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ABSTRACT

Introduction: In rheumatoid arthritis, time
spent using ineffective medications may lead to
irreversible disease progression. Despite avail-
ability of targeted treatments, only a minority

of patients achieve sustained remission, and
little evidence exists to direct the choice of
biologic disease-modifying antirheumatic drugs
in individual patients. Machine learning was
used to identify a rule to predict the response to
sarilumab and discriminate between responses
to sarilumab versus adalimumab, with a focus
on clinically feasible blood biomarkers.
Methods: The decision tree model GUIDE was
trained using a data subset from the sarilumab
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trial with the most biomarker data, MOBILITY,
to identify a rule to predict disease activity after
sarilumab 200 mg. The training set comprised
18 categorical and 24 continuous baseline vari-
ables; some data were omitted from training
and used for validation by the algorithm (cross-
validation). The rule was tested using full data-
sets from four trials (MOBILITY, MONARCH,
TARGET, and ASCERTAIN), focusing on the
recommended sarilumab dose of 200 mg.
Results: In the training set, the presence of
anti-cyclic citrullinated peptide antibodies,
combined with C-reactive protein[12.3 mg/l,
was identified as the ‘‘rule’’ that predicts Amer-
ican College of Rheumatology 20% response
(ACR20) to sarilumab. In testing, the rule reli-
ably predicted response to sarilumab in MOBI-
LITY, MONARCH, and ASCERTAIN for many
efficacy parameters (e.g., ACR70 and the
28-joint disease activity score using CRP
[DAS28-CRP] remission). The rule applied less to
TARGET, which recruited individuals refractory
to tumor necrosis factor inhibitors. The poten-
tial clinical benefit of the rule was highlighted
in a clinical scenario based on MONARCH data,
which found that increased ACR70 rates could
be achieved by treating either rule-positive
patients with sarilumab or rule-negative
patients with adalimumab.
Conclusions: Well-established and clinically
feasible blood biomarkers can guide individual
treatment choice. Real-world validation of the
rule identified in this post hoc analysis is
merited.
Clinical Trial Registration: NCT01061736,
NCT02332590, NCT01709578, NCT01768572.

Keywords: Adalimumab; Clinical trial;
Machine learning; Precision medicine;
Rheumatoid arthritis; Sarilumab

Key Summary Points

Why carry out this study?

In rheumatoid arthritis, despite
availability of targeted treatments, only a
minority of patients achieve sustained
remission.

Little evidence exists to direct choice of
biologic disease-modifying antirheumatic
drugs in individual patients.

Our goal was to identify a ‘‘rule’’ based on
clinically feasible biomarkers to predict
response to sarilumab and discriminate
between responses to sarilumab versus
adalimumab, using clinical trial data and
machine learning.

What was learned from the study?

The presence of anti-cyclic citrullinated
peptide antibodies, combined with
C-reactive protein[ 12.3 mg/l, emerged
as a biomarker ‘‘rule’’ that could
potentially predict response to sarilumab.

This finding needs to be confirmed in real-
world studies.

DIGITAL FEATURES

This article is published with digital features,
including a video abstract to facilitate under-
standing of the article. To view digital features
for this article go to https://doi.org/10.6084/
m9.figshare.14512056.
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INTRODUCTION

Treatment guidelines for rheumatoid arthritis
(RA) recognize the importance of attaining
clinical improvement within 3 months and
remission or low disease activity within
6 months of treatment initiation [1, 2]. Biologic
disease-modifying anti-rheumatic drugs
(bDMARDs) are recommended in the presence
of poor prognostic factors or if response to ini-
tial treatment is inadequate. The choice of
bDMARD is often based on physician experi-
ence, patient preference, and cost, and is com-
plicated by a variety of available agents [3, 4].
Nevertheless, there is a remarkably similar pla-
teau in responder rates for patients achieving
20% (ACR20), 50% (ACR50), and 70% (ACR70)
response based on American College of
Rheumatology criteria, irrespective of the
bDMARD or targeted synthetic DMARD
(tsDMARD) studied [5–7].

Given the importance of rapid response to
treatment in prevention of irreversible joint
damage and improved symptom control, a
personalized approach to treatment selection
would be preferred over a prolonged and itera-
tive trial-and-error process [8]. However, only a
few biomarkers have been identified as candi-
dates for treatment optimization in RA, with at
best modest associations with treatment
response, and with inconsistent applicability in
current clinical practice. For example, the pres-
ence of autoantibodies to rheumatoid factor or
cyclic citrullinated peptide (CCP) may predict
response to rituximab, and genetic factors such
as the HLA-DRB1 shared epitope may predict
response to tumor necrosis factor inhibitors
(TNFi) and tocilizumab, an inhibitor of the
interleukin-6 receptor (IL-6R) [3, 9]. It is possible
that treatment response would be better pre-
dicted by combinations of biomarkers and
clinical characteristics [3, 8, 10–13]. However,
the multitude of potential clinical and bio-
marker-based predictors, in combination with
their thresholds, and inherent constraints on
clinical availability, poses a significant concep-
tual and computational challenge.

Artificial intelligence techniques such as
machine learning are increasingly being used to

identify individuals at risk for disease, predict
outcome, and optimize treatments [4, 14, 15].
In machine learning, computers apply hypoth-
esis-free algorithms that enable development of
data-based mathematical models [4]. To
develop machine learning models, a randomly
selected subset of data such as that obtained
from patients in clinical trials is used to select,
among a predefined set of parameters (e.g.,
clinical or blood biomarkers), those factors that
are associated with a certain predefined out-
come (e.g., ACR20). Once the parameters are set
so that the error in predicting the outcome is
minimized, those parameter values (i.e., the
‘‘rule’’) are validated using the remaining data,
or new external data sources [4]. This approach
allows the identification of hidden patterns and
rules in large datasets, while reducing the risk of
overfitting, and having to correctly specify
hypotheses a priori [4]. Machine learning has
been applied to electronic health records to
prognosticate RA disease activity [14, 16] and to
define disease phenotypes in RA [17]. However,
to the best of our knowledge, it has not yet
yielded a robust, clinically feasible rule that
would predict treatment response to biologic
therapies in patients with RA.

Sarilumab is a human monoclonal antibody
to IL-6R approved for the treatment of moder-
ate-to-severe RA [18, 19]. As with other
bDMARDs, the characteristics of patients most
likely to benefit from sarilumab treatment
remain poorly understood. In this post hoc
analysis, we used machine learning to identify a
simple and clinically feasible rule that could
predict favorable response to sarilumab, and in
one trial, an incremental response compared
with adalimumab.

METHODS

Data Sources

This post hoc analysis used patient-level data
from four phase 3 sarilumab trials: MOBILITY
(sarilumab versus placebo in patients with
inadequate response to methotrexate;
NCT01061736) [20], MONARCH (sarilumab
versus adalimumab as monotherapy in patients
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with inadequate response or intolerant to
methotrexate; NCT02332590) [21], TARGET
(sarilumab versus placebo in patients intolerant
to TNFi; NCT01709578) [22], and ASCERTAIN
(comparative safety of sarilumab and tocilizu-
mab; NCT01768572) [23]. Patients in all four

trials were C 18 years old and met the ACR 1987
revised classification criteria (MOBILITY) or the
ACR 2010/European League Against Rheuma-
tism (EULAR) classification criteria (MONARCH,
TARGET, ASCERTAIN) for active RA at baseline
[20–23]. Patients had CRP levels C 6 mg/l in

Table 1 Parameters used in the GUIDE algorithm

Demographics Clinical characteristics Biomarkers

Continuous

Age Duration of RA C x C motif chemokine ligand 13

SJC (28 joints) CRP

SJC (68 joints) IL-6

TJC (28 joints) MMP3

TJC (68 joints) MMP-degraded type 1 collagen

ACR20 at week 24 MMP-degraded type 3 collagen

DAS28 at baseline OC

Joint erosion score OPG

Joint space narrowing score RANKL

RANKLF

RANKL: OPG ratio

RANKLF: OPG ratio

Soluble glycoprotein 130

Soluble intercellular adhesion molecule

Soluble IL-6 receptor

Categorical

Sex Prior csDMARDs Anti-CCP (presence or absence)

Alcohol use Number of csDMARDs Persistent ADAbs

BMI stratum Number of prior bDMARDs Rheumatoid factor

Race Type of prior bDMARDs Transient ADAbs

Religion Duration of RA (3-year strata) Neutralizing anti-drug antibodies

Smoking history Treatment arm code

All variables are baseline except ACR20 at week 24
Anti-CCP anti-cyclic citrullinated peptide, ACR20, American College of Rheumatology 20% response, ADAb anti-drug
antibody, BMI body mass index, CRP C-reactive protein, bDMARD biological disease-modifying antirheumatic drug;
csDMARD conventional synthetic disease-modifying antirheumatic drug, DAS28 28-joint disease activity score, IL-6
interleukin-6, MMP matrix metalloproteinase, OC osteocalcin, OPG osteoprotegerin, RA rheumatoid arthritis, RANKL
receptor activator of NF-kappa B ligand, RANKLF free RANKL, SJC swollen joint count, TJC tender joint count
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MOBILITY, C 8 mg/l in MONARCH and TAR-
GET, and C 4 mg/l in ASCERTAIN [20–23]. At
baseline in each trial, at least 65% of patients
were seropositive for rheumatoid factor and at
least 75% were positive for anti-CCP autoanti-
bodies [20–23]. MOBILITY data were used to
train and validate the model (data were ran-
domly split into training and validation sets by
the algorithm; henceforth referred to as cross-
validation), which was later tested in the full
data sets of all four trials.

Variables and Outcome Used for Model
Development

Eighteen categorical and 24 continuous base-
line variables, including demographics, blood
protein biomarkers, and clinical scores from the
MOBILITY trial were identified as potential
predictors of clinical response (Table 1).

The clinical endpoint of ACR20 at week 24
was used for the model training, once the
machine learning methodology had been cho-
sen (see below).

Choice of the Machine Learning
Methodology

Since our goal was identification of a simple,
clinically feasible rule with a good prediction
performance, we initially tested three decision
tree methods, rpart (CRAN library: (https://cran.
r-project.org/web/packages/rpart/index.html),
C5.0 (https://www.rulequest.com), and the
Generalized, Unbiased, Interaction Detection
and Estimation (GUIDE; version 27.9 for macOS
Mojave 10.14; http://pages.stat.wisc.edu/*loh/
guide.html) [24], using either ACR20, ACR50,
ACR70, or the 28-joint disease activity score
using CRP (DAS28-CRP) as clinical outcomes. Of
those, rpart and C5.0 did not provide general-
izable approaches for patient stratification.
GUIDE provided unbiased variable selection
and cross-validation, as well as a final tree that
yielded a rule that fits our predefined criteria.
The default options of GUIDE were used,
including tenfold cross-validation.

Training of the Decision Tree Model

To maximize the information density for model
training, a data subset from patients in the
MOBILITY trial who had data for all selected
biomarkers (n = 163; Table 1) was entered into
GUIDE to train the decision tree model where
ACR20 ultimately yielded the only cross-vali-
dated model. Patient data from the sarilumab
200 mg (n = 63) and 150 mg (n = 100) treat-
ment groups in MOBILITY were pooled. The
resulting model was manually reduced by two
decision-nodes to achieve greater clinical
applicability while maintaining most of its
predictive power, and is henceforth referred to
as the final model (see ‘‘Results’’).

Validation of the Model

The final model for predicting sarilumab
response was validated using the full dataset for
MOBILITY, which included the training subset
(Nnew = 1034 plus Ntraining = 163; sarilumab
150 mg or 200 mg, n = 799; placebo, n = 398)
and datasets from MONARCH (N = 369; sar-
ilumab 200 mg, n = 184; adalimumab 40 mg,
n = 185), TARGET (N = 546; sarilumab 150 mg
or 200 mg, n = 365; placebo, n = 181), and
ASCERTAIN (N = 202; sarilumab 150 mg or
200 mg, n = 100; tocilizumab 4 mg/kg or 8 mg/
kg, n = 102). For each study, the applicable
endpoints (Supplementary Material, Table S1)
were assessed at baseline and week 24 and pla-
cebo-corrected where possible. In addition, we
developed a clinical application scenario based
on the rule created by the GUIDE algorithm and
the MONARCH data [21].

Statistical Analysis

Data analyses were performed using R v3.5.2
and Microsoft Excel 2010.

Compliance with Ethics Guidelines

This article is based on previously conducted
studies and does not contain any new studies
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with human participants or animals performed
by any of the authors.

RESULTS

Choice of the Machine Learning
Methodology

Retrospectively, we initiated a sensitivity anal-
ysis of our methodology by evaluating 14
additional machine learning methods available
through PyCaret (https://pycaret.org; Supple-
mentary Material, Table S2), including rule-
based (decision trees), regression-based (logistic
regression, quadratic discriminant analysis, lin-
ear discriminant analysis, ridge classifier),
instance-based (k-neighbors classifier), naı̈ve
Bayesian, ensemble-based (extra trees classifier,
random forest, gradient boosting, light gradient
boosting, CatBoost, and Ada Boost), and sup-
port vector machines. The PyCaret results con-
firmed that the decision tree classifier model
[25] GUIDE had the best recall, while other
performance criteria were comparable. The
resulting variable ranking of the PyCaret results
(only the four best results are shown) frequently
contained the GUIDE-derived variables, which
were CRP level and anti-CCP status, but also

suggested alternative variables and variable
combinations (Supplementary Material,
Figure S1).

Development of the Model
and Identification of a Predictive Rule

The training and cross-validation dataset
included 163 patients who received sarilumab
in the MOBILITY trial and had data available for
all relevant variables (Table 1).

A robust predictive GUIDE model for patient
stratification was obtained using ACR20 as the
measure of patient response. With ACR50 and
ACR70, GUIDE could not generate cross-vali-
dated trees, but often included anti-CCP and
CRP either as the first decision variable or
within the first two branches of the decision
tree (data not shown). In the resulting decision
tree (Fig. 1A), the model contained, in the fol-
lowing order: anti-CCP, metabolite of type I
collagen (C1M), CRP, and a weighted combi-
nation of soluble glycoprotein 130 (sgp130) and
the erosion score. However, C1M and the
weighted combination of sgp130 and erosion
score were manually excluded from the result-
ing model. C1M had only a minor impact on
the model performance and the weighted
combination of sgp130 and erosion score was

Fig. 1 Schematic of the resulting GUIDE decision tree
classification approach model (A) and the reduced final
model (B). Anti-CCP anti-cyclic citrullinated peptide,

C1M metabolite of type I collagen, CRP C-reactive
protein, sgp130 soluble glycoprotein 130
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only available in MOBILITY. In addition, the
exclusion of these variables allowed for greater
clinical applicability of the final model.

Among the 42 candidate variables, the
combined presence of anti-CCP (yes/no) and
CRP[ 12.3 mg/l (chosen by GUIDE) was iden-
tified as a predictor (i.e., the rule) of better
treatment outcomes with sarilumab. Of the 163
MOBILITY patients included in the training and
cross-validation dataset, 84 had a positive status
for both anti-CCP and CRP[12.3 mg/l. The
ACR20 response rate in this rule-positive group
was 81% (68/84), which was higher than the
rate observed in patients without anti-CCP
antibodies (27% [4/15]) or in those who had
anti-CCP antibodies but their CRP
was B 12.3 mg/l (59% [38/64]; Fig. 1B).

Results from the model were similar for both
sarilumab doses (150 mg and 200 mg; not
shown), so the analysis presented here is

focused on the recommended sarilumab dose of
200 mg.

Baseline Characteristics of Rule-Positive
Patients

Patients who were anti-CCP-positive and had
CRP[ 12.3 mg/l, i.e., rule-positive patients,
accounted for 34–51% of patients in the sar-
ilumab groups across the four trials. On average,
rule-positive patients had a more severe disease
and more baseline factors suggesting poor
prognosis than rule-negative patients (MOBI-
LITY: Table 2; MONARCH, TARGET, ASCER-
TAIN: Supplementary Material, Tables S3, S4,
and S5).

Table 2 Baseline characteristics of rule-positive and -negative patients in MOBILITY

Parameter Sarilumab 200 mg Placebo

Rule-positivea

patients (n = 213)
Rule-negative patients
(n = 210)

Rule-positivea

patients (n = 197)
Rule-negative patients
(n = 230)

DAS28-CRP 6.3 ± 0.8 5.7 ± 0.8 6.2 ± 0.8 5.6 ± 0.8

CDAI 41.9 ± 12.7 39.6 ± 11.4 40.5 ± 12.4 39.1 ± 12.1

HAQ-DI 1.8 ± 0.7 1.6 ± 0.6 1.7 ± 0.6 1.5 ± 0.7

SJC28 12.6 ± 5.9 12.0 ± 5.5 11.6 ± 5.5 11.4 ± 5.0

Presence of RF,

n (%)

197 (92.5) 156 (74.6) 179 (90.9) 179 (77.8)

Presence of anti-

CCP, n (%)

213 (100) 148 (70.5) 197 (100) 168 (73.0)

RANKL, pmol/l 2882 ± 6823 1301 ± 1772 3111 ± 4437 2162 ± 3989

OPG, pmol/l 6.1 ± 3.0 6.2 ± 3.4 6.0 ± 3.0 5.5 ± 1.8

OC, ng/ml 19.4 ± 8.4 21.3 ± 10.3 21.6 ± 12.0 21.7 ± 11.9

Prior DMARD use,

n (%)

61 (28.6) 64 (30.5) 65 (33.0) 57 (24.8)

Values are mean ± SD, unless otherwise indicated
a Patients who were anti-CCP-positive and had CRP[ 12.3 mg/l
Anti-CCP anti-cyclic citrullinated peptide, CDAI Clinical Disease Activity Index, DAS28-CRP 28-joint Disease Activity
Score using C-reactive protein, HAQ-DI Health Assessment Questionnaire-Disability Index, OC osteocalcin, OPG osteo-
protegerin, RANKL receptor activator of NF-kappa B ligand, RF rheumatoid factor, SJC swollen joint count
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Fig. 2 Response rates in rule-positive and rule-negative
sarilumab-treated patients. The patient stratification rule
was the combined presence of anti-CCP and
CRP[ 12.3 mg/l. ACR20 ACR 20%, ACR50 ACR
50%, ACR70 ACR 70%, CDAI Clinical Disease Activity
Index, DAS28-CRP 28-joint Disease Activity Score using

C-reactive protein, DAS28-ESR DAS28 using erythrocyte
sedimentation rate, HAQ-DI Health Assessment Ques-
tionnaire-Disability Index, LDA low disease activity,
MCID minimal clinically important difference, REM
remission
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Model Validation and Application
of the Rule to Predict Clinical Response

At week 24, response rates in rule-positive sar-
ilumab-treated patients from MOBILITY were
superior to those in rule-negative patients,
across all endpoints assessed. In the placebo
group, responder rates for rule-negative patients
were more favorable for CDAI remission,
DAS28-CRP remission, and DAS28-CRP LDA,
compared with rule-positive patients, whereas
response rates for other outcomes were similar
(Supplementary Material, Fig. S2A). Across all
outcomes, placebo-adjusted response rates in
rule-positive patients were higher by approxi-
mately 5–15%, compared with rule-negative
patients (Fig. 2A).

In TARGET, the only trial that enrolled
patients with an inadequate response to TNFi
treatment, findings were mixed (Fig. 2D). In
both the placebo and sarilumab groups, the
response rates in rule-positive patients for ACR
scores, as well as the DAS28-CRP LDA and
remission, were lower than those observed in

rule-negative patients (Supplementary Material,
Figure S2B).

In ASCERTAIN, sarilumab-treated rule-posi-
tive patients had more favorable 24-week
response rates compared with rule-negative
patients for all endpoints assessed, with a mag-
nitude of difference ranging between 15 and
30% (Fig. 2E). In tocilizumab-treated patients,
the rule applied to most clinical endpoints
(Supplementary Material, Figure S4).

Overall, across MOBILITY, TARGET, and
ASCERTAIN, rule-positive patients had higher
odds of achieving a clinical response at week 24
than rule-negative patients, with some excep-
tions observed in TARGET (Fig. 3). The changes
from baseline in continuous variables for each
trial are shown in Table 3. Across all studies
(including TARGET), we calculated a mean
improvement in CDAI of 3.4 (± 2.8 [standard
error]) and in DAS28-CRP of 0.8 ± 0.4 for rule-
positive patients treated with sarilumab com-
pared with rule-negative patients. Conversely,
the treatment of rule-negative patients with
adalimumab in MONARCH, resulted in a mean
CDAI improvement of 3.1 ± 3.0 compared with

Fig. 3 Odds ratios of achieving clinical response at week
24 in placebo- (MOBILITY, TARGET) or active-con-
trolled studies (ASCERTAIN): rule-positive versus rule-
negative patients. The patient stratification rule was the
combined presence of anti-CCP and CRP[ 12.3 mg/l.
Data presented for MOBILITY and TARGET are

placebo-adjusted. ACR20 ACR 20%, ACR50 ACR 50%,
ACR70 ACR 70%, DAS28-CRP 28-joint Disease Activity
Score using C-reactive protein, HAQ-DI Health Assess-
ment Questionnaire-Disability Index, LDA low disease
activity, MCID minimal clinically important difference
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rule-positive patients (Table 3). Mean change in
DAS28-CRP was similar between adalimumab-
treated rule-positive and rule-negative patients
in MONARCH (Table 3), although response
rates for DAS28-CRP remission and LDA showed
improvement for rule-negative compared with
rule-positive adalimumab-treated patients
(Fig. 2B).

DISCUSSION

In this study, we used machine learning to
identify a combination of baseline patient
characteristics to predict treatment response to
sarilumab and adalimumab. The method found
that the presence of anti-CCP antibody and CRP
level at a selected cutpoint of[12.3 mg/l were
predictive of a better response to sarilumab, and
in one trial where adalimumab data were also
available, predicted an incrementally larger
response to adalimumab. This approach could
facilitate choice of treatment in patients with
RA.

Our algorithm identified a simple, clinically
applicable rule that considered the large num-
ber of combinatorial possibilities between 42
variables and their values or thresholds. There-
fore, our study demonstrates the potential of
machine learning as a tool for systemic, fast,
and deep analysis of the data that can yield rules
applicable in clinical practice.

Previously, anti-CCP has been identified as a
predictor of response to rituximab and abata-
cept, and high CRP has been identified as a
predictor of response to TNF inhibitors and
tocilizumab [26–29]. Our study confirms the
predictive potential of the combined presence
of these two parameters with data from four
independent studies. Of note, biologically
plausible parameters that have been identified
as predictors of response to sarilumab, such as
IL-6 concentration [30], were not included in
the rule. This is not unexpected: in patients
with RA, IL-6 and CRP levels are highly corre-
lated [31, 32] and machine learning algorithms,
which approach data in a non-biased fashion,
are set to prefer one of the correlated parameters
based on its ability to maximize the predefined
outcome (in our case, ACR20). CRP was

probably selected because IL-6 varies more
between individuals [33] and has a more vari-
able diurnal profile than CRP [34]. The more
stable levels of CRP would make it a preferred
choice as predictor of response, especially if
there was a single biomarker measurement by
visit.

It can be argued that the use of a composite
endpoint such as ACR response, which includes
the acute phase reactants CRP or ESR, may have
influenced the algorithm to select
CRP[ 12.3 mg/l as one of the components of
the rule for an IL-6R inhibitor. However, the
rule also predicted CRP-independent endpoints,
such as the CDAI and HAQ-DI. ACR scores are
based on relative changes and, therefore, unaf-
fected by a potential selection bias. For the
other scores associated with low disease activity
and remission (e.g., DAS28-CRP remission and
LDA), where fixed, relatively low CRP thresh-
olds are required, a selection of high CRP base-
line values rather increases the necessary
treatment response to achieve these thresholds.

Among the decision tree methods we con-
sidered, the GUIDE algorithm was the only one
that provided a simple, clinically feasible rule. It
also showed the highest precision and compet-
itive accuracy, compared with other methods
assessed, as well as a higher transparency and
better interpretability, albeit with lower recall.

Since the algorithm was selecting responders
regardless of treatment during the model train-
ing, patients treated with placebo (MOBILITY
and TARGET) and adalimumab (MONARCH)
were important controls during the testing
phase. We found that rule-positive patients had
higher levels of baseline factors associated with
poor prognosis and a reduced response to adal-
imumab treatment or placebo, compared with
rule-negative patients. In MOBILITY, the pre-
dictive power of the rule was greater for the
placebo-adjusted than for the non-adjusted
response. The absolute disease state such as
CDAI or DAS28-CRP remission/LDA had a rela-
tively low prevalence in these data, and placebo
adjusting increases that prevalence, thus
improving the performance of the rule. In
addition, in settings with active instead of pla-
cebo control (e.g., MONARCH trial), our data
suggest that the choice of treatment can be
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improved significantly using this methodology.
We explored a clinical scenario and based on
the results of the MONARCH trial, sarilumab
was clearly favored in rule-positive patients,
whereas rule-negative patients could be treated
with either adalimumab or sarilumab, based on
other priorities (e.g., patient preferences, ero-
sion score, cost).

As noted in the Results section, the rule
applied less consistently to patients from TAR-
GET, who had poor tolerance for, or an inade-
quate response to, TNF inhibitors. Patients with
RA who have failed treatment with one drug
class are generally less likely to respond to sub-
sequent treatments [26], which may account for
some of the inconsistent rule applicability
observed in our analysis. However, the overall
percentages of TARGET patients achieving
remission or low disease activity endpoints were
particularly low, making it difficult to demon-
strate differences between rule-positive and
rule-negative patients in these disease scores.

A less consistent verification to TARGET data
suggests that the rule has limits in generaliz-
ability such that the rule may not apply to
patients who had inadequate response to TNFi.
Also, since all data in the training and valida-
tion phases came from randomized, controlled
clinical trials, which used stringent enrollment
criteria, the rule may not apply to a real-world
population of patients with RA in the same way.
For example, all patients in these trials had to
have elevated CRP, and selection of this variable
by the machine learning algorithm as an
important variable, as well as the exact CRP
cutoff value chosen, may have been influenced
by the cutoffs required by trials’ inclusion cri-
teria. In addition, radiographic endpoints were
only available in the MOBILITY trial, and with
the lack of further validation data we excluded
this important assessment from the model
training. Inclusion of radiographic scores in the
rule may be an interesting variable to further
increase the accuracy in patient stratification,
albeit at the expense of simplicity. Finally, the
number of patients in the training set was rel-
atively small. Using a larger set may have
resulted in an even more robust rule.

CONCLUSIONS

This study used a machine learning approach to
identify a simple rule to identify patients with
RA who have an increased chance of achieving
clinical response to sarilumab, based on labo-
ratory parameters that are readily available in
routine practice. In addition, such patients had
a lower likelihood of response to placebo and
adalimumab, which suggests that the rule can
be used for treatment optimization. Real-world
validation of this rule, and replication in other
clinical trial datasets of other therapies, is
merited.
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