
The Complexity of Transitively Orienting1

Temporal Graphs2

George B. Mertzios £3

Department of Computer Science, Durham University, UK4

Hendrik Molter £5

Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Israel6

Malte Renken £7

Technische Universität Berlin, Faculty IV, Algorithmics and Computational Complexity, Germany8

Paul G. Spirakis £9

Department of Computer Science, University of Liverpool, UK10

Computer Engineering & Informatics Department, University of Patras, Greece11

Philipp Zschoche £12

Technische Universität Berlin, Faculty IV, Algorithmics and Computational Complexity, Germany13

Abstract14

In a temporal network with discrete time-labels on its edges, entities and information can only ŞĆowŤ15

along sequences of edges whose time-labels are non-decreasing (resp. increasing), i.e. along temporal16

(resp. strict temporal) paths. Nevertheless, in the model for temporal networks of [Kempe, Kleinberg,17

Kumar, JCSS, 2002], the individual time-labeled edges remain undirected: an edge e = ¶u, v♦ with18

time-label t speciĄes that Şu communicates with v at time tŤ. This is a symmetric relation between19

u and v, and it can be interpreted that the information can Ćow in either direction. In this paper20

we make a Ąrst attempt to understand how the direction of information Ćow on one edge can impact21

the direction of information Ćow on other edges. More speciĄcally, naturally extending the classical22

notion of a transitive orientation in static graphs, we introduce the fundamental notion of a temporal23

transitive orientation and we systematically investigate its algorithmic behavior in various situations.24

An orientation of a temporal graph is called temporally transitive if, whenever u has a directed edge25

towards v with time-label t1 and v has a directed edge towards w with time-label t2 ≥ t1, then u also26

has a directed edge towards w with some time-label t3 ≥ t2. If we just demand that this implication27

holds whenever t2 > t1, the orientation is called strictly temporally transitive, as it is based on the28

fact that there is a strict directed temporal path from u to w. Our main result is a conceptually29

simple, yet technically quite involved, polynomial-time algorithm for recognizing whether a given30

temporal graph G is transitively orientable. In wide contrast we prove that, surprisingly, it is31

NP-hard to recognize whether G is strictly transitively orientable. Additionally we introduce and32

investigate further related problems to temporal transitivity, notably among them the temporal33

transitive completion problem, for which we prove both algorithmic and hardness results.34

Due to lack of space, the full paper with all proofs is attached in an Appendix.35

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Mathem-36

atics of computing → Discrete mathematics37

Keywords and phrases Temporal graph, transitive orientation, transitive closure, polynomial-time38

algorithm, NP-hardness, satisĄability.39

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2340

Funding George B. Mertzios: Supported by the EPSRC grant EP/P020372/1.41

Hendrik Molter : Supported by the German Research Foundation (DFG), project MATE (NI 369/17),42

and by the Israeli Science Foundation (ISF), grant No. 1070/20.43

Malte Renken: Supported by the German Research Foundation (DFG), project MATE (NI 369/17).44

Paul G. Spirakis: Supported by the NeST initiative of the School of EEE and CS at the University45

of Liverpool and by the EPSRC grant EP/P02002X/1.46

© G.B. Mertzios, H. Molter, M. Renken, P.G. Spirakis and P. Zschoche;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/478779215?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:george.mertzios@durham.ac.uk
https://orcid.org/0000-0001-7182-585X
mailto:molterh@post.bgu.ac.il
https://orcid.org/0000-0002-4590-798X
mailto:m.renken@tu-berlin.de
http://orcid.org/0000-0002-1450-1901
mailto:p.spirakis@liverpool.ac.uk
https://orcid.org/0000-0001-5396-3749
mailto:zschoche@tu-berlin.de
https://orcid.org/0000-0001-9846-0600
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


23:2 The Complexity of Transitively Orienting Temporal Graphs

1 Introduction47

A temporal (or dynamic) network is, roughly speaking, a network whose underlying topology48

changes over time. This notion concerns a great variety of both modern and traditional49

networks; information and communication networks, social networks, and several physical50

systems are only few examples of networks which change over time [27,38,41]. Due to its vast51

applicability in many areas, the notion of temporal graphs has been studied from different52

perspectives under several different names such as time-varying, evolving, dynamic, and53

graphs over time (see [13Ű15] and the references therein). In this paper we adopt a simple54

and natural model for temporal networks which is given with discrete time-labels on the55

edges of a graph, while the vertex set remains unchanged. This formalism originates in the56

foundational work of Kempe et al. [28].57

◮ Definition 1 (Temporal Graph [28]). A temporal graph is a pair G = (G, λ), where58

G = (V, E) is an underlying (static) graph and λ : E → N is a time-labeling function which59

assigns to every edge of G a discrete-time label.60

Mainly motivated by the fact that, due to causality, entities and information in temporal61

graphs can only ŞĆowŤ along sequences of edges whose time-labels are non-decreasing62

(resp. increasing), Kempe et al. introduced the notion of a (strict) temporal path, or (strict)63

time-respecting path, in a temporal graph (G, λ) as a path in G with edges e1, e2, . . . , ek64

such that λ(e1) ≤ . . . ≤ λ(ek) (resp. λ(e1) < . . . < λ(ek)). This notion of a temporal path65

naturally resembles the notion of a directed path in the classical static graphs, where the66

direction is from smaller to larger time-labels along the path. Nevertheless, in temporal paths67

the individual time-labeled edges remain undirected: an edge e = ¶u, v♦ with time-label68

λ(e) = t can be abstractly interpreted as Şu communicates with v at time tŤ. Here the69

relation ŞcommunicatesŤ is symmetric between u and v, i.e. it can be interpreted that the70

information can Ćow in either direction.71

In this paper we make a Ąrst attempt to understand how the direction of information Ćow72

on one edge can impact the direction of information Ćow on other edges. More speciĄcally,73

naturally extending the classical notion of a transitive orientation in static graphs [24], we74

introduce the fundamental notion of a temporal transitive orientation and we thoroughly75

investigate its algorithmic behavior in various situations. Imagine that v receives information76

from u at time t1, while w receives information from v at time t2 ≥ t1. Then w indirectly77

receives information from u through the intermediate vertex v. Now, if the temporal graph78

correctly records the transitive closure of information passing, the directed edge from u to w79

must exist and must have a time label t3 ≥ t2. In such a transitively oriented temporal graph,80

whenever an edge is oriented from a vertex u to a vertex w with time-label t, we have that81

every temporal path from u to w arrives no later than t, and that there is no temporal path82

from w to u. Different notions of temporal transitivity have also been used for automated83

temporal data mining [40] in medical applications [39], text processing [45]. Furthermore, in84

behavioral ecology, researchers have used a notion of orderly (transitive) triads A-B-C to85

quantify dominance among species. In particular, animal groups usually form dominance86

hierarchies in which dominance relations are transitive and can also change with time [33].87

One natural motivation for our temporal transitivity notion may come from applications88

where conĄrmation and veriĄcation of information is vital, where vertices may represent89

entities such as investigative journalists or police detectives who gather sensitive information.90

Suppose that v queried some important information from u (the information source) at91

time t1, and afterwards, at time t2 ≥ t1, w queried the important information from v (the92

intermediary). Then, in order to ensure the validity of the information received, w might93



G.B. Mertzios, H. Molter, M. Renken, P.G. Spirakis and P. Zschoche 23:3

want to verify it by subsequently querying the information directly from u at some time94

t3 ≥ t2. Note that w might Ąrst receive the important information from u through various95

other intermediaries, and using several channels of different lengths. Then, to maximize96

conĄdence about the information, w should query u for veriĄcation only after receiving the97

information from the latest of these indirect channels.98

It is worth noting here that the model of temporal graphs given in DeĄnition 1 has been99

also used in its extended form, in which the temporal graph may contain multiple time-labels100

per edge [35]. This extended temporal graph model has been used to investigate temporal101

paths [3, 9, 11,16, 35,48] and other temporal path-related notions such as temporal analogues102

of distance and diameter [1], reachability [2] and exploration [1,3,20,21], separation [22,28,49],103

and path-based centrality measures [12,29], as well as recently non-path problems too such as104

temporal variations of coloring [37], vertex cover [4], matching [36], cluster editing [18], and105

maximal cliques [8,26,47]. However, in order to better investigate and illustrate the inherent106

combinatorial structure of temporal transitivity orientations, in this paper we mostly follow107

the original deĄnition of temporal graphs given by Kempe et al. [28] with one time-label per108

edge [7,17,19]. Throughout the paper, whenever we assume multiple time-labels per edge we109

will state it explicitly; in all other cases we consider a single label per edge.110

In static graphs, the transitive orientation problem has received extensive attention which111

resulted in numerous efficient algorithms. A graph is called transitively orientable (or a112

comparability graph) if it is possible to orient its edges such that, whenever we orient u113

towards v and v towards w, then the edge between u and w exists and is oriented towards w.114

The Ąrst polynomial-time algorithms for recognizing whether a given (static) graph G on n115

vertices and m edges is comparability (i.e. transitively orientable) were based on the notion116

of forcing an orientation and had running time O(n3) (see Golumbic [24] and the references117

therein). Faster algorithms for computing a transitive orientation of a given comparability118

graph have been later developed, having running times O(n2) [43] and O(n + m log n) [30],119

while the currently fastest algorithms run in linear O(n + m) time and are based on efficiently120

computing a modular decomposition of G [31, 32]; see also Spinrad [44]. It is fascinating121

that, although all the latter algorithms compute a valid transitive orientation if G is a122

comparability graph, they fail to recognize whether the input graph is a comparability graph;123

instead they produce an orientation which is non-transitive if G is not a comparability graph.124

The fastest known algorithm for determining whether a given orientation is transitive requires125

matrix multiplication, currently achieved in O(n2.37286) time [5].126

Our contribution. In this paper we introduce the notion of temporal transitive orientation127

and we thoroughly investigate its algorithmic behavior in various situations. An orientation of128

a temporal graph G = (G, λ) is called temporally transitive if, whenever u has a directed edge129

towards v with time-label t1 and v has a directed edge towards w with time-label t2 ≥ t1,1130

then u also has a directed edge towards w with some time-label t3 ≥ t2. If we just demand131

that this implication holds whenever t2 > t1, the orientation is called strictly temporally132

transitive, as it is based on the fact that there is a strict directed temporal path from u to w.133

Similarly, if we demand that the transitive directed edge from u to w has time-label t3 > t2,134

the orientation is called strongly (resp. strongly strictly) temporally transitive.135

Although these four natural variations of a temporally transitive orientation seem super-136

Ącially similar to each other, it turns out that their computational complexity (and their137

underlying combinatorial structure) varies massively. Indeed we obtain a surprising result138

1 That is, whenever there exists a (non-strict) directed temporal path from u to w arriving at time t2

CVIT 2016



23:4 The Complexity of Transitively Orienting Temporal Graphs

in Section 3: deciding whether a temporal graph G admits a temporally transitive orientation139

is solvable in polynomial time (Section 3.2), while it is NP-hard to decide whether it admits140

a strictly temporally transitive orientation (Section 3.1). On the other hand, it turns out that,141

deciding whether G admits a strongly or a strongly strictly temporal transitive orientation is142

(easily) solvable in polynomial time as they can both be reduced to 2SAT satisĄability.143

Our main result is that, given a temporal graph G = (G, λ), we can decide in polynomial144

time whether G can be transitively orientable, and at the same time we can output a temporal145

transitive orientation if it exists. Although the analysis and correctness proof of our algorithm146

is technically quite involved, our algorithm is simple and easy to implement, as it is based on147

the notion of forcing an orientation.2 Our algorithm extends and generalizes the classical148

polynomial-time algorithm for computing a transitive orientation in static graphs described149

by Golumbic [24]. The main technical difficulty in extending the algorithm from the static to150

the temporal setting is that, in temporal graphs we cannot simply use orientation forcings to151

eliminate the condition that a triangle is not allowed to be cyclically oriented. To resolve this152

issue, we Ąrst express the recognition problem of temporally transitively orientable graphs as153

a Boolean satisĄability problem of a mixed Boolean formula φ3NAE ∧ φ2SAT. Here φ3NAE is154

a 3NAE (i.e. 3-Not-All-Equal) formula and φ2SAT is a 2SAT formula. Note that every155

clause NAE(ℓ1, ℓ2, ℓ3) of φ3NAE corresponds to the condition that a speciĄc triangle in the156

temporal graph cannot be cyclically oriented. However, although deciding whether φ2SAT is157

satisĄable can be done in linear time with respect to the size of the formula [6], the problem158

Not-All-Equal-3-SAT is NP-complete [42].159

Our algorithm iteratively produces at iteration j a formula φ
(j)
3NAE ∧ φ

(j)
2SAT, which is160

computed from the previous formula φ
(j−1)
3NAE ∧ φ

(j−1)
2SAT by (almost) simulating the classical161

greedy algorithm that solves 2SAT [6]. The 2SAT-algorithm proceeds greedily as follows. For162

every variable xi, if setting xi = 1 (resp. xi = 0) leads to an immediate contradiction, the163

algorithm is forced to set xi = 0 (resp. xi = 1). Otherwise, if each of the truth assignments164

xi = 1 and xi = 0 does not lead to an immediate contradiction, the algorithm arbitrarily165

chooses to set xi = 1 or xi = 0, and thus some clauses are removed from the formula as166

they were satisĄed. The argument for the correctness of the 2SAT-algorithm is that new167

clauses are never added to the formula at any step. The main technical difference between168

the 2SAT-algorithm and our algorithm is that, in our case, the formula φ
(j)
3NAE ∧ φ

(j)
2SAT is not169

necessarily a sub-formula of φ
(j−1)
3NAE ∧φ

(j−1)
2SAT , as in some cases we need to also add clauses. Our170

main technical result is that, nevertheless, at every iteration j the formula φ
(j)
3NAE ∧ φ

(j)
2SAT is171

satisĄable if and only if φ
(j−1)
3NAE ∧ φ

(j−1)
2SAT is satisĄable. The proof of this result (see Theorem 9)172

relies on a sequence of structural properties of temporal transitive orientations which we173

establish. This phenomenon of deducing a polynomial-time algorithm for an algorithmic174

graph problem by deciding satisĄability of a mixed Boolean formula (i.e. with both clauses of175

two and three literals) occurs rarely; this approach has been successfully used for the efficient176

recognition of simple-triangle (known also as ŞPIŤ) graphs [34].177

In the second part of our paper (Section 4) we consider a natural extension of the temporal178

orientability problem, namely the temporal transitive completion problem. In this problem179

we are given a temporal graph G and a natural number k, and the question is whether it is180

possible to add at most k new edges (with the corresponding time-labels) to G such that the181

resulting temporal graph is (strongly/strictly/strongly strictly) transitively orientable. We182

prove that all four versions of temporal transitive completion are NP-complete. In contrast183

2 That is, orienting an edge from u to v forces us to orient another edge from a to b.



G.B. Mertzios, H. Molter, M. Renken, P.G. Spirakis and P. Zschoche 23:5

we show that, if the input temporal graph G is directed (i.e. if every time-labeled edge184

has a Ąxed orientation) then all versions of temporal transitive completion are solvable in185

polynomial time. As a corollary of our results it follows that all four versions of temporal186

transitive completion are Ąxed-parameter-tractable (FPT) with respect to the number q of187

unoriented time-labeled edges in G.188

In the third and last part of our paper (Section 5) we consider the multilayer transitive189

orientation problem. In this problem we are given an undirected temporal graph G = (G, λ),190

where G = (V, E), and we ask whether there exists an orientation F of its edges (i.e. with191

exactly one orientation for each edge of G) such that, for every Śtime-layerŤ t ≥ 1, the (static)192

oriented graph induced by the edges having time-label t is transitively oriented in F . Problem193

deĄnitions of this type are commonly referred to as multilayer problems [10], Observe that194

this problem trivially reduces to the static case if we assume that each edge has a single195

time-label, as then each layer can be treated independently of all others. However, if we196

allow G to have multiple time-labels on every edge of G, then we show that the problem197

becomes NP-complete, even when every edge has at most two labels.198

2 Preliminaries and Notation199

Given a (static) undirected graph G = (V, E), an edge between two vertices u, v ∈ V is200

denoted by the unordered pair ¶u, v♦ ∈ E, and in this case the vertices u, v are said to201

be adjacent. If the graph is directed, we will use the ordered pair (u, v) (resp. (v, u)) to202

denote the oriented edge from u to v (resp. from v to u). For simplicity of the notation, we203

will usually drop the parentheses and the comma when denoting an oriented edge, i.e. we204

will denote (u, v) just by uv. Furthermore, ûv = ¶uv, vu♦ is used to denote the set of both205

oriented edges uv and vu between the vertices u and v.206

Let S ⊆ E be a subset of the edges of an undirected (static) graph G = (V, E), and let207

Ŝ = ¶uv, vu : ¶u, v♦ ∈ S♦ be the set of both possible orientations uv and vu of every edge208

¶u, v♦ ∈ S. Let F ⊆ Ŝ. If F contains at least one of the two possible orientations uv and209

vu of each edge ¶u, v♦ ∈ S, then F is called an orientation of the edges of S. F is called210

a proper orientation if it contains exactly one of the orientations uv and vu of every edge211

¶u, v♦ ∈ S. Note here that, in order to simplify some technical proofs, the above deĄnition212

of an orientation allows F to be not proper, i.e. to contain both uv and vu for a speciĄc edge213

¶u, v♦. However, whenever F is not proper, this means that F can be discarded as it cannot214

be used as a part of a (temporal) transitive orientation. For every orientation F denote by215

F −1 = ¶vu : uv ∈ F♦ the reversal of F . Note that F ∩ F −1 = ∅ if and only if F is proper.216

In a temporal graph G = (G, λ), where G = (V, E), whenever λ(¶v, w♦) = t (or simply217

λ(v, w) = t), we refer to the tuple (¶v, w♦, t) as a time-edge of G. A triangle of (G, λ) on218

the vertices u, v, w is a synchronous triangle if λ(u, v) = λ(v, w) = λ(w, u). Let G = (V, E)219

and let F be a proper orientation of the whole edge set E. Then (G, F ), or (G, λ, F ), is a220

proper orientation of the temporal graph G. A partial proper orientation F of G = (G, λ) is221

an orientation of a subset of E. To indicate that the edge ¶u, v♦ of a time-edge (¶u, v♦, t) is222

oriented from u to v (that is, uv ∈ F in a (partial) proper orientation F ), we use the term223

((u, v), t), or simply (uv, t). For simplicity we may refer to a (partial) proper orientation just224

as a (partial) orientation, whenever the term ŞproperŤ is clear from the context.225

A static graph G = (V, E) is a comparability graph if there exists a proper orientation F226

of E which is transitive, that is, if F ∩ F −1 = ∅ and F 2 ⊆ F , where F 2 = ¶uw : uv, vw ∈ F227

for some vertex v♦ [24]. Analogously, in a temporal graph G = (G, λ), where G = (V, E), we228

deĄne a proper orientation F of E to be temporally transitive, if:229

CVIT 2016



23:6 The Complexity of Transitively Orienting Temporal Graphs

whenever (uv, t1) and (vw, t2) are oriented time-edges in (G, F ) such that t2 ≥ t1, there

exists an oriented time-edge (wu, t3) in (G, F ), for some t3 ≥ t2.
230

In the above deĄnition of a temporally transitive orientation, if we replace the condition231

Şt3 ≥ t2Ť with Şt3 > t2Ť, then F is called strongly temporally transitive. If we instead replace232

the condition Şt2 ≥ t1Ť with Şt2 > t1Ť, then F is called strictly temporally transitive. If we233

do both of these replacements, then F is called strongly strictly temporally transitive. Note234

that strong (strict) temporal transitivity implies (strict) temporal transitivity, while (strong)235

temporal transitivity implies (strong) strict temporal transitivity. Furthermore, similarly to236

the established terminology for static graphs, we deĄne a temporal graph G = (G, λ), where237

G = (V, E), to be a (strongly/strictly) temporal comparability graph if there exists a proper238

orientation F of E which is (strongly/strictly) temporally transitive.239

We are now ready to formally introduce the following decision problem of recognizing240

whether a given temporal graph is temporally transitively orientable or not.241

Temporal Transitive Orientation (TTO)

Input: A temporal graph G = (G, λ), where G = (V, E).

Question: Does G admit a temporally transitive orientation F of E?

242

In the above problem deĄnition of TTO, if we ask for the existence of a strictly243

(resp. strongly, or strongly strictly) temporally transitive orientation F , we obtain the244

decision problem Strict (resp. Strong, or Strong Strict) Temporal Transitive245

Orientation (TTO).246

Let G = (G, λ) be a temporal graph, where G = (V, E). Let G′ = (V, E′) be a graph such247

that E ⊆ E′, and let λ′ : E′ → N be a time-labeling function such that λ′(u, v) = λ(u, v) for248

every ¶u, v♦ ∈ E. Then the temporal graph G′ = (G′, λ′) is called a temporal supergraph of G.249

We can now deĄne our next problem deĄnition regarding computing temporally orientable250

supergraphs of G.251

Temporal Transitive Completion (TTC)

Input: A temporal graph G = (G, λ), where G = (V, E), a (partial) orientation F of G,

and an integer k.

Question: Does there exist a temporal supergraph G′ = (G′, λ′) of (G, λ), where G′ = (V, E′),

and a transitive orientation F ′ ⊇ F of G′ such that ♣E′ \ E♣ ≤ k?

252

Similarly to TTO, if we ask in the problem deĄnition of TTC for the existence of a253

strictly (resp. strongly, or strongly strictly) temporally transitive orientation F ′, we obtain254

the decision problem Strict (resp. Strong, or Strong Strict) Temporal Transitive255

Completion (TTC).256

Now we deĄne our Ąnal problem which asks for an orientation F of a temporal graph257

G = (G, λ) (i.e. with exactly one orientation for each edge of G) such that, for every258

Ştime-layerŤ t ≥ 1, the (static) oriented graph deĄned by the edges having time-label t is259

transitively oriented in F . This problem does not make much sense if every edge has exactly260

one time-label in G, as in this case it can be easily solved by just repeatedly applying any261

known static transitive orientation algorithm. Therefore, in the next problem deĄnition, we262

assume that in the input temporal graph G = (G, λ) every edge of G potentially has multiple263

time-labels, i.e. the time-labeling function is λ : E → 2N.264

Multilayer Transitive Orientation (MTO)

Input: A temporal graph G = (G, λ), where G = (V, E) and λ : E → 2N.

Question: Is there an orientation F of the edges of G such that, for every t ≥ 1, the (static)

oriented graph induced by the edges having time-label t is transitively oriented?

265



G.B. Mertzios, H. Molter, M. Renken, P.G. Spirakis and P. Zschoche 23:7

u w

v

t3

t2t1

u w

v

t1 t2

t1 = t2 = t3 t1 < t2 = t3 t1 ≤ t2 < t3 t1 = t2 t1 < t2

TTO non-cyclic wu = wv
vw =⇒ uw

vu =⇒ wu
uv = wv uv =⇒ wv

Strong TTO ⊥ wu ∧ wv
vw =⇒ uw

vu =⇒ wu
uv = wv uv =⇒ wv

Strict TTO ⊤ non-cyclic
vw =⇒ uw

vu =⇒ wu
⊤ uv =⇒ wv

Str. Str. TTO ⊤
vu =⇒ wu

uv =⇒ wv

vw =⇒ uw

vu =⇒ wu
⊤ uv =⇒ wv

Table 1 Orientation conditions imposed by a triangle (left) and an induced path of length two

(right) in the underlying graph G for the decision problems (Strict/Strong/Strong Strict)

TTO. Here, ⊤ means that no restriction is imposed, ⊥ means that the graph is not orientable, and

in the case of triangles, Şnon-cyclicŤ means that all orientations except the ones that orient the

triangle cyclicly are allowed.

3 The recognition of temporally transitively orientable graphs266

In this section we investigate the computational complexity of all variants of TTO. We267

show that TTO as well as the two variants Strong TTO and Strong Strict TTO, are268

solvable in polynomial time, whereas Strict TTO turns out to be NP-complete.269

The main idea of our approach to solve TTO and its variants is to create Boolean270

variables for each edge of the underlying graph G and interpret setting a variable to 1 or 0271

with the two possible ways of directing the corresponding edge.272

More formally, for every edge ¶u, v♦ we introduce a variable xuv and setting this variable273

to 1 corresponds to the orientation uv while setting this variable to 0 corresponds to the274

orientation vu. Now consider the example of Figure 1(a), i.e. an induced path of length275

two in the underlying graph G on three vertices u, v, w, and let λ(u, v) = 1 and λ(v, w) = 2.276

Then the orientation uv ŞforcesŤ the orientation wv. Indeed, if we otherwise orient ¶v, w♦277

as vw, then the edge ¶u, w♦ must exist and be oriented as uw in any temporal transitive278

orientation, which is a contradiction as there is no edge between u and w. We can express279

this ŞforcingŤ with the implication xuv =⇒ xwv. In this way we can deduce the constraints280

that all triangles or induced paths on three vertices impose on any (strong/strict/strong281

strict) temporal transitive orientation. We collect all these constraints in Table 1.282

When looking at the conditions imposed on temporal transitive orientations collected283

in Table 1, we can observe that all conditions except Şnon-cyclicŤ are expressible in 2SAT.284

Since 2SAT is solvable in linear time [6], it immediately follows that the strong variants of285

temporal transitivity are solvable in polynomial time, as the next theorem states.286

◮ Theorem 2. Strong TTO and Strong Strict TTO are solvable in polynomial time.287

CVIT 2016



23:8 The Complexity of Transitively Orienting Temporal Graphs

In the variants TTO and Strict TTO, however, we can have triangles which impose288

a Şnon-cyclicŤ orientation of three edges (Table 1). This can be naturally modeled by a289

not-all-equal (NAE) clause.3 However, if we now naïvely model the conditions with a Boolean290

formula, we obtain a formula with 2SAT clauses and 3NAE clauses. Deciding whether such291

a formula is satisĄable is NP-complete in general [42]. Hence, we have to investigate these292

two variants more thoroughly.293

The only difference between the triangles that impose these Şnon-cyclicŤ orientations in294

these two problem variants is that, in TTO, the triangle is synchronous (i.e. all its three295

edges have the same time-label), while in Strict TTO two of the edges are synchronous296

and the third one has a smaller time-label than the other two. As it turns out, this difference297

of the two problem variants has important implications on their computational complexity.298

In fact, we obtain a surprising result: TTO is solvable in polynomial time while Strict299

TTO is NP-complete.300

3.1 Strict TTO is NP-Complete301

In this section we show that in contrast to the other variants, Strict TTO is NP-complete.302

◮ Theorem 3. Strict TTO is NP-complete even if the temporal input graph has only four303

different time labels.304

3.2 A polynomial-time algorithm for TTO305

Let G = (V, E) be a static undirected graph. There are various polynomial-time algorithms306

for deciding whether G admits a transitive orientation F . However our results in this section307

are inspired by the transitive orientation algorithm described by Golumbic [24], which is308

based on the crucial notion of forcing an orientation. The notion of forcing in static graphs309

is illustrated in Figure 1 (a): if we orient the edge ¶u, v♦ as uv (i.e., from u to v) then we310

are forced to orient the edge ¶v, w♦ as wv (i.e., from w to v) in any transitive orientation F311

of G. Indeed, if we otherwise orient ¶v, w♦ as vw (i.e. from v to w), then the edge ¶u, w♦312

must exist and it must be oriented as uw in any transitive orientation F of G, which is a313

contradiction as ¶u, w♦ is not an edge of G. Similarly, if we orient the edge ¶u, v♦ as vu then314

we are forced to orient the edge ¶v, w♦ as vw. That is, in any transitive orientation F of315

G we have that uv ∈ F ⇔ wv ∈ F . This forcing operation can be captured by the binary316

forcing relation Γ which is deĄned on the edges of a static graph G as follows [24].317

uv Γ u′v′ if and only if


either u = u′ and ¶v, v′♦ /∈ E

or v = v′ and ¶u, u′♦ /∈ E
. (1)318

We now extend the deĄnition of Γ in a natural way to the binary relation Λ on the edges319

of a temporal graph (G, λ), see Equation (2). For this, observe from Table 1 that the only320

cases, where we have uv ∈ F ⇔ wv ∈ F in any temporal transitive orientation of (G, λ), are321

when (i) the vertices u, v, w induce a path of length 2 (see Figure 1 (a)) and λ(u, v) = λ(v, w),322

as well as when (ii) u, v, w induce a triangle and λ(u, w) < λ(u, v) = λ(v, w). The latter323

situation is illustrated in the example of Figure 1 (b). The binary forcing relation Λ is only324

3 A not all equal clause is a set of literals and it evaluates to true if and only if at least two literals in the
set evaluate to different truth values.



G.B. Mertzios, H. Molter, M. Renken, P.G. Spirakis and P. Zschoche 23:9

u w

v

(a)

u w

v

(b)

3

55

Figure 1 The orientation uv forces the orientation wu and vice-versa in the examples of (a) a

static graph G where ¶u, v♦, ¶v, w♦ ∈ E(G) and ¶u, w♦ /∈ E(G), and of (b) a temporal graph (G, λ)

where λ(u, w) = 3 < 5 = λ(u, v) = λ(v, w).

deĄned on pairs of edges ¶u, v♦ and ¶u′, v′♦ where λ(u, v) = λ(u′, v′), as follows.325

uv Λ u′v′ if and only if λ(u, v) = λ(u′, v′) = t and





u = u′ and ¶v, v′♦ /∈ E, or

v = v′ and ¶u, u′♦ /∈ E, or

u = u′ and λ(v, v′) < t, or

v = v′ and λ(u, u′) < t.

(2)326

Note that, for every edge ¶u, v♦ ∈ E we have that uv Λ uv. The forcing relation Λ for temporal327

graphs shares some properties with the forcing relation Γ for static graphs. In particular,328

the reĆexive transitive closure Λ∗ of Λ is an equivalence relation, which partitions the edges329

of each set Et = ¶¶u, v♦ ∈ E : λ(u, v) = t♦ into its Λ-implication classes (or simply, into its330

implication classes). Two edges ¶a, b♦ and ¶c, d♦ are in the same Λ-implication class if and331

only ab Λ∗ cd, i.e. there exists a sequence ab = a0b0 Λ a1b1 Λ . . . Λ akbk = cd, with k ≥ 0.332

Note that, for this to happen, we must have λ(a0, b0) = λ(a1, b1) = . . . = λ(ak, bk) = t for333

some t ≥ 1. Such a sequence is called a Λ-chain from ab to cd, and we say that ab (eventually)334

Λ-forces cd. Furthermore note that ab Λ∗ cd if and only if ba Λ∗ dc. For the next lemma, we335

use the notation Â = ¶uv, vu : uv ∈ A♦.336

◮ Lemma 4. Let A be a Λ-implication class of a temporal graph (G, λ). Then either337

A = A−1 = Â or A ∩ A−1 = ∅.338

◮ Definition 5. Let F be a proper orientation and A be a Λ-implication class of a temporal339

graph (G, λ). If A ⊆ F , we say that F respects A.340

◮ Lemma 6. Let F be a proper orientation and A be a Λ-implication class of a temporal341

graph (G, λ). Then F respects either A or A−1 (i.e. either A ⊆ F or A−1 ⊆ F ), and in342

either case A ∩ A−1 = ∅.343

The next lemma, which is crucial for proving the correctness of our algorithm, extends344

an important known property of the forcing relation Γ for static graphs [24, Lemma 5.3] to345

the temporal case.346

◮ Lemma 7 (Temporal Triangle Lemma). Let (G, λ) be a temporal graph and with a syn-347

chronous triangle on the vertices a, b, c, where λ(a, b) = λ(b, c) = λ(c, a) = t. Let A, B, C be348

three Λ-implication classes of (G, λ), where ab ∈ C, bc ∈ A, and ca ∈ B, where A ≠ B−1
349

and A ̸= C−1.350

1. If some b′c′ ∈ A, then ab′ ∈ C and c′a ∈ B.351

2. If some b′c′ ∈ A and a′b′ ∈ C, then c′a′ ∈ B.352

3. No edge of A touches vertex a.353

CVIT 2016



23:10 The Complexity of Transitively Orienting Temporal Graphs

Deciding temporal transitivity using Boolean satisfiability. Starting with any undirected354

edge ¶u, v♦ of the underlying graph G, we can clearly enumerate in polynomial time the355

whole Λ-implication class A to which the oriented edge uv belongs (cf. Equation (2)). If356

the reversely directed edge vu ∈ A then Lemma 4 implies that A = A−1 = Â. Otherwise, if357

vu /∈ A then vu ∈ A−1 and Lemma 4 implies that A ∩ A−1 = ∅. Thus, we can also decide in358

polynomial time whether A ∩ A−1 = ∅. If we encounter a Λ-implication class A such that359

A ∩ A−1 ̸= ∅, then it follows by Lemma 6 that (G, λ) is not temporally transitively orientable.360

In the remainder of the section we will assume that A ∩ A−1 = ∅ for every Λ-implication361

class A of (G, λ), which is a necessary condition for (G, λ) to be temporally transitive362

orientable. Moreover it follows by Lemma 6 that, if (G, λ) admits a temporally transitively363

orientation F , then either A ⊆ F or A−1 ⊆ F . This allows us to deĄne a Boolean variable364

xA for every Λ-implication class A, where xA = xA−1 . Here xA = 1 (resp. xA−1 = 1) means365

that A ⊆ F (resp. A−1 ⊆ F ), where F is the temporally transitive orientation which we are366

looking for. Let ¶A1, A2, . . . , As♦ be a set of Λ-implication classes such that ¶Â1, Â2, . . . , Âs♦367

is a partition of the edges of the underlying graph G.4 Then any truth assignment τ of the368

variables x1, x2, . . . , xs (where xi = xAi
for every i = 1, 2, . . . , s) corresponds bijectively to369

one possible orientation of the temporal graph (G, λ), in which every Λ-implication class is370

oriented consistently.371

Now we deĄne two Boolean formulas φ3NAE and φ2SAT such that (G, λ) admits a temporal372

transitive orientation if and only if there is a truth assignment τ of the variables x1, x2, . . . , xs373

such that both φ3NAE and φ2SAT are simultaneously satisĄed. Intuitively, φ3NAE captures374

the Şnon-cyclicŤ condition from Table 1 while φ2SAT captures the remaining conditions. Here375

φ3NAE is a 3NAE formula, i.e., the disjunction of clauses with three literals each, where376

every clause NAE(ℓ1, ℓ2, ℓ3) is satisĄed if and only if at least one of the literals ¶ℓ1, ℓ2, ℓ3♦ is377

equal to 1 and at least one of them is equal to 0. Furthermore φ2SAT is a 2SAT formula,378

i.e., the disjunction of 2CNF clauses with two literals each, where every clause (ℓ1 ∨ ℓ2) is379

satisĄed if and only if at least one of the literals ¶ℓ1, ℓ2♦ is equal to 1.380

Description of the 3NAE formula φ3NAE. The formula φ3NAE captures the Şnon-cyclicŤ381

condition of the problem variant TTO (presented in Table 1). The formal description382

of φ3NAE is as follows. Consider a synchronous triangle of (G, λ) on the vertices u, v, w.383

Assume that xuv = xwv (resp. xvw = xuw, or xwu = xvu) is true. Then the pair ¶uv, wv♦384

(resp. ¶vw, uw♦, or ¶wu, vu♦) of oriented edges belongs to the same Λ-implication class Ai.385

This implies that the triangle on the vertices u, v, w is never cyclically oriented in any proper386

orientation F that respects Ai or A−1
i . Assume, on the contrary, that xuv ≠ xwv, xvw ≠ xuw,387

and xwu ≠ xvu. In this case we add to φ3NAE the clause NAE(xuv, xvw, xwu). Note that388

the triangle on u, v, w is transitively oriented if and only if NAE(xuv, xvw, xwu) is satisĄed,389

i.e., at least one of the variables ¶xuv, xvw, xwu♦ receives the value 1 and at least one of them390

receives the value 0.391

Description of the 2SAT formula φ2SAT. The formula φ2SAT captures all conditions apart392

from the Şnon-cyclicŤ condition of the problem variant TTO (presented in Table 1). The393

formal description of φ2SAT is as follows. Consider a triangle of (G, λ) on the vertices u, v, w,394

where λ(u, v) = t1, λ(v, w) = t2, λ(w, v) = t3, and t1 ≤ t2 ≤ t3. If t1 < t2 = t3 then we add395

to φ2SAT the clauses (xuw ∨ xwv) ∧ (xvw ∨ xwu); note that these clauses are equivalent to396

4 Here we slightly abuse the notation by identifying the undirected edge ¶u, v♦ with the set of both its
orientations ¶uv, vu♦.



G.B. Mertzios, H. Molter, M. Renken, P.G. Spirakis and P. Zschoche 23:11

xwu = xwv. If t1 ≤ t2 < t3 then we add to φ2SAT the clauses (xwv ∨ xuw) ∧ (xuv ∨ xwu);397

note that these clauses are equivalent to (xvw ⇒ xuw) ∧ (xvu ⇒ xwu). Now consider a path398

of length 2 that is induced by the vertices u, v, w, where λ(u, v) = t1, λ(v, w) = t2, and399

t1 ≤ t2. If t1 = t2 then we add to φ2SAT the clauses (xvu ∨ xwv) ∧ (xvw ∨ xuv); note that400

these clauses are equivalent to (xuv = xwv). Finally, if t1 < t2 then we add to φ2SAT the401

clause (xvu ∨ xwv); note that this clause is equivalent to (xuv ⇒ xwv).402

Brief outline of the algorithm. In the initialization phase, we exhaustively check which403

truth values are forced in φ3NAE ∧ φ2SAT by using the subroutine Initial-Forcing. During404

the execution of Initial-Forcing, we either replace the formulas φ3NAE and φ2SAT by the405

equivalent formulas φ
(0)
3NAE and φ

(0)
2SAT, respectively, or we reach a contradiction by showing406

that φ3NAE ∧ φ2SAT is unsatisĄable.407

◮ Observation 8. The temporal graph (G, λ) is transitively orientable if and only if φ
(0)
3NAE

∧408

φ
(0)
2SAT

is satisĄable.409

The main phase of the algorithm starts once the formulas φ
(0)
3NAE and φ

(0)
2SAT have been410

computed. During this phase, we iteratively modify the formulas such that, at the end of411

iteration j we have the formulas φ
(j)
3NAE and φ

(j)
2SAT. As we prove in our main technical result412

of this section (Theorem 9), φ
(j−1)
3NAE ∧ φ

(j−1)
2SAT is satisĄable if and only if φ

(j)
3NAE ∧ φ

(j)
2SAT is413

satisĄable. Note that, during the execution of the algorithm, we can both add and remove414

clauses from φ
(j)
2SAT. On the other hand, we can only remove clauses from φ

(j)
3NAE. Thus,415

at some iteration j, we obtain φ
(j)
3NAE = ∅, and after that iteration we only need to decide416

satisĄability of φ
(j)
2SAT which can be done efficiently [6].417

We are now ready to present in the next theorem our main technical result of this section.418

◮ Theorem 9. For every iteration j ≥ 1 of the algorithm, φ
(j)
3NAE

∧ φ
(j)
2SAT

is satisĄable if419

and only if φ
(j−1)
3NAE

∧ φ
(j−1)
2SAT

is satisĄable.420

Using Theorem 9, we can now conclude this section with the next theorem.421

◮ Theorem 10. TTO can be solved in polynomial time.422

Proof sketch. First recall by Observation 8 that the input temporal graph (G, λ) is transit-423

ively orientable if and only if φ
(0)
3NAE ∧ φ

(0)
2SAT is satisĄable.424

Let (G, λ) be a yes-instance. Then, by iteratively applying Theorem 9 it follows that425

φ
(j)
3NAE ∧ φ

(j)
2SAT is satisĄable, for every iteration j of the algorithm. Recall that, at the end of426

the last iteration k of the algorithm, φ
(k)
3NAE ∧ φ

(k)
2SAT is empty. Then the algorithm gives the427

arbitrary truth value xi = 1 to every variable xi which did not yet get any truth value yet.428

This is a correct decision as all these variables are not involved in any Boolean constraint429

of φ
(k)
3NAE ∧ φ

(k)
2SAT (which is empty). Finally, the algorithm orients all edges of G according430

to the corresponding truth assignment. The returned orientation F of (G, λ) is temporally431

transitive as every variable was assigned a truth value according to the Boolean constraints432

throughout the execution of the algorithm.433

Now let (G, λ) be a no-instance. We will prove that, at some iteration j ≤ 0, the434

algorithm will ŞNOŤ. Suppose otherwise that the algorithm instead returns an orientation435

F of (G, λ) after performing k iterations. Then clearly φ
(k)
3NAE ∧ φ

(k)
2SAT is empty, and thus436

clearly satisĄable. Therefore, iteratively applying Theorem 9 implies that φ
(0)
3NAE ∧ φ

(0)
2SAT is437

also satisĄable, and thus (G, λ) is temporally transitively orientable by Observation 8, which438

is a contradiction to the assumption that (G, λ) be a no-instance.439

CVIT 2016



23:12 The Complexity of Transitively Orienting Temporal Graphs

Lastly, we prove that our algorithm runs in polynomial time. The Λ-implication classes440

of (G, λ) can be clearly computed in polynomial time. Our algorithm calls a subroutine441

Boolean-Forcing at most four times for every variable in φ
(0)
3NAE ∧ φ

(0)
2SAT. Boolean-442

Forcing iteratively adds and removes clauses from the 2SAT part of the formula, while it443

can only remove clauses from the 3NAE part. Whenever a clause is added to the 2SAT part,444

a clause of the 3NAE part is removed. Therefore, as the initial 3NAE formula has at most445

polynomially-many clauses, we can add clauses to the 2SAT part only polynomially-many446

times. Hence, we have an overall polynomial running time. ◭447

4 Temporal Transitive Completion448

We now study the computational complexity of Temporal Transitive Completion449

(TTC). In the static case, the so-called minimum comparability completion problem,450

i.e. adding the smallest number of edges to a static graph to turn it into a comparabil-451

ity graph, is known to be NP-hard [25]. Note that minimum comparability completion452

on static graphs is a special case of TTC and thus it follows that TTC is NP-hard too.453

Our other variants, however, do not generalize static comparability completion in such a454

straightforward way. Note that for Strict TTC we have that the corresponding recognition455

problem Strict TTO is NP-complete (Theorem 3), hence it follows directly that Strict456

TTC is NP-hard. For the remaining two variants of our problem, we show in the following457

that they are also NP-hard, giving the result that all four variants of TTC are NP-hard.458

Furthermore, we present a polynomial-time algorithm for all four problem variants for the459

case that all edges of underlying graph are oriented, see Theorem 12. This allows directly to460

derive an FPT algorithm for the number of unoriented edges as a parameter.461

◮ Theorem 11. All four variants of TTC are NP-hard.462

We now show that TTC can be solved in polynomial time, if all edges are already oriented,463

as the next theorem states.464

◮ Theorem 12. An instance (G, F, k) of TTC where G = (G, λ) and G = (V, E), can be465

solved in O(m2) time if F is an orientation of E, where m = ♣E♣.466

Using Theorem 12 we can now prove that TTC is Ąxed-parameter tractable (FPT) with467

respect to the number of unoriented edges in the input temporal graph G.468

◮ Corollary 13. Let I = (G = (G, λ), F, k) be an instance of TTC, where G = (V, E). Then469

I can be solved in O(2q · m2), where q = ♣E♣ − ♣F ♣ and m the number of time edges.470

5 Deciding Multilayer Transitive Orientation471

In this section we prove that Multilayer Transitive Orientation (MTO) is NP-472

complete, even if every edge of the given temporal graph has at most two labels. Recall that473

this problem asks for an orientation F of a temporal graph G = (G, λ) (i.e. with exactly one474

orientation for each edge of G) such that, for every Ştime-layerŤ t ≥ 1, the (static) oriented475

graph deĄned by the edges having time-label t is transitively oriented in F . As we discussed476

in Section 2, this problem makes more sense when every edge of G potentially has multiple477

time-labels, therefore we assume here that the time-labeling function is λ : E → 2N.478

◮ Theorem 14. MTO is NP-complete, even on temporal graphs with at most two labels per479

edge.480



G.B. Mertzios, H. Molter, M. Renken, P.G. Spirakis and P. Zschoche 23:13

References481

1 Eleni C. Akrida, Leszek Gasieniec, George B. Mertzios, and Paul G. Spirakis. Ephemeral482

networks with random availability of links: The case of fast networks. Journal of Parallel and483

Distributed Computing, 87:109Ű120, 2016.484

2 Eleni C. Akrida, Leszek Gasieniec, George B. Mertzios, and Paul G. Spirakis. The complexity of485

optimal design of temporally connected graphs. Theory of Computing Systems, 61(3):907Ű944,486

2017.487

3 Eleni C. Akrida, George B. Mertzios, Sotiris E. Nikoletseas, Christoforos L. Raptopoulos,488

Paul G. Spirakis, and Viktor Zamaraev. How fast can we reach a target vertex in stochastic489

temporal graphs? Journal of Computer and System Sciences, 114:65Ű83, 2020. An extended490

abstract appeared at ICALP 2019.491

4 Eleni C. Akrida, George B. Mertzios, Paul G. Spirakis, and Viktor Zamaraev. Temporal vertex492

cover with a sliding time window. Journal of Computer and System Sciences, 107:108Ű123,493

2020.494

5 Josh Alman and Virginia Vassilevska Williams. A reĄned laser method and faster matrix495

multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms496

(SODA), pages 522Ű539, 2021.497

6 Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algorithm for testing498

the truth of certain quantiĄed boolean formulas. Information Processing Letters, 8(3):121Ű123,499

1979.500

7 Kyriakos Axiotis and Dimitris Fotakis. On the size and the approximability of minimum501

temporally connected subgraphs. In Proceedings of the 43rd International Colloquium on502

Automata, Languages, and Programming, (ICALP), pages 149:1Ű149:14, 2016.503

8 Matthias Bentert, Anne-Sophie Himmel, Hendrik Molter, Marco Morik, Rolf Niedermeier,504

and René Saitenmacher. Listing all maximal k-plexes in temporal graphs. ACM Journal of505

Experimental Algorithmics, 24(1):13:1Ű13:27, 2019.506

9 Matthias Bentert, Anne-Sophie Himmel, André Nichterlein, and Rolf Niedermeier. Efficient507

computation of optimal temporal walks under waiting-time constraints. Applied Network508

Science, 5(1):73, 2020.509

10 Robert Bredereck, Christian Komusiewicz, Stefan Kratsch, Hendrik Molter, Rolf Niedermeier,510

and Manuel Sorge. Assessing the computational complexity of multilayer subgraph detection.511

Network Science, 7(2):215Ű241, 2019.512

11 Binh-Minh Bui-Xuan, Afonso Ferreira, and Aubin Jarry. Computing shortest, fastest, and513

foremost journeys in dynamic networks. International Journal of Foundations of Computer514

Science, 14(02):267Ű285, 2003.515

12 Sebastian Buß, Hendrik Molter, Rolf Niedermeier, and Maciej Rymar. Algorithmic aspects of516

temporal betweenness. In Proceedings of the 26th ACM SIGKDD Conference on Knowledge517

Discovery and Data Mining (KDD), pages 2084Ű2092. ACM, 2020.518

13 Arnaud Casteigts and Paola Flocchini. Deterministic Algorithms in Dynamic Networks:519

Formal Models and Metrics. Technical report, Defence R&D Canada, April 2013. URL:520

https://hal.archives-ouvertes.fr/hal-00865762.521

14 Arnaud Casteigts and Paola Flocchini. Deterministic Algorithms in Dynamic Networks:522

Problems, Analysis, and Algorithmic Tools. Technical report, Defence R&D Canada, April523

2013. URL: https://hal.archives-ouvertes.fr/hal-00865764.524

15 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying525

graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed526

Systems, 27(5):387Ű408, 2012.527

16 Arnaud Casteigts, Anne-Sophie Himmel, Hendrik Molter, and Philipp Zschoche. Finding528

temporal paths under waiting time constraints. In 31st International Symposium on Algorithms529

and Computation (ISAAC), pages 30:1Ű30:18, 2020.530

CVIT 2016

https://hal.archives-ouvertes.fr/hal-00865762
https://hal.archives-ouvertes.fr/hal-00865764


23:14 The Complexity of Transitively Orienting Temporal Graphs

17 Arnaud Casteigts, Joseph G. Peters, and Jason Schoeters. Temporal cliques admit sparse531

spanners. In Proceedings of the 46th International Colloquium on Automata, Languages, and532

Programming (ICALP), volume 132, pages 134:1Ű134:14, 2019.533

18 Jiehua Chen, Hendrik Molter, Manuel Sorge, and Ondřej Suchý. Cluster editing in multi-layer534

and temporal graphs. In Proceedings of the 29th International Symposium on Algorithms and535

Computation (ISAAC), pages 24:1Ű24:13, 2018.536

19 J. Enright, K. Meeks, G.B. Mertzios, and V. Zamaraev. Deleting edges to restrict the size537

of an epidemic in temporal networks. Journal of Computer and System Sciences, 119:60Ű77,538

2021.539

20 Jessica Enright, Kitty Meeks, and Fiona Skerman. Assigning times to minimise reachability in540

temporal graphs. Journal of Computer and System Sciences, 115:169Ű186, 2021.541

21 Thomas Erlebach, Michael Hoffmann, and Frank Kammer. On temporal graph exploration. In542

Proceedings of the 42nd International Colloquium on Automata, Languages, and Programming543

(ICALP), pages 444Ű455, 2015.544

22 Till Fluschnik, Hendrik Molter, Rolf Niedermeier, Malte Renken, and Philipp Zschoche.545

Temporal graph classes: A view through temporal separators. Theoretical Computer Science,546

806:197Ű218, 2020.547

23 M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simpliĄed NP-complete graph problems.548

Theoretical Computer Science, 1(3):237Ű267, 1976.549

24 Martin Charles Golumbic. Algorithmic graph theory and perfect graphs. Elsevier, 2nd edition,550

2004.551

25 S Louis Hakimi, Edward F Schmeichel, and Neal E Young. Orienting graphs to optimize552

reachability. Information Processing Letters, 63(5):229Ű235, 1997.553

26 Anne-Sophie Himmel, Hendrik Molter, Rolf Niedermeier, and Manuel Sorge. Adapting the554

Bron-Kerbosch algorithm for enumerating maximal cliques in temporal graphs. Social Network555

Analysis and Mining, 7(1):35:1Ű35:16, 2017.556

27 Petter Holme and Jari Saramäki. Temporal network theory, volume 2. Springer, 2019.557

28 David Kempe, Jon M. Kleinberg, and Amit Kumar. Connectivity and inference problems for558

temporal networks. Journal of Computer and System Sciences, 64(4):820Ű842, 2002.559

29 Hyoungshick Kim and Ross Anderson. Temporal node centrality in complex networks. Physical560

Review E, 85(2):026107, 2012.561

30 Ross M. McConnell and Jeremy P. Spinrad. Linear-time modular decomposition and efficient562

transitive orientation of comparability graphs. In Proceedings of the 5th Annual ACM-SIAM563

Symposium on Discrete Algorithms (SODA), pages 536Ű545, 1994.564

31 Ross M. McConnell and Jeremy P. Spinrad. Linear-time transitive orientation. In Proceedings565

of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 19Ű25, 1997.566

32 Ross M. McConnell and Jeremy P. Spinrad. Modular decomposition and transitive orientation.567

Discrete Mathematics, 201(1-3):189Ű241, 1999.568

33 David B McDonald and Daizaburo Shizuka. Comparative transitive and temporal orderliness569

in dominance networks. Behavioral Ecology, 24(2):511Ű520, 2013.570

34 George B. Mertzios. The recognition of simple-triangle graphs and of linear-interval orders is571

polynomial. SIAM Journal on Discrete Mathematics, 29(3):1150Ű1185, 2015.572

35 George B. Mertzios, Othon Michail, Ioannis Chatzigiannakis, and Paul G. Spirakis. Temporal573

network optimization subject to connectivity constraints. In Proceedings of the 40th Inter-574

national Colloquium on Automata, Languages, and Programming (ICALP), pages 657Ű668,575

2013.576

36 George B Mertzios, Hendrik Molter, Rolf Niedermeier, Viktor Zamaraev, and Philipp Zschoche.577

Computing maximum matchings in temporal graphs. In Proceedings of the 37th International578

Symposium on Theoretical Aspects of Computer Science (STACS), volume 154, pages 27:1Ű579

27:14, 2020.580



G.B. Mertzios, H. Molter, M. Renken, P.G. Spirakis and P. Zschoche 23:15

37 George B Mertzios, Hendrik Molter, and Viktor Zamaraev. Sliding window temporal graph581

coloring. In Proceedings of the 31st AAAI Conference on ArtiĄcial Intelligence (AAAI),582

volume 33, pages 7667Ű7674, 2019.583

38 Othon Michail and Paul G. Spirakis. Elements of the theory of dynamic networks. Commu-584

nications of the ACM, 61(2):72Ű72, January 2018.585

39 Robert Moskovitch and Yuval Shahar. Medical temporal-knowledge discovery via temporal586

abstraction. In Proceedings of the AMIA Annual Symposium, page 452, 2009.587

40 Robert Moskovitch and Yuval Shahar. Fast time intervals mining using the transitivity of588

temporal relations. Knowledge and Information Systems, 42(1):21Ű48, 2015.589

41 V. Nicosia, J. Tang, C. Mascolo, M. Musolesi, G. Russo, and V. Latora. Graph metrics for590

temporal networks. In Temporal Networks. Springer, 2013.591

42 Thomas J. Schaefer. The complexity of satisĄability problems. In Proceedings of the 10th592

Annual ACM Symposium on Theory of Computing (STOC), pages 216Ű226, 1978.593

43 Jeremy P. Spinrad. On comparability and permutation graphs. SIAM Journal on Computing,594

14(3):658Ű670, 1985.595

44 Jeremy P. Spinrad. Efficient graph representations, volume 19 of Fields Institute Monographs.596

American Mathematical Society, 2003.597

45 Xavier Tannier and Philippe Muller. Evaluating temporal graphs built from texts via transitive598

reduction. Journal of ArtiĄcial Intelligence Research (JAIR), 40:375Ű413, 2011.599

46 Craig A Tovey. A simpliĄed NP-complete satisĄability problem. Discrete Applied Mathematics,600

8(1):85Ű89, 1984.601

47 Tiphaine Viard, Matthieu Latapy, and Clémence Magnien. Computing maximal cliques in602

link streams. Theoretical Computer Science, 609:245Ű252, 2016.603

48 Huanhuan Wu, James Cheng, Yiping Ke, Silu Huang, Yuzhen Huang, and Hejun Wu. Efficient604

algorithms for temporal path computation. IEEE Transactions on Knowledge and Data605

Engineering, 28(11):2927Ű2942, 2016.606

49 Philipp Zschoche, Till Fluschnik, Hendrik Molter, and Rolf Niedermeier. The complexity of607

Ąnding separators in temporal graphs. Journal of Computer and System Sciences, 107:72Ű92,608

2020.609

CVIT 2016



APPENDIX
The Complexity of Transitively Orienting1

Temporal Graphs2

George B. Mertzios £3

Department of Computer Science, Durham University, UK4

Hendrik Molter £5

Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Israel6

Malte Renken £7

Technische Universität Berlin, Faculty IV, Algorithmics and Computational Complexity, Germany8

Paul G. Spirakis £9

Department of Computer Science, University of Liverpool, UK10

Computer Engineering & Informatics Department, University of Patras, Greece11

Philipp Zschoche £12

Technische Universität Berlin, Faculty IV, Algorithmics and Computational Complexity, Germany13

Abstract14

In a temporal network with discrete time-labels on its edges, entities and information can only ŞĆowŤ15

along sequences of edges whose time-labels are non-decreasing (resp. increasing), i.e. along temporal16

(resp. strict temporal) paths. Nevertheless, in the model for temporal networks of [Kempe, Kleinberg,17

Kumar, JCSS, 2002], the individual time-labeled edges remain undirected: an edge e = ¶u, v♦ with18

time-label t speciĄes that Şu communicates with v at time tŤ. This is a symmetric relation between19

u and v, and it can be interpreted that the information can Ćow in either direction. In this paper20

we make a Ąrst attempt to understand how the direction of information Ćow on one edge can impact21

the direction of information Ćow on other edges. More speciĄcally, naturally extending the classical22

notion of a transitive orientation in static graphs, we introduce the fundamental notion of a temporal23

transitive orientation and we systematically investigate its algorithmic behavior in various situations.24

An orientation of a temporal graph is called temporally transitive if, whenever u has a directed edge25

towards v with time-label t1 and v has a directed edge towards w with time-label t2 ≥ t1, then u also26

has a directed edge towards w with some time-label t3 ≥ t2. If we just demand that this implication27

holds whenever t2 > t1, the orientation is called strictly temporally transitive, as it is based on the28

fact that there is a strict directed temporal path from u to w. Our main result is a conceptually29

simple, yet technically quite involved, polynomial-time algorithm for recognizing whether a given30

temporal graph G is transitively orientable. In wide contrast we prove that, surprisingly, it is31

NP-hard to recognize whether G is strictly transitively orientable. Additionally we introduce and32

investigate further related problems to temporal transitivity, notably among them the temporal33

transitive completion problem, for which we prove both algorithmic and hardness results.34

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Mathem-35

atics of computing → Discrete mathematics36

Keywords and phrases Temporal graph, transitive orientation, transitive closure, polynomial-time37

algorithm, NP-hardness, satisĄability.38

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2339

Funding George B. Mertzios: Supported by the EPSRC grant EP/P020372/1.40

Hendrik Molter : Supported by the German Research Foundation (DFG), project MATE (NI 369/17),41

and by the Israeli Science Foundation (ISF), grant No. 1070/20.42

Malte Renken: Supported by the German Research Foundation (DFG), project MATE (NI 369/17).43

Paul G. Spirakis: Supported by the NeST initiative of the School of EEE and CS at the University44

of Liverpool and by the EPSRC grant EP/P02002X/1.45

1

mailto:george.mertzios@durham.ac.uk
https://orcid.org/0000-0001-7182-585X
mailto:molterh@post.bgu.ac.il
https://orcid.org/0000-0002-4590-798X
mailto:m.renken@tu-berlin.de
http://orcid.org/0000-0002-1450-1901
mailto:p.spirakis@liverpool.ac.uk
https://orcid.org/0000-0001-5396-3749
mailto:zschoche@tu-berlin.de
https://orcid.org/0000-0001-9846-0600
https://doi.org/10.4230/LIPIcs.CVIT.2016.23


APPENDIX

1 Introduction46

A temporal (or dynamic) network is, roughly speaking, a network whose underlying topology47

changes over time. This notion concerns a great variety of both modern and traditional48

networks; information and communication networks, social networks, and several physical49

systems are only few examples of networks which change over time [27,38,41]. Due to its vast50

applicability in many areas, the notion of temporal graphs has been studied from different51

perspectives under several different names such as time-varying, evolving, dynamic, and52

graphs over time (see [13Ű15] and the references therein). In this paper we adopt a simple53

and natural model for temporal networks which is given with discrete time-labels on the54

edges of a graph, while the vertex set remains unchanged. This formalism originates in the55

foundational work of Kempe et al. [28].56

◮ Definition 1 (Temporal Graph [28]). A temporal graph is a pair G = (G, λ), where57

G = (V, E) is an underlying (static) graph and λ : E → N is a time-labeling function which58

assigns to every edge of G a discrete-time label.59

Mainly motivated by the fact that, due to causality, entities and information in temporal60

graphs can only ŞĆowŤ along sequences of edges whose time-labels are non-decreasing61

(resp. increasing), Kempe et al. introduced the notion of a (strict) temporal path, or (strict)62

time-respecting path, in a temporal graph (G, λ) as a path in G with edges e1, e2, . . . , ek63

such that λ(e1) ≤ . . . ≤ λ(ek) (resp. λ(e1) < . . . < λ(ek)). This notion of a temporal path64

naturally resembles the notion of a directed path in the classical static graphs, where the65

direction is from smaller to larger time-labels along the path. Nevertheless, in temporal paths66

the individual time-labeled edges remain undirected: an edge e = ¶u, v♦ with time-label67

λ(e) = t can be abstractly interpreted as Şu communicates with v at time tŤ. Here the68

relation ŞcommunicatesŤ is symmetric between u and v, i.e. it can be interpreted that the69

information can Ćow in either direction.70

In this paper we make a Ąrst attempt to understand how the direction of information Ćow71

on one edge can impact the direction of information Ćow on other edges. More speciĄcally,72

naturally extending the classical notion of a transitive orientation in static graphs [24], we73

introduce the fundamental notion of a temporal transitive orientation and we thoroughly74

investigate its algorithmic behavior in various situations. Imagine that v receives information75

from u at time t1, while w receives information from v at time t2 ≥ t1. Then w indirectly76

receives information from u through the intermediate vertex v. Now, if the temporal graph77

correctly records the transitive closure of information passing, the directed edge from u to w78

must exist and must have a time label t3 ≥ t2. In such a transitively oriented temporal graph,79

whenever an edge is oriented from a vertex u to a vertex w with time-label t, we have that80

every temporal path from u to w arrives no later than t, and that there is no temporal path81

from w to u. Different notions of temporal transitivity have also been used for automated82

temporal data mining [40] in medical applications [39], text processing [45]. Furthermore, in83

behavioral ecology, researchers have used a notion of orderly (transitive) triads A-B-C to84

quantify dominance among species. In particular, animal groups usually form dominance85

hierarchies in which dominance relations are transitive and can also change with time [33].86

One natural motivation for our temporal transitivity notion may come from applications87

where conĄrmation and veriĄcation of information is vital, where vertices may represent88

entities such as investigative journalists or police detectives who gather sensitive information.89

Suppose that v queried some important information from u (the information source) at90

time t1, and afterwards, at time t2 ≥ t1, w queried the important information from v (the91

intermediary). Then, in order to ensure the validity of the information received, w might92

2



APPENDIX

want to verify it by subsequently querying the information directly from u at some time93

t3 ≥ t2. Note that w might Ąrst receive the important information from u through various94

other intermediaries, and using several channels of different lengths. Then, to maximize95

conĄdence about the information, w should query u for veriĄcation only after receiving the96

information from the latest of these indirect channels.97

It is worth noting here that the model of temporal graphs given in DeĄnition 1 has been98

also used in its extended form, in which the temporal graph may contain multiple time-labels99

per edge [35]. This extended temporal graph model has been used to investigate temporal100

paths [3, 9, 11,16, 35,48] and other temporal path-related notions such as temporal analogues101

of distance and diameter [1], reachability [2] and exploration [1,3,20,21], separation [22,28,49],102

and path-based centrality measures [12,29], as well as recently non-path problems too such as103

temporal variations of coloring [37], vertex cover [4], matching [36], cluster editing [18], and104

maximal cliques [8,26,47]. However, in order to better investigate and illustrate the inherent105

combinatorial structure of temporal transitivity orientations, in this paper we mostly follow106

the original deĄnition of temporal graphs given by Kempe et al. [28] with one time-label per107

edge [7,17,19]. Throughout the paper, whenever we assume multiple time-labels per edge we108

will state it explicitly; in all other cases we consider a single label per edge.109

In static graphs, the transitive orientation problem has received extensive attention which110

resulted in numerous efficient algorithms. A graph is called transitively orientable (or a111

comparability graph) if it is possible to orient its edges such that, whenever we orient u112

towards v and v towards w, then the edge between u and w exists and is oriented towards w.113

The Ąrst polynomial-time algorithms for recognizing whether a given (static) graph G on n114

vertices and m edges is comparability (i.e. transitively orientable) were based on the notion115

of forcing an orientation and had running time O(n3) (see Golumbic [24] and the references116

therein). Faster algorithms for computing a transitive orientation of a given comparability117

graph have been later developed, having running times O(n2) [43] and O(n + m log n) [30],118

while the currently fastest algorithms run in linear O(n + m) time and are based on efficiently119

computing a modular decomposition of G [31, 32]; see also Spinrad [44]. It is fascinating120

that, although all the latter algorithms compute a valid transitive orientation if G is a121

comparability graph, they fail to recognize whether the input graph is a comparability graph;122

instead they produce an orientation which is non-transitive if G is not a comparability graph.123

The fastest known algorithm for determining whether a given orientation is transitive requires124

matrix multiplication, currently achieved in O(n2.37286) time [5].125

Our contribution. In this paper we introduce the notion of temporal transitive orientation126

and we thoroughly investigate its algorithmic behavior in various situations. An orientation of127

a temporal graph G = (G, λ) is called temporally transitive if, whenever u has a directed edge128

towards v with time-label t1 and v has a directed edge towards w with time-label t2 ≥ t1,1129

then u also has a directed edge towards w with some time-label t3 ≥ t2. If we just demand130

that this implication holds whenever t2 > t1, the orientation is called strictly temporally131

transitive, as it is based on the fact that there is a strict directed temporal path from u to w.132

Similarly, if we demand that the transitive directed edge from u to w has time-label t3 > t2,133

the orientation is called strongly (resp. strongly strictly) temporally transitive.134

Although these four natural variations of a temporally transitive orientation seem super-135

Ącially similar to each other, it turns out that their computational complexity (and their136

underlying combinatorial structure) varies massively. Indeed we obtain a surprising result137

1 That is, whenever there exists a (non-strict) directed temporal path from u to w arriving at time t2

3



APPENDIX

in Section 3: deciding whether a temporal graph G admits a temporally transitive orientation138

is solvable in polynomial time (Section 3.2), while it is NP-hard to decide whether it admits139

a strictly temporally transitive orientation (Section 3.1). On the other hand, it turns out that,140

deciding whether G admits a strongly or a strongly strictly temporal transitive orientation is141

(easily) solvable in polynomial time as they can both be reduced to 2SAT satisĄability.142

Our main result is that, given a temporal graph G = (G, λ), we can decide in polynomial143

time whether G can be transitively orientable, and at the same time we can output a temporal144

transitive orientation if it exists. Although the analysis and correctness proof of our algorithm145

is technically quite involved, our algorithm is simple and easy to implement, as it is based on146

the notion of forcing an orientation.2 Our algorithm extends and generalizes the classical147

polynomial-time algorithm for computing a transitive orientation in static graphs described148

by Golumbic [24]. The main technical difficulty in extending the algorithm from the static to149

the temporal setting is that, in temporal graphs we cannot simply use orientation forcings to150

eliminate the condition that a triangle is not allowed to be cyclically oriented. To resolve this151

issue, we Ąrst express the recognition problem of temporally transitively orientable graphs as152

a Boolean satisĄability problem of a mixed Boolean formula φ3NAE ∧ φ2SAT. Here φ3NAE is153

a 3NAE formula, i.e., the disjunction of clauses with three literals each, where every clause154

NAE(ℓ1, ℓ2, ℓ3) is satisĄed if and only if at least one of the literals ¶ℓ1, ℓ2, ℓ3♦ is equal to 1155

and at least one of them is equal to 0. Note that every clause NAE(ℓ1, ℓ2, ℓ3) corresponds to156

the condition that a speciĄc triangle in the temporal graph cannot be cyclically oriented.157

Furthermore φ2SAT is a 2SAT formula, i.e., the disjunction of 2CNF clauses with two literals158

each, where every clause (ℓ1 ∨ ℓ2) is satisĄed if and only if at least one of the literals ¶ℓ1, ℓ2♦159

is equal to 1. However, although deciding whether φ2SAT is satisĄable can be done in160

linear time with respect to the size of the formula [6], the problem Not-All-Equal-3-SAT is161

NP-complete [42].162

Our algorithm iteratively produces at iteration j a formula φ
(j)
3NAE

∧ φ
(j)
2SAT

, which is163

computed from the previous formula φ
(j−1)
3NAE

∧ φ
(j−1)
2SAT

by (almost) simulating the classical164

greedy algorithm that solves 2SAT [6]. The 2SAT-algorithm proceeds greedily as follows. For165

every variable xi, if setting xi = 1 (resp. xi = 0) leads to an immediate contradiction, the166

algorithm is forced to set xi = 0 (resp. xi = 1). Otherwise, if each of the truth assignments167

xi = 1 and xi = 0 does not lead to an immediate contradiction, the algorithm arbitrarily168

chooses to set xi = 1 or xi = 0, and thus some clauses are removed from the formula as169

they were satisĄed. The argument for the correctness of the 2SAT-algorithm is that new170

clauses are never added to the formula at any step. The main technical difference between171

the 2SAT-algorithm and our algorithm is that, in our case, the formula φ
(j)
3NAE

∧ φ
(j)
2SAT

is not172

necessarily a sub-formula of φ
(j−1)
3NAE

∧φ
(j−1)
2SAT

, as in some cases we need to also add clauses. Our173

main technical result is that, nevertheless, at every iteration j the formula φ
(j)
3NAE

∧ φ
(j)
2SAT

is174

satisĄable if and only if φ
(j−1)
3NAE

∧φ
(j−1)
2SAT

is satisĄable. The proof of this result (see Theorem 20)175

relies on a sequence of structural properties of temporal transitive orientations which we176

establish. This phenomenon of deducing a polynomial-time algorithm for an algorithmic177

graph problem by deciding satisĄability of a mixed Boolean formula (i.e. with both clauses of178

two and three literals) occurs rarely; this approach has been successfully used for the efficient179

recognition of simple-triangle (known also as ŞPIŤ) graphs [34].180

In the second part of our paper (Section 4) we consider a natural extension of the temporal181

orientability problem, namely the temporal transitive completion problem. In this problem182

2 That is, orienting an edge from u to v forces us to orient another edge from a to b.

4



APPENDIX

we are given a temporal graph G and a natural number k, and the question is whether it is183

possible to add at most k new edges (with the corresponding time-labels) to G such that the184

resulting temporal graph is (strongly/strictly/strongly strictly) transitively orientable. We185

prove that all four versions of temporal transitive completion are NP-complete. In contrast186

we show that, if the input temporal graph G is directed (i.e. if every time-labeled edge187

has a Ąxed orientation) then all versions of temporal transitive completion are solvable in188

polynomial time. As a corollary of our results it follows that all four versions of temporal189

transitive completion are Ąxed-parameter-tractable (FPT) with respect to the number q of190

unoriented time-labeled edges in G.191

In the third and last part of our paper (Section 5) we consider the multilayer transitive192

orientation problem. In this problem we are given an undirected temporal graph G = (G, λ),193

where G = (V, E), and we ask whether there exists an orientation F of its edges (i.e. with194

exactly one orientation for each edge of G) such that, for every Śtime-layerŤ t ≥ 1, the (static)195

oriented graph induced by the edges having time-label t is transitively oriented in F . Problem196

deĄnitions of this type are commonly referred to as multilayer problems [10], Observe that197

this problem trivially reduces to the static case if we assume that each edge has a single198

time-label, as then each layer can be treated independently of all others. However, if we199

allow G to have multiple time-labels on every edge of G, then we show that the problem200

becomes NP-complete, even when every edge has at most two labels.201

2 Preliminaries and Notation202

Given a (static) undirected graph G = (V, E), an edge between two vertices u, v ∈ V is203

denoted by the unordered pair ¶u, v♦ ∈ E, and in this case the vertices u, v are said to204

be adjacent. If the graph is directed, we will use the ordered pair (u, v) (resp. (v, u)) to205

denote the oriented edge from u to v (resp. from v to u). For simplicity of the notation, we206

will usually drop the parentheses and the comma when denoting an oriented edge, i.e. we207

will denote (u, v) just by uv. Furthermore, ûv = ¶uv, vu♦ is used to denote the set of both208

oriented edges uv and vu between the vertices u and v.209

Let S ⊆ E be a subset of the edges of an undirected (static) graph G = (V, E), and let210

Ŝ = ¶uv, vu : ¶u, v♦ ∈ S♦ be the set of both possible orientations uv and vu of every edge211

¶u, v♦ ∈ S. Let F ⊆ Ŝ. If F contains at least one of the two possible orientations uv and212

vu of each edge ¶u, v♦ ∈ S, then F is called an orientation of the edges of S. F is called213

a proper orientation if it contains exactly one of the orientations uv and vu of every edge214

¶u, v♦ ∈ S. Note here that, in order to simplify some technical proofs, the above deĄnition215

of an orientation allows F to be not proper, i.e. to contain both uv and vu for a speciĄc edge216

¶u, v♦. However, whenever F is not proper, this means that F can be discarded as it cannot217

be used as a part of a (temporal) transitive orientation. For every orientation F denote by218

F −1 = ¶vu : uv ∈ F♦ the reversal of F . Note that F ∩ F −1 = ∅ if and only if F is proper.219

In a temporal graph G = (G, λ), where G = (V, E), whenever λ(¶v, w♦) = t (or simply220

λ(v, w) = t), we refer to the tuple (¶v, w♦, t) as a time-edge of G. A triangle of (G, λ) on221

the vertices u, v, w is a synchronous triangle if λ(u, v) = λ(v, w) = λ(w, u). Let G = (V, E)222

and let F be a proper orientation of the whole edge set E. Then (G, F ), or (G, λ, F ), is a223

proper orientation of the temporal graph G; for simplicity we may also write that F is a224

proper orientation of G. A partial proper orientation F of a temporal graph G = (G, λ) is225

an orientation of a subset of E. To indicate that the edge ¶u, v♦ of a time-edge (¶u, v♦, t) is226

oriented from u to v (that is, uv ∈ F in a (partial) proper orientation F ), we use the term227

((u, v), t), or simply (uv, t). For simplicity we may refer to a (partial) proper orientation just228

5



APPENDIX

as a (partial) orientation, whenever the term ŞproperŤ is clear from the context.229

A static graph G = (V, E) is a comparability graph if there exists a proper orientation F230

of E which is transitive, that is, if F ∩ F −1 = ∅ and F 2 ⊆ F , where F 2 = ¶uw : uv, vw ∈ F231

for some vertex v♦ [24]. Analogously, in a temporal graph G = (G, λ), where G = (V, E), we232

deĄne a proper orientation F of E to be temporally transitive, if:233

whenever (uv, t1) and (vw, t2) are oriented time-edges in (G, F ) such that t2 ≥ t1, there

exists an oriented time-edge (wu, t3) in (G, F ), for some t3 ≥ t2.
234

In the above deĄnition of a temporally transitive orientation, if we replace the condition235

Şt3 ≥ t2Ť with Şt3 > t2Ť, then F is called strongly temporally transitive. If we instead replace236

the condition Şt2 ≥ t1Ť with Şt2 > t1Ť, then F is called strictly temporally transitive. If we237

do both of these replacements, then F is called strongly strictly temporally transitive. Note238

that strong (strict) temporal transitivity implies (strict) temporal transitivity, while (strong)239

temporal transitivity implies (strong) strict temporal transitivity. Furthermore, similarly to240

the established terminology for static graphs, we deĄne a temporal graph G = (G, λ), where241

G = (V, E), to be a (strongly/strictly) temporal comparability graph if there exists a proper242

orientation F of E which is (strongly/strictly) temporally transitive.243

We are now ready to formally introduce the following decision problem of recognizing244

whether a given temporal graph is temporally transitively orientable or not.245

Temporal Transitive Orientation (TTO)

Input: A temporal graph G = (G, λ), where G = (V, E).

Question: Does G admit a temporally transitive orientation F of E?

246

In the above problem deĄnition of TTO, if we ask for the existence of a strictly247

(resp. strongly, or strongly strictly) temporally transitive orientation F , we obtain the248

decision problem Strict (resp. Strong, or Strong Strict) Temporal Transitive249

Orientation (TTO).250

Let G = (G, λ) be a temporal graph, where G = (V, E). Let G′ = (V, E′) be a graph such251

that E ⊆ E′, and let λ′ : E′ → N be a time-labeling function such that λ′(u, v) = λ(u, v) for252

every ¶u, v♦ ∈ E. Then the temporal graph G′ = (G′, λ′) is called a temporal supergraph of G.253

We can now deĄne our next problem deĄnition regarding computing temporally orientable254

supergraphs of G.255

Temporal Transitive Completion (TTC)

Input: A temporal graph G = (G, λ), where G = (V, E), a (partial) orientation F of G,

and an integer k.

Question: Does there exist a temporal supergraph G′ = (G′, λ′) of (G, λ), where G′ = (V, E′),

and a transitive orientation F ′ ⊇ F of G′ such that ♣E′ \ E♣ ≤ k?

256

Similarly to TTO, if we ask in the problem deĄnition of TTC for the existence of a257

strictly (resp. strongly, or strongly strictly) temporally transitive orientation F ′, we obtain258

the decision problem Strict (resp. Strong, or Strong Strict) Temporal Transitive259

Completion (TTC).260

Now we deĄne our Ąnal problem which asks for an orientation F of a temporal graph261

G = (G, λ) (i.e. with exactly one orientation for each edge of G) such that, for every262

Ştime-layerŤ t ≥ 1, the (static) oriented graph deĄned by the edges having time-label t is263

transitively oriented in F . This problem does not make much sense if every edge has exactly264

one time-label in G, as in this case it can be easily solved by just repeatedly applying any265

6



APPENDIX

known static transitive orientation algorithm. Therefore, in the next problem deĄnition, we266

assume that in the input temporal graph G = (G, λ) every edge of G potentially has multiple267

time-labels, i.e. the time-labeling function is λ : E → 2N.268

Multilayer Transitive Orientation (MTO)

Input: A temporal graph G = (G, λ), where G = (V, E) and λ : E → 2N.

Question: Is there an orientation F of the edges of G such that, for every t ≥ 1, the (static)

oriented graph induced by the edges having time-label t is transitively oriented?

269

3 The recognition of temporally transitively orientable graphs270

In this section we investigate the computational complexity of all variants of TTO. We271

show that TTO as well as the two variants Strong TTO and Strong Strict TTO, are272

solvable in polynomial time, whereas Strict TTO turns out to be NP-complete.273

The main idea of our approach to solve TTO and its variants is to create Boolean274

variables for each edge of the underlying graph G and interpret setting a variable to 1 or 0275

with the two possible ways of directing the corresponding edge.276

More formally, for every edge ¶u, v♦ we introduce a variable xuv and setting this variable277

to 1 corresponds to the orientation uv while setting this variable to 0 corresponds to the278

orientation vu. Now consider the example of Figure 3(a), i.e. an induced path of length279

two in the underlying graph G on three vertices u, v, w, and let λ(u, v) = 1 and λ(v, w) = 2.280

Then the orientation uv ŞforcesŤ the orientation wv. Indeed, if we otherwise orient ¶v, w♦281

as vw, then the edge ¶u, w♦ must exist and be oriented as uw in any temporal transitive282

orientation, which is a contradiction as there is no edge between u and w. We can express283

this ŞforcingŤ with the implication xuv =⇒ xwv. In this way we can deduce the constraints284

that all triangles or induced paths on three vertices impose on any (strong/strict/strong285

strict) temporal transitive orientation. We collect all these constraints in Table 1.286

When looking at the conditions imposed on temporal transitive orientations collected287

in Table 1, we can observe that all conditions except Şnon-cyclicŤ are expressible in 2SAT.288

Since 2SAT is solvable in linear time [6], it immediately follows that the strong variants of289

temporal transitivity are solvable in polynomial time, as the next theorem states.290

◮ Theorem 2. Strong TTO and Strong Strict TTO are solvable in polynomial time.291

In the variants TTO and Strict TTO, however, we can have triangles which impose292

a Şnon-cyclicŤ orientation of three edges (Table 1). This can be naturally modeled by a293

not-all-equal (NAE) clause.3 However, if we now naïvely model the conditions with a Boolean294

formula, we obtain a formula with 2SAT clauses and 3NAE clauses. Deciding whether such295

a formula is satisĄable is NP-complete in general [42]. Hence, we have to investigate these296

two variants more thoroughly.297

The only difference between the triangles that impose these Şnon-cyclicŤ orientations in298

these two problem variants is that, in TTO, the triangle is synchronous (i.e. all its three299

edges have the same time-label), while in Strict TTO two of the edges are synchronous300

and the third one has a smaller time-label than the other two. As it turns out, this difference301

of the two problem variants has important implications on their computational complexity.302

3 A not all equal clause is a set of literals and it evaluates to true if and only if at least two literals in the
set evaluate to different truth values.

7



APPENDIX

u w

v

t3

t2t1

u w

v

t1 t2

t1 = t2 = t3 t1 < t2 = t3 t1 ≤ t2 < t3 t1 = t2 t1 < t2

TTO non-cyclic wu = wv
vw =⇒ uw

vu =⇒ wu
uv = wv uv =⇒ wv

Strong TTO ⊥ wu ∧ wv
vw =⇒ uw

vu =⇒ wu
uv = wv uv =⇒ wv

Strict TTO ⊤ non-cyclic
vw =⇒ uw

vu =⇒ wu
⊤ uv =⇒ wv

Str. Str. TTO ⊤
vu =⇒ wu

uv =⇒ wv

vw =⇒ uw

vu =⇒ wu
⊤ uv =⇒ wv

Table 1 Orientation conditions imposed by a triangle (left) and an induced path of length two

(right) in the underlying graph G for the decision problems (Strict/Strong/Strong Strict)

TTO. Here, ⊤ means that no restriction is imposed, ⊥ means that the graph is not orientable, and

in the case of triangles, Şnon-cyclicŤ means that all orientations except the ones that orient the

triangle cyclicly are allowed.

In fact, we obtain a surprising result: TTO is solvable in polynomial time while Strict303

TTO is NP-complete.304

In Section 3.1 we prove that Strict TTO is NP-complete and in Section 3.2 we provide305

our polynomial-time algorithm for TTO.306

3.1 Strict TTO is NP-Complete307

In this section we show that in contrast to the other variants, Strict TTO is NP-complete.308

◮ Theorem 3. Strict TTO is NP-complete even if the temporal input graph has only four309

different time labels.310

Proof. We present a polynomial time reduction from (3,4)-SAT [46] where, given a CNF311

formula φ where each clause contains exactly three literals and each variably appears in312

exactly four clauses, we are asked whether φ is satisĄable or not. Given a formula φ, we313

construct a temporal graph G as follows.314

Variable gadget. For each variable x that appears in φ, we add eight vertices315

ax, a′

x, bx, b′

x, cx, c′

x, dx, d′

x to G. We connect these vertices as depicted in Figure 1, that316

is, we add the following time edges to G: (¶ax, a′

x♦, 1), (¶a′

x, bx♦, 2), (¶bx, b′

x♦, 1), (¶b′

x, cx♦, 2),317

(¶cx, c′

x♦, 1), (¶c′

x, dx♦, 2), (¶dx, d′

x♦, 1), (¶d′

x, ax♦, 2).318

Clause gadget. For each clause c of φ, we add six vertices uc, u′

c, vc, v′

c, wc, w′

c to G. We319

connect these vertices as depicted in Figure 2, that is, we add the following time edges to G:320

(¶uc, u′

c♦, 2), (vc, v′

c♦, 1), (¶wc, w′

c♦, 2), (¶uc, vc♦, 2), (¶vc, wc♦, 3), (¶wc, uc♦, 3), (¶vc, w′

c♦, 3),321

(¶wc, v′

c♦, 3).322

8



APPENDIX

ax a′

x bx b′

x
cx c′

x dx d′

x

1 2 1 2 1 2 1

2

Figure 1 Illustration of the variable gadget used in the reduction in the proof of Theorem 3.

uc vc

wc

u′

c v′

c

w′

c

(a)

2

2

3 3

1

2

3

3

uc vc

wc

u′

c v′

c

w′

c

(b)

2

2

3 3

1

2

3

3

uc vc

wc

u′

c v′

c

w′

c

(c)

2

2

3 3

1

2

3

3

Figure 2 Illustration of the clause gadget used in the reduction in the proof of Theorem 3 and

three ways how to orient the edges in it.

Connecting variable gadgets and clause gadgets. Let variable x appear for the ith time in clause323

c and let x appear in the jth literal of c. The four vertex pairs (ax, a′

x), (bx, b′

x), (cx, c′

x), (dx, d′

x)324

from the variable gadget of x correspond to the Ąrst, second, third, and fourth appearance of325

x, respectively. The three vertices u′

c, v′

c, w′

c correspond to the Ąrst, second, and third literal326

of c, respectively. Let i = 1 and j = 1. If x appears non-negated, then we add the time edge327

(¶ax, u′

c♦, 4). Otherwise, if x appears negated, we add the time edge (¶a′

x, u′

c♦, 4). For all328

other values of i and j we add time edges analogously.329

This Ąnishes the reduction. It can clearly be performed in polynomial time.330

(⇒): Assume that we have a satisfying assignment for φ, then we331

can orient G as follows. Then if a variable x is set to true, we332

orient the edges of the corresponding variable gadgets as follows:333

(ax, a′

x), (bx, a′

x), (bx, b′

x), (cx, b′

x), (cx, c′

x), (dx, c′

x), (dx, d′

x), (ax, d′

x). Otherwise, if x is set to334

false, we orient as follows: (a′

x, ax), (a′

x, bx), (b′

x, bx), (b′

x, cx), (c′

x, cx), (c′

x, dx), (d′

x, dx), (d′

x, ax).335

It is easy so see that both orientations are transitive.336

Now consider a clause in φ with literals u, v, w corresponding to vertices u′

c, v′

c, w′

c of the337

clause gadget, respectively. We have that at least one of the three literals satisĄes the clause.338

If it is u, then we orient the edges in the clause gadgets as illustrated in Figure 2 (a). It is easy339

so see that this orientation is transitive. Furthermore, we orient the three edges connecting340

the clause gadgets to variable gadgets as follows: By construction the vertices u′

c, v′

c, w′

c are341

each connected to a variable gadget. Assume, we have edges ¶u′

c, x♦, ¶v′

c, y♦, ¶w′

c, z♦. Then342

we orient as follows: (x, u′

c), (v′

c, y), (w′

c, z), that is, we orient the edge connecting the literal343

that satisĄes the clause towards the clause gadget and the other two edges towards the344

variable gadgets. This yields a transitive in the clause gadget. Note that the variable gadgets345

have time labels 1 and 2 so we can always orient the connecting edges (which have time346

9



APPENDIX

label 4) towards the variable gadget. We do this with all connecting edges except (x, u′

c).347

This edge is oriented from the variable gadget towards the clause gadget, however it also348

corresponds to a literal that satisĄes the clause. Then by construction, the edges incident to349

x in the variable gadget are oriented away from x, hence our orientation is transitive.350

Otherwise and if v satisĄes the clause, then we orient the edges in the clause gadgets as351

illustrated in Figure 2 (b). Otherwise (in this case w has to satisfy the clause), we orient the352

edges in the clause gadgets as illustrated in Figure 2 (c). It is easy so see that each of these353

orientation is transitive. In both cases we orient the edges connecting the clause gadgets to354

the variable gadgets analogously to the Ąrst case discussed above. By analogous arguments355

we get that the resulting orientation is transitive.356

(⇐): Note that all variable gadgets are cycles of length eight with edges having357

labels alternating between 1 and 2 and hence the edges have to also be ori-358

ented alternately. Consider the variable gadget corresponding to x. We inter-359

pret the orientation (ax, a′

x), (bx, a′

x), (bx, b′

x), (cx, b′

x), (cx, c′

x), (dx, c′

x), (dx, d′

x), (ax, d′

x)360

as setting x to true and we interpret the orientation361

(a′

x, ax), (a′

x, bx), (b′

x, bx), (b′

x, cx), (c′

x, cx), (c′

x, dx), (d′

x, dx), (d′

x, ax) as setting x to true.362

We claim that this yields a satisfying assignment for φ.363

Assume for contradiction that there is a clause c in φ that is not satisĄed by this364

assignment. Then by construction of the connection of variable gadgets and clause gadgets,365

the connecting edges have to be oriented towards the variable gadget in order to keep the366

variable gadget transitive. Let the three connecting edges be ¶u′

c, x♦, ¶v′

c, y♦, ¶w′

c, z♦ and their367

orientation (u′

c, x), (v′

c, y), (w′

c, z). Then we have that (u′

c, x) forces (u′

c, uc) which in turn368

forces (wc, uc). We have that (v′

c, y) forces (v′

c, vc) which in turn forces (vc, uc). Furthermore,369

we now have that (wc, uc) and (vc, uc) force (wc, vc). Lastly, we have that (w′

c, z) forces370

(w′

c, wc) which in turn forces (vc, wc), a contradiction to the fact that we forced (wc, vc)371

previously. ◭372

3.2 A polynomial-time algorithm for TTO373

Let G = (V, E) be a static undirected graph. There are various polynomial-time algorithms374

for deciding whether G admits a transitive orientation F . However our results in this section375

are inspired by the transitive orientation algorithm described by Golumbic [24], which is376

based on the crucial notion of forcing an orientation. The notion of forcing in static graphs377

is illustrated in Figure 3 (a): if we orient the edge ¶u, v♦ as uv (i.e., from u to v) then we378

are forced to orient the edge ¶v, w♦ as wv (i.e., from w to v) in any transitive orientation F379

of G. Indeed, if we otherwise orient ¶v, w♦ as vw (i.e. from v to w), then the edge ¶u, w♦380

must exist and it must be oriented as uw in any transitive orientation F of G, which is a381

contradiction as ¶u, w♦ is not an edge of G. Similarly, if we orient the edge ¶u, v♦ as vu then382

we are forced to orient the edge ¶v, w♦ as vw. That is, in any transitive orientation F of383

G we have that uv ∈ F ⇔ wv ∈ F . This forcing operation can be captured by the binary384

forcing relation Γ which is deĄned on the edges of a static graph G as follows [24].385

uv Γ u′v′ if and only if


either u = u′ and ¶v, v′♦ /∈ E

or v = v′ and ¶u, u′♦ /∈ E
. (1)386

We now extend the deĄnition of Γ in a natural way to the binary relation Λ on the edges387

of a temporal graph (G, λ), see Equation (2). For this, observe from Table 1 that the only388

cases, where we have uv ∈ F ⇔ wv ∈ F in any temporal transitive orientation of (G, λ), are389

when (i) the vertices u, v, w induce a path of length 2 (see Figure 3 (a)) and λ(u, v) = λ(v, w),390

10



APPENDIX

u w

v

(a)

u w

v

(b)

3

55

Figure 3 The orientation uv forces the orientation wu and vice-versa in the examples of (a) a

static graph G where ¶u, v♦, ¶v, w♦ ∈ E(G) and ¶u, w♦ /∈ E(G), and of (b) a temporal graph (G, λ)

where λ(u, w) = 3 < 5 = λ(u, v) = λ(v, w).

as well as when (ii) u, v, w induce a triangle and λ(u, w) < λ(u, v) = λ(v, w). The latter391

situation is illustrated in the example of Figure 3 (b). The binary forcing relation Λ is only392

deĄned on pairs of edges ¶u, v♦ and ¶u′, v′♦ where λ(u, v) = λ(u′, v′), as follows.393

uv Λ u′v′ if and only if λ(u, v) = λ(u′, v′) = t and





u = u′ and ¶v, v′♦ /∈ E, or

v = v′ and ¶u, u′♦ /∈ E, or

u = u′ and λ(v, v′) < t, or

v = v′ and λ(u, u′) < t.

(2)394

Note that, for every edge ¶u, v♦ ∈ E we have that uv Λ uv. The forcing relation Λ for395

temporal graphs shares some properties with the forcing relation Γ for static graphs. In396

particular, the reĆexive transitive closure Λ∗ of Λ is an equivalence relation, which partitions397

the edges of each set Et = ¶¶u, v♦ ∈ E : λ(u, v) = t♦ into its Λ-implication classes (or simply,398

into its implication classes). Two edges ¶a, b♦ and ¶c, d♦ are in the same Λ-implication class399

if and only ab Λ∗ cd, i.e. there exists a sequence400

ab = a0b0 Λ a1b1 Λ . . . Λ akbk = cd, with k ≥ 0.401

Note that, for this to happen, we must have λ(a0, b0) = λ(a1, b1) = . . . = λ(ak, bk) = t for402

some t ≥ 1. Such a sequence is called a Λ-chain from ab to cd, and we say that ab (eventually)403

Λ-forces cd. Furthermore note that ab Λ∗ cd if and only if ba Λ∗ dc. The next observation404

helps the reader understand the relationship between the two forcing relations Γ and Λ.405

◮ Observation 4. Let ¶u, v♦ ∈ E, where λ(u, v) = t, and let A be the Λ-implication class406

of uv in the temporal graph (G, λ). Let G′ be the static graph obtained by removing from G407

all edges ¶p, q♦, where λ(p, q) < t. Then A is also the Γ-implication class of uv in the static408

graph G′.409

For the next lemma, we use the notation Â = ¶uv, vu : uv ∈ A♦.410

◮ Lemma 5. Let A be a Λ-implication class of a temporal graph (G, λ). Then either411

A = A−1 = Â or A ∩A−1 = ∅.412

Proof. Suppose that A∩A−1 ̸= ∅, and let uv ∈ A∩A−1, i.e. uv, vu ∈ A. Then, for any pq ∈ A413

we have that pq Λ∗ uv and qp Λ∗ vu. Since Λ∗ is an equivalence relation and uv, vu ∈ A, it414

also follows that pq, qp ∈ A. Therefore also pq, qp ∈ A−1, and thus A = A−1 = Â. ◭415

◮ Definition 6. Let F be a proper orientation and A be a Λ-implication class of a temporal416

graph (G, λ). If A ⊆ F , we say that F respects A.417

◮ Lemma 7. Let F be a proper orientation and A be a Λ-implication class of a temporal418

graph (G, λ). Then F respects either A or A−1 (i.e. either A ⊆ F or A−1 ⊆ F ), and in419

either case A ∩A−1 = ∅.420

11



APPENDIX

Proof. We deĄned the binary forcing relation Λ to capture the fact that, for any temporal421

transitive orientation F of (G, λ), if ab Λ cd and ab ∈ F , then also cd ∈ F . Applying this422

property repeatedly, it follows that either A ⊆ F or F ∩A = ∅. If A ⊆ F then A−1 ⊆ F −1.423

On the other hand, if F ∩A = ∅ then A ⊆ F −1, and thus also A−1 ⊆ F . In either case, the424

fact that F ∩ F −1 = ∅ by the deĄnition of a temporal transitive orientation implies that also425

A ∩A−1 = ∅. ◭426

Let now ab = a0b0 Λ a1b1 Λ . . . Λ akbk = cd be a given Λ-chain. Note by Equation (2)427

that, for every i = 1, . . . , k, we have that either ai−1 = ai or bi−1 = bi. Therefore we can428

replace the Λ-implication ai−1bi−1 Λ aibi by the implications ai−1bi−1 Λ aibi−1 Λ aibi, since429

either aibi−1 = ai−1bi−1 or aibi−1 = aibi. Thus, as this addition of this middle edge is always430

possible in a Λ-implication, we can now deĄne the notion of a canonical Λ-chain, which431

always exists.432

◮ Definition 8. Let ab Λ∗ cd. Then any Λ-chain of the from

ab = a0b0 Λ a1b0 Λ a1b1 Λ . . . Λ akbk−1 Λ akbk = cd

is a canonical Λ-chain.433

The next lemma extends an important known property of the forcing relation Γ for static434

graphs [24, Lemma 5.3] to the temporal case.435

◮ Lemma 9 (Temporal Triangle Lemma). Let (G, λ) be a temporal graph and with a syn-436

chronous triangle on the vertices a, b, c, where λ(a, b) = λ(b, c) = λ(c, a) = t. Let A, B, C be437

three Λ-implication classes of (G, λ), where ab ∈ C, bc ∈ A, and ca ∈ B, where A ≠ B−1
438

and A ̸= C−1.439

1. If some b′c′ ∈ A, then ab′ ∈ C and c′a ∈ B.440

2. If some b′c′ ∈ A and a′b′ ∈ C, then c′a′ ∈ B.441

3. No edge of A touches vertex a.442

Proof. 1. Let b′c′ ∈ A, and let bc = b0c0 Λ b1c0 Λ . . . Λ bkck−1 Λ bkck = b′c′ be a canonical443

Λ-chain from bc to b′c′. Thus note that all edges bici−1 and bici of this Λ-chain have the444

same time-label t in (G, λ). We will prove by induction that abi ∈ C and cia ∈ B, for445

every i = 0, 1, . . . , k. The induction basis follows directly by the statement of the lemma,446

as ab = ab0 ∈ C and ca = c0a ∈ B.447

Assume now that abi ∈ C and cia ∈ B. If bi+1 = bi then clearly abi+1 ∈ C by the448

induction hypothesis. Suppose now that bi+1 ̸= bi. If ¶a, bi+1♦ /∈ E then aci Λ bi+1ci.449

Then, since cia ∈ B and bi+1ci ∈ A, it follows that A = B−1, which is a contradiction to450

the assumption of the lemma. Therefore ¶a, bi+1♦ ∈ E. Furthermore, since bici Λ bi+1ci,451

it follows that either ¶bi, bi+1♦ /∈ E or λ(bi, bi+1) < t. In either case it follows that452

abi Λ abi+1, and thus abi+1 ∈ C.453

Similarly, if ci+1 = ci then ci+1a ∈ B by the induction hypothesis. Suppose now454

that ci+1 ≠ ci. If ¶a, ci+1♦ /∈ E then abi+1 Λ ci+1bi+1. Then, since abi+1 ∈ C and455

bi+1ci+1 ∈ A, it follows that A = C−1, which is a contradiction to the assumption of the456

lemma. Therefore ¶a, ci+1♦ ∈ E. Furthermore, since bi+1ci Λ bi+1ci+1, it follows that457

either ¶ci, ci+1♦ /∈ E or λ(ci, ci+1) < t. In either case it follows that cia Λ ci+1a, and458

thus ci+1a ∈ C. This completes the induction step.459

2. Let b′c′ ∈ A and a′b′ ∈ C. Then part 1 of the lemma implies that c′a ∈ B. Now let460

ab = a0b0 Λ a1b0 Λ . . . Λ aℓbℓ−1 Λ aℓbℓ = a′b′ be a canonical Λ-chain from ab to a′b′.461

12



APPENDIX

Again, note that all edges aibi−1 and aibi of this Λ-chain have the same time-label t in462

(G, λ). We will prove by induction that c′ai ∈ B and bic
′ ∈ A for every i = 0, 1, . . . , k.463

First recall that c′a = c′a0 ∈ B. Furthermore, by applying part 1 of the proof to the464

triangle with vertices a0, b0, c and on the edge c′a0 ∈ B, it follows that b0c′ ∈ A. This465

completes the induction basis.466

For the induction step, assume that c′ai ∈ B and bic
′ ∈ A. If ai+1 = ai then clearly467

c′ai+1 ∈ B. Suppose now that ai+1 ≠ ai. If ¶ai+1, c′♦ /∈ E then ai+1bi Λ c′bi. Then,468

since ai+1bi ∈ C and bic
′ ∈ A, it follows that A = C−1, which is a contradiction to the469

assumption of the lemma. Therefore ¶ai+1, c′♦ ∈ E. Now, since aibi Λ ai+1bi, it follows470

that either ¶ai, ai+1♦ /∈ E or λ(ai, ai+1) < t. In either case it follows that c′ai Λ c′ai+1.471

Therefore, since c′ai ∈ B, it follows that c′ai+1 ∈ B.472

If bi+1 = bi then clearly bi+1c′ ∈ A. Suppose now that bi+1 ̸= bi. Then, since c′ai+1 ∈ B,473

ai+1bi ∈ C, and bic
′ ∈ A, we can apply part 1 of the lemma to the triangle with vertices474

ai+1, bi, c′ and on the edge ai+1bi+1 ∈ C, from which it follows that bic
′ ∈ A. This475

completes the induction step, and thus c′ak = c′a′ ∈ B.476

3. Suppose that ad ∈ A (resp. da ∈ A), for some vertex d. Then, by setting b′ = a and477

c′ = d (resp. b′ = d and c′ = a), part 1 of the lemma implies that ab′ = aa ∈ C478

(resp. c′a = aa ∈ B). Thus is a contradiction, as the underlying graph G does not have479

the edge aa. ◭480

Deciding temporal transitivity using Boolean satisfiability. Starting with any undirected481

edge ¶u, v♦ of the underlying graph G, we can clearly enumerate in polynomial time the482

whole Λ-implication class A to which the oriented edge uv belongs (cf. Equation (2)). If483

the reversely directed edge vu ∈ A then Lemma 5 implies that A = A−1 = Â. Otherwise, if484

vu /∈ A then vu ∈ A−1 and Lemma 5 implies that A ∩A−1 = ∅. Thus, we can also decide in485

polynomial time whether A ∩A−1 = ∅. If we encounter at least one Λ-implication class A486

such that A∩A−1 ≠ ∅, then it follows by Lemma 7 that (G, λ) is not temporally transitively487

orientable.488

In the remainder of the section we will assume that A ∩A−1 = ∅ for every Λ-implication489

class A of (G, λ), which is a necessary condition for (G, λ) to be temporally transitive490

orientable. Moreover it follows by Lemma 7 that, if (G, λ) admits a temporally transitively491

orientation F , then either A ⊆ F or A−1 ⊆ F . This allows us to deĄne a Boolean variable492

xA for every Λ-implication class A, where xA = xA−1 . Here xA = 1 (resp. xA−1 = 1) means493

that A ⊆ F (resp. A−1 ⊆ F ), where F is the temporally transitive orientation which we are494

looking for. Let ¶A1, A2, . . . , As♦ be a set of Λ-implication classes such that ¶Â1, Â2, . . . , Âs♦495

is a partition of the edges of the underlying graph G.4 Then any truth assignment τ of the496

variables x1, x2, . . . , xs (where xi = xAi
for every i = 1, 2, . . . , s) corresponds bijectively to497

one possible orientation of the temporal graph (G, λ), in which every Λ-implication class is498

oriented consistently.499

Now we deĄne two Boolean formulas φ3NAE and φ2SAT such that (G, λ) admits a temporal500

transitive orientation if and only if there is a truth assignment τ of the variables x1, x2, . . . , xs501

such that both φ3NAE and φ2SAT are simultaneously satisĄed. Intuitively, φ3NAE captures502

the Şnon-cyclicŤ condition from Table 1 while φ2SAT captures the remaining conditions. Here503

φ3NAE is a 3NAE formula, i.e., the disjunction of clauses with three literals each, where504

every clause NAE(ℓ1, ℓ2, ℓ3) is satisĄed if and only if at least one of the literals ¶ℓ1, ℓ2, ℓ3♦ is505

4 Here we slightly abuse the notation by identifying the undirected edge ¶u, v♦ with the set of both its
orientations ¶uv, vu♦.

13



APPENDIX

Algorithm 1 Building the Λ-implication classes and the edge-variables.

Input: A temporal graph (G, λ), where G = (V, E).

Output: The variables ¶xuv, xvu : ¶u, v♦ ∈ E♦, or the announcement that (G, λ) is tempor-

ally not transitively orientable.

1: s← 0; E0 ← E

2: while E0 ̸= ∅ do

3: s← s + 1; Let ¶p, q♦ ∈ E0 be arbitrary

4: Build the Λ-implication class As of the oriented edge pq (by Equation (2))

5: if qp ∈ As then {As ∩A−1
s ̸= ∅}

6: return ŞNOŤ

7: else

8: xs is the variable corresponding to the directed edges of As

9: for every uv ∈ As do

10: xuv ← xs; xvu ← xs {xuv and xvu become aliases of xs and xs}

11: E0 ← E0 \ Âs

12: return Λ-implication classes ¶A1, A2, . . . , As♦ and variables ¶xuv, xvu : ¶u, v♦ ∈ E♦

equal to 1 and at least one of them is equal to 0. Furthermore φ2SAT is a 2SAT formula,506

i.e., the disjunction of 2CNF clauses with two literals each, where every clause (ℓ1 ∨ ℓ2) is507

satisĄed if and only if at least one of the literals ¶ℓ1, ℓ2♦ is equal to 1.508

For simplicity of the presentation we also deĄne a variable xuv for every directed edge uv.509

More speciĄcally, if uv ∈ Ai (resp. uv ∈ A−1
i ) then we set xuv = xi (resp. xuv = xi). That is,510

xuv = xvu for every undirected edge ¶u, v♦ ∈ E. Note that, although ¶xuv, xvu : ¶u, v♦ ∈ E♦511

are deĄned as variables, they can equivalently be seen as literals in a Boolean formula over512

the variables x1, x2, . . . , xs. The process of building all Λ-implication classes and all variables513

¶xuv, xvu : ¶u, v♦ ∈ E♦ is given by Algorithm 1.514

Description of the 3NAE formula φ3NAE. The formula φ3NAE captures the Şnon-cyclicŤ515

condition of the problem variant TTO (presented in Table 1). The formal description516

of φ3NAE is as follows. Consider a synchronous triangle of (G, λ) on the vertices u, v, w.517

Assume that xuv = xwv (resp. xvw = xuw, or xwu = xvu) is true. Then the pair ¶uv, wv♦518

(resp. ¶vw, uw♦, or ¶wu, vu♦) of oriented edges belongs to the same Λ-implication class Ai.519

This implies that the triangle on the vertices u, v, w is never cyclically oriented in any proper520

orientation F that respects Ai or A−1
i . Assume, on the contrary, that xuv ≠ xwv, xvw ≠ xuw,521

and xwu ≠ xvu. In this case we add to φ3NAE the clause NAE(xuv, xvw, xwu). Note that522

the triangle on u, v, w is transitively oriented if and only if NAE(xuv, xvw, xwu) is satisĄed,523

i.e., at least one of the variables ¶xuv, xvw, xwu♦ receives the value 1 and at least one of them524

receives the value 0.525

Description of the 2SAT formula φ2SAT. The formula φ2SAT captures all conditions apart526

from the Şnon-cyclicŤ condition of the problem variant TTO (presented in Table 1). The527

formal description of φ2SAT is as follows. Consider a triangle of (G, λ) on the vertices u, v, w,528

where λ(u, v) = t1, λ(v, w) = t2, λ(w, v) = t3, and t1 ≤ t2 ≤ t3. If t1 < t2 = t3 then we add529

to φ2SAT the clauses (xuw ∨ xwv) ∧ (xvw ∨ xwu); note that these clauses are equivalent to530

xwu = xwv. If t1 ≤ t2 < t3 then we add to φ2SAT the clauses (xwv ∨ xuw) ∧ (xuv ∨ xwu);531

note that these clauses are equivalent to (xvw ⇒ xuw) ∧ (xvu ⇒ xwu). Now consider a path532

of length 2 that is induced by the vertices u, v, w, where λ(u, v) = t1, λ(v, w) = t2, and533

14



APPENDIX

t1 ≤ t2. If t1 = t2 then we add to φ2SAT the clauses (xvu ∨ xwv) ∧ (xvw ∨ xuv); note that534

these clauses are equivalent to (xuv = xwv). Finally, if t1 < t2 then we add to φ2SAT the535

clause (xvu ∨ xwv); note that this clause is equivalent to (xuv ⇒ xwv).536

In what follows, we say that φ3NAE ∧ φ2SAT is satisĄable if and only if there exists a537

truth assignment τ which simultaneously satisĄes both φ3NAE and φ2SAT. Given the above538

deĄnitions of φ3NAE and φ2SAT, it is easy to check that their clauses model all conditions of539

the oriented edges imposed by the row of ŞTTOŤ in Table 1.540

◮ Observation 10. The temporal graph (G, λ) is transitively orientable if and only if φ3NAE∧541

φ2SAT is satisĄable.542

Although deciding whether φ2SAT is satisĄable can be done in linear time with respect543

to the size of the formula [6], the problem Not-All-Equal-3-SAT is NP-complete [42]. We544

overcome this problem and present a polynomial-time algorithm for deciding whether φ3NAE∧545

φ2SAT is satisĄable as follows.546

Brief outline of the algorithm. In the initialization phase, we exhaustively check which547

truth values are forced in φ3NAE ∧ φ2SAT by using Initial-Forcing (see Algorithm 2) as548

a subroutine. During the execution of Initial-Forcing, we either replace the formulas549

φ3NAE and φ2SAT by the equivalent formulas φ
(0)
3NAE

and φ
(0)
2SAT

, respectively, or we reach a550

contradiction by showing that φ3NAE ∧ φ2SAT is unsatisĄable.551

The main phase of the algorithm starts once the formulas φ
(0)
3NAE

and φ
(0)
2SAT

have been552

computed. During this phase, we iteratively modify the formulas such that, at the end of553

iteration j we have the formulas φ
(j)
3NAE

and φ
(j)
2SAT

. As we prove in our main technical result554

of this section (Theorem 20), φ
(j−1)
3NAE

∧ φ
(j−1)
2SAT

is satisĄable if and only if φ
(j)
3NAE

∧ φ
(j)
2SAT

is555

satisĄable. Note that, during the execution of the algorithm, we can both add and remove556

clauses from φ
(j)
2SAT

. On the other hand, we can only remove clauses from φ
(j)
3NAE

. Thus,557

at some iteration j, we obtain φ
(j)
3NAE

= ∅, and after that iteration we only need to decide558

satisĄability of φ
(j)
2SAT

which can be done efficiently [6].559

Two crucial technical lemmas. For the remainder of the section we write xab
∗

⇒φ2SAT
xuv560

(resp. xab
∗

⇒
φ

(j)

2SAT

xuv) if the truth assignment xab = 1 forces the truth assignment xuv = 1561

from the clauses of φ2SAT (resp. of φ
(j)
2SAT

at the iteration j of the algorithm); in this case562

we say that xab implies xuv in φ2SAT (resp. in φ
(j)
2SAT

). We next introduce the notion of563

uncorrelated triangles, which lets us formulate some important properties of the implications564

in φ2SAT and φ
(0)
2SAT

.565

◮ Definition 11. Let u, v, w induce a synchronous triangle in (G, λ), where each of the566

variables of the set ¶xuv, xvu, xvw, xwv, xwu, xuw♦ belongs to a different Λ-implication class.567

If none of the variables of the set ¶xuv, xvu, xvw, xwv, xwu, xuw♦ implies any other variable of568

the same set in the formula φ2SAT (resp. in the formula φ
(0)
2SAT

), then the triangle of u, v, w569

is φ2SAT-uncorrelated (resp. φ
(0)
2SAT

-uncorrelated).570

Now we present our two crucial technical lemmas (Lemmas 12 and 13) which prove571

some crucial structural properties of the 2SAT formulas φ2SAT and φ
(0)
2SAT

. These structural572

properties will allow us to prove the correctness of our main algorithm in this section573

(Algorithm 4). In a nutshell, these two lemmas guarantee that, whenever we have speciĄc574

implications in φ2SAT (resp. in φ
(0)
2SAT

), then we also have some speciĄc other implications in575

the same formula.576

15



APPENDIX

◮ Lemma 12. Let u, v, w induce a synchronous and φ2SAT-uncorrelated triangle in (G, λ),577

and let ¶a, b♦ ∈ E be an edge of G such that ¶a, b♦ ∩ ¶u, v, w♦ ≤ 1. If xab
∗

⇒φ2SAT
xuv, then578

xab also implies at least one of the four variables in the set ¶xvw, xwv, xuw, xwu♦ in φ2SAT.579

Proof. Let t be the common time-label of all the edges in the synchronous triangle of the580

vertices u, v, w. That is, λ(u, v) = λ(v, w) = λ(w, u) = t. Denote by A, B, and C the581

Λ-implication classes in which the directed edges uv, vw, and wu belong, respectively. Let582

xab = xa0b0
⇒φ2SAT

xa1b1
⇒φ2SAT

. . . ⇒φ2SAT
xak−1bk−1

⇒φ2SAT
xakbk

= xuv be a φ2SAT-583

implication chain from xab to xuv. Note that, without loss of generality, for each variable584

xaibi
in this chain, the directed edge aibi is a representative of a different Λ-implication class585

than all other directed edges in the chain (otherwise we can just shorten the φ2SAT-implication586

chain from xab to xuv). Furthermore, since xakbk
= xuv, note that akbk and uv are both587

representatives of the same Λ-implication class A. Therefore Lemma 9 (the temporal triangle588

lemma) implies that wak ∈ C and bkw ∈ B. Therefore we can assume without loss of589

generality that u = ak and v = bk. Moreover, let A′ /∈ ¶A, A−1, B, B−1, C, C−1♦ be the Λ-590

implication class in which the directed edge ak−1bk−1 belongs. Since xak−1bk−1
⇒φ2SAT

xakbk
,591

note that without loss of generality we can choose the directed edge ak−1bk−1 to be such a592

representative of the Λ-implication class A′ such that either ak−1 = ak or bk−1 = bk. We593

now distinguish these two cases.594

Case 1: u = ak = ak−1 and v = bk ̸= bk−1. Then, since xak−1bk−1
= xakbk−1

⇒φ2SAT
595

xakbk
= xuv and λ(ak, bk) = t, it follows that λ(u, bk−1) ≥ t+ 1. Suppose that ¶w, bk−1♦ /∈ E.596

Then xubk−1
⇒φ2SAT

xuw, which proves the lemma. Now suppose that ¶w, bk−1♦ ∈ E. If597

λ(w, bk−1) ≤ λ(u, bk−1)− 1 then xubk−1
⇒φ2SAT

xuw, which proves the lemma. Suppose that598

λ(w, bk−1) ≥ λ(u, bk−1)+1. Then xubk−1
⇒φ2SAT

xwbk−1
⇒φ2SAT

xwu, i.e. xubk−1

∗

⇒φ2SAT
xwu,599

which again proves the lemma. Suppose Ąnally that λ(w, bk−1) = λ(u, bk−1). Then, since600

λ(u, w) = t < λ(w, bk−1) = λ(u, bk−1), it follows that wbk−1 Λ ubk−1. If ¶v, bk−1♦ /∈ E601

then xubk−1
= xwbk−1

⇒φ2SAT
xwv, which proves the lemma. Now let ¶v, bk−1♦ ∈ E. If602

λ(v, bk−1) ≤ λ(w, bk−1) − 1 then xubk−1
= xwbk−1

⇒φ2SAT
xwv, which proves the lemma.603

If λ(v, bk−1) ≥ λ(w, bk−1) + 1 then xubk−1
= xwbk−1

⇒φ2SAT
xvbk−1

⇒φ2SAT
xwv, which604

proves the lemma. If λ(v, bk−1) = λ(w, bk−1) then ubk−1 Λ vbb−1, and thus xubk−1
=605

xak−1bk−1
;φ2SAT

xakbk
= xuv, which is a contradiction.606

Case 2: u = ak ≠ ak−1 and v = bk = bk−1. Then, since xak−1bk−1
= xak−1bk

⇒φ2SAT
607

xakbk
= xuv and λ(ak, bk) = t, it follows that λ(v, ak−1) ≤ t−1. Suppose that ¶w, ak−1♦ /∈ E.608

Then xak−1v ⇒φ2SAT
xwv, which proves the lemma. Now suppose that ¶w, ak−1♦ ∈ E.609

If λ(w, ak−1) ≤ t − 1 then xak−1v ⇒φ2SAT
xwv, which proves the lemma. Suppose that610

λ(w, ak−1) = t. Then, since λ(v, ak−1) ≤ t− 1, it follows that vw Λ at−1w. If ¶u, ak−1♦ /∈ E611

then also at−1w Λ uw, and thus xwv = xwu, which is a contradiction to the assumption612

that the triangle of u, v, w is uncorrelated. Thus ¶u, ak−1♦ ∈ E. If λ(u, ak−1) ≤ t− 1 then613

again at−1w Λ uw, which is a contradiction. On the other hand, if λ(u, ak−1) ≥ t then614

xak−1v = xak−1bk−1
;φ2SAT

xakbk
= xuv, which is a contradiction.615

Finally suppose that λ(w, ak−1) ≥ t + 1. Then, since λ(v, w) = t and λ(v, ak−1) ≤ t− 1,616

it follows that xvw ⇒φ2SAT
xak−1w ⇒φ2SAT

xak−1v. However, since xak−1v = xak−1bk
⇒φ2SAT

617

xakbk
= xuv, it follows that xvw

∗

⇒φ2SAT
xuv, which is a contradiction to the assumption that618

the triangle of u, v, w is uncorrelated. ◭619

◮ Lemma 13. Let u, v, w induce a synchronous and φ
(0)
2SAT

-uncorrelated triangle in (G, λ),620

and let ¶a, b♦ ∈ E be an edge of G such that ¶a, b♦ ∩ ¶u, v, w♦ ≤ 1. If xab
∗

⇒
φ

(0)

2SAT

xuv, then621

16



APPENDIX

xab also implies at least one of the four variables in the set ¶xvw, xwv, xuw, xwu♦ in φ
(0)
2SAT

.622

Proof. Assume we have ¶a, b♦ ∩ ¶u, v, w♦ ≤ 1 and xab
∗

⇒
φ

(0)

2SAT

xuv. Then we make a case623

distinction on the last implication in the implication chain xab
∗

⇒
φ

(0)

2SAT

xuv.624

1. The last implication is an implication from φ2SAT, i.e., xab
∗

⇒
φ

(0)

2SAT

xpq⇒φ2SAT
xuv. If625

¶p, q♦ ⊆ ¶u, v, w♦ then we are done, since we can assume that ¶p, q♦ ≠ ¶u, v♦ because626

no such implications are contained in φ2SAT. Otherwise Lemma 12 implies that xpq also627

implies at least one of the four variables in the set ¶xvw, xwv, xuw, xwu♦ in φ2SAT. If follows628

that xab also implies at least one of the four variables in the set ¶xvw, xwv, xuw, xwu♦ in629

φ
(0)
2SAT

.630

2. The last implication is not an implication from φ2SAT, i.e., xab
∗

⇒
φ

(0)

2SAT

xpq⇒φINIT
xuv,631

there the implication xpq⇒φINIT
xuv was added to φ

(0)
2SAT

by Initial-Forcing. If632

xpq⇒φINIT
xuv was added in Line 7 or Line 10 of Initial-Forcing, then we have that633

¶p, q♦ ⊆ ¶u, v, w♦ and ¶p, q♦ ̸= ¶u, v♦, hence the u, v, w is not a φ
(0)
2SAT

-uncorrelated634

triangle, a contradiction. If xpq⇒φINIT
xuv was added in Line 14 of Initial-Forcing,635

then we have that xpq⇒φINIT
xuw, hence we are done. ◭636

Detailed description of the algorithm. We are now ready to present our polynomial-time637

algorithm (Algorithm 4) for deciding whether a given temporal graph (G, λ) is temporally638

transitively orientable. The main idea of our algorithm is as follows. First, the algorithm639

computes all Λ-implication classes A1, . . . , As by calling Algorithm 1 as a subroutine. If640

there exists at least one Λ-implication class Ai where uv, vu ∈ Ai for some edge ¶u, v♦ ∈ E,641

then we announce that (G, λ) is a no-instance, due to Lemma 7. Otherwise we associate to642

each Λ-implication class Ai a variable xi, and we build the 3NAE formula φ3NAE and the643

2SAT formula φ2SAT, as described in Section 3.2.644

In the initialization phase of Algorithm 4, we call algorithm Initial-Forcing (see645

Algorithm 2) as a subroutine. Starting from the formulas φ3NAE and φ2SAT, in Initial-646

Forcing we build the formulas φ
(0)
3NAE

and φ
(0)
2SAT

by both (i) checking which truth values647

are being forced in φ3NAE ∧ φ2SAT (lines 2-10), and (ii) adding to φ2SAT some clauses that648

are implicitly implied in φ3NAE ∧ φ2SAT (lines 11-14). More speciĄcally, Initial-Forcing649

proceeds as follows: (i) whenever setting xi = 1 (resp. xi = 0) forces φ3NAE∧φ2SAT to become650

unsatisĄable, we choose to set xi = 0 (resp. xi = 1); (ii) if x⇒
φ

(0)

2SAT

a and x⇒
φ

(0)

2SAT

b, and651

if we also have that NAE(a, b, c) ∈ φ
(0)
3NAE

, then we add x⇒
φ

(0)

2SAT

c to φ
(0)
2SAT

, since clearly, if652

x = 1 then a = b = 1 and we have to set c = 0 to satisfy the NAE clause NAE(a, b, c). The653

next observation follows easily by Observation 10 and by the construction of φ
(0)
3NAE

and654

φ
(0)
2SAT

in Initial-Forcing.655

◮ Observation 14. The temporal graph (G, λ) is transitively orientable if and only if φ
(0)
3NAE

∧656

φ
(0)
2SAT

is satisĄable.657

The main phase of the algorithm starts once the formulas φ
(0)
3NAE

and φ
(0)
2SAT

have been658

computed. Then we iteratively try assigning to each variable xi the truth value 1 or 0.659

Once we have set xi = 1 (resp. xi = 0) during the iteration j ≥ 1 of the algorithm, we call660

algorithm Boolean-Forcing (see Algorithm 3) as a subroutine to check which implications661

this value of xi has on the current formulas φ
(j−1)
3NAE

and φ
(j−1)
2SAT

and which other truth values662

of variables are forced. The correctness of Boolean-Forcing can be easily veriĄed by663

checking all subcases of Boolean-Forcing. During the execution of Boolean-Forcing,664

17



APPENDIX

Algorithm 2 Initial-Forcing

Input: A 2-SAT formula φ2SAT and a 3-NAE formula φ3NAE

Output: A 2-SAT formula φ
(0)
2SAT

and a 3-NAE formula φ
(0)
3NAE

such that φ
(0)
2SAT

∧ φ
(0)
3NAE

is satisĄable if and only if φ2SAT ∧ φ3NAE is satisĄable, or the announcement that

φ2SAT ∧ φ3NAE is not satisĄable.

1: φ
(0)
3NAE

← φ3NAE; φ
(0)
2SAT

← φ2SAT {initialization}

2: for every variable xi appearing in φ
(0)
3NAE

∧ φ
(0)
2SAT

do

3: if Boolean-Forcing


φ
(0)
3NAE

, φ
(0)
2SAT

, xi, 1


= ŞNOŤ then

4: if Boolean-Forcing


φ
(0)
3NAE

, φ
(0)
2SAT

, xi, 0


= ŞNOŤ then

5: return ŞNOŤ {both xi = 1 and xi = 0 invalidate the formulas}

6: else

7:


φ

(0)
3NAE

, φ
(0)
2SAT


← Boolean-Forcing


φ

(0)
3NAE

, φ
(0)
2SAT

, xi, 0


8: else

9: if Boolean-Forcing


φ
(0)
3NAE

, φ
(0)
2SAT

, xi, 0


= ŞNOŤ then

10:


φ

(0)
3NAE

, φ
(0)
2SAT


← Boolean-Forcing


φ

(0)
3NAE

, φ
(0)
2SAT

, xi, 1


11: for every clause NAE(xuv, xvw, xwu) of φ
(0)
3NAE

do

12: for every variable xab do

13: if xab
∗

⇒
φ

(0)

2SAT

xuv and xab
∗

⇒
φ

(0)

2SAT

xvw then {add (xab ⇒ xuw) to φ
(0)
2SAT

}

14: φ
(0)
2SAT

← φ
(0)
2SAT

∧ (xba ∨ xuw)

15: Repeat lines 2 and 11 until no changes occur on φ
(0)
2SAT

and φ
(0)
3NAE

16: return


φ
(0)
3NAE

, φ
(0)
2SAT



we either replace the current formulas by φ
(j)
3NAE

and φ
(j)
2SAT

, or we reach a contradiction by665

showing that, setting xi = 1 (resp. xi = 0) makes φ
(j−1)
3NAE

∧ φ
(j−1)
2SAT

unsatisĄable. If each of666

the truth assignments ¶xi = 1, xi = 0♦ leads to such a contradiction, we return that (G, λ)667

is a no-instance. Otherwise, if at least one of the truth assignments ¶xi = 1, xi = 0♦ does668

not lead to such a contradiction, we follow this truth assignment and proceed with the next669

variable.670

Correctness of the algorithm. We now prove formally that Algorithm 4 is correct. More671

speciĄcally, we show that if Algorithm 4 gets a yes-instance as input then it outputs a672

temporally transitive orientation, while if it gets a no-instance as input then it outputs ŞNOŤ.673

The main technical result of this section is Theorem 20, in which we prove that, at every674

iteration of Algorithm 4, the current formula φ
(j)
3NAE

∧ φ
(j)
2SAT

is satisĄable if and only if the675

formula φ
(j−1)
3NAE

∧ φ
(j−1)
2SAT

of the previous iteration is satisĄable.676

We start by proving in the following auxiliary lemma that, if the algorithm returns677

ŞNOŤ at the jth iteration, then the formula φ
(j−1)
3NAE

∧ φ
(j−1)
2SAT

of the previous iteration is not678

18



APPENDIX

Algorithm 3 Boolean-Forcing

Input: A 2-SAT formula φ2, a 3-NAE formula φ3, and a variable xi of φ2 ∧ φ3, and a truth

value Value ∈ ¶0, 1♦

Output: A 2-SAT formula φ′

2 and a 3-NAE formula φ′

3, obtained from φ2 and φ3 by setting

xi = Value, or the announcement that xi = Value does not satisfy φ2 ∧ φ3.

1: φ′

2 ← φ2; φ′

3 ← φ3

2: while φ′

2 has a clause (xuv ∨ xpq) and xuv = 1 do

3: Remove the clause (xuv ∨ xpq) from φ′

2

4: while φ′

2 has a clause (xuv ∨ xpq) and xuv = 0 do

5: if xpq = 0 then return ŞNOŤ

6: Remove the clause (xuv ∨ xpq) from φ′

2; xpq ← 1

7: for every variable xuv that does not yet have a truth value do

8: if xuv
∗

⇒φ′′

2
xvu, where φ′′

2 = φ′

2 \ φ2 then xuv ← 0

9: for every clause NAE(xuv, xvw, xwu) of φ′

3 do {synchronous triangle on vertices u, v, w}

10: if xuv
∗

⇒φ′

2
xvw then {add (xuv ⇒ xuw) ∧ (xuw ⇒ xvw) to φ′

2}

11: φ′

2 ← φ′

2 ∧ (xvu ∨ xuw) ∧ (xwu ∨ xvw)

12: Remove the clause NAE(xuv, xvw, xwu) from φ′

3

13: if xuv already got the value 1 or 0 then

14: Remove the clause NAE(xuv, xvw, xwu) from φ′

3

15: if xvw and xwu do not have yet a truth value then

16: if xuv = 1 then {add (xvw ⇒ xuw) to φ′

2}

17: φ′

2 ← φ′

2 ∧ (xwv ∨ xuw)

18: else {xuv = 0; in this case add (xuw ⇒ xvw) to φ′

2}

19: φ′

2 ← φ′

2 ∧ (xwu ∨ xvw)

20: if xvw = xuv and xwu does not have yet a truth value then

21: xwu ← 1− xuv

22: if xvw = xwu = xuv then return ŞNOŤ

23: Repeat lines 2, 4, 7, and 9 until no changes occur on φ′

2 and φ′

3

24: if both xuv = 0 and xuv = 1 for some variable xuv then return ŞNOŤ

25: return (φ′

2, φ′

3)

satisĄable.679

◮ Lemma 15. For every iteration j of Algorithm 4, if Algorithm 4 returns ŞNOŤ in Line 16,680

then φ
(j−1)
3NAE

∧ φ
(j−1)
2SAT

is not satisĄable.681

Proof. Assume otherwise that φ
(j−1)
3NAE

∧ φ
(j−1)
2SAT

is satisĄable, and let xi be the variable of682

φ
(j−1)
3NAE

∧ φ
(j−1)
2SAT

that is considered by the algorithm at iteration j. Let τ be a satisfying truth683

assignment of φ
(j−1)
3NAE

∧ φ
(j−1)
2SAT

. If xi = 1 (resp. xi = 0) in τ then the algorithm will proceed684

by computing the next formula φ
(j)
3NAE

∧ φ
(j)
2SAT

in Line 11 (resp. in Line 14) and thus it will685

not return ŞNOŤ in Line 16, which is a contradiction. ◭686

19



APPENDIX

Algorithm 4 Temporal transitive orientation.

Input: A temporal graph (G, λ), where G = (V, E).

Output: A temporal transitive orientation F of (G, λ), or the announcement that (G, λ) is

temporally not transitively orientable.

1: Execute Algorithm 1 to build the Λ-implication classes ¶A1, A2, . . . , As♦ and the Boolean

variables ¶xuv, xvu : ¶u, v♦ ∈ E♦

2: if Algorithm 1 returns ŞNOŤ then return ŞNOŤ

3: Build the 3NAE formula φ3NAE and the 2SAT formula φ2SAT

4: if Initial-Forcing (φ3NAE, φ2SAT) ̸= ŞNOŤ then {Initialization phase}

5:


φ

(0)
3NAE

, φ
(0)
2SAT


← Initial-Forcing (φ3NAE, φ2SAT)

6: else {φ3NAE ∧ φ2SAT leads to a contradiction}

7: return ŞNOŤ

8: j ← 1; F ← ∅ {Main phase}

9: while a variable xi appearing in φ
(j−1)
3NAE

∧ φ
(j−1)
2SAT

did not yet receive a truth value do

10: if Boolean-Forcing


φ
(j−1)
3NAE

, φ
(j−1)
2SAT

, xi, 1

̸= ŞNOŤ then

11:


φ

(j)
3NAE

, φ
(j)
2SAT


← Boolean-Forcing


φ

(j−1)
3NAE

, φ
(j−1)
2SAT

, xi, 1


12: else {xi = 1 leads to a contradiction}

13: if Boolean-Forcing


φ
(j−1)
3NAE

, φ
(j−1)
2SAT

, xi, 0

̸= ŞNOŤ then

14:


φ

(j)
3NAE

, φ
(j)
2SAT


← Boolean-Forcing


φ

(j−1)
3NAE

, φ
(j−1)
2SAT

, xi, 0


15: else

16: return ŞNOŤ

17: j ← j + 1

18: for i = 1 to s do

19: if xi did not yet receive a truth value then xi ← 1

20: if xi = 1 then F ← F ∪Ai else F ← F ∪Ai

21: return the temporally transitive orientation F of (G, λ)

The next crucial observation follows immediately by the construction of φ3NAE in Sec-687

tion 3.2, and by the fact that, at every iteration j, Algorithm 4 can only remove clauses from688

φ
(j−1)
3NAE

.689

◮ Observation 16. If Algorithm 3 removes a clause from φ
(j−1)
3NAE

, then this clause is satisĄed690

for all satisfying assignments of φ
(j)
2SAT

.691

Next, we prove a crucial and involved technical lemma about the Boolean forcing steps of692

Algorithm 4. This lemma will allow us to deduce that, during the main phase of Algorithm 4,693

whenever a new clause is added to the 2SAT part of the formula, this happens only in lines 17694

and 19 of Algorithm 3 (Boolean-Forcing). That is, whenever a new clause is added to695

the 2SAT part of the formula in line 11 of Algorithm 3, this can only happen during the696

initialization phase of Algorithm 4.697

20



APPENDIX

◮ Lemma 17. Whenever Boolean-Forcing (Algorithm 3) is called in an iteration j ≥ 1698

(i.e. in the main phase) of Algorithm 4, Lines 11 and 12 of Boolean-Forcing are not699

executed if this call of Boolean-Forcing does not output ŞNOŤ.700

Proof. Assume for contradiction that Lines 11 and 12 of Algorithm 3 are executed in iteration701

j of Algorithm 4 and Algorithm 3 does not output ŞNOŤ. Let j be the Ąrst iteration where702

this happens. This means that there is a clause NAE(xuv, xvw, xwu) of φ′

3 and an implication703

xuv
∗

⇒φ′

2
xvw during the execution of Algorithm 3. Let NAE(xuv, xvw, xwu) and xuv

∗

⇒φ′

2
xvw704

appear in the Ąrst execution of Lines 11 and 12 of Algorithm 3.705

We Ąrst partition the implication chain xuv
∗

⇒φ′

2
xvw into ŞoldŤ and ŞnewŤ implications,706

where ŞoldŤ implications are contained in φ
(0)
2SAT

and all other implications (that were added707

in previous iterations) are considered ŞnewŤ. If there are several NAE clauses and implication708

chains that fulĄll the condition in Line 9 of Algorithm 3, we assume that xuv
∗

⇒φ′

2
xvw is709

one that contains a minimum number of ŞnewŤ implications. Observe that since we assume710

xuv
∗

⇒φ′

2
xvw is a condition for the Ąrst execution of Lines 11 and 12 of Algorithm 3, it711

follows that all ŞnewŤ implications in xuv
∗

⇒φ′

2
xvw were added in Line 17 or Line 19 of712

Algorithm 3 in previous iterations.713

Note that by deĄnition of φ
(0)
2SAT

, we know that xuv
∗

⇒φ′

2
xvw contains at least one714

ŞnewŤ implication. Furthermore, we can observe that xuv
∗

⇒φ′

2
xvw contains at least two715

implications overall.716

We Ąrst consider the case that xuv
∗

⇒φ′

2
xvw contains at least one ŞoldŤ implication. We717

assume w.l.o.g. that xuv
∗

⇒φ′

2
xvw contains an ŞoldŤ implication that is directly followed by718

a ŞnewŤ implication (if this is not the case, then we can consider the contraposition of the719

implication chain).720

Note that since the ŞnewŤ implication was added in Line 17 or Line 19 of Algorithm 3,721

we can assume w.l.o.g that the ŞnewŤ implication is xab⇒BFxcb and that xca = 1 for some722

synchronous triangle on the vertices a, b, c, that is, we have NAE(xab, xbc, xca) ∈ φ
(0)
3NAE

(this723

is the Line 17 case, Line 19 works analogously). Let xpq⇒φ
(0)

2SAT

xab be the ŞoldŤ implication.724

Then we have that xpq⇒φ
(0)

2SAT

xab⇒BFxcb is contained in xuv
∗

⇒φ′

2
xvw. Furthermore, by725

deĄnition of φ
(0)
2SAT

, we have that ♣¶p, q♦ ∩ ¶a, b, c♦♣ ≤ 1, hence we can apply Lemma 13 and726

obtain one of the following four scenarios:727

1. xpq⇒φ
(0)

2SAT

xcb:728

In this case we can replace xpq⇒φ
(0)

2SAT

xab⇒BFxcb with xpq⇒φ
(0)

2SAT

xcb in the implication729

chain xuv
∗

⇒φ′

2
xvw to obtain an implication chain from xuv to xvw with strictly fewer730

ŞnewŤ implications, a contradiction.731

2. xpq⇒φ
(0)

2SAT

xbc:732

Now we have that xpq⇒φ
(0)

2SAT

xab and xpq⇒φ
(0)

2SAT

xbc. Then by deĄnition of φ
(0)
2SAT

we also733

have that xpq⇒φ
(0)

2SAT

xac and hence xca⇒φ
(0)

2SAT

xqp. Recall that we know that xca = 1. It734

follows that xpq = 0 in iteration j, a contradiction to the assumption that xuv
∗

⇒φ′

2
xvw735

exists.736

3. xpq⇒φ
(0)

2SAT

xca:737

Now we have that xpq⇒φ
(0)

2SAT

xab and xpq⇒φ
(0)

2SAT

xca. Then by deĄnition of φ
(0)
2SAT

we also738

have that xpq⇒φ
(0)

2SAT

xcb. From here it is the same as case 1.739

4. xpq⇒φ
(0)

2SAT

xac: Same as case 2.740

21



APPENDIX

b c

a

d

(a)

t

tt

tt

b c

a

d

(b)

t

t

t

t

t

b c

a

d

(c)

t

t

t

t

t

Figure 4 Illustration of the scenario of two consecutive ŞnewŤ BF implications (a) appearing in

the proof of Lemma 17. The green dash-dotted line indicates that edge ¶a, d♦ may exist with some

time label or not. The proof makes a case distinction here. SubĄgure (b) illustrates the case that

xab⇒BFxcb⇒BFxcd and xca = xbd = 1, indicated by the red arrows. SubĄgure (c) illustrates the

case that xca⇒BFxcb⇒BFxcd and xab = xbd = 1, indicated by the red arrows.

Hence, we have a contradiction in every case and can conclude that xuv
∗

⇒φ′

2
xvw does not741

contain any ŞoldŤ implications.742

Now consider the case that xuv
∗

⇒φ′

2
xvw only contains ŞnewŤ implications. We Ąrst743

assume that xuv
∗

⇒φ′

2
xvw contains exactly two ŞnewŤ implications. Then the Ąrst implication744

is either xuv⇒BFxwv or xuv⇒BFxuw. Note that we cannot add the implication xwv⇒xvw in745

Boolean-Forcing, hence the Ąrst implication has to be xuv⇒BFxuw which implies that746

xvw = 1, which is a contradiction to the existence of the implication chain xuv
∗

⇒φ′

2
xvw.747

From now on we assume that xuv
∗

⇒φ′

2
xvw contains strictly more than two implications.748

Consider two consecutive BF implications in xuv
∗

⇒φ′

2
xvw. Denote these two implications749

by xab ⇒BF xcd and xcd ⇒BF xfg. By the Boolean-Forcing algorithm, we have that750

either b = d or a = c, and in both cases the edges ab and cd belong to a synchronous751

triangle. Suppose that b = d (the case a = c can be treated analogously), i.e., we have752

the implication xab ⇒BF xcb. Let a, b, c be the vertices of the synchronous triangle for this753

implication. Similarly, for the implication xcd = xcb ⇒BF xfg we know that either b = g754

or c = f . Suppose that b = g (the case c = f can be treated analogously), i.e., we have755

the implication xcb ⇒BF xfb. Let f ′, c′, b′ be the vertices of the synchronous triangle for756

this implication; that is, the edges cb and c′b′ are both representatives of the Λ-implication757

class of the variable xcb. Therefore Lemma 9 (the temporal triangle lemma) implies that ab′
758

(resp. ac′) exists in the graph and belongs to the same Λ-implication class of ab (resp. ac).759

Therefore we can assume without loss of generality that b = b′ and c = c′. Summarizing, we760

have a synchronous triangle on the vertices a, b, c and another synchronous triangle b, c, f ′.761

For convenience of the presentation, in the remainder of the proof we rename f ′ to d; that is,762

the two synchronous triangles from the two consecutive BF implications are on the vertices763

a, b, c and b, c, d, respectively. Note that both of these triangles must be also synchronous to764

each other, i.e., all their edges have the same time label t, see Figure 4 (a).765

We now have the following cases for the two consecutive implications:766

(A) xab⇒BFxcb⇒BFxcd is contained in xuv
∗

⇒φ′

2
xvw and xca = 1 and xbd = 1 (Figure 4 (b)).767

(B) xca⇒BFxcb⇒BFxcd is contained in xuv
∗

⇒φ′

2
xvw and xab = 1 and xbd = 1 (Figure 4 (c)).768

All other cases are symmetric to one of the two cases above. We now make a case-distinction769

on the (possibly missing) edge ¶a, d♦ (dash-dotted green line in Figure 4). Cf. Table 1 for770

the following cases.771

22



APPENDIX

1. ¶a, d♦ is a non-edge or λ(a, d) < t:772

(A) In this case φ
(0)
2SAT

by deĄnition then contains xbd⇒φ
(0)

2SAT

xba. Hence, we have that773

xab = 0, a contradiction to the assumption that xab⇒BFxcb⇒BFxcd is contained in774

xuv
∗

⇒φ′

2
xvw.775

(B) Contradiction since φ
(0)
2SAT

by deĄnition then contains xab⇒φ
(0)

2SAT

xdb.776

2. λ(a, d) > t:777

(A) In this case φ
(0)
2SAT

by deĄnition then contains xca⇒φ
(0)

2SAT

xda and xbd⇒φ
(0)

2SAT

xad, a778

contradiction.779

(B) In this case we know that xad = 1, since by deĄnition φ
(0)
2SAT

then contains780

xbd⇒φ
(0)

2SAT

xad. Furthermore, φ
(0)
2SAT

by deĄnition then contains xad⇒φ
(0)

2SAT

xac and781

hence we have xca = 0, a contradiction to the assumption that xca⇒BFxcb⇒BFxcd782

is contained in xuv
∗

⇒φ′

2
xvw.783

3. λ(a, d) = t:784

Note that the above two cases do not apply, we can assume that all pairs of consecutive785

implication appearing in xuv
∗

⇒φ′

2
xvw fall into this case. In particular, also the Ąrst one.786

Hence, we have that xuv⇒BFxpv
∗

⇒BF xvw or xuv⇒BFxup
∗

⇒BF xvw.787

Assume that xuv⇒BFxpv
∗

⇒BF xvw. Then in particular, using Lemma 9 (the temporal788

triangle lemma) similarly as described above, we get that vertices p, v, w induce a789

synchronous triangle and NAE(xpv, xvw, xwp) ∈ φ
(0)
3NAE

. Hence, xpv
∗

⇒BF xvw is an790

implication chain that fulĄlls the condition in Line 9 but contains less ŞnewŤ implication791

than xuv
∗

⇒φ′

2
xvw, a contradiction.792

Now assume that xuv⇒BFxup
∗

⇒BF xvw. Then we have that xvp = 1, otherwise the793

implication xuv⇒BFxup would not have been added by Algorithm 3. In this case we also794

consider the second implication in the chain. There are two cases:795

xuv⇒BFxup⇒BFxuq
∗

⇒BF xvw and xpb = 1. Since we have both xvp = 1 and xpq = 1,796

we have that Algorithm 3 also sets xvq = 1. It follows that we have that xuv⇒BFxuq797

and hence xuv⇒BFxuq
∗

⇒BF xvw, an implication chain that fulĄlls the condition in798

Line 9 but contains less ŞnewŤ implication than xuv
∗

⇒φ′

2
xvw, a contradiction.799

xuv⇒BFxup⇒BFxqp
∗

⇒BF xvw and xqu = 1. In this case we also have xuv⇒BFxbv and800

xqv⇒BFxqp. Hence, we have an alternative implication chain xuv⇒BFxqv⇒BFxqp
∗

⇒BF801

xvw that fulĄlls the condition in Line 9 of the same length. Now if ¶q, w♦ is a non-802

edge, λ(q, w) < t, or λ(q, w) > t, then one of the previous cases applies to the new803

implication chain and we get a contradiction. Hence, assume that λ(q, w) = t. Then804

(using Lemma 9) we have that vertices q, v, w induce a synchronous triangle and805

NAE(xqv, xvw, xwq) ∈ φ
(0)
3NAE

. It follows that xqv⇒BFxqp
∗

⇒BF xvw is an implication806

chain that fulĄlls the condition in Line 9 but contains less ŞnewŤ implication than807

xuv
∗

⇒φ′

2
xvw, a contradiction.808

This Ąnished the proof. ◭809

We next show that for all iterations the 2SAT part of the formula does not contain an810

implication chain from a variable to its negation or vice versa.811

◮ Lemma 18. For every iteration j ≥ 1 of Algorithm 4 we have that if φ
(j−1)
3NAE

∧ φ
(j−1)
2SAT

is812

satisĄable and there is no xuv in φ
(j−1)
2SAT

such that xuv
∗

⇒
φ

(j−1)

2SAT

xvu, then there is no xuv in813

φ
(j)
2SAT

such that xuv
∗

⇒
φ

(j)

2SAT

xvu.814

23



APPENDIX

Proof. By Lemma 15 we have that if φ
(j−1)
3NAE

∧φ
(j−1)
2SAT

is satisĄable, then φ
(j)
2SAT

is well-deĄned.815

Assume for contradiction that there is no xuv in φ
(j−1)
2SAT

such that xuv
∗

⇒
φ

(j−1)

2SAT

xvu but we816

have a xuv in φ
(j)
2SAT

such that xuv
∗

⇒
φ

(j)

2SAT

xvu.817

Then we can partition the implication chain xuv
∗

⇒
φ

(j)

2SAT

xvu into ŞoldŤ parts, that are818

also present in φ
(0)
2SAT

and ŞnewŤ implications, that were added by Boolean-Forcing during819

some iteration j′ ≤ j.820

Note that xuv
∗

⇒
φ

(j)

2SAT

xvu contains at least one ŞnewŤ implication. Consider an ŞoldŤ821

implication in the implication chain followed by a ŞnewŤ implication (if there is none,822

then there is one in the contraposition of the implication chain). By Lemma 17 the ŞnewŤ823

implication was added by Algorithm 3 in Line 17 or Line 19. We can assume w.l.o.g that824

the ŞnewŤ implication is xab⇒BFxcb and that xca = 1 for some synchronous triangle on825

the vertices a, b, c, that is, we have NAE(xab, xbc, xca) ∈ φ
(0)
3NAE

(this is the Line 17 case,826

Line 19 works analogously). Let xpq⇒φ
(0)

2SAT

xab be the ŞoldŤ implication. Then we have that827

xpq⇒φ
(0)

2SAT

xab⇒BFxcb is contained in xuv
∗

⇒
φ

(j)

2SAT

xvw. Furthermore, by deĄnition of φ
(0)
2SAT

,828

we have that ♣¶p, q♦ ∩ ¶a, b, c♦♣ ≤ 1, hence we can apply Lemma 13 and obtain one of the829

following four scenarios:830

1. xpq⇒φ
(0)

2SAT

xcb:831

In this case we can replace xpq⇒φ
(0)

2SAT

xab⇒BFxcb with xpq⇒φ
(0)

2SAT

xcb in the implication832

chain xuv
∗

⇒
φ

(j)

2SAT

xvw to obtain an implication chain from xuv to xvw with strictly fewer833

ŞnewŤ implications, a contradiction.834

2. xpq⇒φ
(0)

2SAT

xbc:835

Now we have that xpq⇒φ
(0)

2SAT

xab and xpq⇒φ
(0)

2SAT

xbc. Then by deĄnition of φ
(0)
2SAT

we also836

have that xpq⇒φ
(0)

2SAT

xac and hence xca⇒φ
(0)

2SAT

xqp. Recall that we know that xca = 1. It837

follows that xpq = 0 in iteration j, a contradiction to the assumption that xuv
∗

⇒
φ

(j)

2SAT

xvw838

exists.839

3. xpq⇒φ
(0)

2SAT

xca:840

Now we have that xpq⇒φ
(0)

2SAT

xab and xpq⇒φ
(0)

2SAT

xca. Then by deĄnition of φ
(0)
2SAT

we also841

have that xpq⇒φ
(0)

2SAT

xcb. From here it is the same as case 1.842

4. xpq⇒φ
(0)

2SAT

xac: Same as Case 2. ◭843

In the next lemma we show that, if Algorithm 4 gets a yes-instance as input, it will844

compute a valid orientation.845

◮ Lemma 19. For every iteration j ≥ 1 of Algorithm 4 we have that if φ
(j−1)
3NAE

∧ φ
(j−1)
2SAT

is846

satisĄable and there is no xuv in φ
(j−1)
2SAT

such that xuv
∗

⇒
φ

(j−1)

2SAT

xvu, then φ
(j)
3NAE

∧ φ
(j)
2SAT

is847

satisĄable and there is no xuv in φ
(j)
2SAT

such that xuv
∗

⇒
φ

(j)

2SAT

xvu.848

Proof. By Lemma 15 we have that if φ
(j−1)
3NAE

∧ φ
(j−1)
2SAT

is satisĄable, then φ
(j)
3NAE

∧ φ
(j)
2SAT

is849

well-deĄned.850

Note that if φ
(j−1)
3NAE

= ∅, this also implies that φ
(j)
3NAE

= ∅, and then φ
(j)
3NAE

∧ φ
(j)
2SAT

is851

satisĄable and there is no xuv in φ
(j)
2SAT

such that xuv
∗

⇒
φ

(j)

2SAT

xvu by Lemma 18.852

From now on we assume that φ
(j−1)
3NAE

≠ ∅. We now argue that whenever φ
(j−1)
3NAE

≠ φ
(j)
3NAE

,853

we have removed some clauses from φ
(j−1)
3NAE

in Line 12 or in Line 14 of Algorithm 3. By854

Observation 16 the removed clauses are satisĄed for all satisfying assignments of φ
(j)
2SAT

and855

24



APPENDIX

by Lemma 18 we know that φ
(j)
2SAT

is satisĄable and there is no xuv in φ
(j)
2SAT

such that856

xuv
∗

⇒
φ

(j)

2SAT

xvu. It follows that φ
(j)
3NAE

∧ φ
(j)
2SAT

is also satisĄable. ◭857

We are now ready to present our main technical result of this section.858

◮ Theorem 20. For every iteration j ≥ 1 of Algorithm 4, φ
(j)
3NAE

∧ φ
(j)
2SAT

is satisĄable if859

and only if φ
(j−1)
3NAE

∧ φ
(j−1)
2SAT

is satisĄable.860

Proof. Suppose that φ
(j)
3NAE

∧ φ
(j)
2SAT

is satisĄable, and let τ be a satisfying truth assignment861

of it. Let Xj−1 (resp. Xj) be the set of variables which have not been assigned any truth862

value until iteration j − 1 (resp. until iteration j). Note that Xj ⊆ Xj−1. Furthermore let τ∗
863

be the truth assignment of the variables Xj−1 \Xj , which the algorithm has assigned during864

iteration j. Then, clearly τ ∪ τ∗ is a satisfying truth assignment of φ
(j−1)
3NAE

∧ φ
(j−1)
2SAT

.865

Conversely, suppose that φ
(j−1)
3NAE

∧ φ
(j−1)
2SAT

is satisĄable. Then, by iteratively applying the866

arguments of the previous paragraph, it follows that also φ
(k)
3NAE

∧ φ
(k)
2SAT

is satisĄable, for867

every 0 ≤ k ≤ j − 1. In particular, φ
(0)
3NAE

∧ φ
(0)
2SAT

is satisĄable. Moreover, by construction,868

φ
(0)
2SAT

does not contain any xuv such that xuv
∗

⇒
φ

(0)

2SAT

xvu. Therefore by inductively869

applying Lemma 19, it follows that φ
(j)
3NAE

∧ φ
(j)
2SAT

is satisĄable and that there is no xuv in870

φ
(j)
2SAT

such that xuv
∗

⇒
φ

(j)

2SAT

xvu. ◭871

Using our main technical result of Theorem 20, we can now conclude this section with872

the next theorem.873

◮ Theorem 21. Algorithm 4 correctly solves TTO in polynomial time.874

Proof. First recall by Observation 14 that the input temporal graph (G, λ) is transitively875

orientable if and only if φ
(0)
3NAE

∧ φ
(0)
2SAT

is satisĄable.876

Let (G, λ) be a yes-instance. Then, by iteratively applying Theorem 20 it follows that877

φ
(j)
3NAE

∧ φ
(j)
2SAT

is satisĄable, for every iteration j of the algorithm. Recall that, at the end of878

the last iteration k of the algorithm, φ
(k)
3NAE

∧φ
(k)
2SAT

is empty. Then, in line 19, the algorithm879

gives the arbitrary truth value xi = 1 to every variable xi which did not yet get any truth880

value yet. This is a correct decision as all these variables are not involved in any Boolean881

constraint of φ
(k)
3NAE

∧ φ
(k)
2SAT

(which is empty). Finally, the algorithm orients in line 20 all882

edges of G according to the corresponding truth assignment. The returned orientation F of883

(G, λ) is temporally transitive as every variable was assigned a truth value according to the884

Boolean constraints throughout the execution of the algorithm.885

Now let (G, λ) be a no-instance. We will prove that, at some iteration j ≤ 0, the886

algorithm will ŞNOŤ. Suppose otherwise that the algorithm instead returns an orientation887

F of (G, λ) after performing k iterations. Then clearly φ
(k)
3NAE

∧ φ
(k)
2SAT

is empty, and thus888

clearly satisĄable. Therefore, iteratively applying Theorem 20 implies that φ
(0)
3NAE

∧ φ
(0)
2SAT

889

is also satisĄable, and thus (G, λ) is temporally transitively orientable by Observation 14,890

which is a contradiction to the assumption that (G, λ) be a no-instance.891

Lastly, we prove that Algorithm 4 runs in polynomial time. The Λ-implication classes of892

(G, λ) can be clearly computed by Algorithm 1 in polynomial time. Algorithm 3 (Boolean-893

Forcing) iteratively adds and removes clauses from the 2SAT formula φ′

2, while it can only894

remove clauses from the 3NAE formula φ′

3. Whenever a clause is added to φ′

2, a clause of895

φ′

3 is removed. Therefore, as the initial 3NAE formula φ3 has at most polynomially-many896

clauses, we can add clauses to φ′

2 only polynomially-many times. Thus, as in all other897

steps, Algorithm 3 just checks clauses of φ′

2 and φ′

3 and it forces certain truth values to898

25



APPENDIX

vx vx

1

44

1

vy

vy

1
4

4
1

vz

vz

1

4

4

1

wx,y
2

3

wx,z
2

3
wy,z

2

35

Figure 5 Temporal graph constructed from the formula (x ⇒ y) ∧ (x ⇒ z) ∧ (y ⇒ z) for k = 1

with orientation corresponding to the assignment x = true, y = false, z = true. Since this

assignment does not satisfy the third clause, the dashed blue edge is required to make the graph

temporally transitive.

variables, the total running time of Algorithm 3 is polynomial. Furthermore, in Algorithm 2899

(Initial-Forcing) and Algorithm 4 (the main algorithm) the Boolean-Forcing-subroutine900

(Algorithm 3) is only invoked at most four times for every variable in φ
(0)
3NAE

∧ φ
(0)
2SAT

. Hence,901

we have an overall polynomial running time. ◭902

4 Temporal Transitive Completion903

We now study the computational complexity of Temporal Transitive Completion904

(TTC). In the static case, the so-called minimum comparability completion problem,905

i.e. adding the smallest number of edges to a static graph to turn it into a comparabil-906

ity graph, is known to be NP-hard [25]. Note that minimum comparability completion907

on static graphs is a special case of TTC and thus it follows that TTC is NP-hard too.908

Our other variants, however, do not generalize static comparability completion in such a909

straightforward way. Note that for Strict TTC we have that the corresponding recognition910

problem Strict TTO is NP-complete (Theorem 3), hence it follows directly that Strict911

TTC is NP-hard. For the remaining two variants of our problem, we show in the following912

that they are also NP-hard, giving the result that all four variants of TTC are NP-hard.913

Furthermore, we present a polynomial-time algorithm for all four problem variants for the914

case that all edges of underlying graph are oriented, see Theorem 23. This allows directly to915

derive an FPT algorithm for the number of unoriented edges as a parameter.916

◮ Theorem 22. All four variants of TTC are NP-hard.917

Proof. We give a reduction from the NP-hard Max-2-Sat problem [23].918

Max-2-Sat

Input: A boolean formula φ in implicative normal form5 and an integer k.

Question: Is there an assignment of the variables which satisĄes at least k clauses in φ?

919

26



APPENDIX

We only describe the reduction from Max-2-Sat to TTC. However, the same construction920

can be used to show NP-hardness of the other variants.921

Let (φ, k) be an instance of Max-2-Sat with m clauses. We construct a temporal graph922

G as follows. For each variable x of φ we add two vertices denoted vx and vx, connected by923

an edge with label 1. Furthermore, for each 1 ≤ i ≤ m− k + 1 we add two vertices vi
x and924

vi
x connected by an edge with label 1. We then connect vi

x with vx and vi
x with vx using925

two edges labeled 4. Thus vx, vx, vi
x, vi

x is a 4-cycle whose edges alternating between 1 and 4.926

Afterwards, for each clause (a⇒ b) of φ with a, b being literals, we add a new vertex wa,b.927

Then we connect wa,b to va by an edge labeled 2 and to vb by an edge labeled 3. Consider928

Figure 5 for an illustration. Observe that G can be computed in polynomial time.929

We claim that (G = (G, λ), ∅, m− k) is a yes-instance of TTC if and only if φ has a truth930

assignment satisfying k clauses.931

For the proof, begin by observing that G does not contain any triangle. Thus an orientation932

of G is (weakly) (strict) transitive if and only if it does not have any oriented temporal 2-path,933

i.e. a temporal path of two edges with both edges being directed forward. We call a vertex934

v of G happy about some orientation if v is not the center vertex of an oriented temporal935

2-path. Thus an orientation of G is transitive if and only if all vertices are happy.936

(⇐): Let α be a truth assignment to the variables (and thus literals) of φ satisfying k clauses937

of φ. For each literal a with α(a) = true, orient all edges such that they point away from938

va and vi
a, 1 ≤ i ≤ m− k + 1. For each literal a with α(a) = false, orient all edges such939

that they point towards va and vi
a, 1 ≤ i ≤ m− k + 1. Note that this makes all vertices va940

and vi
a happy. Now observe that a vertex wa,b is happy unless its edge with va is oriented941

towards wa,b and its edge with vb is oriented towards vb. In other words, wa,b is happy if942

and only if α satisĄes the clause (a⇒ b). Thus there are at most m− k unhappy vertices.943

For each unhappy vertex wa,b, we add a new oriented edge from va to vb with label 5. Note944

that this does not make va or vb unhappy as all adjacent edges are directed away from va945

and towards vb. The resulting temporal graph is transitively oriented.946

(⇒): Now let a transitive orientation F ′ of G′ = (G′, λ′) be given, where G′ is obtained from947

G by adding at most m− k time edges. Clearly we may also interpret F ′ as an orientation948

induced of G. Set α(x) = true if and only if the edge between vx and vx is oriented towards949

vx. We claim that this assignment α satisĄes at least k clauses of φ.950

First observe that for each variable x and 1 ≤ i ≤ m− k + 1, F ′ is a transitive orientation951

of the 4-cycle vx, vx, vi
x, vi

x if and only if the edges are oriented alternatingly. Thus, for952

each variable, at least one of these k + 1 4-cycles is oriented alternatingly. In particular, for953

every literal a with α(a) = true, there is an edge with label 4 that is oriented away from va.954

Conversely, if α(b) = false, then there is an edge with label 1 oriented towards vb (this is955

simply the edge from v
b
).956

This implies that every edge with label 2 or 3 oriented from some vertex wc,d (where957

either a = c or a = d) towards va with α(a) = true requires E(G′) \ E(G) to contain an958

edge from wc,d to some vi
a. Analogously every edge with label 2 or 3 oriented from va with959

α(a) = false to some wc,d requires E(G′) \ E(G) to contain an edge from va to wc,d.960

Now consider the alternative orientation F ′′ obtained from α as detailed in the converse961

orientation of the proof. For each edge between va and wc,d where F ′ and F ′′ disagree, F ′′
962

might potentially require E(G′) \E(G) to contain the edge vcvd (labeled 5, say), but in turn963

saves the need for some edge wc,dvi
a or vawc,d, respectively. Thus, overall, F ′′ requires at964

5 i.e. a conjunction of clauses of the form (a ⇒ b) where a, b are literals.

27



APPENDIX

a
b c

d2 1 3

Tb,d = 3

Ta,d = 3

Figure 6 Example of a tail-heavy path.

most as many edge additions as F ′, which are at most m− k. As we have already seen in965

the converse direction, F ′′ requires exactly one edge to be added for every clause of φ which966

is not satisĄed. Thus, α satisĄes at least k clauses of φ. ◭967

We now show that TTC can be solved in polynomial time, if all edges are already oriented,968

as the next theorem states. While we only discuss the algorithm for TTC the algorithm969

only needs marginal changes to work for all other variants.970

◮ Theorem 23. An instance (G, F, k) of TTC where G = (G, λ) and G = (V, E), can be971

solved in O(m2) time if F is an orientation of E, where m = ♣E♣.972

The actual proof of Theorem 23 is deferred to the end of this section. The key idea for the973

proof is based on the following deĄnition. Assume a temporal graph G and an orientation974

F of G to be given. Let G′ = (V, F ) be the underlying graph of G with its edges directed975

according to F . We call a (directed) path P in G′ tail-heavy if the time-label of its last edge976

is largest among all edges of P , and we deĄne t(P ) to be the time-label of that last edge of P .977

For all u, v ∈ V , denote by Tu,v the maximum value t(P ) over all tail-heavy (u, v)-paths P of978

length at least 2 in G′; if such a path does not exist then Tu,v = ⊥. If the temporal graph G979

with orientation F can be completed to be transitive, then adding the time edges of the set980

X(G, F ) := ¶(uv, Tu,v) ♣ Tu,v ̸= ⊥♦ ,981
982

which are not already present in G is an optimal way to do so. Consider Figure 6 for an983

example.984

◮ Lemma 24. The set X(G, F ) can be computed in O(m2) time, where G is a temporal graph985

with m time-edges and F an orientation of G.986

Proof. For each edge vw, we can take G′ (deĄned above), remove w and all arcs whose label987

is larger than λ(v, w), and do a depth-Ąrst-search from v to Ąnd all vertices u which can988

reach v in the resulting graph. Each of these then has Tu,w ≥ λ(v, w). By doing this for989

every edge vw, we obtain Tu,w for every vertex pair u, w. The overall running time is clearly990

O(m2). ◭991

Until the end of this section we are only considering the instance (G, F, k) of TTC, where992

G = (G, λ), G = (V, E), and F is an orientation of G. Hence, we can say a set X of oriented993

time-edges is a solution to I if X ′ := ¶¶u, v♦ ♣ (uv, t) ∈ X♦ is disjoint from E, satisĄes994

♣X♣ = ♣X ′♣ ≤ k, and F ′ := F ∪ ¶uv ♣ (uv, t) ∈ X♦ is a transitive orientation of the temporal995

graph G + X := ((V, E ∪X ′), λ′), where λ′(e) := λ(e) if e ∈ E and λ′(u, v) := t if X contains996

(uv, t) or (vu, t).997

The algorithm we use to show Theorem 23 will use X(G, F ) to construct a solution (if998

there is any) of a given instance (G, F, k) of TTC where F is a orientation of E. To prove999

the correctness of this approach, we make use of the following.1000

28



APPENDIX

◮ Lemma 25. Let I = (G = (G, λ), F, k) be an instance of TTC, where G = (V, E) and F1001

is an orientation of E and X an solution for I. Then, for any (vu, Tv,u) ∈ X(G, F ) there is1002

a (vu, t) in G + X with t ≥ Tv,u.1003

Proof. Let (v0vℓ, Tv0,vℓ
) ∈ X(G, F ), and G′ = (V, F ). Hence, there is a tail-heavy (v0, vℓ)-1004

path P in G′ of length ℓ ≥ 2. If ℓ = 2, then clearly G + X must contain the time edge1005

(v1vℓ, t) such that t ≥ Tv1,vℓ
. Now let ℓ > 2 and V (P ) := ¶vi ♣ i ∈ ¶0, 1, . . . , ℓ♦♦ and1006

E(P ) = ¶vi−1vi ♣ i ∈ [ℓ]♦. Since there is a tail-heavy (vℓ−2, vℓ)-path in G′ of length 2, G + X1007

must contain a time-edge (vℓ−2vℓ, t) with t ≥ Tv0,vℓ
. Therefore, the (directed) underlying1008

graph of G + X contains a tail-heavy (v0, vℓ)-path of length ℓ− 1. By induction, G + X must1009

contain the time edge (v1vℓ, t′) such that t′ ≥ t ≥ Tv0,vℓ
. ◭1010

Form Lemma 25, it follows that we can use X(G, F ) to identify no-instances in some cases.1011

◮ Corollary 26. Let I = (G = (G, λ), F, k) be an instance of TTC, where G = (V, E) and F1012

is an orientation of E. Then, I is a no-instance, if for some v, u ∈ V1013

1. there are time-edges (vu, t) ∈ X(G, F ) and (uv, t′) ∈ X(G, F ),1014

2. there is an edge uv ∈ F such that (vu, Tv,u) ∈ X(G, F ), or1015

3. there is an edge vu ∈ F such that (vu, Tv,u) ∈ X(G, F ) with λ(v, u) < Tv,u.1016

We are now ready to prove Theorem 23.1017

Proof of Theorem 23. Let I = (G = (G, λ), F, k) be an instance of TTC, where F is1018

a orientation of E. First we compute X(G, F ) in polynomial time, see Lemma 24. Let1019

Y = ¶(vu, t) ∈ X(G, F ) ♣ ¶v, u♦ ̸∈ E♦ and report that I is a no-instance if ♣Y ♣ > k or one of1020

the conditions of Corollary 26 holds true. Otherwise report that I is a yes-instance. This1021

gives an overall running time of O(m2).1022

Clearly, if one of the conditions of Corollary 26 holds true, then I is a no-instance.1023

Moreover, by Lemma 25 any solution contains at least ♣Y ♣ time edges. Thus, if ♣Y ♣ > k, then1024

I is a no-instance.1025

If we report that I is a yes-instance, then we claim that Y is a solution for I. Let F ′ ⊇ F1026

be a orientation of G + Y . Assume towards a contradiction that F ′ is not transitive. Then,1027

there is a temporal path ((vu, t1), (uw, t2)) in G + Y such that there is no time-edge (uw, t)1028

in G + Y , with t ≥ t2. By deĄnition of X(G, F ), the directed graph G′ = (V, F ) contains a1029

tail-heavy (v, u)-path P1 with t1 = t(P1) and a tail-heavy (u, w)-path P2 with t2 = t(P2) ≥ t1.1030

By concatenation of P1 and P2, we obtain that the G′ contains a (v, w)-path P ′ of length at1031

least two such that t2 = t(P ′). Thus, t2 ≤ Tv,w and (vw, Tv,w) ∈ X(G)Ůa contradiction. ◭1032

Using Theorem 23 we can now prove that TTC is Ąxed-parameter tractable (FPT) with1033

respect to the number of unoriented edges in the input temporal graph G.1034

◮ Corollary 27. Let I = (G = (G, λ), F, k) be an instance of TTC, where G = (V, E). Then1035

I can be solved in O(2q ·m2), where q = ♣E♣ − ♣F ♣ and m the number of time edges.1036

Proof. Note that there are 2q ways to orient the q unoriented edges. For each of these 2q
1037

orientations of these q edges, we obtain a fully oriented temporal graph. Then we can solve1038

TTC on each of these fully oriented graphs in O(m2) time by Theorem 23. Summarizing,1039

we can solve TTC on I in 2q ·m2 rime. ◭1040

29



APPENDIX

1,4 2,4

2,4

1,4 3,4

2,4

x1

x2 x3

1 1

2 2 2 3

Figure 7 Temporal graph constructed from the formula NAE(x1, x2, x2) ∧ NAE(x1, x2, x3) and

orientation corresponding to setting x1 = false, x2 = true, and x3 = false. Each attachment

vertex is at the clockwise end of its edge.

5 Deciding Multilayer Transitive Orientation1041

In this section we prove that Multilayer Transitive Orientation (MTO) is NP-1042

complete, even if every edge of the given temporal graph has at most two labels. Recall that1043

this problem asks for an orientation F of a temporal graph G = (G, λ) (i.e. with exactly one1044

orientation for each edge of G) such that, for every Ştime-layerŤ t ≥ 1, the (static) oriented1045

graph deĄned by the edges having time-label t is transitively oriented in F . As we discussed1046

in Section 2, this problem makes more sense when every edge of G potentially has multiple1047

time-labels, therefore we assume here that the time-labeling function is λ : E → 2N.1048

◮ Theorem 28. MTO is NP-complete, even on temporal graphs with at most two labels per1049

edge.1050

Proof. We give a reduction from monotone Not-All-Equal-3Sat, which is known to be1051

NP-hard [42]. So let φ =
∧m

i=1 NAE(yi,1, yi,2, yi,3) be a monotone Not-All-Equal-3Sat1052

instance and X := ¶x1, . . . , xn♦ :=
⋃m

i=1¶yi,1, yi,2, yi,3♦ be the set of variables.1053

Start with an empty temporal graph G. For every clause NAE(yi,1, yi,2, yi,3), add to G a1054

triangle on three new vertices and label its edges ai,1, ai,2, ai,3. Give all these edges label n+1.1055

For each of these edges, select one of its endpoints to be its attachment vertex in such a way1056

that no two edges share an attachment vertex. Next, for each 1 ≤ i ≤ n, add a new vertex vi.1057

Let Ai := ¶ai,j ♣ yi,j = xi♦. Add the label i to every edge in Ai and connect its attachment1058

vertex to vi with an edge labeled i. See also Figure 7.1059

We claim that G is a yes-instance of MTO if and only if φ is satisĄable.1060

(⇐): Let α : X → ¶true, false♦ be an assignment satisfying ω. For every xi ∈ X, orient1061

all edges adjacent to vi away from vi if α(xi) = true and towards vi otherwise. Then, orient1062

every edge ai,j towards its attachment vertex if α(yi,j) = true and away from it otherwise.1063

Note that in the layers 1 through n every vertex either has all adjacent edges oriented1064

towards it or away from it. Thus these layers are clearly transitive. It remains to consider1065

layer n + 1 which consists of a disjoint union of triangles. Each such triangle ai,1, ai,2, ai,31066

is oriented non-transitively (i.e. cyclically) if and only if α(yi,1) = α(yi,2) = α(yi,3), which1067

never happens if α satisĄes φ.1068

(⇒): Let ω be an orientation of the underlying edges of G such that every layer is transitive.1069

Since they all share the same label i, the edges adjacent to vi must be all oriented towards1070

30



APPENDIX

or all oriented away from vi. We set α(xi) = false in the former and α(xi) = true in the1071

latter case. This in turn forces each edge ai,j to be oriented towards its attachment vertex if1072

and only if α(ai,j) = true. Therefore, every clause NAE(yi,1, yi,2, yi,3) is satisĄed, since the1073

three edges ai,1, ai,2, ai,3 form a triangle in layer n + 1 and can thus not be oriented cyclically1074

(i.e. all towards or all away from their respective attachment vertices). ◭1075

References1076

1 Eleni C. Akrida, Leszek Gasieniec, George B. Mertzios, and Paul G. Spirakis. Ephemeral1077

networks with random availability of links: The case of fast networks. Journal of Parallel and1078

Distributed Computing, 87:109Ű120, 2016.1079

2 Eleni C. Akrida, Leszek Gasieniec, George B. Mertzios, and Paul G. Spirakis. The complexity of1080

optimal design of temporally connected graphs. Theory of Computing Systems, 61(3):907Ű944,1081

2017.1082

3 Eleni C. Akrida, George B. Mertzios, Sotiris E. Nikoletseas, Christoforos L. Raptopoulos,1083

Paul G. Spirakis, and Viktor Zamaraev. How fast can we reach a target vertex in stochastic1084

temporal graphs? Journal of Computer and System Sciences, 114:65Ű83, 2020. An extended1085

abstract appeared at ICALP 2019.1086

4 Eleni C. Akrida, George B. Mertzios, Paul G. Spirakis, and Viktor Zamaraev. Temporal vertex1087

cover with a sliding time window. Journal of Computer and System Sciences, 107:108Ű123,1088

2020.1089

5 Josh Alman and Virginia Vassilevska Williams. A reĄned laser method and faster matrix1090

multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms1091

(SODA), pages 522Ű539, 2021.1092

6 Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algorithm for testing1093

the truth of certain quantiĄed boolean formulas. Information Processing Letters, 8(3):121Ű123,1094

1979.1095

7 Kyriakos Axiotis and Dimitris Fotakis. On the size and the approximability of minimum1096

temporally connected subgraphs. In Proceedings of the 43rd International Colloquium on1097

Automata, Languages, and Programming, (ICALP), pages 149:1Ű149:14, 2016.1098

8 Matthias Bentert, Anne-Sophie Himmel, Hendrik Molter, Marco Morik, Rolf Niedermeier,1099

and René Saitenmacher. Listing all maximal k-plexes in temporal graphs. ACM Journal of1100

Experimental Algorithmics, 24(1):13:1Ű13:27, 2019.1101

9 Matthias Bentert, Anne-Sophie Himmel, André Nichterlein, and Rolf Niedermeier. Efficient1102

computation of optimal temporal walks under waiting-time constraints. Applied Network1103

Science, 5(1):73, 2020.1104

10 Robert Bredereck, Christian Komusiewicz, Stefan Kratsch, Hendrik Molter, Rolf Niedermeier,1105

and Manuel Sorge. Assessing the computational complexity of multilayer subgraph detection.1106

Network Science, 7(2):215Ű241, 2019.1107

11 Binh-Minh Bui-Xuan, Afonso Ferreira, and Aubin Jarry. Computing shortest, fastest, and1108

foremost journeys in dynamic networks. International Journal of Foundations of Computer1109

Science, 14(02):267Ű285, 2003.1110

12 Sebastian Buß, Hendrik Molter, Rolf Niedermeier, and Maciej Rymar. Algorithmic aspects of1111

temporal betweenness. In Proceedings of the 26th ACM SIGKDD Conference on Knowledge1112

Discovery and Data Mining (KDD), pages 2084Ű2092. ACM, 2020.1113

13 Arnaud Casteigts and Paola Flocchini. Deterministic Algorithms in Dynamic Networks:1114

Formal Models and Metrics. Technical report, Defence R&D Canada, April 2013. URL:1115

https://hal.archives-ouvertes.fr/hal-00865762.1116

14 Arnaud Casteigts and Paola Flocchini. Deterministic Algorithms in Dynamic Networks:1117

Problems, Analysis, and Algorithmic Tools. Technical report, Defence R&D Canada, April1118

2013. URL: https://hal.archives-ouvertes.fr/hal-00865764.1119

31

https://hal.archives-ouvertes.fr/hal-00865762
https://hal.archives-ouvertes.fr/hal-00865764


APPENDIX

15 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying1120

graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed1121

Systems, 27(5):387Ű408, 2012.1122

16 Arnaud Casteigts, Anne-Sophie Himmel, Hendrik Molter, and Philipp Zschoche. Finding1123

temporal paths under waiting time constraints. In 31st International Symposium on Algorithms1124

and Computation (ISAAC), pages 30:1Ű30:18, 2020.1125

17 Arnaud Casteigts, Joseph G. Peters, and Jason Schoeters. Temporal cliques admit sparse1126

spanners. In Proceedings of the 46th International Colloquium on Automata, Languages, and1127

Programming (ICALP), volume 132, pages 134:1Ű134:14, 2019.1128

18 Jiehua Chen, Hendrik Molter, Manuel Sorge, and Ondřej Suchý. Cluster editing in multi-layer1129

and temporal graphs. In Proceedings of the 29th International Symposium on Algorithms and1130

Computation (ISAAC), pages 24:1Ű24:13, 2018.1131

19 J. Enright, K. Meeks, G.B. Mertzios, and V. Zamaraev. Deleting edges to restrict the size1132

of an epidemic in temporal networks. Journal of Computer and System Sciences, 119:60Ű77,1133

2021.1134

20 Jessica Enright, Kitty Meeks, and Fiona Skerman. Assigning times to minimise reachability in1135

temporal graphs. Journal of Computer and System Sciences, 115:169Ű186, 2021.1136

21 Thomas Erlebach, Michael Hoffmann, and Frank Kammer. On temporal graph exploration. In1137

Proceedings of the 42nd International Colloquium on Automata, Languages, and Programming1138

(ICALP), pages 444Ű455, 2015.1139

22 Till Fluschnik, Hendrik Molter, Rolf Niedermeier, Malte Renken, and Philipp Zschoche.1140

Temporal graph classes: A view through temporal separators. Theoretical Computer Science,1141

806:197Ű218, 2020.1142

23 M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simpliĄed NP-complete graph problems.1143

Theoretical Computer Science, 1(3):237Ű267, 1976.1144

24 Martin Charles Golumbic. Algorithmic graph theory and perfect graphs. Elsevier, 2nd edition,1145

2004.1146

25 S Louis Hakimi, Edward F Schmeichel, and Neal E Young. Orienting graphs to optimize1147

reachability. Information Processing Letters, 63(5):229Ű235, 1997.1148

26 Anne-Sophie Himmel, Hendrik Molter, Rolf Niedermeier, and Manuel Sorge. Adapting the1149

Bron-Kerbosch algorithm for enumerating maximal cliques in temporal graphs. Social Network1150

Analysis and Mining, 7(1):35:1Ű35:16, 2017.1151

27 Petter Holme and Jari Saramäki. Temporal network theory, volume 2. Springer, 2019.1152

28 David Kempe, Jon M. Kleinberg, and Amit Kumar. Connectivity and inference problems for1153

temporal networks. Journal of Computer and System Sciences, 64(4):820Ű842, 2002.1154

29 Hyoungshick Kim and Ross Anderson. Temporal node centrality in complex networks. Physical1155

Review E, 85(2):026107, 2012.1156

30 Ross M. McConnell and Jeremy P. Spinrad. Linear-time modular decomposition and efficient1157

transitive orientation of comparability graphs. In Proceedings of the 5th Annual ACM-SIAM1158

Symposium on Discrete Algorithms (SODA), pages 536Ű545, 1994.1159

31 Ross M. McConnell and Jeremy P. Spinrad. Linear-time transitive orientation. In Proceedings1160

of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 19Ű25, 1997.1161

32 Ross M. McConnell and Jeremy P. Spinrad. Modular decomposition and transitive orientation.1162

Discrete Mathematics, 201(1-3):189Ű241, 1999.1163

33 David B McDonald and Daizaburo Shizuka. Comparative transitive and temporal orderliness1164

in dominance networks. Behavioral Ecology, 24(2):511Ű520, 2013.1165

34 George B. Mertzios. The recognition of simple-triangle graphs and of linear-interval orders is1166

polynomial. SIAM Journal on Discrete Mathematics, 29(3):1150Ű1185, 2015.1167

35 George B. Mertzios, Othon Michail, Ioannis Chatzigiannakis, and Paul G. Spirakis. Temporal1168

network optimization subject to connectivity constraints. In Proceedings of the 40th Inter-1169

national Colloquium on Automata, Languages, and Programming (ICALP), pages 657Ű668,1170

2013.1171

32



APPENDIX

36 George B Mertzios, Hendrik Molter, Rolf Niedermeier, Viktor Zamaraev, and Philipp Zschoche.1172

Computing maximum matchings in temporal graphs. In Proceedings of the 37th International1173

Symposium on Theoretical Aspects of Computer Science (STACS), volume 154, pages 27:1Ű1174

27:14, 2020.1175

37 George B Mertzios, Hendrik Molter, and Viktor Zamaraev. Sliding window temporal graph1176

coloring. In Proceedings of the 31st AAAI Conference on ArtiĄcial Intelligence (AAAI),1177

volume 33, pages 7667Ű7674, 2019.1178

38 Othon Michail and Paul G. Spirakis. Elements of the theory of dynamic networks. Commu-1179

nications of the ACM, 61(2):72Ű72, January 2018.1180

39 Robert Moskovitch and Yuval Shahar. Medical temporal-knowledge discovery via temporal1181

abstraction. In Proceedings of the AMIA Annual Symposium, page 452, 2009.1182

40 Robert Moskovitch and Yuval Shahar. Fast time intervals mining using the transitivity of1183

temporal relations. Knowledge and Information Systems, 42(1):21Ű48, 2015.1184

41 V. Nicosia, J. Tang, C. Mascolo, M. Musolesi, G. Russo, and V. Latora. Graph metrics for1185

temporal networks. In Temporal Networks. Springer, 2013.1186

42 Thomas J. Schaefer. The complexity of satisĄability problems. In Proceedings of the 10th1187

Annual ACM Symposium on Theory of Computing (STOC), pages 216Ű226, 1978.1188

43 Jeremy P. Spinrad. On comparability and permutation graphs. SIAM Journal on Computing,1189

14(3):658Ű670, 1985.1190

44 Jeremy P. Spinrad. Efficient graph representations, volume 19 of Fields Institute Monographs.1191

American Mathematical Society, 2003.1192

45 Xavier Tannier and Philippe Muller. Evaluating temporal graphs built from texts via transitive1193

reduction. Journal of ArtiĄcial Intelligence Research (JAIR), 40:375Ű413, 2011.1194

46 Craig A Tovey. A simpliĄed NP-complete satisĄability problem. Discrete Applied Mathematics,1195

8(1):85Ű89, 1984.1196

47 Tiphaine Viard, Matthieu Latapy, and Clémence Magnien. Computing maximal cliques in1197

link streams. Theoretical Computer Science, 609:245Ű252, 2016.1198

48 Huanhuan Wu, James Cheng, Yiping Ke, Silu Huang, Yuzhen Huang, and Hejun Wu. Efficient1199

algorithms for temporal path computation. IEEE Transactions on Knowledge and Data1200

Engineering, 28(11):2927Ű2942, 2016.1201

49 Philipp Zschoche, Till Fluschnik, Hendrik Molter, and Rolf Niedermeier. The complexity of1202

Ąnding separators in temporal graphs. Journal of Computer and System Sciences, 107:72Ű92,1203

2020.1204

33


	1 Introduction
	2 Preliminaries and Notation
	3 The recognition of temporally transitively orientable graphs
	3.1 Strict TTO is NP-Complete
	3.2 A polynomial-time algorithm for TTO

	4 Temporal Transitive Completion
	5 Deciding Multilayer Transitive Orientation
	1 Introduction
	2 Preliminaries and Notation
	3 The recognition of temporally transitively orientable graphs
	3.1 Strict TTO is NP-Complete
	3.2 A polynomial-time algorithm for TTO

	4 Temporal Transitive Completion
	5 Deciding Multilayer Transitive Orientation

