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Abstract

We study the separation of positive and negative data exam-
ples in terms of description logic concepts in the presence of
an ontology. In contrast to previous work, we add a signa-
ture that specifies a subset of the symbols that can be used for
separation, and we admit individual names in that signature.
We consider weak and strong versions of the resulting prob-
lem that differ in how the negative examples are treated and
we distinguish between separation with and without helper
symbols. Within this framework, we compare the separating
power of different languages and investigate the complexity
of deciding separability. While weak separability is shown to
be closely related to conservative extensions, strongly sepa-
rating concepts coincide with Craig interpolants, for suitably
defined encodings of the data and ontology. This enables us to
transfer known results from those fields to separability. Con-
versely, we obtain original results on separability that can be
transferred backward. For example, rather surprisingly, con-
servative extensions and weak separability in ALCO are both
3EXPTIME-complete.

1 Introduction

There are several applications that fall under the broad
term of supervised learning and seek to compute a log-
ical expression that separates positive from negative
examples given in the form of labeled data items in a
knowledge base (KB). A prominent example is concept
learning for description logics (DLs) where inductive
logic programming methods are applied to construct
separating concepts that can then be used, for instance,
in ontology engineering (Lehmann and Hitzler 2010).
Another example is reverse engineering of database
queries (or query by example, QBE) (Martins 2019)
which has also been studied in the presence of a DL
ontology (Gutiérrez-Basulto, Jung, and Sabellek 2018;
Ortiz 2019). A closed world semantics is adopted
for QBE in databases while an open world semantics
is required in the presence of ontologies; the latter
is the case also in reverse engineering of SPARQL
queries (Arenas, Diaz, and Kostylev 2016). Further
applications are entity comparison in RDF graphs,
where one aims to find meaningful descriptions that
separate one entity from another (Petrova et al. 2017;
Petrova et al. 2019) and generating referring expressions
(GRE) where the aim is to describe a single data item by

a logical expression such as a DL concept, separating it
from all other data items (Krahmer and van Deemter 2012;
Borgida, Toman, and Weddell 2016).

A fundamental problem common to all these applications
is to decide whether a separating formula exists at all. There
are several degrees of freedom in defining this problem.
The first concerns the negative examples: is it enough that
they do not entail the separating formula (weak separabil-
ity) or are they required to entail its negation (strong sepa-
rability)? Another one concerns the question whether addi-
tional helper symbols are admitted in the separating formula
(projective separability) or not (non-projective separability).
The emerging family of problems has recently been investi-
gated in (Funk et al. 2019; Jung et al. 2020), concentrating
on the case where the separating expression is a DL con-
cept or a formula from a fragment of first-order logic (FO)
such as the guarded fragment (GF) and unions of conjunc-
tive queries (UCQs).

In this paper, we add a signature Σ (set of concept, role,
and individual names) that is given as an additional input
and require separating expressions to be formulated in Σ.
This makes it possible to ‘direct’ separation towards expres-
sions based on desired features and accordingly to exclude
features that are not supposed to be used for separation. For
example, consider an online book store where a user has la-
beled some books with likes (positive examples) or dislikes
(negative examples). A “good” separating expression might
include relevant features of books like genre or language,
but exclude information about the author’s age or gender.

The aim of this paper is to investigate the effect of adding
a signature to the framework, and in particular to compare
the separating power of different languages and determine
the computational complexity of deciding separability. We
focus on the case in which both the knowledge base and the
separating expressions are formulated in DLs betweenALC
and its extension ALCIO with inverse roles and nominals.
DLs with nominals are of particular interest to us as sepa-
rating expressions formulated in such DLs may refer to in-
dividual names in the signature Σ. Returning to the book
store example, one can use the standard DL representation of
specific authors (‘Hemingway’) and languages (‘English’)
as individuals in separating expressions. To understand the
robustness of our results, we also discuss in how far they
extend to the guarded fragment (GF) and the two-variable
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fragment (FO2) of FO.

We start with weak projective separability. We first ob-
serve that helper symbols, which must be ‘fresh’ in that they
do not occur in the given knowledge base, increase the abil-
ity to separate and lead to more succinct separating expres-
sions. We concentrate on the case where helper symbols
are concept names because admitting individual names leads
to undecidability of the separability problem while admit-
ting roles names either does not make a difference (in ALC
andALCI) or makes a difference but is polynomial time re-
ducible to separation without role names as helper symbols
(in ALCO and ALCIO). To investigate further the rela-
tionship between non-projective and projective weak sepa-
rability, we then introduce the extension of UCQs in which
compound DL concepts are admitted in atoms and show that
in some important cases, non-projective weak separability in
that language coincides with projective weak separability in
the original description logic. In thise sense, helper concept
names are thus ‘captured’ by UCQs.

We next investigate the complexity of projective weak
separability with signature for the DLs above. A fun-
damental observation is that, due to the presence of the
signature, the problem to decide projective conservative
extensions at the ontology level is polynomial time re-
ducible to the complement of projective weak separabil-
ity. Here, ‘projective’ refers to the fact that conserva-
tivity is also required for expressions using fresh concept
names. Conservative extensions have been studied in de-
tail in the context of modular ontologies (Grau et al. 2008;
Botoeva et al. 2016). The projective version is motivated
by the requirement of robustness under vocabulary exten-
sions in applications with frequent changes in the ontol-
ogy (Konev et al. 2009). It coincides with the non-projective
one for DLs with the Craig Interpolation property (CIP) such
as ALC and ALCI (Jung et al. 2017), but not for DLs with
nominals, such as ALCO.

The reduction from conservative extensions yields a
2EXPTIME lower bound for weak projective separabil-
ity in ALC and ALCI (Ghilardi, Lutz, and Wolter 2006;
Lutz, Walther, and Wolter 2007). We prove a matching up-
per bound by providing a bisimulation-based characteriza-
tion of weak projective separability and then deciding the
characterization by a reduction to the emptiness problem of
suitable tree automata.

For ALCO, we show the unexpected result that
both projective conservative extensions and projective
weak separability are 3EXPTIME-complete. The lower
bound is a substantial extension of the 2EXPTIME-
lower bound for conservative extensions in ALC from
(Ghilardi, Lutz, and Wolter 2006), and it holds for non-
projective conservative extensions and non-projective weak
separability as well. The upper bound is again by an encod-
ing into tree automata.

We then turn to strong separability where we observe that
the projective and non-projective case coincide. We further
observe that separating expressions are identical to Craig
interpolants between formulas that encode the KBs with
the positive and negative examples, respectively. Since FO
enjoys the CIP, the existence of FO separating formulas is

equivalent to the entailment between the encoding formulas.
This entailment question is EXPTIME-complete if the KBs
are given in a DL between ALC and ALCIO. Moreover,
any FO-theorem prover that computes interpolants can be
used to compute separating expressions (Hoder et al. 2012).

Interestingly, while DL concepts alone have a strictly
weaker separating power than FO, a version of the afore-
mentioned extension of UCQs with DL concepts is expres-
sive enough to capture the separating power of FO. Regard-
ing the decision problem, we use recent results on the com-
plexity of Craig interpolant existence (Artale et al. 2021) to
show that for any DL between ALC and ALCIO, strong
separability is 2EXPTIME-complete if one separates using
concepts from the same DL.

We finally consider weak and strong inseparability in
the case where both the ontology and the separating
formulas are in GF or FO2. For GF, we prove that
weak (projective) separability with signature is undecid-
able which is in contrast to decidability of weak sep-
arability when no signature restriction can be imposed
on the separating formula (Jung et al. 2020). For FO2,
already weak separability without signature is undecid-
able (Jung et al. 2020). In the case of strong separability, the
link between Craig interpolants and strongly separating for-
mulas generalizes to both GF and FO2. Both languages fail
to have the CIP (Hoogland and Marx 2002; Comer 1969;
Pigozzi 1971), but recent results on the existence of Craig
interpolants can be used to prove that strong separability in
GF is 3EXPTIME-complete and in FO2 is in N2EXPTIME

and 2EXPTIME-hard (Jung and Wolter 2021).

2 Preliminaries

Let NC, NR, and NI be countably infinite sets of concept,
role, and individual names. A role is a role name r or an
inverse role r−, with r a role name and (r−)− = r. A nom-
inal takes the form {c} with c ∈ NI. An ALCIO-concept is
defined according to the syntax rule

C,D ::= ⊤ | ⊥ | A | {c} | ¬C | C ⊓D | ∃R.C

where A ranges over concept names, c over individual
names, and R over roles. We use C ⊔ D as abbreviation
for ¬(¬C ⊓ ¬D), ∀R.C for ¬∃R.(¬C), and C → D for
¬C ⊔ D. An ALCI-concept is an ALCIO-concept with-
out nominals, an ALCO-concept anALCIO-concept with-
out inverse roles, and anALC-concept is anALCO-concept
without nominals. Let DLni denote the set of languages just
introduced, where ni stands for nominals and inverses. For
L ∈ DLni, an L-ontology is a finite set of concept inclusion
(CIs) C ⊑ D with C and D L-concepts.

A database D is a finite set of facts of the form A(a)
or r(a, b) where A ∈ NC, r ∈ NR, and a, b ∈ NI. An
L-knowledge base (L-KB) takes the form K = (O,D),
where O is an L-ontology and D a database. We assume
w.l.o.g. that any nominal used in O also occurs in D.

A signature Σ is a set of concept, role, and individual
names, uniformly referred to as symbols. Σ is called rela-
tional if it does not contain individual names. We use sig(X)
to denote the set of symbols used in any syntactic object X



such as a concept or an ontology. For a database D we de-
note by ind(D) the set of individual names in D.

Description logics are interpreted in structures

A = (dom(A), (AA)A∈NC
, (rA)r∈NR

, (cA)c∈NI
)

with AA ⊆ dom(A), rA ⊆ dom(A)2, and cA ∈ dom(A).
The extension CA of ALCIO-concepts C is then defined
as usual (Baader et al. 2017). For D ⊆ dom(A), we use
A|D to denote the restriction of A to D. A pointed structure
takes the form A, a with A a structure and a ∈ dom(A). A
structure A satisfies CI C ⊑ D if CA ⊆ DA, fact A(a) if
aA ∈ AA, and fact r(a, b) if (aA, bA) ∈ rA. A is a model of
an ontology, database, or KB if it satisfies all CIs and facts
in it. A KB is satisfiable if it has a model, and a concept C
is satisfiable w.r.t. a KB K if K has a model A with CA 6= ∅.

We use standard notation for first-order logic (FO), and
consider formulas constructed using concept names as unary
relation symbols, role names as binary relation symbols, and
individual names as constants. Equality is admitted. It is
well-known that every DL conceptC is equivalent to an FO-
formulaϕC(x) with a single free variable x. For a KBK, an
FO-formula ϕ(x) with a single free variable x, and a con-
stant a, we write K |= ϕ(a) if A |= ϕ(a) in all models A

of K.
We associate with every structure A a directed graph

Gd
A

= (dom(A),
⋃

r∈NR
rA). Let Gu

A
= (dom(A), E′) be

the undirected version of Gd
A

obtained by forgetting edge
directions. We can thus apply graph theoretic terminol-
ogy to structures. The directed graph Gd

A
is relevant for

the DLs ALC and ALCO that do not support inverse roles
while the undirected graph Gu

A
is relevant for ALCI and

ALCIO. To simplify notation, we often prefix a prop-
erty of structures with the language for which it is rele-
vant. For example, if L ∈ {ALC,ALCO} then we say
that A has finite L-outdegree if Gd

A
has and we call A L-

rooted in a if every node in A is reachable from a in Gd
A

.
For L ∈ {ALCI,ALCIO}, the two notions are defined
in the same way, but based on Gu

A
in place of Gd

A
. For

L ∈ {ALCI,ALCIO}, A is an L-tree if Gu
A

is acyclic
(also excluding self loops) and there are no multi-edges in
the sense that RA

1 and RA
2 are disjoint for all distinct roles

R1, R2. For L ∈ {ALC,ALCO}, A is an L-tree if, in addi-
tion, every node in Gd

A
has at most one incoming edge.

Let L ∈ {ALC,ALCI}. A model A of an L-KB K =
(O,D) is an L-forest model of K if A with all r(aA, bA),
a, b ∈ ind(D), removed is the disjoint union of L-trees
rooted at aA, a ∈ ind(D). A is anALCO-forest model of an
ALCO-KBK = (O,D) if A with all r(a, bA), a ∈ dom(A),
b ∈ ind(D), removed is the disjoint union of ALCO-trees
rooted at aA, a ∈ ind(D). The following completeness re-
sult is well-known (Baader et al. 2017).

Lemma 1 Let L ∈ {ALC,ALCI,ALCO}, K an L-KB,
and C an L-concept. If K 6|= C(a), then there exists an
L-forest model A for K of finite L-outdegree with a 6∈ CA.

Note that Lemma 1 does not hold forALCIO, a counterex-
ample is given in the appendix.

Besides DL-concepts, we use FO-formulas with a single
free variable as separating formulas. Of particular impor-

tance are the following FO-fragments which combine the ex-
pressive power of (unions of) conjunctive queries with DLs.
Let L ∈ DLni. Then CQL denotes the language of all FO-
formulas ϕ(x) = ∃~y ψ where ψ is a conjunction of atoms
C(t), C an L-concept, or r(t1, t2) with t, t1, t2 variables or
constants, and x is the single free variable of ϕ(x). UCQL

contains all formulas ϕ(x) = ϕ1(x) ∨ · · · ∨ ϕn(x) with

ϕi(x) ∈ CQL. Clearly, CQL and UCQL contain all unary
conjunctive queries (CQ) and unions of unary conjunctive
queries (UCQ), respectively. Note that UCQALCI is a frag-
ment of the unary negation fragment (UNFO), a decidable
fragment of FO that generalizes many modal and description
logics (Segoufin and ten Cate 2013). We next define rooted
versions of these languages. We may view formulas in CQL

as structures, in the obvious way by ignoring atoms C(t).
For L ∈ DLni, CQL

r denotes the formulas ϕ(x) in CQL that
are L-rooted in x and similar for UCQL

r . Finally note that,
although the languages UCQL

r and UCQL are not syntacti-
cally closed under conjunction, every conjunction is again
equivalent to a formula in the respective language.

For any L ∈ DLni and signature Σ the definition of an
L(Σ)-bisimulation S between structures A and B is stan-
dard, for details we refer to (Lutz, Piro, and Wolter 2011;
Goranko and Otto 2007). We write A, d ∼L,Σ B, e and
call pointed structures A, d and B, e L(Σ)-bisimilar if there
exists an L(Σ)-bisimulation S such that (d, e) ∈ S. We
say that A, d and B, e are L(Σ)-equivalent, in symbols
A, d ≡ALCI,Σ B, e if d ∈ CA iff e ∈ CB for all
C ∈ L(Σ); ω-saturated structures are defined and discussed
in (Chang and Keisler 1998).

Lemma 2 Let L ∈ DLni. Let A, d and B, e be pointed
structures of finite L-outdegree or ω-saturated and Σ a sig-
nature. Then

A, d ≡L,Σ B, e iff A, d ∼L,Σ B, e.

For the “if” direction, the condition “finite outdegree or ω-
saturated” can be dropped.

The definition of a Σ-homomorphism h from a structure A

to a structure B is standard. Every databaseD gives rise to a
finite structure AD in the obvious way. A Σ-homomorphism
from database D to structure A is a Σ-homomorphism from
AD to A.

We combine homomorphisms and bisimulations to char-
acterize the languages CQL and CQL

r . Consider pointed
structures A, d and B, e, and a subset D of dom(A) such
that d ∈ D ⊆ dom(A). Let L ∈ DLni and Σ a signature.
Then a CQL(Σ)-homomorphism with domain D between
A, d and B, e is a Σ-homomorphism h : A|D → B such

that h(d) = e and A, c ∼L,Σ B, h(c) for all c ∈ D. In this
case we write A, d→D,L,Σ B, e.

We write A, d ⇒CQL
r ,Σ B, e if A |= ϕ(a) implies B |=

ϕ(b) for all ϕ(x) in CQL
r (Σ), and we write A, d ⇒mod

CQL
r ,Σ

B, e if for all finite D ⊆ dom(A) such that the Σ-reduct
of A|D is L-rooted in d, we have A, d →D,L,Σ B, e. The

definitions for CQL are analogous except that the Σ-reduct
of A|D need not be L-rooted in d.



Lemma 3 Let L ∈ DLni and let A, d and B, e be pointed
structures of finite L-outdegree or ω-saturated, and Σ a sig-
nature. Then

A, d⇒CQL
r ,Σ B, e iff A, d⇒mod

CQL
r ,Σ B, e.

This equivalence holds for CQL if A and B are ω-saturated.
In both cases, for the “if”-direction, the condition “finite
outdegree or ω-saturated” can be dropped.

3 Weak Separability with Signature

We start with introducing the problem of (weak) separability
with signature, in its projective and non-projective version.
Let L ∈ DLni. A labeled L-KB takes the form (K, P,N)
with K = (O,D) an L-KB and P,N ⊆ ind(D) non-empty
sets of positive and negative examples.

Definition 1 Let L ∈ DLni, (K, P,N) be a labeled L-KB,
and let Σ ⊆ sig(K) be a signature. An FO-formula ϕ(x)
Σ-separates (K, P,N) if sig(ϕ) ⊆ Σ ∪ Σhelp for some set
Σhelp of concept names disjoint from sig(K) and

1. K |= ϕ(a) for all a ∈ P and

2. K 6|= ϕ(a) for all a ∈ N .

Let LS be a fragment of FO. We say that (K, P,N) is pro-
jectively LS(Σ)-separable if there is an LS-formula ϕ(x)
that Σ-separates (K, P,N) and non-projectively LS(Σ)-
separable if there is such a ϕ(x) with sig(ϕ) ⊆ Σ.1

In Σ-separating formulas, concept names from Σhelp should
be thought of as helper symbols. Their availability some-
times makes inseparable KBs separable, examples are pro-
vided below where we also discuss the effect of admit-
ting role or individual names as helper symbols. We
only consider FO-fragments LS that are closed under
conjunction. In this case, a labeled KB (K, P,N) is
LS(Σ)-separable if and only if all (K, P, {b}), b ∈ N ,
are LS(Σ)-separable, and likewise for projective LS(Σ)-
separability (Jung et al. 2020). In what follows, we thus
mostly consider labeled KBs with singleton sets N of nega-
tive examples.

Each choice of an ontology language L and a separation
languageLS give rise to a projective and to a non-projective
separability problem.

PROBLEM: (Projective) (L,LS)-separability w. signature
INPUT: A labeled L-KB (K, P,N)

and signature Σ ⊆ sig(K)
QUESTION: Is (K, P,N) (projectively) LS(Σ)-separable?

If L = LS , then we simply speak of (projective) L-
separability. We study the complexity of L-separability with
signature where the KBK and sets of examplesP andN are
all taken to be part of the input. All lower bounds proved in
this paper still hold if P and N are singleton sets.

1It is worth clarifying the interplay between nominals in the
separating language and individual names in Σ: If Σ does not con-
tain individual names, then ALCO(Σ)-separability coincides with
ALC(Σ)-separability; conversely, if LS does not allow for nomi-
nals, LS(Σ)-separability coincides with LS(Σ \ NI)-separability.

We next provide an example that illustrates the im-
portance of the distinction between projective and non-
projective separability.

Example 1 Let D contain r(a1, a2), . . . , r(an−1, an),
r(an, a1) and r(b, b1), where n > 1. Thus, the individual
a1 is part of an r-cycle of length n but b is not. Let
O = {⊤ ⊑ ∃r.⊤ ⊓ ∃r−.⊤}, K = (O,D), P = {a1},
N = {b}, and Σ = {r}. Then (K, P,N) is non-projectively
CQ(Σ)-separable (take the CQ that states that x par-
ticipates in a cycle of length n), but (K, P,N) is not
non-projectively ALCI(Σ)-separable because for any
ALCI(Σ)-concept C either O |= ⊤ ⊑ C or O |= C ⊑ ⊥.
If, however, a helper symbol A is allowed, then A→ ∃rn.A
Σ-separates (K, P,N).

We discuss the effect of also admitting individual names
as helper symbols. Then already for ALC-KBs, pro-
jective inseparability becomes undecidable. The proof
is inspired by reductions of undecidable tiling problems
in the context of conservative extensions and modular-
ity (Lutz, Walther, and Wolter 2007; Grau et al. 2008).

Theorem 1 Projective (ALC,ALCO)-separability with
signature becomes undecidable when additionally individ-
ual names are admitted as helper symbols.

Admitting role names as helper symbols has a less dra-
matic impact. For ALC and ALCI-separability they do not
make any difference at all and forALCO andALCIO their
effect can be captured by a single additional role name which
enables a straightforward polynomial reduction to separabil-
ity without role names as helper symbols.

Theorem 2 (1) Let L ∈ {ALC,ALCI}. Then projective
L-separability coincides with projective L-separability with
concept and role names as helper symbols.

(2) Let L ∈ {ALCO,ALCIO} and (K, P,N) be a la-
beled L-KB and Σ ⊆ sig(K) a signature. Let rI be a fresh
role name and let K′ be the extension of K by the ‘dummy’
inclusion ∃rI .⊤ ⊑ ∃rI .⊤. Then the following conditions
are equivalent:

• (K, P,N) is projectively L(Σ)-separable with concept
and role names as helper symbols;

• (K′, P,N) is projectively L(Σ ∪ {rI})-separable.

The proof uses the model-theoretic characterization of
separability given in Theorem 4 below. The next example
illustrates the use of a helper role name in ALCO.

Example 2 Let K = (O,D), where O = {A0 ⊓ ∃r.⊤ ⊑
⊥, B ⊑ ∀r.A} and D = {r(c, a), A0(a), A0(b)}. Let
Σ = {c, B,A}. Then (K, {a}, {b}) is not projec-
tively ALCIO(Σ)-separable, but the ALCO(Σ)-concept
∃rI .({c}⊓B)→ A separates (K, {a}, {b}) using the helper
symbol rI .

We next make first observations regarding the sepa-
rating power of several relevant separating languages.
In (Funk et al. 2019; Jung et al. 2020), projective and non-
projective separability are studied without signature restric-
tions, that is, all symbols used in the KB except individual
names can appear in separating formulas. We call this the
full relational signature. Surprisingly, it turned out that in



this case many different separation languages have exactly
the same separating power. In particular, a labeled ALCI-
KB is FO-separable iff it is UCQ-separable, and projective
and non-projective separability coincide. No such result can
be expected for separability with signature restrictions, as
illustrated by the next example.

Example 3 Let K = (O,D), where O = {A ⊑ ∃r.B ⊓
∃r.¬B} and D = {A(a), r(b, c)}. Let P = {a}, N = {b},
and Σ = {r}. Clearly, the formula

∃y∃y′(r(x, y) ∧ r(x, y′) ∧ ¬(y = y′))

Σ-separates (K, P,N), but (K, P,N) is not UCQ(Σ)-
separable.

It is also shown in (Funk et al. 2019; Jung et al. 2020) that
for labeled ALCI-KBs and with the full relational signa-
ture, UCQ-separability (projectively or not) coincides with
projective ALCI-separability. The next example shows
that with restricted signatures, it is not even true that non-
projectiveALCI-separability implies UCQ-separability.

Example 4 Let O = {A ⊑ ∀r.B} and D = {A(a), C(b)}.
Let P = {a},N = {b}, and Σ = {r, B}. Clearly, theALC-
concept ∀r.B Σ-separates (O,D, P,N), but (O,D, P,N)
is not UCQ(Σ)-separable.

Conversely, it follows from Example 1 that UCQ-
separability does not imply non-projective ALCI-
separability, even with the full relational signature.
Interestingly, in the projective case, this implication holds
even with restricted signatures: every UCQ(Σ)-separable la-
beled ALCI-KB is also projectively ALCI(Σ)-separable.
This follows from more powerful equivalences proved
below (Theorem 5).

In this paper, we mainly focus on projective separability.
In fact, it emerges from (Funk et al. 2019; Jung et al. 2020)
that insisting on non-projective separability is a source of
significant technical difficulties while not always deliver-
ing more natural separating concepts. As our main aim is
to study the impact of signature restrictions on separability,
which is another source of significant technical challenges,
we prefer to leave out the first such source and stick with
projective separability.

We close this introduction with the observation that
in contrast to the case of full relational signatures, FO-
separability with signature is undecidable for labeled ALC-
KBs. We prove this using the same technique as for Theo-
rem 1. Undecidability applies even when one separates in
the decidable extensionALCFIO ofALCIO with unqual-
ified number restrictions of the form (≤ 1 r).

Theorem 3 (ALC,LS)-separability with signature is un-
decidable for any fragment LS of FO that contains
ALCFIO, both in the projective and non-projective case.

4 Model-Theoretic Criteria and Equivalence

Results

We provide powerful model-theoretic criteria that underly
the decision procedures given later on. Moreover, we use
these criteria to establish equivalences between projective

separability and non-projective separability in more expres-
sive languages that shed light on the role of helper symbols.

We start with the model-theoretic criteria using functional

bisimulations. For L ∈ DLni we write A, a ∼f
L,Σ B, b if

there exists an L(Σ)-bisimulation S between A and B that
contains (a, b) and is functional, that is, (d, d1), (d, d2) ∈ S

implies d1 = d2. Note that A, a ∼f
L,Σ B, b implies that

there is a homomorphism from A, a to B, b if A is connected
and L = ALCI , but not otherwise.

Theorem 4 Let L ∈ {ALC,ALCI,ALCO}. Assume that
(K, P, {b}) is a labeled L-KB with K = (O,D) and Σ ⊆
sig(K). Then the following conditions are equivalent:

1. (K, P, {b}) is projectively L(Σ)-separable.

2. there exists anL-forest modelA ofK of finiteL-outdegree
and a set Σhelp of concept names disjoint from sig(K)
such that for all models B of K and all a ∈ P :
B, aB 6∼L,Σ∪Σhelp

A, bA.

3. there exists anL-forest modelA ofK of finiteL-outdegree
such that for all models B of K and all a ∈ P :

B, aB 6∼f
L,Σ A, bA.

The equivalence between Points 1 and 2 of Theorem 4 is
a direct consequence of the following characterization in the
non-projective case (which can be proved using Lemmas 1
and 2): a labeled L-KB (K, P, {b}) is non-projectively
L(Σ)-separable iff there exists an L-forest model A of K
of finite L-outdegree such that for all models B ofK and all
a ∈ P : B, aA 6∼L,Σ A, bA. Due to cycles in the databases
the general bisimulations used in this criterion and in Point 2
of Theorem 4 are hard to encode in an automata based de-
cision procedure. Moreover, in Point 2 one has to “guess”
the number of helper symbols needed. The criterion given
in Point 3, in contrast, is much better suited for this purpose
and does not speak about helper symbols.

The equivalence of 2. and 3. is surprisingly straightfor-
ward to show as one can work with the same model A. As
Lemma 1 fails to hold for L = ALCIO, Theorem 4 also
does not hold for this choice of L. An example that illus-
trates the situation is given in the appendix.

As a first important application of Theorem 4, we
show that projective ALCI-separability is equivalent to
non-projective separability in UCQALCI

r and that pro-
jective (ALC,ALCO)-separability is equivalent to non-

projective (ALC,UCQALCO
r )-separability. The following

example illustrates why the languages UCQL
r can non-

projectively separate labeled KBs that cannot be separated
non-projectively in a natural way in languages from DLni.

Example 5 Let K = (O,D), where O = {B ⊑ ∀t.A} and
D is depicted below:

a c b1 d b2
e

f

B

B
B

r r
r

s s s

Let P = {a}, N = {b1, b2}, and Σ = {r, s, t, A}. Then

∃y r(x, y) ∧ s(x, y) ∧ (∀t.A)(y) ∈ CQALC
r



Σ-separates (K, P,N). The ‘simplest’ ALC-concept Σ-
separating (K, P,N) is (∃r.∀t.A)⊓(∀r.X → ∃s.X), where
X is fresh.

We next state the announced equivalences. Informally
spoken, they show that admitting helper concept names cor-
responds to ‘adding rooted UCQs’.

Theorem 5 Let (L,LS) be either (ALCI,ALCI) or
(ALC,ALCO) and let (K, P, {b}}) be a labeled L-KB and
Σ ⊆ sig(K) a signature. Then the following conditions are
equivalent:

1. (K, P, {b}) is projectively LS(Σ)-separable;

2. (K, P, {b}) is non-projectively UCQLS
r (Σ)-separable.

Proof. The proof has two main steps. First, using
Lemma 3, one can characterize non-projective UCQLS

r (Σ)-
separability in terms of CQLS (Σ)-homomorphisms.
Namely, (K, P, {b}) is non-projectively UCQLS

r (Σ)-
separable iff there exist an LS-forest model A of K of
finite LS-outdegree and n > 0 such that for all models B

of K and all a ∈ P , B, aB 6→D,LS,Σ A, bA, for some D
with |D| ≤ n such that the Σ-reduct of B|D is LS-rooted

in aB. Secondly, one can prove that this characterization
is equivalent to Condition 3 of Theorem 4. Observe, for
example, that functional Σ-bisimulations give rise to the
combination of Σ-homomorphisms and Σ-bisimulations
given in the characterization above. ❏

We observe that the equivalences of Theorem 5 do not hold
when the ontology contains nominals.

Example 6 Let K = (O,D), where O = {{a} ⊑
∀r.{a},⊤ ⊑ ∃r.⊤}, and D = {A(a), r(b, b)}. Let Σ =
{r}. Then (K, {a}, {b}) is projectively separated by the
ALC(Σ)-concept X → ∀r.X with X a fresh concept name,
but it is not non-projectively UCQALCO

r (Σ)-separable.

It remains open whether there is any natural fragment of FO
such that a labeled ALCO-KBs is non-projectively separa-
ble in the fragment if and only if it is projectively separable
in ALCO.

5 The Complexity of Weak Separability

We study the decidability and computational complexity of
projective L-separability for L ∈ {ALC,ALCI,ALCO}.
The results established in this section are closely related to
conservative extensions of ontologies and we also observe
new results for that problem. ForL-ontologiesO andO′, we
say that O ∪O′ is a conservative extension of O in L if, for
all concept inclusionsC ⊑ D withC,D L-concepts that use
only symbols from sig(O): ifO∪O′ entailsC ⊑ D then al-
ready O entails C ⊑ D. Projective conservative extensions
in L are defined in the same way except that C and D may
additionally use fresh concept names, that is, concept names
that are not in sig(O ∪ O′). If O ∪ O′ is not a conservative
extension of O in L, then there exists an L-concept C that
uses only symbols from sig(O) and is satisfiable w.r.t. O,
but not w.r.t. O ∪ O′. We call such a concept C a witness
concept for O and O′.

Lemma 4 Let L ∈ DLni. Then deciding conservative ex-
tensions in L can be reduced in polynomial time to the com-
plement of L-separability, both in the projective and non-
projective case.

Proof. The proof uses relativizations. Intuitively, givenO
and O′ one computes a new ontologyO1 which contains O
and the relativization ofO′ to a fresh concept nameA. Then,
a concept C is a witness concept for O and O′ iff ¬C sep-
arates (w.r.t. O1) an individual that satisfies A from an in-
dividual that does not satisfy A. If L contains nominals the
proof is slightly more involved. ❏

We start our analysis with the DLs ALC and ALCI.

Theorem 6 Projective L-separability with signature is
2EXPTIME-complete, for L ∈ {ALC,ALCI}.

The lower bound follows from Lemma 4 and
also holds for non-projective separability. In fact,
it is known that deciding (non-projective) con-
servative extensions in L ∈ {ALC,ALCI} is
2EXPTIME-hard (Ghilardi, Lutz, and Wolter 2006;
Lutz, Walther, and Wolter 2007) and that conservative
extensions and projective conservative extensions coincide
in logics that enjoy Craig interpolation (Jung et al. 2017),
whichALC and ALCI do.

For the upper bound, we concentrate on ALCI; the case
of ALC is very similar, but simpler. The idea is to use
two-way alternating tree automata (2ATA) (Vardi 1998) to
decide Condition 3 of Theorem 4. More precisely, given
(K, P, {b}),Σ with K = (O,D), we construct a 2ATA A
such that the language recognized by A is non-empty if and
only if there is a forest model A of K as described in Con-
dition 3 of Theorem 4. The use of tree automata is enabled
by the fact that Condition 3 refers to forest models of K. In-
deed, forest structures can be encoded in labeled trees using
an appropriate alphabet. Intuitively, each node in the tree
corresponds to an element in the forest structure and the la-
bel contains its type, the connection to its predecessor, and
connections to individuals from D.

It is not difficult to devise a 2ATA B (of polynomial size)
that recognizes the finite outdegree forest models of K, see
e.g. (Jung et al. 2017). Observe next that it suffices to con-
struct, for each a ∈ P , a 2ATA Aa such that Aa accepts A
iff

(∗a) there is a model B of K with B, aB ∼f
ALCI,Σ A, bA.

Indeed, a 2ATA that recognizes the following language is as
required:

L(B) ∩
⋂

a∈P L(Aa)

where L denotes the complement of L. As complementa-
tion and intersection of 2ATAs involve only a polynomial
blowup, we obtain the desired 2ATA A from B and the Aa.

In principle, the existence of a (not necessarily function-
ally) bisimilar model B can be checked using alternating au-
tomata as follows. We assume w.l.o.g. that the model B is a
forest model, because we can always consider an appropriate
unraveling. Then, the alternating automaton ‘virtually’ tra-
verses B element-by-element, storing at each moment only
the type of the current element in its state and visiting a



bisimilar element in A. Alternation is crucial as the automa-
ton has to extend the bisimulation for all successors of the
current element in B and symmetrically for all successors
of the currently visited element in A. Functionality of the
bisimulation poses a challenge: different parts of the run of
the automaton can visit the same individual from D in B,
and functionality requires that the automaton visits the same
element in A. In order to solve that (and get tight bounds),
we replace (∗a) with an equivalent condition in which func-
tional bisimulations are carefully ‘compiled away’.

We introduce some additional notation. An extended
database is a database that additionally may contain ‘atoms’
of the form C(a) with C an ALCI-concept. The semantics
of extended databases is defined in the expected way. Let
sub(K) denote the set of concepts that occur in K, closed
under single negation and under subconcepts. The K-type
realized in a pointed structure A, a is defined as

tpK(A, a) = {C ∈ sub(K) | a ∈ CA}.

A K-type is any set t ⊆ sub(K) of the form tpK(A, a). For

a pointed database D, a, we write Dcon(a), a →
Σ
c A, bA if

there is a Σ-homomorphism h from the maximal connected
component Dcon(a) of a in D to A such that h(a) = bA and

there is a K-type td for each d ∈ ind(Dcon(a)) such that:

(i) there exists a model Bd of O with tpK(Bd, d) = td and
Bd, d ∼ALCI,Σ A, h(d);

(ii) (O,D′) is satisfiable, for the extended databaseD′ = D∪
{C(d) | C ∈ td, d ∈ ind(Dcon(a))}.

Lemma 5 For all forest models A ofK and all a ∈ P , Con-
dition (∗a) is equivalent to Dcon(a), a→

Σ
c A, bA.

Intuitively, the homomorphism h fixes the image of the
bisimulation of the individuals from D, and a 2ATA can
decide Dcon(a), a →

Σ
c A, bA as follows. It first non-

deterministically guesses types td, d ∈ ind(Dcon(a)) that
satisfy Item (ii) above and stores them in its states. Then
it gradually guesses a Σ-homomorphism from Dcon(a) to A.

Whenever, it guesses a new image h(d) for some d, it veri-
fies the bisimulation condition in Item (i) as described above.
Overall, Aa (and thus A) uses exponentially many states.
The 2EXPTIME upper bound follows as non-emptiness can
be decided in exponential time (Vardi 1998).

ForALCO, we show the surprising result that separability
becomes harder than in ALC and ALCI, by one exponent.
We establish the same result also for the more basic problem
of conservative extensions.

Theorem 7 Projective ALCO-separability with signature
and projective conservative extensions in ALCO are
3EXPTIME-complete.

We show in the appendix that the lower bound also applies to
non-projective conservative extensions and, by Lemma 5, to
non-projectiveALCO-separability with signature. An upper
bound for that case remains open. The upper bound easily
extends to the variant of projective conservative extensions
where we are interested only in the entailment of concept
inclusions C ⊑ D formulated in a given subsignature Σ ⊆
sig(O), c.f. (Ghilardi, Lutz, and Wolter 2006).

By Lemma 4, it suffices to show the lower bound in The-
orem 7 for conservative extensions and the upper bound for
separability. We start with the former, which is proved by re-
duction of the word problem of double exponentially space
bounded ATMs. The reduction strategy follows and extends
the one used in (Ghilardi, Lutz, and Wolter 2006) to prove
that deciding conservative extensions of ALC-ontologies is
2EXPTIME-complete. The reduction proceeds in two steps.
First, for every n ≥ 1 one crafts ontologies On and O′

n

of size polynomial in n such that On ∪ O′
n is not a con-

servative extension of On, but all witness concepts for On

and O′
n are of size quadruple exponential in n. More pre-

cisely, On and O′
n implement a binary counter that is able

to count the length of role paths up to 22
2
n

and witness con-
cepts need to enforce a binary tree of that depth. The triple
exponential counter is implemented by building on a double
exponential counter which in turn builds on a single expo-
nential counter. The two latter counters are implemented
exactly as in (Ghilardi, Lutz, and Wolter 2006) and the im-
plementation of the triple exponential counter crucially uses
a nominal. In fact, On does not use any nominals and a
single nominal in O′

n suffices. The implementation of the
counters is quite subtle. For the third counter, we indepen-
dently send multiple O′

n-types down a path in the binary
tree generated by a witness concept and use the nominal to
‘re-synchronize’ them again later. In the second step of the
reduction, we simulate the computation of a fixed ATM on
a given input in the binary trees of triple exponential depth
generated by witness concepts forOn and O′

n.

For the upper bound in Theorem 7, we again pursue an
automata-based approach. As for ALCI, we encode forest
structures as inputs to 2ATAs and the goal is to construct
a 2ATA Aa that accepts an input A if and only if Condi-
tion (∗a) is true, with ALCI replaced by ALCO. However,
instead of going via an intermediate characterization such as
Lemma 5, we directly use (∗a) (at the cost of one exponent).

The problem of synchronizing different visits of the in-
dividuals in D during the (virtual) construction of B is ad-
dressed as follows. We first construct a 2ATA A′

a over an
extended alphabet. A labeled tree over that alphabet does
not only contain the structure A, but also marks a possible
choice of the elements in A that are bisimilar to the individu-
als in D. Now, when the automaton is in a state representing
an individual d ∈ ind(D) during the construction of B, it en-
sures that the currently visited element of A is marked with
d in the input. The desired automaton Aa is then obtained
by projectingA′

a to the original input alphabet.

The 2ATAA′
a can be constructed in exponential time and

has at most exponentially many states. Since projection of
alternating automata involves an exponential blow-up,Aa is
of double exponential size. Together with the exponential
non-emptiness test, we obtain the 3EXPTIME-upper bound.

6 Strong Separability with Signature

We discuss strong separability of labeled KBs. The crucial
difference to weak separability is that the negation of the
separating formula must be entailed at all negative examples.



Definition 2 Let L ∈ DLni, (K, P,N) be a labeled L-KB,
and let Σ ⊆ sig(K) be a signature. An FO-formula ϕ(x)
strongly Σ-separates (K, P,N) if sig(ϕ) ⊆ Σ and

1. K |= ϕ(a) for all a ∈ P and

2. K |= ¬ϕ(a) for all a ∈ N .

Let LS be a fragment of FO. We say that (K, P,N) is
strongly LS(Σ)-separable if there exists an LS-formula
ϕ(x) that strongly Σ-separates (K, P,N).

In contrast to weak separability, we do not consider a pro-
jective version of strong separability as any formula ϕ that
stronglyΣ-separates a labeled KB (K, P,N) and uses helper
symbols can easily be transformed into a strongly separat-
ing formula that uses only symbols from Σ: simply replace
any occurrence of such a formula A(x), A 6∈ Σ, by x = x
(or a concept name A by ⊤). Then, if ϕ strongly separates
(K, P,N), so does the resulting formula ϕ′.

Note that for languages LS closed under conjunction
and disjunction a labeled KB (K, P,N) is strongly LS(Σ)-
separable iff every (K, {a}, {b}) with a ∈ P and b ∈ N is
strongly LS(Σ)-separable. In fact, if ϕa,b strongly separates
(K, {a}, {b}) for a ∈ P and b ∈ N , then

∨

a∈P

∧

b∈N ϕa,b

strongly separates (K, P,N). Without loss of generality, we
may thus work with labeled KBs with singleton sets of pos-
itive and negative examples.

Each choice of an ontology language L and a separation
language LS thus gives rise to a (single) strong separabil-
ity problem that we refer to as strong (L,LS)-separability,
defined in the expected way:

PROBLEM : Strong (L,LS) separability with signature
INPUT : Labeled L-KB (K, P,N) and

signature Σ ⊆ sig(K)
QUESTION : Is (K, P,N) strongly LS(Σ)-separable?

If L = LS , then we simply speak of strong L-separability.
The study of strong separability is very closely linked to
the study of interpolants and the Craig interpolation prop-
erty (CIP). Given FO-formulas ϕ(x), ψ(x) and a fragment
L of FO, we say that an L-formula χ(x) is an L-interpolant
of ϕ, ψ if ϕ(x) |= χ(x), χ(x) |= ψ(x), and sig(χ) ⊆
sig(ϕ) ∩ sig(ψ). We say that L has the CIP if for all L-
formulas ϕ(x), ψ(x) such that ϕ(x) |= ψ(x), there exists an
L-interpolant of ϕ, ψ. FO and many of its fragments have
the CIP (Craig 1957; ten Cate, Franconi, and Seylan 2013;
Maksimova and Gabbay 2005). The link between inter-
polants and strongly separating formulas is easy to see: as-
sume a labeled L-KB (K, {a}, {b}) and a signature Σ ⊆
sig(K) are given. Obtain KΣ,a (andKΣ,b) fromK by taking
the standard translation of K into FO and then

• replacing all concept and role names X 6∈ Σ by fresh
symbols Xa (Xb, respectively);

• replacing all individual names c 6∈ Σ ∪ {a} by fresh vari-
ables xc (all c 6∈ Σ ∪ {b} by fresh variables yc, respec-
tively);

• replacing a by x (and b by x, respectively) for a single
fresh variable x;

• adding x = a if a ∈ Σ (x = b if b ∈ Σ, respectively).

Let ϕK,Σ,a(x) = ∃~z(
∧

KΣ,a), where ~z is the sequence of
free variables inKΣ,a without the variable x and (

∧

KΣ,a) is
the conjunction of all formulas inKΣ,a. ϕK,Σ,b(x) is defined
in the same way, with a replaced by b. The following lemma
is a direct consequence of the construction.

Lemma 6 Let (K, {a}, {b}) be a labeled L-KB, Σ ⊆
sig(K) a signature, and LS a fragment of FO. Then the fol-
lowing conditions are equivalent for any formula ϕ(x) in
LS:

1. ϕ strongly Σ-separates (K, {a}, {b});
2. ϕ is an LS-interpolant for ϕK,Σ,a(x),¬ϕK,Σ,b(x).

Example 7 To illustrate Lemma 6, let Σ = {r} and K =
(O,D), with O = {A ⊑ ∀r.¬A} and D = {A(a), r(b, b)}.
Then, ¬r(x, x) strongly (Σ)-separates (K, {a}, {b}) and is
an interpolant for ϕK,Σ,a, ¬ϕK,Σ,b where ϕK,Σ,a, ϕK,Σ,b

are the following two formulas:

∃xb r(xb, xb) ∧ Aa(x) ∧ ∀yz(r(y, z) ∧ Aa(y)→ ¬Aa(z)),

∃yaAb(ya) ∧ r(x, x) ∧ ∀yz (r(y, z) ∧ Ab(y)→ ¬Ab(z)).

Thus, the problem whether a labeled KB (K, P,N) is
stronglyLS(Σ)-separable and the computation of a strongly
Σ-separating formula can be equivalently formulated as an
interpolant existence problem. As FO has the CIP, we obtain
the following characterization and complexity result for the
existence of strongly FO(Σ)-separating formulas.

Theorem 8 Let L ∈ DLni. The following conditions are
equivalent for any L-KB (K, {a}, {b}) and signature Σ ⊆
sig(K):

1. (K, {a}, {b}) is strongly FO(Σ)-separable;

2. ϕK,Σ,a(x) |= ¬ϕK,Σ,b(x).

Strong (L,FO)-separability with signature is EXPTIME-
complete.

The EXPTIME upper bound follows from the fact that
the complement of the problem to decide ϕK,Σ,a(x) |=
¬ϕK,Σ,b(x) can be equivalently formulated as a concept sat-
isfiability problem in the extension ALCIOu of ALCIO
with the universal role u. The lower bound can be proved by
reduction of ALC-KB satisfiability.

It follows from Theorem 8 that one can use FO theo-
rem provers such as Vampire to compute strongly separating
formulas (Hoder et al. 2012). FO is arguably too powerful,
however, to serve as a useful separation language for labeled
description logic KBs. Thus, two important questions arise:
(1) which fragment of FO is needed to obtain a strongly sep-
arating formula in case that there is a strongly separating
formula in FO? (2) What happens if the languagesL ∈ DLni
are used as separation languages? For (1), one can show

that none of the languages in UCQL, L ∈ DLni, is suffi-
cient to separate a and b in Example 7. We next show that
the need for the negation of a CQ in that example is no ac-
cident. Indeed, by taking the closure BoCQALCIO(Σ) of
CQALCIO(Σ) under negation, conjunction, and disjunction
one obtains a sufficiently powerful language for (1), at least
if the KB does not admit nominals.

Theorem 9 The following conditions are equivalent for any
labeledALCI-KB (K, P,N) and signature Σ ⊆ sig(K).



1. (K, P,N) is strongly FO(Σ)-separable;

2. (K, P,N) is strongly BoCQALCIO(Σ)-separable.

The proof of Theorem 9 uses the model-theoretic char-
acterization given in Lemma 3 and techniques introduced
in (Segoufin and ten Cate 2013). Problem (2) can be com-
prehensively solved by using recent results about the com-
plexity of deciding the existence of interpolants in DLs with
nominals (Artale et al. 2021). Rather surprisingly, strong
separability becomes one exponential harder than for FO.
While the upper bounds are direct consequences of the re-
sults in (Artale et al. 2021), for the lower bounds one has to
adapt the proofs.

Theorem 10 Let L ∈ DLni. Then strong L-separability
with signature is 2EXPTIME-complete.

7 Separability with Signature in GF and FO2

In the guarded fragment, GF, of FO quantification takes the
form

∀~y(α(~x, ~y)→ ϕ(~x, ~y)) and ∃~y(α(~x, ~y) ∧ ϕ(~x, ~y))

where α(~x, ~y) is an atomic formula or an
equality x = y that contains all variables in
~x, ~y (Andréka, Németi, and van Benthem 1998;
Hernich et al. 2020). The two-variable fragment, FO2,
is the fragment of FO with only two individual variables.
For GF we admit relation symbols of arbitrary arity and
equality, but no constant symbols. For FO2 we make the
same assumptions except that we admit relation symbols of
arity one and two only. The definitions of weak projective
and non-projective separability and of strong separability
are the obvious extensions of the definitions given for
description logics. Our results do not depend on whether
one admits examples that are sets of tuples of constants
of fixed but arbitary length or still only considers sets of
constants.

Weak FO2-separability is undecidable already with full
relational signature, in both the projective and the non-
projective case (Jung et al. 2020). For GF the situation is
different: in both cases weak GF-separability is 2EXPTIME-
complete, thus not harder than satisfiability. This result does
not generalize to restricted signatures. In fact, by adapting
the undecidability proof for conservative extensions given
in (Jung et al. 2017), one can show the following.

Theorem 11 Projective and non-projective (L,LS)-
separability with signature are undecidable for all (L,LS)
such that L contains GF3 and LS containsALC.

We now consider strong separability. For both FO2

and GF the complexity of deciding strong separability
with full relational signature is the same as validity, thus
CONEXPTIME-complete and, respectively, 2EXPTIME-
complete (Jung et al. 2020). With restricted signatures, the
situation is different, and can again be analyzed in terms of
interpolant existence. The formulaϕK,Σ,a(x) constructed in

Section 6 is not guaranteed to be in GF or FO2 even if K is a
GF or, respectively, FO2-KB. It is, however, straightforward
to construct formulas in the respective fragments that can

serve the same purpose (either by using constants or by in-
troducing a fresh relation symbol as a guard for D (for GF)
and re-using variables (for FO2)). Thus, strong separabil-
ity in GF and FO2-KBs is again equivalent to interpolant
existence. Points 1 and 2 of the following theorem then
follow from the CIP of FO and the complexity of GF and
FO2 (Grädel 1999; Grädel, Kolaitis, and Vardi 1997). Nei-
ther FO2 nor GF have the CIP (Comer 1969; Pigozzi 1971;
Hoogland and Marx 2002), thus separating in FO2 and GF
is less powerful than separating using FO. The complexity
of interpolant existence for GF and FO2 has recently been
studied in (Jung and Wolter 2021) and the upper bounds in
Points 3 and 4 follow directly from the complexity upper
bounds for interpolant existence. The lower bounds are ob-
tained by adapting the proofs.

Theorem 12 1. Strong (GF,FO)-separability with signature
is 2EXPTIME-complete;

2. Strong (FO2,FO)-separability with signature is
CONEXPTIME-complete;

3. Strong GF-separability is 3EXPTIME-complete, for rela-
tional signatures;

4. Strong FO2-separability with signature is in
CON2EXPTIME and 2EXPTIME-hard, for relational
signatures.

8 Discussion
We have started investigating separability of data exam-
ples under signature restrictions. Our main contribu-
tions are an analysis of the separating power of sev-
eral important languages and the computational complex-
ity of deciding separability. The following table gives an
overview of the complexity of separability for expressive
fragments of FO with and without signature restrictions.
For Horn-DLs we refer the reader to (Funk et al. 2019;
Jung, Lutz, and Wolter 2020). The results in the gray
columns (weak, projective, with signature restriction and
strong with signature restriction, respectively) are shown in
this article, the results of the first (weak, projective, and
full signature), second (weak, non-projective, and full sig-
nature), and fourth (strong and full signature) column are
shown in (Funk et al. 2019; Jung et al. 2020).

Weak Separability Strong Separability
L prj+full full prj+rstr full rstr

ALC NEXP ? 2EXP EXP 2EXP

ALCI NEXP NEXP 2EXP EXP 2EXP

ALCO ? ? 3EXP ? 2EXP

GF 2EXP 2EXP Undec 2EXP 3EXP

FO2 Undec Undec Undec NEXP
≤CON2EXP

≥2EXP

The missing entries forALCO are due to the fact that nomi-
nals are considered for the first time in this article in the con-
text of separability. We conjecture that the complexity is the
same as for ALC; note, however, that one has to be careful
when defining separability problems inALCO under the full
signature as the individuals that provide positive and nega-
tive counterexamples should be disallowed from separating
concepts.



Further interesting theoretical problems include: what is
the complexity of weak projective separability with signa-
ture for ALCIO, where the bisimulation characterization
given in Theorem 4 does not hold? What is the complexity
of non-projective weak separability with signature (and con-
servative extensions) for the DLs in DLni? From a practical
viewpoint, it would be of interest to investigate systemati-
cally the size of separating concepts and to develop algo-
rithms for computing them, if they exist. Recall that such an
algorithm is already provided (by the relation of separating
formulas to Craig interpolants) in the case of strong separa-
bility and it would be of interest to evaluate empirically the
shape and size of Craig interpolants in FO in that case.
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A Further Preliminaries

We remind the reader of different kinds of bisimu-
lations that characterize the expressive power of
the languages in DLni (Lutz, Piro, and Wolter 2011;
Goranko and Otto 2007). Let A and B be structures and
Σ a signature. A relation S ⊆ dom(A) × dom(B) is an
ALCO(Σ)-bisimulation between A and B if the following
conditions hold:

1. if (d, e) ∈ S and A ∈ Σ, then d ∈ AA iff e ∈ AB;

2. if (d, e) ∈ S and c ∈ Σ, then d = cA iff e = cB;

3. if (d, e) ∈ S, r ∈ Σ, and (d, d′) ∈ rA, then there is an e′

with (e, e′) ∈ rB and (d′, e′) ∈ S;

4. if (d, e) ∈ S, r ∈ Σ, (e, e′) ∈ rB, then there is a d′ with
(d, d′) ∈ rA and (d′, e′) ∈ S,

S is an ALCIO(Σ)-bisimulation between A and B if
Points 3 and 4 also hold for inverse roles over Σ. If Σ
is relational then we speak about ALC(Σ) and ALCI(Σ)-
bisimulations, respectively.

Let Σ be a signature. A Σ-homomorphism h from a struc-
ture A to a structure B is a function h : dom(A)→ dom(B)
such that a ∈ AA implies h(a) ∈ AB for all A ∈ Σ,
(a, b) ∈ rA implies (h(a), h(b)) ∈ rB for all r ∈ Σ, and
h(cA) = cB for all c ∈ Σ.

B Proofs for Section 2

Lemma 3 Let L ∈ DLni and let A, d and B, e be pointed
structures of finite L-outdegree or ω-saturated, and Σ a sig-
nature. Then

A, d⇒CQL
r ,Σ B, e iff A, d⇒mod

CQL
r ,Σ B, e.

This equivalence holds for CQL if A and B are ω-saturated.
In both cases, for the “if”-direction, the condition “finite
outdegree or ω-saturated” can be dropped.

Proof. Assume first that A, a ⇒mod
CQL

r ,Σ
B, b and let ϕ(x)

be a formula in CQL
r (Σ) such that A |= ϕ(a). Then there

exists a mapping h from the set var(ϕ) of variables in ϕ(x)
to A such that h(x) = a and

• If r(y, z) is a conjunct of ϕ(x), then (h(y), h(z)) ∈ rA;

• If C(y) is a conjunct of ϕ(x), then h(y) ∈ CA.

Let D be the image of var(ϕ) under h. Then the Σ-reduct of
A|D isL-rooted in a and, by definition ofA, a⇒mod

CQL,Σ
B, b,

we have a Σ-homomorphism h′ from A|D to B such that

h′(a) = b and A, c ∼L,Σ B, h′(c) for all c ∈ D. Take the
composition h′◦h and observe that by Lemma 2, h′◦h(y) ∈
CB ifC(y) is a conjunct ofϕ. Thus, B |= ϕ(b), as required.

The proof for CQL is the same except that the one does not
need to observe that the Σ-reduct of A|D is L-rooted in a.

Conversely, assume that A, a⇒CQL
r ,Σ B, b. To show that

A, a ⇒mod
CQL

r ,Σ
B, b, let D be such that the Σ-reduct of A|D

is L-rooted at a. Consider the set for formulas qAD that is
obtained by regarding the nodes d in D as variables xd and
taking (xd1

, xd2
) if (d1, d2) ∈ rA, r ∈ Σ, and C(xd) if

d ∈ CA for C ∈ L(Σ). If follows from A, a ⇒CQL
r ,Σ B, b

that every finite subset of qAD is satisfied in B under an as-

signment mapping xa to b. If B is ω-saturated, then qAD
is satisfied in B by definition of ω-saturatedness (and also
holds if the Σ-reduct of A|D is not rooted in a). If B has
finite outdegree then this can be shown directly using the
condition that the Σ-reduct of A|D is rooted in a. Let v be
the satisfying assignment. Then h : D → B defined by
setting h(d) = v(xd) is a Σ-homomorphism, h(a) = b, and
A, c ∼L,Σ B, h(c) for all c ∈ D, as required. The implica-

tion for CQL follows using the comment above. ❏

We slightly extend Lemma 1 as required later. The proof
is by a standard selective unraveling procedure.

Lemma 7 Let L ∈ {ALC,ALCI,ALCO} and let K be an
L-KB and C an L-concept. If K 6|= C(a), then there exists
anL-forest model A ofK of finiteL-outdegree with a 6∈ CA.

For every model A of K there exists an L-forest model A′

of K such that A′, aA
′

∼f
L A, aA. If A is finite, then there

exists such a model of finite L-outdegree.

We now show that Lemma 1 does not hold for ALCIO.
Note that an ALCIO-forest model of K is a model A of
K such that A with all R(a, bA), R a role, a ∈ dom(A),
b ∈ ind(D) is a disjoint union of ALCI-trees rooted at a,
a ∈ ind(D). Then the concept

{a} ⊓ A ⊓ ∃s.⊤ ⊓ ∀s.(¬A ⊓ ∃r.∃s−.{a})

is satisfiable in a model of K = (∅, {A(a)}), but not in any
ALCIO-forest model of K of finite ALCIO-outdegree.

C Proofs for Section 3
Theorem 1 Projective (ALC,ALCO)-separability with
signature becomes undecidable when additionally individ-
ual names are admitted as helper symbols.

The proof is by a reduction of the following undecidable
tiling problem.

Definition 3 A tiling system S = (T , H, V,R, L, T,B)
consists of a finite set T of tiles, horizontal and vertical
matching relationsH,V ⊆ T ×T , and sets R,L, T,B ⊆ T
of right tiles, left tiles, top tiles, and bottom tiles. A so-
lution to S is a triple (n,m, τ) where n,m ≥ 1 and
τ : {0, . . . , n} × {0, . . . ,m} → T such that the following
hold:

1. (τ(i, j), τ(i + 1, j)) ∈ H , for all i < n and j ≤ m;

2. (τ(i, j), τ(i, j + 1)) ∈ V , for all i ≤ n and j < m;

3. τ(0, j) ∈ L and τ(n, j) ∈ R, for all 0 ≤ j ≤ m;

4. τ(i, 0) ∈ B and τ(i,m) ∈ T , for all 0 ≤ i ≤ n.

We show how to convert a tiling system S into a labeled
ALC-KB (K, P,N) and signature Σ such that S has a solu-
tion iff (K, P,N) is projectively ALCO(Σ)-separable with
individual names as additional helper symbols.

Let S = (T , H, V,R, L, T,B) be a tiling system. Define
an ontologyO containing the following inclusions.

• Every grid node is labeled with exactly one tile and the
matching conditions are satisfied:

⊤ ⊑ ⊔
t∈T

(t ⊓
d

t′∈T, t′ 6=t ¬t
′)

⊤ ⊑
d

t∈T (t→ ( ⊔
(t,t′)∈H

∀rx.t′ ⊓ ⊔
(t,t′)∈V

∀ry.t′))



• The concepts left, right, top, bottom mark the borders of
the grid in the expected way:

bottom ⊑ ¬top ⊓ ∀rx.bottom

right ⊑ ∀ry .right

left ⊑ ¬right ⊓ ∀ry.left

top ⊑ ∀rx.top

¬top ≡ ∃ry .⊤

¬right ≡ ∃rx.⊤

and bottom ⊑ ⊔
t∈B

t, right ⊑ ⊔
t∈R

t, left ⊑ ⊔
t∈L

t, top ⊑

⊔
t∈T

t.

• There is an infinite outgoing rx/ry-path starting at Q or
some grid cell does not close in the part of models reach-
able from Q:

Q ⊑ ∃rx.Q ⊔ ∃ry .Q ⊔ (∃rx.∃ry.P ⊓ ∃ry .∃rx.¬P )

• Q is triggered by A1 ⊓D:

A1 ⊓D ⊑ Q

Now let D = {A1(a), Y (b), D(o), left(o), bottom(o)}, set

Σ = {o, rx, ry, left, right, top, bottom}

and consider the labeled KB (K, {a}, {b}) where K =
(O,D).

Lemma 8 If S has a solution, then there is an ALCO(Σ ∪
Σhelp)-concept that separates (K, {a}, {b}), where Σhelp is a
set of fresh individual names.

Proof. Assume that S has a solution consisting of a properly
tiled n ×m grid. We design an ALCO(Σ ∪ Σhelp)-concept
G so that any model of G and K includes a properly tiled
n × m-grid with lower left corner o, where Σhelp is a set
of fresh individual names. The individual names in Σhelp

are ai,j , 0 ≤ i ≤ n, 0 ≤ j ≤ m. Then let G be the
ALCO(Σ ∪ Σhelp)-concept that states that G is true at the
bottom left corner of a rx/ry grid in which the nodes are
given by the interpretation of the individual names ai,j and
such that

• ai+1,j is the only rx-successor of ai,j ;

• ai,j+1 is the only ry-successor of ai,j ;

• the borders of the grid satisfy the respective concepts
left, right, top, bottom;

• o = a0,0.

Thus, the grid can be depicted as follows:

...

...

...

...

...

{a0,0} {an,0}

{a0,1}

{a0,m} {an,m}

{an,1}

o

We show that K |= ¬G(a) and K 6|= ¬G(b), thus G sepa-
rates (K, {a, {b}).

Assume first for a proof by contradiction that there is a
model A of K such that A |= G(a). Then aA = oA and so
aA ∈ (A1 ⊓ D)A. But then aA ∈ QA. This contradicts the
fact that oA is the origin of an n×m-grid in A.

Now for K 6|= ¬G(b). We find a model A of K with
bA ∈ GA since the concept name Q is not triggered at b as
A1 is not true for b. ❏

The following lemma implies that if S has no solution, then
(K, {a}, {b}) is not projectively FO(Σ)-separable.

Lemma 9 If S has no solution, then for every model A ofK,
there is a model B of K such that (A, bA) is Σ-isomorphic
to (B, aA).

Proof. (sketch) If bA 6= oA, then we can simply obtain B

from A by switching aA and bA, making A1 true at aA, and
D at exactly oA. If bA = oA, then after switching we addi-
tionally have to re-interpret Q and P in a suitable way. But
S has no solution and thus when following rx/ry-paths from

oA in A, we must either encounter an infinite such path or
a non-closing grid cell as otherwise we can extract from A

a solution for S. Thus we can re-interpret Q and P as re-
quired. ❏

Theorem 2 (1) Let L ∈ {ALC,ALCI}. Then projective
L-separability coincides with projective L-separability with
concept and role names as helper symbols.

(2) Let L ∈ {ALCO,ALCIO} and (K, P,N) be a la-
beled L-KB and Σ ⊆ sig(K) a signature. Let rI be a fresh
role name and let K′ be the extension of K by the ‘dummy’
inclusion ∃rI .⊤ ⊑ ∃rI .⊤. Then the following conditions
are equivalent:

• (K, P,N) is projectively L(Σ)-separable with concept
and role names as helper symbols;

• (K′, P,N) is projectively L(Σ ∪ {rI})-separable.

Proof. First assume that L ∈ {ALC,ALCI,ALCO}.
We employ the characterization of projective separability
given below in Theorem 4. Observe that the following con-
ditions are equivalent:

• there exists an L(Σ∪(NC∪NR)\sig(K))-concept C such
that K |= C(a) for all a ∈ P and K 6|= C(b);

• there exists an L-forest model A of K of finite L-
outdegree and a set Σ′ of concept and role names dis-
joint from sig(K) such that for all models B of K and
all a ∈ P : B, aB 6∼L,Σ∪Σ′ A, bA.

Thus, for L ∈ {ALC,ALCI} it suffices to show that the
second condition is equivalent to the third condition of The-
orem 4. For a proof by contradiction assume that there
exists an L-forest model A of K satisfying Condition 2
above for Σ′ but not Condition 3 of Theorem 4. Take a
model B of K and a functional Σ-bisimulation f witness-

ing B, aB ∼f
L,Σ A, bA for some a ∈ P . We modify B to

obtain a model B′ of K such that B′, aB
′

∼f
L,Σ∪Σ′ A, bA

and thus obtain a contradiction. B′ is obtained from B by
assuming first that B does not interpret any symbol in Σ′

and then



• taking the disjoint union B∪A′ of B and a copy A′ of A
that does not interpret any individual names nor symbols
in Σ′.

• observing that the function g = f ∪ id, where id maps
every node in A′ to the node in A of which it is a copy,
is a functional and surjective L(Σ)-bisimulation between
B ∪ A′ and A.

• setting AB
′

= g−1(AA) for all concept names A ∈ Σ′

and rB
′

= g−1(rA) for all role names r ∈ Σ′.

It is easy to see that g is a functionalL(Σ∪Σ′)-bisimulation
between B

′ and A, as required.
Now assume that L = ALCO. As Condition 2 trivially

implies Condition 1, it suffices to show that Condition 1 im-
plies Condition 2. Assume that Condition 1 holds. Take an
L-forest model A of K of finite L-outdegree and a set Σ′ of
concept and role names disjoint from sig(K) such that for
all models B of K and all a ∈ P : B, aB 6∼L,Σ∪Σ′ A, bA.
Assume for a proof by contradiction that there does not ex-
ist any such model if Σ′ is replaced by Σ ∪ {rI}. Obtain A′

from A dropping the interpretation of role names in Σ′ and
instead setting

rA
′

I = {(bA, cA) | c ∈ ind(D)} ∪
⋃

r∈NR

rA.

Then A′ is an L-forest model of K of finite L-outdegree.
Thus, by assumption there exists a model B ofK and a ∈ P

such that B, aB ∼f

L,Σ∪{rI}
A′, bA

′

. Let f be the functional

L(Σ∪{rI})-bisimulation witnessing this. Then f is surjec-
tive. Now obtain B′ from B by keeping the interpretation of

symbols not in Σ′ and setting AB
′

= f−1(AA) for all con-

cept names A ∈ Σ′ and rB
′

= f−1(rA) for all role names
r ∈ Σ′. Then f is a functional L(Σ ∪ Σ′)-bisimulation

between B′, aB
′

and A, bA and we have derived a contra-
diction.

Finally, assume that L = ALCIO. Then we cannot
use Theorem 4 as it does not hold for ALCIO. How-
ever, if one replaces L-forest models of finite L-outdegree
by ω-saturated models, then Theorem 4 holds for ALCIO.
Now exactly the same proof can be done forALCIO as for
ALCO using ω-saturated models instead of forest models.

❏

Theorem 3 (ALC,LS)-separability with signature is un-
decidable for any fragment LS of FO that contains
ALCFIO, both in the projective and non-projective case.

The proof is by reduction of the same tiling problem as
in the proof of Theorem 1. If fact, given a tiling system S,
the labeled KB (K, {a}, {b}) is exactly the same KB as in
the proof of Theorem 1. The only difference is in Lemma 8
about the construction of a concept witnessing separability:
this concept is now not a concept using individual names as
helper symbols but a ALCFIO(Σ)-concept without helper
symbols.

Lemma 10 If S has a solution, then there is an
ALCFIO(Σ)-concept that non-projectively separates
(K, {a}, {b}).

Proof. Assume that S has a solution consisting of a properly
tiled n×m grid. We design anALCFIO(Σ)-conceptG so
that any model of G and K includes a properly tiled n×m-
grid with lower left corner o. Let F be the obvious concept
stating that (6 1 r) holds for r ∈ {rx, rx, r−y , r

−
x } for all

nodes reachable in no more than 2(n+m) steps along roles
rx, rx, ry, r

−
x . For every word w ∈ {rx, ry}∗, denote by←−w

the word that is obtained by reversing w and then adding ·−

to each symbol. Let |w|r denote the number of occurrences
of the symbol r in w. Now let G = F ⊓ E, where E is the
conjunction of

{o} ⊓ ∀rn+1
x .⊥ ⊓ ∀r≤n

x .bottom ⊓ ∀rm+1
y .⊥ ⊓ ∀r≤m

y .left

and for every w ∈ {rx, ry}∗ such that |w|rx < n and
|w|ry < m, the concept

∃(w · rxryr
−
x r

−
y ·
←−w ).{o},

where ∃w.F abbreviates ∃r1. · · · ∃rk.F if w = r1 · · · rk.
It is readily checked that G indeed enforces a grid, as an-
nounced.

We show that K |= ¬G(a) and K 6|= ¬G(b), thus G sepa-
rates (K, {a, {b}).

Assume first for a proof by contradiction that there is a
model A of K such that A |= G(a). Then aA = oA and so
aA ∈ (A1 ⊓ D)A. But then aA ∈ QA. This contradicts the
fact that oA is the origin of an n×m-grid in A.

Now for K 6|= ¬G(b). We find a model A of K with
bA ∈ GA since the concept name Q is not triggered at b as
A1 is not true for b. ❏

D Proofs for Section 4

Theorem 4 Let L ∈ {ALC,ALCI,ALCO}. Assume that
(K, P, {b}) is a labeled L-KB with K = (O,D) and Σ ⊆
sig(K). Then the following conditions are equivalent:

1. (K, P, {b}) is projectively L(Σ)-separable.

2. there exists anL-forest modelA ofK of finiteL-outdegree
and a set Σhelp of concept names disjoint from sig(K)
such that for all models B of K and all a ∈ P :
B, aB 6∼L,Σ∪Σhelp

A, bA.

3. there exists anL-forest modelA ofK of finiteL-outdegree
such that for all models B of K and all a ∈ P :

B, aB 6∼f
L,Σ A, bA.

Proof. “1. ⇒ 2”. Assume that (K, P, {b}) is projec-
tively L(Σ)-separable. Take an L-concept C that separates
(K, P, {b}) and uses symbols from Σ∪Σhelp, where Σhelp is
a set of concept names disjoint from sig(K). By Lemma 1,
there exists a L-forest model A of K of finite L-outdegree
such that bA ∈ (¬C)A. Then A is as required for Condi-
tion 2, by Lemma 2.

“2⇒ 1”. Assume Condition 2 holds for A and Σhelp. Let

tA(b) = {C ∈ L(Σ ∪ Σhelp) | b
A ∈ CA}.

It follows from Lemma 2 that

Γa = K ∪ {C(a) | C ∈ tA(b)}



is not satisfiable, for any a ∈ P . (Otherwise an ω-saturated
satisfying model would contradict Condition 2.) By com-
pactness (and closure under conjunctions) we find for every
a ∈ P a concept Ca ∈ tA(b) such that K |= ¬C(b). Thus,
the concept ¬(

d
a∈P Ca) separates (K, P, {b}), as required.

“2 ⇒ 3”. Take an L-forest model A and Σhelp such that
Condition 2 holds. We show that Condition 3 holds for A as
well. Suppose for a proof by contradiction that there exists a
modelB ofK and an a ∈ P and a functionalΣ-bisimulation
f witnessing B, aB ∼f

L,Σ A, bA. We may assume that B

does not interpret any symbols in Σhelp and define B′ by
expanding B as follows: for every concept name A ∈ Σhelp

and d ∈ dom(f), let d ∈ AB
′

if f(d) ∈ AA. It is easy to

see that f witnesses B′, aB
′

∼L,Σ∪Σhelp
A, bA, and we have

derived a contradiction.
“3 ⇒ 2”. Take an L-forest model A of K of finite L-

outdegree such that Condition 3 holds. We may assume that
A only interprets the symbols in sig(K). Define A′ by ex-
panding A as follows. Take for any d ∈ dom(A) a fresh

concept name Ad and set AA
′

d = {d}. Then Condition 2
holds for A′ and Σhelp = {Ad | d ∈ dom(A)}. ❏

We next show that Theorem 4 does not hold forALCIO. To
this end we define a labeled ALCI-KB (K, {a}, {b}) and
signature Σ such that (K, {a}, {b}) is weakly ALCIO(Σ)-
separable but there does not exist an ALCIO-forest model
A of K of finite ALCIO-outdegree such that for all models

B of K: A, bA 6∼f
ALCIO,Σ B, aB.

Let K = (O,D) with

D = {A(a), B(b), C(c), r0(b, c)}

O = {C ⊑ ∃r−0 .A→ A0,

C ⊑ ∃s.⊤ ⊓ ∀s.(E ⊓ ∃r.(E ⊓ ∃s−.⊤))

A0 ⊑ ∃s.∃s
−.¬A0 ⊔ ∃s.∃r.∃s

−.¬A0,

B ⊔ A ⊑ ¬C}

where E stands for ¬C ⊓ ¬A ⊓ ¬B. Let Σ = {c, r0, s, r}.

Lemma 11 The ALCIO(Σ)-concept

D = ¬∃r0({c} ⊓ ∀s.(∀s
−.{c} ⊓ ∀r.∀s−.{c}))

weakly separates (K, {a}, {b}).

Proof. We first show that K � D(a). Assume there is
a model A of K with aA 6∈ DA. Then (aA, cA) ∈
rA0 . Then by definition of K we have cA ∈ AA

0 thus
cA ∈ (∃s.∃s−.¬A0⊔∃s.∃r.∃s−.¬A0)

A, contradicting cA ∈
(∀s.(∀s−.{c} ⊓ ∀r.∀s−.{c}))A. On the other hand, the
model depicted below

b c

. . .

r0a

s s s

r r

A B

C

clearly satisfies D(b). The fact that it is a model of K is
also straightforward, as its extension of A0 is empty.

❏

Lemma 12 For everyALCIO-forest model A ofK of finite
ALCIO-outdegree there exists a model B of K such that

B, aB ∼f
ALCIO,Σ A, bA.

Proof. Assume A is given. We construct B as follows.
Let dom(B) = dom(A), aB = bB = bA, cB = cA,
AB = {aB}, AB

0 = CB = {cB}, CB = {cA}, and
BB = BA. Let ρB = ρA for all role names ρ. There
is a Σ-isomorphism between A, bA and B, aB, as B only
differs from A with respect to symbols outside of Σ. It is
clear that B is a model of D. We then check that B satisfies
each inclusion of O. The first inclusion is clearly satisfied
as CB = AB

0 = {cB}. The second and fourth inclusion
are clearly satisfied by B as they are by A. The third inclu-
sion is satisfied: we have AB

0 = {cB}. Assume the third
inclusion is not satisfied. Then, by the second inclusion and
C(c) ∈ D, there is an infinite rA-chain of nodes distinct
from cA, aA, bA all of which are in relation (s−)A to cA.
Then either A is not an ALCIO-forest model as it contains
an rA-cycle of nodes distinct from interpretations of indi-
vidual names or it does not have finite ALCIO-outdegree
as the outdegree of cA is infinite. ❏

We now show that Theorem 4 cannot be repaired for
ALCIO by admitting infinite outdegree forest models.
To this end we define a labeled ALCI-KB (K, {a}, {b})
and signature Σ such that (K, {a}, {b}) is not projectively
weakly ALCIO(Σ)-separable but there exists an ALCIO-
forest model A of K of such that for all models B of K:
B, aB 6∼f

ALCIO,Σ A, bA.

Let K = (O,D) with

D = {A(a), B(b), C(c), r0(b, c)}

O = {C ⊑ ∃r−0 .A→ A0,

A0 ⊑ (∃s.⊤ ⊓ ∀s.∃r.∃s−.A0)→ ∃s.B
′,

B′ ⊑ ∃r−.B′

B ⊔ A ⊑ ¬C}

Let Σ = {r0, s, r, c}.

Lemma 13 (K, {a}, {b}) is not weakly projectively
ALCIO(Σ)-separable.

Proof. Let A be a model ofK. We show there exists a model
B of K such that B, aB ≡ALCIO,Σ∪Σ′ A, bA, where Σ′ is
the set of all concept names that do not occur in K. Let
the model B0 be defined in the same way as A except that

aB0 = bA, AB0 = {aB0} AB0

0 = CB0 = {cB0}, and

BB0 = {bB0}, and we define the extension ofB′ according
to a case distinction.

Case 1. cB0 /∈ (∃s.⊤ ⊓ ∀s.∃r.∃s−.A0)
B0 . Then set

B′B0 = ∅. Then B0 is a model of K and the identity is
a Σ-isomorphism between B0 and A mapping aB0 to bA

and we are done.
Case 2. Otherwise. As AB0

0 = {cB0}, the set

t(x) = {s(c, x)} ∪ {r(y1, x), r(y2, y1), r(y3, y2), . . .}

is finitely satisfiable in B0, so it is realized in an elementary
extension B1 of B0. That implies there exists an infinite
r−-chain a′1, a

′
2, . . . in B1 with (cB1 , a′1) ∈ s

B1 . Let B be



obtained from B1 by defining the extension of B′ as {a′i :
i ≥ 1}. Then B is a model of K and A, bA ≡ALCIO,Σ∪Σ′

B, aB. ❏

Lemma 14 There exists a model A of K such that
B, aB ≁ALCIO,Σ A, bA for all models B of K.

Proof. Consider the model A depicted above. An explicit
definition is given by setting

dom(A) = {a, b, c} ∪ {ai : i ≥ 0}

and

AA

0 = ∅ (B′)A = ∅

AA = {a} = aA rA0 = {b, c}

BA = {b} = bA rA = {(ai, ai+1) : i ≥ 0}

CA = {c} = cA sA = {(c, ai) : i ≥ 0}

It is immediate that A is a model of K. If B, aB ∼ALCIO,Σ

A, bA, then bA ∈ (∃r0.({c} ⊓ ∃s.⊤ ⊓ ∀s.∃r.∃s−.{c}))A

implies aB ∈ (∃r0.({c} ⊓ ∃s.⊤ ⊓ ∀s.∃r.∃s
−.{c}))B as

c, s, r, r0 ∈ Σ. The latter implies aB ∈ (∃r0.(A0 ⊓
∃s.⊤ ⊓ ∀s.∃r.∃s−.A0))

B as cB ∈ AB
0 in virtue of

{A(a), C(c), r0(a, c)} ⊆ D and the first inclusion C ⊑
∃r−0 .A → A0 of O. Then, by the second inclusion we get

that aB ∈ (∃r0.∃s.B′)B while bA /∈ (∃r0.∃s.B′)A. By the
third inclusion, aB then has a r0 successor with an s suc-
cessor from which starts an infinite r− chain, while bA does
not. A Σ-bisimulation including (aB, bA) is then impossi-
ble, as {r0, s, r} ⊆ Σ. ❏

The following lemma provides a model-theoretic char-

acterization of (L,UCQLS

r )-separability, for some pairs
(L,LS).

Lemma 15 Let (L,LS) be either (ALCI,ALCI) or
(ALC,ALCO) and let (K, P, {b}}) be a labeled L-KB and
Σ ⊆ sig(K) a signature. Then the following conditions are
equivalent:

1. (K, P, {b}) is non-projectively UCQLS
r (Σ)-separable;

2. there exists an LS-forest model A of K of finite LS-
outdegree such that there exists an n such that for all
models B of a ∈ P : there exist D ⊆ dom(B) of car-
dinality not exceeding n such that the Σ-reduct of A|D is

LS-rooted in aB and B, aB 6→D,ALCO,Σ A, bA.

Proof. “1 ⇒ 2”. Assume that Condition 1 holds and take
a formula ϕ(x) in UCQLS

r (Σ) such that K |= ϕ(a) for all
a ∈ P and K 6|= ϕ(b). Then there exists a model A of K
such that A 6|= ϕ(b). By Lemma 7, we may assume that
A is an LS-forest model of K of finite LS-outdegree. Then
Condition 2 follows for n the number of variables inϕ, using
Lemma 3.

“2⇒ 1”. The proof is indirect. Assume that Condition 1
does not hold. Let A be any LS-forest model of K of finite
LS-outdegree and set

Γ = K ∪ {¬ϕ(x) | ϕ(x) ∈ UCQLs

r (Σ),A |= ¬ϕ(b)}.

Then, by compactness, Γ is satisfiable with x = a for some
a ∈ P . To show this, assume that it is not the case. Then

for any a ∈ P there exists a finite subset Γ′
a of Γ such that

Γ′
a is not satisfiable with x = a. Then Γ′ =

⋃

a∈P Γ′
a is

not satisfiable with x = a, for any a ∈ P . We may assume
that Γ′ = K ∪ {¬ϕ1(x), · · · ,¬ϕn(x)}. Then K |= ϕ1 ∨
· · · ∨ ϕn(a) for all a ∈ P . Observe that ϕ1 ∨ · · · ∨ ϕn ∈
UCQLs

r . Thus, as we assume that Condition 1 does not hold,
K |= ϕ1 ∨ · · · ∨ ϕn(b). Hence A |= ϕ1 ∨ · · · ∨ ϕn(b) and
so there exists i such that A |= ϕi(b). We have derived a
contradiction.

Take an ω-saturated model B of K satisfying Γ in some
a ∈ P . We have by definition B, aB ⇒

CQ
LS
r ,Σ

A, bA. By

Lemma 3, B, aB ⇒mod

CQ
LS
r ,Σ

A, bA. This contradicts Condi-

tion 2, as required. ❏

Theorem 5 Let (L,LS) be either (ALCI,ALCI) or
(ALC,ALCO) and let (K, P, {b}}) be a labeled L-KB and
Σ ⊆ sig(K) a signature. Then the following conditions are
equivalent:

1. (K, P, {b}) is projectively LS(Σ)-separable;

2. (K, P, {b}) is non-projectively UCQLS
r (Σ)-separable.

Proof. We first assume that (L,LS) = (ALCI,ALCI).
It suffices to show that Point 3 of Theorem 4 and Point 2
of Lemma 15 are equivalent. Assume first that Point 3 of
Theorem 4 holds for A. For a model C of K we denote
by DC,a

Σ the maximal connected component of aC in C|DC ,

whereDC = {cC | c ∈ ind(D)}.
We show that for all models B of K and all a ∈ P :

B, aB 6→DB,a
Σ

,ALCI,Σ A, bA. Then Point 2 of Lemma 15

holds for n = |D|. For a proof be contradiction assume
that there is a model B of K and an a ∈ P such that
h : B, aB →DB,a

Σ
,ALCI,Σ A, bA. We aim to convert B and

h into a new model B′ of K and a functional bisimulation
witnessing B′, aB

′

∼f
L,Σ A, bA and thus derive a contra-

diction. To this end, we require the notion of a k-unfolding
of a structure in which we do not only unfold into a tree-
like structure but also take k copies of every successor. In

detail, we define the k-unfolding B
≤k
d of a structure B at

d ∈ dom(B) as follows, for any k > 0. The domain of B
≤k
d

is the setW of all wordsw = d0R0(d1, i1) · · ·Rn−1(dn, in)
such that d0 = d, (di, di+1) ∈ RB

i for all i < n, and ij ≤ k
for all j ≤ n, where all Ri are roles. Let tail(w) = dn.
The interpretation of concept names and role names is as

expected: we set w ∈ AB
≤k

d if tail(w) ∈ AB and we set for

w1, w2 ∈ W , (w1, w2) ∈ RB
≤k

d if w2 is obtained from w1

by concatenating w1 and some Rn+1(dn+1, in+1).
Now let k be the maximum over theALCI-outdegrees of

the nodes in A. We define a new model B′ of K by tak-
ing B, removing all nodes d not in DB from it, and instead

attaching B
≤k
d to d, for any d ∈ DB. Now one can eas-

ily show that there is a functionalALCI(Σ)-bisimulation f

between B′, aB
′

and A, bA: to define f take the homomor-
phism h and extend it with functional bisimulations witness-

ing B
≤k
d , d ∼f

ALCI,Σ A, h(d) for every d ∈ DB,a
Σ .

Assume now that Point 2 of Lemma 15 holds for A.
We show that Point 3 of Theorem 4 holds for A. The



proof is indirect. Assume Point 3 does not hold for A.
Thus, there exists a model B of K and a ∈ P such that

B, aB ∼f
ALCI,Σ A, bA. Then we can regard the restric-

tion of f to any subsetD of dom(B) as a Σ-homomorphism
h for which clearly B, c ∼ALCI,Σ A, h(c) for all c ∈ D.

Thus, B, aB →D,ALCI,Σ A, bA. But then Point 2 of
Lemma 15 does not hold for A.

We now assume that (L,LS) = (ALC,ALCO). Again
it suffices to show that Point 3 of Theorem 4 and Point 2 of
Lemma 15 are equivalent.

Assume first that Point 3 of Theorem 4 holds for A. We
show that A witnesses Point 2 of Lemma 15. The proof is
indirect. Assume that for all n > 0 there exists a model B of
K and a ∈ P such that for all D ⊆ dom(B) of cardinality
not exceeding n such that the Σ-reduct of A|D is ALCO-

rooted in aB we have B, aB →D,ALCO,Σ A, bA.
Let R denote the set of individuals c ∈ ind(D) ∩ Σ such

that there is an ALC(Σ)-path from bA to cA in A. For any
c ∈ R let nc be the length of the shortest such path and let
m =

∑

c∈R nc|ind(D)|. Let B be a model of K and a ∈ P
such that for all D ⊆ dom(B) of cardinality not exceeding
m and such that the Σ-reduct of B|D isALCO-rooted in aB

we have B, aB →D,ALCO,Σ A, bA.
Now choose D0 ⊆ dom(B) minimal such that the Σ-

reduct of B|D is rooted in aB and D0 contains all cB with

c ∈ ind(D) ∩ Σ such that there is an ALC(Σ)-path from
aB to cB. Note that as B, aB ∼ALCO,Σ A, bA the indi-
viduals we obtain are exactly those in R and the cardinality
of D0 does not exceed

∑

c∈R nc. Obtain D from D0 by

adding all nodes cB with c ∈ ind(D) such that there ex-
ists an ALC(Σ)-path from a node in D0 throughDB to cB.
Then the cardinality ofD does not exceedm. Thus, we have
B, aB →D,ALCO,Σ A, bA. Let h be the Σ-homomorphism
witnessing this.

We define the directed k-unfolding omitting Σ-

individuals, B
d,≤k
d , of a structure B at d ∈ dom(B)

as follows, for any k > 0. The domain of Bd is the set W
of all words w = d0r0(d1, i1) · · · rn−1(dn, in) such that
d0 = d, (di, di+1) ∈ rBi for all i < n, and ij ≤ k for all
j ≤ n, where all ri are role names and dn does not interpret
an individual name in Σ if r0, . . . , rn−1 are all in Σ. Let
tail(w) = dn. The interpretation of concept names and role

names is as expected: we set w ∈ AB
d,≤k

d if tail(w) ∈ AB

and we set for w1, w2 ∈ W , (w1, w2) ∈ rB
d,≤k

d if
w2 is obtained from w1 by concatenating w1 and some
rn+1(dn+1, in+1).

Now let k be the maximalALC-outdegree of a node in A

and define a model B′ ofK by taking B, removing all nodes

d not inDB from it, and instead attachingB
d,≤k
d to d for any

d ∈ DB. Moreover, add (w, cB) to the interpretation of r if
(tail(w), cB) ∈ rB and c ∈ Σ.

Then one can show that there is a functional ALCO(Σ)-
bisimulation f between B′, aB and A, bA by taking the ho-
momorphim h and extend it with the functional bisimula-

tions witnessing B
d,≤k
d , d ∼f

ALCO A, h(d) for every d ∈ D.
The implication from Point 2 of Lemma 15 to Point 3 of

Theorem 4 can be proved in the same way as for ALCI.
❏

E Proofs for Section 5

Lemma 4 Let L ∈ DLni. Then deciding conservative ex-
tensions in L can be reduced in polynomial time to the com-
plement of L-separability, both in the projective and non-
projective case.

Proof. Assume L-ontologies O and O′ are given. Let Σ
be the signature of O. Let atomΣ denote the set of concepts
A with A ∈ Σ ∩ NC, {a} with a ∈ Σ ∩ NI, and ∃r.⊤ with
r ∈ Σ. If L admit inverse roles, then we also add ∃r−.⊤,
for r ∈ Σ. We may assume that there exists a concept name
A ∈ atomΣ such that O |= A ≡ ¬C for some C ∈ atomΣ.
Indeed, if no such A exists, pick any X ∈ atomΣ, add
A ⊑ ¬X , X ⊑ ¬A to O to obtain O1, and add A to Σ.
Then clearlyO1 ∪O′ is a conservative extension ofO1 in L
(projectively or, respectively, non-projectively) iffO∪O′ is
a conservative extension of O in L (projectively or, respec-
tively, non-projectively).

We first consider the case L = ALCO which subsumes
the case L = ALC. The relativization C|A of a concept C
to a concept name A is defined by setting

⊤|A = A

⊥|A = ⊥

B|A = B ⊓A

{c}|A = {c} ⊓ A

(¬C)|A = A ⊓ ¬(C|A)

C ⊓D)|A = C|A ⊓D|A

(∃R.C)|A = A ⊓ ∃R.(A ⊓ C|A)

The relativization of an inclusion C ⊑ D to A is defined as
C|A ⊑ D|A. Observe that the relativization of an inclusion

to a concept name A is satisfied in A whenever AA = ∅.
Define the directed relativizationOA ofO to a fresh concept
name A by relativizing all inclusions in O to A and also
adding

{c} ⊑ A,

for all c ∈ Σ, and
A ⊑ ∀r.A

for all r ∈ Σ. Next define a database D by taking fresh
individual names a and b used as the positive and negative
example, a fresh concept name D, and a fresh role name s
and include in D: A(b), D(a), and

s(a, c),

for all individual names c in O ∪ O′. Next we take the di-
rected relativization (O∪O′)D

′

to a fresh concept nameD′,
but in this case instead of including the individual names in
O ∪O′ in D′ we include D′ ⊑ ∀s.D′.

Finally, we obtainO∗ as the union ofOA and (O∪O′)D
′

and
D ⊓ E ⊑ D′,

for all E ∈ atomΣ. Let K = (O∗,D).



Claim. O ∪ O′ is a conservative extension of O in ALCO
iff (K, {a}, {b}) is not ALCO(Σ)-separable, for both the
projective and non-projective case.

Proof of the Claim. We consider the projective case. The
non-projective case is similar and omitted. Consider an
ALCO(Σ ∪ Σhelp)-concept C, where Σhelp is a set of fresh
concept names. We show the following equivalences:

(1) C is satisfiable w.r.t. O iff there exists a model A of K
such that bA ∈ CA.

(2) If C is satisfiable w.r.t. O ∪ O′, then there exists a model
A of K such that aA ∈ CA.

(3) Let E ∈ atomΣ. If there exists a model A of K such that
aA ∈ (E ⊓ C)A, then E ⊓C is satisfiable w.r.t. O ∪O′.

For (1), assume thatC is satisfiable w.r.t.O. Take a model A
ofO satisfyingC in d. We define a model B ofK satisfying
C in bA: to define dom(B), we add to dom(A) the individual
a and all individuals c ∈ sig(O ∪ O′) \ Σ. Then we set
bB = d and interpret a and the individuals in sig(O∪O′)\Σ
by themselves, interpretA by the domain of A, add the pairs
(a, cA), c ∈ sig(O∪O′) to sB, and set DB = a andD′B =
∅. Then B is a model ofO satisfying C in bB.

The converse direction of (1) is clear.
For (2), suppose that C is satisfiable w.r.t.O∪O′. Take a

modelA ofO∪O′ satisfyingC in d. We define a modelB of
K satisfying C in aB: take A and set dom(B) = dom(A).
We interpret b arbitrarily and set AB = DB = D′B =
dom(B). Finally, we add the pairs (aA, cA), c ∈ sig(O ∪
O′), to sB. Then B is a model of O ∪ O′ satisfying C in
aB.

For (3), let E ∈ atomΣ and assume that E ⊓C is satisfied
in a model A ofK at aA. Then aA ∈ (D⊓E)A and therefore
aA ∈ D′A since D ⊓ E ⊑ D′ ∈ O ∪ O′. Hence E ⊓ C is
satisfiable w.r.t.O∪O′ as it is satisfied in A w.r.t. the directed
relativization of O ∪O′ to D′.

Now, we finish the proof of the Claim. Suppose first that
(K, {a}, {b}) is projectivelyALCO(Σ)-separable and let C
be a separating concept. Then, there is a model A of K such
that b ∈ (¬C)A. By Point 1, ¬C is satisfiable w.r.t. O.
Moreover, there is no model A of K with a ∈ (¬C)A. By
Point 2, ¬C is not satisfiable w.r.t. O ∪ O′. Hence, ¬C is a
witness concept forO,O ∪O′.

Conversely, assume that O ∪ O′ is not a projective con-
servative extension of O in ALCO and let C witness this.
By our assumption on atomΣ, there exists an E ∈ atomΣ

such that E ⊓ C is also satisfiable w.r.t. O, but not satisfi-
able w.r.t. O ∪ O′. Thus, by Point 1, there exists a model A
of K such that bA ∈ (E ⊓ C)A and, by Point 3, there does
not exist a model A of K such that aA ∈ (E ⊓ C)A. Thus,
(K, {a}, {b}) is projectively ALCO(Σ)-separable, namely
by ¬(E ⊓ C).

This finishes the proof of the Claim.

The proof above is easily adapted for ALCI and
ALCIO. In fact, one only has to add to the directed rel-
ativization of OA the inclusions A ⊑ ∀r−.A, for r any role
in Σ. ❏

Preliminaries for Tree Automata A tree is a non-empty
(and potentially infinite) set of words T ⊆ (N \ 0)∗ closed
under prefixes. A node w ∈ T is a successor of v ∈ T if
w = v · i for some i ∈ N. Moreover, w is an ancestor of v
if w is a prefix of v. A tree is binary if every node has either
zero or two successors. For an alphabet Θ, a Θ-labeled tree
is a pair (T, τ) with T a tree and τ : T → Θ a node labeling
function.

A two-way alternating tree automaton (2ATA) over binary
trees is a tuple A = (Q,Θ, q0, δ,Ω) where Q is a finite set
of states, Θ is the finite input alphabet, q0 ∈ Q is the ini-
tial state, δ is a transition function as specified below, and
Ω : Q → N is a priority function. The transition function
maps a state q and some input letter θ ∈ Θ to a transition
condition δ(q, θ) which is a positive Boolean formula over
the truth constants true and false and transitions of the form
q, 〈−〉q, [−]q, ♦q, �q where q ∈ Q. Informally, the transi-
tion q expresses that a copy of the automaton is sent to the
current node in state q, 〈−〉q means that a copy is sent in
state q to the predecessor node, which is then required to ex-
ist, [−]q means the same except that the predecessor node is
not required to exist, ♦q means that a copy is sent in state
q to some successor, and �q that a copy is sent in state q
to all successors. The semantics is defined in terms of runs
in the usual way (Vardi 1998), see below. We use L(A) to
denote the set of all Θ-labeled binary trees accepted by A.
The emptiness problem, which asks whether L(A) = ∅ for
a given 2ATA A, can be decided in time exponential in the
number of states of A (Vardi 1998).

We make precise the semantics of 2ATAs. Let A =
(Q,Θ, q0, δ,Ω) be a 2ATA and (T, L) a Θ-labeled tree. A
run forA on (T, L) is a T×Q-labeled tree (Tr, r) such that:

• ε ∈ Tr and r(ε) = (ε, q0);

• For all y ∈ Tr with r(y) = (x, q) and δ(q, L(x)) = ϕ,
there is an assignment v of truth values to the transitions
in ϕ such that v satisfies ϕ and:

– if v(p) = 1, then r(y′) = (x, p) for some successor y′

of y in Tr;

– if v(〈−〉p) = 1, then x 6= ε and there is a successor y′

of y in Tr with r(y′) = (x · −1, p);
– if v([−]p) = 1, then x = ε or there is a successor y′ of
y in Tr such that r(y′) = (x · −1, p);

– if v(♦p) = 1, then there is a successor x′ of x in T and
a successor y′ of y in Tr such that r(y′) = (x′, p);

– if v(�p) = 1, then for every successor x′ of x in T ,
there is a successor y′ of y in Tr such that r(y′) =
(x′, p).

Let γ = i0i1 · · · be an infinite path in Tr and denote, for
all j ≥ 0, with qj the state such that r(i0 · · · ij) = (x, qj).
The path γ is accepting if the largest number m such that
Ω(qj) = m for infinitely many j is even. A run (Tr, r) is
accepting, if all infinite paths in Tr are accepting. Finally, a
tree is accepted if there is some accepting run for it.

It is well-known that 2ATAs are closed under complemen-
tation, intersection, and projection.

Lemma 16 Given 2ATAs A1,A2 over alphabet Θ and a
mapping h : Θ→ Θ′, we can compute:



• in polynomial time a 2ATAA1 such that L(A1) = L(A1)
and the number of states ofA1 equals the number of states
of A1;

• in polynomial time a 2ATAA such that L(A) = L(A1)∩
L(A2) and the number of states of A is 1 + n1 + n2, ni

the number of states of Ai;

• in exponential time a 2ATA Ah such that L(Ah) =
{(T, h(τ)) | (T, τ) ∈ L(A1)} and the number of states of
Ah is exponential in the number of states of A1.

Encoding of L-Forest Models Let L ∈ {ALCI,ALCO}
and fix an L-KB K = (O,D). In order to work with
tree automata, we need to encode L-forest models of
K of finite L-outdegree as input to the tree automata.
Since 2ATAs run over binary trees, we need to appropri-
ately encode the arbitrary outdegree, which is done similar
to (Jung, Lutz, and Zeume 2020).

More precisely, we use the alphabet Θ defined by

Θ = {◦} ∪ Rol(K) × 2ind(D)∪(sig(K)∩NC) × 2F ,

where Rol(K) denotes the set of all role names that occur
in K and their inverses, and F is the set of all pairs (r, a)
with r a role name that in sig(K) and a ∈ ind(D). Intu-
itively, a node w ∈ T with τ(w) = (R,M,F ) encodes an
element that satisfies precisely the concepts inM ; moreover,
F describes its connections to elements in ind(D) and R is
the “incoming role”. The symbol ‘◦’ is a label for dummy
nodes that we need for encoding arbitrary finite outdegree
into binary trees: we simply introduce as many intermediate
◦-labeled nodes as needed to achieve the required outdegree
at each node.

More formally, let (T, τ) be a Θ-labeled tree. For each
w ∈ T with τ(w) 6= ◦, let w↑ denote the unique ancestor w′

of w in T (if existing) such that τ(w′) 6= ◦ and τ(w′′) = ◦
for all w′′ between w′ and w. We call (T, τ) well-formed if

1. for every a ∈ ind(D), there is a unique element wa ∈ T
such that τ(wa) = (R,M,F ) for some R,F and a ∈M ;

2. for every w ∈ T with τ(w) 6= ◦, either w = wa, for some
a, and all ancestors of w are labeled with ◦, or w has an
ancestor wa, for some a.

A well-formed Θ-labeled tree (T, τ) gives rise to a structure
Aτ with dom(Aτ ) = {w ∈ T | τ(w) 6= ◦} as follows:

aAτ = wa

AAτ = {w ∈ T | τ(w) = (S,M,F ) and A ∈M}

rAτ = {(w↑, w) | τ(w) = (r,M, F ) and w↑ defined} ∪

{(w,w↑) | τ(w) = (r−,M, F ) and w↑ defined} ∪

{(w,wa) | τ(w) = (S,M,F ) and (r, a) ∈ F}

for all a ∈ NI,A ∈ NC, and r ∈ NR (and for a ∈ NI\ind(D),
wa denotes an arbitrary element of A).

Conversely, every finite outdegree forest model A of K
can be encoded (up to isomorphism) as well-formed Θ-
labeled tree. To show this, we start with a not-necessarily
binary well-formed Θ-labeled tree (T, τ) that encodes A;
(T, τ) can easily be made binary by introducing intermedi-
ate ◦-labeled nodes. Let D = {aA | a ∈ ind(D)} and

associate sets Md, Fd to every element d ∈ dom(A) by tak-
ing

Md = {A ∈ sig(K) | d ∈ AA} ∪ {a ∈ ind(D) | d = aA}

Fd = {(r, e) | (d, e) ∈ rA, e ∈ D}

To start the construction of (T, τ), we set τ(ε) = ◦ and
add a successor wd of ε for every d ∈ D and label it with
τ(wd) = (S,Md, Fd) for an arbitrary role name S.

For the rest of the construction, let Ad, d ∈ D be the L-
trees which exist since A is L-forest model ofK. Recall that
Ad is rooted at d. Now (T, τ) is obtained by exhaustively
applying the following rule:

(∗) If we is defined, for an element e of some Ad and f is
a successor of e in Ad with wf undefined, add a fresh
successor wf of we to T and set τ(wf ) = (R,Mf , Ff )
where R is the unique role such that (e, f) ∈ RA.

It is not difficult to construct 2ATAs that accept precisely
the forest models of K, see for example (Jung et al. 2017)
for full details of a similar automata construction.

Lemma 17 ForL ∈ {ALC,ALCI,ALCO} andL-KBsK,
we can construct in time polynomial in ||K|| 2ATAsA0,AK

such that:

1. A0 accepts precisely the well-formed Θ-labeled trees;

2. AK accepts a well-formed Θ-labeled tree (T, τ) iff Aτ is
a finite outdegree forest model of K.

E.1 ALCI and ALC

We concentrate on ALCI, the case of ALC is similar.

Lemma 5 For all forest models A ofK and all a ∈ P , Con-
dition (∗a) is equivalent to Dcon(a), a→

Σ
c A, bA.

Proof. “if”. Take a forest model A and some a ∈ P with
Dcon(a), a →

Σ
c A, bA. Moreover, fix a Σ-homomorphism h

and K-types td, d ∈ ind(D) that witness that. Take mod-
els Bd of O such that Bd, d ∼ALCI,Σ A, h(d). We may
assume that the Bd are tree-shaped with root d and that
the bisimulations are functions fd. Now attach to every
d ∈ ind(D) the model Bd and obtain B by adding (d, d′) to
rB if r(d, d′) ∈ D. Then

f =
⋃

d∈ind(D)

fd

is a functionalALCI(Σ)-bisimulation between B and A.
“only if”. Take a forest model A, some a ∈ P , and a

model B of K such that B, aB ∼f
ALCI,Σ A, bA. Let f be

a functional ALCI(Σ)-bisimulation witnessing that. The
restriction h of f to ind(D) and types td = tpK(B, d

B), for

all d ∈ ind(D) witness Dcon(a), a→
Σ
c A, bA. ❏

Lemma 18 Let L ∈ {ALC,ALCI}. For each a ∈ P , there
is a 2ATA Aa such that Aa accepts a well-formed labeled
tree (T, τ) iff Dcon(a), a →

Σ
c A, bA. Moreover, Aa can be

constructed in double exponential time in ||K|| and has ex-
ponentially many states.



Proof. We sketch the construction of the automata Aa,
a ∈ P . Let (T, τ) be a well-formed input tree. As the first
step, Aa non-deterministically guesses the following:

• types td, d ∈ ind(Dcon(a)), such that (O,D′) is satisfiable

where D′ = D ∪ {C(d) | C ∈ td, d ∈ ind(Dcon(a))};

• a partitionD0,D1, . . . ,Dm ofDcon(a) such that ind(Di)∩
ind(Dj) = ∅ for 1 ≤ i < j ≤ m;

• a mapping h from ind(D0) to ind(D) such that h(a) =
b and there are a1, . . . , am with h(c) = ai for all c ∈
ind(D0 ∩ Di) and 1 ≤ i ≤ m.

The entire guess is stored in the state of the automaton.
Note that the first item above ensures that Item (ii) from
the definition of Dcon(a), a →

Σ
c Aτ , b

Aτ is satisfied for the

guessed types td. Moreover, elements dB for d ∈ ind(D0)
are intuitively mapped to h(d)A while elements dB for
d ∈ ind(Di) \ ind(D0) are mapped to the trees below ai.

After making its guess, the automaton verifies first h is
a Σ-homomorphism from D0 to Aτ by sending out copies
for all facts in D0 to the respective elements in Aτ . Then,
it verifies that this homomorphism can be extended to a ho-
momorphism from Dcon(a) to Aτ that satisfies Item (i) from

the definition of Dcon(a), a→
Σ
c Aτ , b

Aτ . To this end, it does
a top-down traversal of Aτ checking that each Di can be ho-
momorphically mapped to the subtree of Aτ below h(ai)

Aτ .
During the traversal, the automaton memorizes in its state
the set of individuals from Di that are mapped to the cur-
rently visited element.

The automaton additionally makes sure that Item (i) from
the definition of Dcon(a), a →

Σ
c Aτ , b

Aτ is satisfied, in the
following way. During the top-down traversal, it spawns
copies of itself to verify that, whenever it has decided to
map a d ∈ ind(Dcon(a)) to the current element, then there

is a tree-shaped model Bd of O with tpK(Bd, d) = td and
a bisimulation that witnesses Bd, d ∼ALCI,Σ Aτ , c. This is
done by ‘virtually’ traversing Bd elements-by-element, stor-
ing at each moment only the type of the current element in
a state. This is possible because Bd is tree-shaped. At the
beginning, the automaton is at an element of Bd of type td
and knows that the bisimulation maps this element to the
node of Aτ currently visited by the automaton. It then does
two things to verify the two main conditions of bisimula-
tions. First, it transitions to every neighbor of the node of
Aτ currently visited, both upwards and downwards, and car-
ries out in its state the corresponding transition in Bd, in
effect guessing a new type. Second, it considers the current
type of Bd and guesses successor types that satisfy the exis-
tential restrictions in it. For every required successor type,
it then guesses a neighbor of the currently visited node in
Aτ to which the successor is mapped. The two steps are
alternated, exploiting the alternation capabilities of the au-
tomaton. Some extra bookkeeping in states is needed for the
root node of the input tree as it represents more than one
element of Aτ .

It can be verified that only exponentially many states are
required and that the transition function can be computed in
double exponential time in ||K||. ❏

We can now finish the proof of the upper bound in Theo-
rem 6. By Lemmas 17, 5, and 18 and Theorem 4, (K, P, {b})
is projectively L(Σ)-separable iff

L(A0) ∩ L(AK) ∩
⋂

a∈P L(Aa) 6= ∅

where L(Aa) denotes the complement of L(Aa). By Lem-
mas 17 and 18 all these automata can be constructed in dou-
ble exponential time and their number of states is single ex-
ponential in ||K|| for L ∈ {ALC,ALCI}. By Lemma 16,
we can compute in polynomial time an automaton that ac-
cepts precisely the language on the left-hand side of the
above inequality. It remains to recall that non-emptiness of
2ATAs can be decided in time exponential in the number of
states.

E.2 Upper Bound for ALCO

We give here only the upper bound for Theorem 7. The
lower bound is proved for conservative extensions in Sec-
tion F.

We use the same definition ofK-types as inALCI except
that we assume without loss of generality that {c} ∈ sub(K),
for all c ∈ ind(D). Denote with TP(K) the set of all types.

We work with (Θ×Θ′)-labeled trees for

Θ′ = {◦} ∪ 2ind(D)

A (Θ×Θ′)-labeled tree (T, τ1, τ2) is well-formed if (T, τ1)
is well-formed and for each c ∈ ind(D), there is exactly one
w ∈ T with c ∈ τ2(w); we denote this with vc.

Lemma 19 There is a 2ATAA′
0 which accepts precisely the

well-formed (Θ ×Θ′)-labeled trees.

Lemma 20 For every a ∈ P , there is a 2ATA A′
a which

accepts a well-formed (Θ × Θ′)-labeled tree (T, τ1, τ2) iff
there is a forest model B ofK and a function f : dom(B)→
dom(Aτ1) such that

(a) f witnesses B, aB ∼f
ALCO,Σ Aτ1 , b

Aτ1 ;

(b) for every c ∈ ind(D), we have f(cB) = vc.

Moreover,A′
a can be constructed in exponential time in ||K||

and has at most exponentially many states.

Proof. Let (T, τ1, τ2) be a well-formed (Θ×Θ′)-labeled
tree. We sketch the function of A′

a. Intuitively, A′
a con-

structs an ALCO-forest model B of K and the witnessing
bisimulation f “on the fly” by visiting the nodes in the input
in states that store the type of the currently visited element of
B. The construction of B is started at the individual names,
that is, at the nodes vc ∈ T , c ∈ ind(D). Before the actual
construction of B can start, A′

a guesses the types of the in-
dividual names c ∈ ind(D) in the model B and keeps that
guess in its state throughout the entire run. Then it spawns
a copy of itself in every vc ∈ T , c ∈ ind(D) in state corre-
sponding to tc.

WheneverA′
a visits a nodew ∈ T in some type t, this rep-

resents an obligation to extend the bisimulation constructed
so far to an element e of type t in B and the element w of
Aτ1 . This can be done similarly to what is done in the proof
of Lemma 18 since B is forest-shaped. We need to argue,



however, how to deal with the individuals since they can be
accessed from everywhere in B. When the automaton tries
to extend B with a successor that satisfies some nominal
{c}, we have to make sure that that successor gets type tc.
Conversely, when we try to find a type bisimilar to some
successor of w, we make sure that we can only visit nodes
of the form vc with types tc. In both cases, it is crucial that
the automaton can stop the extension, because we have al-
ready started a copy of the automaton with type tc in vc (in
the very beginning). ❏

We finish the proof of the upper bound of Theorem 7. By
Lemma 16, we can compute in exponential time (in the size
of A′

a) an automatonAa with

L(Aa) = {(T, τ1) | (T, τ1, τ2) ∈ L(A
′
a)},

that is, Aa is the projection of A′
a to the first component τ1.

It should be clear that Aa accepts a forest model A of K iff

there is a model B of K such that B, aB ∼f
ALCO,Σ A, bA.

Thus, we can proceed as forALCI and compute the desired
automatonA such that it accepts the language

L(A) = L(A0) ∩ L(AK) ∩
⋂

a∈P L(Aa),

which is non-empty iff (K, P, {b}) is projectively
ALCO(Σ)-satisfiable. Since Aa (and thus A) is a 2ATA
with double exponential many states and non-emptiness can
be checked in exponential time in the number of states, the
3EXPTIME-upper bound follows.

F 3EXPTIME Lower Bound for Conservative

Extensions in ALCO

We start with model theoretic characterizatons of conser-
vative extensions and projective conservative extensions in
ALC. We define a model A of anALCO-ontologyO to be a
forest model ofO of finite outdegree if it is anALCO-forest
model of the KB K = (O,D) of finite ALCO-outdegree,
where D = {Db(b) | b ∈ ind(O)} and the Db are fresh
concept names, one for each individual b in O.

Theorem 13 Let O and O′ be ALCO-ontologies and Σ =
sig(O). Then

1. the following conditions are equivalent:

(a) O ∪O′ is a conservative extension of O;

(b) for every pointed forest model A, a ofO of finite outde-
gree there exists a pointed model B, b of O ∪ O′ such
that B, b ∼ALCO,Σ A, a.

2. the following conditions are equivalent:

(a) O ∪O′ is a projective conservative extension of O;

(b) for every pointed forest model A, a ofO of finite outde-
gree there exists a pointed model B, b of O ∪ O′ such

that B, b ∼f
ALCO,Σ A, a.

Theorem 14 Given an ALC-ontology O and an ALCO-
ontology O′, it is 3EXPTIME-hard to decide whether O′ is
a conservative extension of O.

SinceO is anALC-ontology, we have no nominals available
in witness concepts and every witness concept must actually
be anALC-concept. It is interesting to note that we use only
a single nominal in the ontologiesO′.

The proof of Theorem 14 follows the general outline of
the 2EXPTIME lower bound for conservative extensions in
ALC that is proved in (Ghilardi, Lutz, and Wolter 2006). As
in that paper, we proceed in two steps. We first establish a
lower bound on the size of witness concepts and then ex-
tend the involved ontologies to obtain the 3EXPTIME lower
bound. In fact, the first step is the technically subtle one and
we present it in full detail. The second step is then rather
simple and we only sketch the required constructions.

F.1 Large Witness Concepts

Theorem 15 For every n > 0, there is an ALC-ontology
On and an ALCO-ontology O′

n such that the size of On

and O′
n is polynomial in n, On ∪ O′

n is not a conservative
extension of On, and every witness concept C for On and

O′
n is of size at least 22

2
2
n

.

To prove Theorem 15, we craftOn andO′
n so thatOn ∪O′

n

is not a conservative extensions of On, but every witness
concept C for On and O′

n must enforce in models of On a

binary tree of depth at least 22
2
n

. This implies that C is of
size at least 2m because C is an ALC-concept and On does
not introduce additional elements via existential restrictions.
Let us be a bit more precise about the trees. The ‘nodes’ of
the tree are actually paths of length 2n · 22

n

and no branch-
ing occurs inside these paths. Thus, when counting also the
intermediate domain element on the ‘node paths’, then the

trees are really of depth 2n · 22
n

· 22
2
n

. We use a single
role name r to attach successors, both when branching oc-
curs and when no branching occurs. At branching nodes, the
left successor is marked with concept name SL and the right
successor is marked with concept name SR. Successors of
non-branching nodes must be marked with at least one of SL

and SR. And finally, the (first element of the) root (path) is
labeled with concept name A.

A main feature of On and O′
n is to implement a binary

counter that can count up to m := 22
2
n

, the desired depth
of the trees (not counting intermediate domain elements). In
fact, On and O′

n implement three binary counters that build
upon each other so that the third counter can achieve the
intended counting range. Counter 1 has n bits and counts
from 0 to 2n − 1, Counter 2 has 2n bits and counts up to

22
n

−1, and Counter 3 has 22
n

bits and counts up to 22
2
n

−1.
We use Counter 1 to describe the bit positions of Counter 2
and Counter 2 to describe the bit positions of Counter 3.
Counter 1 and Counter 2 count modulo their maximum value
plus one while Counter 3 needs to reach its maximum value
only once.

Counter 1 uses concept namesC0, . . . , Cn−1 as bits. Thus
a counter value of Counter 1 can be represented at a single
domain element. In contrast, a value of Counter 2 is spread
out accross a sequence of 2n domain elements, which we
call a Counter 2 sequence. The bit positions of Counter 2



in such a sequence are identified by Counter 1 and con-
cept name X2 is used to indicate the bit value of Counter 2
at each position. A value of Counter 3, in turn, is spread
out accross a sequence of 22

n

Counter 2 sequences, that is,
2n·22

n

domain elements in total. We call this a Counter 3 se-
quence and it is these Counter 3 sequences that constitute the
‘nodes’ of the trees mentioned above. Each of the Counter 2
subsequences represents one bit position of Counter 3 and
stores one bit value via the concept name X3 that must be
interpreted uniformly in that subsequence.

With a path in an structure A, we mean a sequence p =
d0, . . . , dn of elements of dom(A) such that (di, di+1) ∈
rA and di+1 ∈ SA

L ∪ S
A

R for all i < n. We say that
such a path is properly counting if the concept names
C0, . . . , Cn−1, X2, X3 are interpreted along the path in ac-
cordance with the counting strategy outlined above, all three
counters starting with counter value zero. We now formalize
the trees described above. A counting tree in A is a collec-
tion T of (not necessarily distinct) domain elements dw,i,

w ∈ {L,R}∗ with |w| < m and 0 ≤ i < 2n · 22
n

, such that
the following conditions are satisfied:

1. dε,0 ∈ AA,

2. (dw,i, dw,i+1) ∈ rA and dw,i+1 ∈ SA

L ∪ S
A

R for all
dw,i+1 ∈ T ;

3. (dw,2n·22n , dwL,0) ∈ rA and dwL,0 ∈ SA

L for all
dwL,0 ∈ T ;

4. (dw,2n·22n , dwR,0) ∈ rA and dwR,0 ∈ SA

R for all
dwR,0 ∈ T ;

5. every path in A that uses only elements from T is properly
counting.

The element dε,0 is the root of the counting tree. We say that

A is witnessing if there is a d ∈ AA such that the following
conditions are satisfied:

• d is the root of a counting tree;

• every path that starts at d and is of length at most m is
properly counting.

We are now in a position to describe more concretely what
we want to achieve. Let m′ := 2n · 22

n

· m. For 0 ≤
i ≤ m′, let Si denote the set of concept names from S :=
{C0, . . . , Cn−1, X2, X3} that the i-th domain element on a
path that is properly counting must satisfy. Then set

D0 := ⊤
Di+1 := ∃r.(SL ⊓Di) ⊓ ∃r.(SR ⊓Di)
Ci := A ⊓Di ⊓

d
0≤i≤m′ ∀ri.(

d
Si ⊓ ¬⊔S \ Si)

Note that every model ofC′
m is witnessing. We craftOn and

O′
n such that the following holds.

Lemma 21

1. Cm′ is a witness concept for On andO′
n;

2. for every pointed model A, d ofOn of finite outdegree that
is not witnessing, there is a pointed modelB, e ofOn∪O′

n

such that B, e ∼f
ALCO,Σ A, d where Σ = sig(On).

Point 2 implies that every witness concept for On and O′
n

must have size at least 2m. In fact, if an ALC-concept
C that is satisfiable w.r.t. On does not mention all paths
in a counting tree, including their labeling with SL and
SR, then there is a model A of C and On in which there
is no counting tree. Informally, this is because On does
not introduce additional elements via existential quantifiers;
for a rigorous proof of an almost identical statement, see
(Ghilardi, Lutz, and Wolter 2006). We argue that such a C
cannot be a witness concept. Let d ∈ CA. By Point 2, there

is a pointed model B, e ofOn∪O′
n such that B, e ∼f

ALCO,Σ

A, d. Since ALCO-concepts are preserved under ALCO-
bisimulations, this implies e ∈ CB. Consequently, C is
satisfiable w.r.t. On ∪ O′

n and is not a witness concept for
On andO′

n.

Now for the actual construction of On and O′
n. The on-

tology On is given in Figure 1. We use C ≡ D as an
abbreviation for C ⊑ D and D ⊑ C. Line (1) makes
sure that A cannot be true at non-root nodes of counting
trees, which would enable undesired witness concepts such
as A ⊓ ∃r2

n

.A. Lines (2) and (3) guarantees that Counter 1
starts with value 0 at A and is incremented modulo 2n when
passing to an r-child where ∀r.(C1++) is an abbreviation
for a more complex concept (of size polynomial in n) that
achieves this; it is standard to work out details, see e.g.
(Ghilardi, Lutz, and Wolter 2006). The concepts (C1 = 0),
(C1 = 2n − 1), and (C1 < 2n − 1) are also abbrevi-
ations, with the obvious meaning. Lines (4) to (6) make
sure that Counter 2 starts with value 0 in all paths that are
outgoing from an instance of A. Lines (7) to (10) guaran-
tee that concept name Z2 is true at a domain element in a
Counter 2 sequence iff there was a zero bit strictly earlier
in that sequence. Lines (11)-(12) ensure that the concept
name X3 which represents bit values for Counter 3 is inter-
preted uniformly in Counter 2 sequences (which represent
a single bit position of Counter 3). Line (13) guarantees
that concept name E3 marks exactly the final domain ele-
ment on Counter 3 sequences. Lines (14)-(17) enforce that
Counter 3 starts with value 0 in all paths that are outgoing
from an instance of A. Lines (18)-(24) make sure that con-
cept name Z3 is true at a domain element in a Counter 3
sequence iff there was a zero bit strictly earlier in that se-
quence. Lines (25)-(26) gurantee that L2 is true in the last
element of every Counter 2 sequence and Lines (27)-(32)
achive that L3 is true in the last Counter 2 subsequence of
every Counter 3 sequence. In both cases, we do not need the
converse (altough it would be possible to achieve also the
converse with further concept inclusions). Note that we do
not use the concept names SL and SR as this does not turn
out to be necessary. However, we want them to be part of
sig(O1), which is achieved by Line (33).

We present the ontology O′
n in two parts, one pertain-

ing to Counter 2 and one pertaining to Counter 3. The first
part of O′

n can be found in Figure 2. We want to achieve
that for all forest models A of On of finite outdegree and all
d ∈ AA, there is a pointed model B, e of On ∪ O′

n such

that B, e ∼f
ALCO,Σ A, d if and only if one of the following

holds:



⊤ ⊑ ∀r.¬A (1)

A ⊑ (C1 = 0) (2)

⊤ ⊑ ∀r.(C1++)(3)

A ⊑ F2 (4)

F2 ⊓ (C1 < 2n) ⊑ ∀r.F2 (5)

F2 ⊑ ¬X2 (6)

(C1 = 0) ⊑ ¬Z2 (7)

¬X2 ⊓ ¬(C1 = 2n − 1) ⊑ ∀r.Z2 (8)

Z2 ⊓ ¬(C1 = 2n − 1) ⊑ ∀r.Z2 (9)

X2 ⊓ ¬Z2 ⊓ ¬(C1 = 2n − 1) ⊑ ∀r.¬Z2 (10)

(C1 < 2n − 1) ⊓X3 ⊑ ∀r.X3 (11)

(C1 < 2n − 1) ⊓ ¬X3 ⊑ ∀r.¬X3 (12)

(C1 = 2n − 1) ⊓ ¬Z2 ⊓X2 ≡ E3 (13)

A ⊑ F3 (14)

F3 ⊓ ¬(C1 = 2n − 1) ⊑ ∀r.F3 (15)

F3 ⊓ (C1 = 2n − 1) ⊓ ¬E3 ⊑ ∀r.F3 (16)

F3 ⊑ ¬X3 (17)

A ⊑ ¬Z3 (18)

E3 ⊑ ∀r.¬Z3 (19)

(C < 2n − 1) ⊓ Z3 ⊑ ∀r.Z3 (20)

(C < 2n − 1) ⊓ ¬Z3 ⊑ ∀r.¬Z3 (21)

¬X3 ⊓ (C = 2n − 1) ⊓ ¬E3 ⊑ ∀r.Z3 (22)

Z3 ⊓ (C = 2n − 1) ⊓ ¬E3 ⊑ ∀r.Z3 (23)

X3 ⊓ ¬Z3 ⊓ (C = 2n − 1) ⊓ ¬E3 ⊑ ∀r.¬Z3 (24)

E3 ⊑ L2 (25)

(C1 < 2n − 1) ⊓ ∃r.L2 ⊑ L2 (26)

E3 ⊓ ¬Z3 ⊓X3 ⊑ L3 ⊓ L
′
3 (27)

(C1 < 2n − 1) ⊓ ∃r.L′
3 ⊑ L3 ⊓ L

′
3 (28)

(C1 < 2n − 1) ⊓ ∃r.L3 ⊑ L3 (29)

(C1 < 2n − 1) ⊓X2 ⊓ ∃r.L3 ⊑ L3 ⊓ L
′
3 (30)

(C1 = 2n − 1) ⊓ ∃r.L′
3 ⊑ L3 (31)

(C1 = 2n − 1) ⊓X2 ⊓ ∃r.L
′
3 ⊑ L3 ⊓ L

′
3 (32)

SL ⊔ SR ⊑ ⊤ (33)

Figure 1: The ontology On.

1. A does not contain a counting tree rooted at d;

2. Counter 2 is not properly incremented on some path in A

that starts at d;

3. Counter 3 is not properly incremented on some path in A

that starts at d.

We speak of these three options as defects of type 1, 2, and 3,
respectively. In Line (34), we choose a defect type that is

present in the current model A. More precisely, being able
to make Pi true at e in B corresponds to a defect of type i
in A.

Lines (35)-(36) implement defects of type 1. To see how
this works, first assume that there is a counting tree in A

rooted at d ∈ AA and let B, e be a pointed model of O′
n

with B, e ∼f
ALCO,Σ A, d. We have to argue that e /∈ PB

1 .

This is due to Lines (35) and (36) which then require the
existence of a path in the counting tree to an element f that
has no r-successor that satisfies SL or no r-successor that
satisfies SR, such that the maximum value of Counter 3 is
not reached on the way to f . But no such path exists.

For the converse, assume that for some d ∈ AA, there is
a no counting tree in A rooted at d. This implies the ex-
istence of a word w ∈ {L,R}∗ of length strictly less than
m such that there is no path p in A starting at d that fol-
lows branching pattern L,R and ends in an element where
Counter 3 has maximum value and that has no r-successor
that satisfies SL or no r-successor that satisfies SR. Let A|↓d
denote the restriction of A to the domain elements that are
reachable from d, traveling role names only in the forward

direction. Further let B be obtained from A|↓d by making P1

true on every element on path p. Then B is a model of O′
n

with d ∈ PB
1 and B, d ∼f

ALCO,Σ A, d.

Lines (37)-(46) verify that, if P2 is chosen in Line (34),
then there is indeed a defect of type 2. Here we use an auxil-
iary single exponential counter D1 based on concept names
D0, . . . , Dn−1. Lines (37) and (38) mark the place where
incrementation of Counter 2 fails using the concept name
M0. Note that Line (38) ensures that M0 is chosen before
the last Counter 2 sequence in the last Counter 3 sequence is
reached. When a domain element d is marked with M0, this
means that it is a bit of Counter 2 such that, on some path
outgoing from d, the corresponding bit in the subsequent
Counter 2 sequence violates incrementation. There are two
ways in which this may happen: first, there may be no 0-bit
lower than the bit marked withM0, but the corresponding bit
in the subsequent Counter 2 sequence is not toggled. Sec-
ond, there may be a 0-bit lower than the bit marked with
M0, but the corresponding bit in the subsequent Counter 2
sequence is toggled. These two cases are distinguished by
Lines (40) and (41). In the first case, the value of X2 is
stored in NX2. In the second case, the toggled value of X2

is stored in NX2. The counter D1 is then reset in Line (39)
and incremented in Line (42) to identify the corresponding
bit in the following configuration. Through lines (43) and
(44), the value of NX2 is passed on all the way to this bit.
Finally, Lines (45) and (46) ensure that the X2-value of the
corresponding bit coincides with NX2. It is not so difficult
to prove formally that this works. In particular, if there is
a path starting at some d ∈ AA on which Counter 2 is not

properly incremented, then we can extend A|↓d in a straight-

forward way to a model B of O′
n with d ∈ PB

2 , by inter-
preting the concept names in sig(O′

n) \ sig(On).

The part of O′
n that is concerned with Counter 3 is dis-

played in Figure 3. It makes sure that if P2 is chosen in
Line (34), then there is indeed a defect of type 3. It is here



A ⊑ P1 ⊔ P2 ⊔ P3 (34)

P1 ⊓ E3 ⊓ ¬Z3 ⊓X3 ⊑ ∀r.(SL → P1) ⊔ ∀r.(SR → P1) (35)

P1 ⊓ E3 ⊓ ¬Z3 ⊓X3 ⊑ ⊥ (36)

P2 ⊑ M0 ⊔ ∃r.((SL ⊔ SR) ⊓ P2) (37)

P2 ⊑ ¬(L2 ⊓ L3) (38)

M0 ⊑ M ⊓ (D1 = 0) (39)

M0 ⊓ ¬Z2 ⊑ NX2 ↔ X2 (40)

M0 ⊓ Z2 ⊑ NX2 ↔ ¬X2 (41)

M ⊓ (D1 < 2n − 1) ⊑ ∀r.(D1++) (42)

M ⊓ (D1 < 2n − 1) ⊓NX2 ⊑ ∃r.((SL ⊔ SR) ⊓M ⊓NX2) (43)

M ⊓ (D1 < 2n − 1) ⊓ ¬NX2 ⊑ ∃r.((SL ⊔ SR) ⊓M ⊓ ¬NX2) (44)

M ⊓ (D1 = 2n − 1) ⊓NX2 ⊑ X2 (45)

M ⊓ (D1 = 2n − 1) ⊓ ¬NX2 ⊑ ¬X2 (46)

Figure 2: The first part of ontology O′

n.

that using a nominal is crucial. Lines (47) and (48) mark
the place where incrementation of Counter 3 fails using the
concept name M0. Note that Line (48) ensures that M0 is
chosen in some Counter 3 sequence that is not the final one;
we refer to it as the ‘current’ Counter 3 sequence. Line (49)
further makes sure that the element chosen by M0 is at the
beginning of a Counter 2 sequence, which we refer to as the
‘current’ Counter 2 sequence. It also chooses via the concept
names ML and MR whether the defect occurs in the subse-
quent Counter 3 sequence that is a left child of the current
sequence, or a right child. The chosen value is memorized
‘forever’ in Line (50). Our aim is to set another marker at the
beginning of a Counter 2 sequence in a subsequent Counter 3
sequence that encodes the same Counter 2 value as the cur-
rent Counter 2 sequence, and then to compare the twoX3-bit
values of the two Counter 2 sequences.

To achieve this, we need to memorize for later compar-
ison all (exponentially many) X2-bit values of the current
Counter 2 sequence. This cannot be done in a single type
and thus we use multiple types. This is implemented in
Lines (51)-(55) in which the current Counter 2 sequence is
traversed from beginning to end. In each step, a branch-
ing takes place via Line (52). It is important to understand
that this branching is in model B, but not necessarily in
model A. Recall that we are interested in models B that
have a functional ALCO,Σ-bisimulation to A. Informally,
we can assume the two models to have the same domain
and r-structure up to the element d in A in which we have
chosen to set the marker M0.2 When setting M0, then we
‘are’ in an element e of B that is Σ-bisimilar to d. This
and what follows is illustrated in Figure 4. Now Line (52)
creates two r-successors f1 and f2 of e in B that are both
Σ-bisimilar to r-successors of d in A. We shall argue a bit

2Please compare this to defects of type 1 and 2 where B can be
assumed to have the same domain and r-structure as A; this is also
the case here, up to the M0 marker, but not beyond.

later that this must actually be the same r-successor of d. In
branch f1 of B, we stay with markerM1 while in branch f2
of B, we switch to marker M2. The M1-branch branches
again at the next point of the Counter 2 sequence while the
M2 path does not, and so on. Via Line (51), at each point
of the Counter 2 sequence we memorize in the newly gen-
erated M1-branch the value of Counter 1 in the auxiliary
counter D1, the value of X2 in NX2, and the value of X3

in NX3. In contrast, the M2-branches retain their memory
via Lines (54)-(55). At the end of the Counter 2 sequence
whose beginning is marked with M0, we have thus gener-
ated 2n branches in B, each storing theX2-bit value for one
bit position of Counter 2, and all of them storing the X3-bit
value of the current Counter 2 sequence.

Via Line (53), all the M2-branches extend also beyond
the current Counter 2 sequence to the end of the current
Counter 3 sequence. In Lines (56) and (57), we make a
step to the first element of a subsequent Counter 3 sequence,
switching to markerM3. AllM2-branches in B decide to go
to an SL-labeled such subsequent sequence or all decide to
go to an SR-labeled such sequence, depending on whether
we had initially (before the branching) chosen marker ML

or MR. Via Line (58), we proceed down the Counter 3
sequence and set the M4-marker before reaching its end.
What we want to achieve is that the M4-marker is set at the
Counter 2 subsequence that carries the same Counter 2 value
as the Counter 2 sequence, at the Counter 2 bit position that
the current branch has stored in counterD1. We verify inde-
pendently for each branch in B that the bit position is cor-
rect, in Lines (59)-(60), and there we also make sure that the
X2-bit value coincides with theX2-bit value stored inNX2.
We also use Line (60) to make sure that there is indeed an
incrementation conflict of Counter 3 at this position.

We are done if we can additionally guarantee that the dif-
ferent branches in B have really set the M4-marker at the
same Counter 2 subsequence in the same path of A. So far,
however, we do not not know that this is the case, nor that



P3 ⊑ M0 ⊔ ∃r.((SL ⊔ SR) ⊓ P3) (47)

P3 ⊑ ¬L3 (48)

M0 ⊑ (C1 = 0) ⊓M1 ⊓ (ML ⊔MR) (49)

K ⊑ ∀r.K for all K ∈ {ML,MR} (50)

M1 ⊑ (D1 = C1) ⊓ (NX2 ↔ X2) ⊓ (NX3 ↔ X3) (51)

M1 ⊓ (C1 < 2n − 1) ⊑ ∃r.((SL ⊔ SR) ⊓M1) ⊓ ∃r.((SL ⊔ SR) ⊓M2) (52)

M2 ⊓ ¬E3 ⊑ ∃r.((SL ⊔ SR) ⊓M2) (53)

Mi ⊓K ⊑ ∀r.(Mi → K) for all i ∈ {2, 3, 4} and (54)

K ∈ {C,¬C | C ∈ {D0, . . . , Dn−1, NX2, NX3}} (55)

M2 ⊓ML ⊓ E3 ⊑ ∃r.(SL ⊓M3) (56)

M2 ⊓MR ⊓ E3 ⊑ ∃r.(SR ⊓M3) (57)

M3 ⊑ ¬E3 ⊓ (M4 ⊔ ∃r.((SL ∪ SR) ⊓M3) (58)

M4 ⊑ (C1 = D1) ⊓M5 ⊓ (X2 ↔ NX2) ⊓ (59)

(Z3 ⊓ (X3 ↔ ¬NX3)) ⊔ (¬Z3 ⊓ (X3 ↔ NX3)) (60)

M5 ⊓ (C1 < 2n − 1) ⊑ ∃r.((SL ⊔ SR) ⊓M5) (61)

M5 ⊓ (C1 = 2n − 1) ⊑ {c} (62)

Figure 3: The second part of ontology O′

n.

the different branches have even followed the same path of
A. But this is now easily rectified: Lines (61) and (62) force
all branches of B to further follow the current Counter 2 se-
quence, until it’s end, and that the individual name c is satis-
fied at the end of all branches. Thus the end of all branches
is the same element in B, which is functionally bisimilar
to some element of A. But A is a forest model and, as O1

does not use nominals, it is (by definition) even a tree model.
Consequently, on every branch of B, the r-predecessor of
the final element marked with c is functionally bisimilar to
the same element of A, and so on, all the way up to the ele-
ment of B where the M0-marker was set.

Based on what was said above, it can be verified that
Lemma 21 indeed holds. We refrain from giving details.

F.2 3EXPTIME-Hardness

An Alternating Turing Machine (ATM) is of the formM =
(Q,Σ,Γ, q0,∆). The set of states Q = Q∃ ⊎ Q∀ ⊎ {qa} ⊎
{qr} consists of existential states from Q∃, universal states
from Q∀, an accepting state qa, and a rejecting state qr; Σ
is the input alphabet and Γ the work alphabet containing
a blank symbol � and satisfying Σ ⊆ Γ; q0 ∈ Q∃ is the
starting state; and the transition relation δ is of the form

δ ⊆ Q× Γ×Q× Γ× {L,R}.

We write δ(q, a) for {(q′, b,M) | (q, a, q′, b,M) ∈ δ}. As
usual, we assume that q ∈ Q∃ ∪ Q∀ implies δ(q, b) 6= ∅
for all b ∈ Γ and q ∈ {qa, qr} implies δ(q, b) = ∅ for all
b ∈ Γ. For what follows, we also assume w.l.o.g. that for
each q ∈ Q∀∪Q∃ and each b ∈ Σ, the set δ(q, b) has exactly
two elements. We assume for notational convenience that

M0,M1

M2 M1

M1

M1

M2

M2

M2

M2 M2

M3 M3 M3 M3

M4

M4

M4

M4

BA
Counter 3

Bisim.

Counter 2

Counter 3

Counter 2

Figure 4: Strategy for comparing bit values of Counter 3

these elements are ordered, i.e., δ(q, b) is an ordered pair
((q′, b′,M ′), (a′′, b′′,M ′′)).

A configuration of an ATM is a word wqw′ with w,w′ ∈
Γ∗ and q ∈ Q. The intended meaning is that the tape con-
tains the word ww′ (with only blanks before and behind it),
the machine is in state q, and the head is on the leftmost sym-
bol of w′. The successor configurations of a configuration
wqw′ are defined in the usual way in terms of the transition
relation δ. A halting configuration is of the form wqw′ with
q ∈ {qa, qr}.

A computation path of an ATMM on a word w is a (fi-



nite or infinite) sequence of configurations c1, c2, . . . such
that c1 = q0w and ci+1 is a successor configuration of ci
for i ≥ 0. All ATMs considered in this paper have only
finite computation paths on any input. A halting configu-
ration is accepting iff it is of the form wqaw

′. For non-
halting configurations c = wqw′, the acceptance behaviour
depends on q: if q ∈ Q∃, then c is accepting iff at least
one successor configuration is accepting; if q ∈ Q∀, then
c is accepting iff all successor configurations are accept-
ing. Finally, the ATM M with starting state q0 accepts
the input w iff the initial configuration q0w is accepting.
We use L(M) to denote the language accepted byM, i.e.,
L(M) = {w ∈ Σ∗ | M accepts w}.

To obtain a witness for the acceptance of an input by an
ATM, it is common to arrange configurations in a tree. Such
an acceptance tree of an ATMM with starting state q0 on a
word w is a finite tree whose nodes are labelled with config-
urations such that

• the root node is labelled with the initial configuration q0w;

• if a node s in the tree is labelled with wqw′, q ∈ Q∀,
then s has exactly two successors, labeled with the two
successor configurations of wqw′;

• if a node s in the tree is labelled with wqw′, q ∈ Q∃,
then s has exactly two successors, both labelled with a
successor configuration of wqw′;3

• leaves are labelled with accepting halting configurations.

It is clear that there exists an acceptance tree ofM on w if
and only ifM accepts w.

According to Theorem 3.4 of
(Chandra, Kozen, and Stockmeyer 1981), there is a double
exponentially space bounded ATMM whose word problem
is 3EXPTIME-hard. We may w.l.o.g. assume that the length
of every computation path of M on any input w ∈ Σn is

bounded by 22
2
n

, and all the configurations wqw′ in such
computation paths satisfy |ww′| ≤ 22

n

.

We prove Theorem 14 by reduction from the word prob-
lem forM. Thus let w ∈ Σ∗ be an input toM. We have to
construct an ALC-ontology O and an ALCO-ontology O′

such thatO∪O′ is a conservative extension ofO if and only
if M does not accept w. This can be achieved by extending
the ontologies On and O′

n from Section F.1, where n is the
length of w. The main idea is to do this such that models
A of witness concepts for O and O′ describe an acceptance
tree of M on w instead of a counting tree. In fact, such
models A describe a tree that is a counting tree and at the
same time a computation tree. We again use only a single
role name r. Each configuration of M is represented by a
Counter 3 sequence and each tape cell of a configuration is
represented by a Counter 2 sequence. Thus, each node of
the acceptance tree is spread out over 2n · 22

n

elements in
the model and the role name r might indicate moving to the
next tape cell in the same configuration, moving to the first
tape cell of a successor configuration, and also moving to

3A single successor would of course be sufficient; we only use
two successors (which can carry the same label) to enable a more
uniform reduction.

the next element in the Counter 2 sequence that represents
the current tape cell.

So we only need to represent the computation ofM on w
on top of a counting tree that we have already enforced by
On and O′

n, and we can exploit the three counters that On

and O′
n give us. Such a representation is in fact fairly stan-

dard and no additional technical tricks are needed, see for
instance the 2EXPTIME-hardness proof for conservative ex-
tensions inALC given in (Ghilardi, Lutz, and Wolter 2006).
Since fully worked out concept inclusions are nevertheless
lengthy and difficult to comprehend, we only sketch the re-
quired extensions of On and O′

n.

In the extension O of On, we use an additional concept
name Sq for every state q ∈ Q, Sa for every symbol a ∈ Σ,
andH for indicating the head position. The ontologyO then
makes sure that all these symbols are interpreted uniformly
in Counter 2 sequences, that exactly one concept name Sa

is true at every Counter 2 sequence, and that there is ex-
actly one Counter 2 sequence in each Counter 3 sequence
where H is true, together with a unique concept name Sq.
It also guarantees that the computation starts with the initial
configuration q0w. All remaining properties of computation
trees are achieved by O′. In preparation for this, we add
more concept names to O, namely primed versions S′

q , S′
q,

and H ′ of all concept names introduced above as well as
concept names Yq,a,M and Yq,a,M for all q ∈ Q, a ∈ Σ,
and M ∈ {L,R}. Informally, a concept name Yq,a,M indi-
cates that for moving to the current configuration, the Tur-
ing machine has decided to write symbol a, switch to state
q, and move in direction M . Still in O, we make sure that
the primed concept names satisfy the same constraints as
their unprimed siblings, that the concept names Yq,a,M are
set in successor configurations (Counter 3 sequences) in ac-
cordance with the unprimed concept names and the transi-
tion relation, and that if some Yq,a,M is set in the current
configuration, then the non-primed and the primed concept
names relate to each other accordingly.

It remains for O′ to make sure that the transition rela-
tion ofM is respected and that the the rejecting state is not
reached on any branch. Given what was already done in
O, the former can be achieved by enforcing that whenever
some unprimed concept name Sq , Sa, or H is true in some
Counter 2 sequence, then its primed version is true in the
Counter 2 sequence that represents the same Counter 2 value
of all subsequent Counter 3 sequences. We refer to this as
correct copying.

Strictly speaking, the second ontologyO′ is not an exten-
sion ofO because we need to replace Line (34) with the fol-
lowing, which admits five different types of defects in place
of two:

A ⊑ P1 ⊔ P2 ⊔ P3 ⊔ P4 ⊔ P5.

P4 is for checking that some branch reaches the rejecting
state. This is easy to implement, using existential restric-
tions as in Lines (37)-(46) (rather than universal restrictions
as in Lines (35) and (36)). P5 is for verifying that correct
copying is taking place. This is achieved by a slight vari-
ation of the concept inclusions in Figure 3 (which also use
existential restrictions). In fact, those concept inclusions can



be viewed as copying the value of an X3-bit to same-value
Counter 2 subsequences of subsequent Counter 3 sequences.
We copy the information stored in the concept names Sq , Sa,
and H instead.

G Proofs for Section 6

Theorem 8 Let L ∈ DLni. The following conditions are
equivalent for any L-KB (K, {a}, {b}) and signature Σ ⊆
sig(K):

1. (K, {a}, {b}) is strongly FO(Σ)-separable;

2. ϕK,Σ,a(x) |= ¬ϕK,Σ,b(x).

Strong (L,FO)-separability with signature is EXPTIME-
complete.

Proof. The EXPTIME upper bound follows from the fact
that the complement of the problem to decide ϕK,Σ,a(x) |=
¬ϕK,Σ,b(x) can be equivalently formulated as a concept sat-
isfiability problem in the extension ALCIOu of ALCIO
with the universal role u. To see this, obtain CK,Σ,a from K
by taking the conjunction of the following concepts:

• ∀u.(C → D), for C ⊑ D ∈ O;

• ∀u.({c} → ∃R.{d}), for R(c, d) ∈ D;

• ∀u.({c} → A), for A(c) ∈ D;

and then replacing

• all concept and role names X not in Σ by fresh and dis-
tinct symbols Xa;

• all individual names c not in Σ∪{a} by fresh and distinct
individual names ca;

• the individual name a by a fresh individual name m;

• if a ∈ Σ then add {m} ↔ {a} as a conjunct.

Define CK,Σ,b in the same way with a replaced by b. Then
ϕK,Σ,a(x)∧ϕK,Σ,b(x) is satisfiable if m∧CK,Σ,a ∧CK,Σ,b

is satisfiable. ❏

Theorem 9 The following conditions are equivalent for any
labeledALCI-KB (K, P,N) and signature Σ ⊆ sig(K).

1. (K, P,N) is strongly FO(Σ)-separable;

2. (K, P,N) is strongly BoCQALCIO(Σ)-separable.

Proof. “2. ⇒ 1.” is trivial. For the converse direction,
assume that Condition 1. holds.

Note that we can view KΣ,a as the union of Oa and Da,
where

• Oa is a copy of O in which all concept and role names
X 6∈ Σ have been replaced by fresh symbols Xa;

• Da is a copy of D in which every concept and role name
X 6∈ Σ is replaced by Xa and in which every individual
c 6∈ Σ∪{a} is replaced by a variablexc,a and a is replaced
by x. Moreover, x = a is added if a ∈ Σ.

Thus, by taking the conjunction of all members of Da and
existentially quantifying over all variables distinct from x
we obtain a formula in CQALCI . KΣ,b can be viewed ac-
cordingly with a replaced by b.

In what follows we write

• A, d ⇔CQALCIO,Σ B, e if A |= ϕ(d) iff B |= ϕ(e), for

all ϕ(x) in CQALCIO(Σ).

• A, d ⇔mod
CQALCIO ,Σ

B, e if for all finite D ⊆ dom(A)

containing d we have A, d →D,ALCIO,Σ B, e, and vice
versa.

By Condition 1, we have ϕK,Σ,a(x) |= ¬ϕK,Σ,b(x).
Assume there does not exist a separating formula in
BoCQALCIO(Σ). We first show the following claim.

Claim 1. There exist pointed structures A, d and B, e
such that A |= ϕK,Σ,a(d) and B |= ϕK,Σ,b(e) and
A, d⇔CQALCIO,Σ B, e.

For the proof of Claim 1, consider the set Γ of all formulas
ψ(x) in BoCQALCIO(Σ) such that ϕK,Σ,a(x) |= ψ(x). By
compactness and our assumption,

Γ ∪ {ϕK,Σ,b(x)}

is satisfiable. Take a pointed model B, e of Γ∪{ϕK,Σ,b(x)}.
Next, let Ψ be the set of all ψ(x) in BoCQALCIO(Σ) such
that B |= ψ(e). By compactness and assumption

Ψ ∪ {ϕK,Σ,a(x)}

is satisfiable. Take a pointed modelA, d of Ψ∪{ϕK,Σ,a(x)}.
By definition, the pointed models A, d and B, e are as re-
quired in Claim 1.

Using ω-saturated elementary extensions of the pointed
models A, d and B, e from Claim 1 we obtain the following
claim using Lemma 3.

Claim 2. There exist pointed structures A, d and B, e such
that A |= ϕK,Σ,a(d) and B |= ϕK,Σ,b(e) and such that

A, d⇔mod
CQALCI ,Σ

B, e.

Now take assignments va from the variables of ϕK,Σ,a

into A witnessing A |= ϕK,Σ,a(d) and vb from the variables
of ϕK,Σ,b into B witnessing B |= ϕK,Σ,b(e). Let Da and
Db be the images of va in A and of vb in B, respectively. By
definition, we have Σ-homomorphisms

• ha : A|Da
→ B mapping d to e and such that

A, c ∼ALCIO,Σ B, ha(c) for all c ∈ D;

• hb : B|Db
→ A mapping e to d and such that

B, c ∼ALCIO,Σ A, hb(c) for all c ∈ Db.

We also have by definition that for any c ∈ dom(A) there
exists a c′ ∈ dom(B) such that A, c ∼ALCIO,Σ B, c′, and
vice versa. We now merge A and B to a single structure by
taking their bisimulation product C, defined as follows. The
domain of C is

{(c, c′) ∈ dom(A)× dom(B) | A, c ∼ALCI,Σ B, c′}

and we set

• (c, c′) ∈ AC if c ∈ AA (equivalently, if c′ ∈ AB) for all
A ∈ Σ;

• (c, c′) ∈ AC if c ∈ AA for all A ∈ sig(ϕK,Σ,a) \ Σ;

• (c, c′) ∈ AC if c′ ∈ AB for all A ∈ sig(ϕK,Σ,b) \ Σ;



• ((c1, c
′
1), (c2, c

′
2)) ∈ rC if (c1, c2) ∈ rA and (c′1, c

′
2) ∈

rB for all r ∈ Σ;

• ((c1, c
′
1), (c2, c

′
2)) ∈ rC if (c1, c2) ∈ rA for all r ∈

sig(ϕK,Σ,a) \ Σ;

• ((c1, c
′
1), (c2, c

′
2)) ∈ rC if (c′1, c

′
2) ∈ rB for all r ∈

sig(ϕK,Σ,b) \ Σ;

• cC = (cA, cB) for all c ∈ Σ.

We show that C |= (ϕK,Σ,a∧ϕK,Σ,b)(d, e) which contradicts
the assumption that ϕK,Σ,a(x) |= ¬ϕK,Σ,b(x). To show that
C is a model of Oa and Ob it suffices to show the following
claim.

Claim 3. (1) The projection pa : C → A defined by set-
ting pa(c, c

′) = c is an ALCIO(sig(ϕK,Σ,a))-bisimulation
between C and A.

(2) The projection pb : C → B defined by setting
pb(c, c

′) = c′ is an ALCIO(sig(ϕK,Σ,b))-bisimulation be-
tween C and B.

The proof of Claim 3 is straightforward and omitted. It
follows from Claim 3 and the assumption that A is a model
of Oa and B a model of Ob that C is a model of Oa ∪ Ob.

Next we lift the variable assignments va and vb from A

and, respectively, B to C. Thus, we set

• v̄a(xc) = (va(xc), ha(va(xc)) for all variables of the
form xc in ϕK,Σ,a and

• v̄b(yc) = (vb(yc), hb(vb(yc)) for all variables of the form
yc in ϕK,Σ,b.

• v̄a(x) = v̄b(x) = (va(x), vb(x)).

The following claim is straightforward now.

Claim 4. C |=v̄a Da(d, e) and C |=v̄b Db(d, e).

Claim 4 implies C |= (ϕK,Σ,a ∧ ϕK,Σ,b)(d, e) as we have
established already that C is a model of Oa ∪ Ob. This con-
cludes the proof. ❏

Theorem 10 Let L ∈ DLni. Then strong L-separability
with signature is 2EXPTIME-complete.

We first prove the upper bounds. To this end, we for-
mulate the complexity results proved in (Artale et al. 2021)
for interpolant existence in detail. Let L ∈ DLni. Let
O1,O2 be L-ontologies and let C1, C2 be L-concepts. Let
Σ = sig(O1, C1) ∩ sig(O2, C2). An L-interpolant for the
L-tuple O1,O2, C1, C2 is an L(Σ)-concept C such that

• O1 |= C1 ⊑ C;

• O2 |= C ⊑ C2.

The following is shown in (Artale et al. 2021).

Theorem 16 Let L ∈ DLni. Then the problem to decide
whether an L-interpolant exists for L-tuplesO1,O2, C1, C2

is 2EXPTIME-complete.

Now assume that L ∈ DLni and a labeled L-KB
(K, {a}, {b}) with K = (O,D) and Σ ⊆ sig(K) are given.
Let LO denote the extension of L by nominals (if L con-
tains nominals already then set LO = L). Obtain an LO-
ontologyOK,Σ,a fromK by taking the following inclusions:

• all inclusions in O;

• {c} ⊑ ∃R.{d}, for R(c, d) ∈ D;

• {c} ⊑ A, for A(c) ∈ D;

and then replacing

• all concept and role names X not in Σ by a fresh symbol
Xa;

• all individuals c not in Σ ∪ {a} by fresh and distinct indi-
viduals ca;

• the individual a by a fresh individual ma. If a ∈ Σ then
the CI {ma} ≡ {a} is added.

OK,Σ,b is obtained from K in the same way by replacing
a by b. Observe that an LO(Σ)-concept strongly separates
(K, {a}, {b}) iff it is an LO-interpolant for the LO-tuple
OK,Σ,a, OK,Σ,b, ma,¬mb. If L contains nominals, then
the upper bounds stated in Theorem 10 follow immediately.
If L does not contain nominals, then we may assume that
Σ does not contain individual names. Then OK,Σ,a and
OK,Σ,b do not share any individual names and therefore an
L(Σ)-concept strongly separates (K, {a}, {b}) iff it is an
LO-interpolant for theLO-tupleOK,Σ,a,OK,Σ,b,ma,¬mb.
Thus, the upper bound follows again.

Now we come to the lower bounds. We first give a model-
theoretic characterization of strong L-separability using L-
bisimulations.

Lemma 22 Let L ∈ DLni. Let (K, {a}, {b}) be a labeled
L-KB and Σ ⊆ sig(K) a signature. Then the following con-
ditions are equivalent:

1. (K, {a}, {b}) is strongly L(Σ)-separable;

2. There are no models A and B of K such that A, aA ∼L,Σ

B, bB.

The proof is straightforward using Lemma 2. The following
result is shown as part of the lower bound proof for inter-
polant existence in (Artale et al. 2021):

Theorem 17 Let L ∈ DLni. For L-ontologies O and
database D of the form {R(a, a)} it is 2EXPTIME-hard to
decide the following: do there exist models A and B of
(O,D) such that A, aA ∼L,Σ B, d for some d 6= aB.

2EXPTIME-hardness of Condition 2 of Lemma 22 is a di-
rect consequence of Theorem 17. For suppose that L,
K = (O,D), Σ, and a from Theorem 17 are given. Let b
be a fresh individual name andA1, A2 fresh concept names.
AddA1(a) and A2(b) to D to obtain D′ and add A1 ⊑ ¬A2

to O to obtain O′. Then exist models A and B of (O,D)
such that A, aA ∼L,Σ B, d for some d 6= aB iff there exist

models A and B of K such that A, aA ∼L,Σ B, bB.

H Proofs for Section 7
Theorem 11 Projective and non-projective (L,LS)-
separability with signature are undecidable for all (L,LS)
such that L contains GF3 and LS containsALC .

The proof of Theorem 11 is inspired by the proof of
the undecidability of conservative extensions and projec-
tive conservative extensions in every extension of the three-
variable fragment GF3 of GF (Jung et al. 2017). Unfortu-
nately, it is not clear how to achieve a direct reduction of



conservative extensions to separability for GF. The rela-
tivization that was used for languages in DLni does not work
because non-conservativity in GF is witnessed by sentences
while separability is witnessed by open formulas.

The proof is by a reduction from the halting problem of
two-register machines. A (deterministic) two-register ma-
chine (2RM) is a pair M = (Q,P ) with Q = q0, . . . , qℓ a
set of states and P = I0, . . . , Iℓ−1 a sequence of instruc-
tions. By definition, q0 is the initial state, and qℓ the halting
state. For all i < ℓ,

• either Ii = +(p, qj) is an incrementation instruction with
p ∈ {0, 1} a register and qj the subsequent state;

• or Ii = −(p, qj , qk) is a decrementation instruction with
p ∈ {0, 1} a register, qj the subsequent state if register p
contains 0, and qk the subsequent state otherwise.

A configuration of M is a triple (q,m, n), with q the cur-
rent state and m,n ∈ N the register contents. We write
(qi, n1, n2)⇒M (qj ,m1,m2) if one of the following holds:

• Ii = +(p, qj), mp = np + 1, and m1−p = n1−p;

• Ii = −(p, qj, qk), np = mp = 0, and m1−p = n1−p;

• Ii = −(p, qk, qj), np > 0, mp = np − 1, and m1−p =
n1−p.

The computation of M on input (n,m) ∈ N
2 is the

unique longest configuration sequence (p0, n0,m0) ⇒M

(p1, n1,m1) ⇒M · · · such that p0 = q0, n0 = n, and
m0 = m. The halting problem for 2RMs is to decide, given
a 2RM M , whether its computation on input (0, 0) is finite
(which implies that its last state is qℓ).

We convert a given 2RM M into a labeled GF3 KB
(K, {a}, {b}), K = (O,D) and signature Σ such that
M halts iff (K, {a}, {b}) is (non-)projectively GF(Σ)-
separable iff (K, {a}, {b}) is (non-)projectively ALC(Σ)-
separable. Let M = (Q,P ) with Q = q0, . . . , qℓ and
P = I0, . . . , Iℓ−1. We assume w.l.o.g. that ℓ ≥ 1 and that if
Ii = −(p, qj, qk), then qj 6= qk. In K, we use the following
set of relation symbols:

• a binary symbol N connecting a configuration to its suc-
cessor configuration;

• binary symbolsR1 andR2 that represent the register con-
tents via the length of paths;

• unary symbols q0, . . . , qℓ representing the states of M ;

• a unary symbol S denoting points where a computation
starts.

• a unary symbol D used to represent that there is some
defect;

• binary symbols D+
p , D

−
p , D

=
p used to describe defects in

incrementing, decrementing, and keeping register p ∈
{0, 1};

• ternary symbols H+
1 , H

+
2 , H

−
1 , H

−
2 , H

=
1 , H

=
2 used as

guards for existential quantifiers.

The signature Σ consists of the symbols from the first four
points above.

We define the ontology O as the set of several GF3 sen-
tences.4 The first sentence initializes the starting configura-
tion:

∀x(Sx→ (q0x ∧ ¬∃y R0xy ∧ ¬∃y R1xy))

Second, whenever M is not in the final state, there is a next
configuration with the correctly updated state. For 0 ≤ i <
ℓ, we include:

∀x(qix→ ∃y Nxy)

∀x(qix→ ∀y(Nxy → qjy)) if Ii = +(p, qj)

∀x((qix ∧ ¬∃yRpxy)→ ∀y(Nxy → qjy))

if Ii = −(p, qj, qk)

∀x((qix ∧ ∃yRpxy)→ ∀y(Nxy → qky))

if Ii = −(p, qj, qk)

Moreover, if M is in the final state, there is no successor
configuration:

∀x(qℓx→ ¬∃y Nxy).

The next conjunct expresses that either M does not halt or
the representation of the computation of M contains a de-
fect. It crucially uses non-Σ relation symbols. It takes the
shape of

∀x (Dx→ ∃y (Nxy ∧ ψxy))

where ψxy is the following disjunction which ensures that
there is a concrete defect (D+

p , D
−
p , D

=
p ) here or some defect

(D) in some successor state:

D(y) ∨
∨

Ii=+(p,qj)

(qix ∧ qjy ∧ (D+
p xy ∨D

=
1−pxy)) ∨

∨

Ii=−(p,qj ,qk)

(qix ∧ qky ∧ (D−
p xy ∨D

=
1−pxy)) ∨

∨

Ii=−(p,qj ,qk)

(qix ∧ qjy ∧ (D=
p xy ∨D

=
1−pxy))

Finally, using the ternary symbols we make sure that the de-
fects are realized, for example, by taking:

∀x∀y
(

D+
p xy →

(¬∃z Rpyz ∨ (¬∃z Rpxz ∧ ∃z (Rpyz ∧ ∃xRpzx)) ∨

∃z(H+
1 xyz ∧Rpxz ∧ ∃x(H

+
2 xzy ∧Rpyx ∧D+

p zx)))
)

.

Similar conjuncts implement the desired behaviour of D=
p

and D−
p ; since they are constructed analogously to the last

three lines above (but using guardsH−
j andH=

j ), details are
omitted.

Finally, we define a databaseD by taking

D = {S(a), D(a), S(b)}.

Lemmas 23 and 24 below establish correctness of the reduc-
tion and thus Theorem 11.

4The formulas that are not syntactically guarded can easily be
rewritten into such formulas.



Lemma 23 If M halts, then there is an ALC(Σ) concept
that non-projectively separates (K, {a}, {b}).

Proof. The idea is that the separating ALC(Σ) concept
describes the halting computation of M , up to ALC(Σ)-
bisimulations. More precisely, assume that M halts. We
define an ALC(Σ) concept C such that K |= ¬C(a),
but K 6|= ¬C(b). Intuitively, C represents the computa-
tion of M on input (0, 0), that is: if the computation is
(q0, n0,m0), . . . , (qk, nk,mk), then there is an N -path of
length k (but not longer) such that any object reachable in
i ≤ k steps from the beginning of the path is labeled with
qi, has an outgoing R0-path of length ni and no longer out-
going R0-path, and likewise for R1 and mi. In more detail,
consider the Σ-structure A with

dom(A) = {0, . . . , k} ∪ {aij | 0 < i ≤ k, 0 < j < ni} ∪

{bij | 0 < i ≤ k, 0 < j < mi}

in which

NA = {(i, i+ 1) | i < k}

RA
1 =

⋃

i≤k{(i, a
i
1), (a

i
1, a

i
2), . . . , (a

i
ni−2, a

i
ni−1)}

RA
2 =

⋃

i≤k{(i, b
i
1), (b

i
1, b

i
2), . . . , (b

i
mi−2, b

i
mi−1)}

SA = {0}

qA = {i | qi = q} for any q ∈ Q.

Then letC be theALC(Σ) concept that describesA from the
point of 0 up toALC(Σ)-bisimulations. Clearly,K∪{C(b)}
is satisfiable. However,K∪{C(a)} is unsatisfiable since the
enforced computation does not contain a defect and cannot
be extended to have one. In particular, there are no N -paths
of length > k in any model of K ∪ {C(a)} and there are no
defects in register updates in any model of K ∪ {C(a)}.

❏

The following lemma implies that if M does not halt,
then (K, {a}, {b}) is neither projectively L(Σ)-separable
nor non-projectivelyL(Σ)-separable for L = GF and in fact
for every logic L between GF and FO.

Lemma 24 IfM does not halt, then for every model A ofK,
there is a model B of K such that (A, bA) is Γ-ismorphic to
(B, aB) where Γ consists of all symbols except sig(O) \ Σ.

Proof. Let A be a model of K. We obtain B from A by
re-interpreting aB = bA and inductively defining the exten-
sions of the symbols from

sig(O) \ Σ = {D,D+
p ,D

−
p , D

=
p ,

H+
1 , H

+
2 , H

−
1 , H

−
2 , H

=
1 , H

=
2 }.

We start with DB = {aB} and XB = ∅ for all other sym-
bols X from sig(O) \ Σ. Then, whenever d ∈ DB we dis-
tinguish two cases:

• If there is an N -successor e of d such that the counters
below d and e are not correctly updated with respect to
the states at d, e, set the extensions of the symbols in
D+

p , D
−
p , D

=
p , H

+
1 , H

+
2 , H

−
1 , H

−
2 , H

=
1 , H

=
2 so as to rep-

resent the defect and finish the construction of B.

• Otherwise, choose an N -successor e of d and add e to
DB.

Note that, since M does not halt, we can always find such
an N -successor as in the second item. ❏

Theorem 12 1. Strong (GF,FO)-separability with signature
is 2EXPTIME-complete;

2. Strong (FO2,FO)-separability with signature is
CONEXPTIME-complete;

3. Strong GF-separability is 3EXPTIME-complete, for rela-
tional signatures;

4. Strong FO2-separability with signature is in
CON2EXPTIME and 2EXPTIME-hard, for relational
signatures.

The proof of Theorem 12 relies on the encoding of GF
and FO2-KBs into formulas in GF and FO2.

For Points 1 and 2 we can use the extensions of GF
and FO2 with constants as we only require Craig inter-
polants in FO and the upper bounds for satisfiability of GF
and FO2 still hold for their extensions with constants. We
start with GF. Assume a labeled GF-KB (K, {a}, {b}) with
K = (O,D) is given. Let Σ be a signature. Obtain ϕ′

K,Σ,a

from K by

• replacing all relation symbols R 6∈ Σ by fresh relation
symbols Ra;

• replacing all individual names c 6∈ Σ ∪ {a} by fresh indi-
vidual names ca;

• replacing a by a fresh variable x and adding x = a if
a ∈ Σ;

and taking the conjunction of the resulting set of formulas.
Define ϕ′

K,Σ,b in the same way but with a replaced by b.

Then an FO-formula ϕ strongly Σ-separates (K, {a}, {b})
iff ϕ is an FO-interpolant for ϕ′

K,σ,a,¬ϕ
′
K,Σ,b, and we have

proved Point 1. For Point 2, observe that ϕ′
K,σ,a, ϕ

′
K,Σ,b are

in FO2 if K is an FO2-KB. Thus, the argument applies to
FO2 as well and we have proved Point 2.

For Points 3 and 4 we assume that Σ is a relational sig-
nature and as we aim to apply results on the complexity of
interpolant existence that have been proved for GF and FO2

without constants we cannot use constants in the construc-
tion of the encodings.

Assume a labeled GF-KB (K, {a}, {b}) withK = (O,D)
is given and Σ is a relational signature. Consider the formu-
las ϕK,Σ,a and ϕK,Σ,b from the main paper (defined in the

obvious way for GF). To obtain GF-formulas ϕGF
K,Σ,a and

ϕGF
K,Σ,b, take fresh relation symbols RD,a and RD,b of arity

n, where n is the number of individuals in D. Then add
RD,a(~y) to KΣ,a when constructing ϕK,Σ,a(x), where ~y is
an enumeration of the variables in KΣ,a. Do the same to

construct ϕGF
K,Σ,b(x), using RD,b instead of RD,a. The for-

mulas ϕGF
K,Σ,a and ¬ϕGF

K,Σ,b are in GF and play the same role

as the formulas ϕK,Σ,a and ϕK,Σ,b. In particular, for any
formula ϕ the following are equivalent:

1. ϕ strongly Σ-separates (K, {a}, {b});

2. ϕ is an interpolant for ϕGF
K,Σ,a(x),¬ϕ

GF
K,Σ,b(x).



The complexity upper bound now follows from the result
that interpolant existence in GF is decidable in 3EXPTIME

(Jung and Wolter 2021). For FO2 we proceed as follows.
We introduce for every individual name c in D a unary
relation symbol Ac and encode D using the sentences
∃xAc(x)∧∀x∀y(Ac(x)∧Ac(y)→ x = y), for c ∈ ind(D),
and

• ∃x∃yR(x, y) ∧ Ac(x) ∧ Ac′(y) for every R(c, c′) ∈ D;

• ∃xA(x) ∧ Ac(x) for everyA(c) ∈ D.

Let ϕ2
K,Σ,a be the conjunction of the sentences above, the

sentences in O, and the formula Aa(x), where we also re-
place all relation symbols in K that are not in Σ by fresh
relation symbols Ra. Define ϕ2

K,Σ,b in the same way with

a replaced by b and where the unary relation symbols A′
c

used to encode individuals c are disjoint from the unary re-
lation symbols used for this purpose in ϕ2

K,Σ,a. Then we

have that ϕ2
K,Σ,a and ϕ2

K,Σ,b are in FO2 and a formula ϕ

strongly Σ-separates (K, {a}, {b}) iff it is an interpolant for
ϕ2
K,Σ,a(x),¬ϕ

2
K,Σ,b(x). The complexity upper bound now

follows from the result that interpolant non-existence in FO2

is decidable in N2EXPTIME (Jung and Wolter 2021).
The complexity lower bounds can be proved by generaliz-

ing in a straightforward way the reductions from interpolant
existence to the existence of strongly separating formulas
from the languages in DLni in the previous section to GF and
FO2 and using the complexity lower bounds for interpolant
existence proved in (Jung and Wolter 2021).
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