that the levels of
Suv39H1 are regulated by MDM2 in normoxia, we propose that
the same mechanism is operating in response to hypoxic stress.
As such, the induction of ATM followed by MDM2 inactivation
in hypoxia might lead to increased levels of Suv39H1 triggering
H3K9me3. In this study the molecular mechanism regulating
Suv39H1 stability and the subsequent induction of H3K9me3
were investigated. The effects of the ATM mediated regulation
of MDM2 on Suv39H1 were monitored in hypoxia. The results
support the view of the existence of a regulatory mechanism
of chromatin remodeling under hypoxic conditions involving
activation of ATM. This novel ATM dependent mechanism
for the maintenance of the heterochromatic state in hypoxic
conditions indicates that chromatin-modifying drugs targeting
ATM function could be exploited to provide therapeutic benefits
to late-stage tumors.

MATERIALS AND METHODS

Cell Line and Reagents
HCT116 (colon carcinoma, p53 wild type) and FTC133 (Human
follicular thyroid carcinoma, mutated p53) were grown in
RPMI-1640 or DMEM media combined with HAM’s F12 (1:1)
respectively (Sigma-Aldrich, Poole, Dorset, United Kingdom).
The media was supplemented with 10% (v/v) FBS (GIBCO
PRL, Paisley, United Kingdom). Cell culture was performed
using a class II laminar flow microbiological safety cabinet.
Cells were treated with 10 µM of Ku55933 for 6 h. Cells were
radiated with 4 Gy using a Faxitron X-ray (Faxitron Bioptics, AZ,
United States). Cells were grown in a humidified incubator at
37◦C supplied with 5% CO2. Mycoplasma testing was carried out
periodically using core facilities at The University of Manchester.
All cell lines were obtained from ATCC and authenticated
using service provided by Public Health England (last tested in
September 2019, prior to completion of these studies).

Hypoxic Conditions
A Whitley H35 Hypoxystation (Don Whitley Scientific Limited,
Shipley, United Kingdom) was used in order to create the hypoxic
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condition used. All experiments were carried out under severe
hypoxic conditions (0.1% O2). Cells were seeded and allowed to
adhere to the cell culture dish overnight before being transferred
to the hypoxic chamber. Cells were incubated for 6 or 18 h in
hypoxia and lysed inside the hypoxic chamber.

Western Blot
Cells were lysed in RIPA buffer (Tris-HCl 50 mM at pH 7.4,
NaCl 150 mM, IGEPAL 1%, EDTA 1 mM) with phosphatase
inhibitors (PMSF 1 mM, Na3VO4 1 mM and NaF 1 mM),
sonicated and centrifuged for 10 min at 14 000 g and the insoluble
debris was discarded. Cell lysate (10–35 µg of protein) was
fractionated by gel electrophoresis using precast NuPAGETM

gels (Invitrogen, Paisley, United Kingdom) and transferred to
a PVDF membrane (BioRad, Hertfordshire, United Kingdom).
The membrane was blocked for 1h with Tris Buffered Saline
(Sigma Aldrich, United Kingdom) containing 5% non-fat dry
milk and 0.1% Tween 20, incubated with primary and secondary
antibodies, and the membrane was developed using enhanced
chemiluminesce (ECL) substrate (Bio-Rad). H3K9me3, H3,
MDM2, p53, ATM and ATM-pSer1081 were detected using
antibodies from Abcam (Cambridge, United Kingdom). HIF-
1α was detected using an antibody from BD Transduction.
Anti-SUV39H1 and anti-Sirt1 antibody was from Millipore
(Billerica, MA, United States). Anti- actin was from Santa Cruz
Biotechnology (Santa Cruz, CA, United States). The specificity of
two different MDM2 antibodies (anti-MDM2 EP16627 and anti-
MDM2 2A10) were validated in FTC133 cells treated with MDM2
siRNA (Supplementary Figure 1).

Immunofluorescence Staining
Cells cultured onto a sterile coverslip were fixed using 10%
formalin in PBS, blocked with 1% (w/v) BSA in PBS for
30 min and incubated with anti-H3K9me3 in blocking buffer for
1 h. Cover-slips were washed with PBS + 0.1% Triton X-100,
incubated with anti-rabbit AlexaFluor 488. Microscopy images
were collected on a Zeiss Axio Imager.D2 upright microscope
using a 40x/0.5 EC Plan-neofluar objective and captured using
a Coolsnap HQ2 camera (Photometrics) through Micromanager
software v1.4.23. Specific band pass filter sets for DAPI and
FITC were used to prevent bleed through from one channel to
the next. Images were then processed and analyzed using Fiji
ImageJ software.

RNA Isolation and Quantitative PCR
RNA was extracted using the RNasey kit (Qiagen, Manchester,
United Kingdom). cDNAs were prepared by reverse transcription
of total RNA using High Capacity cDNA Reverse Transcription
Kit (Thermo Fisher Scientific, United Kingdom). The products
were used for real-time PCR using TaqMan probes for
Suv39H1, CA9, MDM2, HRT1 and Actin-β (Dharmacon,
Horizon Discovery, Cambridge, United Kingdom). RT-
PCR was performed using TaqMan Fast Advance master
mix (Thermo Fisher Scientific, United Kingdom) in a
StepOnePlus RT-qPCR instrument (Thermo Fisher Scientific,
United Kingdom). The obtained data were analyzed using

11Cq method to quantify the relative gene expression as
described in Livak and Schmittgen (2001).

RNA Interference
Cells were transfected with control small interfering RNA
(sc-37007), SMARTpool MDM2 siRNA (SO-2650613G), or
Suv39H1 siRNA (Cy5GGUGAAAUGGCGUGGAUAUUU3′)
from Dharmacon using lipofectamine 2000 (Invitrogen),
according to instructions from the supplier. Cells were treated
and analyzed after a total of 72 h post transfection.

Ataxia Telangiectasia Mutated Inhibition
Cells were treated with 10 µM of Ku55933 for 6 h before lysis
(Hickson et al., 2004).

Statistical Analysis
Statistical analysis was carried out using Graphpad Prism version
7, once the data had been repeated at least three times. When
comparing data obtained from experiments with only two
different conditions (e.g., normoxia vs. hypoxia) an unpaired
t-test was used to compare treated and untreated data. When
comparing data obtained from experiments with more than one
variable (e.g., normoxia with or without drug vs. hypoxia with
or without drug) analysis of variance (ANOVA) was used, and to
identify individual differences Sidak’s multiple comparisons test
was performed. The obtained P-values are represented as follows:
a p-value of ≤ 0.05 is represented as ∗, a p-value of ≤ 0.01 is
represented ∗∗, a p-value of ≤ 0.001 is represented ∗∗∗ and a
P-value of ≤ 0.0001 is represented as ∗∗∗∗.

Results

Ataxia Telangiectasia Mutated Activation
in Response to Hypoxia Coincides With
Upregulation of Suv39H1 and H3K9me3
ATM activation in response to hypoxia has been previously
reported (Bencokova et al., 2009). Here we followed ATM
activation, indicated by ATM-pS1981 (pATM), in response to
hypoxia (18 h, 0.1% O2) in two different cancer cell lines
(human follicular thyroid carcinoma cells FTC133 and human
colorectal carcinoma HCT116 cells) and this was compared to
ATM auto-phosphorylation in normoxia (21% O2) (Figure 1A).
Cells irradiated at 4Gy were used as a positive control for
ATM activation. Consistent with previously reported data,
active pATM was observed in hypoxic conditions (Figure 1B),
and this ATM activation was independent of DNA damage
(Supplementary Figure 2). An upregulation of Suv39H1 protein
levels was also evident in hypoxia (Figure 1C). Since ATM
activation is associated with H3K9me3, the H3K9me3 levels were
analyzed using immunofluorescence in normoxic and hypoxic
conditions. Significantly higher H3K9me3 protein levels were
observed in FTC133 cells following hypoxic treatment compared
to normoxia (Figure 2A), in accordance with previously
published reports (Olcina et al., 2013, 2015). Upregulation
of Suv39H1 in hypoxia coincided with higher H3K9me3
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FIGURE 1 | pATM-S1981, Suv39H1 and H3K9me3 are upregulated in response to hypoxia. Cells were incubated in normoxic (N; 21% O2) or hypoxic conditions (H;
0.1% O2) for 18 h prior to lysis and Western blotting (A). The graph represents the protein levels of ATM-pS1981 (B) and Suv39H1 (C) normalized to the loading
control. HIF-1α was used as a control for hypoxia and β-actin as a loading control. Three independent experiments were performed and the bar represents the
mean ± SEM. *p ≤ 0.05.

protein levels suggesting that Suv39H1 may mediate H3K9
trimethylation under these conditions (Hagemann et al., 2000;
Rea et al., 2000). To assess whether Suv39H1 was involved in the
upregulation of H3K9me3, siRNA-Suv39H1 or scrambled siRNA
were transfected in FTC133 cells and the H3K9me3 protein levels
were followed in the presence or absence of Suv39H1 expression
(Figure 2B). Transient Suv39H1 knockdown in FTC133 cells in
hypoxic conditions resulted in the downregulation of H3K9me3

(Figure 2B). Taken together, these results suggest Suv39H1 is
involved in catalyzing H3K9me3 in hypoxia.

Suv39H1 Is Regulated at the Protein
Level in Hypoxia
To investigate the molecular mechanisms mediating Suv39H1
upregulation in hypoxia, Suv39H1 mRNA levels were
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FIGURE 2 | H3K9me3 upregulation in hypoxia is Suv39H1 dependent. FTC133 cells were incubated for 18 h in normoxic (21% O2) or hypoxic (0.1% O2) conditions
then fixed and stained for H3K9me3 (green) and DAPI (blue) (A). The graph represents H3K9me3 mean fluorescence intensity for each condition. FTC133 cells were
transfected with Suv39H1 siRNA or control siRNA and incubated in hypoxia for 18 h. Cells were lysed and analyzed by Western blot. Densitometry analysis of
Suv39H1 and H3K9me3 protein level is represented in the graphs as a percentage of protein expression by standardizing the levels of Suv39H1 with β-actin and
control siRNA and the levels of H3K9me3 with the total amount of H3 and the control siRNA (B). Three independent experiments were performed and the bar
represents the mean ± SEM. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.

investigated. No significant changes in Suv39H1 mRNA
levels were detected following either 6 or 18 h hypoxic treatment
(Figure 3A). In contrast, the mRNA expression of the known
HIF-1α downstream target CA9 (Wenger et al., 2005) increased
in a time dependent manner (Figure 3A). This indicates that
under hypoxic conditions the upregulation of Suv39H1 level is a
result of a mechanism regulating its protein stability rather than
its gene expression.

Existing literature suggests that the E3-ubiquitin ligase MDM2
regulates Suv39H1 protein stability in normoxia (Bosch-Presegue
et al., 2011; Mungamuri et al., 2016). However, to the best
of our knowledge, the mechanism regulating Suv39H1 protein
stability in hypoxic conditions is unknown. Considering the
involvement of MDM2 in Suv39H1 regulation in normoxia, we

hypothesized that a similar mechanism exists under hypoxic
conditions. To test this hypothesis MDM2 protein levels were
recorded in FTC133 and HCT116 cells following 18 h hypoxia
(compared to normoxia). No significant changes in the MDM2
protein levels were evident in response to hypoxia (Figure 3B),
suggesting the existence of a more complex system preventing
MDM2 dependent degradation of Suv39H1 in hypoxia. Sirt1 has
been shown to increase the half-life of Suv39H1 by inhibiting
MDM2 mediated polyubiquitination in response to oxidative
stress (Bosch-Presegue et al., 2011). To assess whether this
mechanism was present under hypoxic conditions, Sirt1 protein
levels were analyzed in FTC133 and HCT116 cells in normoxic
and hypoxic conditions. Decreased Sirt1 protein levels were
observed in hypoxic compared to normoxic conditions in both
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FIGURE 3 | Suv39H1 is regulated at the protein level in hypoxia in a manner independent of MDM2 or Sirt1 protein expression levels. Cells were exposed for 6 or
18 h to normoxia (21% O2) or hypoxia (0.1% O2). After that time RNA was extracted and analyzed by RT-PCR. The graph represents the relative gene expression of
Suv39H1 and CA9 compared to the normoxic control. CA9 is used as a control for hypoxia. Bars represent the mean ± SEM of four independent experiments (A).
Cells were incubated in normoxia (N; 21% O2) or severe hypoxia (H; 0.1% O2) for 18 h prior to lysis and Western blotting. HIF-1α was used as a control for hypoxic
conditions and β-actin as a loading control. A representative image of one membrane is shown for MDM2 (B), Sirt1 (C) and Tip60 (D). The graphs represent the
densitometry of protein levels normalized by the loading control. Three independent experiments were performed and the bar represents the mean ± SEM.
*p ≤ 0.05.

cell lines (Figure 3C). This suggests that Sirt1 is not involved in
inhibiting MDM2 activity in hypoxia.

Tip60 Is Involved in Maintaining Ataxia
Telangiectasia Mutated Activation in
Hypoxia
The role of Tip60 in regulating cellular responses to hypoxic
stress has previously been highlighted (Perez-Perri et al., 2016).
It is known that Sirt1 negatively regulates Tip60 protein levels
and enzymatic activity (Wang and Chen, 2010; Peng et al.,
2012) as well as the interaction of Tip60 chromodomain with
H3K9me3 (Sun et al., 2009). We investigated the Tip60 protein
levels in FTC133 and HCT116 cells in normoxic and hypoxic
conditions (Figure 3D). An inverse correlation between Sirt1
(Figure 3C) and Tip60 (Figure 3D) protein levels was observed
in response to hypoxia (Sirt1 downregulation and concomitant
Tip60 upregulation). These results in combination with those
shown in Figure 1A (ATM autophosphorylation in hypoxia) and
Figure 2A (upregulation of H3K9me3 protein levels in hypoxic
conditions) led to the hypothesis that ATM activation is Tip60-
dependent in hypoxia. To test this hypothesis the activation of
ATM was studied in hypoxic FTC133 and HCT116 cells treated
with TH1834, a specific inhibitor of Tip60 acetyltransferase
activity (Gao et al., 2014). The results showed a significant
reduction of pATM levels in a TH1834 dose dependent manner
in FTC133 cells (Figure 4A). Reduced pATM protein levels were
observed in both FTC133 and HCT116 hypoxic cells (18 h)
treated with TH1834 (Figures 4B,C, lanes 5 and 6). Since

Tip60 activity depends on H3K9me3 (Sun et al., 2005, 2009),
the mechanism governing H3K9me3 upregulation in hypoxic
conditions was investigated next. Irradiated cells at 4 Gy were
used as a positive control for Tip60 dependent activation of ATM
in response to DNA damage (Sun et al., 2005, 2007). Surprisingly,
FTC133 cell lines required higher concentrations of TH1834
to inhibit ATM in response to IR (Supplementary Figure 3).
FTC133 cell lines present higher protein levels of ATM than
HCT116, which may explain the observed difference.

Ataxia Telangiectasia Mutated
Dependent Inhibition of Mouse Double
Minute 2 Leads to Suv39H1 Upregulation
in Hypoxia
ATM activation in response to severe hypoxia (≤ 0.1% O2),
and ATM-mediated downregulation of MDM2 activity has
been reported (Cheng et al., 2009; Gannon et al., 2012).
We hypothesized that Suv39H1 protein stabilization under
hypoxic conditions could be a consequence of ATM mediated
MDM2 inhibition. To test this hypothesis the Suv39H1
protein levels were followed in FTC133 and HCT116 cells
in which ATM was activated by hypoxia or IR (4 Gy),
in the presence or absence of the ATM inhibitor Ku55933
(Hickson et al., 2004; Figure 5A). Significant downregulation of
Suv39H1 was observed in hypoxic conditions upon treatment
with Ku55933 in both cell lines (Figure 5B). Furthermore,
significantly reduced Suv39H1 protein levels were seen under
normoxic conditions in irradiated FTC133 cells treated with
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FIGURE 4 | Tip60 mediates ATM auto-phosphorylation in hypoxia. FTC133 cells were incubated with 1, 5 or 10 µM of TH1834 or DMSO for 18 h in hypoxia (0.1%
O2). Cells were stained for ATM-pSer1981 (green) and DAPI (blue). The graph represents ATM-pSer1981 mean fluorescence intensity (A). FTC133 (B) and HCT116
(C) cells were incubated with or without 10 µM of TH1834 in normoxia (21% O2) or hypoxia (0.1% O2) for 6 or 18 h prior to lysis and Western blotting. Treatment
with TH1834 is indicated with the symbol (+). Normoxia is indicated with an N and cells irradiated with 4 Gy as N + 4 Gy. HIF-1α was used as a control for hypoxia
and β-actin as a loading control. The graphs represent the densitometry of ATM-pSer1981 protein level standardized to the total amount of ATM and the loading
control in the presence of TH1834 (gray) or DMSO (black). Three independent experiments were performed and the bar represents the mean ± SEM. *p ≤ 0.05,
**p ≤ 0.01, ****p ≤ 0.0001.

FIGURE 5 | ATM dependent inhibition of MDM2 leads to Suv39H1 upregulation in hypoxia. Cells were incubated in normoxic (N; 21% O2) or hypoxic conditions (H;
0.1% O2) for 18 h. The ATM specific inhibitor (Ku55933) was added 6 h prior to lysis and Western blotting. Treatment with Ku55933 is indicated with the symbol (+).
HIF-1α was used as a control for hypoxia and β-actin as a loading control. Cells irradiated with 4 Gy in normoxia and harvested 45 min later (N + 4 Gy) were used as
a positive control for ATM activity (A). Suv39H1 (B) and MDM2 (C) protein levels were calculated by densitometry and normalized to β-actin and untreated control for
each condition. FTC133 cells were transfected with MDM2 siRNA or control siRNA and exposed for 18 h to hypoxia (0.1% O2). Total RNA was extracted and
analyzed by RT-PCR. The graph represents the relative gene expression of MDM2 and CA9 compared to the control siRNA (D). FTC133 cells transfected with 20,
40 pmol of MDM2 siRNA or control siRNA (Cntrl siRNA) were incubated in hypoxia (0.1% O2) for 18 h and the protein levels of Suv39h1 and p53 were analyzed by
Western blot (E). Three independent experiments were performed and the bar represents the mean ± SEM. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.
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Ku55933 (Figure 5B). No effect of Ku55933 treatment in
normoxic conditions on Suv39H1 protein levels was evident
in FTC133 cells. However, in normoxic HCT116 cells treated
with Ku55933 reduced Suv39H1 protein levels were observed
as well as an increase in MDM2 protein levels (Figure 5C).
It is important to note that the basal pATM levels in
untreated HCT116 is higher than in FTC133 which may
explain the observed difference between the two cell lines
(Supplementary Figure 4).

Interestingly, the inhibition of ATM (directly by Ku55933,
or indirectly by TH1834), led to the downregulation of HIF-1α

in FTC133 cells (Figures 4B, 5). However, the same effect was
not observed in HCT116 cells, suggesting that the mechanisms
involved in ATM mediated stabilization of HIF-1α is cell type
specific. Contradicting results regarding ATM involvement in
regulating HIF-1α stability has been previously reported (Cam
et al., 2010; Ousset et al., 2010), which supports a cell type
specific effect. A more detailed analysis of the correlation
between the ATM and HIF-1 pathway is needed to shed light to
these observations.

Increased MDM2 protein levels were seen following Ku55933
treatment in hypoxic conditions (Figure 5C), suggesting that
ATM is involved in regulating MDM2 protein levels in hypoxia.
To test MDM2 involvement in regulating Suv39H1 stability
in hypoxia, siRNA was used to reduce MDM2 expression
(Figure 5D). Knockdown of MDM2 increased Suv39H1 and p53
protein levels under hypoxic conditions (Figure 5E). Together,
these results suggest that the presence of catalytically active ATM
in hypoxia, leads to the upregulation of Suv39H1 by negatively
regulating MDM2.

DISCUSSION

Our results provide direct evidence demonstrating that hypoxic
activation of ATM requires the presence of H3K9me3 and
Tip60 activity. This adds additional complexity to the previous
reports of ATM activation in hypoxia as a consequence of
replication stress (Olcina et al., 2013). Silencing Suv39H1
expression led to a significant decrease in the levels of H3K9me3,
demonstrating that Suv39H1 plays an essential role in the
induction of H3K9me3 in hypoxia. The importance of Suv39H1
as part of the cellular response to hypoxic stress is emphasized
by the involvement of HIF-1α in inducing the expression of
methionine adenosyltransferase 2A (Mat2A) (Liu et al., 2011).
Mat2A regulates the homeostasis of the universal methyl donor
S-adenosylmethionine (SAM) which functions as the methyl
donor for Suv39H1 catalytic reactions (Müller et al., 2016). As
such SAM promotes Suv39H1 activity, and hence the induction
of H3K9me3, in response to hypoxic stress.

Here we show that Suv39H1 upregulation in hypoxia is a
process regulated at the protein level by MDM2, supporting
previous work (Bosch-Presegue et al., 2011; Mungamuri et al.,
2016). In normoxic conditions, MDM2 dependent ubiquitination
of Suv39H1 in response to oxidative stress is executed in a
manner involving Sirt1 (Bosch-Presegue et al., 2011). However,
MDM2 levels were unaffected and Sirt1 levels downregulated in

hypoxia, suggesting an alternative mechanism regulating MDM2
activity in this setting.

Existing data highlights that the direct interaction of Tip60
with H3K9me3 is essential for the activation of ATM in response
to DNA damage (Sun et al., 2005, 2007, 2009). This notion
together with observed upregulation of Tip60 (Figure 3D) led
us to test if hypoxic ATM activation required Tip60 activity.
The data provided in this study supports this concept, as Tip60
inhibition abolished ATM autophosphorylation. Additionally,
this is substantiated by the downregulation of Sirt1 (Figure 3C),
as Sirt1 is involved in negatively regulating Tip60 activity (Wang
and Chen, 2010; Peng et al., 2012). Sirt1 has been implicated in
negatively regulating HIF-1α activity (Lim et al., 2010; Yu et al.,
2019), which is further supported by the presented data. Together
our results suggest that ATM activation in hypoxia is Tip60
dependent, expanding the previously proposed model indicating
replication stress as the triggering event of ATM activation in
hypoxia (Hammond et al., 2002; Olcina et al., 2013).

ATM has known roles in promoting heterochromatin
formation (Filipponi et al., 2016), adjusting MDM2 activity
(Cheng et al., 2009; Gannon et al., 2012) and protein stability
(Khoronenkova et al., 2012) in response to DNA damage.
In addition, ATM is known to be catalytically active in
hypoxia, independently of DNA damage (Bencokova et al.,
2009; Olcina et al., 2013). Therefore it was hypothesized that
inhibition of MDM2 and consequent upregulation of Suv39H1
in hypoxia might be coordinated by ATM. Supporting this,
the inhibition of ATM resulted in MDM2 upregulation, and

FIGURE 6 | Prolonged activation of ATM in hypoxia promotes
heterochromatin formation. Suv39H1 regulates H3K9me3 induction under
hypoxia in a MDM2 dependent manner. Hypoxia activates Tip60, enabled by
the downregulation of Sirt1. This leads to activation of ATM which negatively
regulates MDM2 activity and protein levels allowing upregulation of Suv39H1
and maintenance of H3K9me3 giving rise to a novel positive feedback
mechanism.
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significant downregulation of Suv39H1 protein levels in hypoxia.
In addition, silencing MDM2 expression in hypoxia induced
upregulation of Suv39H1, an effect that was eliminated in cells
treated with the ATM inhibitor.

We propose that persistence of hypoxic conditions leads
to sustained activation of ATM that directly regulates MDM2.
This leads to the upregulation of Suv39H1 that helps maintain
the methylation of H3K9, creating a positive feedback loop
(Figure 6). This idea is further endorsed by data published by
Ayrapetov et al. (2014) that shows that ATM dependent DDR
activation is inhibited upon Suv39H1 knockdown (Ayrapetov
et al., 2014). Furthermore, additional data shows that ATM
activation requires Suv39H1 recruitment to chromatin to
promote H3K9me3 and Tip60 activation (Qin et al., 2020).

CONCLUSION

In conclusion, the data presented in this study highlight
a previously uncharacterized feedback regulatory loop under
hypoxic conditions, and point to a more complex role for
ATM in determining cell fate under low oxygen conditions. The
results presented here endorse the notion that the prolonged
activation of ATM in hypoxia promotes heterochromatin
formation. Specifically the ATM-MDM2 axis is involved in the
regulation of Suv39H1 protein stability and enzymatic activity
promoting H3K9me3. Epigenetic modifications of H3K9 have
been associated with ATM activity in different cellular contexts
including hypoxia (Xu et al., 2012; Olcina et al., 2013; Meyer
et al., 2016). These findings advance our understanding of the
pathways used by cancer cells to adapt to hypoxia and provide
the platform for the design of novel potential therapeutic targets.
The importance of this is emphasized by the increasing number
of drugs targeting the DDR that are currently in different stages
of development (Huang and Zhou, 2020). Particularly, the use of
an ATM inhibitor, as a radiosensitizer, in malignancies known to
have high levels of hypoxia, such as glioblastoma (Monteiro et al.,
2017), has shown striking results in vivo (Durant et al., 2018).
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Supplementary Figure 1 | Antibody validation. The specificity of two different
MDM2 antibodies (anti-MDM2 EP16627 and anti-MDM2 2A10) was validated in
cells treated with MDM2 siRNA showing significant reduction of the MDM2 band
in cells transfected with siRNA targeting MDM2 expression. FTC133 cells were
transfected with 40 pmol of MDM2 siRNA or control siRNA and analyzed
by Western blot.

Supplementary Figure 2 | ATM is activated in hypoxia in the absence of DNA
damage. Cells were incubated in normoxia (N; 21% O2) or severe hypoxia (H;
0.1% O2) for 18 h prior to lysis and Western blotting. HIF-1α was used as a
control for hypoxia and β-actin as a loading control (A) FTC133 cells were
incubated for 18 h in normoxic (21% O2) or severe hypoxic (0.1% O2) conditions
prior to fixation and staining. Cells irradiated with 4Gy cells were used as positive
control (Nrmx + 4 Gy). Cells were stained for pATM-S1981 (green), 53BP1 (red)
and DAPI (blue) (B).

Supplementary Figure 3 | The levels of ATM-pSer1981 in irradiated FTC133
cells treated with different concentrations of TH1834. Cells were incubated with
10, 20, or 30 µM of TH1834 or DMSO (marked with 0) in normoxia (21% O2) for
18 h and then irradiated at 4 Gy x-rays (N + 4Gy). Cells were lysed and analyzed
by Western blot 1 h post radiation.

Supplementary Figure 4 | Effect of ATM inhibition on the levels of Suv39H1 and
MDM2 in normoxia. Cells were seeded left to adder overnight and incubated in
normoxia (N: 21% O2) with DMSO or 10 µM of Ku55933 for 4 h prior to lysis and
Western blot analysis.
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