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Abstract. Pathology results play a critical role in medical decision mak-
ing. A particular challenge is the large number of pathology results that
doctors are presented with on a daily basis. Some form of pathology result
prioritisation is therefore a necessity. However, there is no readily avail-
able training data that would support a traditional supervised learning
approach. Thus some alternative solutions are needed. There are two ap-
proaches presented in this paper, anomaly-based unsupervised pathology
prioritisation and proxy ground truth-based supervised pathology pri-
oritisation. Two variations of each were considered. With respect to the
first, point and time series based unsupervised anomaly prioritisation;
and with respect to the second kNN and RNN proxy ground truth-based
supervised prioritisation. To act as a focus, Urea and Electrolytes pathol-
ogy testing was used. The reported evaluation indicated that the RNN
proxy ground truth-based supervised pathology prioritisation method
produced the best results.

Keywords: Data Ranking · Time Series · Deep Learning · Pathology
Data.

1 Introduction

It has been well documented that, facilitated by advances in IT technology, large
quantities of data are produced on a continuous basis. An exemplar application,
and the focus for the work presented in this paper, is in the medical domain
where large amounts pathology data are produced continually. Some clinicians
may have hundreds of pathology results to review on a single shift; a classic
information overload situation. A potential solution is to adopt the tools and
techniques of machine learning to prioritise pathology results. However, a chal-
lenge is the absence of ground truth data. Clinicians observe that they “know
a priority result when they see one”, and can explain why, however typically
there is no resource available to generate appropriate prioritised training data
(especially given the current COVID-19 pandemic). This means that traditional,
well established, supervised learning techniques are unavailable. This is a very
much unexplored domain of application for machine learning.
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This paper presents an exploration of two approaches whereby such data can
be ranked, or at least categorised. The first approach is founded on the idea of
anomaly detection, the second one using supervised learning but with a proxy
for the ground truth data. Anomaly, or outlier, detection has a long history
within the context of machine learning [27]. One established technique, and that
adopted in this paper, is cluster analysis-based outlier detection [6, 12]. Two
variations are considered: point-based and time series based. The first assumes
all pathology results are independent, and is used as a bench-mark technique
with respect to the work presented. The second variation acknowledges that
pathology results are typically part of a sequence and/or part of a set of parallel
results, and therefore individual pathology results should not be considered in
isolation.

The second approach is founded on the observation that although ground
truth data is typically not available, information about what happened to pa-
tients is available. For example the final destination of patients: Emergency Pa-
tient (EP), In-Patient (IP) or Out-Patient (OP). This information can thus be
used to construct a proxy ground truth training set from which classification
models can be generated. Two variations are considered, a kNN classification
model as traditionally used in time series analysis [10, 17] and a Recursive Neu-
ral Network (RNN) deep learning model as popularised in more recent work on
time series analysis [9].

To act as a focus for the work the domain of Urea and Electrolytes (U&E)
pathology testing is considered. The proposed approaches are compared using
U&E data provided by Arrowe Park Hospital in Merseyside in the UK.

The remainder of this paper is organised as follows. A review of relevant
previous work is presented in Section 2. This is followed by a review of the Urea
and Electrolytes pathology testing application domain, used as a focus for the
work, in Section 3. The two proposed approaches are considered in Sections 4
and 5. The comparative evaluation of the two approaches is then discussed in
Section 6. The paper is concluded in Section 7 with a summary of the main
findings and some suggested avenues for future work.

2 Previous Work

Prioritisation is significant with respect to many application domains and fields
of study. The most common application domain, and that most frequently ref-
erenced in the literature, is the information retrieval domain [20]. For example
the ranking of documents as the result of a web search or a document reposi-
tory search. However, the prioritisation models considered in this paper are not
ranking models but classification models. The proposed mechanism are designed
to build models to label data according to a a set of class labels C indicating
priority, namely C = {high,medium, low}. The challenge, as noted above, is
the absence of training data. This makes the application domain considered in
this paper unique. To address this challenge two approaches are considered and
compared:
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1. Anomaly-based unsupervised prioritisation.

2. Proxy ground truth-based supervised prioritisation.

Anomaly detection is concerned with the detection of points, observations
or events within a data collection which do not satisfy the dataset’s normal
distribution [8]. A common technology, and that adopted with respect to the
work presented in this paper, is unsupervised learning. A typical application
domain for unsupervised anomaly detection is cyber security, where anomalous
network behaviour is considered to be an indicator of an attack. Examples can be
found in [1], [11] and [15]. In [1] a k-medoid customized clustering technique was
presented for anomaly detection in wireless sensor network to detect misdirection
attacks and blackhole attacks. In [11] a network anomaly detection method based
on fuzzy clustering was presented. In [15] a mechanism was presented for anomaly
detection with respect to traffic patterns in computer networks. In [16] a survey
was presented of unsupervised approaches to identify anomalies in system log
files for anomalous events detection relevant to cyber security. There are many
other applications where unsupervised learning has been applied for anomaly
detection. In [18] the use of unsupervised anomaly detection was used to detect
the abnormal operation of aircraft and in [2] to detect abnormal behaviour in the
financial domain. A range of techniques are available for unsupervised anomaly
detection, there has been some interesting recent work using autoencoders [31].
Unsupervised learning has, of course, been more generally applied to pathology
data for analysis purposes, see for example [23]. Whatever the case, the broad
concepts that feature in the above referenced work underpin the work presented
here with respect to anomaly-based unsupervised pathology data prioritisation.

The challenge of creating training data to support supervised learning is well
established and has led to the growing research area of self-supervised learning.
Broadly, self-supervised learning is a means for training computers to do tasks
without humans providing labeled data [13]. An alternative, which was adopted
with respect to the work presented here, is to identify a proxy for the training
data. There has been some work on using proxy data for classification purposes.
Examples can be found in [7], [3] and [30]. In [7], in the context of market seg-
mentation, it was observed that ground truth data is often scarce or unavailable;
a proxy labeling scheme was proposed for labeling a population according to a
postulated set of shopping behaviors. In [3] a proxy data set was created, using
a clustering approach, for anomaly detection in enterprise and cloud networks.
In [30] machine learning was applied to internet search behaviour as a proxy
for human behaviour. In [5], in the context of the domain of Psychophysiology,
the authors argue that training data is frequently flawed and that proxy data
is more able to produce a quality classification model. They go on to present a
review of techniques whereby a proxy ground truth can be created, and conclude
that there is no single technique that is sufficient for the accurate generation of
ground truth data for classification and suggest a hybrid approach. The above
provides support for the second approach presented in this paper, the proxy
ground truth-based supervised prioritisation approach.
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3 U&E Testing Application Domain

The work presented in this paper is focused on Urea and Electrolytes pathology
test data (U&E testing). U&E testing is usually performed to confirm normal
kidney function or to exclude a serious imbalance of biochemical salts in the
bloodstream. The U&E test data considered in this paper comprised, for each
test, measurement of levels of: (i) Sodium (ii) Potassium (iii) Urea (vi) Creati-
nine and (v) Bicarbonate. The measurement of each is referred to as a “task”,
thus we have five tasks per test. Thus each U&E test results in five pathology
values. Abnormal levels in any of these tasks may indicate that the kidneys are
not working properly. However, a one time abnormal result does not necessar-
ily indicate priority. A new task result that is out of range for a patient who
has a previous recent history of out of range task results, but the latest result
indicates a trend back into the normal range, may not be a priority result ei-
ther. Conversely, a new task result that is within the normal range for a patient
who has a history of normal range task results, but the latest result indicates a
trend heading out of the normal range, may be a priority result. Given a new
set of pathology values for a U&E test we wish to determine the priority to be
associated with this set of values.

The U&E data comprised a set of clinical patient records, D = {P1, P2, . . .}.
Each record Pj ∈ D was of the form:

Pj = 〈PatientID, TestDate,Gender, TSo, TPo, TUr, TCr, TBi, c〉 (1)

Where: (i) PatientID is the ID for the patient in question; (ii) Tso to TBi

are five three dimensional time series, one per task, representing, in sequence,
pathology results for: Sodium (So), Potassium (Po), Urea (Ur), Creatinine (Cr)
and Bicarbonate (Bi) and (iii) c is the class label taken from a set of classes C.
Each time series Ti has three dimensions: (i) pathology result value, (ii) normal
low and (iii) normal high. The normal low and high dimensions indicate a “band”
in which pathology results are expected to fall. These values are less volatile than
the pathology result values, but can change over time.

For the purpose of building prioritisation models training data was required.
The data set D was used to create individual training data sets, one per task,
DSo, DPo, DUr, DCr and DBi. Two data formats were used, one for the point-
based outlier detection method and one for the three time series methods con-
sidered. For the first each data set comprised a set of pathology result values
Di = {p1, p2, . . .} where each point pi comprised a tuple of the form 〈v, nl, nh〉
(pathology result value, normal low and normal high respectively). For the other
methods each data set comprised a set of time series Di = {T1, T2, . . .} where
each time series Ti comprises a sequence of tuples, of the form 〈v, nl, nh〉.

4 Anomaly-based Unsupervised Pathology Prioritisation

The fundamental idea under-pinning the anomaly-based pathology data pri-
oritisation approach is that an anomalous result should be prioritised. More
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specifically the first approach presented in this paper proposes that this can be
achieved by clustering existing records and attempting to assign new records to
this cluster configuration. If a new record cannot be easily allocated to a cluster
it is considered to be an outlier and hence a priority record. This is an approach
that has been frequently adopted with respect to cyber security applications [1,
11, 15, 16].

The outlier/anomaly detection approach to pathology data prioritisation
produces a binary classification, a new pathology record is either an outlier
(a priority record) or not. This is in itself useful, but we would like a finer
grained outcome. Thus, for the outliers the distance to the centroid of the near-
est cluster is determined to produce a ranking which can be used to produce
a more fine grained prioritisation. In the evaluation presented later in this pa-
per outlier records are labelled either as “high priority” or “medium pririty”
according to a predefined threshold λ which needs to be established; non-outlier
records are labelled a “low priority”. Thus we have a three class prioritisation,
C = {high,medium, low}.

In the context of the U&E test application focus for this paper, as discussed
above, we have five tasks. Hence, we have five cluster configurations and conse-
quently five predictions that need to be reconciled, and so five thresholds to be
identified λSo, λPo, λUr, λCr and λBi.

The high level process is as follows, given:

1. For each data set Di ∈ D, Di = {p1, p2, . . .}, where each point pi is a tuple
of the form, 〈v, nl, nh〉, create a cluster configuration, one per task, hence
five configurations.

2. For each configuration, given the set of outliers A, for each a ∈ A calculate
the distances to the nearest centroid. To give a set of distances.

3. For each set of distances calculate the average, these are then the thresholds,
λSo, λPo, λUr, λCr and λBi, that will be used to determine whether an outlier
record is high or medium priority.

Given a new pathology record, it will be compared to the cluster configura-
tion, generated as described above, which will produce five class labels, one for
each task. The following rule is then applied.

Rule 1 If one of the class labels is “high” the overall class label is high, otherwise
use voting to derive the overall class label.

Any one of a number of clustering algorithms could have been adopted. How-
ever, for the evaluation presented later in this paper the DBSCAN clustering
algorithm [14] was adopted with respect to the work presented in this paper,
because it readily supports outlier detection, and because it is a well established
and understood clustering algorithm.

Two variations of the anomaly-based pathology data prioritisation approach
were considered.

Point Based: Assumes that any new record is independent of any previous
records for the same patient and hence can be considered in isolation.
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Time Series Based: Assumes that any new record is not independent of pre-
vious records for the same patient and hence should be considered in context;
in other words as a time series.

Each is discussed in further detail in the following two sub-sections.

4.1 Point Based Outlier Detection Unsupervised Pathology
Prioritisation

The point-based approach considers each pathology result, pertaining to the
same patient, to be independent. In this case the data set used, to create a desired
cluster configuration, simply comprised a set of pathology results obtained from
historical patient data.

DBSCAN uses two parameters: (i) minPts, the minimum number of data
points that can be held in a cluster, and (ii) ε, the maximum distance between
two data points whereby they are considered to be neighbours and thus should
appear in the same cluster. If minPts = 1 is used this will result in every record
forming its own cluster; if minPts = 2 is used, this will result in a hierarchical
clustering as clusters will be repeatedly split into two. Therefore minPts needs to
be greater than 2. In [26] it was suggested that the value of minPts should be at
least |A|+1 (where A is the attribute set). The reasoning was that each attribute
represents a dimension in a |A|-dimensional space. To determine a value for ε
the approach proposed in [21] was adopted. For each record the distance to the
kth nearest neighbouring record was determined and plotted using an “elbow
plot”. A range of values for k was considered starting with k = minPts− 1. For
each value of k, the input data records were listed in ascending order according
to distance. The elbow plot has k plotted along the x-axis and distance along
the y-axis. The plot will feature an “elbow” marking a significant change in
the gradient of the slope. The most appropriate value for ε is then the distance
associated with the point where the elbow first starts to appear.

4.2 Time Series Based Outlier Detection Unsupervised Pathology
Prioritisation

The main difference between the time series approach and the point approach is
that the time series approach considers patient history. In other words the “tra-
jectory” for the patient in question. The intuition was that this would provide
a better prioritisation. As in the case of the point based approach, the idea was
to cluster existing trajectories to produce a cluster configuration. Given a new
record this will be added to the time series for the corresponding patient (if the
record does not belong to an existing patient, the point approach will need to be
used) and the resulting time series compared to the cluster configuration. Again,
if the time series associated with the new record is found to be an outlier the
record is considered to be a prioritiy record.

The DBSCAN clustering algorithm was again adopted. However, whereas
the point based approach used Euclidean distance as the distance measure with
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which to generate a cluster configuration, for the time series based approach Dy-
namic Time Warping (DTW) was used [25] which gives a distance measure (the
warping distance) between two time series. For applying DTW the Sakoe-Chiba
band, as also proposed in [25], was used as a global constraint to accelerate the
algorithm. The same mechanisms for determining the most appropriate values
for minPts and ε as used with respect to the point based approach described
above were adopted, those given in [26] and [21] respectively.

5 Proxy Ground Truth-based Supervised Pathology
Prioritisation

The fundamental idea underpinning the proposed proxy ground truth-based su-
pervised pathology prioritisation approach was that although no ground truth
training data was available, the final destinations of patients where known, and
hence these could act as a proxy for a ground truth. Consequently, supervised
time series learning could be used to generate a pathology data prioritisation
model. For the evaluation presented later in this paper, three outcome events
were considered: (i) Emergency Patient (EP), (ii) In-Patient (IP) and (ii) Out Pa-
tient (OP), which were correlated with the priority descriptors “high”, “medium”
and “low” respectively.

Two variations of the proxy ground truth-based pathology data prioritisation
approach were considered.

KNN Based: Uses k Nearest Neighbour (kNN) classification, the most fre-
quently adopted form of time series classification.

RNN Based: Uses Recurrent Neural Network (RNN) classification, a time se-
ries classification model that is gaining increasing popularity.

Each is discussed in further detail in the following two sub-sections.

5.1 kNN Proxy Ground Truth-based Supervised Pathology
Prioritisation

The kNN classification model uses a parameter k, the number of best matches
we are looking for. For the evaluation presented later in this paper, k = 1 was
used, because k = 1 often provides better accuracy when comparing time series
using DTW [4]. Note that DTW was used for similarity measurement because of
its ability to operates with time series of different length and because it has been
shown to be more effective than alternatives such as Euclidean distance mea-
surement [29]. The disadvantage of DTW, compared to the Euclidean distance
measurement, is its high computational time complexity of O(x × y) where x
and y are the lengths of the two time series under consideration. The complexity
for Euclidean distance time series comparison is O(x) (x is required to be equal
to y).

There are many techniques available for reducing the time complexity of
DTW coupled with kNN classification. Two that were adopted with respect to
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the work presented here were: (i) early-abandonment and (ii) lower bounding.
The first is a strategy whereby the accumulative distance between two time series
is repeatedly checked as the calculation progresses and if the distance exceeds the
best distance so far the calculation will be “abandoned” [22]. The second involves
pre-processing the time series to be considered by comparing the time series
using an alternative “cheaper” technique and pruning those that are unlikely
to be close matches and applying DTW to the remainder. One example of this,
and that adopted with respect to the work presented in this paper, is the lower
bounding technique proposed in [28], the so called the LB-Keogh technique. This
operates by superimposing a band, defined by a predefined offset value referred
to as the lower bound, over each time series in the bank, and calculating the
complement of the overlap with the new time series. Where the calculated value
exceeds a given threshold ε the associated time series is pruned.

The traditional manner in which kNN is applied, in the context of time
series analysis, is to compare a query time series with the time series in the
kNN bank. In the case of the U&E pathology prioritisation scenario considered
here, as noted in Section 3, individual pathology results comprised five values,
one per task making up the overall A&E test. The kNN process thus involved
five comparisons, once for each task time series in the query record, Tqso , Tqpo ,
Tqur

, Tqcr and Tqbi . In addition, traditional kNN is applied to univariate time
series, in the U&E pathology case each task time series was a three-dimensional
multi-variate time series: (i) pathology value, (ii) normal low and (iii) normal
high. Thus, from the foregoing, for each comparison five distance measures were
obtained. These five distance measures therefore need to be combined to give a
final prioritisation.

The overall process was as follows, given a new pathology result for a patient
pq, that has been appended to the patient’s history of pathology results to give
five three-dimensional component time series Tqso , Tqpo , Tqur

, Tqcr and Tqbi .

1. Calculate the average LB-keogh overlap for the five component time series
and prune all records in D where the overlap for any one time series was
greater than ε, to leave D′.

2. Apply DTW, with early-abandonment to compare each Tqj with each Tij ∈
D′, where j indicates the U&E task, and use the class label c associated with
the most similar record to assign to each time series Tqj .

3. Use the class label c to define a priority for pq and then apply Rule 1 from
Section 4 to determine the final prioritisation, “high”, “medium” or “low”.

With respect to the above the choice of the value for ε is of great importance as
it affects the efficiency and the accuracy of the similarity search. According to
[19], there is a threshold value for ε whereby the time complexity for the lower
bounding is greater than simply using DTW distance without lower bounding.
The experiments presented in [19] demonstrated that this threshold occurs when
the value for ε prunes 90% of the time series in D. For the parameter setting in
the work presented in this paper, ε = 0.159 was used because, on average, this
resulted in 10% of the time series in D being retained.
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5.2 RNN Proxy Ground Truth-based Supervised Pathology
Prioritisation

For the RNN-based approach a Long Short Term Memory (LSTM) architecture
was adopted. Given the U&E pathology prioritisation scenario used as a focus
in this paper the proposed approach commenced with the training of five LSTM
models, one per task: LSTMso, LSTMpo, LSTMur, LSTMcr and LSTMbi. Fig-
ure 1 illustrates the construction and structure of the proposed LSTM approach
to prioritise pathology data.

Fig. 1. LSTM architecture for proxy ground truth pathology prioritisation

With reference to Figure 1 the process and structure is expressed in terms
of four layers: (i) Data, (ii) Model, (iii) Softmax, (iv) Decision. The input is the
data set D divided into of its component parts DSo, DPo, DUr, DCr and DBi.
Each data set comprised a set of multi-variate time series Ti = {V1, V2, ..., Vm},
where Vj is a tuple of the form 〈v, nl, nh〉 where v is the pathology value, nl is
the normal low and nh is the normal high. Where necessary each time series Ti
was padded to the length of the longest time series in Di, using the mean value
of the v, nl and nh values, because the LSTM model requires all time series to
be of the same length.

Next, for each of the five tasks, once a time series data set had been con-
structed, each was passed to the the model layer and the LSTM constructed.
Note that each LSTM comprised two hidden layers. The output produce, Outi,
was used to define the softmax layer where predictions will be made. The Soft-
max Layer, and the Softmax function for normalising the output of each single
task LSTM model was as follows:

yi =
eai

Σ
|C|
k=1e

ak

∀i ∈ 1...C (2)
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Where: (i) |C| is the number of classes (three in this case), (ii) ai is the output
of the LSTM layer.

The last layer is the decision layer where the final label is derived. After
obtaining all of the five outputs and the predicted labels from the five LSTM
models, a decision logic module was added to decide the final prioritisation level
of the patient. This included the rule: “If there exists a prediction that equates to
‘High’ for one of the tasks then the overall prediction is high, otherwise average
the five outputs produced by the Softmax function and choose the class with the
maximum probability”.

For the LSTM, there are five parameters thaqt need to be tuned during the
training process. The parameters belong to two categories: (i) optimization pa-
rameters and (ii) model parameters. The optimization parameters are: Learning
rate, batch size and number of epochs. The model parameters are the number
of hidden layers and the number of hidden units. For the optimization, Adam
optimization was chosen due to its efficiency and the nature of the adaptive
learning rate. For finding the optimal parameters, cross-entropy was used as the
loss function, and the parameters tuned by observing the loss and accuracy plots
of the training and validation data.

6 Evaluation

From the for going we have two approaches each with two associated variation:

1. Anomaly-Based Supervised Pathology Prioritisation.
(a) Point-based
(b) Time series-based

2. Proxy Ground Truth-Based Supervised Pathology Prioritisation.
(a) kNN
(b) RNN-based

A significant challenge of ranking pathology data without a ground truth is how
to evaluate any proposed approach. There is also no previous work in this area,
to the best knowledge of the authors, whereby any direct comparison between
the proposed approaches and any existing approaches can be conducted. In the
case of the anomaly-based approach we can of course measure the quality of the
cluster configuration produced using cohesion and separation measures, such as
the well-established Silhouette Coefficient [24]. However, this only tells us about
the quality of the clusters configuration, not the quality of the classifications
obtained using the cluster configuration.

For learning to rank methodologies, such as those proposed in the context
of information retrieval, it is common to use metrics such as Mean Recipro-
cal Rank (MRR), Mean Average Precision (MAP) and Normalized Discounted
Cumulative Gain (NDCG); but these all require a ground truth ranking. The
pathology prioritisation problem was conceptualised as a three class problem,
C = high,medium, low which could therefore be evaluated using the “stan-
dard” accuracy, precision, recall and F1 metrics using the proxy ground truth



Ranking Pathology Data in the Absence of a Ground Truth 11

(not an actual ground truth but the “nearest best thing”). Five-cross validation
was used through out. All the experiments were run using a windows 10 desktop
machine with a 3.2 GHz Quad-Core IntelCore i5 processor and 24 GB of RAM.
For the LSTM, a GPU was used fitted with a NVIDA GeForceRTX 2060 unit.

As noted earlier, the application focus for the work presented in this paper
was Urea and Electrolytes (U&E) pathology testing. For the evaluation U&E
data was provided by Arrowe Park Hospital in Merseyside in the UK. Further
detail concerning this data set is provided in Sub-section 6.1. The evaluation
results are then presented and discussed in Sub-section 6.2.

6.1 Evaluation Data Set

A formalism for U&E data was presented in Section 3. The data set D provided
by Arrowe Park Hospital comprised records for 3,734 patient records with five
U&E task results (time series) per patient. To derive the proxy ground truth
class label for each record Pj ∈ D reference was made to the outcome event(s)
associated with each patient. As noted earlier, three outcome events were con-
sidered: (i) Emergency Patient (EP), an In-Patient (IP) or an Out Patient (OP).
These were correlated to the priority descriptor class labels: “high”, “medium”
and “low”. This resulted in 255 patients with high priority, 123 with medium
priority and 3,356 with low priority, covering all five tasks. For the LSTM vari-
ation of the proxy ground truth based approach, re-sampling of the data was
undertaken to give a total 8, 192 time series to address the class imbalanced
problem. This was not needed with respect to any of the other three methods
considered.

6.2 Results and Discussion

The evaluation results obtained are given in Tables 1 and 2, best results high-
lighted in bold font. Table 1 gives the precision and recall results obtained, whilst
Table 2 gives the accuracy and F1 Score results obtained. Each table includes
average values for the five folds and an associated Standard Deviations (SDs).

Fold Anomaly Detection Approach Proxy Ground Truth Classification
# Point-Based Time series-Based kNN RNN

Precision Recall Precision Recall Precision Recall Precision Recall

1 0.298 0.254 0.407 0.458 0.661 0.617 0.446 0.755
2 0.375 0.467 0.375 0.511 0.703 0.609 0.585 0.663
3 0.361 0.500 0.367 0.444 0.639 0.570 0.695 0.629
4 0.211 0.287 0.333 0.315 0.517 0.632 0.693 0.663
5 0.500 0.643 0.367 0.508 0.758 0.523 0.762 0.626

Average 0.349 0.430 0.370 0.448 0.656 0.590 0.636 0.667
SD 0.095 0.144 0.024 0.071 0.080 0.039 0.111 0.047

Table 1. Precision and recall results, best results in bold font
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Fold Anomaly Detection Approach Proxy Ground Truth Classification
# Point-Based Time series-Based kNN RNN

Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

1 0.333 0.248 0.421 0.303 0.585 0.638 0.671 0.561
2 0.273 0.265 0.529 0.306 0.632 0.653 0.642 0.622
3 0.333 0.361 0.368 0.227 0.576 0.603 0.622 0.660
4 0.250 0.198 0.429 0.258 0.523 0.569 0.608 0.678
5 0.500 0.515 0.522 0.290 0.566 0.619 0.645 0.687

Average 0.338 0.317 0.454 0.629 0.576 0.616 0.638 0.642
SD 0.087 0.112 0.062 0.030 0.035 0.029 0.024 0.046

Table 2. Accuracy and F1 score, best results in bold font

From the two tables the first thing that can be observed is that the anomaly-
based prioritisation approach performed poorly (regardless of which metric was
considered) and which variation, point or time series. The reason why the anomaly
detection-based prioritisation approach did not perform well might be because
it featured the disadvantages that, given a large number of outliers with similar
characteristics these might form there own clusters and no longer be considered
to be outliers.

From Table 1 it can be seen that the RNN Proxy Ground Truth-based Su-
pervised Pathology Prioritisation produced consistently the best recall, and in
three of the five folds the best precision. From Table 2, it can be seen that
the best average F1 scores, the harmonic mean of precision and recall and thus
a good overall measure, were obtained using the RNN Proxy Ground Truth-
based Supervised Pathology Prioritisation method, with the kNN method also
performing well. Hence, in conclusion, it is argued here that the proxy ground
truth-based Supervised method is the most appropriate method for addressing
the challenge of pathology data prioritisation as defined in this paper.

7 Conclusions

The motivation for the work presented in this paper was the challenge of priori-
tising pathology data in the absence of any ground truth data. Two approaches
were considered: (i) anomaly detection for prioritisation and (ii) proxy ground
truth supervised learning for prioritisation. Two variations of both approaches
were considered, point-based and time series-based for the first approach; and
kNN and RNN-based, for the second. The four variations (methods) were fully
described and evaluated using real data. From the results, the RNN proxy ground
truth-based supervised pathology prioritisation method was argued to be the
most appropriate. For future work the authors intend to investigate: (i) generate
artificial evaluation data sets to provide for a more comprehensive evaluation,
and (ii) collaborate with clinicians to obtain feed back regarding the prioritisa-
tions produced and to test the utility of the best performing mechanism in a real
setting.
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