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Abstract

The evolution of public opinion has been widely studied to understand how atomic in-

teractions between individuals cause opinions to evolve. However, while many studies

have paid attention to the influence and interaction mechanisms, the vast majority of

the literature assumes a static representation of immobile agents, ignoring the effect

that physical proximity and mobility has on interactions, as observed in real-life.

Mobility provides humans with the opportunity to meet and locally interact with a

diverse range of people, which can heavily influence opinion spread in human societies.

Considering both opinion and location dynamics on widely used opinion models, such

as the Bounded Confidence model, can therefore result in more realistic understanding

of the drivers that cause agreement and diversity.

This thesis investigates both directed and random mobility, inspired by two funda-

mental concepts from psychology: homophily and cognitive dissonance. These the-

ories can drive the response behaviours to agreement and disagreement in humans.

We translate these as attraction and repulsion forces in our mobility model. Through

incorporating these phenomena, we quantify the different outcomes that arise and pro-

pose new evaluation metrics for analysis in this context that capture the formation of

opinions and communities, reflecting the self-organisation among the populations.

Extensive simulation results demonstrate the impact of the random and directed mo-

bility. The main findings show that opinion formation is highly insensitive to random

mobility, showing similarity in behaviour to static modelling. This is a very important
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result because the literature usually applies this approach. Furthermore, we find that

alternative psychological theories, as incorporated into mobility, impact differently on

both the opinion and spatial organisation of the agents. As these parameters are var-

ied, we find a distinct transition in behaviour. Finally, by combining and analysing

all the results, we propose a novel classification approach for different outcomes of

self-organisation in opinion models.
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Chapter 1

Introduction

In this chapter we discuss the motivation of this research and identify the novel con-

tributions to the literature. We also provide an outline to clarify the points covered in

each chapter. Finally, we present the list of publications which have resulted from the

research in this thesis.

1.1 Background and motivation

Human behaviour, and particularly the interactions we have with our peers, has a pro-

found effect on the nature of consensus that emerges within social groups. Due to the

rise of on-line social networks, it is increasingly easy to widely share opinion on a given

subject, and thereby further influence peers. This general phenomena is represented

by the field of opinion dynamics, which is rapidly increasing in relevance to society

[16, 13, 68, 14]. Opinion dynamics is traditionally studied via agent based model-

ling [16, 103], which involves understanding how the individual interactions between

agents leads to the formation of shared opinions across groups and sub-populations.

This is important because it can influence behaviour (e.g., around political/voting de-

cisions [104]) and is closely related to social representations and pursuits, such as the

problems of competing cultures [9], use of different languages [17, 4] or even searching

for a buzz word around a set of vocabularies [11].

In this thesis we explore opinion dynamics to investigate different drivers that impact
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opinion evolution, specifically concerning social attraction and repulsion, originating

from human psychology, and how these manifest themselves through agent mobility.

Many of the previous investigations in this area are physics based, using techniques and

methods inspired from physical systems. Therefore these models are often expressed

as analogies of stochastic processes which were originally applied the properties of

matter rather than human beings. For example, some of the techniques used percolation

theory [105], synergistic [107], differential or partial derivative equations [78, 102],

and Boltzmann-like equations [52].

However an alternative approach, as considered by this thesis, is to take inspiration

from behaviours that are observable in humans. For example, in sociology, empir-

ical evidence has shown that the frequency or probability of an interaction occurring

between two people is dependent on their proximity [73]. Another theory that supports

this is propinquity theory, which states that physical proximity increases the frequency

of encounters on a regular basis. Consequently this raises the chances of being friends

[36]. The power of propinquity explains how influence is created through relation-

ships, and it is an important factor leading to interpersonal attraction. Also, [87] noted

the fact that proximity is dynamic and the distance fluctuates with time due to peoples

movement over time. These explicit relationships reflect restricted interactions when

the world is more open for different possibilities and encounters.

When it comes to modelling assumptions, opinion models have often been criticised

for neglecting a number of realistic features of social interaction, perhaps most signi-

ficantly at a local level, the possibility for agents to actually move in physical space,

in relation to others [103, 102, 16, 116, 53]. For example, [23] used proximity and

homophily in order to recommend a new contact. This work also showed that social

relationships can explain 10-30% of human movement while periodic or pattern based

movement explains more then 50%. Given substantial social psychological research

on the relationship between impact and distance (i.e., the proximity-influence rela-

tionship), there appears to be limited research on opinion evolution in settings where
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mobility is captured between the participants as a natural feature - i.e., personal mo-

bility is influenced by psychology. Indeed, most research in this area is conducted on

static settings where agents location are not dynamic [43, 9, 29].

Considering features such as proximity and mobility is especially important in scen-

arios where large numbers of individuals congregate but a social network is not present,

for example, in a conference or the first day at university, etc. In these types of scen-

arios there isn’t a pre-existing network, but instead people walk around and interact

with each other and eventually form groups.

The model presented in this thesis abstracts fundamental principles of psychology (i.e.,

attraction and repulsion towards others) and applies this through response behaviours

as a consequence of opinions. One of the interesting things about this approach is the

co-evolution of opinion clusters and segregated communities that fluctuate in a spatial

context. This can be complex to accurately interpret and therefore we have developed a

robust multi-dimensional framework that allows the relationship between different key

parameters to be assessed. In developing this work through agent-based modelling,

we have observed that there is a substantial lack of rigorous methodologies that allow

agent-based models to be understood in full detail. As a consequence our approach to

analysis aims to resolve this, and delivers a categorisation of models. This provides an

additional contribution to the field.

1.2 Contributions

Below we summarise the main contributions made in this thesis.

1. Free-space opinion formation. We propose a novel opinion model in a 2D free

space environment via agent-based modelling. This environment enables ana-

lysis of the impact of distance (instead of explicit or fixed links) on interactions

and community formation, which captures features not previously considered
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in previous studies. The model allows an in-depth assessment of the groups that

form through pairwise local interactions.

2. Criteria for evaluation. We propose new evaluation metrics that assesses the be-

haviour of the model and return quantitative results that can be compared against

other models with rigour. This includes the development of functions that cap-

ture stability in the models for both opinion and movement, in particular, meas-

uring stability in movement is a novel addition to the field that allows new

insight into the structures that emerge between agents. Also, other functions are

developed to measure opinion clusters in a quantifiable manner, communities

formation in geographical space and tolerance ratio to different others. These

metrics are evaluated by the characteristics of opinion in geographical space.

3. Systematic review on mobility. We identify why mobility within opinion models

has received limited attention and identify the gaps in the field, through a system-

atic review focusing on mobility models. We analyse the models in the literature

and break down the related algorithms in detail to come up with a categorised

table of mobility models for opinion formation. Mobility has been applied in

the opinion modelling literature in a limited manner. However, the associated

literature is scattered and mobility isn’t generally the main consideration under

investigation. This means that the literature is fragmented with weak paths of

citation between related papers.

4. Alternative forms of mobility. We demonstrate how alternative models of mo-

bility allow more realistic behaviour to emerge, in contrast to the complete con-

sensus often found in the literature, by proposing new mobility models that are

inspired by psychological theories, where the mechanisms are directional in

response to an interaction (instead of random mobility).

5. Classification of opinion dynamics. We identify and categorise the forms of self-

organisation that occur through the co-evolution of opinion and mobility. This
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involves identifying the commonality between a range of parameters. We spe-

cify this behaviour by synthesising results from different models. We generate a

classification of six types of behaviours that describe the emergence of self-

organisation.

1.3 Thesis outline

The following chapters are organised as follows:

Chapter 2. In this introductory chapter we summarise the field of opinion modelling,

and provide a clear framework for easy discussion of the literature. We identify the key

papers in opinion modelling as well as the field’s challenges. This identifies the gaps

and limitations of the field that frames our work. Specifically, we provide a detailed

literature review for the previous works that have considered mobility (or some form

of change in their neighbourhood structure), noting details on the rules for when and

how mobility is applied.

Chapter 3. We introduce our model and explain how opinions are incorporated with

mobility. We include a free space environment to reflect the physical proximity as

a factor for communication. We believe restriction in distance is more realistic for

describing potential interaction opportunities instead of an explicit pre-defined network

structure that is static. Mobility and free space are rarely considered in the opinion

formation literature. Therefore, we include alternative mobility mechanisms, enabling

a detailed investigation of the impact of mobility on the co-evolution of both opinion

and the location of agents, providing a new spatial perspective on opinion formation.

We take into consideration the importance of making the psychological theories as a

basis for development of the model (instead of the analogy of particles in physical

matter). Also, we propose new evaluation metrics that include geographic aspects for a
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quantitative analysis, which are often not clearly defined in the existing literature. For

detailed analysis we provide both a visual and quantitative description of the results,

introducing clustering to assess the structural configurations that are present in agents

positioning. This chapter provides us with a basis to conduct experiments and explore

the agent’s co-evolution of opinion and location simultaneously.

Chapter 4. In this chapter we undertake an initial evaluation of the model and the

proposed evaluation parameters across a range of experiments. This gives us bench-

mark information that will be useful in other chapters. In particular, since the simula-

tions may be sensitive to the input parameters, we therefore use this investigation to val-

idate our choice for default evaluation parameters. We continue exploring the chosen

opinion model to present the mechanics of the original Deffuant-Weisbuch opinion

model before incorporating our extension.

Chapter 5. In this chapter we explore the outcomes of mobility that represents the

psychological behaviours identified above. These mobility models are inspired by ho-

mophily theory and cognitive dissonance theory. We define two types of mobility:

one is a directed mobility model that moves based on decision-making related to the

peer’s opinion, and the other is triggered by disagreement and subsequent repulsion to

a random location. We compare and synthesise the differences between these mobility

models, noting that mobility itself hasn’t caught light in the wider opinion formation

literature. This work has been published in [5].

Chapter 6. In this chapter we explore the robustness of the mobility model to noise.

This represents the uncertainty and randomness that occurs when individuals express

their opinion, important aspects of human decision making in a real world context. We

provide a detailed literature review as a basis for these experiments and their context.

This work has been published in [6].
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Chapter 7. In this chapter we compare between two models, one where the move-

ment is triggered by psychological theories (i.e., a social driver) and the other analog-

ous to particles where agents constantly move at random. We study these models and

compare them against static models (i.e., as commonplace in the literature), investig-

ating how the agent interaction range affects the formation of structure. We also study

how significant random mobility is, in comparison to static models. Finally, we study

the convergence and stability of the directed mobility model to establish the model’s

characteristics, and to determine whether it requires further consideration.

Chapter 8. In this chapter we conduct a study across all the proposed mobility mod-

els as presented in Chapter 3. We widen the parameter space to an extent that hasn’t

been studied before in the literature. We identify a number of key scenarios that de-

scribe how agents self-organise themselves by synthesising between common paramet-

ers that behave similarly. This leads us to propose a new classification approach that

enables comparison between different mobility models. The literature has not previ-

ously considered mobility as a significant ingredient in opinion modelling and neither

their geographic location, therefore, this structured classification approach sheds new

light on the different ways self-organisation can appear via a spatial approach. This

work is in preparation for The Journal of Artificial Societies and Social Simulation.

Chapter 9. In this chapter we summarise the thesis and limitations of this work, as

well as highlighting proposals for future work.

1.4 List of publications

1. Alraddadi, E.E., Allen, S.M. and Whitaker, R.M., 2019, September. Homophily,

mobility and opinion formation. In International conference on computational

collective intelligence (pp. 130-141). Springer, Cham.



1.4 List of publications 8

2. Alraddadi, E.E., Allen, S.M., Colombo, G.B. and Whitaker, R.M., 2020. The

role of homophily in opinion formation among mobile agents. Journal of In-

formation and Telecommunication, 4(4), pp.504-523.
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Chapter 2

Background and Literature Review

The methodology of the study in this thesis follows the same three principles as used

in Axelrod’s model of social influence and culture [9]:

Agent based modelling We will draw conclusions from computational simulation of

a population of agents, whose interactive behaviour is specified by simple rules.

No central authority There is no central coordinating agent or external influence in

the model. Agents only have knowledge of their own opinion and the opinion of

an individual agent that they interact with. After being assigned an initial opinion

value, agent’s can only change their opinion through pairwise interactions with

their peers.

Adaptive rather than rational agents Agents only follow the simple rules defined in

the model, and do not have wider goals, costs or benefits. In particular, they do

not “game” their behaviour in order to promote their own opinion more widely.

In this chapter we provide a summary of the literature relevant to this approach, begin-

ning with the general approach of Agent-Based Modelling which is commonly used

to study opinion dynamics. After providing an overview of the individual compon-

ents used in opinion modelling, we provide a detailed literature review specifically on

opinion models that incorporate mobility. Finally we discuss the challenges that arise

which motivate our study in this thesis.
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2.1 Agent-Based Modelling

Agent-Based Modelling (ABM) is a powerful tool for research, commonly used to

model the outcomes that arise from the actions and interactions of different agents. In

this context, an agent is an entity defined by a number of attributes/properties which

is autonomous, modular and social [81]. ABM consists of a population of rule-based

interacting agents with autonomous behaviour in the context of some environment.

Commonly, agents emulate simple versions of human individuals as well as other vir-

tual or living entities, and the environment is the ‘space’ in which they interact. ABM

can be used to observe the emergence of higher level systems behaviour from local

micro-level rules carried out by an agent. A thorough explanation of ABM simulations

can be found in [49, 50].

Classic examples of the resulting emergent behaviours include Boids [99] and the

Game of Life [46]. In both cases simple rules carried out by individuals result in

complex collective phenomena. These models have been implemented for different

purposes, for example, the Boids model was originally used to explain the behaviour

of flocking birds. The algorithm has three different functions that control the over-

all behaviour of the agents movement: cohesion, separation and alignment. Further

research has used the model for crowd simulation and other applications [67]. [86]

extends the boids algorithm to demonstrate time-varying data sets. Other purposes

for using ABM include simulation of emergency evacuation, pedestrian behaviour and

activity in auction-type markets [21].

Opinion dynamics is also an important application for ABM such as in [9, 61, 29].

The field is quite complex with many human characteristics and uncertainty involved,

combined with the lack of available data for modelling or validation. However, for

the last couple of decades, computation power has increased as well as processing

speed and memory capacity. This has enabled ABM to be used more to study social

simulation, where actions and interactions can be represented [13], so that foresight can

be made. With opinion dynamics, the agents represent individuals holding opinions,
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and rules are defined to simulate the sharing, updating and spreading of opinion. In

this sense, ABM is an approach that works as electronic laboratory, especially for

cases where high quality data of opinion spread is not available [14, 10, 73].

This makes ABM a common approach used to simulate opinion dynamics under dif-

ferent conditions and assumptions. Alongside simulation, there are also some theoret-

ical studies with analytical results [76, 78, 12, 94], that are more concerned about the

macroscopic features such as density. Such models deal with differential equations,

however they are analytically focused and not as flexible in the scope of experiments

that they can consider.

However the ABM approach is better suited to exploring different forms of complexity.

In particular, the ABM approach presents ‘abstract models that allow for clarification

or development of new theories or mechanisms’ [14]. ‘The goal is not to reproduce

existing patterns but to develop a new way of thinking about a problem and provide a

great deal of theoretical stimulation for existing empirical research’ [14]. This makes

the approach well suited to understanding human issues through social simulation. In

this thesis we apply an ABM approach to opinion formation. Although critics may

consider this as ‘too simple’ to capture the complexity of human behaviour, the ad-

vantage is that particular issues can be considered in isolation, so that understanding

can be built. Therefore it is important to note that we are not aiming to predict human

behaviour - instead we are analysing simulation outcomes to shed light on the underly-

ing mechanisms that may control the behaviour of a system, with the aim of classifying

scenarios where certain behaviours or outcomes may occur.

2.2 Opinion modelling

The field of opinion dynamics is a key sub-field of complex social systems, which aims

to explain how the opinions held by individuals are changed through interaction with

their peers, leading to global patterns and consensus. Opinion modelling is utilised to
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understand the mechanisms and conditions where opinions are influenced and certain

behaviours and structures emerge in response.

The propagation of rumours or news is an instance from the vast class of social spread-

ing phenomena, which includes the diffusion of fads, the adoption of technological in-

novations, and the success of consumer products mediated by word of mouth [16]. This

makes opinion modelling of interest and applicable in a number of different real-world

contexts. In the literature it has been used to describe political choices [29, 107, 45],

the preference of different groups for residential [100], opinion formation [61], culture

dissemination [9], the competition of different products in an open market [108] and

the occurrence of information cascades in social and economic systems [113].

To provide structure for the literature review in this thesis, we will adopt a framework

that represents a generalised process of opinion modelling, as represented in Figure

2.1. For easier discussion, this framework provides a basis that divides different as-

pects of the model into sections. This helps to overcome one of the challenges in the

opinion modelling field, as previously stated in [16], ‘the development of opinion dy-

namics so far has been uncoordinated and based on individual attempts, where social

mechanisms considered reasonable turned into mathematical rules, without a general

shared framework and often with no reference to real sociological studies’. This gen-

eral framework allows us to draw parallels and distinctions between the many different

published approaches. Also, we must note that there has been a substantial increase in

papers on opinion models, often with minimal changes to the model and little bench-

marking against the literature. Therefore, in this thesis we have been selective, in only

considering those that are most relevant.

Building a model of opinion dynamics that is consistent with existing social theories

is challenging. However, the framework we use divides the complex modelling prob-

lem into five main parts to assess opinion models in the literature, and each describes

one aspect of the opinion model (see Figure 2.1). Note that for static opinion models,

of which there are many, the framework proposed in Figure 2.1 does not include the
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mobility influence component, as no movement is applied, which reflects on the ma-

jority of the literature. However, for completeness we incorporate Mobility Influence,

which reflects on opinion models that consider the impact on the agents changing their

locations.

For the purpose of this thesis to highlight the breadth of literature we’ll be following

the components of this framework. The first part of an opinion model is to define the

Opinion Representation, whether it’s by discrete numbers, real numbers, or some other

form. Then Social Interaction is the process of selecting an agent to communicate or

interact with. The main factor in opinion dynamics models is then Social Influence,

the process by which individuals adapt their opinion, revise their beliefs, or change

their behaviour as a result of their social interactions with others [89] and therefore

we divide it into two categories. Firstly, Opinion Influence which describes the factors

that impact the change in opinion. After that, the Mobility Influence reflects the agents

response to that opinion by choosing their preferred location. Lastly, Update refers to

updating the agent’s properties for both their opinion’s and location’s accordingly. In

the following Sections we explain each of the components in Figure 2.1.

Figure 2.1: General framework for opinion models. Note that many models do
not include the influence of mobility (highlighted).

2.2.1 Opinion Representation

Opinion has been represented in different ways. The mainstream models that are

widely used, are discrete models [43, 107], continuous [29, 61] or a vector of discrete
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opinions [9, 40]. However, models have studied adding more features in the opinion

representation. For example, instead of having a linear continuous opinion [0, 1], some

authors [98, 22] suggest a circular opinion where no extremes exist, so that 0 and 1 are

the same, which can make modelling easier, but moves further from practical applica-

tions such as political preference. The paper [22] explains that if there are opinions A

and B, A is not always chosen because it’s preferred, but because they don’t like B. In

other words, the opinions may have dependencies. Different opinion representations

depend in the type of motivating problem. For example, the [29] model was originally

proposed to model political situations, specifically to represent the political spectrum

of an individual which is not necessarily restricted to an extreme right or left wing but

also positions in between [29, 77, 16], also each side of the spectrum can represent an

extreme [82]. [78] explains that continuous opinions are more related to negotiation

problems or fuzzy attitudes which can’t be specified as yes or no decisions, whereas

discrete models are more explicit to one opinion or the other. Despite the wide vari-

ation in approaches, the majority of papers can be traced back as variations to a handful

of the most commonly applicable and well studied papers, which are summarised in

Section 2.3 and Table 2.1.

2.2.2 Social Interaction

One of the important features in opinion formation models is the interaction scheme,

which defines which group of agents are selected to take part in an interaction. Ap-

proaches in the literature include random selection on a global basis [29, 61] (some

refer to it as homogeneous mixing or mean-field approach) in which a pair of agents

are chosen uniformly randomly from the entire population. Others use various meas-

ures of local selection [93, 121, 102, 52, 61, 107, 29, 105, 9, 45, 71, 53, 54] and some

use a combination of both local and global selections [48, 57]. Global interactions

such as in [29], mean that all agents have the same probability to interact with any-

body within the entire population, lattice or network, counter to sociology theories that
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indicate more structured interactions. For example, empirical evidence highlights geo-

graphical proximity as an indicator of increased interactions between peers [73, 72] or

increased probability of friendship [36].

Many opinion models do take locality into consideration, however, with limitations on

a fixed size neighbourhood [107, 43, 60] or only explicit group links [48, 52, 71, 54].

Most of the models use the Von Neumann approach to describe a neighbourhood,

which explicitly presents a fixed neighbourhood. Usually group sizes differ and en-

counters can also be made with others that are not explicitly a group member. [87]

noted the fact that proximity is dynamic and the distance fluctuates with time due to

peoples movement over time, motivating our inclusion of a mobility component. These

explicit relationships reflect restricted interactions when the world is more open for dif-

ferent possibilities and encounters.

2.2.3 Opinion Influence

This component defines how the information received by an agent during an interaction

is processed and affects them in regards to their own attributes. In this section we will

highlight different ways opinion influence is implemented.

Different models assume different rules of opinion adaptation:

• Imitation: where an opinion is copied exactly the same, e.g. [9, 107]

• Compromise: Where opinions of a peer gets closer to each other in opinion

space, e.g. [29, 61]

• Physics-related equations: Usually described in deferential equations etc. eg.

[102]

Some adaption rules depend on different size of influencers, such as following a group

[43, 61], following a similar pair [107] or a single peer [29].
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Other models incorporate more detail to the agents properties. For example [93] intro-

duces social ties where their strength increases via frequency of interactions and there-

fore provides higher power to influence. [122] studies the opinion leaders strength in

opinion formation. [97] demonstrates opinion leaders and followers under dynamic

confidence levels. [47] demonstrates external media pressure on homophilic network

structure. [119] introduces agents with personalities. [91] presents a representation of

personality knowledge based on personality theories processable in fuzzy logic.

In real-life scenarios people’s encounters and exposure to others is dynamic and there-

fore provides influence as well. This relates to mobility and interactions, providing

motivation for our research in this thesis.

2.2.4 Mobility Influence

Particularly for mobility and influence, the literature is challenging to read due to the

fact that many researchers appear not aware of the others work, evidenced by a lack

citation links. In fact some have published in the same journal, for example, [105, 102]

and [83, 53] without cross referencing each other. Therefore, for ease of discussion we

categorise the different aspects of mobility into two parts, namely the environment that

describes how agents are structured in space to perform mobility and the mechanism

for their movement.

2.2.4.1 Environment

Several approaches to mobility have been taken in the literature on opinion dynam-

ics. The most structured of these consider agents that are located on a lattice (e.g.

[121, 93, 53, 105]), in which agents move to an empty space on the lattice (when

available). Although this allows computationally efficient simulations, the limited dis-

crete spaces available greatly constrain movement, which impacts on the formation of

groups with any significant similarity. Also, lattice-based simulations typically have
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fixed-distance radii of communication, whereas implementing simulation in a continu-

ous space still generally has a radius of communication, but is non-trivial [67]. Con-

tinuous space might be thought non-trivial due to the lack of experiments under these

settings, however, it adds flexibility to the interaction.

While agents in a network allow more realistic social structures, they share similar

issues to lattices, such as the absence of freedom in group formation. This is espe-

cially an issue given that most network studies are spatially constrained, so geographic

distance isn’t considered as one of the influential factors [15]. [112] has shown that

mobility measures has more power in predicting links than network-based measures.

Furthermore, [74] has studied proximity impact with empirical data and conclude that

the average number of interactions people find noteworthy or memorable, being is

proportional to the inverse of the distance at which individuals live. This shows that

geographical distance is a factor for the people we choose to interact with frequently.

There are only limited approaches in the literature that consider unconstrained or free-

space movement such as [102, 60], which may overcome some of the spatial limitations

in previous studies. Although there is a breadth of research on the relationship between

impact and distance (proximity-influence relationship) [74, 73, 36, 95], to date there

is shortage of works specifically on opinion evolution in more unconstrained spatial

settings. Research around opinion models seem to follow a norm under the same set-

tings such as a lattice or a social network, the focus has been on adding variation to

the models such as features resembling human factors, different approaches of interac-

tion etc. However, to the best of our knowledge, geographic distribution, distance and

proximity have not been considered in detail.

In summary, limitations of previous models concerning the spatial environment focus

on:

1. Fixed neighbourhood size; members in a community are fixed.

2. Available empty sites; if an empty site is not found that will lead an agent to
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move to another space that was not intentional due to the limited space that’s

occupied.

3. Discrete space restricts degrees of freedom interaction; free space gives wider

flexible range of interaction outside explicit links.

4. Static neighbourhood members; the interacting peers are the same throughout

the simulation.

2.2.4.2 Mobility mechanisms

Across the different mobility mechanisms that are proposed, the simplest approach to

applying mobility is random mobility in which agents move constantly at random, such

as in [121, 105, 45]. Others (e.g., [102]) present a model of discrete opinions based

on Brownian motion, while [93, 53, 100] consider a lattice model in which movement

is triggered by disagreement. Disagreement is also used to trigger changes in network

structure (e.g., [48, 71, 64, 96]), however this is based on social group membership

without including location.

While different forces of influence are often studied, the mechanism of when/how to

move is rarely studied. In fact in everyday life our movement often follows an in-

centive. For example, in the university, we might change our lunch table because we

disagree or don’t fit with those who are around us, with the change resulting in nat-

urally being exposed to new people. To the best of our knowledge, these dynamics

have not been explored in the literature to date. We believe mobility influence can be

modelled and mapped on to agents and locations, just as opinions are.

2.3 Key papers

In Table 2.1 we present an overall view of the most noteworthy and heavily cited opin-

ion models that have been influential in the field. These are all static models that con-
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Model Opinions Social interaction Social influence
Selection Influence Opinion Environment Mobility

Voter model [27, 63] Discrete Immediate neighbour Peer Imitate Lattice N/A
Axelrod model [9] Discrete (vector) Immediate neighbour Peer Imitate Lattice N/A
Ising model [107] Discrete Immediate neighbour pair Imitate Lattice N/A
Deffuant et al. [29] Continuous Global Peer Compromise Lattice N/A

Hegselmann et al. [61] Continuous Global Group Compromise Lattice N/A
Majority rule [43] Discrete Immediate neighbour Group Imitate Lattice N/A

Table 2.1: Key opinion models from the literature

sider individual agents which do not move, however some do have structure for agents

location, either in a lattice or as nodes in a graph. In the next section we provide a de-

tailed review considering mobility. This Table identifies the key papers and describes

the opinion models following the framework presented previously (Section 2.2). [61]

has noted the jump from linear models to nonlinear models, stating that linear mod-

els such as [30, 41], were carried out with mathematical tools such as matrix theory,

Markov chains and graph theory. They continue to clarify that nonlinear models are

described where the structure of the model changes with the states of the model given

by the opinions of the agents. In this section we focus only on models that take an

agent based approach.

One of the main differentiation points between these models is in their representation

of opinions. The first type of representation is discrete opinions, usually shown as two

alternative opinions (such as positive or negative) [107, 43]. Much of the existing mod-

elling work about opinion dynamics has been addressed from a physics-based point of

view, where the basic mechanisms of social influence are derived from analogies with

physical systems [16, 106], in particular with spin systems. Some features presented in

these models are too simplified to resemble society. For example, these models often

lead to a complete consensus which is rare in many social scenarios. In reality we do

not all become alike, but the forces in the models prevents continuous disagreement

[3]. Differences is a fundamental situation to incorporate to represent a society where

complete consensus is not always the norm. These models also assume that every agent

has an equal chance to interact with others, however in reality a person might choose

to not interact with another, for example, due to their difference in beliefs or from a
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lack of opportunity.

Well studied models that actually take into consideration opinion differences as a driver

for interactions include the Bounded Confidence (BC) models [29, 61], which are char-

acterised by opinions over a continuous interval. The two models are similar but they

differ in their updating scheme, where [61] shows simultaneous update rather than a

series of sequential pairwise interactions [29]. The need to calculate opinion aver-

ages of large groups of agents makes computer simulations of the [61] model rather

lengthy as compared to [29] model ([16]). The models have been used to simulate both

formal group meetings [61] and face-to-face meetings [29]. These models demonstrate

a probability of influence, that is restricted between only those of similar interest. With

continuous opinions, divergence is readily modelled (contrary to the discrete), allow-

ing different forms of opinion clusters to emerge. Alternative configurations of opinion

formation can emerge, usually described as single opinion of complete consensus, po-

larisation into two dominant opinion clusters or fragmentation of multiple opinion

clusters.

Another highly cited model that used a similar threshold to have selective interactions

is the Axelrod model [9]. This introduced a vector of multiple discrete opinions for

each agent. This model studied the mechanics of the dynamics of cultural assimilation

and diversity. Originally the model described cultures defined in terms of multiple

features, but this model is equally used in opinion modelling.

We have identified the key papers of opinion models and explained the modelling pro-

cess. We have shown that models differ in the smallest details of their interaction, for

example whom has influence on whom. Each model suits a different problem depend-

ing on the context studied. In the next section we will discuss the challenges in opinion

modelling.
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2.4 Mobility in opinion models

In this section we shed light on the features of mobility approaches and mechanisms

that have been applied to opinion models. We will focus on the different components

of mobility models and provide a thorough review on the mechanisms they lead to.

Table 2.2 summarises work that considers mobility in opinion dynamics (to the best of

our knowledge). Many fields became interested in researching opinion models, from

sociologists and computer scientists to physicists, where an unexpectedly large body

of research has been motivated by considering the mobility and interaction of agents

as gas particles. Many of the papers that incorporate mobility into opinion models, as

reviewed in Table 2.2, were published in physics journals1 with [100, 57] as exceptions

from mathematical journals and [19] from the social sciences.

Firstly we will reflect on the different definitions of the term mobility across the lit-

erature. The simplest approaches locate agents at discrete locations on a lattice, with

mobility either changing the locations of individuals [100, 102, 45, 105, 93, 121, 53,

60, 98, 96] or swapping places occupied by pairs of agents [82]. Others refer to mobil-

ity in terms of allowing an agent to interact with a far away agent, even though neither

agent will actually change their location [57]. A distinctive approach is presented in

[34], which applies mobility on a toroidal grid, however in this work opinion and loc-

ation don’t co-evolve, as the agents first move to organise themselves, after which the

opinion dynamics start.

Most of the work that has taken mobility into consideration in opinion modelling has

applied purely uniform random mobility without considering the direction of move-

ment ([105, 121, 98, 83, 45]). Furthermore, the trigger or reason for movement has

typically been ignored and executed as an analogy to moving particles. Similarities

and differences have often been used as triggers that cause a change in location (e.g.

[18, 88]). At a more general level, studies have shown how the preference of people

1Based on the classifications of SJR Scimago Journal & Country Rank
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Reference Opinion model Environment Interaction Mobility
Trigger Dynamic Inspiration

Alraddadi
et al. [6]

BC Free space Neighbour Agreement and
disagreement

Move closer or
away from a
peer

Homophily
[84] and
Cognitive
Dissonance
[35]

Centola
et al. [19]

Axelrod model
[9]

Lattice Neighbour Disagreement Augment
neighbourhood

N/A

Galam
et al. [45]

Voting [42] Lattice Neighbour Random Move (to unoc-
cupied)

Reaction-
diffusion
automata [26]

Gargiulo
and Huet
[48]

BC Network Local and ex-
ternal

Disagreement Re-linking Cognitive Dis-
sonance [35]

Gracia-
Lázaro
et al. [53]

Axelrod model
[9]

Lattice Neighbour Disagreement Moving (to un-
occupied)

Intolerance
[100]

Guo et al.
[57]

Majority rule Network (small
world) [90]

Local and
global

N/A N/A Levy flights
[51]

Hamann
[60]

[44] and [59] Free space Neighbour Random Move Swarms

Holme
and New-
man
[64]

Voter [27, 63] Network (ran-
dom)

Neighbour Disagreement Re-linking N/A

Kozma
and
Barrat
[71]

BC Network (ran-
dom)

Neighbour Disagreement Re-linking N/A

Martins
[83]

Voter [27, 63] Lattice and
network (small
world)

Neighbour Random Swap N/A

Pfau et al.
[93]

Axelrod model
[9]

Lattice Distance/link
strength

Disagreement Move (to unoc-
cupied)

[18]

Qiang
et al. [96]

BC Lattice and
network (scale
free)

Neighbour Disagreement Move (to unoc-
cupied)

N/A

Ree [98] BC Lattice Neighbour Random Move N/A

Schelling
[100]

N/A Lattice Neighbour Disagreement Move (to unoc-
cupied)

Discrimination

Schweitzer
and
Hołyst
[102]

Social Impact
Theory [1, 75]

2D spatial
structure

Social distance Agreement and
disagreement

Move Brownian
particles,
Langevin
equations

Sousa
et al.
[105]

Sznajd model
[107]

Lattice (vari-
ous)

Neighbour Random Move (to unoc-
cupied)/swap

Lattice gas [8]

Zhang
et al.
[121]

BC Lattice Neighbour Random Move (to unoc-
cupied)

N/A

Table 2.2: Opinion models with mobility

holding different ideologies to co-locate can lead to segregation, as they move out of a

certain community or neighbourhood to a more similar one. [100].

Furthermore, there is a lack of consistency and comparison between the published
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opinion models that incorporate mobility, and the works are largely independent. To

address these shortcomings, Table 2.2 summarises the opinion models with some sort

of explicit mobility. However, because the literature with mobility is small we have

added the dynamic network (rewiring links) models to give some further perspective

on the literature.

Therefore, we add a few models that have a change in their network structure. In these

dynamic networks, agents change their linking relationships depending on the policy

or reaction toward the model. More work has been done on dynamic networks but we

will only highlight a few in this table because it is not the main focus of this thesis.

In addition, to extend the depth of mobility models we have included [100], although

the authors do not model changes in opinion, but only apply mobility based on the

opinions that individuals hold.

In the table, we categorise the details of the models rules, including the mobility trigger

which describes the reason of an agent to take action. Some models perform movement

after disagreement is encountered and others move entirely randomly at each time step.

As for, mobility dynamics describes the execution of movement (changing location, re-

linking etc.). Following this, we describe the inspiration behind the dynamics, which

is typically based on physical phenomena rather than psychological concepts.

This section helps highlight the different features of mobility mechanisms and provides

a strong basis to conduct an in-depth study of our model. A majority of works apply

randomness in their decision making, either in their mobility trigger or their mobility

dynamics. There are also some models that are triggered by disagreement. How-

ever, the agent’s choice of location does not reflect the disagreement but it is simply

randomly chosen, with exception of [48, 93, 64]. Therefore, we find it important to

explore the area and investigate the dynamics of the mobility forces that would reflect

on the emergence of opinions and communities.
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2.5 Challenges in opinion modelling

From examining the literature, there are a number of challenges and gaps in the field

of opinion dynamics that we will explain in more detail in this section. Many opinion

models have been proposed that add different drivers and rules to previous models in

an attempt to add more realism. For example, some have added personality traits to

agents, such as openness [55, 66], while others have sought to represent the influence

of knowledge through experts and lay people [85, 89, 111].

Extensive work has been undertaken to develop this field of opinion modelling, as

found across several surveys [16, 78, 117, 116, 3, 32]. Unfortunately, although the

number of surveys is increasing, they are largely covering the same material and not

adding new insight over the years. For example, [32] is the latest survey, however, only

the same mainstream opinion models are reviewed. Furthermore, in a way they only

provide a list of variations, however, the difference between them or the conclusions

of these models are not synthesised or reported, which makes these surveys of less use

to the community. While it is understood that the number of published work in the

field is very large and diverse, so it is hard to draw consistent and clear conclusions,

however a consolidation of modelling and evaluation approaches that would make the

field develop between the researchers more effectively. For this thesis we will focus

and refer to the selection of works that are most relevant to our study.

2.5.1 Evaluation and real world data

One of the main issues in opinion modelling is that there is no consensus in the way

opinion models are evaluated. For example, for convergence in opinion the interest is

largely in the measurement of stability which has been very widely studied, however,

it is not quantified in order to enable easy comparisons between other models or the

function is not defined as in [121]. Another example, is the number of opinions, where

works often plot individual opinion values against time and report the final opinions
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such as in [70, 115, 29, 22], however, there is frequently no function defined to quantify

the actual numbers of opinion. Furthermore, many opinion models have been proposed

but either details of the simulations are omitted, without enough detail of metrics [96]

or with weak assumptions [98, 105, 57]. This shows that rigour is needed in the field

and comprehensive evaluation methods are required to state the findings.

One of the main criticisms on opinion modelling as a field is that models are not val-

idated by real world data [16, 103, 89]. Some attempts have considered using data but

with limited success. Use of data is quite rare in the field, because it is generally very

difficult to obtain at a suitable scale, over a long enough time period to show opinions

changing, or at a sufficient level of detail. To some extant the ABM approach mitigates

the lack of data, through computational studies with simplified models over a much

wider range of scenarios, and allowing isolated facets to be investigated in detail.

We discuss the few models that have taken some type of approach to validate their

opinion models. In many cases, the underlying data is not publicly available and the

way the data has been collected and processed is not entirely clear or reproducible

[52, 107]. One of the rare pieces of work found on collecting data is [89]. Their model

is based on controlled experiments with around 50 participants, showing how parti-

cipants answering factual questions revise their initial judgements after being exposed

to the opinion and confidence level of others. Then, a simple process model is derived

from their observations to demonstrate how opinions in a group of interacting people

can converge or split over repeated interactions. However, their model has not been

validated, and focuses on objective facts rather than more subjective opinions (e.g.

What is the length of the river Oder in kilometres?). Another attempt by [52] collected

a database received from an on-line game server, and used it to build a social network.

However the data collected does not reflect on the opinions nor their dynamics, but

only the network structure that is used for an agent based approach.

Others have proposed models that attempt to mimic collected data. A piece of work

performed by [107] who collected data over a couple years based on asking “do you
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think the future will be good?”. They used the data to validate their models prediction,

however, not validating their micro-rules of social influence, such as their assumptions

on the interaction or influence process. Furthermore, details about the nature of the

data was not presented. For example, it is unclear if the people answering the question

are the same ones after a period of time has passed, or is this a measure of collective

opinion formation over the years. In other words are the dynamics per individual or

collective. [118] has taken a similar approach, where they have collected data from

twitter and recorded some observations. They then developed a model that produced

similar properties to the actual data. Again, the data collected does not appear to track

the changing viewpoints of individual users, but rather the population as a whole.

This shows tracking the actual change in opinion is quite challenging (see surveys

such as [16, 103]), specifically concerning the measuring and tracking influence and

to pinpoint the main factors. For this thesis our focus in on data consisting of both

opinion and locations that is generated through simulation, based on specific assump-

tions. Through simulations that are extensively studied, we form rigorous conclusions

against the assumptions.

2.5.2 Psychological features

Another potential criticism of previous opinion formation work is the absence of a link

to psychological behaviour [16, 117]. As highlighted in [16], it is important that the

mathematical rules used to model social mechanisms and simulate opinion dynamics

are referenced to psychological and/or sociological studies, because there is usually

strong empirical evidence that these can influence an individuals behaviour. [103] also

emphasised on the poor linking between models and reality.

Many theories of social interaction are based on interpersonal communication and

characterised by mutual attraction and proximity among local individuals sharing sim-

ilar characteristics, such as age, gender or social class. [110] provides an extended
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explanation of social influence theories. One of the most well-known psychological

theories is homophily [84], which describes the tendency of an individual to interact

with other peers that share similar interests. This is often expressed by the proverb

“birds of a feather flock together”. A further profound concept of relevance is social

impact theory [73], which explains that the amount of influence a person experiences

in group settings depends on (a) the strength (power or social status) of the group,

(b) immediacy (physical or psychological distance) of the group, and (c) the number

of people in the group exerting the social influence (i.e., number of sources). Another

theory that is very important and is more related to geographical distance is propinquity

[36], that’s referred to the similarity between individuals with respect to geographical

space acting as a factor to interpersonal attraction. Self-categorisation theory [109]

governs a person’s sense of who they are based on their group membership (eg. family,

sports etc.), where communication is based on “them” and “us”.

The final psychological theory we note is that of cognitive dissonance [35], which de-

scribes our subconscious desire for internal consistency. More specifically, it is the

cognitive discomfort experienced by a person who has two contradicting beliefs. Due

to this psychological discomfort, a person tends to act to reduce their cognitive disson-

ance, either adding new parts to the cognition, by actively avoiding social situations

(for example, by moving away) or contradicting received information.

It is evident that some opinion formation work from the literature has been inspired

by sociological theories such as homophily [47, 64], cognitive dissonance [48, 92, 56],

conformity [114, 56] and social impact theory [52, 102, 65]. We can highlight a num-

ber of interesting results from incorporating psychological theories. One study [47]

considered the effect of propaganda or a central media on the spread of opinion across

a network made up of links added through both popularity and similarity. They show

that homophily favours the formation of consensus, and also mitigates the influence

of dominant media. Another study [104] investigates the emotional state that is linked

with certain opinions. They suggest if persuasion is needed toward a certain opinion
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(e.g. by a politician), discretized as between positive, negative or neutral, then it’s

easier to convince the calm agents then to convince the agitated ones to change their

original opinion.

In this thesis, we will use psychological theories as drivers to make the model rel-

evant to humans. We do not aim to formalise any theories of psychology, but in-

stead use some very broadly stated principles that are frequently used in the field.

Homophily is one of the most used theories to represent a mechanism of interaction

(eg.[9, 29, 47, 64]), and cognitive dissonance or intolerance has been used to translate

change in agent’s locations or links [48, 53, 100] (shown in Table 2.2). In contrast

to studies in many areas that consider our desire for diversity, our approach of con-

sider homophily also covers the human trait of seeking similarity. We believe just as

agreement/disagreement impact on how individuals naturally process information and

influence opinion change, so does the incentive to move and explore.

2.5.3 Mobility

Models of opinion dynamics have been criticised for ignoring the fundamental prin-

ciple of human mobility [103, 102, 16, 116, 53]. The inclusion of mobility has not been

the primary focus in the investigation of opinion models (as discussed in Section 2.4),

however, their use within models of other social contexts have shown successful ap-

plications that highlight their potential importance.

One obvious scenario where this have been applied is the study of pedestrian crowd

behaviour [62], which started off using models based on cellular automata and suc-

cessfully shifted to models where agents can move in continuous space [16]. Others

propose a two-dimensional factorisation of perceived personality in crowd simulations

with mobile agents [58]. Some researchers have also studied the links between rela-

tionships and geographical locations. [25] found that human mobility is influenced via

the social network structure. They state that the short-range travel is less impacted by
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the social network structure, however, long distance travel is more influenced by an

pre-existing friend (social ties). [28] found that users made increased visits to certain

places frequented by their social friends. [120] examines the strength of influence and

friendship creation and how much are they stimulated by the types of venues (e.g.,

coffee shops, airport etc.).

Some real world application have tried to increase the chances of meeting other at-

tendees in a conference to expand their social network [24]. They used proximity and

homophily in order to recommend a new contact. This work also shown that social

relationships can explain 10-30% of the human movement while periodic or pattern

movement explains more then 50%.

This highlights the importance of mobility in opinion modelling. Influence depends

on your encounters and encounters depend on your location. In the next Chapter 3 we

propose different mobility mechanisms to explore the impact on opinion evolution.

2.5.4 Noise and uncertainty

When modelling human behaviour and social agents noise should be a realistic ingredi-

ent of the model, representing the natural variability demonstrated in an individual’s

behaviour. This randomness can be introduced in the form of a social “temperature”

or pure noise. Noise can resemble different features of real world interactions, such as

misreading the opinions that an individual expresses, or misattribution of an opinion.

Different opinion models have applied noise, as we will discuss in more detail in

Chapter 6. In this section we will briefly go through the main techniques of includ-

ing noise. The term noise has been used in a number of different ways across the

literature. Some referred to it as an expression of a random behaviour that forces the

model not to follow the rules strictly, others refer to it as the opinions that are outliers

and have not converged. In this thesis we use the term noise to refer to the random

behaviour resembling human uncertainty. We highlight three notable approaches to
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modelling noise from the literature.

In addition to proposing their own approach, [54] provides a useful summary of the

different approaches to incorporating noise in an opinion model. One of the ideas that

was proposed by [71], is to add a probability that two agents might actually interact

and influence each other even if they are in disagreement. A second form of noise

was introduced by [94], which describes the consistent presence of dynamic behaviour

through time. They model this using a probability to assign a random opinion to a ran-

dom agent over time. As a consequence, there always remains a chance that individual

opinions will reappear, and form new clusters.

The final type of noise is proposed in [54] as an improvement to the model in [71],

which suggests adding a thermal factor, analogous to Glauber dynamics, where the

thermal noise is a function of the difference in opinion instead of energy. The scale

of the probability to change opinion is inversely proportional to this difference, with

volatility controlled by a temperature parameter.

Given the different types of noise shows different approaches to relax the rules to

demonstrate uncertainty and study the robustness of the model. We will tackle this

in Chapter 6.

2.6 Conclusions

In this chapter we discuss the widely used ABM approach and how it is commonly

utilised in opinion modelling. We provided a framework for clear discussion of relevant

elements and comparison of the literature. Also, we identified the key papers in opinion

modelling. Following that we have provided a more detailed literature review which

categorises the relatively few opinion models that incorporate some form of mobility.

To identify gaps in the treatment of movement, we broke down the algorithms in terms

of when and how mobility is performed, and their inspiration for such mechanisms
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(Section 2.4, Table 2.2). Finally, we summarised the field’s challenges, highlighting

the key gaps in opinion models.

Mobility has a significant impact on the evolution of opinion. It can impact the form-

ation of groups, the exposure of individuals to new opinions and change the people

whom your surrounding. One can see in every day life that if one moved from one

university to another, some of their beliefs change through time due to the exposure on

a new environment. Also, the action to move must have a reasoning as human beings.

Our choices are not formed at random but decided as a function of our personality and

relationships. Incorporating psychological behaviours to the simulations makes the

simulation more relatable.

These challenges motivate the proposed models and investigations in the remainder

of this thesis. The next two chapters focus on developing the basis for this thesis,

presenting the model and approach to evaluation. In Chapter 3 we propose the opinion

model that incorporates mobility. Mobility under free space has not been thoroughly

considered in the literature, therefore, we propose evaluation metrics that will assess

the model in geographical terms as well as in opinion space. We specify detailed

evaluation such as identifying communities as well as those that don’t belong to a

community. In Chapter 4 we present an initial investigation of the model parameters

and simulation in order to give confidence of the validity of our results.

The following chapters focus on detail simulations, results and discussion that con-

tribute in different ways to the literature by addressing the challenges listed above. In

Chapter 5 we investigate the significance of mobility on opinion modelling, in partic-

ular, with the hypothesis that taking into account psychological theories that trigger

movement will provide more interesting scenarios. We define two types of mobility

that are triggered by psychological theories, with one performing a random mobility

and the other a directed mobility that moves toward a preferred location, based on the

concepts of cognitive dissonance and homophily. In Chapter 6 we incorporate noise to

test the robustness of our directed mobility model. We continue to Chapter 7 to explore
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how different mobility mechanism under different triggers behave. To do this we com-

pare between the different mobility mechanism and expand the parameter space for a

thorough exploration. In Chapter 8 we classify the behaviour of each mobility model

based on the different form they structure themselves geographically. This synthesise

all of the metrics under a large parameter space and extensive experiments. Finally, we

present a classification that describes each models behaviour in self-organising them-

selves.
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Chapter 3

Model

This chapter introduces the model that is used as a basis for investigation throughout

the thesis. The model considers the general framework of opinion modelling based on

the popular the Deffuant-Weisbuch (DW) opinion model [29]. Importantly, we extend

this to include mobility, which is a fundamental aspect of human behaviour that is

also linked to psychological and sociological properties such as attraction, homophily

and crowds. We present the associated algorithms that define this extended model,

including input parameters that will be used to assess the model in experimentation

conducted in the following chapters. Together with the evaluation metric that will

assess the opinion distribution in both opinion space and geographical space. These

metrics will highlight the structure of opinion within a community and those that don’t

“belong” to a community as well.

3.1 Introduction

In Chapter 2 we identified an important gap in the literature concerning opinion model-

ling. In particular most opinion formation models ignore agent mobility. Instead, mod-

elling assumes that the opportunities for agents to communicate and share opinions are

represented by links in a network or graph (with nodes representing the agents). In

some cases, the links are formed based on the underlying positions of the agents, often

using a regular grid or lattice (e.g. [29, 61, 9, 107, 43]), while in other work, these
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networks represent more abstract social networks (e.g. [39, 7, 31, 121, 47]). We are

interested in directly modelling agent mobility, to assess in detail how this affects the

dynamics and structures that evolve. To demonstrate this we apply a free space topo-

logy - this is a two-dimensional representation of a region with a boundary containing

agents that are free to move.

This model can be a generalisation of the filter bubble problem, where information

is usually shared within the group. We understand how hard it is to change opinion

and how misinformation spread. Therefore using this model of mobility and opinion

influence, while starting from a clear canvas can show why we see this in real-life.

As raised by [37], often the reasons why certain modelling configurations are chosen

are not explained, and therefore we highlight the following reasons for our model.

Firstly, in contrast to a lattice or network, free space topology overrides the limitation

of not being able to find a discrete empty site in a lattice. Secondly it eliminates forced

re-wiring of a fixed size neighbourhood in a network, and replaces this with a repres-

entation based on interaction due to proximity. In our model initiating an interaction

and choosing to move location is potentially an action without consequences, depend-

ing on the locality. This gives the chance for both communities or isolated agents to

arise without rules that force the structure of an agent’s neighbourhood. For example,

some models will force another agent to join a group if one has just left [71, 48].

The neighbourhood element of modelling has the main influence on opinion formation,

however, it is currently not well-understood what will happen to opinion diffusion if

agents can move around freely. This leads to a dynamic neighbourhood with poten-

tially more exposure to new agents due to mobility. Also, in a free space environment

unlike having discrete locations, an agent isn’t restricted to only interact with its im-

mediate neighbours. For example, they are able to interact with someone outside their

immediate ‘bubble’ if they are still sufficiently nearby. Therefore, interactions are more

flexible and new communications are introduced without being forced to only interact

with those characterised by a set of explicit links. Moving from assuming a small dis-
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crete set of locations and neighbours for an agent gives a wider range of simulation

configurations to explore and more variation for different behaviours to arise.

Following the overarching framework for our study presented in Figure 2.1, we propose

a new model for the co-evolution of opinion and location, inspired by psychological

theories concerning homophily. Agents in our model do not form or break explicit

links, but interact with their nearby peers at any point in time, and are free to move in

Euclidean space. A fixed interaction radius specifies the range within peers of an agent

can be selected for communication, and these neighbourhoods of agents change as

agents move freely within the space. The use of Euclidean space contrasts with forced

interactions with the same neighbours for the entire simulation as in the static opinion

formation models such as those proposed in [29, 61, 107] or the network/lattice models

of social structures proposed in [39, 7, 31].

3.2 Model formulation

In this work we use the widely studied DW opinion model proposed by [29]. This

represents opinion in a continuous interval, which better represents the varied opinions

that emerge in real social situations when compared to alternative discrete models with

only two opinions, such as the Ising model [107], Majority-rule model [43], etc. The

DW model is applied on a lattice and allows peer-based interaction that can’t change

their locations. The model implements a global interaction in a mean-field-like scen-

ario where each agent is allowed to interact with all the others regardless of it’s geo-

graphical limitations. We will use this model as a benchmark to assess our extended

mobility model (denoted in the remaining of the thesis, as static).

Definition 1. The static model is the DW original opinion model where agents do not

change their locations (p = 0). Agents’ peer selection for an interaction is across an

unrestricted, global interaction range 1

1For this thesis, it’s evaluated with the maximum length of interaction rs = L for convenience
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The DW model has been very widely studied, with a considerable variety of extended

studies undertaken to understand the underlying features. For example, this includes

studying heterogeneous distributions of the opinion threshold over agents [115, 70,

121, 79], exploring the rising of complete consensus in different environments [39],

the propagation of extremism [7], and the impact of cautious levels that would prevent

complete consensus [80]. In this section we will present an extension of the DW model

which incorporates mobility.

3.2.1 The Deffuant-Weisbuch (DW) model

We consider a population of n agents,A = {a1, . . . , an}, where each agent ai is defined

by a location xyi = (xi, yi) and opinion opi ∈ [0, 1].

Following the DW model [29], a pair of similar agents ai, aj will interact if and only

if their respective opinions (opi, opj) are within an opinion threshold ε, in which case

they both adjust their opinion to be more similar, governed by a global parameter µ

(termed convergence rate in the original model [29]).

Definition 2. An interaction occurs when a pair of selected agents share their respect-

ive opinions (and potentially influence each other). In contrast to the original DW

model, we consider the trigger for an interaction to be asymmetric, each having an

inviting agent who initiates the interaction and an invited agent who responds.

Definition 3. A pair of agents ai and aj are said to be similar if their respective opin-

ions are close enough to influence each other, i.e. their difference is within the opinion

threshold, ε:

|opi − opj| ≤ ε

Definition 4. An interaction between two similar agents ai and aj results in both ad-

justing their opinions to be closer, based on a global parameter µ, termed the conver-
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gence rate. The updated opinions for i and j are denoted op′i and op′j , defined as:

op′i = opi + µ(opj − opi)

op′j = opj + µ(opi − opj)
(3.1)

Figure 3.1 represents a single interaction in the DW model. The steps follow the gen-

eral framework we previously presented in Figure 2.1, Chapter 2. First, Figure 3.1

presents the opinion spectrum which is a continuous interval of [0, 1] represented by

different colours.

Definition 5. An opinion spectrum is the continuous interval [0, 1] which represents

the range of views an agent has on a given topic or statement. For example, 1 may

represent complete agreement with a statement, while 0 represents complete disagree-

ment.

Second, the social interaction happens, where a random pair of agents are selected to

interact with each other (orange and green opinion agents). Then, social influence hap-

pens, where both agents are influenced to change their opinion to compromise between

each other, if the opinions are close to each other. Following this, if interaction is suc-

cessful then both their opinions are updated (to become yellow).

Pseudo-code for our implementation of the DW model is provided in Algorithm 1.

Note that the model doesn’t have any underlying structure or network topology gov-

erning the choice of agents to interact. Instead, every agent is free to interact with any

other. Also note that the time step count is also advanced if the chosen agents do not

successfully interact.

3.2.2 Introducing mobility

We modify the DW model by only allowing interactions between agents that are close

not only opinion, but also in their location, and similarly updating both opinions and
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Figure 3.1: The framework of DW opinion model - continuous opinions are as-
signed to agents and interactions are between randomly chosen peers and there-
fore try to influence each other to compromise toward an opinion in between the
both of them.

Algorithm 1 DW model

Require: Input parameters (n, limit, rs, ε, µ)
Require: Initial population A of n agents

for limit time steps do
ai ← U(A) . Select random inviting agent
aj ← U(A− {ai}) . Select random invited agent
if |opi − opj| ≤ ε then . DW model [29]

op′i ← opi + µ(opj − opi) . Successful interaction: Opinions influenced
op′j ← opj + µ(opi − opj)

else
op′i ← opi . Unsuccessful interaction: opinion unchanged
op′j ← opj

end if
opi ← op′i; opj ← op′j . Update opinions

end for

location following an interaction. When and Where to move, are important questions

that need to be addressed in a mobility mechanism. However, in the small number of

scientific articles that applied mobility (discussed in Chapter 2, Section 2.4) this has not

been addressed. Therefore we provide a wide experimentation of mobility mechanisms

to study each mobility’s impact on the co-evolution of both opinion and location. We

investigate different mobility models when their function is called, as highlighted in

Algorithm 2 in red.
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Definition 6. The neighbourhood of an agent ai, denoted N(xyi, rs), is defined as

the set of all other agents within a Euclidean distance rs. Let d(xyi, xyj) denote the

Euclidean distance between agents ai and aj , then:

N(xyi, rs) = {aj ∈ A− {ai} : d(xyi, xyj) ≤ rs}

The model has been implemented in Python 3.7.6. The environment in which agents

move is a confined Euclidean space of L × L (i.e. a simple box). The agents are able

to move freely within this region, however if their movement would take them outside

of the space, reflection is applied to their movement vector at the border so that they

bounce back.

Algorithm 2 DW model with mobility framework

Require: Input parameters (n, limit, rs, ε, µ, p, λ)
Require: Initial population A of n agents

for limit time steps do
ai ← U(A) . Select random inviting agent from population
if N(xyi, rs) 6= ∅ then

aj ← U(N(xyi, rs)) . Select random invited agent from neighbourhood
if |opi − opj| ≤ ε then . DW model ([29])

op′i ← opi + µ(opj − opi) . Successful interaction: Opinion influenced
op′j ← opj + µ(opi − opj)

else
op′i ← opi . Unsuccessful interaction: opinion unchanged
op′j ← opj

end if
if U([0, 1]) < p then . Apply mobility rate

Update xy′i ← mobility(ai, aj) . Apply mobility model
else

xy′i ← xyi . No movement
end if
opi ← op′i; opj ← op′j . Update opinions
xyi ← xy′i . Update location

end if
end for

As in Algorithm 2, we increment the time step counter for each selection of an inviting

agent, irrespective of whether a successful interaction took place. This includes cases
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where it is not possible to find a suitable agent to invite, i.e. where N(xyi, rs) = ∅.

The mobility model is only applied to the inviting agent, and the invited agent always

remains in the same location.

Under mobility, movement is applied with probability p. If p = 0 agents are static and

consequently interact with the same set of neighbours throughout the simulation. The

parameter λ ∈ [0, 1] is used to control the scale of movement, with λ = 0 leading to

no distance to be moved with, and λ = 1 denoting that ai moves to it’s full range of

distance.

Definition 7. Simulations are termed local static when the input parameters prevent

any movement by agents, i.e. where p = 0 (or λ = 0), but the influencing peers are

still restricted by the interaction range rs instead of having a global interaction across

the population.

Two main categories of mobility models are described below: random mobility and

directed mobility.

3.2.2.1 Random mobility behaviour

In the literature, many of the proposed mobility models are analogous to statistical

physics. These models usually share certain features such as, agents are seen as

particle, holding one of two states, in a lattice environment, under homogeneous mix-

ing where any agent can interact to any other ignoring the presence of a reason or

trigger to behave in a certain way. And these models are observed until a phase trans-

ition is found and an equilibrium state is reached.

To investigate the random mobility we implement two different mechanisms (Fig-

ure 3.2). One mobility applies constant random mobility and the other inspired by

a social driver. First, we apply a Pure Random Mobility (PRM) which is applied after

every interaction, irrespective of the agents’ respective opinions. Even though it’s not

actual mobility as we will discuss in Chapter 7, but the concept of the dynamics was
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considered previously in [105, 121, 98, 83, 45]. Second, we propose the Random Re-

pel Mobility (RRM) model, inspired by the cognitive dissonance theory [35], where

agents avoid those that are different. This only triggers a random movement whenever

two interacting agents disagreed. This dynamic concept was previously considered in

[19, 53, 71, 96, 100]. These models could be considered in the context of people attend-

ing a large workshop or conference. The random model represents people wandering

aimlessly, and interacting with anyone they meet, whereas the random repel captures

the idea that individuals will leave locations where others are voicing opinions they

disagree with.

In the section below we discuss both random mobility models.

Figure 3.2: Different models of random mobility

Pure Random Mobility (PRM) At each time step, the inviting agent ai in an inter-

action moves to a random location in the neighbourhood regardless of their agreement

(Algorithm 3).

Random Repel Mobility (RRM) Following Algorithm 4, agent ai relocates to a

random location within the neighbourhood if an interaction with a peer is unsuccessful
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Algorithm 3 Pure Random Mobility - PRM
function PRM(ai, λ)

r ← rsλ
√
U([0, 1])

θ ← 2πU([0, 1]) . ai moves randomly
xy′i ← (xi + r cos θ, yi + r sin θ)
return xy′i

end function

(Figure 3.3b). However if they agree, both agents remain in their current locations

(Figure 3.3a).

(a) Agreement: don’t move (b) Disagreement: move randomly

Figure 3.3: RRM diagram that demonstrates disagreement triggered via random
mobility.

Algorithm 4 Random Repel Mobility - RRM
function RRM(ai, aj, ε, λ)

if |opi − opj| > ε then
r ← rsλ

√
U([0, 1]) . ai moves randomly encountering different peers

θ ← 2πU([0, 1])
xy′i ← (xi + r cos θ, yi + r sin θ)

else
xy′i ← xyi . ai stays in original location with similar peer

end if
return xy′i

end function

3.2.2.2 Directed mobility

In this section we propose a directed mobility model for the co-evolution of opinion

and location by extending the DW opinion model to incorporate mobility. Mobility
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in this section is decisive with a direction toward the new location- instead of random

direction.

A relatable scenario to directed mobility is if you consider people attending a confer-

ence. Attendees choose their interactions based on similarity of research topics and

would avoid others whom they don’t share interest towards. They have the option to

choose their direction, to either approach or avoid the other. At the last day of the

conference we see groups forming with people of similar interest.

We present two mobility models that are inspired by important psychological theor-

ies. The first mobility model is Attractive Mobility (AM) inspired by homophily [84],

where agents are more attracted towards similar peers. The second model is Repulsive

Mobility (RM) inspired by theory of cognitive dissonance ([35]), where agents avoid

those that are different. To fulfil a complete and thorough investigation we continue

to investigate a Hybrid Mobility (HM) that combines both mobility components of

attraction and repulsion.

Unlike the random mobility, when performing directed mobility for an agent the dir-

ection of mobility becomes important. The movement scale parameter λ = 0 indeed

leads to no distance to be moved, but λ = 1 denoting that ai moves toward the same

exact location as aj following a successful interaction (and in the opposite direction

for unsuccessful).

Attractive Mobility (AM) This models homophily, which illustrates mobility that

is only triggered by attraction feature. More specifically, when the inviting agent ai

interacts with a random neighbour aj , it will move closer to aj if their opinions are

similar (Algorithm 5).

Repulsive Mobility (RM) This models cognitive dissonance, which demonstrates

mobility that is triggered by disagreement, and as a consequence the inviting agent ai

will physically move away in exactly the opposite direction (Algorithm 6).
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Algorithm 5 Attractive Mobility - AM
function AM(ai, aj, ε, λ)

if |opi − opj| ≤ ε then
xy′i ← xyi + λ(xyj − xyi) . ai attracted to similar peer

else
xy′i ← xyi . ai retain location

end if
return xy′i

end function

Algorithm 6 Repulsive Mobility - RM
function RM(ai, aj, ε, λ)

if |opi − opj| ≤ ε then
xy′i ← xyi . ai retain location

else
xy′i ← xyi − λ(xyj − xyi) . ai repelled from different peer

end if
return xy′i

end function

Hybrid Mobility (HM) This models a hybrid model that combines both the attract

and repel mobility (Figure 3.4). Following an interaction (Algorithm 7), agent ai moves

closer to their peer aj (Figure 3.5a) if they are close in opinion, and further away in the

opposite direction if they differ (Figure 3.5b).

Figure 3.4: Directed mobility of Hybrid Mobility - HM
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Algorithm 7 Hybrid Mobility - HM
function HM(ai, aj, ε, λ)

if |opi − opj| ≤ ε then
xy′i ← xyi + λ(xyj − xyi) . ai attracted to similar peer

else
xy′i ← xyi − λ(xyj − xyi) . ai repelled from different peer

end if
return xy′i

end function

(a) Attractive movement: opi and opj are
similar opinions where ai is moving to-
ward aj

(b) Repulsive movement: opi and opj
are different opinions where ai is moving
away from aj

Figure 3.5: HM diagram that demonstrates the attract and repel mobility

3.3 General methodology

In the next chapters we will conduct simulation-based experiments, where we will

identify the independent variables to test over a number of simulations and analyse the

results.

3.4 Evaluation metrics

We focus on this section to provide quantifiable metrics to assess the wide experimenta-

tion conducted in this thesis. It must be noted, the literature does not have a conviction

for measuring the models output. Most papers provide interesting results, however,

with many missing details, one of them is the their evaluation approach.
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In this thesis, we are primarily interested in studying the models dynamics in both

macro and micro levels. Where macro-levels describe the status of the entire population

and micro-level demonstrate an individual’s inner circle or local area.

We are interested in the nature of shared opinions that emerge as agents interact. Since

we are dealing with continuous opinions (rather than discrete values), we say that two

agents ai and aj hold the same opinion when the absolute difference between their

opinions opi and opj is below a small threshold, i.e. when:

|opi − opj| < δop.

Note that this value is different from the opinion threshold for a pair of agents to suc-

cessfully interact (ε). For the remainder of this thesis, we set δop = 0.01.

Similarly, we say that agents share the same local area if their Euclidean distance is

below a threshold δmov:

d(xyi, xyj) < δmov.

with δmov = 1.

The impact of the choices for these thresholds is explored later on, in Chapter 4.

We summarise the input parameters for the models in Table 3.1.

3.4.1 Convergence time

One of the main metrics reported in research into opinion models is the convergence

time, which compares the time taken to reach a stable configuration between different

simulations. However, across the relevant literature there isn’t a clear consensus on

precisely how convergence time is measured, with many works simply showing the

opinion distribution against time, demonstrating the opinions dynamics have (approx-

imately) come to a stop.
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Parameter Description Value
L× L Region size 10× 10
seeds Number of averaged sim-

ulation runs
20

n Number of agents 100
limit Maximum number of time

steps per simulation
40000-70000

ε Opinion threshold for in-
fluence (see Definition 3)

[0.1, 0.2 . . . , 1]

µ Convergence rate 0.5
rs Interactive radius [1, 2 . . . , 10]
p Probability of movement [0.1, 0.2, 0.4, 0.6, 1]
λ Movement scale factor [0.1, 0.2 . . . , 1]
δop Opinion change threshold 0.01
δmov Movement distance

change threshold
1

NF Number of time steps
without opinion change

10000

Table 3.1: Input parameters

In addition, several different terms have been used to describe the concept of conver-

gence. For example, it has been termed equilibrium [93, 96, 100] or relaxation time

[105], while [64] defined convergence time as the number of updates per vertex needed

to reach consensus, with [71, 29, 120] used the same terminology of time of conver-

gence as well. There is also variation in these definitions about when convergence is

found, either requiring complete consensus [105] or only local convergence [93]. Re-

gardless of the precise definition of exactly when a configuration is considered to be

stable, a review of the literature shows the importance of tracking when a stable opin-

ion has emerged among agent. In this thesis we propose the following definition of

convergence:

Definition 8. Convergence is the time when either the opinion dynamics or mobility

are stable with minimum change.

To the best of our knowledge, research in opinion dynamics has only considered con-

vergence of opinion, and not convergence through mobility. However, studying the
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co-evolution of agents opinions and locations is of interest. For example, to investigate

whether agents behaviour is predominantly driven by one of the two features. That is,

do geographic clusters of agents occur who then converge in opinion, or vice versa? To

address this limitation, we define separate measures for convergence time in opinion

and location. In both cases we measure the changes in opinion/location in each time

step, and if a specified number of time steps (NF ) passes without significant change,

the simulation is considered converged. The changes required to track convergence are

highlighted in red in Algorithm 8.

We define the convergence time in opinion to be the earliest time step t, such that no

agent changes their opinion by more than δop in the followingNF time steps. Similarly,

the convergence time in movement is the earliest time step t, such that no agent changes

their location by more than δmov in the following NF time steps. Algorithm 8 returns

the final time step t, together with the number of stable time steps that have elapsed in

terms of opinion (top) and location (tmov), allowing the determination of the following

states:

No convergence. Both top, tmov < NF and the final time step t = limit, indicating

that the simulation has not reached stability for either opinion or movement.

Convergence in opinion but not movement. t < limit with top = NF ; tmov < NF ,

giving a time of convergence in opinion of t − top. This can occur either be

because the agents opinions can no longer be influenced (have found agreement

or they are too distanced in opinion for a successful interaction to occur) or

because they have become isolated with no local peers to interact with.

Convergence in movement but not opinion. t < limit with top < NF ; tmov = NF ,

giving a time of convergence in movement of t − tmov. This can occur either

because agents are “happy” with their surrounding local peers or because they

have become isolated with no local peers to interact with.
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Algorithm 8 Simulation framework with convergence time

Require: Input parameters (n, limit, rs, ε, µ, p, λ,NF , δop, δmov)
Require: Initial population A of n agents

for limit time steps do
ai ← U(A) . Select random inviting agent
aj ← U(N(xyi, rs)) . Select random invited agent from neighbourhood
if |opi − opj| ≤ ε then . DW model ([29])

op′i ← opi + µ(opj − opi) . Successful interaction: Opinion influenced
op′j ← opj + µ(opi − opj)

else
op′i ← opi . Unsuccessful interaction: opinion unchanged
op′j ← opj

end if
if U([0, 1]) < p then . Apply mobility rate

xy′i ← mobility(ai, aj) . Apply mobility model
else

xy′i ← xyi . No movement
end if
∆op ← |op′i − opi| . Change in opinion
∆mov ← d(xy′i, xyi) . Change in location
opi ← op′i; opj ← op′j . Update opinions
xyi ← xy′i . Update location
if ∆op < δop then

top ← top + 1 . Insignificant opinion change
else

top ← 0 . Significant opinion change - reset
end if
if ∆mov < δmov then

tmov ← tmov + 1 . Insignificant location change
else

tmov ← 0 . Significant location change - reset
end if
if top == NF or tmov == NF then

return A, t, top, tmov
end if

end for
return A, t, top, tmov

Convergence in opinion and movement. On rare occasions or for extreme paramet-

ers, we may have t < limit and top = tmov = NF , where both opinion and

movement have converged on exactly the same time step.
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3.4.2 Clusters and communities

To analyse the data, we consider the clustering of the outcome, in terms of agent’s

common opinions and locations. Clustering the opinion can return a quantitative value

that can make assessment between different experiments applicable. Also, we are es-

pecially interested in the geographical distribution of these opinions. Our aim is to

detect how many opinion groups are produced in geographical space, therefore we’ll

focus on clustering methods based on distance. Mainly, we’ll explore two clustering

algorithms.

One of the most popular clustering algorithms is the K-means method [38]. Tech-

nically, it is an algorithm that clusters the data based on distance and takes the num-

ber of groups as an input. Initially, it detects a centroid to classify the members of

that cluster. Thereby making one of its main limitations is its inability to detect non-

spherical clusters and it’s incapable to handle noisy data and outliers. For this model,

this will be an issue, because clusters are in arbitrary shapes and it’s likely to have

outliers since agents have the freedom to move (not following a specific/single leader).

Another issue is the requirement to assign the number of clusters at the start. This

is not useful for this model because mainly that is the actual output under investiga-

tion. Furthermore, this is not possible because different experiments produce different

numbers of opinion clusters.

Another clustering algorithm that is less commonly used but relatively well-known

is the Density-based Spatial Clustering of Applications with Noise (DBSCAN) [33].

This method clusters based on density and it groups together those whom are near each

other and marks any isolated agents as outliers. Also, it requires minimal previous

knowledge of the data (no need to pre-assign the number of clusters). These features

serves our wide investigation between different experiments.

Our evaluation will consider the nature of clusters that form as the system evolves, by

applying Algorithm 9 of the DBSCAN to find groups of agents that are similar in opin-
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ion and locations. This method involves joining similar data points together into one

cluster depending on two key input parameters. Firstly, the minsamples it defines the

minimum number of members in a cluster to be able to label those agents to a cluster,

otherwise classified as a loner. The second parameter is δ, which essentially governs

how close two agents must be to be considered as part of the same cluster. An agent

isn’t classified in a cluster if either rule is violated: not satisfying the cluster’s min-

imum size ≤ minsamples or outside the threshold ≥ δ. We let the distance between

two sets of points S1 and S2 be defined as d(S1, S2) = mind(p, q)|p ∈ S1, q ∈ S2 [33].

Algorithm 9 DBSCAN algorithm [101]
Require: Population A, δ, minsamples

for ai ∈ A do
if label(ai) 6= undefined then . Skip agents already assigned

Continue
end if
if |N(xyi, δ)| < minsamples− 1 then . Consider neighbours

label(ai)← loner . Not enough neighbours to be in a cluster
Continue

end if
c← next cluster label . Start new cluster
label(ai)← c
S ← N(xyi, δ) . Create seed set
for aj ∈ S do

if label(aj) = loner then
label(aj)← c

end if
if label(aj) 6= undefined then

Continue
end if
label(aj)← c
if |N(xyj, δ)| < minsamples− 1 then

Continue
end if
S ← S ∪N(xyj, δ)

end for
end for

Initially, the DBSCAN labels the agents individually as core, border or noise points

depending on the density of their local peers within a cluster. As an example we will
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use Figure 3.6 with distributed agents in 2D space. Core points are the agents with a

dense population surrounding them ≥ minsamples (such as points x and x1 and y),

and therefore capable to extend the cluster size. For example, agent y is a core point

because it has enough agents within δ and therefore is able to extend the membership

of the clusters for b to join.

Figure 3.6: Example of DBSCAN clustering

Another example is agent x1 which is a member of the blue cluster located at the

edge of the cluster. This agent is considered a core agent as well and not a border

point because the number of local agents satisfies >= minsamples. As a result, x1 is

able to extend the blue cluster’s size with another agent a. Now agent x2 and agent a

are considered in the same blue cluster even though they exceed the actual δ. In this

research we refer to this as the chaining effect. More specifically, it’s when a pair of

agents within the same cluster are more than δ apart, however they might be closer

(< δ) to another member in the cluster and therefore will join.

Then we consider the border points, these type of points are the agents located at the

edge of the cluster and surrounded by at least one core point and therefore they are not

able to extend the cluster size such as, x2. As a result the nearby agent c cannot join

the cluster and it’s considered as noise or loners (Nloners is a set of agents classified as

loners) as we refer to them in this thesis. Loners were mentioned in [71] as separated

nodes that are not a member of an opinion cluster.
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3.4.2.1 Clustering evaluation

For the purpose of this thesis, the DBSCAN clustering [33] is used to identify clusters

of agents that are close in opinion and/or location once the system has stopped, other-

wise the agents are considered as loners. We introduce two different uses of clustering,

one focusing on the opinion only (opinion clusters) at a macro-level and the second

focusing on the geographical distributions of these opinions (communities) at a micro-

level.

In the literature some research have studied the emergence of communities when in-

ternal consensus was reached [64, 48], where members of a segregated group share

the same opinion [64]. The communities were measured based on the distribution of

community size. However, not quantifying the number of communities as in [93].

However, they all don’t consider loners that don’t belong to a community, mostly be-

cause their algorithm re-links whenever the link is broken. This does not allow any

loners to emerge.

While opinion clusters are already extensively studied, the way opinions are quantified

is not clear or not sufficient. Some researchers have focused on the largest opinion

group [57, 71, 53], ignoring minor opinion clusters and others provide numbers of

final opinions without the process of measurement [70, 48]. Others average out the

opinions in the population [57, 120]. However, in this thesis we explore a wide range of

experiments against many runs, therefore, we develop a measurement that can quantify

the opinions clusters independently, without relying on the largest opinion cluster or

the average of the population.

Different terms are used to describe the state of opinions. Usually if multiple opinions

exist this is described as non-equilibrium [64], meta-stable state [98, 102, 83]. While

a polarised opinion is called, incoherent state [96]. As for a single dominating opinion

is termed as complete consensus [105] or ordered state [57]. In this thesis will refer

to opinions as multiple opinions if they are more than one and complete consensus
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otherwise. We will discuss in detail how the evaluation is performed.

Definition 9. An opinion cluster is a cluster of agents containing at least 5 mem-

bers that share close opinions 2, otherwise considered as a loner outside opinion

clusters. Opinion clusters are found by applying the DBSCAN algorithm with the

distance between ai and aj defined as |opi − opj|, and a threshold of δop.

Definition 10. A community is defined to be a cluster of agents of at least 5 mem-

bers that share close opinions and locations. Otherwise considered as a loner outside

communities. Communities are identified by applying the DBSCAN algorithm with the

distance between agents ai and aj as

d(xyi, xyj) if |opi − opj| < δop

∞ otherwise

A threshold of δmov is then used within the DBSCAN algorithm to identify adjacent

agents.

With the DBSCAN, two key parameters are set in the algorithm, the cluster’s minimum

size (minsamples = 5) and distance threshold (δ). An average degree of four/five

members of a group is commonly seen in simulations (eg. [71, 64]), also Von Neu-

mann’s neighbourhood settings are widely used, it represents 4 neighbours around an

agent. For clustering the data the results can vary from [0 − 10] clusters. Detecting 0

clusters means the agents are structure-less and all the agent’s are classified as loners

while detecting any higher clusters ≤ 1 means that there is self-organisation between

the agents.

In general, when there are large numbers of ‘loners’ outside communities, this can

either mean that there aren’t any close enough local agents that can be detected or

they are indeed not enough supporters for the opinions in the local area, as the number

of agents in the cluster doesn’t comprise at least five members. However, when this
2The opinions are close but not exactly the same due to the chaining effect discussed previously
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number is low it means that most of the agents are classified in communities of uniform

opinion in geographical space.

In this research we will include the investigation of outliers (i.e., loners). Other re-

search has investigated the DW model and found that loners are frequently reported.

[78] reports that outliers exist due to structural reasons, and they identify that [29, 115]

has chosen to ignore clusters with one agent. [78] further highlights that [61] (group-

based interactions) in comparison to the DW model (peer-based interactions) have no

minor clusters. [48] demonstrates the DW model while also implementing group-based

interactions while permitting rewiring and these outliers disappear, similar to the static

[61] model. [71] as well have mentioned that isolated agents disappear under a re-

wiring structure. In the literature, to the extent of our knowledge, isolated agents are

either only reported or ignored but have not considered a quantifiable measurement of

the isolated agents occurrence. This suggests that the investigation of loners will be

more interesting under the implementation of mobility.

3.4.3 Local opinion diversity

The final metrics study the opinion distribution at a micro-level. We measure the di-

versity of opinions within the immediate local area of each agent, from different as-

pects: the percentage of agents that hold different opinions and the mean opinion in the

local area. Figure 3.7 illustrates the radius of each geographical variable in the thesis.

Definition 11. Agents holding opinions within δop are considered to hold the same

opinion and be in agreement, while the others (outside δop) are considered to hold

different opinions.

Definition 12. Agents within δmov are considered in the same local area, and δmov is

specifically used to evaluate the geographical structure between the agents. For an

agent ai, the set of agents sharing the same local area is given by N(xyi, δmov), and
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Figure 3.7: Overall diagram of geographical distance representation: agents
within δmov are local agents, within rs are interactive neighbours, all other agents
within L are global.

we define N ′ to denote the subset of these agents that hold a different opinion, where:

N ′(ai, δmov) = {j ∈ N(xyi, δmov) : |opj − opi| > δop}

Definition 13. The tolerance of an agent ai, denoted by tol(ai), is defined as the pro-

portion of their local peers that hold a different opinion (at the end of a simulation),

where:

tol(ai) =


|N ′(xyi, δmov)|
|N(xyi, δmov)|

if |N(xyi, δmov)| > 0

0 otherwise

The tolerance of a population A is denoted tol(A) and defined as the mean tolerance

of all agents ai ∈ A:

tol(A) =
1

|A|
∑
ai∈A

tol(ai)

Tolerance is a value in the range [0, 1], where 0 shows that all local peers agree on a

single opinion. However, anywhere in the middle shows the ratio of the agents holding

a different opinion, with 1 showing that all local peers hold a different opinion. This is

common at the start of the simulation when the opinions are first randomly distributed.

Definition 14. The local diversity of an agent ai measures the mean difference of opin-
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ion among its local peers, and is denoted by div(ai), where:

div(ai) =


1

|N(xyi, δmov)|
∑

j∈N(xyi,δmov)

|opi − opj| if |N(xyi, δmov)| > 0

0 otherwise

The local diversity of a population A is denoted div(A) and defined as the mean local

diversity of all agents ai ∈ A:

div(A) =
1

|A|
∑
ai∈A

div(ai)

Although theoretically div(ai) ∈ [0, 1], results from this thesis are normally in the

range [0, 0.3].

3.5 Conclusions

In this chapter we have introduced an extended model of the DW model by applying

different mechanisms of mobility that was not considered in the literature before. These

mechanisms bring psychologically inspired mechanisms into the mobility space, based

around the concepts of homophily and cognition dissonance which can motivate human

behaviour.

Our approach is to use ABM to investigate the model and we have discussed the input

parameters and evaluation metrics to assess the model. Mobility has rarely contributed

to the literature, in particular freely distributed agents (2D continuous space). Evalu-

ation metrics proposed in literature either ignore the details of the some outcomes or

behaviours are only reported without metrics. Therefore, we develop evaluation func-

tions to track the model’s behaviour and asses both opinions and their geographic loc-

ations simultaneously, these metrics have been investigated carefully and thoroughly.

These evaluation study the model from different aspects.
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A first important aspect is to study the convergence where the opinion dynamics be-

come stable, this has been widely considered in the literature. However, convergence

for agents movements have not been considered, this will lead to inaccurate sugges-

tion of the communities structure, if the agents are still moving. A second important

evaluation is the opinion evolution, which assesses the opinions in opinion space and

distinguish those of whom form clusters of close opinions or stay isolated with their

own opinions. Also, the opinions structure in geographical space is equally important,

to study the nearby agents, if they are uniform or different in opinion. Therefore, we

consider communities assessment, which provides both a quantitative analysis and a

visual distribution of the agents distribution to asses if either agents cluster together

into communities or become outliers.

After the introduction to the model and demonstrating the evaluation metrics, we will

present an extended analysis on the evaluation parameters that will validated our as-

sessment in Chapter 4.
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Chapter 4

Baseline Parameter Settings

In Chapter 3 we introduced a model of opinion dynamics with mobility and proposed

metrics that we will use to evaluate the outcomes. As identified in Chapter 2, many

papers in the literature draw conclusions from the results of simulations without clearly

defining the metrics used or justification for the subset of parameters that they vary.

In later chapters, we will experiment across a range of parameters that control the

level and scope of interaction within the population, but here we first undertake some

initial investigations to set appropriate values for other parameters. In particular, we

consider δop, δmov and minsamples to cluster the agents sufficiently. Followed by a

demonstration of the DW model while applying the proposed metrics in Section 3.4,

chapter 3.

4.1 Methodology

In this section we will present an investigation into the DW static model as defined

in Algorithm 1, Section 3.2.1, to set a basis for the investigations in the rest of the

chapters. Through this investigation the fixed variables are listed in Table 4.1 and the

independent variables are set as shown in Table 4.2.

Aim The aim of this chapter is to test and choose the most suitable evaluation para-

meter values that best fit our model. Also, we perform an initial investigation to apply
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Parameter Description Value
limit Maximum number of time

steps per simulation
40, 000

rs Interactive radius 10
µ Convergence rate 0.5
p Probability of movement 0
λ Movement scale factor 0
NF Number of time steps

without opinion change
for convergence

10, 000

Table 4.1: Fixed variables

Parameter Description Value
Mobility models Static model Static model
L× L Region size [10, 20, 30]
seeds Number of averaged sim-

ulation runs
[10, 20, 100]

n Number of agents [100, 500, 1000]
ε Opinion threshold for in-

fluence (see Definition 3)
[0.1, 0.2, 0.3]

minsamples Number of agents that
form a cluster

[1, 5]

δop Opinion change threshold [0.01, 0.05, 0.1]
δmov Movement distance

change threshold
[0.25, 0.5, 1]

Table 4.2: Independent variables

the proposed evaluation metrics (defined in Section 3.4) while highlighting how other

work in the literature performs their evaluation.

Experiments As a basis for this thesis, we focus on evaluating the static model,

which is defined to mimic the original DW model (Algorithm 1, Section 3.2.1).

Evaluation There are two main sections in this chapter. The first one explores the

evaluation parameters (δop, δmov and minsamples) used to cluster the agents. This

is performed at the start of the simulation on the static model when t = 0 before

organisation start to form. The second section evaluates the static model after the
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Parameter Description Value
Convergence in opinion
(see Algorithm 8)

Time step when opinion
change is settled

0 - 40,000 time steps

Opinion clusters (see
Definition 9)

Mean number of different
opinion clusters

0 - 10 clusters

Communities (see Defini-
tion 10)

Mean number of clusters
that share opinion and loc-
ation

0 - 10 clusters

Table 4.3: Dependent variables

simulation comes to an end, to apply the evaluation metric (in Table 4.3) and interpret

the results while comparing it to the main model in [29].

4.2 Clustering parameters

As defined in Section 3.4, we are interested in the opinion clusters and communities

that emerge within the population, which will be calculated by applying the DBSCAN

algorithm. Our implementation of the DBSCAN approach, along with our definitions

of convergence, tolerance and local diversity, are dependent on three parameters:

• δop, a threshold in opinion to add a new candidate agent to an opinion cluster/community;

• δmov, a threshold in distance to add a new candidate agent to a community;

• minsamples, the number of agents required to form a non-trivial opinion cluster

or community (agents in smaller clusters are considered loners).

We use an empirical approach to justify our choice of δop. In Table 4.4, we consider

the number of opinion clusters that are found by DBSCAN at the beginning of a sim-

ulation, where each agent receives a random opinion from [0, 1], taking the mean over

20 simulations with different random seeds. Note that threshold values larger than

δop = 0.1 allocate all agents to a single opinion cluster.
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minsamples δop
Opinion clusters |Nloners|

Mean Standard
deviation

Mean Standard
deviation

1 0.01 35.35 2.6 0 0
1 0.05 1.5 0.5 0 0
1 0.1 1 0 0 0
5 0.01 4.2 1.3 74.6 8.8
5 0.05 1.5 0.5 0.4 1.2
5 0.1 1 0 0 0

Table 4.4: Initial opinion clusters found via DBSCAN

Note that DBSCAN does not strictly ensure that all pairs of agents ai, aj in an opinion

cluster have opinions such that |opi − opj| ≤ δop. Instead, due to the chaining effect

(discussed in Section 3.4.2) agents may be merged into other clusters rather than being

classified independently. For that reason the number of opinion clusters found via

DBSCAN may be smaller than first expected.

After inspecting the results in Table 4.4, we rule out cases with minsamples = 1, as

opinion clusters containing only one agent are of little interest. From the remain-

ing results for minsamples = 5, we suggest linking the threshold to the separa-

tion resulting from uniformly distributing agents across the opinion space ([0, 1]), i.e.

δop = 1
|A| = 0.01 gives a reasonable balance between non-trivial opinion clusters and

the number of loners.

In addition to δop, the definition of communities is based on a threshold δmov that

defines when agents should be considered “near” geographically. To identify a suitable

value for δmov, we investigate the initial distribution of agents in the region. First

we show in Table 4.5 the average distance between an agent ai and members of its

neighbourhood N(xyi, rs) for the range of interaction radii that we will consider in our

experiments. Also, we show the size of the neighbourhood within rs. Note, rs = 0.5

shows that from 20 runs there is a probability not to find a neighbour. However, under

rs = 1 finding 2-3 neighbours is reasonable to evaluate a community, considering the

fact this is at the initial distribution before organisation starts to form.
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rs |N(xyi, rs)| Average distance between
neighbours

0.5 0.78 0.09
1 2.84 0.43
2 10.44 1.16
3 21.34 1.82
5 46.41 3.00
10 96.39 5.10

Table 4.5: Mean distance between neighbours over 20 simulations with different
random seeds.

minsamples δop δmov
Geographic clusters Communities

Mean |Nloners| Mean |Nloners|
5 0.1 1 6.2 42.3 0 100
5 0.1 0.5 0.5 97.15 0 100
5 0.1 0.25 0 100 0 100

Table 4.6: Geographical clusters found via DBSCAN

As for δmov, we also consider initial random populations. Instead of focusing on com-

munities, we instead consider purely geographic clusters and loners based on applying

DBSCAN with Euclidean distances, which are shown in Table 4.6. Applying the same

logic as for δop, we consider all agents uniformly distributed across the region, sug-

gesting δmov = |A|
L2 = 1. Table 4.6 shows that this is a reasonable assumption, yielding

approximately 6 geographic clusters with 40 loners. Given that a value of 1 results in at

least a couple neighbours (2.8) based on distance (shown in Table 4.5), its reasonable

to find some of the population clustering into a few clusters and others as loners.

4.3 Exploratory analysis of the Deffuant-Weisbuch (DW)

model

In this section we explore the features of the DW model in the context of our proposed

evaluation measures. Recall that we use the term static model to mimic the DW model

with its global interaction approach. We set the probability of movement as p = 0
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and the interaction range as rs = 10 so that any agent may interact with any other

(Algorithm 1, Section 3.2.2.2).

Firstly, we demonstrate and visualise the number of opinion clusters that result from

simulations as the opinion threshold ε is varied. Then, we discuss the distribution

of opinion across the region from the static model by showing visual examples of

individual simulation runs. Then we discuss averaging the results under multiple runs

to set the suitable number of runs that will generate outcomes with more rigour. Finally,

in order to restrict the range of parameters to be considered in future chapters, we

discuss the density and scalability as the size of simulation increases.

4.3.1 Opinions at a macro-level

The main feature of interest in the field is the evolution of opinions and emergence

of consensus. We demonstrate the opinion evolution in different ways to capture the

distribution patterns. One of the most common approaches adopted to present the de-

velopment of opinion in the literature is by plotting the opinion values of the interacting

pair of agents for each time step [70, 115, 29, 22]. As an example, Figure 4.1 shows

the outcome of representative simulations from the static model highlighting the ef-

fect of ε, we will show the relevant results and figures for these experiments through

this chapter. The impact of ε typically leads to three distinct opinion distributions:

consensus around a dominating single opinion (complete consensus), a polarised pop-

ulation centred on two opinions (polarised groups), or small groups of agents centred

on a larger number of opinions (fragmented). When the system reaches stability, this

usually occurs relatively quickly, with Figure 4.2 showing a more detailed snapshot of

agent behaviour at the start of the simulation.

The extension to the static model described in Section 3.2.2 adds locations, hence it

is useful to visualise the geographic spread of opinion over the region. Figure 4.3

shows each agent’s opinion and their distribution around the region. Each different
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(a) Fragmented opinions un-
der the static model (ε = 0.1)

(b) Polarised groups under
the static model (ε = 0.2)

(c) Complete consensus un-
der the static model (ε = 0.3)

Figure 4.1: Opinion distribution example of a single run of a total of 40,000 time
steps.

(a) Fragmented opinions un-
der the static model (ε = 0.1)

(b) Polarised groups under
the static model (ε = 0.2)

(c) Complete consensus un-
der the static model (ε = 0.3)

Figure 4.2: Closer snapshot of the opinion distribution of a single run of a total of
5000 time steps.

colour represents a different opinion cluster. In Section 3.4.2 we specify our use of the

DBSCAN clustering algorithm which produces these figures, joining close opinions

into a single cluster and assigning each cluster a different colour.

In the literature opinion clusters are demonstrated in different ways. For example,

[39] measured the probability when a complete consensus appears to detect the critical

ε. However, the most common approaches for considering multiple opinion clusters,

focus either on the size of the largest opinion group [53, 57, 71] or average out the

opinions in the system [121, 57, 52] to capture the opinion distribution at a macro-

level. The first method focuses on the size of the largest dominant opinion clusters,

ignoring any other opinion groups that are formed. The second method will not high-

light fragmentation in the opinion distribution, all the opinions will be treated as one

value. All in all, both methods ignore the distribution of different opinion clusters in



4.3 Exploratory analysis of the Deffuant-Weisbuch (DW) model 66

(a) Five (fragmented)
opinion clusters (ε = 0.1)

(b) Two (polarised) opin-
ion clusters (ε = 0.2)

(c) One opinion cluster
(complete consensus) (ε =
0.3)

Figure 4.3: Opinion clusters under the static model from applying DBSCAN to
individual simulation runs. Colours denote agents belonging to the same opinion
cluster.

opinion space. We provide an example below in how these methods are not enough to

demonstrate the opinion evolution.

Example We demonstrate an experiment on the AM as an example to implement

these different methods to assess the final opinions under AM (rs = 5, p = 1, ε = 0.2)

and show how different approaches impact the interpretation of the outcomes. Firstly,

the average of all opinions in the population is 0.48, which unfortunately doesn’t show

the appearance of the other two opinions (Figure 4.4). The size of the largest opin-

ion group is 53 agents giving 53/100 = 0.53, which despite covering over half of the

population, still ignores the two other opinions that persist. However, we are more

interested in the opinion distribution in more detail. Using the metrics defined in Sec-

tion 3.4.2.1, we find three opinion clusters and the three opinions are clearly plotted in

Figure 4.4.

4.3.2 Opinion distribution in geographical space

In this research we are equally interested in the opinion distribution in geographical

space across the region as in opinion space. For a deeper investigation we plot the
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Figure 4.4: Opinion spread across time under AM (rs = 5, p = 1, ε = 0.2) for an
individual simulation run.

agents that have the same opinion and close in location to show numbers of communit-

ies (e.g. Figure 4.5). With the static model (Figure 4.5a), in most cases patterns of

community formation can’t be found, due to the lack of movement, and as a result, the

DBSCAN algorithm returns a plot with many loners (small dots) outside communities.

With larger ε some communities are found since all the agents hold the same opinion

and therefore the distance factor becomes the only driver to cluster them, increasing

the chances to find some clusters (Figure 4.5c), shown by coloured large dots.

(a) No community forma-
tion (ε = 0.1)

(b) One community (ε =
0.2)

(c) Six communities (ε =
0.3)

Figure 4.5: Communities formed in individual runs under the static model. Col-
ours denote agents belonging to the same community.

4.3.3 Multiple runs

After exploring the individual seeds we calculate the mean of the results for multiple

runs and average the outcome of the different evaluation metrics. In this thesis, we



4.3 Exploratory analysis of the Deffuant-Weisbuch (DW) model 68

demonstrate the mean results in either line graphs or heat maps. The line graphs

are used to compare between different mobility models as will be demonstrated in

Chapters 5 and 6. The heat maps show the collected data in a more visual and dimen-

sional diagram. For example, Figure 4.6 demonstrates the mean number of opinion

clusters under the static model with a single interaction range (rs = 10 to demonstrate

a global interaction). This allows us to visualise what happens as ε gets larger, it shows

a single opinion is found of complete consensus. Later in Chapter 7 and 8, we expand

the heat map with more values of ε and rs.

Figure 4.6: Mean number of opinion clusters under the static model for (ε ≤ 0.5)

One of the most important factors when running a simulation is to average out the res-

ults of multiple runs, and balancing the rigour of multiple simulations with the compu-

tational cost. The majority of results in this thesis were generated using the computing

facilities of Supercomputing Wales. This enables to decrease the execution time, in-

dividual runs are executed in parallel, more details are provided in the next Chapter 5

Section 5.1.

These simulation runs are named differently in the literature, some refer to realisations

[71, 48, 94] others call them samples [39, 29] and other refer to them as experiments

[120] or simulations [111]. For this thesis we will refer to them as the the number of

runs. We must note that the number of runs in the literature vary, for example, [93, 111]

use 30, [96] use 50, others vary from 100 to many hundreds [29, 48] or even thousands
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[39, 120] of averaged runs.

In our experiments, many runs are required to satisfy all different parameters. Loc-

ations are constantly computed and updated and consequently the related neighbour-

hoods are updated as well. Therefore, we need to balance the trade-off between the

number of different experiments with the number of averaged runs. We have exper-

imented with a various accumulated numbers of independent runs as we will discuss

further down below.

Next we explore the parameters sensitivity in our model in terms of the number of

simulation runs with different seeds that are averaged to draw conclusions. For this,

we first set an appropriate value of ε in order to continue the investigation. In the

literature, the threshold value of ε that leads to complete consensus appears to fall

between 0.27 and 0.5, (for example, [29, 39, 40]). The variation appears to arise due

to subtle differences in the models applied and definition used for complete consensus.

For example, [29] discusses this in the context of opinions showing a single “peak”,

whereas [39] defines complete consensus more formally as all agents having the same

opinion (within a small threshold). Therefore, we select the case ε = 0.3, since the

consensus in the literature varies if a single opinion cluster is reached, to confirm what

happens under our model. Also, in Figure 4.7 the largest variation decreases after

ε = 0.3, hence, it will be beneficial to understand the dynamics for that ε. We will

continue the rest of the investigation with ε = 0.3.

Each run of the simulation has an independent random seed. Table 4.7 shows the

results while increasing the numbers of runs. The mean of runs over 20 seeds is close

to the mean opinion clusters from 100 seeds, this is similar to the opinion convergence

time as well. Figure 4.8 shows the cumulative mean opinion convergence time as more

simulations are performed. As the number of averaged out experiments increase, the

line gets more stable and straighter toward the larger number of runs. Therefore to save

more computational time to allow experimentation over a wider range of parameters,

in the remainder of this thesis, we will present results over 20 simulation runs.
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Figure 4.7: Standard deviation (opinion clusters) for 20 runs

L seeds n ε Mean num-
ber of opin-
ion clusters

Mean
opinion
convergence
time

10 10 100 0.3 1.5 2119
10 20 100 0.3 1.45 1997
10 100 100 0.3 1.51 2841

Table 4.7: Static model over multiple simulations

Figure 4.8: Cumulative convergence in opinion ε = 0.1 for 100 runs

It must be noted that we have also tried some experiments while changing µ, how-

ever it required high computation power and time. There were some difficulties with

the experiments not ending nor capable to save the output due to the long run times.

Therefore, in this research we have left µ fixed and experiment with the other paramet-

ers.
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L seeds n ε Mean number
of opinion
clusters

10 20 100 0.3 1.45
10 20 500 0.3 1.2
10 20 1000 0.3 1

Table 4.8: Mean number of opinion clusters while varying the density

L seeds n ε Mean number
of opinion
clusters

10 20 100 0.3 1.45
20 20 400 0.3 1.15
30 20 900 0.3 1.05

Table 4.9: Mean number of opinion clusters while varying the region size

4.3.4 Region size and density

In this section we investigate the sensitivity of the static model to increases in the size

of the region and density of agents. In the literature the size of the population varies

from 100 [121], to a range between 25 and 625 [93], a range between 100 and 500, up

to a population thousand or over [121, 29, 39, 71].

First we will increase the density (agents per unit area) and observe the impact on the

evolution of opinions. In Table 4.8 we see that the higher the density, the more likely

that complete consensus emerges, in line with other work [39, 71, 48].

We further investigate the consistency of the static model as the size of the region

scales. Similarly as increasing density, the larger the scale, the more likely we get one

complete consensus (Table 4.9). It appears that the static model is sensitive to changes

in both density and scale.

In conclusion, we can replicate the DW model results in the literature. For our experi-

ments we assume one agent per square meter as the default. This helps us collect more

data and utilise the computational power we have provided more effectively.



4.4 Conclusions 72

4.4 Conclusions

In this chapter we have explored the static model to provide a basis of the original

model. Also, we conducted extensive experiments on the parameters with smaller

experiments to draw out the fittest value to evaluate the outcomes. Finally, we found

a meaningful set of parameters that allows the evolution of the network to opinion

clusters of either a single or islands of opinion clusters from a situation of random

spread out opinions. In Chapter 5 we introduce mobility to the opinion model and we

present and analyse the impact of mobility.
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Chapter 5

Hybrid Model

In this chapter we consider the hybrid mobility model (HM) introduced in Chapter 3,

Section 3.2.2.2. This is inspired by the psychological theories of homophily and cog-

nitive dissonance, where agents are attracted/repelled by their neighbours based on

their agreement/disagreement. We synthesise and discuss results between HM and the

random mobility model (RRM), introduced in Chapter 3 Section 3.2.2.1. The primary

aim of this chapter is to investigate the effect of homophily and dissonance on the

speed and structure of opinion convergence among agents that are free to move within

a two dimensional region in comparison to random mobility triggered by disagreement.

Note, part of the work in this chapter was published in [5].

5.1 Methodology

It is relatively rare that mobility schemes are introduced to opinion dynamics models

in the literature (see Chapter 2), with those that have been proposed usually adopting

a random mobility scheme, typically inspired by statistical physics. This chapter in-

troduces mobility to the static opinion model described in Chapter 3, Algorithm 2 and

studies it’s impact on the opinion evolution.

A general property [39] of the DW model is that when opinion threshold ε ≥ 0.5 then

the system reaches complete opinion consensus (only one opinion exists). Further ex-

tensions of the model, using rewiring dynamics [48, 71] or scale free networks [96]
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Parameter Description Value
L× L Region size 10× 10
seeds Number of averaged sim-

ulation runs
20

n Number of agents 100
limit Maximum number of time

steps per simulation
40, 000

rs Interactive radius 2
δop Opinion change threshold 0.01
δmov Movement distance

change threshold
1

NF Number of time steps
without opinion change
for convergence

10, 000

Table 5.1: Fixed variables

show that a critical opinion threshold smaller than 0.5 leads to a complete consensus.

[61] has stated that modelling disagreement is just as important as consensus and con-

tinued with the following statement from [2]: ‘Since universal ultimate agreement is

an ubiquitous outcome of a very broad class of mathematical models, we are naturally

led to inquire what on earth one must assume in order to generate the bimodal outcome

of community cleavage studies.’.

In this chapter we are more interested of when multiple opinions emerge, therefore

we restrict our attention to the cases ε = 0.1, 0.2 and 0.3, and the scale of move-

ment (λ ∈ [0.1, .., 1]). For each case we vary the probability of movement (p ∈

[0.1, 0.2, 0.4, 0.6, 1]), and investigate the effect on convergence, clustering and toler-

ance. We focus our investigation with small probability of movement to catch the

movement’s impact under small chances of mobility. All simulations are run for a

maximum of 40, 000 time steps. Other simulation variables, both fixed and independ-

ent are listed in Tables 5.1 and 5.2.

Early experiments were conducted on a standard desktop PC (Intel Core i7-6700,

32GB, 512 GB SSD), however, the majority of experiments relied on the Supercom-

puting Wales high performance computing facilities. This reduced the run time from
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Parameter Description Value
Mobility models Static and directed mobil-

ity models
Static, local static, HM

ε Opinion threshold for in-
fluence (see Definition 3)

[0.1, 0.2, 0.3]

p Probability of movement [0.1, 0.2, 0.4, 0.6, 1]
λ Movement scale factor [0.1, 0.2 . . . , 1]

Table 5.2: Independent variables

the order of weeks down to days. The main time on the supercomputer was the waiting

queue of other jobs, but the actual execution itself would not take more than 18 hours

for one mobility model. One mobility model would consist of three variations of ε

and 6 variation of p and 10 variation of λ. This results in conducting 180 experiment

for 20 runs that are executed in parallel. Note, this time only considers the execution

and recording the data, however, it does not include plotting the agent’s distribution in

the region for individual experiments. Also, the execution time varies from a mobility

model to the other depending on how frequently are the agents location computed and

updated. This facility has enabled us to explore the model more widely and efficiently.

Aim In this chapter, our aim is to investigate mobility models that are inspired by

psychological theories, where movement is triggered according to the interaction feed-

back. Initially in this chapter we study two different mechanics: random (RRM) and a

directed hybrid mobility model (HM). Our aim is to investigate the impact of mobility

mechanisms in the co-evolution of opinions and location, and in particular, the extent

to which the nature of mobility affects the end result.

Hypothesis Realistic models of opinion are likely to lead to more realistic outcomes,

and in particular, less likely to result in complete consensus, which rarely occurs in

real-world scenarios. In this chapter’s investigation, our hypothesis is that mobility

models that include attraction and repulsion will allow larger number of opinions to

persist.
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Experiments We investigate two different mechanisms for mobility (random and

directed), driven by psychological theories. We compare the effect between the main

HM model (Algorithm 7) with the random mobility RRM (Algorithm 4).

As a baseline for comparison, all figures show results for the static model with global

interactions as a constant dashed blue line (as this does not depend on λ). In addition,

we investigate the local static opinion model while applying restricted interaction as a

straight orange line. Results are shown for both RRM and HM movement and a range

of sets of parameters. The following will present the models that will be studied in this

chapter.

1. Static models

• Static: the original DW model (Algorithm 1, Section 3.2.1)

• Local static: a modified version of the DW model, with interaction restric-

ted to peers within the interaction range rs.

2. Random mobility

• RRM: is a random mobility model, where agents are only triggered to move

encountering disagreement (Algorithm 4, Section 3.2.2.1).

3. Directed mobility

• HM: is inspired by the psychological theories of homophily [84] and cog-

nitive dissonance [35], where agents are more attracted toward similar peers,

and repelled when they seek to minimise cognitive dissonance based on al-

ternative opinions (Algorithm 7, Section 3.2.2.2).

Evaluation Firstly, we evaluate each model’s convergence time. Initially, we only

evaluate convergence in opinion but not in movement, however, as the chapters pro-

gress we will investigate the convergence in movement. Following this, we explore
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Parameter Description Value
Convergence in opinion
(see Algorithm 8)

Time step when opinion
change is settled

0 - 40,000 time steps

Opinion clusters (see
Definition 9)

Mean number of different
opinion clusters

0 - 10 clusters

Tolerance (see Defini-
tion 13)

Ratio of different opinions tol(A) ∈ [0, 1]

Local diversity (see Defin-
ition 14)

Mean difference of opin-
ion

div(A) ∈ [0, 1]

Communities (see Defini-
tion 10)

Mean number of clusters
that share opinion and loc-
ation

0 - 10 clusters

Table 5.3: Dependent variables

the number of opinion clusters at a macro-level emerging in the population, while also

considering the agent’s geographical structure at a micro-level to specifically study the

opinion similarity in the agent’s local area. Finally, we examine the tolerance showing

the diversity of opinions that can be sustained in the local area. A description of these

metrics are listed in Table 5.3.

5.2 Results

In this section, we report results for each evaluation measure in turn, beginning with

the fundamental property of convergence, before exploring the nature of consensus that

emerges. In all experiments (except static), the interaction range rs is set to 2.

5.2.1 Convergence

Figure 5.1 shows the convergence in opinion for both models over a range of opin-

ion thresholds, probability of movement (p), and distance moved (λ). In the plots,

the dashed lines denote results for the random model, with solid lines representing

HM. The colour of each line denotes the probability that mobility is applied after each
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interaction. “Static” denotes the static DW model (with global interactions and no

movement p = 0), while “Local static” restricts the interactions in DW to rs = 2.

For both models, convergence is quicker when agents are more mobile (i.e. as the

probability of movement p increases), with the highest mobility (p = 1) under HM ap-

proaching the convergence time of the standard static model with global interactions.

As may be expected, convergence in opinion is quickest under the static model, how-

ever, restricting interactions under the local static model takes longer time to converge

in opinion. As with the static model, there appears to be a step change in behaviour

when moving from an opinion threshold of 0.1 to 0.2 or 0.3.

The impact of λ as a control on the distance moved is more pronounced for lower

opinion thresholds (ε = 0.1, 0.2), but, interestingly, it shows an increasing correlation

for RRM, but a decreasing relationship for HM. For RRM, higher λ means further

distance moved with more opportunities for interaction and therefore less time steps

for convergence. However under HM, opinions are more structured in geographical

space, therefore, further distance means more potentially influential interactions that

will slow the convergence.

5.2.2 Opinion clusters

We investigate how agents are clustered with respect to opinion following convergence,

firstly considering the number of clusters detected (Figure 5.2). In the local static

model, consensus forms around a larger number of opinions than the static model [71,

16].

When allowing mobility (p > 0), larger numbers of opinion clusters are identified

under HM (solid lines in Figure 5.2) compared to the local static case. In contrast

to convergence time, the probability of movement has little impact on the number of

opinion clusters formed, except where p = 0. Fewer clusters are formed under RRM,

with the numbers being very close to the static model. In HM, agents have higher
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(a) ε = 0.1 (b) ε = 0.2

(c) ε = 0.3

Figure 5.1: Mean opinion convergence time when varying p under HM and RRM,
convergence is not found when t = 40, 000.

chance to attract and move towards agents with similar opinions, leaving a substantial

distance to those holding different opinions that would otherwise influence them. So

when movement is directed they are able to recruit more similar opinionated agents that

can be detectable. However this also leads to a larger numbers of loners (Figure 5.3) for

the lowest values of λ, particularly for small ε due to the restricted range of movement.

For ε = 0.1, it is of interest that increasing the size of movement λ causes the number

of loners to reduce, although it doesn’t increase the total number of clusters. In essence,

the slower evolution allows greater structure to occur. In comparison to RRM, lower

numbers of loners emerge under HM. In fact, the number of loners under RRM is close

to that of the static model, behaving as a fully connected network. Similar behaviour

is observed for the number of identified opinion clusters.
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(a) ε = 0.1 (b) ε = 0.2

(c) ε = 0.3

Figure 5.2: Mean number of opinion clusters when varying p under HM and
RRM.

5.2.3 Local opinion diversity

Figure 5.4 highlights that the faster convergence in opinion for HM is also associated

with lower tolerance levels. In particular, for ε ≥ 0.2, HM results in each agent being

surrounded by peers that entirely agree with their opinion (i.e. with opinion differences

below δop), while RRM allows high tolerance to persist. In contrast, the behaviour of

RRM is extremely consistent across all values of p and λ, which is similar to the case

when agents are static. Naturally the tolerance decreases as ε increases for all models,

due to the increased opinion similarity across all agents. Similar differences between

RRM and HM are also seen in the mean local diversity, as shown in Figure 5.5
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(a) ε = 0.1 (b) ε = 0.2

(c) ε = 0.3

Figure 5.3: Mean number of loners outside opinion clusters when varying p under
HM and RRM.

5.2.4 Communities

The differences between the two alternative mobility models are most evident in their

effect on community formation (Figure 5.6). HM results in the formation of a large

number of communities in comparison to the other models, which remain relatively

stable as ε is increased. As for previous measures, results for RRM are close to the

static model.

The number of communities needs to be considered in tandem with the number of

loners. As ε increases for HM, the number of communities stays constant, however the

number of loners reduces significantly, showing that these communities are becoming

more substantial. Similarly, although the number of communities for RRM increases

dramatically, this is in the context of high numbers of loners (> 50%). Recall that
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(a) ε = 0.1 (b) ε = 0.2

(c) ε = 0.3

Figure 5.4: Mean tolerance when varying p under HM and RRM

the static model normally results in complete consensus for ε ≥ 0.3, hence this lack

of structure is likely to be related to the geographical separation of agents rather than

their opinion.

For both static models (static and local static), barely any communities are detected

(Figure 5.6) and typically all agents are classified as loners (Figure 5.7), similar to

the RRM. The restrictive interaction did not help form communities. However, as ε

increases the number of communities increase, this is due to the fact that less opinions

exist and therefore communities of similar agents nearby each other are easier to be

detected.
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(a) ε = 0.1 (b) ε = 0.2

(c) ε = 0.3

Figure 5.5: Mean local diversity when varying p under HM and RRM

5.3 Discussion

A marked difference can be seen between the random and directed mobility models.

The results consistently show that RRM produces very similar effects to the original

static opinion model with global interactions, with very little variation due to the prob-

ability p or scale λ of movement. Differences are only evident for the speed of conver-

gence in opinion. Inline with other studies that consider opinion formation with models

of random mobility (e.g. [121, 105]), we find that increased mobility (either manifested

through higher probability of relocating or larger range of movement) leads to faster

convergence in opinion. The random mobility is not showing significant difference in

the opinion dynamics that could explain why mobility is infrequently considered in the

literature.
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(a) ε = 0.1 (b) ε = 0.2

(c) ε = 0.3

Figure 5.6: Mean number of communities when varying p under HM and RRM

The model we present in this chapter highlights the importance of considering mobility

and our psychological behaviour in modelling opinion, with implications for scenarios

where individuals have control over their social structures. Our proposed hybrid model

is inspired by homophily and cognitive dissonance and results in radically different and

results across all evaluation measures, demonstrating a greater propensity for clusters

of distinct opinions to survive, with groups separating geographically to avoid con-

flict. We have shown that incorporating mobility with an incentive associated with a

preferred direction (instead of random), produces multiple opinion clusters.
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(a) ε = 0.1 (b) ε = 0.2

(c) ε = 0.3

Figure 5.7: Mean number of loners outside communities when varying p under
HM and RRM.

5.4 Conclusions

We have investigated two different mechanism for mobility driven by psychological

theories, one uses a random incentive for re-location triggered by opinion differences

(RRM) and the other is more driven via similarity/difference (HM). We investigate

mobility by the two parameters, p and λ, the probability of movement and scale of

movement. We found significant difference between the two models which triggers

more exploration for this research. Firstly, random mobility has shown no significant

impact from the static model, neither can it form structure for the population. Struc-

ture and communities were formed under HM where tolerance levels were drastically

reduced in comparison to RRM. In addition, we found that more movement (higher p)

shows faster convergence in opinion. The most interesting finding is under HM more
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opinion clusters are found than in the random mobility model and therefore this trig-

gers the question how robust are these results when introduced in a noisy environment,

with uncertain agent behaviour. This will be investigated in Chapter 6.
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Chapter 6

Impact of noise

In this chapter we investigate the influence of thermal noise during interactions, in or-

der to study the model’s robustness under uncertainty. Part of this work in this chapter

was published in [6]. A brief introduction to the literature surrounding noise in opinion

modelling was presented in Chapter 2, and in this section we will explore this in more

depth, to provide comparisons between different approaches that motivate our model.

Generally, the DW opinion model represents a balanced compromise between a pair

of agents that are already “similar” in opinion (governed by the parameter ε). How-

ever, when they are in disagreement their opinions do not diverge. As a result, opinion

clusters slowly disappear as ε is increased, leading to a central consensus of one single

opinion. In our model, this result can be avoided when the agents are mobile, allow-

ing distinct opinion clusters to maintain their existence (as shown in Chapter 5). So,

following the DW’s model natural effect to complete consensus, the question is how

stable is our mobile opinion formation model while adding some noise to the agents

behaviour. Will a single opinion dominate over the population even when noise in

mobility is taken into consideration?

6.1 Relevant studies of noise

One of the ingredients used in opinion modelling is to incorporate noise to demonstrate

fluctuation in behaviour. Models without noise are usually referred to as deterministic
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models.

Definition 15. A deterministic model follows strict rules that don’t apply noise or

uncertainty behaviour.

Research under both static and dynamic networks have been studied while applying

noise (some times referred as adaptive networks but in this thesis we’ll use dynamic).

Definition 16. A network is defined as dynamic when it allows neighbour changes

over time. This can either be represented in a network structure or a 2D lattice.

It has been agreed that applying noise to the DW on a locally static network leads

to complete consensus [54, 71]. In the first studies these networks restricts agents

interaction within a fixed neighbourhood size and they are unable to change their links

but adapt as their opinion is evolving.

Subsequently, [54, 71] have continued to investigate the effect of noise for locally

connected dynamic networks where agents are able to rewire according to the opinion

dynamics. The dynamic model in [71] was shown to be robust in the sense that it

produces scenarios with both consensus and polarised opinions. However, [54] raised

the objection of whether this polarisation exists while applying a probability method

to the applied noise. It continues explaining that the noise’s nature is non-symmetrical,

thus agents don’t behave randomly when they are similar in opinion but only when

they’re different. Consequently, [54] claims that when thermal noise is applied on

dynamic networks, complete consensus is obtained. They claim that this is due to

symmetrical noise that is applied on both situations of agreeing and disagreeing agents.

Thermal noise originally refers to an analogy in thermodynamics, specifically with the

way that metals cool and anneal. The higher the temperature the more the hardness of

the material is reduced and able to be re-shaped. This concept is used as analogy to

demonstrate the unexpected behaviour of humans and to show if the expected outcome

persists or becomes volatile.
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Research Opinion
model

Noise type Opinion
type

Static net-
work

Dynamic
network

Centola
et al. [19]

Axelrod
model

Symmetrical
[69]

Discrete
(vector)

Complete
consensus

Diversity

Grabowski
[52]

Social
Impact
Theory

Symmetrical Discrete Both opin-
ions survive

N/A

Grauwin
and
Jensen
[54]

DW Symmetrical Continuous Complete
consensus

Complete
consensus

Guo et al.
[57]

Majority
rule

Symmetrical
[54]

Discrete N/A Both opin-
ions survive

Kozma
and
Barrat
[71]

DW Non-
symmetrical

Continuous Complete
consensus

Polarisation

Pineda
et al. [94]

DW Symmetrical Continuous Fragmentation N/A

Table 6.1: Incorporating noise in opinion models

In Table 6.1, we review a number of related works by classifying them as symmetrical

or non-symmetrical noise as defined below. We also categorise the different opinion

models with the type of opinion representation. In addition, we highlight the results

under either static or dynamic networks.

Definition 17. Non-symmetrical noise demonstrates unexpected behaviour of not fol-

lowing the rules only when disagreement is encountered.

Definition 18. Symmetrical noise demonstrates unexpected behaviour of not following

the rules when both agreement and disagreement is encountered.

Other opinion models have introduced noise, for example, [52] has preceded [54] by

applying thermal temperature, although only on discrete opinion models. Because in

the model proposed in [54] the opinions are continuous, the authors are able to estimate

the peer’s opinion change as an analogy to energy. On the contrary, [52] uses the aver-

age of the local opinions connected to the agent to represent energy levels, referencing
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concepts from the Social Impact Theory model [73] for the opinion modelling. Another

application is shown in [57], where the authors applied the thermal noise mechanism

to the majority rule model, again a discrete opinion model. These discrete opinion

models are simplified in many aspects, one being the fact that all agents have the same

chance of interactions. As stated in [29] ‘clustering is reinforced when agents diversity

is introduced, for instance diversity of influence’. Furthermore, the end state of the

opinion distribution is very limited to either one or two opinions, making it harder to

find any patterns in the agents behaviour.

The thermal noise produces different outcomes when applied to different opinion mod-

els; one might lead to a disordered state while another leads to ordered states. [16]

defines ‘order’ as a translation in the language of physics of what is denoted in social

sciences complete consensus, while a ‘disordered’ state is when opinions are frag-

mented without structure. When noise is applied to discrete opinion models, random

behaviour is expressed by forcefully following the opposite opinion of the one actually

expected [52, 57]. This type of behaviour shows divergence in opinion and as a result

the other opinion is never diminished. Therefore, in such models, higher temperature

levels lead to disorder, with both opinions surviving without any structure or pattern,

in a similar fashion to the random ‘turnover’ proposed in [94].

As for the continuous opinions under the BC models, the rules depend on thresholds of

disagreement and the noise would raise the the probability of convergence regardless

of the agreement status (since the rules naturally don’t diverge). As a consequence

the rules will naturally stimulate consensus and with higher temperatures this leads to

an ordered state, holding a single opinion cluster. This is due to the key ingredient of

forces of attraction and convergence (based on homophily), thus raising the question

of whether the HM model is robust enough to show a more realistic scenario of diverse

opinions.

In this Chapter we apply noise to represent the unexpected or imprecise behaviour that

might occur in communication between peers. Based on this review of the literature,
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the key features that should be captured in modelling noise relate to a type of noise

that impacts equally on decisions without any bias. In particular, the noise should not

be biased towards only disagreeing peers but it should instead occur equally to both

agreeing and disagreeing agents. These features are largely present in the thermal

noise model [54], which has been widely used in social computational models, hence

we include this into our model with the goal of investigating its symmetrical effect on

opinion structures under mobility.

6.2 Methodology

In Chapter 5 random mobility (RRM) did not show any interesting behaviour, there-

fore, we limit our attention to the HM model, and extend Algorithm 7 by adding

thermal noise [54], as described in Algorithm 10.

Attention is restricted to the case where ε = 0.1, since the earlier results (in Chapter5)

show that this value gives the widest range of opinion clusters and tolerance, in contrast

to higher values that lead to a rapid convergence to complete consensus. Also, we

decrease the number of experiments with λ values, to save more computation time for

more experimentation with values of T . The set of parameters used in the experiments

below are shown in Table 6.2 and 6.3.

Figure 6.1 shows the probability of opinion changing with opinion threshold ε = 0.1

under different values of temperatures T . The dotted line shows a deterministic model

that follows the rules strictly without noise. Showing that if the opinion difference

exceeds ε the probability of changing the opinion is definitely not going to happen.

However, as we add noise (T = 0.1) this probability increases, meaning that even if

different opinions interact there is a slight probability to actually influence each other.

Also, this noise is applied when similar opinions interact, so there is a slight probability

they will not influence each other. It is shown as the temperature increase (T = 10)

the randomness in behaviour increase and therefore come closer to a 50 : 50 chance of
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Parameter Description Value
L× L Region size 10× 10
seeds Number of averaged sim-

ulation runs
20

n Number of agents 100
limit Maximum number of time

steps per simulation
40, 000

ε Opinion threshold for in-
fluence (see Definition 3)

0.1

rs Interactive radius 2
δop Opinion change threshold 0.01
δmov Movement distance

change threshold
1

NF Number of time steps
without opinion change
for convergence

10, 000

Table 6.2: Fixed variables

Parameter Description Value
Mobility models Static, random and direc-

ted mobility models
Static, local static, RRM,
HM

p Probability of movement [0.1, 0.2, 0.4, 0.6, 1]
λ Movement scale factor [0.2, 0.4, 0.6, 0.8, 1]
T Noise [0.1, 1, 10]

Table 6.3: Independent variables

changing opinion, where ε has less impact on the opinion dynamics.

For this chapter results are presented for three cases. The label ‘No noise’ represents the

deterministic HM model, with no uncertainty in the decision to interact (figures from

Chapter 5). Noise is then applied at low (T = 0.1) and high (T = 1) temperatures.

Further experiments with higher temperature (T = 10) showed similar results to T =

1, therefore are not presented in this chapter but attached in Appendix A.

Aim In this section, we are interested in whether the addition of noise results in fewer

opinions, as widely reported in existing studies [54, 71]. Therefore, the aim of this

chapter is to study the effect of noise on the general evolution of opinions for agents
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Figure 6.1: Probability of changing opinion under the impact of thermal noise

that have the opportunity to move while interacting within a restricted area around

them.

Hypothesis Following the DW’s model natural tendency to result in complete con-

sensus, under the impact of noise, complete consensus is an end result even under

small ε. The question is can our mobile opinion formation model preserve multiple

opinions while adding some noise to the agents behaviour. Our hypothesis is that dir-

ected mobility will resist the vulnerability of opinion changing to a single dominant

opinion.

Experiments We focus our investigation on the directed mobility model (HM) under

the impact of noise, considering the static model as a benchmark (dashed line in blue).

In addition, we show the results for the local static (straight line in orange). The models

under investigation are as follows.

1. Static models

• Static: a demonstration of the DW original model (Algorithm 1, Section 3.2.1)
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• Local static: a modified version of the DW model, but restricting the inter-

action range.

2. Directed mobility

• HM: to move toward/away depending on the agreement between the peers

(Algorithm 7, Section 3.2.2.2).

Evaluation We evaluate the effect of adding noise to the HM model (denoted HM

noise) while varying p and λ using similar structure evaluating the results as in Chapter 5,

investigating the listed dependant variables in Table 5.3.

6.3 Results

In this section we present the results following the same structure in Chapter 5, con-

ducting an investigation of the convergence followed by the emergence of opinions and

their geographical distribution.

6.3.1 Convergence

Figure 6.2 shows the convergence in opinion following a pattern of faster convergence

with higher temperature. We first note that the convergence in opinion for low tem-

peratures (Figure 6.2b) are similar to the deterministic case (Figure 6.2a). However,

increasing temperature T = 1 results in the fastest convergence, similar to the larger

value of ε = 0.3 in the deterministic case (Figure 5.1). The static model also follows

the same pattern of faster convergence as HM.

In addition, in a deterministic setting (Figure 6.2a), the highest p is the slowest in con-

vergence compared to lower p values, this pattern is followed as T increase. However,

higher λ cause slower convergence but that is not found when T = 1. The λ generally
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cause slower convergence because of the larger distance of movement and the ability

to explore new opinions, although this is mitigated when noise is high. The noise nat-

urally decreases the number of opinion clusters and the tolerance (as we’ll see in the

next sections). Therefore, it decreases the probability of interacting with someone new,

making the convergence faster.

(a) No noise (b) T = 0.1

(c) T = 1

Figure 6.2: Mean opinion convergence time for ε = 0.1, convergence is not found
when t = 40, 000.

6.3.2 Opinion clusters

Figure 6.3 shows the opinion clusters in two columns, one demonstrating the actual

number of opinion clusters and the other showing the number of loners outside the

opinion clusters.

One of the conclusions in Chapter 5 is that HM maintains a large number of opinion
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clusters (see Figures 5.2). Figures 6.3c and 6.3e shows that high numbers of opinion

clusters are still maintained under high values of noise compared to no noise in Fig-

ure 6.3a. The number of opinion clusters does indeed decrease as T gets higher but

not to the extent of reaching a single opinion. In particular, the more p decreases, the

less are the number of opinions that survive. The higher p the more opinion clusters

survive under high levels of noise. In addition, increasing T results in almost all agents

being classified in a cluster with minimum numbers of loners (Figures 6.3d and 6.3f)

compared to no noise in Figure 6.3b, similarly to the deterministic with high ε (see

Figure 5.3).

For both static models (static and local static), with the highest temperature we observe

the formation of a single opinion (T = 1, Figure 6.3e), which is in line with the literat-

ure when noise has been considered in static networks [54, 71]. One of the findings in

Chapter 5 was that the local static model produced more opinion clusters than the static

(see Figures 5.2). However, high noise levels reduce the effect of interacting locally in

the local static model, which is now behaving similarly to the static model with global

interaction. This contrasts with the deterministic model that produces considerably

more opinion clusters in the local static model than the static.

6.3.3 Local opinion diversity

The same pattern of decrease is repeated as T increases when considering the local dis-

tribution of opinions. For both tolerance (Figure 6.4) and local diversity (Figure 6.5),

low noise (T = 0.1) results in only a slight drop in metrics compared to the case with

no noise. Conversely, adding high noise (T = 1) sees no variation in the opinions of

the agents with proximity, in a similar fashion to high values of ε for the deterministic

model (Figures 5.4 and 5.5). This pattern of behaviour is also observed with both static

models.

Similar to the convergence in opinion, higher p maintains higher levels for both tol-
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(a) Number of opinion clusters under no
noise

(b) Number of loners outside opinion
clusters under no noise

(c) Number of opinion clusters for T = 0.1 (d) Number of loners outside opinion
clusters for T = 0.1

(e) Number of opinion clusters for T = 1 (f) Number of loners outside opinion
clusters for T = 1

Figure 6.3: Mean number of opinion cluster and mean number of loners outside
opinion clusters for ε = 0.1.

erance and local diversity compared to lower p, due to the restricted movement being

able to find an area with absolute uniform opinion, although with higher noise this

diversity diminishes as expected.
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(a) No noise (b) T = 0.1

(c) T = 1

Figure 6.4: Mean tolerance for ε = 0.1

6.3.4 Communities

Figure 6.6 shows the structure of communities in two columns, one demonstrating the

actual number of communities and the other showing the number of loners outside

communities.

Similarly to opinion clusters, a high number of communities is maintained as T in-

creases (Figures 6.6a,6.6c and 6.6e). Furthermore, p is observed to have a similar

impact in the formation of communities to that of opinion clusters, as high p values

produce the highest number of communities across all range of T values. Further-

more, with higher T the number of loners decreases as well, forming a more organised

population (Figures 6.6d and 6.6f), similar to the deterministic case with high ε (see

Figure 5.7).
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(a) No noise (b) T = 0.1

(c) T = 1

Figure 6.5: Mean local diversity for ε = 0.1

For both static models (static and local static), the case with T = 0.1 doesn’t behave

any different from the case without noise. However, when the temperature rises higher

(T = 1), we observe the formation of more communities, similar to the deterministic

model with high ε (see Figure 5.7). In addition, the number of loners decreases from

a case with all agents classified as loners (Figures 6.6b 6.6d) to less than half of the

population joining a community (Figures 6.6f). This is because there are no more

opinion clusters and all the agents have converged to a single opinion (Figure 6.3e),

making agents within proximity easier to form communities.
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(a) Number of communities under no noise (b) Number of loners outside communities
under no noise

(c) Number of communities for T = 0.1 (d) Number of loners outside communities
for T = 0.1

(e) Number of communities for T = 1 (f) Number of loners outside communities
for T = 1

Figure 6.6: Mean number of communities for and mean number of loners outside
communities for ε = 0.1.
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6.4 Discussion

Previous work considering noise in dynamic networks of opinion (where links can be

rewired) suggests two extreme outcomes: either complete consensus [54] or polarisa-

tion [71]. This difference is due to the fact that the rewiring algorithm in [71] does not

allow bonds between agents in agreement to be broken (asymmetrical noise). In [54],

symmetrical noise is implemented, which allows agents to rewire by forming a link at

random with any other agent in the network, with no geographical restriction, in either

cases of agreement or disagreement.

In our model, the ability to move and react to an interaction is restricted to peers within

the local area (i.e. the equivalent of link formation). As a consequence, we do not

record high levels of consensus in our results even if we applied substantial level of

symmetrical noise, in contrast to [54].

Our model is similar to [54] while implementing the static opinion model but not while

implementing the mobility model. More specifically, we don’t move away (break links)

between agreeing agents. As a consequence, we don’t get complete consensus as in

[54]. In contrast, we obtain more than a single opinion cluster because, similarly to

[71], we don’t break links to agreeing agents. This property allows distinct clusters to

be maintained both in terms of opinion and location, even in the deterministic scenario

without any noise applied. The other effects shown by our model are consistent with

the literature [54], speeding up convergence when a form of noise is considered.

6.5 Conclusions

The HM model has shown a robustness to even high levels of noise since both restrict-

ing interactions range (rs = 2) as well as allowing the agents to move have a beneficial

effect in maintaining multiple opinion clusters. Although convergence in opinion space
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is always achieved we never achieve complete consensus to one opinion. Furthermore,

we neither obtain disorder opinion states, nor have a non-collective structure.

In Chapter 5 the static model without noise naturally tends to converge to complete con-

sensus because of its purely attractive mechanism in opinion influence which doesn’t

encourage divergence. In contrast when adding mobility which includes attraction and

repulsion we have found that opinions can diverge. As a result, with such a method

we found that more opinion clusters can be maintained at a macroscopic level. When

we apply noise and randomness in behaviour, we note that our model shows strong

robustness.

In Chapter 7 we focus our investigation to compare between two random mobility mod-

els, the RRM and the widely used random mobility model that demonstrates constant

random movement (PRM).
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Algorithm 10 Simulation framework with HM and noise

Require: Input parameters (n, limit, rs, ε, µ, p, λ,NF , δop, δmov, T )
Require: Initial population A of n agents

for limit time steps do
ai ← U(A) . Select random inviting agent
aj ← U(N(xyi, rs)) . Select random invited agent from neighbourhood
∆← |opi−opj |

ε

pconv ←
[
1 + e(

∆−1
T )

]−1
if U([0, 1]) < pconv then . Apply thermal noise

op′i ← opi + µ(opj − opi) . Successful interaction: Opinion influenced
op′j ← opj + µ(opi − opj)

else
op′i ← opi . Unsuccessful interaction: opinion unchanged
op′j ← opj

end if
if U([0, 1]) < p then . Apply mobility rate

xy′i ← mobility(ai, aj) . Apply mobility model
else

xy′i ← xyi . No movement
end if
opi ← op′i; opj ← op′j . Update opinions
xyi ← xy′i . Update location
if ∆op < δop then . Convergence tracking as in Algorithm 8

top ← top + 1 . Insignificant opinion change
else

top ← 0 . Significant opinion change - reset
end if
if ∆mov < δmov then

tmov ← tmov + 1 . Insignificant location change
else

tmov ← 0 . Significant location change - reset
end if
if top == NF or tmov == NF then

return A, t, top, tmov
end if

end for
return A, t, top, tmov
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Chapter 7

Random and directed mobility

components

Two main conclusions emerged from the initial investigation of the HM model in

Chapter 5. Firstly, we showed that directed mobility has a significant impact on the

structure of opinions that evolve, allowing more distinct opinions to persist than the

static model without mobility (Section 5.2.2). Secondly, we demonstrated that random

mobility behaves similarly to the static model (Section 5.2.2, 5.2.3 and 5.2.4). To de-

termine potential reasons why this happened, we now perform a deeper investigation

on the random mobility. Also, we explore the individual components (attraction and

repulsion) in the directed HM model and investigate their dynamics and stability in

terms of parameters.

The aim of this chapter is to investigate which features of these mobility models can

form organisation and impact the opinion dynamics. First, we investigate the random

mobility (PRM), which is analogous to the constant movement of gas particles, as

widely studied in the literature, and compare this to another random mobility (RRM)

with a social driver to only move when disagreement is encountered. After this, we

study the convergence and stability of the directed mobility (AM, RM, HM) models to

conduct a deeper understanding of the parameter space.



7.1 Methodology 105

Parameter Description Value
L× L Region size 10× 10
seeds Number of averaged sim-

ulation runs
20

n Number of agents 100
limit Maximum number of time

steps per simulation
70, 000

p Probability of movement 1
λ Movement scale factor 0.6
δop Opinion change threshold 0.01
δmov Movement distance

change threshold
1

NF Number of time steps
without opinion change
for convergence

10, 000

Table 7.1: Fixed variables

7.1 Methodology

In this chapter we are comparing and exploring the different mechanisms of mobil-

ity while widening the parameter space investigation. We widen the investigation to

explore ε ∈ [0, 1] instead of stopping at 0.5. Also we consider a variety of different in-

teraction range rs ∈ [1, 10]. In Chapter 5, the probability (p) and scale of movement (λ)

were varied and they showed an effect on the speed of opinion convergence, although

not much difference in the number of opinion clusters is formed. Furthermore, larger p

had an impact in forming a more structured population to communities and decreased

tolerance levels. Our focus in this chapter is to investigate the full mobility p = 1 and

focus on comparing the different mobility models and the probability to interact and

influence through varying rs and ε. Therefore, we conduct these experiments by having

both the probability of movement and the scale of movement fixed (p = 1, λ = 0.6).

The full set of parameters is found in Table 7.1 and 7.2.

Aim In this chapter we explore the different mobility mechanisms defined in Chapter 3

(Section 3.2.2). The aim of this chapter is to investigate which mobility mechanism can
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Parameter Description Value
Mobility models Static, random and direc-

ted mobility models
Static, Local static, PRM,
RRM, AM, RM, HM

ε Opinion threshold for in-
fluence (see Definition 3)

[0.1, 0.2 . . . , 1]

rs Interactive radius [1, 2, 3, 5, 10]

Table 7.2: Independent variables

form organisation and impact the opinion dynamics.

Experiments We consider all the models defined in Chapter 3 (Section 3.2.2). The

models in this investigation are as follows:

1. Static models

(a) Static: a demonstration of the DW original (Algorithm 1, Section 3.2.1)

(b) Local static: a modified version of the DW model, but restricting the inter-

action range of rs

2. Random models

(a) PRM: An agent moves randomly at each time step (see Algorithm 3, Sec-

tion 3.2.2.1).

(b) RRM: An agent moves randomly only when a different opinion is en-

countered (see Algorithm 4, Section 3.2.2.1).

3. Directed models

(a) AM: Move toward a similar peer (Algorithm 5, Section 3.2.2.2).

(b) RM: Move away from a different peer (Algorithm 6, Section 3.2.2.2).

(c) HM: Move toward/away depending on the agreement between the peers

(Algorithm 7, Section 3.2.2.2), in this chapter the movement toward is de-

scribed as the attract component and the movement away as the repel com-

ponent.
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Parameter Description Value
Convergence in opinion
(see Algorithm 8)

Time step when opinion
change is settled

0 - 70,000 time steps

Convergence in move-
ment (see Algorithm 8)

Time step when distance
moved is settled

0 - 70,000 time steps

Opinion clusters (see
Definition 9)

Mean number of different
opinion clusters

0 - 10 clusters

Tolerance (see Defini-
tion 13)

Ratio of different opinions tol(A) ∈ [0, 1]

Communities (see Defini-
tion 10)

Mean number of clusters
that share opinion and loc-
ation

0 - 10 clusters

Table 7.3: Dependent variables

Evaluation We evaluate the random and directed mobility individually. First, we

evaluate the impact of random mobility, and we use the static model as the main bench-

mark to asses the two random mobility models (RRM and PRM), considering the opin-

ion clusters, tolerance level, the nature of the geographical/opinion clusters that evolve

and the opinion convergence time. These metrics are listed in the dependant variables

in Table 7.3. In addition, this chapter investigates the movement convergence time

to highlight the stability of the different mobility models. Therefore we extend the

simulation time steps to limit = 70, 000 instead of 40, 000 as in the previous chapters.

Second, we assess the convergence for the directed mobility models (AM, RM, HM)

and provide a detailed discussion on their evaluation against other metrics in Chapter 8.

7.2 Random mobility

We will evaluate the opinion and movement convergence; the opinion and community

clusters and tolerance. A summary of the results is presented in the figures, with more

detailed figures provided in Appendix B to visualise the outcome of the experiments

across the different configurations.

In the experiments below we apply the random mobility and change both the interactive
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radius rs and ε to observe the impact upon the opinion model’s dynamics as well as the

structure of communities.

7.2.1 Opinion clusters

In order to understand the impact of locality, we briefly assess the impact of varying

the interaction radius rs on the local static model, before adding mobility.

7.2.1.1 Effect of the interactive radius on the local static model

In Chapter 5 we found that with local static agents, restricting interaction range rs is a

natural driver to stimulate more opinion clusters (Figure 5.2), specifically for the case

of rs = 2. We now conduct a wider range of experiments across different values rs and

ε, with results shown in Figure 7.1.

As may be expected, we find that restricting the interaction range to small values

(rs ≤ 2) increases the number of opinion clusters, especially for lower values of

ε. This demonstrates that the restricted and fixed neighbourhood substantially limits

the global spread of an individual opinion, and as such, a dominant consensus cannot

emerge. We also find that more loners emerge without any form of interaction dynam-

ics (Figure 7.1b), which is in line with [71] that found that a static network produces

more extensive small clusters than a dynamic network.

When ε > 0.3 a single opinion quickly dominates for all values of rs > 1. As a

result, opinion similarity is able to spread because of its large opinion threshold ε. To

conclude, in a local static model, restricting rs to small values acts as a natural driver

to prevent the influence of agents and therefore increase the number of opinion clusters

that can persist.
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(a) Numbers of opinion clusters (b) Numbers of loners outside opinion
clusters

Figure 7.1: Mean number of opinion clusters and mean number of loners outside
opinion clusters under local static model.

7.2.1.2 Effect of the interactive radius with random mobility

Since restricting rs in the local static model is able to produce more opinion clusters,

we now assess the effect when random mobility is included. Under random mobility

models (RRM or PRM), the number of opinion clusters does not increase (Figure 7.2a

and 7.2c), but stays similar to the static model under large interaction range (rs = 10)

(Figure 7.1a) with the exception of the smallest radius rs = 1. Consequently, adding

random mobility tends to eliminate the effect raised by the local static model to increase

the number of opinion clusters. Figures 7.2b and 7.2d show that loners outside opinion

clusters are minimal with the exception of rs = 1 under RRM, as we’ll discuss later in

Section 7.2.2.1.

7.2.2 Comparison of other metrics under RRM and PRM

In general, we find most of the metrics showing that both of random mobility models

(PRM, RRM) behave similarly to the static model. Furthermore, the time of conver-

gence in opinion is very fast (Figure 7.3). In addition, in presence of multiple opinions

(low ε) tolerance is always present and uniformity doesn’t exist (Figure 7.4), and this
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(a) Number of opinion clusters under RRM (b) Number of loners outside opinion
clusters under RRM

(c) Number of opinion clusters under PRM (d) Number of loners outside opinion
cluster under PRM

Figure 7.2: Mean number of opinion clusters and loners outside opinion clusters
under random mobility.

would obviously show no structure in forming communities where most of the popu-

lation are loners (Figures 7.5b and 7.5d).

With PRM this lack of geographical structure is expected since convergence in move-

ment is hardly ever present (Figure 7.6) due to the agents constant movement. How-

ever, with RRM, when complete consensus forms (high ε), it is more likely that conver-

gence in movement is found. Note that, when the time steps t run out and convergence

is not found, the time step is set to the largest time step, in this case 70, 000. This

is because the main factor that triggers movement is disagreement, so as consensus

emerges, mobility is reduced. However, as seen in Figures 7.5a and 7.5c some com-
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(a) RRM (b) PRM

Figure 7.3: Mean opinion convergence time under random mobility, convergence
is not found when t = 70, 000.

(a) RRM (b) PRM

Figure 7.4: Mean tolerance under random mobility

munities emerge and there still emerge a number of loners that become geographically

separated, either from peers with similar opinions (that could form clusters) or from

peers with dissimilar opinions (that would drive them away to explore the region) (Fig-

ures 7.5b and 7.5d).

7.2.2.1 Exception of rs = 1

Under both random mobility models (RRM, PRM), when rs = 1 convergence in opin-

ion is rarely obtained. Also, convergence in movement is unusual in showing fast

convergence. Not finding convergence in opinion can skew the results of the other
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(a) Number of communities under RRM (b) Number of loners outside communities
under RRM

(c) Number of communities under PRM (d) Number of loners outside communities
under PRM

Figure 7.5: Mean number of communities and mean number of loners outside
communities under random mobility.

metrics. For example, RRM results in larger numbers of opinion clusters (Figure 7.2)

than in PRM. However, when convergence in opinion has not occurred, these clusters

are not stable and continue to evolve. RRM shows less tolerance (Figure 7.4) when

opinions are not stable yet. Due to the very small interactive radius the likelihood of

new agents to meet decreases significantly, and therefore the rate at which opinions

can fully diffuse through the population decrease too. Therefore, we investigate the

convergence for the case under rs = 1.

As an example we’ll discuss the convergence for RRM when rs = 1, but first we’ll dis-

cuss the convergence in opinion and later convergence in movement. Figure 7.3 shows
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(a) RRM (b) PRM

Figure 7.6: Mean time of convergence in movement under random mobility, con-
vergence is not found when t = 70, 000.

that convergence of opinion for RRM with rs = 1 is not found for ε = 0.1 (in yellow).

Figure 7.7a is a more detailed figure that shows the opinion change that happens in

each time step, which clearly shows that opinion continues to change throughout the

entire simulation without stopping. Although, we must note that most of the experi-

ments in this thesis eventually converge in opinion if the simulation is left running for

a sufficient time. For example, under RRM for rs = 1 and ε = 0.1 the opinions do

converge but only after 100, 000 time steps. Therefore, for the remainder of this thesis

we extended the time steps to 70, 000 as the maximum, to balance computation time

and allow a wide range of experiments.

(a) Opinion change per time step (b) Distance moved per time step

Figure 7.7: RRM convergence dynamics for ε = 0.1 and rs = 1

Furthermore, we investigate the convergence of movement when rs = 1. Figure 7.7b



7.3 Attract and repel components 114

shows similar results for convergence in movement, highlighting that this is rarely

achieved. Note that the case of rs = 1 is anomalous since by default, the distance

moved rsλ is always less than the convergence threshold δmov, giving the impression

of convergence while the agents are actually still moving (Figure 7.7b). Therefore, we

exclude the cases with rs = 1 from the discussions in the remainder of this chapter and

fix δmov = 1 (see Chapter 4).

7.3 Attract and repel components

In this section we will investigate the individual mobility components that contribute

to the hybrid HM model, to quantify the impact of each and the effect of rs and ε. We

will discuss the results, both the opinion convergence and movement convergence, in

the sections below.

7.3.1 Convergence

We investigate when convergence occurs in both opinion and movement for each sim-

ulation in order to determine how convergence in movement and opinion are related,

and the conditions that lead to stability.

7.3.1.1 Convergence in opinion

Figure 7.8 shows the convergence in opinion for AM, RM, HM and static model against

different values of ε and rs, leading to the following observations.

Higher opinion threshold leads to faster convergence. As ε increases, it acts as a

driver to reduce the time to converge in opinion because of its nature to increase the

number of successful interactions, observed for all the mobility models.



7.3 Attract and repel components 115

Repel component leads to slower convergence. For low ε, the opinion convergence

time is a little slower for both the RM and HM mobility models with smaller rs. When

there is mobility, new agents are frequently introduced into the neighbourhood of other

peers, giving new opportunities to influence opinion or trigger further movement. This

feature results from the repel component (including in both RM and HM, but not in

AM), when agents move away they will typically land in the neighbourhood of new

peers.

Faster convergence results from attraction mobility. Under AM, disagreeing agents

aren’t able to explore the area, nor is the neighbourhood exposed to new agents holding

diverse opinions, hence agents can become trapped in regions where they disagree with

the local majority. Therefore, fast convergence in opinion is expected similarly to the

static model.

All mobility models have similar convergence speed to the static model. For low ε

combined with a larger interactive area (rs ≥ 5), all three of the mobility models (AM,

RM, HM) have a larger probability to interact with a large proportion of the agents in

the population, spreading the influence of opinions widely. As a result, convergence

occurs much faster in a similar fashion as the static model.

7.3.1.2 Convergence in movement

In this section we compare the convergence in movement between AM, RM and HM

(excluding both static models). Figure 7.9 shows the convergence time in movement

and the impact of ε and rs, leading to the following observations.

Faster convergence results from a high opinion threshold. For ε ≥ 0.5, the time

of convergence in movement for AM, HM and RM is much faster compared to low

ε. More specifically, less movement is found, due to the large opinion distance that
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(a) ε = 0.1 (b) ε = 0.2

(c) ε = 0.3

Figure 7.8: Mean opinion convergence time under directed mobility, convergence
is not found when t = 70, 000.

is acceptable between agents. This results in agents being content in their current

locations without incentive to move away.

Repel component causes slower convergence in movement compared to attraction.

The convergence time in movement for all three directed mobility (AM, HM, RM)

increases as ε decreases (Figure 7.9), due to the presence of multiple opinions. This

effect is accentuated as rs increases, particularly for the repel mobility with low ε in

comparison to the AM. As a result of a large interaction range the agents repel over

a large distance. When the moving distance is large, the effect of movement at the

boundary begins to have more impact. This behaviour will make the agents structure-

less similar to the random models. As a result, at the end of the simulation the agents

are still moving because they are not content with their current neighbourhood, leading
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(a) ε = 0.1 (b) ε = 0.2

(c) ε = 0.3 (d) ε = 0.4

(e) ε = 0.5 (f) ε = 0.6

Figure 7.9: Mean time of convergence in movement under directed mobility, con-
vergence is not found when t = 70, 000.

to a longer time to find convergence in movement (or no convergence at all).

For low ε, HM converges at a similar speed to RM. For HM with low ε, even

though it includes the attract component, the repel appears to dominate leading to
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slower convergence compared to the AM. HM’s convergence for high rs is less fre-

quently found compared to smaller rs. With large rs, interactions that can change

opinion are triggered over larger distances and less structure is formed in the popula-

tion, resulting in longer times for stable structures to emerge. However, the effect of

small radius with directed repelling provides stability and structure to the model, res-

ulting in faster convergence in movement. Specifically, this limits the ability of agents

to explore new neighborhoods and therefore decreases the number of changes in the

simulation, which in turn leads to a faster convergence.

For higher ε, HM converges at a similar speed to AM. As ε increases, HM behaves

more similarly to AM finding faster convergence in movement. Naturally, the higher

ε, the fewer unsuccessful interactions occur that will trigger an agent to move. The

drop is especially significant for ε = 0.4 and rs = 10. This is because the numbers of

opinion clusters decreases to a single opinion, and together with the attract component,

this highly supports speeding the convergence in movement.

Convergence in opinion is almost always faster than convergence in movement, sug-

gesting that agents largely settle on opinion before changing their place to find a neigh-

bourhood where they are content. Also, convergence in opinion is always found, al-

though this is not always true for movement. More specifically, we found that the repel

component highly stimulates slow or no convergence in movement and therefore that

feature is dominating in HM especially via low ε.

7.4 Conclusions

From Chapter 2 we have identified that most of the models apply random mobility,

consistent with approaches inspired from the movement of gas particles, often with

application of techniques from Physics. Therefore, in this chapter we analyse random

mobility to quantify it’s significance to opinion models.
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Before analysing the random mobility we investigated the local static model under

a range of restricted interactions (Section 7.2.1.1). We found more opinion clusters

emerging, as noted in the literature [71]. However, restricting interaction did not impact

random mobility models.

The results presented in Sections 7.2.1.2 and 7.2.2 over a range of parameters show

that the two random approaches (purely random and triggered by disagreement) lead

to similar outcomes which are largely independent of the interactive radius rs. In fact,

both showed very similar behaviour to the static model where interaction is allowed

between any pairs of agents. We believe that this may explain why mobility has re-

ceived scant attention in the literature, since the most obvious models appear to add

little interest to the static case.

Finally, we explored the convergence of the directed mobility models (AM, RM, HM),

to assess if these models show stability in their structure across the breadth of para-

meters. Unlike the random models, these show different behaviour across parameters,

although convergence in opinion is always found and occurs faster than convergence in

movement (Section 7.3.1.2). Furthermore, convergence in movement is slowed down

via repulsion causing for the convergence not to be found with large interaction range

(Section 7.3.1.2).

The observations above provide the basis for a deeper investigation on the directed

mobility models in the next chapter, where we will attempt to develop a classification

that can describe the characteristics of each mobility model.
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Chapter 8

Classification of self-organisation

In this chapter our focus is to analyse the different opinion clusters that survive in

the system, reflecting the opinion diversity in the population once it has converged.

Also, we focus on the structure of the agent’s distribution in the geographical space

associated to their opinions. In particular, we conduct experiments across relevant

parameters in order to determine and classify the potential outcomes into a small num-

ber of scenarios. Firstly, we provide a detailed analysis of the results of each mobility

model, based on quantitative outcomes. Then, we give an overview of the classifica-

tion diagrams that we will use to illustrate the results. Finally, we present a complete

classification diagram that classifies the different mobility models into a number of

scenarios.

8.1 Methodology

In Chapter 7 we have found that random mobility under a broad parameter space be-

haves the same as the static model. However, in Chapter 5 we found that directed

mobility under HM behaved significantly differently from the static model in terms

of a significant raise in opinion evolution, more communities forming, decrease in-

tolerance levels and slower convergence in opinion. Also the HM showed robustness

under noise (Chapter 6). This triggered the investigation concerning the directed HM

model. The HM originally consists of two mobility components: attraction and repul-
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Parameter Description Value
Mobility models Random and directed mo-

bility models
PRM, AM, RM, HM

ε Opinion threshold for in-
fluence (see Definition 3)

[0.1, 0.2 . . . , 1]

rs Interactive radius [1, 2, 3, 5, 10]

Table 8.1: Independent variables

sion. Therefore, to fully understand this model, it is important to ask: Which mobility

component has a larger impact? Are they equally important? Does one mobility have

more significant impact on HM than the other? In this chapter we conduct a full invest-

igation on the individual components of the directed mobility mechanism. We use the

same fixed variables as the previous Chapter 7 (Table 7.1) and focus on the directed

mobility models as listed in Table 8.1.

Aim Our aim is comparing and exploring specifically the directed mobility mechan-

isms while widening the parameter space investigation to produce a classification for

the different scenarios and self-organisation that emerge.

Hypothesis To fully understand the HM model, considering both the attract and repel

components, which mobility component has a larger impact? Our hypothesis is that the

mobility forces of attract and repel impact both the opinion and community formation

differently, unlike the random mobility.

Experiments In this chapter we will investigate the HM model as well as the AM

and RM mobility mechanisms. Since the static model behaves as the random mobility

models (as shown in Chapter 7), we use PRM as a benchmark to compare to the direc-

ted mobility models, excluding the static models. The models we study in this chapter

is as follows:

1. Random models
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Parameter Description Value
Opinion clusters (see
Definition 9)

Mean number of different
opinion clusters

0 - 10 clusters

Tolerance (see Defini-
tion 13)

Ratio of different opinions tol(A) ∈ [0, 1]

Communities (see Defini-
tion 10)

Mean number of clusters
that share opinion and loc-
ation

0 - 10 clusters

Table 8.2: Dependent variables

(a) PRM: An agent moves randomly at each time step (see Algorithm 3, Sec-

tion 3.2.2.1).

2. Directed models

(a) AM: Move toward a similar peer (Algorithm 5, Section 3.2.2.2).

(b) RM: Move away from a different peer (Algorithm 6, Section 3.2.2.2).

(c) HM: Move toward/away depending on the agreement between the peers

(Algorithm 7, Section 3.2.2.2), in this chapter the movement toward is de-

scribed as the attract component and the movement away as the repel com-

ponent.

Evaluation We will evaluate the directed mobility models (AM, RM, HM) in terms

of opinion cluster, tolerance and communities as listed in Table 8.2. The convergence

for the directed models was discussed in Chapter 7, Section 7.3 in both opinion and

movement. This has highlighted the spectrum where convergence and stability has

been found in the models, this provides a more sufficient assessment against the other

metrics presented in this chapter.

To evaluate the results, firstly, we discuss for each metric (in Table 8.2) the observa-

tions we find under a large parameter space (in Table 8.1). After that we combine

the parameters to identify similar behaviour, to classify into a couple scenarios that

describe their behaviour. Finally we combine and synthesise all the metrics to create
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a classification diagram that describes the ways in which self-organisation of agents

occurs.

8.2 Opinion clusters

In this section we present an abstract classification method capturing the final num-

ber of opinion clusters ignoring the agent locations, which will be investigated in the

Section 8.4. Specifically, this investigation raises questions about the surviving opin-

ion clusters. Usually in the literature the agents reach complete consensus or multiple

opinion clusters (if ε too low).

We first evaluate the opinion/mobility models across different values of rs and ε, to

assess their impact on the emerging opinion clusters from the simulations. We are

interested in the numbers of loners outside opinion clusters, which is generally ignored

in the literature.

We apply this approach for presentation of the remaining evaluation metrics in Sec-

tions 8.3 and 8.4. We first describe the observations that arise from these simulations

in the following Section.

8.2.1 Observations

Previously in Chapter 5, (Figure 5.2), we found that where rs = 2 the largest numbers

of opinion clusters are found via directed mobility (HM) rather than in both of the

static models, either manifested via restrictive interactions (local static, rs = 2) or

globalised interactions (static, rs = 10). Therefore, this triggers the question of how

much impact the interaction range (rs) has on different mobility mechanisms. In the

discussions below we analyse the directed movement components (attract and repel)

and investigate the impact of both ε and rs.
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Mobility via high interaction radius behaves as the random mobility In general,

for all the mobility models (AM, RM, HM) we have found that when rs ≥ 5 (for

all ε) the resulting number of opinion clusters corresponds closely regardless if mo-

bility was directed or random (Figure 8.1). This is similar to the previous findings in

Chapter 7, Section 7.2.1.2 for the random mobility models (RRM and PRM), where

opinion clusters again were similar to the static model.

This is because most of the region is within the interaction range and an agent has a

higher probability to interact with anyone across the region giving similar results to the

static model. More specifically, the agent’s coverage area to select another peer is πr2s ,

hence assuming the agent is at the centre of the region. For example, if we consider

rs = 5 that gives an agent a probability of 0.78 to interact with any other agent across

the population (assuming uniform distribution). This probability can vary if the agents

is at one of the corners of the region giving a probability of 0.19. [57] found similar

results from their lattice based binary opinion model, which considers mostly local

interaction with the concept of “mobility” provided by a small number of global links.

As a result of these long links providing influence across the population, they found

that increasing mobility (i.e. the number of long links) also increased the size of the

largest community relative to the entire population.

Low interaction radius produces more opinion clusters Figure 8.1 shows that

more restrictive interactions (rs < 5) stimulate larger numbers of opinion clusters than

the random mobility regardless of the type of movement (AM, RM or HM).

In particular, for both AM and HM (Figure 8.1a and 8.1c) it can be seen that multiple

opinion clusters persist even as ε increases to reach ε = 1. This is due to the presence

of the attraction component in both mobility methods, leading to agents co-locating in

small isolated groups before they have a chance to spread their opinion by influencing

significant numbers of peers.
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(a) AM

(b) RM

(c) HM

(d) PRM

Figure 8.1: Mean number of opinion clusters under directed mobility

RM behaves as random mobility RM with ε ≥ 0.4 produces a single opinion cluster

regardless of rs (when rs > 1), a similar behaviour to the PRM model to its equivalent



8.2 Opinion clusters 126

ε. This is due to the nature of the repel mobility, as it triggers the agents to move away

when disagreement occurs and therefore land in a new neighbourhood. This mechan-

ism gives the agent a higher chance to explore and meet more new agents further away.

Therefore their spread and interactions around the area manifested with large ε leads

to complete agreement.

Emergence of loners outside opinion clusters in AM. Figure 8.2 shows that for

directed movements with rs > 1, few loners remain outside opinion clusters. However,

there is a small exception for AM when ε < 0.3 and rs < 5, where more loners appear,

showing that where interaction is limited, more loners in opinion will emerge. Under

these conditions the stimulus of attraction is not enough to “belong” or find an opinion

group.

In contrast, if an agent moves to a new neighbourhood (only possible via the repel

component) it has a higher chance of encountering a similar peer and can find where

it “belongs”, decreasing the number of loners. Note that HM balances these effects

to some extent, with the number of loners somewhere between AM and RM in this

constrained region.

8.2.2 Classification of outcomes

Our findings show that through directed mobility and restricted interactive radius, more

opinion clusters survive. This is especially highlighted under the physical attraction

component (in AM and HM) since the impact continues until ε = 1. These results are

interesting especially since the universal property of the DW model always shows that

only one opinion survives for ε ≥ 0.5 ([39]), which is not very realistic to consider an

entire population with one opinion.

Three clear outcomes are evident in our experiments, with their relationship to ε and rs

represented graphically in Figure 8.3:
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(a) AM

(b) RM

(c) HM

(d) PRM

Figure 8.2: Mean number of loners outside opinion clusters under directed mo-
bility.
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• A single opinion cluster emerges that is shared by the entire population (e.g.

Figure 8.4b).

• Multiple opinion clusters are formed across the population, at a similar rate to

random mobility (e.g. Figure 8.4a).

• Exceed static model. More opinion clusters are formed than in the static model

(Algorithm 1), this corresponds to more than the maximum number of clusters,

which is equal to 1
2 ε

[29] (e.g. Figure 8.4c).

The emerging opinion clusters classified in Figure 8.3, show a comparison between

AM, RM, HM and random mobility (PRM). For ease of discussion, we describe the

classification in terms of four quadrants (Q) labelled as QI, QII, QIII and QIV which

represent the quadrants in an anti-clock wise manner starting at the north east. Through-

out this chapter, the classification diagram reflects the transition in behaviour across

the two axes, the interactive radius rs (x-axis) against the opinion threshold ε (y-axis).

This is valid with clearly defined values of ε and rs far from the transition state. With

the points being closer to the transition state the values are less clearly defined and

have a degree of uncertainty. This can be seen clearly in the previous observation

section 8.2.1.

To illustrate the nature of these outcomes, Figure 8.4 shows the result of individual

representative simulations, which plots a snapshot at the end of the simulation of the

distribution of the surviving opinions across the region, each cluster represented by a

different colour. Figure 8.4a shows an example where multiple opinions exist, Fig-

ure 8.4b demonstrates when a single opinion cluster emerges and Figure 8.4c shows

when more than 1/2ε opinion clusters emerge.

As would be expected, as rs increases (quadrants QI and QIV), it is more likely that any

pair of agents may interact, and the outcomes for all mobility models (AM, RM, HM)

result in a similar number of opinion clusters to PRM, however consensus is reached

quicker.
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(a) AM - rs = 3 and ε = 0.3 (b) RM - rs = 3 and ε = 0.3

(c) HM - rs = 3 and ε = 0.3 (d) PRM - ε = 0.3

Figure 8.3: Opinion clusters classification

In quadrant QIII (low ε, low rs), all mobility models (AM, RM, HM) produce more

heterogeneity in opinion clusters than PRM. Moreover, for the higher ε in quadrant

QII, attract forces (AM, HM) are needed to enable multiple opinions to persist, with

the increased ε leading to complete consensus in RM.

Finally, we note the difference between RM and AM/HM in quadrant QII, highlighting

that RM results in global consensus for all high values of ε.
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(a) Multiple opinion
clusters under RM
(ε = 0.1,rs = 10)

(b) Single opinion clusters
under RM (ε = 0.5,rs =
2)

(c) Exceed random mo-
bility model in opinion
clusters under HM (ε =
0.1,rs = 2)

Figure 8.4: Distribution of opinion for representative simulations. Colours denote
agents belonging to the same opinion cluster..

8.3 Tolerance

In this section we classify the distribution of opinions around each agents in terms

of tolerance. Recall that if individual agents in a local area typically hold different

opinions then tolerance will be close to 1 and if the agents have the same opinions then

tolerance will be close to zero.

8.3.1 Observations

In general, increasing ε acts as a driver to decrease tolerance in the population because

of its nature in reducing the total number of opinions (Figure 8.1). Ultimately the

disagreement between the agents decreases as well (Figure 8.5).

Repel component dominates in the Hybrid Model. Figures 8.5b and 8.5c show

that the tolerance of RM and HM are similar, and distinct from AM. Both RM and HM

models rarely result in agents sharing a neighbourhood with different opinions. Toler-

ance is found only in cases where the interaction range is high (leading to high probab-

ility that any pair of agents will attempt to interact) and ε is low (so a low probability
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(a) AM

(b) RM

(c) HM

(d) PRM

Figure 8.5: Mean tolerance under directed mobility
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Figure 8.6: Opinion clusters and tolerance. 20 runs shown for each experiment, ◦
denotes the simulation converges in movement, and × no convergence..

that the interaction will be successful). In these cases, multiple opinions survive and

their movement struggles to find convergence (Figure 7.9 in previous Section 7.3.1.2).

Figure 8.6 shows the number of opinion cluster (x-axis) against the tolerance (y-axis).

Each individual square of the grid is an experiment against a set of ε and rs with differ-

ent mobility models shown in different colours. For each mobility experiment, there

are 20 results of individual runs. The figure differentiates between convergence and

non-convergence in movement. This Figure 8.6 shows that tolerance in RM and HM is

only found when the simulation does not converge.

Attract component finds convergence and tolerance for restricted interactions.

As seen in Figure 8.6, in contrast to RM and HM, AM has non-zero tolerance when the

interaction range and ε are small. This is due to the inability of agents to escape areas
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of high disagreement or be influenced by these opinions. Note that random mobility

also produces high tolerance for small ε as well, but without forming organised clusters

or achieving convergence.

In conclusion, we find that tolerance is not sustained by RM. Furthermore, we found

that using only the attract mobility method (AM) can show tolerance to different neigh-

bouring opinions more than the other models. In the HM model the repel component

dominates more strongly against the attract component and therefore eliminates any

tolerance.

8.3.2 Classification of outcomes

Based on our observations, we propose classifying tolerance into the following two

outcomes.

• Mixed opinion where geographical neighbourhoods hold a range of opinions

(tol(A) ≥ 0.1, e.g. Figure 8.7)

• Homogeneous opinion where neighbourhoods largely hold the same opinion

(tol(A) < 0.1, e.g. Figure 8.7).

As for the opinion clusters, the parameter space can be divided into rough quadrants

based on these outcomes, as shown in Figure 8.8.

For both RM and HM (Figures 8.8b and 8.8c) we find the four quadrants behave sim-

ilarly, again highlighting the dominance of the repel component with respect to tol-

erance. Note that although we find Mixed Opinion neighbourhoods in quadrant QIV,

these are not stable and do not converge.
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(a) Mixed opinion clusters
neighbourhoods under
AM (ε = 0.1, rs = 10)

(b) Segregated Homogen-
eous opinion neighbour-
hoods under HM (ε = 0.5,
rs = 2)

Figure 8.7: Opinion tolerance examples of representative simulations. Colours
denote agents belonging to the same opinion cluster..

8.4 Communities

In this section we investigate the structure of agents and evolution of communities

by considering the opinion and geographical space simultaneously. Also, We further

study under what conditions loner scenarios apply and how much does it impact in

the population’s overall structure. To recap, this requires three conditions to be valid

to define a community: a pair of agents must have close opinions, and be within a

local area and the size of the cluster must be five members or more, otherwise they are

classified as isolated loners. In this section, low loners is used as a measurement to

describe self-organisation.

8.4.1 Observations

Repel component forms structure-less patterns with a single opinion. In general

with RM, as ε increases, the population converges in opinion quite quickly to form

complete consensus, and therefore the stimulus to move stops. Nevertheless, RM is

able to produce a number of communities (Figure 8.9b). However, with high ε ≥ 0.4

(Figures 8.10b, we find a high number of loners (over 30%) outside communities for all
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(a) AM - rs = 7.5 and ε = 0.3 (b) RM - rs = 7.5 and ε = 0.2

(c) HM - rs = 7.5 and ε = 0.2 (d) PRM - ε = 0.3

Figure 8.8: Tolerance classification

interaction radius. Even though agents are agreeing in opinion, they lack the impetus

to move closer.

This is a result to be expected as once all of the agents are in agreement, there is no in-

centive for them to move (in line with the cognitive dissonance theory) and possibly in-

crease the overall structure. The scattered distribution produced is very similar to PRM

(Figures 8.10d), and the number of communities are similar as well (Figures 8.9d).
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(a) AM

(b) RM

(c) HM

(d) PRM

Figure 8.9: Mean number of communities under directed movements
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(a) AM

(b) RM

(c) HM

(d) PRM

Figure 8.10: Mean number of loners outside communities under directed move-
ments.
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AM component dominates in HM. Results for AM and HM are similar in both the

number of communities and number of loners (Figures 8.10 and 8.9), suggesting that

the attract component of mobility predominately determines the behaviour. For high

levels of interaction (rs ≥ 5 and ε ≥ 0.4), a single community is formed, with almost

no loners. For restricted interaction (rs < 5), multiple opinions are able to co-exist as

discussed in the previous Section 8.2. These opinion clusters self-organise themselves

geographically into separated clusters. As a result we find multiple communities.

The impact of density. Figure 8.9 shows that the number of communities changes

depending on the density within rs. When directed mobility (AM- RM- HM) is enabled

more communities are found within small rs. However if rs is too small as in rs = 1, a

community of at least five agents (based on the Definition 12) is more difficult to form.

Self-organisation is widespread. Figure 8.9 shows that in the majority of cases the

system self-organises, in the sense that few agents remain as loners in trivial com-

munities. As expected, heavily restricting interactions (i.e. low values for both rs and

ε) leads to high proportions of loners, as agents do not come in range of peers, this is

clear in AM, see Figure 8.10a. The loners are mitigated to some extent as ε increases.

RM (Figure 8.10b) for ε ≥ 0.3 is also an exception, with around 40% of agents isol-

ated, due to the instability caused by agents being repelled over large distances. This

is also the cause of almost all agents being loners for ε = 0.1 and rs = 10, where

agents are repelled from the majority of peers, and can be clearly observed with HM

(Figure 8.10c) in contrast to other combinations of parameters.

Trade off between communities and loners. Figure 8.11 shows the importance of

the type of mobility mechanism applied on the balance between loners and communit-

ies. This highlights that RM is relatively consistent, with high numbers of communities

and loners across the range of parameters, whereas AM and HM tend to move towards

a single community with no loners as the level of interaction increases. Importantly, the
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Figure 8.11: Communities and loners. 20 runs shown for each experiment, ◦
denotes the simulation converges in movement, and × no convergence..

figure shows the benefit of considering both communities and loners, as for many com-

binations of parameters (e.g. rs = 3, ε = 0.1), although the number of communities

is similar between mobility models, the number of loners is very different. Finally, we

note that the relationship between the Hybrid model and individual components varies,

being similar to RM for highly restricted interactions, but close to AM elsewhere.

The attract component naturally forms more geographical uniform opinion clusters

with minimum noise, with the exception when the model is very restricted in interac-

tion and influence.

The repel component is able to promote self-organisation, only under restrictive inter-

actions. On the contrary, under all the other configurations the model loses it ability

to form patterns geographically and results in similar outcome as the static model (and
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RRM and PRM).

HM has both the repel and attract components and as a result it produce the most uni-

form clusters geographically with minimum noise. However, due to the repel impact,

when the there are multiple opinions and the interaction range is up to its full potential,

a noisy structure geographically results, because of the constant repelling jumps.

8.4.2 Classification of outcomes

In considering the co-evolution of opinion and location, it is instructive to look at

both the communities that emerge by the end of a simulation and the loners that are

excluded.

The attract component is naturally able to forms communities with minimum noise (ex-

cept where interaction is very restricted in interaction and influence and rarely forms

any structure). The repel component is only able to self-organise under restricted inter-

actions and in all other configurations results in a similar outcome as random mobility

(PRM). As a result of combining both the repel and attract components, HM produces

the most uniform clusters geographically with minimum noise.

To demonstrate the organisation of the agents in geographical space, we first classify

in Figure 8.14 the potential outcomes of:

• Multiple communities of agents that are close in both opinion and distance (e.g.

Figure 8.12a).

• A single community as shown in Figure 8.12b.

• Undefined when no coherent communities (with at least 5 members) are formed

e.g. Figure 8.12c.

A second geographical classification (Figure 8.15) is based on the presence of loners

(|Nloners|):
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(a) Multiple communities
under HM (ε = 0.5, rs =
2)

(b) Single community un-
der AM (ε = 0.5, rs =
10)

(c) Undefined communit-
ies under RM (ε = 0.1,
rs = 10)

Figure 8.12: Communities in representative simulations. Colours denote agents
belonging to the same communities.

• No structure. Many agents (|NLoners| > 30%) are isolated outside communities

(e.g. Figure 8.13).

• Organised. Most of the agents (|NLoners| ≤ 30%) are part of a community, loc-

ated in the same neighbourhood and holding the same opinion (e.g. Figure 8.13).

The agents distribution in geographical space shows that every agent has at least 5

members within the local area holding close opinions.

(a) No structure under RM
(ε = 0.1, rs = 10) (0
clusters; 100% NLoners)

(b) Organisation under
RM (ε = 0.1, rs = 3)(6
communities; 12%
NLoners)

Figure 8.13: Loners in representative simulations. Colours denote communities
and dots denote loners.

In the previous Section 8.2.2, in Figure 8.3, for low values of ε (QIII and QIV), all

three models (AM, RM, HM) were similar in terms of opinion clusters, with many
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(a) AM - rs = 3 and ε = 0.3 (b) RM - rs = 7.5 and ε = 0.1

(c) HM - rs = 3 and ε = 0.3 (d) PRM - ε = 0.1

Figure 8.14: Classification of community structure

opinions surviving regardless of rs. However, their outcomes are different when we

also consider the geographical structures, as seen in Figures 8.14 and 8.15.

For mobility with a repel component (RM, HM) under large rs, organisation is difficult

to form (Figure 8.15b and Figure 8.15c), due to the fact that convergence in movement

isn’t found (Figure 7.9). However with restricted interaction organisation is clearly

shown. Contrary to AM, a high interaction range is required to obtain the same effect

of Organisation, however, under small rs no structure is found (Figure 8.15a).

In Figure 8.15b with RM in QIV, we find that around the higher levels of epsilon we
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(a) AM - rs = 2 and ε = 0.2 (b) RM - rs = 7.5 and ε = 0.3

(c) HM - rs = 7.5 and ε = 0.1 (d) PRM

Figure 8.15: Classification of loners

can find more structure. This is interesting because the RM is usually unable to produce

organisation under large interaction range. However, under this configuration only very

few opinions survive (on average / 2), see Figure 8.1b. This makes disagreement hard

to emerge and therefore some structure can be formed.

For high values of ε (QI and QII), under mobility with attract component (AM,HM) we

found Organisation (Figure 8.15a and Figure 8.15c) due to the nature of the mobility

mechanism. However, depending on the rs either a single or multiple communities are

formed (Figure 8.14a and 8.14c). On the contrary, whenever the physical attraction is
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absent (such as in RM and PRM) we obtain only one opinion cluster (Figure 8.1b and

8.1d) although with geographically sparse agents for any value of the interaction radius

(Figure 8.15b and 8.15d).

In the next section, we will continue the discussion in more details for each experiment

discussing the impact of ε and rs.

8.5 Overall classification of self-organisation

The previous sections of this chapter have investigated and classified the different out-

comes that can arise from each component of mobility across different levels of inter-

action. In this section, we synthesis these to contribute a thorough classification of the

different forms of self-organisation that can occur via mobility.

Figure 8.16 provides a classification summary of the co-evolution of agents in opinions

and locations, evaluated by the previous metrics under these mobility models (AM,

RM, HM). It shows the transition of behaviour as ε and rs move from low to high levels

of interaction, by describing how individuals in a population are distributed in space

at a given time taking into consideration their opinions as well. We use a labelling

approach to categorise each quadrant. Mainly, the labelling first shows the number of

opinion clusters in the population followed by a description of the individuals distribu-

tion in space. The opinion clusters are described as either ‘single’ or ‘multiple’ opinion

clusters. As for the agents distribution in the geographical space, groups can be more or

less equally spaced with exact coordinates, clustered in groups or dispersed randomly

with no predictable pattern. These are described by these terms: ‘uniform’, ‘clumped’

or ‘scattered’ dispersion. The first two show organisation but in different forms. Uni-

form is when a cluster of agents hold the same opinions and co-located at the exact

same coordinates. However, if the group of nearby agents are somewhat spread out,

we describe the structure as clumped. Lastly, the term scattered is used when the agents

don’t have any structure in geographical space but eventually converge in movement.
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Finally, if there is no convergence in movement, the ‘undefined’ label is applied. Some

spectrum of the models have some tolerance in the neighbourhood with agents holding

different opinions, therefore, the label ‘mixed’ is added to show the model’s tolerance

to different agents.

(a) AM (b) RM

(c) HM

Figure 8.16: Summarised table for mobility models

8.5.1 Potential outcomes

The distinct outcomes from Figure 8.16 are summarised in this section, each illustrated

by a representative example selected from the pool of simulations, where colours de-
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note agents belonging to the same communities.

Multiple uniform clusters This describes the outcome when multiple opinion clusters

are segregated (more or less evenly) in geographical space with agents co-located at

identical locations (Figure 8.17). This behaviour typically emerges as a result of the

attract component (AM and HM).

(a) Mobility model HM
(ε = 0.1, rs = 2)

(b) Mobility model HM
(ε = 0.5, rs = 2)

(c) Mobility model AM (
ε = 0.5, rs = 2)

Figure 8.17: Multiple uniform clusters

Multiple clumped clusters The multiple opinion clusters that emerge are segregated

in the geographical space (Figure 8.18), although with agents not precisely co-located.

This outcome only occurs with repel mobility (low ε and rs), where limited movement

and interaction prevents global consensus but allows small pockets to form. The lack of

an attractive component prevents agents from co-locating precisely. Self-organisation

occurs due to the restricted interactions, since as agents eventually wander into a group

where they belong, and consequently stop repelling and, as such, attract forces are not

necessary to organise the agents.

Multiple mix clusters The multiple opinion clusters that emerge overlap within the

same neighbourhood but don’t interact (Figure 8.19). Multiple mixed clusters are only

found with the attractive mobility model via low ε, regardless of rs. Clusters with
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(a) Mobility model RM
(ε = 0.1, rs = 2)

(b) Mobility model RM
(ε = 0.1, rs = 3)

(c) Mobility model RM
(ε = 0.1, rs = 5)

Figure 8.18: Multiple clumped clusters

the same opinions converge to a single location while unaffected by different nearby

opinions, often resulting in higher tolerance.

(a) Mobility model AM
(ε = 0.1, rs = 2)

(b) Mobility model AM
(ε = 0.1, rs = 10)

Figure 8.19: Multiple mix clusters

Single uniform cluster A single opinion cluster is formed at a single location, which

dominates the region, see Figure 8.20. This requires large ε and rs together with an

attractive component (AM or HM).

Single scattered clusters A single opinion cluster dominates, however the agents

lack geographic structure and are scattered across the region (Figure 8.21). This be-

haviour is present in the RM model under large ε for all rs. Note that this scattered

distribution of a single opinion exhibits a similar behaviour to both the random mobil-

ity and the static model.
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(a) Mobility model AM
(ε = 0.5, rs = 10)

(b) Mobility model HM
(ε = 0.5, rs = 10)

Figure 8.20: Single uniform clusters

(a) Mobility model RM
(ε = 0.5, rs = 2)

(b) Mobility model RM
(ε = 0.5, rs = 10)

(c) Mobility model PRM
(ε = 0.5, rs = 10)

Figure 8.21: Single scattered clusters

Undefined clusters This describes the case when multiple opinion clusters are formed

(low ε), but there isn’t any self-organisation or community formed (Figure 8.22). This

is observed when rs is large with a repel component, causing no convergence in move-

ment. The structure is close to random, thus giving a similar outcome to the static

model.

8.6 Discussion

In this chapter, we have conducted a deep investigation of the directed mobility models.

We examine the different mobility models against the key parameters (ε and rs) while

comparing these to the random mobility (PRM).
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(a) Mobility model RM
(ε = 0.1, rs = 10)

(b) Mobility model PRM
(ε = 0.1, rs = 10)

Figure 8.22: Undefined clusters

We highlight the main findings and contributions of this chapter in four key observa-

tions. We first consider the number of opinion clusters in the population at a macro-

level. Then, at a micro-level, we studied the neighbourhood based on two aspects, the

number of communities with uniform opinion and the tolerance of different opinions

around the neighbourhood. After that, we highlight the significance of the mobility

components in the HM: both attraction and repulsion. Finally, we show the classific-

ation of self-organisation among mobility models. From these experiments we have

found the following:

Opinion evolution is insensitive to certain mobility mechanisms. For example,

the number of opinion clusters formed via random mobility is highly insensitive to

any restriction of interaction range and results in similar outcomes to the static model.

Also, the repulsion model behaves similar to random models across a large spectrum

of the parameter space, only producing more clusters when both the interaction range

and opinion threshold (Figure 8.23) are heavily restricted.

This is in contrast to directed mobility (AM, RM, HM), which stimulates significantly

more opinion clusters than the random mobility. Such mobility gives the opportunity

for agents holding minor opinions to find each other and build communities. More

specifically, restricting the interaction range with attractive mobility has a larger impact

for more opinion clusters to emerge for large opinion thresholds in comparison to the
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random mobility.

Figure 8.23: Mobility models with similar opinion clusters to PRM in each quad-
rant.

Emergence of communities via mobility. Attractive mobility stimulates uniform

communities gathered in the same location. As for the repulsive mobility under spe-

cific configurations, this is able to form communities where agents are clumped near

each other. Otherwise, different opinion agents are structure-less and look similar to

the random mobility (Figure 8.24). Furthermore, tolerance of different opinions within

an agent’s local area can be found in the attract model but not in the repel model.

HM characteristics emerge from both the attract and repel components. AM

and RM show several differences in their evaluation metrics across the parameters.

The HM model shares some characteristics with both the attract and repel mobility

components. The attract component has a strong impact on the HM to stimulate mul-

tiple opinion clusters with resistance to extremely high opinion thresholds, simultan-

eously encouraging multiple uniform communities. As for the repel component, it has

a greater impact on showing no tolerance toward other different opinion and higher

convergence time in movement.
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Figure 8.24: Mobility models whose self-organisation is similar to PRM in each
quadrant.

Different forms of self-organisation via mobility. By collecting all the findings

and synthesising between the different models, we have generated a classification of

six distinct structures that emerge among the agents. These different structures can be

a mix of a single or multiple opinions and their geographical structure can either be at

uniform, clumped, or entirely scattered without any structure.

In conclusion, the HM model abstracts the complicated behaviour of real life agents

by capturing some characteristics of opinion evolution in free space dynamic environ-

ment. ’The model may partly explain persistent cultural heterogeneity, fractiousness

of political parties, and genetic diversity of populations that we see in the world’ [92].

This may shed light on the generic mechanisms observed in opinion formation.

8.7 Conclusions

In Chapters 5 and 7, we found significant impact from mobility on the co-evolution of

opinion and location. In this chapter, we have performed detailed simulations across a

wide parameter space in order to identify the possible structures that emerge under dif-

ferent mobility schemes, and where possible, classify the parameters that lead to these
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outcomes. The principal aim was to identify the importance of each mobility compon-

ent (Sections 8.2.1, 8.3.1 and 8.4.1) and to use this large volume of data to classify

the diverse behaviours (Sections 8.2.2, 8.3.2 and 8.4.2) and identify the relationship

between metrics to define descriptive scenarios (Section 8.5).

Mobility that is either driven via attraction or repulsion are examples of two scen-

arios where all people become similar or retain differences (Section 8.2) depending

on the parameters. The mechanism of attractive mobility explains how different opin-

ions retaining their differences can be maintained in a population, due to the nature of

finding similar peers. In contrast, repel mobility leads to more similarity of complete

consensus, due to long distance travel that increased the probability for new different

interactions that encouraged diffusion.

As a result we found that both the attract and repel have a significant impact on the

HM model, each highlighting special characteristic that dominates the HM’s behaviour.

AM contributes primarily to cluster formation for both opinion and communities and

RM to decreasing opinion tolerance within a local area.

Finally, this deep investigation between the different mobility schemes enabled us to

create a classification that highlights the different structures of self-organisation that

can emerge. This is a valuable contribution to the literature, as the majority of works

tend to focus on more adhoc evaluation, reporting a small number of example scen-

arios, rather than identifying patterns across the breadth of the parameter space. The

proposed classification highlights when a community is uniform or diverse, if a popula-

tion reaches complete consensus or collectively holds multiple opinions (Section 8.5).

It mirrors the structure of agents in the geographical space in terms if they are sparse

or co-located.

Through this classification (Section 8.5) we can summarise a couple of findings from

our mobility models. We found that under attractive forces (AM,HM) uniform clusters

(i.e co-located clusters that are also more structured) can be formed geographically but

more sparsely via repel. In contrast, under repulsive forces (RM, HM) a structure-less
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population is dominant under a global interaction. In addition, complete consensus is

a characteristic more often found via repulsion.

In conclusion, this contributes to the research field by emphasising the importance of

mobility and highlighting how mechanisms inspired by psychological theories make

a significant impact on the co-evolution of opinion and location. Also, the proposed

classification diagram provides a basis for mobility models to be assessed. This classi-

fication sets a benchmark that we hope could be carried forward and followed against

models.
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Chapter 9

Conclusions & Future Work

In this chapter we will discuss the final conclusions and reflect on some of the limita-

tions of this research as well as the future work.

9.1 Summary

The aim of this thesis has been to consider the effects of mobility upon opinion dy-

namics, and in particular to understand the co-evolution of both opinion and location.

Mobility has a fundamental role related to opinion because human responses to others

can guide our preferences for interaction, and exposure to similar/dissimilar opinions.

Despite this, the effects of mobility are surprisingly under-represented in the opinion

dynamics literature. Models of opinion dynamics have also been criticised for ignoring

the fundamental principle of human mobility [103, 102, 16, 116, 53]. This motivates

our inclusion of mobility inspired by phenomenon from human psychology - homo-

phily [84] and cognitive dissonance theory [35].

These theories can govern how humans respond to similarity and difference in opin-

ions. On the one hand a similar opinion gives two human agents something in com-

mon, making it easier for them to sustain an interaction or relationship. On the other

hand a difference in opinion can be hard for an agent to reconcile, because it may be

contradictory to their own reasoning and represent uncertainty. This creates cognitive

dissonance, and motivates their behaviour to remove the dissonance. These funda-
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mental psychological concepts can transform themselves into mobility very easily. For

example, repelling away from peers that cause cognitive dissonance to an individual is

a plausible response behaviour, as is being attracted to individuals where commonality

is present. The Hybrid Mobility (HM) model, as introduced in this thesis, translates

these concepts into attraction and repulsion forces.

We extend the well-known [29] opinion model to incorporate mobility. Mainly, we

have studied the two components of attraction and repulsion individually as well as

combined in the HM model. To understand how these models function we have com-

pared them with alternative random models that involve two types of movement, being

constant random movement (an analogy to gas particles) and movement triggered by

disagreement with peers. We compare these mobility models against the widely stud-

ied static model proposed by [29] as a benchmark, leading to a number of significant

insights and contributions highlighted below.

The model. We developed a free space opinion model that is suitable for our in-

vestigation of studying the co-evolution of both opinion and location. We must note

this has rarely been studied because most of the models follow the norm in modelling

(i.e. lattice, network etc.). We incorporate different mobility to highlight the impact of

mobility on the model. To asses the model we developed evaluation metrics that can

quantify the behaviour of the model in different aspects, namely convergence, opinion

clusters, communities and tolerance. We must note some of this metrics are widely re-

ported in the literature but often lack clear definition in how they function (for example

opinion convergence). Therefore, we provided formal definitions of these metrics, ex-

panded where necessary to consider spatial elements. For example, in mobile models,

convergence in movement is of similar interest to convergence in opinion. This has

never been studied in the literature, due to the fact that the majority of the models

are static. Similarly, we quantify opinion clusters to enable comparison between the

models, and extend the concept to communities that are close in opinion and location.

Finally, in contrast to the majority of the literature, we take into account agents which
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are outside of communities to reflect on the population’s overall self-organisation.

Mobility in the literature. Chapter 2 contributed a detailed literature review about

the inclusion of mobility in opinion dynamics. Despite comprising surprisingly few

publications, making comparisons within this literature is challenging, as they tend

to lack detail of the mechanisms and evaluation, and citations between different ap-

proaches are rare. We classified the main attributes of these model, with the most

important being the environment where mobility takes place, the trigger for mobility

to occur, and the dynamics to determine the new location. Most commonly, pure ran-

dom mobility is used without a motive for the decisions taken. For those that followed

a different approach (e.g. moving when disagreement was encountered), they still used

randomness, either as a trigger or in the dynamics (see Table 2.2).

Purely random mobility has minimal impact on opinion formation. Our exper-

iments with random mobility in different forms shows that it behave similarly to the

well studied Deffuant-Weisbuch static model in the formation of both opinion and

structure, typically causing full diffusion of opinion to form complete consensus and

eliminating any structures based on alternative opinions (Section 7.2.2 and 7.2.1.2).

We found consistency among the variations of random models that we investigated,

each producing faster opinion convergence compared to the static model, in line with

the literature [121, 105]. These results may explain why mobility in opinion dynamics

has not been widely studied in the literature to date, since the most obvious models to

consider produce little effect.

Directed mobility has a significant impact on opinion formation. Static model

shows that the number of opinion clusters increases as interaction is restricted [71, 16]

(Section 5.2.2). Incorporating directed mobility into our proposed hybrid mobility

shows even more growth in opinion clusters (Section 5.2.2), a result which is robust

under the addition of random noise (Section 6.3.2). In general, in Section 8.2.1 we
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found that directed mobility (regardless of the type of forces i.e. attract or repel) com-

pared to the static model, encourages more opinion clusters to form under restricted

measures of both low opinion threshold (ε) and low interaction range (rs).

Mobility mechanism behave differently under different settings, some characteristic

stand out when the attractive and repulsive mobility models are applied in isolation.

Detailed experiments have shown the characteristics of the individual components of

mobility in our hybrid model. Attraction encourages more tolerance in a local area,

where agents are content in their locations (Section 8.3.1), and when interaction is

restricted (Sections 8.2.1 and 8.4.1) this encourages more opinion clusters and com-

munities in the population independent of ε when compared to the repulsive mobility.

This is somewhat surprising since high ε has gained interest in the literature as ε > 0.5

usually leads to complete consensus. The main characteristics in repulsion forces is

that they promote uniform opinion neighbourhoods (Section 8.3.1) and are the cause

of delay in movement convergence(Section 7.3.1.2).

In summary, drivers that are independent of the opinion threshold and show signific-

ance impact on the the co-evolution of both opinion and structure involve either i)

attraction forces ii) reasonable restricted interaction range.

The hybrid model is shown in Chapter 8 to form structure in a balanced way, between

attraction and repulsion. This mobility mechanism allows both opinion and location

to co-evolve and organise. It mitigates the occurrence of loners (i.e isolated agents)

and can form different communities of homogeneous opinions, while decreasing the

diversity in the local area. This is a scenario we see in real life where multiple groups of

uniform opinions are segregated. This concludes that the type of mobility mechanism

matters considerably and should be studied further.

Classification of self-organisation in opinion formation. Our review of the liter-

ature noted high variation in the level of detail and generally limited approaches to

understanding the characteristics of opinion formation models Chapter 2. In this thesis
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we have also presented a rigorous and new approach to classifying how agents self-

organise themselves in different ways Section 8.5, conducting a large volume of exper-

iments that enabled us to provide a thorough analysis. We study the models behaviour

by analysing each metric (Sections 8.2, 8.3 and 5.6) and categorising similar beha-

viour dependant on ε and rs. Based on the analysis on the evaluation metrics we divide

the outcomes into a small number of scenarios. For example, the random mobility

under large rs and ε results in a single scattered cluster, with single opinion where

agents are structure-less geographically. Finally after synthesising and combining the

different outcomes this developed the classification diagram in Section 8.5 which iden-

tified a scenarios that describe the agents self-organisation for different mobility mod-

els. These different findings highlight the significance of mobility under naturalistic

settings and emphasise the importance of applying mobility under the inspiration of

psychological theories to resemble more human reaction.

9.2 Limitations

Our research shows that mobility based on psychological human feedback have shown

more diverse opinions than applying random mobility. However, the psychological

theories used are broadly stated principles that are frequently applied in the field. Con-

necting researchers from multi-disciplinary fields (such as psychology, computer sci-

ence etc.) will enhance the knowledge we can gain about opinion dynamics.

Free mobility in continuous space gives more flexibility to new connections. However,

as an initial investigation we have implemented this in a simple box. This research has

focused on the type and direction of mobility, however in real-life scenarios consider-

ing “personal space” is an important feature. In the real world, large numbers of agents

can not be precisely co-located at a single point, so adding some measure of personal

space between agents would be interesting, where at higher densities this may force

individuals to be exposed to conflicting opinions. In future work more studies on the
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environment’s features such as studying crowds should be investigated.

9.3 Future Work

The proposed hybrid mobility has shown that the nature of mobility in opinion dynam-

ics is highly significant. A number of extensions to this model would be interesting

to study. For instance, more variability could be introduced to the fundamental attract

and repel forces, which are currently applied uniformly across the population. In prac-

tice, our individual personality traits may introduce more diversity, for example, where

agents that have high “openness” may be more tolerant of conflicting opinions and less

likely to repel away.

Another very interesting investigation is applying the same mobility models under dif-

ferent environments. [39] studied the threshold where complete consensus is formed

in comparison to a variation of environments that are static. This study would be inter-

esting to add mobility and study the evolution under a lattice, network and free space.

Another way that this model can be used is to reflect on the geographical distance in

a more abstract way. For example, this could resemble closeness in a online social

network. In fact it would be very interesting to study the impact between your vir-

tual community and actual community. [20] provides a survey and discuss how can a

network topology present opinion propagation in an online social networks. Adding

a graph-based social network on top of free space movement would allow us to study

the trade-off between our in-person and virtual interactions in shaping opinions. In

each time step an interaction can be either with a node within the area or a node in the

network. This may allow the opinion to take effect at long distance. This can highlight

the impact of both distances, the physical distance and the online distance.

When studying opinion we can’t ignore the fact that an individual holds multiple opin-

ions but one can have a more stronger impact than the other. Influence of other agents

might be based on the interplay between various ‘interest points’. [40] studied a vector
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of opinions, specifically opinions that are bi-dimensional vectors and concluded that

it was insignificant, but we propose that this may be because of the global interaction

scheme applied. Also, it would be interesting if multiple opinions were applied. Mul-

tiple opinions can be a vector [o1, . . . , on] of n different topics, each under an opinion

spectrum oi ∈ [0, 1]. Extending this work to study topics that might have stronger

impact than others. Studying how multi-dimensional opinions impact the formation of

communities under a mobility model is intriguing, particularly where there are domin-

ant topics (such as political affiliation, pro- or anti-Brexit) where opinions may have a

far more significant impact on our movement and social links. Incorporating mobility

is very interesting and expanding in the field is compelling. We believe that this field

will develop and be more stronger.

9.4 Final Comments

This research has focused to show the impact of different mobility mechanisms on

opinion evolution. These mobility mechanisms are triggered by interactions between

peers depending on their agreements. In the literature, where agents are immobile,

complete consensus is usually the final result, however this is not what is observed in

real life. We have found the nature of mobility has a significant role in forming differ-

ent opinion. Especially when comparing mobility that is triggered by human drivers

in comparison to random mobility. Static models and randomly mobile agents resul-

ted in complete consensus, however under directed mobility diverse opinions formed

that are different from the literature. Furthermore, mobility have shown different self-

organisations in forming communities. Showing different structures of communities,

some holding the same opinion others whom are diverse. Comparing between different

mobility mechanisms is essential to highlight the nature of self-organisation between

communities.

Finally, this research highlights the importance of incorporating mobility that reacts to
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the interaction between people instead of random mobility. Also, we have proposed a

classification diagram that provides a basis for mobility models to be assessed. This

classification sets a benchmark that we hope could be carried forward and followed

against models.
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Appendix A

High noise level

In this Chapter we extend the results from Chapter 6 to show the impact of high noise

level on the HM model.

A.1 Directed mobility under high level of noise

In this section we present the results of the different evaluation metrics under very high

level of noise (T = 10). First, we show the convergence in opinion followed by the

emergence of opinions and their local diversity and finally their community formation.

Figure A.1: Mean opinion convergence time for ε = 0.1 and T = 10
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(a) Number of opinion clusters for T = 10 (b) Number of loners outside opinion clusters
for T = 10

Figure A.2: Mean number of opinion cluster and mean number of loners outside
opinion clusters for ε = 0.1.

Figure A.3: Mean tolerance for ε = 0.1 and T = 10

Figure A.4: Mean local diversity for ε = 0.1 and T = 10
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(a) Number of communities for T = 10 (b) Number of loners outside communities for
T = 10

Figure A.5: Mean number of communities and mean number of loners outside
communities for ε = 0.1.
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Appendix B

Outcomes of different models (AM,

RM, HM, Static)

In this Chapter we plot some examples of the agents distribution to visualise the out-

come of the experiments across the different configurations.

B.1 Display of different outcomes

This section shows a set of figures that demonstrates two type of clustering for each

model, the clustering technique is described in Section 3.4.2.1. We specify our use

of the DBSCAN clustering algorithm which produces these figures. For example the

AM model demonstrate two types of clustering in two independent sets of figures (Fig-

ure B.1 and B.2). They present a snapshot taken at the end of the simulation of a single

run. For each figure the number of clusters and loners are collected.

The first one, Figure B.1 shows the opinion clusters, each opinion cluster is assigned a

colour and plots their actual locations around the region. The dots in this context are

loners, meaning, isolated agents with no one sharing their opinion. The four figures

are represented in terms of four quadrants (Q) labelled as QI, QII, QIII and QIV to

resemble the change in both ε and rs. The top two quadrants (QI and QII) show high

values of ε and the bottom quadrants with low ε (QIII and QIV). As for the quadrants

in columns, QII and QIII show low rs and the right QI and QIV show high rs.
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The second Figure B.2 shows communities, the clustering algorithm joins agents that

are similar in their opinion cluster if their nearby in geographical space into a single

cluster and assigning each cluster a different colour. The dots are loners that don’t

belong to a community. The quadrants follow a similar fashion as the previous figure.

A similar approach is used for all subsequent figures representing a different model.

(a) QII: 4 opinion clusters - 1 loner (ε = 0.5
and rs = 2)

(b) QI: 1 opinion cluster - 0 loners (ε = 0.5
and rs = 10)

(c) QIII: 7 opinion clusters - 43 loners (ε =
0.1 and rs = 2)

(d) QIV: 5 opinion clusters - 1 loner (ε = 0.1
and rs = 10)

Figure B.1: Opinion clusters under AM of single runs
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(a) QII: 5 communities - 1 loner (ε = 0.5 and
rs = 2)

(b) QI: 1 community - 0 loners (ε = 0.5 and
rs = 10)

(c) QIII: 6 communities - 58 loners (ε = 0.1
and rs = 2)

(d) QIV: 5 communities - 1 loner (ε = 0.1
and rs = 10)

Figure B.2: Communities under AM of single runs
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(a) QII: 4 opinion clusters - 0 loners (ε = 0.5
and rs = 2)

(b) QI: 4 opinion clusters - 0 loners (ε = 0.5
and rs = 10)

(c) QIII: 10 opinion clusters- 16 loners(ε =
0.1 and rs = 2)

(d) QIV: 5 opinion clusters - 2 loners (ε = 0.1
and rs = 10)

Figure B.3: Opinion clusters under HM of single runs
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(a) QII: 6 communities - 0 loners (ε = 0.5
and rs = 2)

(b) QI: 1 cluster - 0 loners (ε = 0.5 and rs =
10)

(c) QIII: 11 communities - 20 loners (ε = 0.1
and rs = 2)

(d) QIV: 2 communities - 79 loners (ε = 0.1
and rs = 10)

Figure B.4: Communities under HM of single runs
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(a) QII: 1 opinion clusters - 0 loners (ε = 0.5
and rs = 2)

(b) QI: 1 opinion clusters - 0 loners (ε = 0.5
and rs = 10)

(c) QIII: 7 opinion clusters - 26 loners (ε =
0.1 and rs = 2)

(d) QIV: 4 opinion clusters - 2 loners (ε = 0.1
and rs = 10)

Figure B.5: Opinion clusters under RM of single runs
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(a) QII: 6 communities - 54 loners (ε = 0.5
and rs = 2)

(b) QI: 7 communities-41 loners(ε = 0.5 and
rs = 10)

(c) QIII: 7 communities - 27 loners (ε = 0.1
and rs = 2)

(d) QIV: 0 communities-100 loners(ε =
0.1and rs = 10)

Figure B.6: Communities under RM of single runs
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(a) 1 opinion cluster - 1 loner(ε = 0.5 and
rs = 10)

(b) 5 opinion clusters - 0 loners (ε = 0.1 and
rs = 10)

Figure B.7: Opinion clusters under the static model of single runs

(a) QI: 0 communities - 100 loners(ε = 0.1
and rs = 10)

(b) QIV: 5 communities - 57 loners (ε = 0.5
and rs = 10)

Figure B.8: Communities under the static model of single runs
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