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Abstract 

As an attractive transportation mode, rail transit consumes a lot of energy while 

transporting a large number of passengers annually. Most energy-aimed research in rail 

transit focuses on optimizing the train timetable and speed trajectory offline. However, 

some disturbances during travel will cause the train to fail to follow the offline 

optimized control strategy, thus invalids the offline optimization. In the typical rail 

transit control framework, the moving authority of trains is calculated by the zone 

controller based on the moving/fixed block system in the zone. The zone controller is 

used to ensure safety when the travel plan of trains changes due to disturbance. Safety 

is guaranteed during the process, but the change of travel plan leads to extra energy 

costs. The energy-aimed optimization problem in rail transit requires ensuring safety, 

pursuing punctuality with considering track slope, travel comfort, energy transferring 

efficiency, and speed limit, etc. The complex constraints lead to high computational 

pressure. Therefore, it is difficult for the regional controller to re-optimize the travel 

plan for all affected trains in near real-time. Multi-agent systems are widely used in 

many other fields, which show decent performance in solving complex problems by 

coordinating multiple agents.  

This study proposes a multi-agent system with multiple optimization algorithms to 

realize energy-aimed re-optimization in rail transit under different disturbances. The 

system includes three types of agents, train agents, station agents and central agents. 

Each agent exchanges information by following the time trigger mechanism 

(periodically) and the event trigger mechanism (occasionally). Trigger mechanism 

ensures that affected agents receive necessary information when interference occurs, 

and their embedded algorithms can achieve necessary optimization. Four types of cases 
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are tested, and each case has plenty of scenarios. The tested results show that the 

proposed system provides encouraging performance on energy savings and 

computational speed. 
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Chapter 1: Introduction 

Due to the capability of transporting more passengers or goods simultaneously, the train 

consumes less energy per unit mass than other modes of transportation (tracks, cars, etc.) 

(Feitelson and Eran 1994). In addition, the punctuality and safety of the light rail transit 

system prescribed itself as one of the major public transportation. Light rail transit has a 

positive impact on increasing traffic volume, reducing traffic congestion, and other 

economic, social, and environmental benefits, including reducing greenhouse gas 

emissions and reducing dependence on automobiles, especially in urban expansion areas 

(Litman 2020).  

Despite all these advantages, rail transit consumes a lot of energy annually, with increasing 

demand from the expanded urban area. Researchers have applied various algorithms to 

obtain the travel strategies offline and assumed that the train would follow the optimized 

travel plan in practice. Scheepmaker et al. (2017) summarized five methods to improve 

train energy efficiency, three of which are related to train speed trajectory and timetable, 

namely: 1) Energy-efficient train control (EETC), which aims to minimize the energy 

consumption by optimizing train speed trajectory under specific environmental conditions 

such as travel time, travel distance, speed limit, track slope and so forth; 2) Energy-efficient 

Train Timetabling (EETT), which is to discover the timetable that could maximize the 

efficiency of EETC; and 3) Adjusting the timetable to match passenger demand and train 

headway to reduce the movement of empty seats. The previous research outcomes are able 

to obtain the most energy-efficient timetable and speed trajectory of trains according to 

environmental information such as travel weight, travel distance, track slope, and speed 

limit.  

However, rail transit suffers from the disturbances caused by the dynamic environment 



 17 / 128 

 

(Hassanabadi, Moaveni, and Karimi 2015; H. Liu, Tian, and Li 2015), which may result in 

a situation that trains are not able to follow the travel plan. For example, when two adjacent 

trains travel on the same track, they need to keep enough distance to ensure safety. The 

minimum safety distance between them is generally determined by moving/fixed block 

systems. When the leading train needs to slow down or stop temporarily in case of 

emergency, the following trains need to slow down and change the travel strategy if they 

cannot meet the safety requirements given by the block system. In such a case, it is 

challenging for the zone controller to provide an optimized timetable and speed trajectory 

for the following trains in near real-time because finding the optimized solution is highly 

complicated, which leads to extra energy cost. Therefore, a near real-time re-optimization 

is necessary to minimize extra energy consumption as well as to pursue punctuality. 

This research proposes a Multi-agent System (MAS) based rail transit control to alleviate 

the above problem. MAS is a method to realize distributed network control by coordinating 

the interaction of multiple agents, which is a decent option for realizing a complicated 

control system by decomposing sophisticated problems into multiple less-complex 

problems. The feasibility of applying multi-agent technology in the field of rail transit is 

increasing with the development of the Internet of Things (IoT) and Communication Based 

Train Control (CBTC) technology. In addition, sufficient flexibility fulfils the changeable 

requirements in the dynamic environment of rail transit. Some scholars try to apply Multi-

agent System (MAS) in the field of rail transit due to its high flexibility and reliability 

(Dalapati et al. 2016; Hassanabadi, Moaveni, and Karimi 2015; Proenca and Oliveira 2004). 

However, the energy optimization and dynamic nature of trains are insufficiently 

investigated in the MAS rail control field. Furthermore, little research has comparatively 

investigated extra energy consumption caused by the change of dwell time and travel 

weight. The main objectives of this research are as follows: 
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1. To establish a rail transit multi-agent framework and corresponding information 

exchange channel structure. 

2. To propose the anti-disturbance decision-making mechanism within the multi-agent 

framework and to realize the near real-time travel plan re-optimization. 

3.To investigate the influence of train stay time and train weight variation disturbance on 

extra energy consumption. 

The rest of this dissertation is organized as follows: Chapter 2 introduces the reviewed 

literature, and Chapter 3 introduces the main framework of the Multi-agent System 

proposed in this research, the interaction mechanism among agents, and the adopted 

Moving Block System (MBS). Chapter 4 verifies the effectiveness of the proposed system 

through four cases with numerous scenarios. Chapter 5 summarizes the main contribution, 

limitations of this research and raises future work. 
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Chapter 2: Literature Review 

The main purpose of this research is to propose an innovative multi-agent control method 

for rail transit, which can optimize the speed trajectory of each interfered train in near real-

time with the objective of minimizing energy consumption when rail transit is disturbed. 

Therefore, the train control system is reviewed first to provide a reference for the designed 

multi-agent system. Furthermore, the research on Energy-efficient Train Control, Energy-

efficient Train Timetabling, and Energy-aimed Train Timetable Rescheduling is reviewed 

to discover appropriate optimization algorithms. Finally, the multi-agent system and the 

state of the art of its application in rail transit is reviewed to pursue improvements 

compared to previous research.  

2.1 Train Control System 

The control system of rail transit has achieved continuous development with the advance 

of engineering and communication technology, while engineers and researchers have been 

contributing to realize fully automated train control by using multiple systems. Research 

related to Automatic Train Control (ATC) has been developed for many years, and it is 

changing from the traditional track-based train control (TBTC) systems to communication-

based train control (CBTC) systems (Bu et al. 2013).  

Figure 1 shows a schematic diagram of a widely adopted CBTC system, which consists of 

a ground side control system and an onboard side control system. The ground side control 

system includes Data Storage Unit (DSU), Data Communication System (DCS), Automatic 

Train Supervision (ATS), Area Controller, Zone Controller (ZC) and Computer-Based 

Interlocking (CBI). The onboard side consists of Automatic Train Operation (ATO) and 

Automatic Train Protection (ATP) systems. The onboard side system collects the speed and 
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position information of each train by using sensors and transmits the data to the Zone 

Controller, which then computes the safe moving distance of each train based on the block 

principle (such as MBS) and sends the corresponding moving authorization to the onboard 

side. 

The stability of the ground side control system is essential in such a structure since the 

information exchange among trains depends on the guidelines from the ground side system 

during the control process. The corresponding regional controller is responsible for 

coordinating and authorization of multiple trains when they enter a particular area 

simultaneously. However, the controller is not able to provide optimized travel strategies 

for the trains in near real-time once a disturbance occurs in such condition because the 

mathematical model of timetable and trajectory for multiple trains are complex and 

challenging to solve (Howlett 2000; Khmelnitsky 2000; Liu and Golovitcher 2003). To 

guarantee safety in such a situation, the controller computes the movement authority for 

the trains based on the block system. A train will have to brake if the distance between it 

and its leading train reaches the minimum distance specified by blocking theory, which 

causes unnecessary kinetic energy waste.  
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Figure 1: Rail Transit Control System (Huang 2014) 

2.1.1 Energy-efficient Train Control 

The designed purpose of the Train Control System is to ensure efficient information 

transmission in rail transit control, while the Energy-efficient Train Control (EETC) 

research aims to discover the train speed trajectory that requires minimum energy 

consumption (Scheepmaker et al. 2017). 

The research of EETC could be traced back to 1968 in Ichikawa (1968), and some other 

publications with similar periods, such as Kokotovic and Singh (1972). The fundamental 

theory for the optimal train control strategy was developed by the Scheduling and Control 

Group (SCG) during a railway research program started in 1982 at the South Australia 

University, which could be found in the research of Howlett, Milroy and Pudney (1994). 

In addition, the first comprehensive analysis of a flat track is given by Asnis et al. (1985), 

who assumed the acceleration as the control variable and employed Pontryagin’s Maximum 
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Principle (PMP) to find the necessary conditions for the optimal driving strategy. The next 

milestone occurred in 1989, Benjamin et al. (1989) claimed that the driving strategies of a 

typical diesel-electric locomotive were controlled by a throttle that could only take a finite 

number of positions. Those positions gave a constant fuel supply rate respectively and 

therefore, the power supply to the wheels was also constrained by those positions. Howlett 

and Pudney showed that a train (with a distributed mass on a track) running on a track with 

continuous changing gradient was able to be treated as a point mass train, and any driving 

strategies of continuous control could be approximated by a strategy with discrete control 

(Howlett et al. 1994). In order to determine the coast-accelerate-brake point by combining 

the factors of energy-efficient, punctuality and riding comfort, Chang and Sim (1997) 

applied the Genetic Algorithm (GA) (belongs to the evolutionary algorithm) to derive the 

driving strategy in 1997.  

Research about the train speed trajectory optimization has been increasing with a 

continuous improvement in both optimization effect and calculation speed. Generally, the 

algorithms for optimizing the train speed trajectory with the objective of minimizing energy 

consumption can be divided into two categories, which are mathematical programming and 

heuristic algorithms. Some recent publications based on mathematical programming are 

selected and listed in Table 1.  

Table 1: Research for Energy-efficient Train Control Based on Mathematical 

Programming 

Main Algorithm/Theory Publication 
Multiple/Single 

Train(s) 

PMP 

(Howlett 2000) Single Train 

(Khmelnitsky 2000) Single Train 

(Liu and Golovitcher 2003) Single Train 

(Albrecht et al. 2016a, 2016b) Single Train 
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Sequential Quadratic 

Programming 
(Miyatake and Matsuda 2009) Single Train 

Bellman-ford Algorithm (Lu et al. 2014) Single Train 

Kuhn-Tucker Conditions (Li and Lo 2014b) Multiple Trains 

Pseudospectral Method and 

MILP 
(Y. Wang et al. 2013) Single Train 

MILP (Lu et al. 2016) Single Train 

MILP & PMP (Tan et al. 2018) Single/Adaptive 

Pseudospectral method 
(Wang and Goverde 2016) Single Train 

(Wang and Goverde 2017) Multiple Trains 

Dynamic Programming 
(Haahr, Pisinger, and Sabbaghian 

2017a) 
Single Train 

Monte Carlo Simulation (Tian et al. 2017) Multiple Trains 

   

As shown in Table 1, Howlett (2000) raised that it was probably not reasonable to assume 

that the acceleration is a uniformly bounded control. He studied the optimal control under 

continuous and discrete control by using PMP with time as the independent variable. The 

key equation for determining the optimal switching point is established according to the 

necessary conditions. In order to further determine a detailed program for minimizing the 

energy consumption in traction and brake applications, Khmelnisky (2000) investigated 

this problem and considered the variable gradients and velocity limits. Additionally, an 

analytic solution for the sequence of operation change points and optimal controls of trains 

are offered by Liu and Golovitcher et al. (2003). Albrecht et al. (2016a, 2016b) summarized 

the key principles of optimal train control and discussed the optimization control problems 

of trains in different aspects. Their research proved that the control strategy leading to 

minimal energy cost always exists and is unique among the problems of a single train 

running between two stations. Miyatake and Masuda (2009) proposed a speed trajectory 

optimization method by considering the charge and discharge of the on-board storage 

device based on sequential quadratic programming. Wang et al. (Y. Wang et al. 2013) 
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formulated the optimization problem of train speed trajectory optimization by taking the 

travel comfort into account and solved it by pseudo-spectral method and MILP algorithm. 

Lu et al. (2014) employed the Berman-Ford algorithm to model train braking speed 

trajectory in a discrete manner and conducted optimization analysis by PMP, and the paper 

demonstrates a high degree of consistency between the analysis and optimization results. 

Li and Lo (2014b) proposed an integrated method including passenger flow prediction, 

timetable, and speed trajectory optimization to realize dynamic train scheduling and reduce 

energy consumption for the metro system. However, their method ignored the coasting 

phase in the train speed trajectory to reduce the computational complexity. Lu et al. (2016) 

integrated the nonlinear constraints caused by gradient change in braking route into a MILP 

model and solved some speed trajectory optimization problems. Wang and Goverde (2016) 

solved the multi-stage optimal control model of trains with and without delay by pseudo-

spectral algorithm. Afterwards, they proposed a model which formulated the multi-

objective, multi-train and multi-phase optimization problem by using pseudo-spectral 

method, and the optimization objectives include energy consumption and delay (Wang and 

Goverde 2017b). Haahr et al. (2017) proposed a method to optimize the velocity trajectory 

through Dynamic Programming algorithm, in which the search space is reduced through 

event-based decomposition and thus the computation speed is accelerated. Zhao et al. 

(2017) proposed an integrated model and solved it by genetic and brute force methods. The 

model adjusted the timetable and speed trajectory simultaneously to minimize energy 

consumption. Based on Monte Carlo simulation, Tian et al. (2017) proposed a 

comprehensive optimization method, combining train operation and power flow.  

Besides the mathematical planning algorithm, scholars also employed heuristic algorithms 

to solve the train speed trajectory optimization problem. Compared with the planning 

algorithm, the heuristic algorithm model is easier to build for some complex problems and 
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could provide a feasible solution in an acceptable time (Apter 2018; Pearl 1984). However, 

the trade-off between the viable and optimal solutions obtained by the heuristic algorithm 

is hard to determine. Heuristic algorithms are widely adopted for multi-train optimization 

problems. Some recent publications focusing on solving EETC problems by using heuristic 

algorithms are listed in Table 2. 

Table 2: Research for Energy-efficient Train Control based on Heuristic Algorithm 

Main Algorithm/Theory Publication 
Multiple/Single 

Train(s) 

Genetic Algorithm (GA) 
(Y. V. Bocharnikov et al. 

2007) 
Single Train 

Genetic Algorithm, Ant Colony 

optimization and Dynamic 

Programming 

(Lu et al. 2013a) Single Train 

Genetic Algorithm (Li and Lo 2014a) Multiple Trains 

Brute Force, Ant Colony and 

Genetic Algorithm 
(Zhao et al. 2015) Multiple Trains 

Genetic Algorithm (Yang et al. 2016) Multiple Trains 

Genetic Algorithm (Liu, Xun, and Bin 2017) Single Train 

Genetic Algorithm and Brute 

Force 
(Zhao et al. 2017b) Multiple Trains 

As shown in the table, the Genetic Algorithm is used in most related research due to its 

advantages, such as the ability to discover the global optimum solution. Bocharnikov et al. 

(2007) employed the Genetic Algorithm to optimize the energy consumption of a single 

train and explored the relationship between journey time and energy consumption. Lu et al. 

(2013b) established a distance-time-speed model and realized the optimization of train 

speed trajectory in discrete search space by using the combination of Genetic Algorithm, 

Ant Colony Algorithm and Dynamic Programming. Li and Lo (2014b) established an 
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optimization model aiming at minimizing net energy and solved it by Genetic Algorithm 

with considering the timetable and train control. Therefore the model is suitable for 

resolving the problem of multi-train optimal control with regenerative braking. Zhao et al. 

(2015) established a multi-objective model integrating delay and energy consumption and 

solved the multi-objective model based on Brute Force Algorithm, Ant Colony Algorithm 

and Genetic Algorithm. Yang et al. (2016b) proposed a model based on Genetic Algorithm 

to optimize the train timetable and speed trajectory by solving a two-phase stochastic model 

with uncertain train mass. The model assumes that the optimal speed trajectory of the train 

is composed of maximum acceleration, coasting and deceleration to reduce the 

computation complexity. Liu et al. (2016). proposed a model to optimize the train speed 

trajectory with regenerative braking through Genetic Algorithm. The net energy 

consumption is reduced for the regenerative braking was considered. 

2.1.2 Energy-efficient Train Timetabling 

The objective of EETT research is the same as the EETC, which is to reduce the total 

energy consumption, but EETT focuses on discovering the optimized timetable for one or 

multiple trains on single railway lines or in a network. It is expected that the total energy 

consumption will be minimized after each train adopts the EETC driving strategy between 

each pair of consecutive stations with the optimized timetable. Mills and Peerkins (1991) 

began to explore EETT to solve the traffic problem of freight trains in Australia. As some 

tracks of the Australian railway network have trains running in two directions 

simultaneously, it is necessary to reschedule the trains when there is a conflict. They 

proposed a method to solve the meet-pass problem based on a discrete heuristic algorithm 

and re-optimized the speed trajectory based on a nonlinear optimization model. The testing 

between Port Augusta and Tarcoola in Australia showed 6% of energy savings, and the 

computing of resolving the problem and optimising speed trajectory took 3.3 minutes and 
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21.5 minutes, respectively, on a HP9000/340 workstation. The research of EETT gradually 

increased after 2000 with a continuous improvement of computing power. Similar to EETC, 

this section selects some recent EETT researches and classifies them according to the 

applied algorithm types. The researches based on Mathematical Programming are 

summarized in Table 3. 

Table 3: Research for Energy-efficient Train Timetabling Based on Mathematical 

Programming 

Main Algorithm and 

Theory 

Publication Multiple/Single 

Trains 

Tested Station 

Scope 

Dynamic Programming 
(T. Albrecht and 

Oettich 2002) 
Single Train 10 Stations 

Nonlinear 

Mathematical 

Programming, and 𝜖-

constraint method 

(Ghoseiri, 

Szidarovszky, and 

Asgharpour 2004) 

Multiple Train 
Varying numbers 

of stations 

Mathematical 

Programming and DC 

power flow model 

(Pena-Alcaraz et al. 

2012) 
Single Train 36 Stations 

Dynamic Programming 
(Binder and Albrecht 

2013) 
Single Train 7 Stations 

Pseudospectral method 
(Wang and Goverde 

2016b) 
Multiple Trains 7 Stations 

Albrecht and Oettich (2002) used a simulation model to calculate the energy utilization of 

each discrete running time between two consecutive stations and then used a dynamic 

programming algorithm to find the optimal timetable. The model is able to optimize the 

total running time of the train on the line. In addition, the model will also attempt to 

increase the possibility that passengers can still catch the next train in the case of train 
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delays. The model suggests reducing waiting time and increasing train running time to 

reduce energy consumption. Tests on the railway system in Dresden show that the system 

reduces energy consumption by 15-20%. 

Ghoseiri et al. (2004) considered a train operation network model including single and 

double track, multiple trains, and stations. They established a nonlinear mathematical 

programming model and solved the model by LINGO (a commercial solver). The 

established model has two optimization objectives: minimizing fuel consumption and total 

running time. As the decrease of running time will increase energy consumption, it is 

necessary to weigh the two optimization objectives. In their research, the Pareto curve of 

the trade-off between energy consumption and running time is determined by the 𝜖 -

constraint method. Then the appropriate timetable is selected from the Pareto curve 

according to the distance during the process of multi-objective optimization. The test 

results in an artificial example show that energy consumption increases with the decrease 

of travel time. Hence, the relative characteristics of the two optimization objectives make 

it impossible to get the only optimal driving strategy in this model. 

Peña-Alcaraz et al. determined the timetable of the metro system based on a mathematical 

programming model in 2012 and optimized the net energy consumption of trains by 

considering regenerative braking. This research focuses on maximizing the utilization 

efficiency of energy generated by regenerative braking by synchronizing regenerative 

braking and acceleration of adjacent trains. The adopted model simulates the 

synchronization of acceleration and braking through the power flow model. It is worth 

noting that the focus of this study is not the speed trajectory of a single train; hence EETC 

is not considered in their model. The research reports that the simulation of the Madrid 

metro system shows 7% average ESP on the premise of ensuring passenger service (Pena-

Alcaraz et al. 2012). Binder and Albrecht (2013) explored train timetabling and energy-
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efficient operation. They developed a dynamic planning algorithm, which fixed the running 

time between two main stations and adjusted the arrival and departure time of the 

intermediate station to reduce energy consumption. Optimization objectives include 

reducing energy consumption and reducing the delay of arriving at each station. The 

randomness of the dwell time change is considered in this model, and the test between 

seven stations in Germany shows that this model can save energy by 4.3% and 12.9%. The 

fluctuation of energy-saving percentage depends on the weight setting between 

optimization objectives (Binder and Albrecht 2013).  

Wang and Goverde (2016c) used the pseudospectral method to solve the train timetable 

optimization problem under various constraints. This research focuses on optimizing the 

timetable and speed trajectory of the following train when the leading train is delayed. The 

case study shows a 50-kilometre-long line, and the optimization objective consists of 

reducing the delay of the following train and the total energy consumption. The results 

show that the following train could reduce delays and total energy consumption if the 

leading train can accurately provide forecast information. 

Table 4 lists some publications on EETT based on the heuristic algorithm, and it can be 

found that genetic algorithm is widely used in this field. Albrecht considered adjusting 

running time to synchronize the acceleration and regenerative braking of adjacent trains so 

as to improve the utilization of the energy generated by regenerative braking in 2004. The 

model minimizes the total energy consumption and peak power by finding the optimal 

adjustment of running time. The case study shows that the method can save 4% energy and 

reduce 17% sum of 15-min-average power compared with optimizing the running time of 

a single train while the dwell time is unchanged (Albrecht 2004). 

Table 4: Research for Energy-efficient Train Timetabling Based on Heuristic Algorithm 
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Main Algorithm and 

Theory 
Publication 

Multiple/Single 

Trains 

Applied Station 

Scope 

Genetic Algorithm (Albrecht 2004) Single Train 16 Stations 

Genetic Algorithm (Ding et al. 2011) Single Train 6 Stations 

Genetic Algorithm, 

Simulation, Fuzzy 

Linear Programming 

(Cucala et al. 2012) Single Train 6 Stations 

Genetic Algorithm (Yang et al. 2013) Multiple Trains 14 Stations 

Genetic Algorithm (Li and Lo 2014a) Multiple Trains 14 Stations 

Genetic Algorithm (Yang et al. 2014) Multiple Trains 14 Stations 

Genetic Algorithm (Yang et al. 2015) Multiple Trains 14 Stations 

Ding (2011) considered acceleration, coasting, and braking in driving state and established 

a two-level iterative optimization model to determine the best timetable and energy-saving 

driving strategy of subway lines. The genetic algorithm is adopted to solve the model, and 

the results showed that the model could reduce energy consumption by up to 19.1%. Cucala 

et al. (2012) simulated the uncertain delay of rail transit by using fuzzy numbers and 

punctuality constraints and established a two-objective model to reduce energy 

consumption and delay. They find the optimal timetable by allocating the assignable time 

in the trip. The test results of the study during the journey from Madrid to Barcelona show 

that compared with the commercial timetable, the energy consumption can be saved by 

5.25% when there is no delay, and the energy consumption can be reduced by 6.67% if 

delay exists. 

Yang et al. (2013) described the synchronization process by a mathematical model and then 

discovered the optimal synchronization timetable by genetic algorithm. The energy 

consumption is indirectly reduced by maximizing the time overlap between the 

acceleration and braking of neighbouring trains. The case study shows the model improves 
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the overlap of acceleration and regenerative braking of neighbouring trains by 15.2% 

during off-peak hours and 22.1% during peak hours. Yang et al. (2014) further explored 

the model by integrating the waiting time of passengers into consideration. The uncertainty 

of dwell time is ignored in the model, and the genetic algorithm is employed again to 

provide solutions. This study proposes that the model can reduce 8.9% of energy and 3.2% 

of passenger waiting time when all renewable energy can be fully utilized. Yang et al. (2015) 

extended the time span to one day and established a model considering all trains in the 

same track section. On the premise that all trains run according to the optimal speed 

trajectory, all trains arrive and leave synchronously through model coordination to improve 

the utilization efficiency of renewable energy. The scheduling problem is first described by 

a mixed-integer programming model, and then it is solved by the genetic algorithm. 

Compared with the algorithm in 2013, the research improves the utilization rate of 

renewable energy by 36.2% and reduces energy consumption by 4.3%. 

Li and Luo (2014) raised a model to reduce the net energy consumption of trains by 

assuming that the trains have a constant acceleration rate, decision rate, and running 

resistance. The model considers the optimization of timetable and speed trajectory 

simultaneously. Similar to other scholars' research, the timetabling part tries to improve the 

utilization efficiency of energy generated by regenerative braking through regenerative 

braking of synchronous trains and acceleration of adjacent trains. The model relies on the 

genetic algorithm to solve the problem, and the test results show that when the headway 

between trains is 90 seconds, the energy consumption can be reduced by 25%, but the 

percentage of energy-saving decreases with the increase of headway. 

 

2.1.3 Energy-aimed Train Timetable Rescheduling 
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Due to the considerable computational complexity of the timetabling, most of the previous 

methods complete the optimization process offline. However, a train may not be able to 

continue the pre-optimized timetable if a disturbance occurs during the operation process, 

which leads to extra energy consumption (Zhu and Goverde 2020). Most Train Timetable 

Rescheduling research focuses on minimizing the total delay time of all trains or passengers 

(Dalapati et al. 2016; Ortega, Pozo, and Puerto 2018). To reduce the unnecessary energy 

loss caused by disturbance, researchers began to explore the Energy-aimed Train Timetable 

Scheduling (ETTR) in recent years. 

Gong et al. (2014) proposed a timetable adjustment method to reduce the total energy 

consumption caused by interference on the whole trip. In their approach, a train speeded 

up in the following section if it spent extra dwell time at a station to ensure that it could 

arrive at the next station on time. Therefore, the gap between the adopted timetable and the 

planned one is reduced. This method leads to an increase in the energy consumption of the 

catch-up section, whereas the total energy consumption will be controlled at an acceptable 

level due to the offline timetable been highly optimized. Afterwards, Yang et al. proposed 

a near real-time timetable optimization method based on deep reinforcement learning 

(Yang et al. 2019). This method is able to re-organize the timetable for all the affected trains 

after a disturbance occurs. However, deep reinforcement learning algorithms require 

tremendous iterations, which results in high training costs. Besides, the optimization in rail 

transit needs to consider plenty of parameters because of the high requirements on safety, 

travel comfort, parking accuracy, etc. Thus it is difficult to ensure that the algorithm based 

solely on the neural network can provide reasonable decisions under any circumstances.  

2.2 Multi-agent System 

2.2.1 Agent 
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The first widely adopted definition of the agent is given by Wooldridge and Jennings 

(1995):" An agent is a computer system that is situated in some environment, and that is 

capable of autonomous action in this environment in order to achieve its delegated 

objectives ". Weiss adopted this definition (2012) and showed a schematic diagram of an 

agent (Figure 2). The figure shows that the interaction process between the agent and the 

environment is divided into three steps: collecting information from the environment, 

making decisions based on the information, and executing actions that may have impacts 

on the environment. Russell and Norvig show different types of agents that have these three 

steps, and they claimed that agent is something that can act with five characteristics: 

autonomous operation, environmental perception, long-term persistence, adaptation to 

change, creation and pursuit of goals (Russell and Norvig 1996). However, the interaction 

with the environment is abstract and covers a wide range. Some objects have similar 

functions to this definition, such as an object in object-oriented programming languages 

and Expert System (Weiss 2012). 

 

Figure 2:Demonstration of agent (Weiss 2012) 
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The main difference between an agent and an object in object-oriented programming 

languages is that normally an agent has higher autonomy. Both agent and object in object-

oriented programming languages, such as JAVA, Python, obtain information from the 

environment, make decisions based on internal logic, and provide feedback to the 

environment. However, engineers need to declare the property for each variable as public 

or private within an object during the programming process. Private variables or methods 

can only be accessed and used by the object that owns them, while public variables are able 

to be called by other objects. Once a public method is defined in an object, the object will 

not be able to refuse other objects to use the method. On the contrary, the interactions 

between agents are more complicated than objects. It is unnecessary for an agent to perform 

an action when it receives a request from another agent because the profit of different 

agents might have conflicts in a sophisticated environment. Furthermore, agents have a 

higher ability to cope with environmental changes. An object will initiate a decision-

making process and assumes that the environment would not change during the computing 

process when it receives the calling from another object. However, there is the possibility 

of new changes in the environment during the process of decision execution, which invalids 

the result about to be generated by the object. For an agent, however, it is able to continue 

receiving updates from the environment. The agent will receive a new event triggering 

code if necessary so as to decide whether to continue the current action. 

2.2.2 MAS Structure 

MAS is a method to realise distributed network control by coordinating multiple agents 

(Ge, Yang, and Han 2017), which is usually adopted to solve complex problems that are 

challenging or impossible to solve by a single agent. Agents in MAS interact with each 

other to pursue the designed goals through cooperation or competition. Compared with 

single-agent systems, an MAS has three advantages: 1. It can transform a complex problem 
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into several simple problems and reduce the difficulty of building internal logics and 

mathematical models (Balaji and Srinivasan 2010). 2. A MAS system has better flexibility 

and extensibility than a Single-agent System. The editions of logic, algorithm or neural 

network model in a deployed MAS system are easier to be carried out than a single agent 

controlled one under the same sophisticated engineering field (Weiss 2012). For example, 

engineers could embed a Recurrent Neural Network (RNN) into agents responsible for 

time-series prediction and Back Propagation Neural Network (BPNN) into agents 

responsible for classification. 3. In a fluent communication environment, multiple agents 

can be collaborated in parallel processing to solve complex models and speed up the 

computation process (Rousset et al. 2016).  

The MAS system has three kinds of structures: centralised, decentralised, and hybrid 

(Zhang and Hammad 2012). Figure 3 shows the comparison between Single-agent Control 

and the three structures of MAS control.  
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Figure 3: Different Types of Agent-Based Systems  

The main differences between Single-agent System and MAS are that Single-agent System 

only includes one processing node (Figure 3 (a)), while the MAS system includes multiple 

processing nodes (Figure 3 (b-d)) (Weiss 2012). The centralised structure includes a 
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plurality of subagents and a central agent (see Figure 3 (b)). Subagents collect information 

from the environment and influence the environment through sensors and controllers, 

respectively (Q. Liu et al. 2015). A subagent will send a request to the central agent and 

wait for the reply (command) from the central agent when it encounters a task that is hard 

to be handled independently. There is no communication channel that directly connects 

subagents. If the interests of two (or more) subagents conflict, the central agent will send a 

command to the involved subagents and guides the actions according to the global 

objective. The involved subagents then execute the received commands, even if the action 

will reduce their own interests. The central agent has global information of involved 

subagents in this framework, so it is easier for it to discover the global optimal solution 

when there are conflicts among subagents. However, the central agent needs to face 

considerable computational pressure, and the stability of the structure will be greatly 

affected if the central agent is overloaded.  

The Decentralised structure does not include a central agent, as shown in Figure 3 (c), the 

subagents exchange information among the directly connected channels. The involved 

subagents will negotiate between themselves and gain profits in the environment through 

cooperation or competition if there are conflicts. Typically the MAS system with this 

structure needs to declare the benefit priority of different subagents in specific conflict 

events to ensure rapid conflict handling. This framework has good stability and will not 

cause the whole system paralyses due to the crash of a single subagent. However, it is more 

challenging to get the global optimal solution than a centralised structure because each 

subagent only collects local information.  

The third framework is in Hybrid form, as shown in Figure 3 (d), which includes at least 

one central agent and several subagents. The information in this MAS structure can be 

directly exchanged among subagents and through the central agent. Usually, the subagents 
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attempt to solve conflicts by themselves. The central agent only participates in coordinating 

the benefits of subagents if there is a conflict that the authority or computing power of 

subagents is insufficient to solve. Therefore, this system is similar to the decentralised 

structure for general conflicts. This kind of system has a higher ability to deal with complex 

problems due to the existence of the central agent, which is adopted in the proposed system. 

2.2.3 Interaction Triggering Mechanism between Agents 

The triggering mechanism of exchange information among agents in a MAS system has a 

significant influence on the efficiency of the system. Inadequate communication and 

collaboration between agents will reduce the system's ability to cope with complex changes 

in the environment, while excessive interaction leads to unnecessary waste of 

communication and computing resources. In general, the Triggering Mechanism for agents 

to exchange information can be divided into two categories: Time Triggering Mechanism 

(TTM) and Event Triggering Mechanism (ETM). 

Each agent exchanges information with the pre-set time interval in TTM, which consists 

of three communication types, which are periodic communication, variable time 

communication and random communication. TTM is easier to deploy compared with ETM. 

Communication logic based on TTM is simple, and the relevant deployment is less 

challenging. However, the designer needs to set the communication frequency higher than 

required to ensure the correct operation of the system and improve stability. Frequent data 

exchange will result in the waste of computing and communication resources (Zhang et al. 

2014). 

For ETM, a series of events that demand communication is required to be determined in 

advance. When a pre-set event occurs, the agent that senses the event will initiate contact 

and send information to other agents that will be affected. Thus ETM is able to save 
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resources compared with the TTM because agents only exchange data when an event 

occurs. However, the possible events for ETM should be analysed and set comprehensively 

and accurately. Otherwise, it may lead to accidents caused by insufficient collaboration 

among agents. Especially, accidents in rail transit directly endanger safety. Table 3 shows 

some literature based on TTM and ETM. 

Table 5:Relevant MAS & Control Network Publications Classified According to 

Triggering Mechanism and Configurations  

Publication TTM ETM 

Centralized Configuration 

(Hui et al. 2014; 

Wang and Han 

2015, 2015) 

(Jia et al. 2014; Peng and 

Han 2013; Peng, Han, and 

Yue 2013; Xun et al. 2013; 

Yue, Tian, and Han 2013; 

Zhang and Han 2014) 

Distributed/Decentralized 

Configuration 

(Ding, Han, and 

Guo 2013; Z. 

Wang et al. 2013; 

You, Li, and Xie 

2013) 

(Guinaldo et al. 2014; Guo, 

Ding, and Han 2014; De 

Persis, Sailer, and Wirth 

2013; Zhang et al. 2014) 

 

2.3 Multi-agent System in Rail Transit 

The application of MAS technology in rail transit started in the 20th century. Burckert et 

al. described a system with a global agent and mobile agents, which transmits schedules in 

a dynamic environment (Burckert, Fischer, and Vierke 1998). Agents coordinate and 
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control resources through communication in the prototype system. Afterwards, Linde and 

Fisher (1999) proposed a mobile agent system that can be planned and monitored (Lind 

and Fischer 1999).  

Proenca and Olivier proposed a MAS system for rail transit that combines control function 

and learning function. The control function is realized by three Agents (supervisor, train 

and station), which is responsible for meeting the basic requirements of train safety, while 

the learning layer improves the rules of train driving strategy according to the short legs of 

driving data (Proenca and Oliveira 2004). Verma and Pattanaik (2014) demonstrated a 

MAS based system that adopts the MBS to ensure safety. The system implements a 

simplified sub-target mobile licensing model, but the cooperation and interaction among 

agents have not been demonstrated. Hassanabadi et al. (2015) proposed a rail transit control 

framework based on the MAS system, which is composed of Station Agent, Train agent 

and Central Control agent. A train under the control of the system will transmit the 

information to the following train if it encounters an emergency and needs to stop 

temporarily. The corresponding following train would take braking once the distance 

between the two trains cannot meet the safety requirements. Although this mechanism 

could ensure the driving safety of every train under the control of the system, the energy 

optimization method is not considered to reduce unnecessary energy consumption when 

conflicts occur. 
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Chapter 3: Proposed Methodology 

This chapter first demonstrates the control framework of the proposed MAS system, and 

then introduces the dynamic interaction mechanism of the agents within the framework. 

The adopted MBS (which is used for ensuring safety) is introduced after the interaction 

mechanism section.  

3.1 Control Framework 

Part of the proposed system is shown in Figure 4. The system includes three types of agents, 

namely Central Agent, Train Agent, and Station Agent. There are four tracks in the figure, 

where trains on Tracks 1 and 2 travel from left to right and trains on the other two tracks 

travel in the opposite direction. 𝑇𝑟𝑎𝑖𝑛(𝑖_𝑛) is used to represent any running train, where 𝑛 

means the train is running on the 𝑛𝑡ℎ track and 𝑖 represents the train sequence on the track. 

For instance, 𝑇𝑟𝑎𝑖𝑛(1_2)  is the first train running on Track 2, and 𝑇𝑟𝑎𝑖𝑛(2_2)  is the 

following train of it. Figure 4 shows the moment where five trains are running on Track 1 

from left to right. 𝑇𝑟𝑎𝑖𝑛((𝑖 − 1)_1) , 𝑇𝑟𝑎𝑖𝑛(𝑖_1)  and 𝑇𝑟𝑎𝑖𝑛(𝑖_2)  are running between 

Station D and Station E, and 𝑇𝑟𝑎𝑖𝑛((𝑖 + 1) _ 1) and 𝑇𝑟𝑎𝑖𝑛((𝑖 + 1) _ 2) are not reach to 

Station D yet. 

Figure 4 demonstrates the communication structures of trajectory optimization and 

timetable optimization, and the communication process is demonstrated in the interaction 

mechanism section. There are two approaches in which subagents (train or station agents) 

exchange information. The first approach is to exchange information with the connected 

subagents directly from the connected channel when the system is functioning properly. 

The central agent is used as the communication medium in the second approach, which 

will be activated if a subagent does not receive the desired information from another 
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subagent or encounters a problem that cannot be resolved independently. The involved 

subagent sends the application to the central agent in such conditions, and then the central 

agent delivers the received message to the subagent that needs the information and waits 

for feedback. The feedback will be transmitted to the subagent that sent the application 

once it is received. Theoretically, the proposed communication ensures that the system is 

at least as stable as the system in use, for the second communication method is similar to 

the currently adopted one. 
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Figure 4: Part of the Proposed MAS System (Guo et al. 2021) 
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3.2 Train Agent 

This section includes two parts: Trajectory Optimization and Timetable Optimization. 

Trajectory Optimization is based on the MILP algorithm, and the constraint conditions of 

the optimization model are presented in the first section. Timetable Optimization is based 

on a trained Deep Neural Network (DNN). The corresponding section introduces the data 

generation process for training the optimization model and the optimization effect after 

training. 

3.2.1 Trajectory Optimization 

The task of the train agent is to optimize the timetable and speed trajectory based on the 

received information. A Mixed-Integer Linear Programming (MILP) based model is 

adopted to optimise the speed trajectory, which is introduced in this section. 

The journey D of a train between any two points is equally divided into several segments 

with a distance of Δ𝑑. Thus the relationship between d and Δ𝑑 is represented by Eq. (1): 

 𝐷 = ∑ Δ𝑑

𝑁

𝑖−1

 Eq. (1) 

The Davis’ equation is used to calculate the driving resistance of trains in each Δ𝑑: 

 𝐹𝑖,𝑑𝑟𝑎𝑔 = 𝐴 + 𝐵𝑣𝑖 + 𝐶𝑣𝑖,𝑎𝑣𝑔
2  Eq. (2) 

The train speed will not have drastically variation when Δ𝑑 is short. Thus the speed change 

within each Δ𝑑 is able to be approximately linearized. Assume the speed of a train is vi 

when the train first enters the segment Δ𝑑, while the speed is vi+1 at the moment the train 

left. Then the average speed of the train within the segment can be approximated as: 
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 𝑣𝑖,𝑎𝑣𝑔 = 0.5 ∗ (𝑣𝑖 + 𝑣𝑖+1) Eq. (3) 

By including a series of nonnegative variables of special ordered sets type 2 (SOS2), a 

nonlinear function can be represented by piecewise linearity. This SOS2 can have up to 

two adjacent non-negative variables, and the sum of all variables is limited to 1. Set a small 

constant 𝛿 , which represents the effective step size from 𝑉𝑚𝑖𝑛  to 𝑉𝑚𝑎𝑥 , and 𝐾 =

(𝑉max − 𝑉min)/𝛿, 𝐾 ∈ ℕ. Thus the decision variables 𝑣𝑖
2 could be expressed by: 

 𝑣𝑖
2 = ∑(𝑉min + (𝑘 − 1)𝛿)2

𝐾

𝑘=1

⋅ 𝛼𝑖
𝑘 Eq. (4) 

Set 𝑣𝑖
′ as an approximation of speed 𝑣𝑖, then it could approximately be obtained as: 

 𝑣𝑖
′ = ∑(𝑉min + (𝑘 − 1)𝛿)

𝐾

𝑘=1

⋅ 𝛼𝑖
𝑘 Eq. (5) 

 ∑ 𝛼𝑖
𝑘 = 1

𝐾

𝑘=1

 Eq. (6) 

 0 ≤ 𝛼𝑖
𝑘 ≤ 1, 𝑘 = 1,2, ⋯ , 𝐾 Eq. (7) 

In order to control the value from 𝛼𝑖
1 to 𝛼𝑖

𝐾 to satisfy SOS2, set a set of variable 𝜆𝑖
1 to 𝜆𝑖

𝐾−1, 

where: 

𝜆𝑖
𝑘 ⊆ {0,1} Eq. (8) 

 ∑ 𝜆𝑖
𝑘

𝐾−1

𝑘=1

= 1 Eq. (9) 

−𝛼𝑖
𝑘 − 𝛼𝑖

𝑘+1 + 𝜆𝑖
𝑘 ≤ 0 Eq. (10) 

 

An approximation of the average velocity of 𝑣𝑖,𝑎𝑣𝑔 for each distance segment can be 

approximately calculated by using Eq. (13). The variable 𝛽𝑖
𝑘 is used to obtain another set 
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of SOS2, which is used to find the approximation of 𝑣𝑖,𝑎𝑣𝑔
2  and 1/𝑣𝑖,𝑎𝑣𝑔  within each 

distance segment, as shown in Eq. (11) to Eq. (15): 

 ∑ 𝛽𝑖
𝑘 = 1

𝐾

𝑘=1

 Eq. (11) 

 0 ≤ 𝛽𝑖
𝑘 ≤ 1, 𝑘 = 1,2, ⋯ , 𝐾 Eq. (12) 

 𝑣𝑖,𝑎𝑣𝑔 ≈  𝑣𝑖,𝑎𝑣𝑔
′ =

𝑣𝑖
′ + 𝑣𝑖+1

′

2
= ∑(𝑉min + (𝑘 − 1)𝛿)

𝐾

𝑘=1

⋅ 𝛽𝑖
𝑘 Eq. (13) 

 𝑣𝑖,𝑎𝑣𝑔
2 ≈ 𝑣𝑖,𝑎𝑣𝑔

′2 = ∑(𝑉min + (𝑘 − 1)𝛿)2

𝐾

𝑘=1

⋅ 𝛽𝑖
𝑘 Eq. (14) 

 
1

𝑣𝑖,avg
≈

1

𝑣𝑖,avg
′ = ∑

𝛽𝑖
𝑘

𝑉min + (𝑘 − 1)𝛿

𝐾

𝑘=1

 Eq. (15) 

Similarly, in order to control the value from 𝛽𝑖
1 to 𝛽𝑖

𝐾 to satisfy SOS2, set a set of variable 

𝛾𝑖
1 to 𝛾𝑖

𝐾−1, where: 

𝛾𝑖
𝑘 ⊆ {0,1} Eq. (16) 

 ∑ 𝛾𝑖
𝑘

𝐾−1

𝑘=1

= 1 Eq. (17) 

−𝛼𝑖
𝑘 − 𝛼𝑖

𝑘+1 + 𝛾𝑖
𝑘 ≤ 0 Eq. (18) 

 

In order to ensure passenger travel comfort, it is stipulated that the maximum acceleration 

and deceleration of trains are 𝑎𝑚𝑎𝑥  and 𝑎𝑑,𝑚𝑎𝑥 , respectively, and the acceleration 

(deceleration) of a train should be within its limit range. Therefore: 

 −𝑎𝑑,𝑚𝑎𝑥 ≤ 𝑎𝑖 =
𝑣𝑖+1

2 − 𝑣𝑖
2

2Δ𝑑
≤ 𝑎𝑚𝑎𝑥 Eq. (19) 

The time for a train to pass a Δ𝑑 is equal to the distance divided by the average speed, thus: 
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 Δ𝑡𝑖 =
Δ𝑑

𝑣𝑖,𝑎𝑣𝑔
 Eq. (20) 

Furthermore, the speed of trains on unidirectional tracks is non-negative, thus: 

 0 ≤ 𝑣𝑖
2 ≤ 𝑉𝑚𝑎𝑥

2  Eq. (21) 

The energy loss during the transmission process is not less than 0, which is represented by: 

 

𝐸𝑖𝜂𝑡 −
1

2
𝑀(𝑣𝑖+1

2 − 𝑣𝑖
2) − 𝐹𝑖,𝑑𝑟𝑎𝑔𝛥𝑑 − 𝑀𝑔𝛥ℎ𝑖 ≥ 0

𝐸𝑖

𝜂𝑏
−

1

2
𝑀(𝑣𝑖+1

′ 2 − 𝑣𝑖
′2) − 𝐹𝑖,𝑑𝑟𝑎𝑔𝛥𝑑 − 𝑀𝑔𝛥ℎ𝑖 ≥ 0

 Eq. (22) 

The kinetic energy reduced by the maximum braking force is greater than or equal to the 

maximum kinetic energy reduction, while the kinetic energy increased by the maximum 

traction force is less than or equal to the maximum kinetic energy increase. Therefore, there 

are constraints of Eq. (23) to Eq. (26): 

 −𝐹𝑖,𝑑𝑟𝑎𝑔𝛥𝑑 − 𝑀𝑔𝛥ℎ𝑖 −
1

2
𝑀(𝑣𝑖+1

2 − 𝑣𝑖
2) ≤ 𝐹𝑏,𝑚𝑎𝑥𝛥𝑑 Eq. (23) 

 𝐹𝑖,𝑑𝑟𝑎𝑔𝛥𝑑 + 𝑀𝑔𝛥ℎ𝑖 +
1

2
𝑀(𝑣𝑖+1

2 − 𝑣𝑖
2) ≤ 𝐹𝑡,𝑚𝑎𝑥𝛥𝑑 Eq. (24) 

 −𝐹𝑖,𝑑𝑟𝑎𝑔𝛥𝑑 − 𝑀𝑔𝛥ℎ𝑖 −
1

2
𝑀(𝑣𝑖+1

2 − 𝑣𝑖
2) ≤ 𝑃𝑏,𝑚𝑎𝑥𝛥𝑡𝑖 Eq. (25) 

 𝐹𝑖,𝑑𝑟𝑎𝑔𝛥𝑑 + 𝑀𝑔𝛥ℎ𝑖 −
1

2
𝑀(𝑣𝑖+1

2 − 𝑣𝑖
2) ≤ 𝑃𝑡,𝑚𝑎𝑥𝛥𝑡𝑖 Eq. (26) 

The total travel time of a train should not exceed the specified maximum travel time, thus: 

 𝑇𝑚𝑎𝑥 ≥ ∑ Δ𝑡𝑖

𝑁

𝑖=1

= ∑
Δ𝑑

𝑣𝑖,𝑎𝑣𝑒

𝑁

𝑖=1

  Eq. (27) 

The objective function of the model is represented in Eq. (28) when the optimization 

objective is energy: 

 
Minimize: ∑ 𝐸𝑖(𝑣𝑖

2)

𝑁

𝑖=1

Subject to Eq. (1) to Eq. (27)

 Eq. (28) 
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The objective function of the model is represented in Eq. (29) when the optimization 

objective is time: 

 
Minimize: ∑ 𝑡𝑖(𝑣𝑖

2)

𝑁

𝑖=1

Subject to Eq. (1) to Eq. (26)

 Eq. (29) 

The speed trajectory within each section can be obtained by solving the model, and the 

whole speed trajectory within D is obtained by connecting the speed trajectory within each 

section. 

3.2.2 Timetable Optimization 

The total time for a train to travel in a cluster consists of running time and dwell time at 

each station, set the total time, running time and dwell time for a train to travel from 

𝑆𝑡𝑎𝑡𝑖𝑜𝑛 (𝑛) to 𝑆𝑡𝑎𝑡𝑖𝑜𝑛(𝑛 + 𝑥) are 𝑇𝑛,𝑛+𝑥
𝑡𝑜𝑡𝑎𝑙 , 𝑇𝑛,𝑛+𝑥

𝑟𝑢𝑛𝑛𝑖𝑛𝑔
, 𝑇𝑛,𝑛+𝑥

𝑑𝑤𝑒𝑙𝑙, respectively. Thus: 

 𝑇𝑛,𝑛+𝑥
𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑛,𝑛+𝑥

𝑟𝑢𝑛𝑛𝑖𝑛𝑔
+ 𝑇𝑛,𝑛+𝑥

𝑑𝑤𝑒𝑙𝑙 Eq. (30) 

Set the given time for a train to travel from 𝑆𝑡𝑎𝑡𝑖𝑜𝑛(𝑛) to 𝑆𝑡𝑎𝑡𝑖𝑜𝑛(𝑛 + 1) is 𝑇𝑛,𝑛+1
𝑡𝑟𝑎𝑣𝑒𝑙, then 

the total travel time for a train from 𝑆𝑡𝑎𝑡𝑖𝑜𝑛(𝑛) to 𝑆𝑡𝑎𝑡𝑖𝑜𝑛(𝑛 + 𝑥) would be: 

 𝑇𝑛,𝑛+𝑥
𝑟𝑢𝑛𝑛𝑖𝑛𝑔

= ∑ 𝑇𝑖,𝑖+1
𝑟𝑢𝑛𝑛𝑖𝑛𝑔

𝑛+𝑥−1

𝑖=𝑛

 Eq. (31) 

Similarly, set the shortest time required for a train to run (exclude the dwell time) from 

𝑆𝑡𝑎𝑡𝑖𝑜𝑛(𝑛)  to 𝑆𝑡𝑎𝑡𝑖𝑜𝑛(𝑛 + 1)  is 𝑇𝑛,𝑛+1
𝑚𝑖𝑛  , then the shortest time demand from 

𝑆𝑡𝑎𝑡𝑖𝑜𝑛(𝑛) to 𝑆𝑡𝑎𝑡𝑖𝑜𝑛(𝑛 + 𝑥) would be: 

 𝑇𝑛,𝑛+𝑥
𝑚𝑖𝑛 = ∑ 𝑇𝑖,𝑖+1

𝑚𝑖𝑛

𝑛+𝑥−1

𝑖=𝑛

 Eq. (32) 
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The total given time in the predetermined timetable is longer than the shortest time demand 

for the train to travel from the first station to the last one in a cluster so as to ensure that 

the train is still able to arrive at the next station on time when the train spends extra dwell 

time at one station during rush hour. Thus: 

 𝑇𝑛,𝑛+𝑥
𝑟𝑢𝑛𝑛𝑖𝑛𝑔

> 𝑇𝑛,𝑛+𝑥
𝑚𝑖𝑛  Eq. (33) 

Energy-aimed Train Timetable Rescheduling Among Three Stations 

Timetable optimization in each cluster is to find the most reasonable time allocation 

strategy, which provides minimum energy consumption. The ratio of the least time spent 

by the train in the two sections to the running time can be obtained by Eq. (34) for a cluster 

consists of three stations (𝑆𝑡𝑎𝑡𝑖𝑜𝑛 𝑛, 𝑆𝑡𝑎𝑡𝑖𝑜𝑛(𝑛 + 1) and 𝑆𝑡𝑎𝑖𝑜𝑛 (𝑛 + 2)): 

 

𝑃𝑛,𝑛+1
𝑚𝑖𝑛 =

𝑇𝑛,𝑛+1
𝑚𝑖𝑛

𝑇𝑛,𝑛+2
𝑟𝑢𝑛𝑛𝑖𝑛𝑔

𝑃𝑛+1,𝑛+2
𝑚𝑖𝑛 =

𝑇𝑛+1,𝑛+2
𝑚𝑖𝑛

𝑇𝑛,𝑛+2
𝑟𝑢𝑛𝑛𝑖𝑛𝑔

 Eq. (34) 

The redundant time (𝑇𝑛,𝑛+2
𝑟𝑢𝑛𝑛𝑖𝑛𝑔

− 𝑇𝑛,𝑛+2
𝑚𝑖𝑛  ) is evenly divided into 𝑁∗  equal parts, then the 

allocation of (𝑁∗ + 1) time allocation possibilities can be obtained based on Eq. (35) and 

Eq. (36). The increase in 𝑁∗ results in a larger number of samples in this step and higher 

prediction accuracy but reduces the speed of obtaining data. 𝑁∗ is set to 20 in this research 

to get the balance between computation speed and accuracy. 𝐌𝐏𝑛,𝑛+2 represents a series, 

in which each element corresponds to a time distribution of the train travelling from 

𝑆𝑡𝑎𝑡𝑖𝑜𝑛(𝑛) to 𝑆𝑡𝑎𝑡𝑖𝑜𝑛(𝑛 + 2). The time distribution corresponding to the 𝑗𝑡ℎ element can 

be obtained by the Eq. (37) and Eq. (38): 

 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑛,𝑛+2 =
1 − 𝑃𝑛,𝑛+1

𝑚𝑖𝑛 − 𝑃𝑛+1,𝑛+2
𝑚𝑖𝑛

𝑁∗
  Eq. (35) 

 𝐌𝐏𝑛,𝑛+2 = 𝑃𝑛,𝑛+1
𝑚𝑖𝑛 : 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑛,𝑛+2: (1 − 𝑃𝑛+1,𝑛+2

𝑚𝑖𝑛 ) Eq. (36) 
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 𝐓𝑛,𝑛+1(𝑗) = 𝐌𝐏𝑛,𝑛+2(𝑗) ∗ 𝑇𝑛,𝑛+2 
𝑟𝑢𝑛𝑛𝑖𝑛𝑔

 Eq. (37) 

 𝐓𝑛+1,𝑛+2(𝑗) = 𝑇 𝑛,𝑛+2 
𝑟𝑢𝑛𝑛𝑖𝑛𝑔

− 𝐓𝑛,𝑛+1(𝑗) Eq. (38) 

The total energy consumption of train running 𝑆𝑡𝑎𝑡𝑖𝑜𝑛(𝑛)  to 𝑆𝑡𝑎𝑡𝑖𝑜𝑛(𝑛 + 2)  can be 

expressed by Eq. (39): 

 𝐄𝑛,𝑛+2(𝑗) = 𝐄𝑛,𝑛+1(𝑗) + 𝐄𝑛+1,𝑛+2(𝑗) Eq. (39) 

Where, 𝐄𝑛,𝑛+1(𝑗)  and 𝐄𝑛+1,𝑛+2(𝑗)  are computed by Eq. (28). The relationship between 

𝑃𝑛,𝑛+1 and the 𝐄𝑛,𝑛+2(𝑗) is shown in Figure 5. Polynomials corresponding to the calculated 

data and the corresponding lowest points (𝑃𝑛,𝑛+1
𝑚𝑖𝑛 ) can be obtained by the polynomial fitting. 

In this study, fitting from 2𝑛𝑑  power to 8𝑡ℎ  power is adopted (seven equations are 

obtained). The lowest points of the seven polynomials are selected to re-execute Eq. (39), 

in which the time allocation giving the lowest energy consumption result is selected as the 

optimal timetable for this set of data.  

E
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y
 (

k
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Figure 5: Example of a relationship between 𝑃𝑛,𝑛+1 and total energy consumption 



 50 / 128 

 

A total of 126,672 data points were obtained by changing the parameters such as travel 

weight, travel time and travel distance. The distributions of the parameters are summarized 

as follows: 

⚫ 𝑀𝑎𝑠𝑠𝑛,𝑛+1 and 𝑀𝑎𝑠𝑠𝑛+1,𝑛+2 : ranges from 180 t to 240 t with 20 t as interval. 

⚫ 𝐷𝑖𝑠𝑛,𝑛+1 and 𝐷𝑖𝑠𝑛+1,𝑛+2 : ranges from 1200 m to 6000 m with 200 m as interval. 

⚫ 𝑇𝑛,𝑛+2
𝑟𝑢𝑛𝑛𝑖𝑛𝑔

 : ranges from 
𝐷𝑖𝑠𝑛,𝑛+1+𝐷𝑖𝑠𝑛+1,𝑛+2

15𝑚/𝑠
 to 

𝐷𝑖𝑠𝑛,𝑛+1+𝐷𝑖𝑠𝑛+1,𝑛+2

10𝑚/𝑠
 with 20 m/s as 

interval. 

Among these data, 70% of them are used to train the DNN, 15% are selected as verification 

data, and the remaining 15% are used as test data. Figure 6 shows the structure of the neural 

network, the input data are summarized in Table 6, the output data is 𝑃𝑛,𝑛+1
𝑚𝑖𝑛  for each group, 

and Figure 7 shows the mean squared error for the training, validation and test data sets.  

 

Figure 6: DNN structure 
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Table 6: Training input data for the DNN 

𝑇𝑛,𝑛+2
𝑟𝑢𝑛𝑛𝑖𝑛𝑔

 𝑀𝑎𝑠𝑠𝑛,𝑛+1 𝑀𝑎𝑠𝑠𝑛+1,𝑛+2 

𝑀𝑎𝑠𝑠𝑛,𝑛+1

𝑀𝑎𝑠𝑠𝑛+1,𝑛+2
 

𝑀𝑎𝑠𝑠𝑛,𝑛+1

𝑀𝑎𝑠𝑠𝑛,𝑛+1 + 𝑀𝑎𝑠𝑠𝑛+1,𝑛+2
 

𝑀𝑎𝑠𝑠𝑛+1,𝑛+2

𝑀𝑎𝑠𝑠𝑛,𝑛+1 + 𝑀𝑎𝑠𝑠𝑛+1,𝑛+2
 

𝐷𝑖𝑠𝑛,𝑛+1 𝐷𝑖𝑠𝑛+1,𝑛+2 𝐷𝑖𝑠𝑛,𝑛+1 + 𝐷𝑖𝑠𝑛+1,𝑛+2 

𝐷𝑖𝑠𝑛,𝑛+1

𝐷𝑖𝑠𝑛+1,𝑛+2
 

𝐷𝑖𝑠𝑛+1,𝑛+2

𝐷𝑖𝑠𝑛,𝑛+1 + 𝐷𝑖𝑠𝑛+1,𝑛+2
 

𝐷𝑖𝑠𝑛+1,𝑛+2

𝐷𝑖𝑠𝑛,𝑛+1 + 𝐷𝑖𝑠𝑛+1,𝑛+2
 

 

 

Figure 7: Mean squared error of the data sets 

The coefficient of determination (𝑅2) is adopted to verify the prediction accuracy, which 

could be obtained as: 

𝑅2 = 1 −
𝑆𝑆𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑆𝑆𝑇𝑜𝑡𝑎𝑙
Eq. (40) 



 52 / 128 

 

where 𝑆𝑆𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 is the sum of squares of the errors between the predicted value and the 

real value of all sample points. 𝑆𝑆𝑇𝑜𝑡𝑎𝑙  represents the sum of squares of the difference 

between the average value and the real value of all sample points. Consider a data set that 

has 𝑛 samples, for the 𝑖𝑡ℎ sample, the real value is 𝑦𝑖, the predicted value is 𝑦𝑖
′, and the 

average value of all samples is �̅�, then: 

𝑆𝑆𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = ∑(𝑦𝑖 − 𝑦𝑖
′)2

𝑛

𝑖=1

Eq. (41) 

 𝑆𝑆𝑇𝑜𝑡𝑎𝑙 = ∑(𝑦𝑖 − �̅�)2

𝑛

𝑖=1

Eq. (42) 

Thus: 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖

′)2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

Eq. (43) 

The closer the value of 𝑅2 is to 1, the more accurate the prediction is. The predicted value 

is completely equal to the actual value for each sample when 𝑅2 is equal to 1. 

After training, the 𝑅2 of the test data set is 0.9988, which is very close to 1, which shows 

that the trained model gives excellent results in the test data set and can find highly 

optimized solutions among the three stations. The mean square errors of training, 

verification and test data sets are all close to zero, as shown in Figure 6. It should be claimed 

that the distribution of data sets used in training and testing are relatively close. In practical 

application, if the applied cluster is obviously different from the training set data, extra 

training should be conducted for the applied cluster to avoid inaccurate prediction. 
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Energy-aimed Train Timetable Rescheduling Among More Stations 

According to the results of the previous step, it can be known that using the trained DNN 

is able to provide highly accurate results, thus the schedule optimization of a multi-station 

cluster can be based on the above conclusions. For example, for any cluster with four 

stations and three sections, the time needs to be distributed among the three sections, so 

there is the following relationship:  

 
𝑇𝑛,𝑛+3

𝑟𝑢𝑛𝑛𝑖𝑛𝑔
= 𝑇𝑛,𝑛+1

𝑟𝑢𝑛𝑛𝑖𝑛𝑔
+ 𝑇𝑛+1,𝑛+2

𝑟𝑢𝑛𝑛𝑖𝑛𝑔
+ 𝑇𝑛+2,𝑛+3

𝑟𝑢𝑛𝑛𝑖𝑛𝑔
 

= (𝑃𝑛,𝑛+1
𝑟𝑢𝑛𝑛𝑖𝑛𝑔

+ 𝑃𝑛+1,𝑛+2
𝑟𝑢𝑛𝑛𝑖𝑛𝑔

+ 𝑃𝑛+2,𝑛+3
𝑟𝑢𝑛𝑛𝑖𝑛𝑔

) ∗ 𝑇𝑛,𝑛+3
𝑟𝑢𝑛𝑛𝑖𝑛𝑔

 
Eq. (44) 

In the above relational expression, the principle similar to Eq. (35) and Eq. (36) can be 

adapted to obtain all possible proportions of all time allocated to the third section, as shown 

in Eq. (45) and Eq. (46): 

 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = (1 − 𝑃𝑛,𝑛+1
𝑚𝑖𝑛 − 𝑃𝑛+1,𝑛+2

𝑚𝑖𝑛 − 𝑃𝑛+2,𝑛+3
𝑚𝑖𝑛 )/𝑁∗ Eq. (45) 

 𝐌𝐏𝑛+2,𝑛+3 = 𝑃𝑛,𝑛+1
𝑚𝑖𝑛 + 𝑃𝑛+1,𝑛+2

𝑚𝑖𝑛 : 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙: (1 − 𝑃𝑛,𝑛+1
𝑚𝑖𝑛 − 𝑃𝑛+1,𝑛+2

𝑚𝑖𝑛 ) Eq. (46) 

Benefited from the very high prediction accuracy among three stations, it is reasonable to 

assume that the trained neural network is able to provide an optimized 𝑃𝑛,𝑛+1 and 𝑃𝑛+1,𝑛+2 

for any element in 𝐌𝐏𝑛+2,𝑛+3. Thus a two-parameter optimization can be transformed into 

a one-parameter optimization by directly referring to the neural network prediction in the 

previous step. Considering every time distribution in the present research requires dozens 

of times of high complexity optimization, this transformation significantly reduces the 

generation time of data points. The relationship between 𝑃𝑛+2,𝑛+3  and total energy 

consumption in each combination is obtained with the speed trajectory optimization model, 

and the lowest point is found by polynomial regression. Finally, the optimal time 

distribution in three stations could be determined. By repeatedly applying similar principles, 

theoretically, this method is able to obtain the optimal schedule distribution among a larger 
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number of stations. It is worth noting that with the increase of the number of stations in a 

cluster, the errors of each neural network may be superimposed, resulting in reducing the 

overall prediction accuracy. Such errors can be alleviated by increasing the value of 𝑁∗, 

thus increasing the quantity and accuracy of training data.  

3.3 Station Agent 

This chapter demonstrates the control framework, workflow, and data collection process 

of the Station Agent. Three kinds of anti-disturbance mechanisms are presented in the first 

section, which is applied in the scenarios of different prediction accuracy. The second 

section introduces the process of data collection and model training. 

3.3.1 Framework and Workflow 

The summarized interactive framework of station agents and train agents is shown in 

Figure 8. As mentioned in the Proposed Multi-agent System section, station agents are 

separated into several clusters. Each cluster has an independent database, saves the data of 

card swiping, the number of passengers that are waiting on the platform, and the 

corresponding train dwell time collected from different types of sensors. In addition to the 

time-varying data, the data that does not change with time (distance between stations, track 

slop and curve, etc.) are also saved in the database. The affected train timetable and speed 

trajectory will be optimized once a disturbance is detected (or predicted). The whole 

process needs the cooperation of three technologies: 1. Disturbance monitoring /prediction. 

2. Timetable optimization. 3. Train speed trajectory optimization. The prediction and 

monitoring of disturbances caused by heavy passenger flow are completed by the station 

agent, which is introduced in the remains of this section, and the other two processes are 

demonstrated in the Train agent section. 
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Figure 8: Control Framework of the Proposed System 

Disturbances caused by heavy passenger flow consist of two types: extra dwell time and 

train travel weight change. The disturbance of dwell time change can be obtained by 

detection or prediction, while the weight change can only be obtained by prediction. Based 

on the detection and prediction technique, three mechanisms of coping with extra dwell 

time disturbance are raised. The three mechanisms are demonstrated and compared with 

the example shown in Figure 9. There are three trains running on Truck n with the position 

shown in the figure. 𝑇𝑟𝑎𝑖𝑛(𝑖_𝑛) will arrive at the first station in Cluster (j) (Station D). 

According to the prediction, Station E will have a delay of 𝑇𝑝𝑟𝑒
𝑑𝑒𝑙𝑎𝑦

(𝐸) seconds, and the 

actual delay will be 𝑇𝑎𝑐𝑡
𝑑𝑒𝑙𝑎𝑦

(𝐸)  seconds. According to the planning timetable, the given 

total time of 𝑇𝑟𝑎𝑖𝑛 (𝑖_𝑛) from 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 𝐷 to 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 𝐺 is 𝑇𝐷,𝐺
𝑡𝑜𝑡𝑎𝑙, and the total time from 

𝑆𝑡𝑎𝑡𝑖𝑜𝑛 𝐸 to 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 𝐺 is 𝑇𝐸,𝐺
𝑡𝑜𝑡𝑎𝑙.  
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Figure 9: Extending Dwell Time at Station E 

In the first mechanism, Train(i_n) agent allocate the total time of 𝑇𝐷,𝐺
𝑡𝑜𝑡𝑎𝑙 − 𝑇𝑝𝑟𝑒

𝑑𝑒𝑙𝑎𝑦
(𝐸) 

seconds to the journey from Station D to Station G in the most reasonable way to reduce 

the extra energy cost caused by the delay. The advantage of this mechanism is that it can 

optimize the timetable before the occurrence of delay duration, thus the time between 

Station D and Station E is adjusted along with the other sections. On the premise of high 

prediction accuracy, this method provides an optimal solution that minimizes the extra 

energy consumption caused by the delay within the cluster. However, the train will travel 

at speed beyond the necessary speed in the process from Station D to Station E if the actual 

delay is less than the predicted one, which eventually causes a negative effect on the 

optimization performance. 

Instead of 𝑇𝑝𝑟𝑒
𝑑𝑒𝑙𝑎𝑦

(𝐸), Train(i_n) agent adopt the 𝑇𝑎𝑐𝑡
𝑑𝑒𝑙𝑎𝑦

(𝐸) in the second mechanism. The 

total Delay time 𝑇𝑎𝑐𝑡
𝑑𝑒𝑙𝑎𝑦

(𝐸) is detected by the sensor when the train leaves Station E. Thus 

Train(i_n) agent assigns a total time of 𝑇𝐸,𝐺
𝑡𝑜𝑡𝑎𝑙 − 𝑇𝑎𝑐𝑡

𝑑𝑒𝑙𝑎𝑦
(𝐸) from Station E to Station G. 

The performance of this mechanism is more stable than the first one due to the delay is 

detected by sensors directly. However, this mechanism provides less energy-saving 
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potential, for the travel time between Station D and Station E is not adjusted. 

The third mechanism combines the characteristics of the previous two. The value of 

𝑇𝑝𝑟𝑒
𝑑𝑒𝑙𝑎𝑦

(𝐸) is multiplied by a positive empirical coefficient 𝛾, as shown in Eq. (47): 

 
𝑇𝑝𝑟𝑒

𝑑𝑒𝑙𝑎𝑦(𝐸)′ = 𝑇𝑝𝑟𝑒
𝑑𝑒𝑙𝑎𝑦(𝐸) ∗ 𝛾

𝑤ℎ𝑒𝑟𝑒, 𝛾 ∈ [0,1]
 Eq. (47) 

The existence of 𝛾  is to ensure the value of 𝑇𝑝𝑟𝑒
𝑑𝑒𝑙𝑎𝑦(𝐸)′  less than 𝑇𝑎𝑐𝑡

𝑑𝑒𝑙𝑎𝑦(𝐸) . Train(i_n) 

agent first optimize the timetable among Station D to Station G with a total time of 𝑇𝐷,𝐺
𝑡𝑜𝑡𝑎𝑙 −

𝑇𝑝𝑟𝑒
𝑑𝑒𝑙𝑎𝑦(𝐸)′ . Then Train(i_n) follows the optimized timetable travel from Station D to 

Station E. The actual delay time at Station E (𝑇𝑎𝑐𝑡
𝑑𝑒𝑙𝑎𝑦(𝐸)) will be obtained when Train(i_n) 

left Station E, and the train optimizes the timetable again. The total energy consumption 

from Station D to Station G of this mechanism is less than the second one since the speed 

trajectory of the train from Station D to Station E. Furthermore, due to 𝑇𝑝𝑟𝑒
𝑑𝑒𝑙𝑎𝑦(𝐸)′ ≤

𝑇𝑎𝑐𝑡
𝑑𝑒𝑙𝑎𝑦(𝐸), the risk of reducing the energy-saving due to insufficient prediction accuracy 

is avoided. The value of 𝛾 increases with the increase of the reliability of prediction results. 

𝛾 equals zero when the prediction result is totally unreliable, and the mechanism in the 

third class is the same as that in the second mechanism. With the accumulation of data, the 

prediction accuracy is increasing. When gamma is equal to 1, the speed trajectory of the 

train will be the same as the first mechanism. 

3.3.2 Data for Dwell Time and Travel Weight Change Prediction 

Passenger flow is the main influencing factor of train stay time and travel weight change 

at a station. Therefore, in order to realize the prediction of dwell time and travel weight, 

the first step is to predict the passenger flow. Previous studies on forecasting passenger 
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flow mainly focused on the time interval of more than ten minutes (Bi et al. 2019; Li et al. 

2019; Liu, Chen and Zhu (2018), this may be due to the highly random passenger flow in 

a short time, which is unfavourable to the prediction accuracy. However, the departure 

interval of rush time is shorter than 10 minutes for some rail transit systems, thus it is 

necessary to improve the prediction accuracy of the system. A prediction system combining 

offline and online platforms is proposed, which is expected to improve the short time 

interval prediction accuracy, as shown in Figure 10.  

In the offline platform, the historical card swiping data of passengers can be processed 

based on the origin-destination (OD) analysis method. Suppose there are m stations on a 

certain line, and a train is heading from 𝑆𝑡𝑎𝑡𝑖𝑜𝑛(1) to 𝑆𝑡𝑎𝑡𝑖𝑜𝑛(𝑚). If there is no transfer 

station, the number of passengers on the train when the train runs between 𝑆𝑡𝑎𝑡𝑖𝑜𝑛(𝑛) and 

𝑆𝑡𝑎𝑡𝑖𝑜𝑛 (𝑛 + 1) can be calculated by Eq. (48): 

 ∑(𝐏𝐛(𝑖) − 𝐏𝐚(𝑖))

𝑛

𝑖=1

 Eq. (48) 

where, 𝐏𝐛(𝑖)  and 𝐏𝐚(𝑖)  represent the boarding and alighting passengers at 𝑆𝑡𝑎𝑡𝑖𝑜𝑛(𝑖) , 

respectively. The number of passengers can be estimated by the shortest path analysis for 

the scenario with the transfer station, which is not discussed here due to it is beyond the 

scope of this research. 

The online platform is designed to collect the data of the second dimension used for training 

the LSTM neural network, that is, the number of people on each train and the number of 

people waiting on the platform. The number of waiting for passengers on the platform 

corresponding to the riding direction will be estimated and recorded through the 

collaboration of the monitoring system and object recognition algorithm. The current 

object recognition technology is able to count the number of passengers shown in pictures 

(or videos) in near real-time (such as you only look once, YOLO). As shown in the figure, 
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these collected near real-time data provide another dimension of information for training 

neural networks. Because the dwell time and travel weight change of trains are directly 

related to the number of passengers on both sides, it is expected to increase the information 

of this dimension to improve the accuracy of the final prediction. In addition, the per capita 

weight is used to times the onboard passenger number to estimate the travel weight change 

of trains.  
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LSTM Model

Origin Destination 
analysis Camera Image

Objective 
Recognition

Station Path analysis
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Prediction Model
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Historical 
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Figure 10: Work Flow of Station agent  

The data are saved to the database as historical monitoring data and also sent to the LSTM 

prediction model as an additional input factor. Assume there are M trains passing through 

a non-transfer station. Set the timestamp when the mth  (m ∈ (0, M] ) train arrive at the 

station is tm, the number of on-board passengers on the train when the train left the station 

is NOm, the predicted number of passenger on-board for the mth train  is NOm̂, the dwell 

time is 𝐷𝑊𝑚, the predicted dwell time is 𝐷𝑊�̂�, and the number of corresponding waiting 

passengers is NWm , the cumulative number of passengers that swiping cards from the 

moment that (m − 1)th train leaving to (m)th train leaving is Sm, then: 

NOm̂, Dwm̂ = LSTM(tm, NWm, Sm, NOm−1
̂  ) Eq. (49) 
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The process is demonstrated in Figure 11. 

 

Figure 11: Prediction of the number of on-board passengers and dwell time 

In order to avoid the accuracy decrease caused by the large difference among different 

seasons, working days and holidays, etc, it is recommended to separate different types of 

data into multiple data sets and train an independent model for each of them to improve the 

accuracy. 

3.4 Central Agent 

The interaction diagram between the central agent and other agents is demonstrated in 

Figure 12. The central agent has sensors, a decision-making model and actuators. One sub-

agent will send a signal to the central agent when it experiences a conflict with others, or 

the desired feedback information is not received on time. The signal will first be received 

by the sensors, which transfer to the decision-making model afterwards. The event code 

and relevant information will be analysed within the decision-making model, and then the 

model gives the instruction accordingly. The general rule for the decision-making process 
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is reducing energy cost, providing safety, punctuality, and passenger comfort. The data 

relating to the solved conflict will be saved in the database for future analysis. The other 

agents have to follow the order from the central agent, even if the action will reduce their 

profit, for the central agent has a higher priority. 
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Figure 12: Interaction between central agent and other types of agents 

 

3.5 Interaction Mechanism 

According to the literature review, the adoption of high communication frequency in a 

multi-agent system leads to the waste of computing and communication resources. In 

contrast, the lower frequency may lead to the failure to meet the engineering requirements. 

Thus a hybrid mechanism combining TTM and ETM is adopted to ensure that the 

communication frequency satisfies the engineering requirements while reducing the 
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communication frequency. 

3.5.1 Time Triggering Conditions 

The time triggering conditions between Train(i_n) agent with other agents are shown in 

Figure 13. Train(i_n) agent communicates with 𝑇𝑟𝑎𝑖𝑛((𝑖 − 1)_𝑛) every 𝑡(𝑖 − 1) ∗ 𝛽(𝑖 −

1)  seconds and with 𝑇𝑟𝑎𝑖𝑛((𝑖 + 1)_𝑛)  every 𝑡(𝑖) ∗ 𝛽(𝑖)  seconds to update the 

environment conditions. The 𝑡(𝑖)  and 𝑡(𝑖 − 1)  is determined by the distance between 

trains, and the smaller distance requires a smaller communication interval between these 

agents. The value of 𝛽(𝑖), 𝛽(𝑖 − 1), and 𝛽(𝑖 + 1) is 1 when the trains are running properly, 

which will be decreased when unexpected situations occur to increase the communication 

frequency. 

Start time triggering 1

Receive signal from Train((i-1)_n) 
Agent about the current position 

and speed of Train((i-1)_n)
Ask Train((i-1)_n) about the 

estimated waiting time and event 
code

Receive the signal about the 
estimated waiting time and event 

code

Calculate the distance 
between Train(i_n) and Train((i-

1)_n)

Brake till stop and wait

if Not satisfied MBS condition

Wait t(i-1)*β(i-1) sec

Send the waiting time to 
Train((i+1)n) and event code 

(e002_(i-1)_n)

Trigger event according to the 
event code received

Drive according to the designed 
seed trajectory

No

Yes
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Start time triggering 2

Receive signal from speed and 
position sensors of Train(i_n)

Calculate the differences 
between actual position/speed 

and the designed position/speed 
of Train(i_n)

Send signal to Train((i+1)_n) 
Agent about the current position 

and speed of Train(i_n)

if The differences beyond the tolerance

Wait t(i)*β(i) sec

Remind the driver of any deviation in 
position and speed, and suggest the driver 
to adjust and return to the planned speed 

trajectory.

Yes

   

Figure 13: Time Triggering pseudocode for Train(i_n) 

 

The time triggering conditions and pseudocode for station agents is demonstrated in Figure 

14 by selecting Station agent E as an example. 

Start time triggering 3

Receive signal from sensors 
about the current passenger 

flow.

Receive the update arrival time 
from Train(i_n) Agent.

Update the update arrival time

Estimate the boarding time 
based on the historical data and 

current passenger flow.

Send the estimated boarding 
time to Train(i_n) Agent and 

event code (e005_(E)_n).

if Estimated boarding time for Train(i_n) > 
Planned boarding time for Train(i_n)

Yes

No

Wait t*β sec

 

Figure 14: Time Triggering pseudocode for Station E 
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3.5.2 Event Triggering Conditions 

Besides time triggering mechanisms, each agent needs extra communication when the 

system meets some unexpected situations. The communication mechanism between them 

is triggered by some event code in such cases. Table 7 summarizes those codes and the 

corresponding events. The rest of this section will explain each event in detail. The 

processes of those mechanisms are shown from Figure 15 to Figure 20. 

Table 7: Summary of event code and relevant situation 

Event Code Represented Situation Send From Received By 

e001_(i)_n Train(i_n) has to stop for a period of time 

due to some unexpected reasons 

Train(i_n) 

Driver 

Train(i_n) 

Agent 

e002_(i-

1)_n 

Train((i-1)_n) adopted a new speed 

trajectory 

Train((i-

1)_n) 

Agent/Centr

al Agent 

Train(i_n) 

Agent/Centr

al Agent 

e003_(i)_n Train(i_n) is not able to switch track, speed 

trajectory optimization should be 

processed 

Train(i_n) 

Agent 

Train(i_n) 

Agent 

e004_(i)_n Train(i_n) is not able to follow the original 

speed trajectory. The Central agent needs 

to check whether Train(i_n) can switch 

tracks. 

Train(i_n) 

Agent 

Central 

Agent 

e005_(E)_n The estimated boarding time is longer than 

the boarding time given in the planned 

timetable. 

Station agent 

E 

Train((i+1)_

n) 

Event triggering with code e001_(i)_n:  

If the Train(i_n) Driver encounters an emergency in the process of travelling (such as line 
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fault) and needs to stop, the driver will send a signal to Train(i_n) agent with an event code: 

“e001_(i)_n“. The signal includes the estimated duration for the temporary parking. The 

agent will then proceed with the process shown in Figure 15, by which to generate an 

optimized new speed trajectory.  

In the process of speed trajectory optimization, safety, passenger comfort, and parking 

accuracy are taken as constraints. Optimization objectives are punctuality and energy 

consumption. Usually, giving a longer time for a train to run between two stations will 

reduce energy consumption. Therefore, for delayed trains, the two optimization objectives 

of punctuality and energy consumption are contradictory. For rail transit systems, 

punctuality is usually prior to saving energy. Therefore, the proposed method takes 

punctuality as a higher priority than energy saving. As shown in Figure 15, when Train(i_n) 

agent receives the event code “e001_(i)_n“, the agent first optimizes the speed trajectory 

by minimizing the travel time. If the possible earliest arrival time is earlier than the planned 

arrival time, Train(i_n) agent will optimize the speed trajectory by minimizing the energy 

consumption with the planned arrival time as constraints. Otherwise, the possible earliest 

arrival time will be adopted as the constraints instead. 
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Start

Train(i_n) Agent records the event code and 

time for future analysis

Train(i_n) Agent collects estimated temporary 

parking duration from drivers

Train(i_n) Agent updates the 

Train(i_n) Driver with the new 

speed trajectory

Train(i_n) Agent sends the 

updated trajectory to 

Train((i+1)_n) Agent

Train(i_n) Agent waits for the 

confirmation receipt from 

Train((i+1)_n) Agent with event 

code:  e002_(i)_n 

Train(i_n) Agent receives the 

confirmation receipt from 

Train((i+1)_n) in t3 sec

Train(i_n) Agent sends the updated 

speed trajectory to the Central 

Agent with event code: 

 e002_(i)_n 

Train(i_n) Agent waits for the 

confirmation receipt from Central 

Agent

End and return to time 

triggering mechanisms

Yes

No

The possible earliest arrival time is 

earlier than the planned arrival time

Train(i_n) Agent optimizes 

Train(i_n) speed 

trajectory by minimizing the 

energy consumption with the 

possible earliest arrival time 

Train(i_n) Agent optimizes 

Train(i_n) speed 

trajectory by minimizing the 

energy consumption with the 

planned  arrival time

Train(i_n) Agent optimizes the speed 

trajectory by minimizing the travel time, thus 

to obtain the possible earliest arrival time

Yes

No

 

Figure 15: Process for Train(i_n) when event code “e001_(i)_n“ is received 

Event triggering with code e002_(i-1)_n : 

Train(i_n) only needs to travel according to its predefined speed trajectory when Train((i-

1)_n) travels properly (the difference between the speed and position of the train at the 

corresponding time and the original plan is within the allowable error range, and the Central 

agent or driver does not send any instructions to change the driving plan). However, if the 

Train(i-1_n) encounters an emergency in the process of travelling (such as line fault) and 

needs to stop, the Train((i-1)_n) agent is triggered by this event to send signals to the 

Train(i_n) Agent. Then Train(i_n) agent needs to make decisions and necessary 

optimization according to the new speed trajectory of Train((i-1)_n). The process for the 

corresponding decision and optimization process is shown in Figure 16. During the process, 

Train(i_n) agent first determines whether the original speed trajectory of Train(i_n) still 

meets the safety requirements of MBS shown in Eq. (50) and Eq. (51).  
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Figure 16: Process for Train(i_n) when event code “e002_(i-1)_n “ is received 

If the distance between Train(i_n) and Train((i-1)_n) meet the MBS requirement, it 

indicates that the original speed trajectory of Train(i_n) still meets the safety requirements. 

Considering that the original speed trajectory was obtained through highly offline 

optimization, thus Train(i_n) would follow the original speed trajectory and schedule 

without further optimization. If not, Train(i_n) needs to adjust the original driving strategy 

to meet the safety requirements. There are two possibilities for adjustment. The first is to 

switch to a parallel runway in the same direction. The advantage of this method is that the 

original speed trajectory can be maintained as much as possible to avoid train delays and 

energy waste. Train(i_n) communicates with the Train((i±1)_(n±1)) Agents to apply the 

track switch. If it is found in this step that the switching will not affect the normal running 

of trains in adjacent tracks in the same direction, and the track position can be switched, 

Train(i_n) agent will reach an agreement with the corresponding train agents in adjacent 

tracks and switch track to avoid losses caused by the re-planning of speed trajectory. If 

running through another track will affect the normal running of Trains on that track, the 

other re-planning method will be adopted instead. Train(i_n) will then maintain the current 

track and adjust the speed trajectory. Then Train(i_n) agent will trigger event 3 with event 
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code “e003_(i)_n“ to optimize the speed trajectory of Train(i_n) based on the collected 

data. 

Event triggering with code e003_(i-1)_n:  

Based on the collected data about the new speed trajectory of Train((i-1)_n), Train(i_n) 

agent first computes the critical moment in this event. The critical moment has three 

characteristics: 1) the critical moment occurs between the time the Train ((i-1)_n) starts 

and completes re-acceleration. 2) The speed of Train((i-1)_n) equals Train(i_n) at the 

moment, which is known as critical speed. 3) MBS requirement is critically satisfied, i.e., 

Eq. (50) and Eq. (51) are critically satisfied. As a result, the critical speed is the highest 

allowable speed at the moment, and kinetic energy can be saved. The critical velocity is 

marked in Figure 26 to help understand this concept. Train(i_n) agent then optimizes the 

speed trajectory before and after Train(i_n) achieves the critical speed by using MILP 

algorithm with constraints given in the Train agent section and sends the event code 

“e002_(i)_n“ to Train((i+1)_n) agent and waits for the receipt from it. It reflects a potential 

failure in the communication channel between Train((i+1)_n) agent and Train(i_n) agent if 

the confirmation is not received in time. In that case, Train(i_n) agent sends event code 

“e002_(i)_n“ to the Central Agent, which takes the responsibility to transfer the 

information among these two train agents. This procedure is demonstrated in Figure 17.  
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Figure 17: Process for Train(i_n) when event code “e003_(i-1)_n “ is received  

Event triggering with code e002_(i)_n : 

When the Train(i_n) agent changes the driving strategy and sends a new speed trajectory 

to the Train((i+1)_n) Agent, the Train(i_n) agent waits for a receipt from the Train((i+1)_n) 

agent to determine that the Train((i+1)_n) agent successfully received the information sent 

by Train((i-1)_n). So as to avoid the potential risk caused by the failure of information 

delivery. If the Train(i_n) agent does not receive the expected information within the 

specified time, it will send the corresponding event code to the Central agent and request 

the Central agent to assist the communication (as shown in Figure 16 and Figure 18). The 

process is shown in Figure 18. 
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Figure 18: Process for the Central agent when event code “e002_(i)_n“ is received 

Event triggering with code e004_(i)_n: 

When the Central agent receives a signal from Train(i_n) agent with event code 

“e004_(i)_n“, the Central agent needs to detect whether the trains running on the 

neighbouring track meets the condition of switching tracks. The Central agent first 

compares the speed trajectories of Train(i_n) and the trains travelling on the adjacent tracks. 

If those trajectories meet MBS requirements, then the switching won’t affect the driving 

plan of the trains running on neighbouring tracks. Thus, the Central agent will send a signal 

to Train(i_n) Agent, allowing Train(i_n) to switch to an adjacent track to travel. However, 

if the Central agent finds that the MBS requirements are not satisfied by those trajectories, 

the Center agent informs Train(i_n) agent that Train(i_n) cannot switch the track. The 

corresponding process is shown in Figure 19. 
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Figure 19: Process for the Central agent when event code “e004_(i)_n“ is received 

Event triggering with code e005_(E)_n:  

Based on the literature review, it is found that computational demand for timetable 

optimization is higher than that for train speed trajectory optimization, which usually relies 

on an offline optimization process. One constraint has to be fulfilled during the 

optimization, which is that the given running time between any two stations has to be longer 

than the possible minimum time that the train can achieve. When the actual boarding time 

in a station exceeds the planned boarding time, the train is still able to arrive at the next 

station on time by adjusting the speed trajectory with a higher average speed.  

As shown in Figure 4, if the actual departure time of Train ((i+1)_n) at Station E is later 

than the planned departure time due to heavy passenger flow, the train will need to speed 

up to accomplish a “catch up task“ to ensure punctuality when arriving at Station F. As a 

result, more energy is consumed due to the higher average speed. In the proposed system, 
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a timetable optimization is applied to minimize energy consumption among Stations D, E 

and F while ensuring punctuality at Station F. The corresponding procedure is shown in 

Figure 20, and the corresponding optimization algorithm can be found in section 3.2.2.  
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Figure 20: Process for the Train((i+1)_n) agent when event code “e005_(E)_n“ is 

received 

3.5.3 MBS Based Safety Constraints 

The block system is widely adopted to ensure safety in rail transit, which consists of Fix 

Block System (FBS) and Moving Block System (MBS) (Lu, Song, and Li 2007). The MBS 

is adopted in this research, for it guarantees a higher control efficiency by providing smaller 

spacing. The principle of the adopted MBS is shown in Figure 21. Any two neighbouring 

trains within such a system should guarantee that the following train should be able to fully 

stop outside of a pre-set safety distance through service braking whenever the leading train 

takes the emergency braking to stop. Considering that two trains with different braking 

abilities may simultaneously run on the same track, two rules are set to further improve 

safety.  



 73 / 128 

 

Speed 
(km/h)

Central 
Agent

Station EStation D

Wire Communication

Wireless Communication

Service 
Braking

Emergency 
Braking

Train ((i-1)_n)

Wireless 
Communication

Distance (km)

Train (i_n)

 

Figure 21: Principle of the Adopted Safety Constraints (MBS Based) 

The first rule is set to avoid potential risk caused by inaccuracy sensors. All errors are 

assumed to cause the predicted train spacing to be larger than the actual one. Thus the 

distance between any two adjacent trains when they entirely stop is always greater than or 

equal to the pre-set block if an emergency situation occurs. As shown in Figure 21, at the 

moment 𝑠𝑏𝑑(𝑖_𝑛) and 𝑒𝑏𝑑((𝑖 − 1)_𝑛) are the service braking distance of Train(i_n) and 

the emergency braking distance of Train((i-1)_n), respectively. The errors of running 

position, speed, complete stop position are represented by 𝑒𝑝, 𝑒𝑣, and 𝑒𝑠𝑝. 

The other rule is set to avoid the risk caused by the difference in speed limit and braking 

capacity of different train models. It is activated when the emergency braking distance of 

the leading train is larger than the service braking distance of the following train. The value 

of 𝑒𝑏𝑑((𝑖 − 1)𝑛) − 𝑠𝑏𝑑(𝑖_𝑛) is assumed to be 0 in such a case (see Eq. (50) and Eq. (51) 

and (6) for details). SBD(i_n) and EBD((i-1)_n) are two arrays, which respectively 
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represents the service braking distance of train(i_n) and the emergency braking distance of 

train(i-1)_n) during the travel duration, and 𝑆𝑠𝑎𝑓𝑒 is the pre-set safety distance. 

min(TP(i − 1−n) − TP(i−n) + (EBD(i − 1−n) − SBD(i−n))
−

) ≥ 𝑆𝑠𝑎𝑓𝑒 Eq. (50) 

(𝐸𝐵𝐷(𝑖 − 1−𝑛) − 𝑆𝐵𝐷(𝑖−𝑛))
−

= {
0 if > 0

𝐸𝐵𝐷(𝑖 − 1−𝑛) − 𝑆𝐵𝐷(𝑖−𝑛) if ≤ 0
 Eq. (51) 
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Chapter 4: Performance Evaluation and Discussion 

This chapter verifies the energy-saving effectiveness of the proposed system by simulating 

four types of disturbances. The first case is the situation that a train in the system needs to 

stop temporarily when it encounters an unexpected situation, and this temporary stop will 

cause the following train to fail to follow the planned speed trajectory. The purpose of this 

case is to test the energy-saving performance of the proposed system when suddenly 

encountering a disturbance of temporary parking of a train. The second and the third case 

study tests the extra dwell time and train travel weight change disturbance in a station 

caused by large passenger flow, respectively. The purpose of these two cases is to test the 

energy-saving performance of the proposed system under the situation of only facing delay 

disturbance and travel weight change disturbance, respectively. Furthermore, results of the 

third case are also adopted to compare with the second case to determine which kind of 

disturbance will cause more energy consumption. The final case tests the system with the 

combination disturbance of delay and travel weight change to discover whether the 

proposed system is able to complete the optimization quickly when it encounters a 

combined disturbance. Each case includes numerous scenarios to prove that the proposed 

system can effectively save energy and meet the needs of near real-time optimization in 

practice. 

Matlab is the coding platform to realize the agent, in which the neural network toolbox and 

CPLEX optimizer are adopted, respectively. The adopted hardware during the test is i7 

8700 CPU, 16G RAM, and RTX 2060 GPU. 
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4.1 Case Studies 

4.1.1 Case Study 1: Disturbance of Unexpected Braking 

The purpose of this case is to test the energy-saving performance of the following train in 

the proposed system when a train makes a temporary emergency stop due to an unexpected 

situation. The Scenario is shown in Figure 22, where three trains are travelling from Station 

A to Station B with a travel distance of 3.65 km. Train(1_1) is the leading train, followed 

by Train(2_1) and Train(3_1). The weight of each train is 230 tonnes, and the maximum 

speed limit in the section is 30 m/s. Each train is constrained to meet MBS requirements 

with a safety distance of 500 metres. The departure times of the three trains are t=0 (s), 

t=100 (s) and t=200 (s), respectively, and the planned travel time between Station A and 

Station B is 250 seconds for each train. For the first 1500m, all trains travel according to 

the offline optimized timetable and speed trajectory, and the involved Agents exchange 

information by following the mechanics presented in the proposed methodology section. 

Each leading train continually sends signals to the following train. The signal contains 

information about the current position, planning speed trajectory, and driving status of the 

leading train, as shown in the process 1~2 in Figure 23. 

Track 1
Station 

A
Station 

B

Train (1_1)Train (2_1)Train (3_1)

Distance = 3.65 km

 

Figure 22: Distribution of Trains and Stations in Case 1 
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Figure 23: Sequence Diagram for the Multi-agent Interaction: Part 1 

At t=100 seconds, the driver of Train(1_1) detects an emergency and estimates that a 

temporary stop of 80 seconds will be required to deal with the situation. The driver 

transmits the corresponding information to the Train(1_1) Agent, and the Train(1_1) agent 

re-optimizes the speed trajectory according to the built-in algorithm and updates the new 

trajectory to the Train(2_1) Agent. After receiving the signal from Train(1_1) Agent, 

Train(2_1) agent discovered that the planned speed trajectory of Train(2_1) unable to 

satisfy the constraints of MBS. Therefore, it starts to send a signal to the Central agent 

consulting if it can switch to the adjacent trajectory. Then the Central agent rejected the 

request due to there are no adjacent tracks in this scenario. The above process is illustrated 

in Figure 24. 

In order to meet the safety requirements of MBS, Train(2_1) must re-optimize the speed 

trajectory by the MILP algorithm with the constraints given by the new trajectory of 

Train(1_1) and MBS condition, and Train(2_1) will be delayed due to this change. The 

trajectory optimization process is shown in Figure 25. 
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Figure 24: Sequence diagram for the Multi-agent Interaction: Part 2 

 

 

Figure 25: Sequence Diagram for the Multi-agent Interaction: Part 3 

Train(2_1) then run based on the new speed trajectory. Train(1_1) fixes the problem at 

t=175 (s) and accelerates, which gives Train(2_1) a further movement authority. At that 

moment, both trains are in a state of delay, so the agents of both trains take time as the prior 

optimization objective. Firstly, the required shortest time to arrive at Station B is simulated 
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based on the environment and train model. The target arriving time is the latest time 

between the environment-allowed earliest arriving time and the scheduled time. Finally, 

both trains arrive at the target station by following the new speed trajectory. The 

corresponding travel speed and total energy consumption of the three trains at each moment 

during this process are shown in Figure 26 (a). 

It should be noted that the speed trajectory of Train(3_1) is not affected. However, the 

Train(2_1) agent has passed its new speed trajectory to Train(3_1) agent when it finds that 

Train(2_1) is not able to run according to the predefined speed trajectory. When the 

Train(3_1) agent receives the information from Train(2_1) Agent, it found that the 

predefined speed trajectory could still meet the MBS constraints. Therefore, Train 3 does 

not need to take the re-optimization procedure because its speed trajectory has been 

optimized offline.  

Figure 26 (b) shows a process that ensures safety without energy optimization, and some 

scholars have proposed MAS systems where the train agent would adopt a similar driving 

strategy in a similar scenario (Hassanabadi et al. 2015). In the control group, the Train 

Agents exchange signals with neighbouring agents, and the signal includes corresponding 

train position and speed but no detailed speed trajectory. Therefore when the same situation 

occurs Train(2_1) agent does not re-optimize when Train(1_1) took braking but continues 

to follow the original speed trajectory. Train(2_1) brakes to slow down and stops outside 

the block until the distance and speed between the two trains fails to meet the MBS 

requirements. Train(2_1) starts to accelerate after the MBS condition is satisfied again. The 

two trains arrive at the destination station subsequently, during which Train(2_1) wastes a 

lot of kinetic energy due to the brake. Thus the total energy consumption is higher than 

Figure 26 (a). A comparison of Figure 26 (a) and (b) shows that Train(2_1) consumes 45MJ 

(53%) less energy than the control group in the system provided.  
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Figure 26: Train Speed Trajectory and Energy Consumption in Case 1 

Figure 26 (c) and (d) show another situation where the driver of Train(1_1) discovers the 

emergency at t=160 seconds, and Train(1_1) needs to stop temporarily for 100 seconds to 

deal with it. At this point, the Train (2_1) has already completed the acceleration phase, so 

the Train(2_1) agent provides a driving strategy to slow down early to ensure a safe 

distance before violating the MBS constraints, but this process tries to avoid wasting 

kinetic energy by slowing down too much. The interaction process between the Train 

Agents is similar to the previous scenario and is not repeated here. Comparing Figure 26 
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(c) and (d), it can be seen that Train (2_1) saves 28.5 MJ of energy. Represents the actual 

energy consumption as 𝐸𝑎𝑐𝑡 , and the optimized energy consumption as 𝐸𝑜𝑝𝑡 , thus the 

Energy Saving Percentage (𝐸𝑆𝑃) can be calculated as: 

 𝐸𝑆𝑃 =
𝐸𝑎𝑐𝑡 − 𝐸𝑜𝑝𝑡

𝐸𝑎𝑐𝑡
× 100% Eq. (52) 

Table 7 summarizes the planned, actual and optimized energy consumption of the three 

trains in the Figure 24 (c) and (d). 

 

Table 8: Planned, Actual and Optimized Energy Consumption of the Three Trains 

 
Planned Energy 

Cost 

Actual Energy 

Cost 

Optimized Energy 

Cost 

Energy Saving 

Percentages 

 𝐸𝑝𝑙𝑎𝑛 𝐸𝑎𝑐𝑡 𝐸𝑜𝑝𝑡 𝐸𝑆𝑃 

Train 1_1 38 66 66 0% 

Train 2_1 38 66.5 38 42.86% 

Train 3_1 38 38 38 0% 

In order to verify the robustness of the provided system, the proposed system is tested in 

numerous similar scenarios. Different scenarios were obtained by adjusting two parameters, 

travel distance and the temporary parking time of Train(1_1). The parameters included in 

the tests are shown in Table 9. The travel distance ranged from 3,650 m to 8,500 m in 50-

meter intervals, which forms a total of 101 possibilities. The duration of the parking ranged 

from 45 seconds to 100 seconds in 5-second intervals, which forms a total of 12 

possibilities. Thus a total of 101*12=1212 different scenarios were tested, and the results 

are summarised in Table 10. According to the results in Table 10, the proposed system has 

a high probability of saving energy when such disturbances occur. 

Table 9: Conditions of Different Scenarios  
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Mass of Each Train 

(t) 

Parking 

Location 

Travel Distance (m) Faulty Dealing 

Duration (s) 

230 1500m 3650:50:8500 45:5:100 

 

Table 10: Summary of the 1212 Scenarios Applying the MAS 

Energy 

Saving 

More than 

30% 
20% to 30% 15% to 20% 10% to 15% 5% to 10% 

Less than 

5% 

Number of 

Scenarios 
494 57 21 16 16 608 

Percentage 40.76% 4.70% 1.73% 1.32% 1.32% 50.17% 

Accumulati

ve 

percentages 

40.76% 45.46% 47.19% 48.51% 49.83% 100.00% 

To further illustrate the energy-saving patterns, more analysis has been carried out. As 

shown in Table 11, the total travel distance does not have a significant impact on energy 

saving. The principle of energy saving for this case relies on the necessary speed trajectory 

optimization according to the estimated faulty dealing duration of Train (1_1) and the 

distance between the two trains to minimize the kinetic energy loss. Theoretically, as the 

distance increases, the primary energy consumption of the train changes from providing 

kinetic energy to overcoming the resistance. Therefore, the ratio of the saved energy to the 

total energy consumption will decrease as the travel distance increases. However, 9000m 

is still a short-distance journey, and most of the energy consumption is generated when the 

train starts to run to provide kinetic energy for the train. The phase of cruising did not 

appear for a short time; therefore, it was not observed that the proportion of energy-saving 

decreased with the increase of distance in this case study. 
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Table 11: Impact from Travel Distance on Energy Saving 

Travel Distance 

4000 

to 

5000 

5000 

to 

6000 

6000 

to 

7000 

7000 

to 

8000 

8000 

to 

9000 

ESP 0%-70.35% 0%-76.42% 0%-80.38% 0%-82.57% 0%-82.91% 

Average 16.41% 21.57% 27.22% 29.64% 35.04% 

Variance 25.87 27.87 29.68 30.79 32.57 

As shown in Table 12, when the time spent by Train (1_1) to deal with the faulty is between 

45-65 seconds, the average energy savings is zero. This is because when the Train (1_1) 

has a short stopping time, the Train (2_1) can maintain its original speed trajectory without 

delay, and the energy consumption in these cases will be the same as the planned travel 

strategy. By contrast, the highest average ESP (82.90%) occurs when the faulty dealing 

duration is between 65 and 75 seconds. With the increase of the dealing fault duration, the 

kinetic energy loss of Train (2_1) inevitably increases because it needs to reduce the speed 

to satisfy the MBS requirements. 

Table 12: Impact from Faulty Dealing Duration on Energy Saving 

Faulty 

Dealing 

Duration (s) 

45 to 55 55 to 65 65 to 75 75 to 85 85 to 95 95 to 100 

ESP 0%-0% 0%-0% 0%-82.69% 0%-82.90% 0%-61.76% 0%-46.43% 

Average 0% 0% 34.52% 63.91% 37.62% 20.64% 

Variance 0 0 37.66 19.19 19.75 16.96 

By analysing the thirty-seven scenarios where the energy-saving reaches above 30%, it is 

found that when the other conditions remain the same, and Trains completed the 

acceleration phase, a shorter faulty dealing duration (but long enough to allow Train (2_1) 

to change the original speed trajectory) would allow Train (2_1) to save more energy. 

Because in shorter durations, Train (2_1) could reserve more kinetic energy. Considering 
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the acceleration phase of trains is relatively short; usually, the Train (2_1) has already 

finished the acceleration phase when it receives the signal from Train (1_1). Hence with 

the increasing faulty dealing duration, the average speed of Train (2_1) must be reduced to 

ensure a safe distance from Train (1_1). A shorter dealing duration allows a higher average 

speed. Hence the loss of kinetic energy of Train (2_1) would be reduced, which leads to a 

higher energy saving. 

4.1.2 Case Study 2: Disturbance of Delay 

Three trains travel from Station A to Station G according to the scheduled schedule.  

A B C D E F G

3.4 1.2 3.6 1.2 1.4 1.6
Distance (km):

Station ID:

Total: 12.4

(a)

(b)
 

Figure 27: Time-distance and Corresponding Energy Consumption of the Three Trains 

in Case Study 2 



 85 / 128 

 

Figure 27 (a) shows the positions of seven stations. The abscissa of Figure 27 (b) indicates 

the time, the left ordinate indicates the distance, and the right ordinate indicates the 

consumed energy of the corresponding time. Different colour of lines represents the 

planned, actual and optimized travel strategy. The planned dwell time for each train in each 

station is twenty seconds for passengers to board and alight. Due to the large passenger 

flow at stations B, D and F during peak hours, every train needs to stay for extra twenty 

seconds when passing through these three stations in the actual group. These trains always 

speed up in the next section to ensure that they arrive at the next target station on time when 

they experience a delay, so as to reduce the gap between the actual timetable and the 

planned one. These trains are always able to arrive at the next station on time due to the 

existence of buffer time. However, extra energy is consumed within the catching-up section. 

A trained DNN is employed to reschedule the timetable according to the disturbance within 

each cluster in the optimized group.  

Train 1 in Case Study 2 

Case study 2 only focuses on exploring the optimized performance of the proposed system 

under delay disturbance, thus it is assumed that the travel weight of trains under the planned, 

actual and optimized group are consistent in each section. The estimated travel weights of 

Train 1 in the five sections are the same, which is 180t, and the dwell time at each station 

is 20 seconds in the planned timetable. The running time among Section B-C, D-E, F-G E 

and F-G in the actual group is 20 seconds shorter than that in the planned group because 

delay occurs in stations B, D and F. In the optimized group, however, the train agent reduces 

the total running time in each cluster by 20 seconds and re-schedules the remaining travel 

time. It can be concluded from Figure 28 and Table 13 that the estimated energy 

consumption of Train 1 is 138.3 MJ, the actual energy consumption is 179.71MJ, and the 

optimized energy consumption is 161.3 MJ. The proposed system achieves 10.24% ESP. 
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Figure 28: Distance -speed Trajectory and Corresponding Energy Consumption of 

Train 1 

 

Table 13: Travel Conditions of Train 1 in Case Study 2 

 Section 

A-B 

 Section 

B-C 

 Section 

C-D 

 Section 

D-E 

 Section 

E-F 

 Section 

F-G 
Total 

Planned Travel 

Weight (t) 

180 180 180 180 180 180 1080 

Planned Travel 

Time (s) 

224.55 105.45 233.89 106.11 115.57 124.43 910 

Planned Travel 

Energy (MJ) 

30.78 17.18 31.98 16.95 19.48 21.93 138.3 

Actual Travel 

Weight (t) 

180 180 180 180 180 180 1080 
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Actual Travel 

Time (s) 

224.55 85.45 233.89 86.11 115.57 104.43 850 

Actual Travel 

Energy (MJ) 

30.78 31.38 31.98 30.66 19.48 35.42 179.71 

Optimized Travel 

Weight (t) 

180 180 180 180 180 180 1080 

Optimized Travel 

Time (s) 

205.35 104.65 213.89 106.11 103.94 116.06 850 

Optimized Travel 

Energy (MJ) 

36.78 17.48 37.8 16.95 25.69 26.6 161.3 

Train 2 in Case Study 2 

The speed trajectory, energy consumption, and time distribution of Train 2 are shown in 

Figure 29 and Table 14. The estimated travel weight of Train 2 varies slightly among the 

five sections. The travel weight within Section A-B, C-D, and E-F in Planned, Actual and 

Optimized groups 200t, while the travel weight within other sections is 180t. The planned, 

actual and optimized energy consumption of Train 2 are 158.76 MJ, 210.04 MJ and 189.06 

MJ, respectively. Compared with the actual group, the proposed system achieves 9.99% 

ESP. 
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Figure 29: Distance -speed Trajectory and Corresponding Energy Consumption of 

Train 2 

 

Table 14: Travel Conditions of Train 2 in Case Study 2 

  Section 

A-B 

 Section 

B-C 

 Section 

C-D 

 Section 

D-E 

 Section 

E-F 

 Section 

F-G 
Total 

Planned Travel 

Weight (t) 

200 180 200 180 200 180 1140 

Planned Travel 

Time (s) 

225.7 104.3 235.7 104.3 107.02 112.98 890 

Planned Travel 

Energy (MJ) 

33.62 17.61 34.73 17.61 26.32 28.86 158.76 

Actual Travel 

Weight (t) 

200 180 200 180 200 180 1140 

Actual Travel 

Time (s) 

225.7 84.3 235.7 84.3 107.02 92.98 830 

Actual Travel 

Energy (MJ) 

33.62 32.66 34.73 32.66 26.32 50.05 210.04 
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Optimized Travel 

Weight (t) 

200 180 200 180 200 180 1140 

Optimized Travel 

Time (s) 

207.15 102.85 215.7 104.3 100.98 99.02 830 

Optimized Travel 

Energy (MJ) 

40.08 18.22 41.21 17.61 32.16 39.78 189.06 

Train 3 in Case Study 2 

The total travel time of Train3 in the given seven stations is 950 seconds. The 

corresponding speed trajectory, energy consumption and time distribution are shown in 

Figure 30 and Table 15, and the planned travel weight is the same as that of train 2. The 

planned, actual and optimized energy consumption of Train 3 is 134.72MJ, 169.83MJ and 

158.76MJ respectively. Compared with the actual group, the proposed system saves 11MJ 

of energy and achieves 6.52% 𝐸𝑆𝑃. 
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Figure 30: Distance-speed Trajectory and Corresponding Energy Consumption of Train 

3 

Table 15: Travel Conditions of Train 3 in Case Study 2 

 
 Section 

A-B 

 Section 

B-C 

 Section 

C-D 

 Section 

D-E 

 Section 

E-F 

 Section 

F-G 
Total 

Planned Travel 

Weight (t) 

200 180 200 180 200 180 1140 

Planned Travel 

Time (s) 

239.38 110.62 249.54 110.46 117.35 122.65 950 

Planned Travel 

Energy (MJ) 

29.39 15.53 30.55 15.58 21.02 22.65 134.72 

Actual Travel 200 180 200 180 200 180 1140 
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Weight (t) 

Actual Travel 

Time (s) 

239.38 90.62 249.54 90.46 117.35 102.65 890 

Actual Travel 

Energy (MJ) 

29.39 25.94 30.55 26.11 21.02 36.82 169.83 

Optimized 

Travel Weight 

(t) 

200 180 200 180 200 180 1140 

Optimized 

Travel Time (s) 

225.7 104.3 235.7 104.3 107.02 112.98 890 

Optimized 

Travel Energy 

(MJ) 

33.62 17.61 34.73 17.61 26.32 28.86 158.76 

Numerical Analysis in Case Study 2 

There are 8619 similar scenarios tested in this case. In each scenario, a train travels among 

three stations and a random delay occurs at the middle one.  

At least one of the parameters, such as travel weight, distance, time and delay, is different 

in different cases. Travel weight equals the multiplication of mass by gravitational 

acceleration, and mass ranges from 180 tons to 240 tons. The total travel distance (𝐷𝑡𝑜𝑡𝑎𝑙) 

equals the sum of all sections, and the distance of each section ranges from 1200m to 

6000m. The total running (𝑇1,3
𝑟𝑢𝑛𝑛𝑖𝑛𝑔

) time ranges from 
𝐷𝑡𝑜𝑡𝑎𝑙

15 𝑚/𝑠
 to 

𝐷𝑡𝑜𝑡𝑎𝑙

10 𝑚/𝑠
, and the speed limit 

is 30m/s. The delay ranges from 10% ∗ 𝑇1,3
𝑟𝑢𝑛𝑛𝑖𝑛𝑔

 to 20% ∗ 𝑇1,3
𝑟𝑢𝑛𝑛𝑖𝑛𝑔

. The ESP distribution 

of these simulation results is shown in Table 16. Results show that all ESP of the tested 

scenarios are positive, ranging from 0.32% to 51.97%, and the average value is 10.13%. 

The average computational time for each scenario (schedule optimization accelerated 

trajectory optimization) was 4.13 seconds on a computer with an i7 8700 CPU. The 



 92 / 128 

 

computational results show that the proposed method is able to optimize the timetable and 

the velocity trajectory in near real-time, which satisfies the practical demands. 

Table 16: Summary of the 8619 Scenarios Applying the MAS 

𝑬𝑺𝑷 
More than 

30% 
20% to 30% 15% to 20% 10% to 15% 5% to 10% 

Less than 

5% 

Number of 

Scenarios 
358 196 818 1510 2657 2672 

Percentage 4.36% 2.38% 9.96% 18.39 % 32.36% 32.54% 

Accumulative 

percentages 
4.36% 6.75% 16.71% 35.10% 67.46% 100.00% 

In order to discover the parameters closely related to energy saving, the relationship 

between different delay parameters and ESP is explored in this study. Table 17 shows the 

Pearson coefficient between these parameters and the energy savings. 

Table 17: Pearson coefficients between different parameters in category 1 

 Δ𝑇 (𝑠) 
𝐷𝑡𝑜𝑡𝑎𝑙

Δ𝑇
(𝑚/𝑠) |Δ𝑇𝑝| |Δ𝑇𝑟| 

𝐸𝑆𝑃 -0.051 -0.427 0.542 0.538 

A stronger correlation between two variables results in a closer absolute value of Pearson 

coefficient to 1. As shown in Table 17, |Δ𝑇𝑝| and Δ𝑇𝑟 have a strong correlation with the 

ESP. Both |Δ𝑇𝑝| and Δ𝑇𝑟 are dimensionless variables, which are calculated by Eq. (53) and 

Eq. (54), where Δ𝑇𝑝 represents the percentage of running time changes against the planned 

running time, and Δ𝑇𝑟  represents the distribution difference between the actual running 

time and the planned running time. The planned running time for the two sections in each 

scenario is set as 𝑇𝑝𝑙𝑎𝑛1
𝑟𝑢𝑛𝑛𝑖𝑛𝑔

 and 𝑇𝑝𝑙𝑎𝑛2
𝑟𝑢𝑛𝑛𝑖𝑛𝑔

, while the actual running time are set as 𝑇𝑎𝑐𝑡1
𝑟𝑢𝑛𝑛𝑖𝑛𝑔
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and 𝑇𝑎𝑐𝑡2
𝑟𝑢𝑛𝑛𝑖𝑛𝑔

.  

 Δ𝑇𝑝 =
|(𝑇𝑝𝑙𝑎𝑛1

𝑟𝑢𝑛𝑛𝑖𝑛𝑔
+ 𝑇𝑝𝑙𝑎𝑛2

𝑟𝑢𝑛𝑛𝑖𝑛𝑔
) − (𝑇𝑎𝑐𝑡1

𝑟𝑢𝑛𝑛𝑖𝑛𝑔
+ 𝑇𝑎𝑐𝑡2

𝑟𝑢𝑛𝑛𝑖𝑛𝑔
)|

𝑇𝑝𝑙𝑎𝑛1
𝑟𝑢𝑛𝑛𝑖𝑛𝑔

+ 𝑇𝑝𝑙𝑎𝑛2
𝑟𝑢𝑛𝑛𝑖𝑛𝑔

 Eq. (53) 

 Δ𝑇𝑟 =
𝑇𝑝𝑙𝑎𝑛1

𝑟𝑢𝑛𝑛𝑖𝑛𝑔

𝑇𝑝𝑙𝑎𝑛2
𝑟𝑢𝑛𝑛𝑖𝑛𝑔

−
𝑇𝑎𝑐𝑡1

𝑟𝑢𝑛𝑛𝑖𝑛𝑔

𝑇𝑎𝑐𝑡2
𝑟𝑢𝑛𝑛𝑖𝑛𝑔

 Eq. (54) 

 

 

Figure 31: Energy-saving Percentages (𝐸𝑆𝑃) of Different Delay 

Figure 31 shows the relationship of 𝐸𝑆𝑃 to related variables. In Figure 31, the ordinates of 

all subgraphs are 𝐸𝑆𝑃 and the abscissa are Δ𝑇𝑝. Figure 31 (a) to (c) shows the average, 

minimum, and maximum values of 𝐸𝑆𝑃 for different Δ𝑇𝑝. It can be discovered that the 

ratio of delay time to total time is positively correlated with energy savings. In Figure 31 

(d), the abscissa is delta 𝑇𝑟, which is the difference between the ratio of the two stations' 

actual run-time to the planned run-time. Thus the 𝐸𝑆𝑃 is less than 20% when Δ𝑇𝑟 is close 

to zero.  
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Optimization Duration: 

The box diagram in Figure 32 shows the optimization duration of the tested cases. The 

upper and lower limit is the maximum and minimum optimization time of each group. The 

upper and lower boundaries of the box are the upper and lower quartile, respectively. The 

longest optimization time is 6.81 seconds, and the average optimization speed is 0.83 

seconds in 8619 cases. Table 18 shows the optimization duration of the tested scenarios. 

The proposed system finishes the optimization process in 2.42 seconds for 95% of 

scenarios, proving the system satisfies the near real-time optimization requirements under 

delay disturbance. 

Maximum duration=6.81 seconds

Average duration=0.83 seconds
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Figure 32: Optimization Duration of tested Scenarios Under Delay Disturbance 
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Table 18: Optimization Duration of Tested Scenarios under Delay Disturbance 

Optimization Duration (s) ≤ 0.39 ≤ 0.54 ≤ 0.94 ≤ 2.42 ≤ 6.81 

Satisfied Scenarios 2155 4310 6465 8189 8619 

Satisfied Percentage 25% 50% 75% 95% 100% 

4.1.3 Case Study 3: Disturbance of Weight Change 

This Case Study tests the performance of the proposed system when the rail transit system 

encounters the disturbances of weight change.  

A B C D E F G

1.2 1.8 3.4 1.6 5.4 2.2
Distance (km)

Station ID:

Total: 15.6

(a)

(b)
 

Figure 33: Time-distance and Corresponding Energy Consumption of the Three 

Trains in Case Study 3 
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There are three trains in the tested example, and the positions of seven stations are shown 

in Figure 33 (a). The planned dwell time of the trains at each station is 20 seconds, and no 

delay disturbance occurs during the process. However, the actual weights of each train 

running within sections are assumed to be different from the plan. In the optimization group, 

the trained DNN reschedules the timetable in each cluster according to the predicted actual 

travel weight, and the MILP algorithm is employed to optimize the trajectory accordingly. 

Each train needs to arrive at the last station in each cluster on time to avoid a large gap 

between the adopted timetable and the original one. Similar to the previous case study, 

Figure 33 (b) shows the planned time-distance diagram of each train and the corresponding 

energy consumption. 

Train 1 in Case Study 3 

The distance-speed trajectory of Train 1 is shown in Figure 32, and the planned, actual and 

optimized travel time within each section is shown in Table 19. Case Study 3 focuses on 

exploring the optimized performance of the proposed system with only weight change 

disturbance; thus, the planned travel time and actual travel time of Train 1 in each section 

are consistent. The train agent re-schedules the timetable within each cluster by considering 

the weight change in the optimized group providing consistent total travel time among each 

cluster. As shown in Figure 32 and Table 19, the planned energy consumption of Train 1 

from Station A to Station G is 195.16MJ, the actual energy consumption is 219.18MJ, and 

the energy consumption of the optimized group is 215.69MJ. Train 1 achieved a 1.59% 

𝐸𝑆𝑃 reduction, which is 3.49MJ . 
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Figure 34: Distance-speed Trajectory and Corresponding Energy Consumption of 

Train 1 

Table 19: Travel Conditions of Train 1 in Case Study 3 

 Station 

A-B 

Station 

B-C 

Station 

C-D 

Station 

D-E 

Station 

E-F 

Station 

F-G 
Total 

Planned Travel 

Weight (t) 

200 200 200 200 200 200 1200 

Planned Travel 

Time (s) 

90.43 109.57 223.34 126.66 328.32 181.68 1060 

Planned Travel 

Energy (MJ) 

29.95 45.08 34.4 23.55 41.1 21.08 195.16 

Actual Travel 

Weight (t) 

220 240 180 240 240 180 1300 

Actual Travel 

Time (s) 

90.43 109.57 223.34 126.66 328.32 181.68 1060 

Actual Travel 33.91 57.7 31.14 28.69 48.62 19.12 219.18 
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Energy (MJ) 

Optimized Travel 

Weight (t) 

220 240 180 240 240 180 1300 

Optimized Travel 

Time (s) 

87.65 112.35 208.54 141.46 344.7 165.3 1060 

Optimized Travel 

Energy (MJ) 

37.68 52.72 35.74 22.08 44.54 22.94 215.69 

Train2 in Case Study 3 

The total planned travel time of Train 2 between the seven stations is 1060 seconds, and 

the corresponding speed trajectory, energy consumption and time are shown in Figure 35 

and Table 20. The planned energy consumption of Train 1 and Train 2 are the same because 

their travel weights and planned running time in each cluster are equal, which is 195.16MJ. 

The actual energy consumption and optimized energy consumption of Train 2 are 

217.18MJ and 213.90MJ, respectively, which gives a 1.51% ESP reduction. 

 

Figure 35: Distance-speed Trajectory and Corresponding Energy Consumption of Train 

2 



 99 / 128 

 

Table 20: Travel Conditions of Train 2 in Case Study 3 

 Section 

A-B 

Section 

B-C 

Section 

C-D 

Section 

D-E 

Section 

E-F 

Section 

F-G 
Total 

Planned Travel 

Weight (t) 
200 200 200 200 200 200 1200 

Planned Travel 

Time (s) 
90.43 109.57 223.34 126.66 328.32 181.68 1060 

Planned Travel 

Energy (MJ) 
29.95 45.08 34.4 23.55 41.1 21.08 195.16 

Actual Travel 

Weight (t) 
220 240 200 240 180 240 1320 

Actual Travel 

Time (s) 
90.43 109.57 223.34 126.66 328.32 181.68 1060 

Actual Travel 

Energy (MJ) 
33.91 57.7 34.4 28.69 37.43 25.05 217.18 

Optimized Travel 

Weight (t) 
220 240 200 240 180 240 1320 

Optimized Travel 

Time (s) 
87.65 112.35 210.71 139.29 313.13 196.87 1060 

Optimized Travel 

Energy (MJ) 
37.68 52.72 38.78 22.82 40.31 21.59 213.9 

Train 3 in Case Study 3 

The corresponding speed trajectory, energy consumption and travel time are shown in 

Figure 36 and Table 21. The planned travel duration of Train 3 between seven stations is 

1120 seconds, which is slightly longer than that of Train1 and Train 2. Therefore, the 

planned energy consumption of Train 3 is slightly lower than that of the two leading trains, 

which is 166.91 MJ. The optimized energy consumption of Train 3 is 180.85MJ, which is 
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1.82 MJ lower than the actual energy consumption and gives 1% 𝐸𝑆𝑃. 

 

Figure 36: Distance-speed Trajectory and Corresponding Energy Consumption of Train 

3 

 

Table 21: Travel Conditions of Train 3 in Case Study 3 

 Section 

A-B 

Section 

B-C 

Section 

C-D 

Section 

D-E 

Section 

E-F 

Section 

F-G 
Total 

Planned Travel 

Weight (t) 
200 200 200 200 200 200 - 

Planned Running 

Time (s) 
94.83 125.17 233.22 136.78 344.54 185.46 1120 
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Planned Energy 

Consumption 

(MJ) 

25.18 32.85 31.15 19.68 37.74 20.3 166.91 

Actual Travel 

Weight (t) 
240 200 240 180 240 180 - 

Actual Running 

Time (s) 
94.83 125.17 233.22 136.78 344.54 185.46 1120 

Actual Energy 

Consumption 

(MJ) 

31.79 32.85 37.25 17.77 44.58 18.42 182.67 

Optimized Travel 

Weight (t) 
240 200 240 180 240 180 - 

Optimized 

Running Time (s) 
97.73 122.27 240 130 357.41 172.59 1120 

Optimized 

Energy 

Consumption 

(MJ) 

28.88 34.93 34.74 19.91 41.38 21.02 180.85 

Numerical Analysis of Case Study 3 

A total of 26,537 scenarios are tested in this category. It is assumed that no delay occurs 

during operation in each scenario. But the weight of the actual trip is different from the 

original plan. It is assumed that the planned train mass is fixed at 200 tons, while the actual 

train mass is 180 tons to 240 tons. Other parameter settings and ranges are similar to Case 

Study 2. The test results show that the average, maximum and minimum ESP are 0.21%, 

5.50%, and -0.009%, respectively. The value of 𝐸𝑆𝑃 is not significant compared with the 

delay disturbance (the second category). Table 22 summarizes the value of 𝐸𝑆𝑃  with 
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different weight changes. 

Table 22: Summary of the 26537 Scenarios Applying the MAS 

Total Mass 

Difference (t) 
-80.00  -60.00  -40.00  -20.00  0.00  20.00  40.00  

𝐸𝑆𝑃𝑚𝑎𝑥 (%) 1.24  2.05  3.56  5.50  3.24  1.61  1.96  

𝐸𝑆𝑃𝑚𝑖𝑛 (%) -0.01  0.00  -0.01  0.00  0.10  0.00  -0.01  

𝐸𝑆𝑃𝑎𝑣𝑒 (%) 0.03  0.08  0.20  0.38  0.32  0.09  0.01  

Number of 

Scenarios 
1784 3557 5328 7058 3503 3564 1747 

Percentage 6.72% 13.40% 20.07% 26.59% 13.20% 13.43% 6.58% 

Accumulative 

percentages 
6.72% 20.12% 40.20% 66.79% 79.99% 93.42% 100.00% 

Similar to the previous category, the parameters that have a major impact on energy-saving 

efficiency when the weight change disturbance occurs is further analysed. The Pearson 

coefficient of relevant parameters is shown in Table 23. The Δ𝑊𝑝 and Δ𝑊𝑟 can be obtained 

by Eq. (55) and Eq. (56), where 𝑊𝑝𝑙𝑎𝑛1
𝑟𝑢𝑛𝑛𝑖𝑛𝑔

 , 𝑊𝑎𝑐𝑡1
𝑟𝑢𝑛𝑛𝑖𝑛𝑔

 , 𝑊𝑝𝑙𝑎𝑛2
𝑟𝑢𝑛𝑛𝑖𝑛𝑔

 , and 𝑊𝑎𝑐𝑡2
𝑟𝑢𝑛𝑛𝑖𝑛𝑔

 

respectively represent the assumed travel weight and actual running weight of the first and 

second sections. 

 Δ𝑊𝑝 =
|(𝑊𝑝𝑙𝑎𝑛1 + 𝑊𝑝𝑙𝑎𝑛2) − (𝑊𝑎𝑐𝑡1 + 𝑊𝑎𝑐𝑡2)|

𝑊𝑝𝑙𝑎𝑛1 + 𝑊𝑝𝑙𝑎𝑛2
 Eq. (55) 

 Δ𝑊𝑟 =
𝑊𝑝𝑙𝑎𝑛1

𝑊𝑝𝑙𝑎𝑛2
−

𝑊𝑎𝑐𝑡1

𝑊𝑎𝑐𝑡2
 Eq. (56) 

 

Table 23: Pearson coefficients between different parameters of category 2 

 
Δ𝑊 (𝑁) 

𝐷𝑡𝑜𝑡𝑎𝑙

ΔW
 (𝑚/𝑁) |Δ𝑊𝑝| |Δ𝑊𝑟| 

𝐸𝑆𝑃 0.039 -0.15 -0.377 0.759 
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Figure 37: Relation between 𝐸𝑆𝑃, Δ𝑊𝑝 and Δ𝑊𝑟 

The ordinates of all subgraphs in Figure 37 are 𝐸𝑆𝑃, while the abscissas of Figure 37 (a) 

to (c) are Δ𝑊𝑝. The 𝐸𝑆𝑃 values shown in Figure 37 (a) to (c) are average, maximum and 

minimum values for the corresponding Δ𝑊𝑝, respectively. Three subfigures show that the 

𝐸𝑆𝑃  value does not increase monotonously with the increase of Δ𝑊𝑝 . The abscissas of 

Figure 37 (d) to (f) are Δ𝑊𝑟. The three subfigures show that the average, maximum, and 

minimum value of 𝐸𝑆𝑃  are positively correlated with the absolute value of Δ𝑊𝑟 . The 

maximum ESP is 5.497%, and the minimum is -0.009% with the weight change 

disturbance. The value of 𝐸𝑆𝑃 is very small in most scenarios compared with the scenarios 

with delay disturbances, which indicates that travel weight change has little influence on 

the distribution of timetables. This phenomenon proves that the extra energy consumption 

caused by weight change disturbance is less than that caused by delay. Hence, the 

prediction accuracy of travel weight by passenger flow will not significantly impact the 

energy-saving of the proposed system. 

Optimization Duration in Case Study 3 
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The optimization duration for case study 3 with different ΔWp is shown in Figure 38. The 

maximum optimization duration is 7.2 seconds, while the average optimization duration is 

0.86 for this case. Furthermore, the optimization duration seems not influenced by the value 

of ΔWp . The diagram shows that the proposed system is able to provide the optimized 

control strategy in a near real-time when the system faces disturbances of travel weight 

change.  

Whisker

Max

Min

Upper quartile

Lower quartile

Median

Whisker

Maximum duration=7.20 seconds

Average duration=0.86 seconds

 

Figure 38: Optimization Duration of Tested Scenarios Under Weight Change 

Disturbances 

 

Table 24: Optimization Duration of Tested Scenarios under Mass Change Disturbance 

Optimization Duration (s) ≤ 0.42 ≤ 0.58 ≤ 0.98 ≤ 2.50 ≤ 7.20 
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Satisfied Scenarios 6635 13269 19904 25212 26537 

Satisfied Percentage 25% 50% 75% 95% 100% 

4.1.4 Case Study 4: Delay and Weight Change 

Three trains travel among seven stations, and both delay and mass change occur during the 

process. The locations of the seven stations are shown in Figure 39 (a). Random delays and 

travel weight changes occur during the test process, and the time and travel weight of the 

planned, actual, and optimized groups are demonstrated in the following descriptions. 
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A B C D E F G

2.8 1.8 3.4 2.2 1.6 3.0
Distance (km):

Station ID:

Total: 14.8

(a)

(b)
 

Figure 39: Time-speed Trajectory and Corresponding Energy Consumption of the 

Three Trains 

Train 1 in Case Study 4 

The total running time of train 1 is 1250 seconds among the three clusters. The speed 

trajectory, energy consumption and time distribution are shown in Figure 40 and Table 25. 

The planned travel weight within each section is 200 t, while the travel weight of different 
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sections in the actual and optimized group are different. Random delays occur at Stations 

B, D and F. The planned, actual, and optimized energy consumption of Train 1 are 123.73 

MJ, 189.14 MJ and 173.29 MJ, respectively. The optimization provides 8.38% ESP. 

 

Figure 40: Distance-speed Trajectory and Corresponding Energy Consumption of 

Train1 in Case Study 4 

 

Table 25: Travel Conditions of Train 1 in Case Study 4 

 Station 

A-B 

Station 

B-C 

Station 

C-D 

Station 

D-E 

Station 

E-F 

Station 

F-G 
Total 

Planned Travel 

Weight (t) 
200 200 200 200 200 200 1200 
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Planned Running 

Time (s) 
201.04 148.96 293.01 216.99 157.92 232.08 1250 

Planned Energy 

Consumption 

(MJ) 

27.87 20.97 20.59 15.29 14.75 24.26 123.73 

Actual Travel 

Weight (t) 
240 200 240 220 180 220 1300 

Actual Running 

Time (s) 
201.04 108.96 293.01 156.99 157.92 192.08 1110 

Actual Energy 

Consumption 

(MJ) 

33.36 45.88 23.96 32.21 13.4 40.33 189.14 

Optimized Travel 

Weight (t) 
240 200 240 220 180 220 1300 

Optimized 

Running Time (s) 
176.87 133.13 259.46 190.54 131.79 218.21 1110 

Optimized 

Energy 

Consumption 

(MJ) 

46.12 27.26 29.73 21.11 19.28 29.8 173.29 

Train 2 in Case Study 4 

The total given running time of Train 2 is 1370 seconds, as shown in Table 26, and the 

speed trajectory is shown in Figure 41. Similar to Train1, random delay and travel weight 

change disturbance occurs during the process. The energy consumption of Train 2 is 106.03 

MJ in the planned group, 142.05 MJ in the actual group and 128.78 MJ in the optimized 

group. The proposed system provides 13.27 MJ energy savings, and the ESP for train 2 is 

9.34%. 
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Figure 41: Distance-speed Trajectory and Corresponding Energy Consumption of 

Train2 in Case Study 4 

 

Table 26: Travel Conditions of Train 2 in Case Study 4 

 
Station 

A-B 

Station 

B-C 

Station 

C-D 

Station 

D-E 

Station 

E-F 

Station 

F-G 
Total 

Planned Travel 

Weight (t) 200 200 200 200 200 200 1200 

Planned 

Running Time 

(s) 214.01 155.99 308.94 241.06 184.38 265.62 1370 

Planned Energy 

Consumption 

(MJ) 24.69 19.05 18.96 12.91 11.2 19.22 106.03 

Actual Travel 200 180 180 220 180 200 1160 
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Weight (t) 

Actual Running 

Time (s) 214.01 115.99 308.94 181.06 184.38 205.62 1210 

Actual Energy 

Consumption 

(MJ) 24.69 35.3 17.51 23.2 10.27 31.09 142.05 

Optimized 

Travel Weight 

(t) 200 180 180 220 180 200 1160 

Optimized 

Running Time 

(s) 194.95 135.05 269.99 220.01 155.72 234.28 1210 

Optimized 

Energy 

Consumption 

(MJ) 29.9 23.46 21.58 16.22 13.75 23.86 128.78 

Train 3 in Case Study 4 

The speed trajectory, energy consumption and time distribution of Train 3 are shown in 

Figure 42 and Table 27. Train 3 has 1370 seconds of running time for the planned group. 

Both delay and weight change disturbances occur during the process of running. The 

planned, actual, and optimized energy consumption for Train 3 is 103.85 MJ, 154.08 MJ 

and 138.37 MJ. Thus the ESP for Train 3 is 10.19%, and the energy savings is 15.71MJ. 
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Figure 42: Distance-speed Trajectory and Corresponding Energy Consumption of 

Train3 in Case Study 4 

 

Table 27: Travel Conditions of Train 3 in Case Study 4 

 Station 

A-B 

Station 

B-C 

Station 

C-D 

Station 

D-E 

Station 

E-F 

Station 

F-G 
Total 

Planned Travel 

Weight (t) 
200 200 200 200 200 200 1200 

Planned Running 

Time (s) 
223.79 166.21 300.28 229.72 184.38 265.62 1370 

Planned Energy 

Consumption 

(MJ) 

22.77 16.92 19.8 13.94 11.2 19.22 103.85 

Actual Travel 

Weight (t) 
200 220 220 240 200 220 1300 
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Actual Running 

Time (s) 
223.79 126.21 300.28 169.72 184.38 205.62 1210 

Actual Energy 

Consumption 

(MJ) 

22.77 35.71 21.35 28.82 11.2 34.22 154.08 

Optimized Travel 

Weight (t) 
200 220 220 240 200 220 1300 

Optimized 

Running Time (s) 
199.12 150.88 262.88 207.12 155.46 234.54 1210 

Optimized 

Energy 

Consumption 

(MJ) 

28.46 22.38 26.78 19.56 15.18 26.01 138.37 

Numerical Analysis of Case Study 4  

A total of 11755 scenarios were tested to verify the speed and efficiency of the proposed 

system under delay and weight change disturbance. A train runs among three stations in 

each scenario. Delays and weight change disturbances occur during the process. The range 

of each parameter is the same as the previous two case studies, while the travel weight and 

time in the planning, actual and optimized group are different. The delay in the tested 

situation is greater than 10% and less than 20% of the planned total travel time.  

The disturbed trains in the actual group always try to arrive at the next station on time after 

a disturbance occurs so as to reduce the differences between the actual and planned 

timetable. Furthermore, the travel weight of each section is also not considered in the actual 

group. On the contrary, each train optimizes the timetable among the clusters in the 

optimized group when a disturbance occurs. The 𝐸𝑆𝑃 of each group and the corresponding 

|ΔTr|, and|ΔWr| are shown in Figure 43. The three axes of Figure 43 represent |Δ𝑇𝑟|, |Δ𝑊𝑟|, 

and 𝐸𝑆𝑃 . According to the figure, the energy savings significantly increases with the 
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increase of |Δ𝑇𝑟| , while Δ𝑊𝑟  does not show the same obvious influence. Note that the 

highest absolute value of the tested Δ𝑇𝑟 is higher than Δ𝑊𝑟, for the weight of the train is 

very heavy, and the change in passenger flow will not cause great changes in Δ𝑊𝑟. The 

average, maximum, and minimum value of ESP for the tested scenarios in this case are 

10.02%, 56.72%, and 0.00025%, respectively. 

 

Figure 43: ESP with different |Δ𝑊𝑟| and |Δ𝑇𝑟| 
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(a) (b)
 

Figure 44: Energy-saving percentage with different |Δ𝑊𝑟| and |Δ𝑇𝑟| 

It is expected that in the practical application, the proposed system realizes higher energy-

saving performance when dealing with delay disturbance than the weight change 

disturbance according to the numerical test results of this case study, which is consistent 

with the conclusion drawn by comparing case study 2 and case study 3.  

Optimization Duration of Case Study 4 

The box diagram in Figure 45 shows the time cost for optimizing the test scenarios in Case 

Study 4. The maximum optimization duration is 8.84 seconds, as shown in the diagram, 

while the average optimization is 0.77 seconds. Compare with case study 2 and case study 

3. It is concluded that the disturbance type would not influence the optimization duration 

of the proposed system. Thus the system satisfies the near real-time optimization 
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requirements. 
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Figure 45: Optimization Duration of Tested Scenarios Under Combined Disturbances 

 

Table 28: Optimization Duration of Tested Scenarios under Mass Change Disturbance 

Optimization Duration (s) ≤ 0.34 ≤ 0.49 ≤ 0.88 ≤ 2.38 ≤ 8.84 

Satisfied Scenarios 2939 5878 8817 11168 11755 

Satisfied Percentage 25% 50% 75% 95% 100% 
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4.2 Summary 

The statistical results of the tested scenarios in the above-mentioned four types of cases are 

summarized in  Table 28. As shown in the table, the average optimization time are 2.36, 

0.83, 0.86, 0.77 seconds for the four types of scenarios, which proves that the proposed 

system can meet the requirements of near real-time decision-making for rail transit control 

in four types of disturbance scenarios. In addition, the longest optimization time is 16.6s, 

which is within the acceptable range. In addition to the optimization speed, the proposed 

system has encouraging performances in energy savings. 

In the test scenarios of the first Case (accidental temporary stop of a train), the average, 

maximum and minimum 𝐸𝑆𝑃 are 25.98%, 82.91% and 0.00%, respectively. It shows that 

a train can't follow the predefined speed trajectory to ensure safety under this interference, 

and the proposed system can save a lot of energy. If the interference does not affect the safe 

driving of the rear car, the control group and the optimization group adopt the same speed 

trajectory, so the energy consumption is the same (so the minimum optimized energy 

consumption is 0.00%). Therefore, the proposed system saves a large amount of energy if 

a train is not able to follow the predefined speed trajectory to ensure safety. If the 

interference does not affect the safe driving of the following trains, however, the system 

would not change the planned speed trajectory that gives 0.00% 𝐸𝑆𝑃. 

In Case 2 (delay due to passenger flow), the average, highest, and the lowest 𝐸𝑆𝑃 of the 

tested scenarios are 10.13%, 51.97% and 0.32%, respectively. The average and maximum 

ESP are lower than Case 1, while the disturbance of Case 2 happens more frequently in the 

daily operation.  

The average, maximum, and minimum ESP of the tested scenarios in Case 3 are 0.21%, 

5.5% and -0.009%, respectively, which prove that the difference between the actual travel 
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weight and the planned travel weight will not have a significant impact on the optimal time 

distribution of the optimized timetable. Therefore, more attention should be paid to the 

disturbance of delay than weight change.  

Case 4 is the disturbance of combined delay and travel weight change, which shows 

10.02%, 56.72%, and 0.00025% average, maximum, and minimum 𝐸𝑆𝑃, respectively. It is 

reasonable to believe that the main disturbance affecting the optimal timetable distribution 

in this case are delays based on the result of Case2 and Case3. 

Table 29: Summary of the Tested Scenarios 

 Case 1 Case 2 Case 3 Case 4 

Tested Scenarios 1212 8619 26537 11755 

Average ESP 25.98% 10.13% 0.21% 10.02% 

Maximum ESP 82.91% 51.97% 5.50% 56.72% 

Minimum ESP 0.00% 0.32% -0.009% 0.00025% 

Average 

Optimization 

Duration (s) 

2.36 0.83 0.86 0.77 

Maximum 

Optimization 

Duration (s) 

16.6 6.81 7.2 8.84 
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Chapter 5: Conclusion 

This research proposes a MAS system to reduce the extra energy consumption caused by a 

disturbance in the rail transit system. The decent extensibility and flexibility of MAS are 

suitable for re-optimizing the influenced train when rail transit encounters interference. A 

complex rail transit optimization problem could be transformed into several simple 

problems and solved by coordinating multiple agents. 

Furthermore, the proposed system has good affordability. The training, optimization, and 

simulation procedure are processed on a personal laptop, and the test shows that the agents 

are able to give feedback within seconds. The test results reflect that the hardware cost of 

applying the system is acceptable. In practical applications, the programming part can be 

realized by Python instead of Matlab to reduce the software cost. 

The rest of this chapter summarizes the main contributions of the research as well as the 

advantages and limitations of the proposed system, based on which several directions for 

further research are derived. 

5.1 Main Contribution 

This research proposed a multi-agent-based system to realize the near real-time energy-

aimed speed trajectory re-optimization and timetable re-scheduling for disturbed trains.  

The system improves the capability of anti-disturbance for rail transit by coordinating the 

interaction among multiple agents, and four types of disturbances that commonly exist in 

rail transit are explored. The first type is that a train needs to stop temporarily in an 

emergency situation, which may affect the normal travel of the following trains. The second 

type is that the actual dwell time of a train at a station exceeds the planned one due to the 

heavy passenger flow or other reasons. The third one is that the travel weight change of a 
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train among different sections due to the fluctuation of the number of boarding and 

alighting passengers. The rest type is the combination of the second and the third one, that 

is, the train dwell time and travel weight change simultaneously. A large amount of 

scenarios are simulated in the case study section for each type of disturbance to test the 

performance and reliability performance of the proposed system. The results prove that the 

system has advantages in the following aspects.  

The first advantage is that the proposed system shows decent energy-saving performance 

in different types of disturbances. There were 1212, 8619, 26537 and 11755 scenarios that 

tested for the four disturbance categories. The first category achieves a 25.98% average 

𝐸𝑆𝑃  compared with the found nearest MAS research in rail transit (proposed by 

Hassanabadi et al. In 2015). The second category achieves a 10.13% average 𝐸𝑆𝑃 

compared with the method of catching up directly when the delay occurs. The third 

category achieves a 0.21% average 𝐸𝑆𝑃 compared with the original travel plan. Finally, 

10.02% average 𝐸𝑆𝑃  is achieved in the fourth category compared with the method of 

catching up directly when the delay occurs. The proposed system has decent non-negative 

optimization performance for all scenarios in the first, second, and last categories of 

disturbances, and most scenarios of the third one. Furthermore, the maximum additional 

energy consumption caused by the system is -0.009% in the third category, which is 

neglectable. It is expected that negative optimization can be avoided by using larger data 

sets to train the neural network in practical applications.  

In addition, the proposed system shows good optimization speed performance, which is 

significant for the fast response requirement in applications. The average optimization time 

of the proposed system is 2.36 seconds, 0.83 seconds, 0.86 seconds, and 0.77 seconds 

respectively, and the longest optimization time is 16.6 seconds, 6.81 seconds, 7.2 seconds, 

and 8.84 seconds respectively. The result proves the proposed system is able to support 
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near real-time decision-making when the train system encounters disturbance in practice. 

In addition, the feedback confirmation mechanism between train agents ensures that the 

train will decelerate if the optimization time is too long to guarantee safety. 

Finally, the established system is based on a hybrid multi-agent structure, which has decent 

stability and flexibility. Three types of agents (train agent, station agent, and central agent) 

interact and make decisions through appropriate logic and algorithms in the proposed 

system. An agent is able to communicate through other information exchange channels 

when the agent does not receive the expected feedback from the default channel, which 

provides higher reliability than the system that only relies on a single communication 

channel. In addition, various functions can be flexibly realized by deploying new sensors, 

algorithms, and actuators to corresponding agents with the continuous development of 

hardware devices. 

5.2 Limitations and Futureworks 

Part of the functions mentioned in this research expects to use the images collected by the 

monitoring system and the objective recognition algorithm to identify the number of 

passengers. However, the effectiveness of adding the image recognition algorithm has not 

been verified in this research due to the lack of data. Besides, using the image data may 

cause some ethical problems (such as whether rail transit companies have the authority to 

use passenger images). Although the case study section has proved that the proposed 

method can still achieve obvious energy savings without image recognition, it is still worth 

verifying whether the system performance can be further improved with the participation 

of monitoring image. Furthermore, the algorithms based on supervised learning need 

tremendous data. Although more than a hundred thousand data are generated in training 

the DNN, a few scenarios have minor negative optimization resulting in the disturbance of 
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train weight change. The dependence on data requires the model to be fully trained before 

it is applied to practical engineering. Finally, the research focus is on the small disturbance 

that will not lead to train cancellation, the mechanisms that enable the system to deal with 

the large disturbance that leads to train cancellation are insufficiently discussed. Finally, 

the proposed research focuses on small-scale disturbances, and the mechanism to deal with 

disruptions that lead to cancelling of trains has not been designed at this stage. 

Future research can cooperate with rail transit companies and collect monitoring data of 

train stations from them. Then adopt the actual data into the training process to verify the 

efficiency of combining the image recognition algorithm with the train weight prediction. 

Furthermore, suitable mathematical optimization models and optimization methods can be 

established to replace neural networks so as to improve the flexibility and applicability of 

the systems. Another research direction is to discover the potential of MAS to deal with 

large-scale disruptions that cause cancelling of trains. 
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