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Abstract
Background: Vaginal microbiota (VMB) are altered in women with cervical intra-epithelial neoplasia (CIN) and associate with
disease progression. However, the impact of CIN excision on the VMB and innate immunity is not known. This interventional
study aims to explore the impact of CIN excision on the VMB, antimicrobial peptides (AMP) and proinflammatory cytokines.
We sampled 103 non-pregnant, premenopausal women at the time of excisional treatment for CIN and at their 6-month
follow-up visit. A further 39 untreated controls with normal cytology were also sampled. We used metataxonomics to group
vaginal swab samples into community state types (CSTs) and ELISA to quantify cytokine and AMPs levels in matched
vaginal secretions. Analyses were performed to compare bacterial composition and immune analyte levels before and after
CIN excision and in healthy controls.

Results: Women with CIN had significantly higher rates of Lactobacillus species depletion pre-treatment compared to healthy
controls (CST IV: 21/103, 20% vs 1/39, 3%, p=0.0081). Excision did not change the VMB composition, with CST IV remaining
significantly more prevalent after excision compared to untreated, healthy controls (CST IV: 19/103, 20% vs 1/39, 3%,
p=0.0142). Prevotella bivia and Sneathia amnii were significantly higher in samples before treatment compared to untreated
controls and Prevotella bivia remained significantly higher amongst the treated, with less Lactobacillus crispatus compared
to untreated controls. IL-1 and IL-8 remained significantly elevated pre- (p<0.0001 and p=0.0014 respectively) and post-
treatment compared to untreated controls (p<0.0001 and p=0.0035 respectively). Levels of human beta-defensin-1 and
secretory leukocyte protease inhibitor were both significantly reduced following CIN excision (p<0.0001), however their levels
remained lower than controls post-treatment.

Conclusions: Women with CIN have increased prevalence of Lactobacillus spp. depleted, high-diversity VMB, proinflammatory
cytokines and AMPs than normal controls. Surgical excision of the disease reduces levels of vaginal AMPs but does not alter
VMB composition or cytokine levels. These findings suggest that women with CIN have an inherent predisposition to a high-
diversity proinflammatory environment that is not corrected by disease excision. The failure to re-establish a Lactobacillus
enriched CST may explain why women remain at high risk of pre-invasive and invasive disease recurrence.

Background
Persistent infection with oncogenic high-risk human papillomavirus (HPV) subtypes is necessary for the development of
cervical cancer and its precursor cervical intra-epithelial neoplasia (CIN) [1]. Infection with HPV is the norm rather than the
exception, although most women are able to clear the virus through an incompletely understood immune response [2]. Only a
fraction of women develops persistence, and ultimately progressive CIN. A number of host, viral genetic and epigenetic
factors have been implicated and are currently under investigation, although growing evidence has led to the hypothesis that
the vaginal microbiota (VMB) plays a role in the outcome of this virally-induced disease process [3–9].

The vagina is typically populated by Lactobacillus species creating an acidic environment rich in bioactive compounds that is
protective against ascending infections and overgrowth of pathobionts [10, 11]. Numerous cross-sectional observational
studies have reported an association between depletion of Lactobacillus species (spp.) and greater bacterial diversity to the
presence of HPV, CIN and invasive cancer [4, 8, 12–16]. Although reporting of these associations is of value, these do not
permit further exploration as to whether these VMB alterations are a cause or consequence of the virus and/or the disease, or
are due to inherent genetic predisposition or environmental impact on colonisation.

A handful of longitudinal cohort studies have more recently attempted to correlate HPV and CIN persistence and clearance to
the VMB in attempt to explore further a plausible causal relationship. Brotman and colleagues reported in a small cohort of
32 women serially sampled over a 16-week period [17] that community state type IV (CST IV), associated with high diversity
and Lactobacillus spp. depletion, and was associated with higher chance of HPV acquisition and persistence. More recently a
longitudinal cohort of 87 women sampled serially every three months and followed up for 24 months, reported for the first
time that Lactobacillus spp. depletion is associated with higher rates of persistent/progressive CIN2 at 12 and 24-month
follow-up, whilst Lactobacillus spp. dominance associated with increased rates of regression [6].
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Any attempt to infer further on causality requires interventional studies that will explore how excision of the disease i.e. CIN
will alter the vaginal microbiota and vaginal microenvironment. Findings that would be consistent with VMB reversal to
Lactobacillus spp. dominance after CIN excision would imply that the virus and precancer are the drivers of VMB alteration to
high diversity. Conversely, an unaltered microbiota despite the removal and absence of disease and infection would be
suggestive of inherent genetic, epigenetic and environmental factors that determine the vaginal microbiota that are likely to
make these women more susceptible to acquisition, persistence of HPV and promote further disease progression. Currently
there are no such studies.

In an attempt to move beyond association, studies are beginning to explore the mechanisms underpinning the impact of the
VMB on cervical disease. Most of these suggest that Lactobacillus spp. depleted, high diversity VMB alters the mucosal
immune environment, predisposes the development of a pro-inflammatory milieu with over-expression of pro-carcinogenic
biomarkers and cyto/chemokines, which in turn promotes carcinogenesis [8, 9, 18–20]. Previous studies have reported higher
proinflammatory cytokines, such as IL-1β and IL-8 in women with CIN [18], and higher TNF-α levels are associated with HPV
persistence [19]. In contrast, suppression of the antiviral cytokine INFγ in high-grade disease has been proposed to promote
disease progression [21]. Antimicrobial peptides (AMPs) are important mediators of innate mucosal immunity against both
bacterial and viral pathogens with human beta-defensin-1 (hBD1) and secretory leucocyte protease inhibitor (SLPI) being
both constitutively and inducibly expressed by the cervix [22, 23]. Polymorphisms in the DEFB1 gene that encodes hBD-1 have
been associated with increased susceptibility to HPV infection [24], whilst SLPI is known to have potent anti-viral activity
against HPV in head and neck cancers [25] and is up-regulated in CIN [26] and cervical cancer [27]. Although the role of both
cytokine and AMPs in cervical disease has been previously explored, the interplay between the VMB, HPV and inflammation
are incompletely understood.

This prospective interventional study of women planned for local cervical treatment aims to explore the impact of the
excision of disease on the vaginal microbiota composition, innate immune and inflammatory response and further explore
how these pre- and post-treatment compare to healthy untreated controls.

Material And Methods
Study population – Inclusion and Exclusion criteria

We included pre-menopausal, non-pregnant women aged 18 to 45, planned for local excisional treatment for CIN attending
the colposcopy clinics at Imperial College NHS Healthcare Trust. Samples were collected prior to treatment and 6 months
post-treatment at the follow-up visit. Swabs were also collected at a single timepoint from a control population of women
with normal cytology. Women were included irrespective of their HPV status (treatment and control group), ethnicity, parity,
smoking habits, phase in their menstrual cycle and use of contraception. Women who were HIV or hepatitis B/C positive, with
autoimmune disorders, who received antibiotics or pessaries within 14 days of sampling or had a previous history of cervical
treatment were excluded. Patients were anonymised and assigned a unique digital identifier. Detailed medical and
gynaecological history was collected including type of contraception, last menstrual period, time since last sexual intercourse
and douching practices. We also collected data on cytology, HPV test and histology. Cytology was classified as normal,
borderline or mild dyskaryosis (low-grade squamous intraepithelial lesion [LSIL]), moderate or severe dyskaryosis (high-grade
squamous intraepithelial lesions [HSIL]). The histology groups included normal, CIN1, CIN2, CIN3. Ethnicity was self-reported
as Caucasian, Asian or Black. All patients gave informed written consent.

Sample collection and processing

Samples were collected using a sterile speculum without lubricant immediately prior to colposcopy or collection of any other
clinically-indicated samples to avoid contamination. A BBLTM CultureSwabTM containing liquid Amies with a rayon tip (Becton
Dickinson, Oxford, UK) was used to collect samples for 16S rRNA gene sequencing and a rayon swab (Medical Wire &
Equipment) inserted into phosphate buffered saline containing protease inhibitor cocktail (Sigma, Dorset, UK) was used for
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enzyme-linked immunosorbent assay experiments. Samples were immediately transported on ice and stored at -80C until
analysis. Whole genomic bacterial DNA was extracted from swabs using a DNA mini kit (Qiagen, Venlo, Netherlands) as
previously described [4].

Measurement of dimensions of excision

Transvaginal ultrasonography (TVUS) was performed immediately prior to cervical excision using a Voluson E6 with a 5-9
MHz (RIC5-9-RS series) transvaginal probe (GE Healthcare, Zipf, Austria) to assess cervical length. We used an electronic
digital calliper (Maplin Electronics, Rotherham, UK) to measure the dimensions of the cone removed prior to fixation. The
proportion of length excised was calculated. Repeat cervical length ultrasound at 6 months was performed to assess length
regeneration. Details on the principles have been previously described [28-30].

Illumina MiSeq sequencing of 16S rRNA gene amplicons and sequence analysis

The V1-V3 hypervariable regions of 16S rRNA genes were amplified, sequenced and analysed as previously described [4]
using Mothur, with OTU taxonomies assigned using the ribosomal database project (RDP) MultiClassifier script to generate
the RDP taxonomy from phylum to genus level [31], and the USEARCH algorithm combined with the cultured representatives
from the RDP [32] and STIRRUPS databases [33] for species allocation. Sequencing was conducted at Research and Testing
Laboratory (Lubbock, TX, USA).

Cytokines and Anti-microbial Peptides

Cytokine levels (IL-1, IL-2, IL-4, IL-6, IL-8, IL-10, IFN-, MIP-1, RANTES, and TNF-) in cervicovaginal secretions were
determined using the Magnetic Luminex Screening Assay multiplex kit (R&D Systems, Minneapolis, MN, USA). hBD-1 levels
were determined using a Human BD-1 ELISA Development Kit (Peprotech, London, UK) and human SLPI levels with the ELISA
kit (Hycult Biotech, Uden, The Netherlands). For the purpose of analysis, cytokine & AMP levels were normalised to total
protein content of the sample determined using the DC Protein Assay Kit (Bio-Rad, Hemel Hempstead, UK) in order to
reduce inter-individual variability of immune marker measurement [34]. All kits were used according to the manufacturer’s
instructions and analysed in duplicate on the BioPlex 100 Analyzer (Bio-Rad). The lower limit of quantification (LLOQ) was
defined as the lowest point on standard curve for each individual analyte.

To further explore how disease affects AMP expression within the cervix, we used immunohistochemistry (IHC) to compare
relative staining in normal versus diseased tissue within the same section. To further explore the impact of excision and
scarring on AMPs expression, we compared sections from the first versus the second cone in two women requiring repeat
excision. Slides were cut from paraffin-embedded blocks, deparaffinised and a horseradish peroxidase-3,3’ Diaminobenzidine
Cell & Tissue staining kit (R&D systems) was used according to manufacturers’ instructions along with hBD-1 (Peprotech) at
1:10 dilution and SLPI antibodies (Hycult Biotech) used at 1:5 dilution. Meyer’s Haematoxylin was used to counterstain the
slides.

HPV genotyping

HPV DNA testing and 16/18 genotyping was performed according to manufacturer’s guidelines.

Data Synthesis and Analysis

Analysis of vaginal microbiota composition data using the Statistical Analysis of Metagenomic Profiles (STAMP) package
(v.2.1.3) [35]. Multivariate analysis using hierarchical clustering analysis (HCA) by centroid clustering was performed with a
density threshold of 0.75. Classification at species level was according to the previously described vaginal community state
types (CSTs) I-V [36]. Linear discriminant analysis (LDA) effect size (LEfSe) analysis was used to identify taxa significantly
overrepresented according to clinical outcome, through all taxonomic levels [37] using taxonomic relative abundance, with
per-sample normalization and default settings for alpha values (0.05) for the factorial Kruskal-Wallis test among classes and
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pairwise Wilcoxon test between subclasses. A logarithmic LDA score greater than 2 was used to determine discriminative
features.

We performed a series of analyses of the vaginal microbiota composition and antimicrobial peptide (AMP) and cytokine
expression in order to understand the impact of treatment on the vaginal microbiota and inflammatory response (Figures 5 &
6). We aimed to explore: A) how these at baseline just before treatment compared to healthy, untreated controls (Analysis 1);
B) how these are altered by pre and post-excisional treatment (Analysis 2); C) how these post-treatment compare to healthy
untreated controls (Analysis 3). We performed analysis 3 in order to assess whether any observed differences could be
attributed to the treatment itself or rather due to the removal of the disease (CIN). Within these analyses we performed further
subgroup analyses comparing women post treatment with normal cytology to controls (Analysis 3A) and women post-
treatment with negative HPV tests and cytology to HPV negative controls (Analysis 3B).

As oncological and reproductive outcomes [38-40] have been found to correlate with the cone length and cervical
regeneration, we compared VMB, AMPs and cytokine dynamics by comparing the upper versus the lower 50th percentile from
the median for the absolute cone depth (mm), the proportion (percentage) of cervical length excised and proportion of length
regeneration.

Fisher’s exact test, Chi-squared test, Mann–Whitney U tests and t-tests were performed where appropriate using (GraphPad
Prism 8, [GraphPad Software Inc., La Jolla, CA, USA]). Pearson’s correlation coefficient was used to examine associations
between bacterial taxa, AMPs and cytokines. A p-value less than 0.05 was considered statistically significant.

Results
Patient cohort and characteristics

We recruited 106 women undergoing excisional treatment; three became pregnant after treatment and before the 6 months
follow-up visit and were excluded from further analysis. We recruited a further 39 healthy controls with normal cytology.

The patient characteristics across all analyses are detailed in Table 1 & Supplementary Table 1. The average time to follow-
up was six months (range: 5–12 months). The control group were found to be younger than the treated women at the time of
follow-up (p=0.013). Other characteristics were not significantly different between the compared groups. There was equal
distribution of samples collected in the follicular or luteal phase of the cycle and in the rate of women that had intercourse
within 48 hours from sample collection between all three groups. Two women were retreated due to the presence high-grade
disease at 6 months. The majority were treated for high-grade CIN (CIN1: 15/103, 15%; CIN2: 40/103, 39%); CIN3: 48/103,
46%).

In total, 2977082 reads were obtained from 245 samples with an average number of reads per sample of 11,400 and the
mean and median read lengths of 513 and 520 bp respectively. To avoid sequencing bias, operational taxonomic units
(OTUs) were sub-sampled to the lowest read count of 296, which retained 99.7% of OTU counts and still provided coverage of
>97.9% for all samples. Following removal of singletons and rare OTUs, a total of 77 taxa were identified in the vaginal
microbiota of the study cohort.

Three of the five CST’s previously described by Ravel and colleagues [36] were observed in the study cohort, CST I (L.
crispatus), III (L. iners) and IV (High-diversity, Lactobacillus-deplete) (Figure 2A).

The vaginal microbiota composition

Pre-treatment versus normal controls – Analysis 1

A significantly greater rate of CST IV VMB composition was observed in our cohort of 103 women undergoing excisional
treatment for CIN when compared to 39 healthy untreated controls (Pre-treatment CST IV; 21/103, 20% vs controls; 1/39, 3%;
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p=0.0081). There was no significant difference between the rates of CST I (Pre-treatment CST I; 45/103, 44% vs controls;
22/39, 56%; p=0.1920, chi-squared test) or CST III (Pre-treatment CST III; 37/103, 36% vs controls; 16/39, 41%; p=0.6978, chi-
squared test) (Figure 2B, Table 2). Consistent with increased rates of CST IV in the pre-treatment cohort compare to controls,
vaginal microbiota richness as measured by number of species observed, and diversity, represented by the inverse Simpson
index were also found to be higher in women pre-treatment (p=0.0003 and p<0.0001 respectively, chi-squared test) (Figure 2C
& D). LEfSe analysis demonstrated a significantly increased abundance of Prevotella bivia and Sneathia amnii in women
prior to treatment compared to controls, who had significantly greater levels of the Lactobacillus genus (Figure 3A).

Pre- versus post-treatment – Analysis 2

Excisional treatment did not have any significant impact on the VMB composition when comparing paired samples from 103
women on the day of treatment and at 6-month follow-up. Proportions of each of the three CST’s was not significantly
different at the two timepoints (CST I; p=0.5715, CST III; p=0.3922, CST IV; p=0.8604, chi-squared test) (Figure 2, Table 2)
There was no difference between richness or diversity between pre- and post-treatment samples in the 103 matched women
(Figure 2C & D). LEfSe analysis did not detect any differentially abundant taxa between the two groups. The dynamics of the
distribution of CST’s pre- and 6-months post-treatment are shown in a Sankey plot (Figure 4). Of the 103 treated patients, 58
(56%) had the same vaginal microbiota CST on the day of treatment and at their 6-month follow-up appointment. Women
with CST III were most likely to have the same CST before and after treatment (22/37, 59%), followed by CST I (26/45, 58%)
and finally CST IV (10/21, 48%). Of the 45 women who switched to another CST, the majority switched between Lactobacillus
spp.-dominant states (25/45, 56%). Nine women switched from a Lactobacillus spp.-dominant CST to CST IV (9/45, 20%)
and 11 changed in the opposite direction from CST IV to a Lactobacillus spp.-dominant CST (11/45, 24%).

There was no evidence to suggest that more extensive excisions with larger cone length affected the vaginal microbiota. The
CST distribution of rates and dynamics was similar when comparing the upper versus the lower 50th percentile for absolute or
proportional length excised and proportional cervical length regeneration (Supplementary Table 2). The mean absolute and
proportional cone length and cervix were similar for all CSTs (Supplementary Table 3). We performed the same analysis for
absolute and proportional volume excised and found no difference (data not shown).

Post-Treatment versus normal controls – Analysis 3

Compared to controls, CST IV type VMB remained more prevalent in women post-CIN excision at the 6-month follow up (post-
treatment CST IV; 19/103, 18% vs controls; 1/39, 3%; p=0.0142, chi-squared test). There was no difference in rates of CST III
(44/103, 43% vs controls; 16/39, 41%, p=1.000, chi-squared test), and there was a trend for slightly higher rates of CST I in
controls which was approaching significance (Post-treatment CST I; 40/103, 39% vs controls; 22/39, 56%; p=0.0873, chi-
squared test) (Figure 2, Table 2). Similarly, richness and diversity remained significantly higher post-treatment compared to
controls (p=0.0003 and p<0.0001 respectively, unpaired t-test) (Figure 2C & D). LEfSe analysis showed that BVAB2, Prevotella
bivia and Veillonelaceae OTU were significantly overrepresented in the treated cohort compared to controls who had greater
levels of Lactobacillus crispatus present (Figure 3B).

To explore whether it is the disease or inherent factors that drive changes in VMB composition, we restricted our subgroup
analyses to post-treatment women with negative cytology (Subgroup 3A) and negative HPV and cytology (Subgroup 3B)
(Table 2, Supplementary Table 1, Supplementary Figure 2). For sub-analysis 3A we removed 22 treated women with abnormal
cytology, leaving 81 treated women versus 39 normal cytology controls. The rate of CST IV after treatment compared to
controls remained to be significantly higher (post-treatment CST IV; 14/81, 17% vs controls; 1/39, 3%; p=0.0354, chi-squared
test) (Table 2). CST I and III rates were not significantly different between the two groups (p=0.1166 and p=0.8463
respectively, chi-squared test). LEfSe analysis again found Lactobacillus crispatus to be significantly enriched in untreated
controls compared to the treated group, and the same three species; BVAB2, Prevotella bivia and Veillonelaceae OTU, all
known to be associated with a high-diversity bacterial vaginosis-type VMB composition were significantly enriched in treated
women (Supplementary Figure 1A). For sub-analysis 3B, we removed 33 women leaving 70 women with negative HPV and
cytology and 16 HPV positive controls leaving 23 HPV and cytology negative controls. In treated women, the rate of CST IV
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remained almost four times that of healthy controls (post-treatment CST IV; 13/70, 19% vs controls; 1/23, 4%; p=0.1758, chi-
squared test), but was no longer significant, likely due to small sample size. Relative abundance of Lactobacillus crispatus
remained higher in samples from untreated controls compared to treated women according to LEfSe analysis, with the latter
enriched for Atopobium vaginae and a Veillonelaceae OTU (Supplementary Figure 1B).

hBD1 and SLPI levels

The levels of hBD1 and SLPI were normalised to total protein levels in 80 treated women and 34 controls (Supplementary
Table 4, Figure 5). Levels for both peptides were higher prior to treatment compared to healthy controls (hBD-1; p=0.0033,
SLPI; p=0.0006; unpaired t-test, Analysis 1). The paired samples pre- and post-treatment showed a significant reduction for
both (hBD-1 p<0,0001, SLPI p<0.0001; paired t-test, Analysis 2). The levels fell significantly after treatment and were
significantly lower than healthy controls (hBD-1 p<0.0029, SLPI p=0.0382; unpaired t-test, Analysis 3). In the comparison of
only post-treatment cytology negative women (n=65), AMP levels were significantly less in treated women compared to the
healthy controls (n=34) (hBD-1 p=0.0003 and SLPI, p=0.0009; unpaired t-test, Subgroup Analysis 3A), In the comparison of
HPV and cytology negative women (n=50) to HPV negative cytology controls (n=20), the same observations were seen (hBD-1
p=0.0006 and SLPI, p=0.0016; unpaired t-test, Subgroup analysis 3B). There was no correlation between levels of hBD1 or
SLPI and change in cervical length, volume, or according to proportion of length or volume excision (data not shown).
Immunohistochemical staining revealed that expression for both hBD-1 and SLPI was strongest in the glandular epithelium
and areas of high-grade CIN when compared to normal tissue within the same sections. For two women that required a
second treatment, the scarred epithelium of the repeat cone exhibited weak staining for both peptides compared to the
previously untreated epithelium (Supplementary Figure 2). 

Proinflammatory cytokine levels

The levels of proinflammatory cytokines were measured in 80 treated women and 34 healthy controls and normalised to
levels of total protein in each sample (Supplementary Table 5, Figure 6). Only four out of the 10 cytokines had detectable
levels. The proinflammatory cytokines IL-1 and IL-8 were both significantly elevated prior to treatment compared to healthy
controls (p<0.0001 and p=0.0014 respectively, unpaired t-test), did not change after excision and maintained significantly
higher levels post-treatment than controls (p<0.0001 and p=0.0035 respectively, unpaired t-test). The length of excision and
regeneration did not impact on concentration (data not shown). The same patterns were seen for sub-analyses 3A and 3B
with IL-1 and IL-8 both being higher pre-treatment compared to controls and remaining elevated after treatment. TNF- was
also elevated prior to treatment compared to controls but this was not significant (p=0.62, unpaired t-test), and after treatment
levels fell although this was not significant (p=0.10, paired t-test) when compared to pre-treatment levels. The levels of TNF-
post-treatment were similar to those seen in untreated controls (p>0.99, unpaired t-test). IFN- was significantly lower prior to
treatment compared to controls (p=0.01, unpaired t-test), whilst levels after treatment were significantly higher than before
(p=0.002, paired t-test) and similar to levels seen in healthy controls. IL-2, IL-4, IL-6, IL-10, MIP-1 and RANTES were below the
lower limit of quantification in the majority of samples.

Correlation between bacterial species, cytokines and antimicrobial peptides.

Correlation analysis was performed to further understand the interplay between the bacterial species present and expression
of cytokines and antimicrobial peptides. We found that anaerobic species were positively correlated with expression of
antimicrobial peptides and IL-1 (Supplementary Figure 4). In the subgroup analysis comparing only to women that were HPV
and cytology negative at follow-up (56 women), we found even stronger correlations. Anaerobes such as Prevotella bivia
(p=0.02, Pearson’s correlation coefficient), Atopobium vaginae (p=0.005, Pearson’s correlation coefficient), BVAB2 (p<0.001,
Pearson’s correlation coefficient), Streptomyces sp. (p<0.001, Pearson’s correlation coefficient) and  Gemella asaccharolytic
(p<0.001, Pearson’s correlation coefficient) were most positively correlated with AMP expression prior to treatment, all of
which were also positively correlated with expression of IL-1 (p<0.001, Pearson’s correlation coefficient). After treatment there
is no significant change in bacterial composition, but AMP expression is no longer correlated with these bacterial species
(Figure 7).
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Discussion
This prospective interventional study reports how local excision of CIN affects the vaginal microbiota composition, innate
immune and inflammatory response and how the findings pre- and post-treatment compare to healthy untreated controls.

Our findings suggest that women planned for CIN treatment had significantly higher levels of a high diversity, Lactobacillus
spp.-depleted microbiome pre-treatment compared to a healthy, untreated control group with normal cytology. This finding is
in line with previously published cross-sectional data describing associations between the VMB and the presence of CIN [4, 8,
14, 15] with Atopobium, Sneathia, and Prevotella species being consistently associated with higher-grade disease across
studies [4, 6, 8, 14, 41], the latter two of which were significantly overrepresented in our pre-treatment cohort compared to
controls. Our analysis further revealed that excision of CIN does not impact on the VMB composition six months after
treatment, which remained more diverse with a decreased relative abundance of Lactobacillus crispatus compared to normal
controls. The subgroup analyses restricted to HPV negative women post-treatment and controls also revealed consistent
results. These results contrast with two recently published small studies. Zhang and co-workers reported a shift towards
greater Lactobacillus spp. abundance at 3-month follow-up in a group of 26 Chinese women, six of whom were post-
menopausal women [42]. Wiik and colleagues also reported a shift towards a less diverse VMB in 89 treated Norwegian
women [43], although this study used targeted PCR to characterise bacterial species rather than next-generation sequencing
(NGS) techniques as used here. Our study is the largest cohort to date of over 100 prospectively-collected paired samples in a
less diverse population of solely premenopausal women [44].

Whilst overall VMB community structure was no different after treatment within the paired samples from women pre- and
post-treatment, we did observe a change in specific bacterial taxa when comparing the pre- and post-treatment samples to
untreated, healthy controls. Most notably, Sneathia amnii that was overrepresented before treatment, was no longer
overexpressed after treatment compared again to controls. This suggests that overgrowth of Sneathia amnii in women HPV
and CIN arises as a consequence of the disease. Sneathia species are often seen in women with bacterial vaginosis [45].
There remains a relative lack of longitudinal studies examining the temporal association with Sneathia, HPV and cervical
abnormalities. The mechanism by which disease leads to overgrowth of Sneathia has not been previously studied. However,
Sneathia has been consistently suggested to be a microbiological marker of HPV infection [13, 46] and high-grade disease
states [4, 8, 41]. Łaniewski, and coworkers demonstrated an increasing association with Sneathia enrichment in HPV positive
controls, following by those with low-grade and then high-grade lesions, compared to HPV negative controls [8], which further
suggests the bacteria appears to thrive as the result of an HPV-diseased cervix. Researchers have explored how Sneathia may
promote carcinogenesis. Sequencing of Sneathia’s genome has revealed genes involved in cervical cell adhesion, cytotoxicity
and epithelial cell damage [47]. Liquid Chromatography Mass Spectroscopy has revealed metabolites related to nucleotide
biosynthesis, amino acid catabolism and mucosal inflammation [20]. Furthermore co-culture with ME-180 human cervical
cells demonstrated epithelial cell perforation close to the sites of Sneathia adhesion [47], which is a necessary step to
facilitate entry of HPV to cervical cells.

In spite of a reduction in Sneathia, other bacterial vaginosis-associated bacteria including Prevotella bivia were persistently
elevated both before and after treatment compared to controls, with a relative lack of Lactobacillus spp. Lactobacillus spp. is
able to outcompete growth of Gardnerella and Prevotella species [48] and has been shown to inhibit growth of cervical cancer
cell lines [49]. Further in vitro studies have demonstrated that L. crispatus in particular is protective against inflammation-
mediated increases in ectocervical cell permeability, as the endocervical production of IL-6 and IL-8 significantly decreased
after exposure to L. crispatus bacteria-free supernatants [50]. Prevotella bivia has been suggested as an early colonizer in BV
and high-diversity models involved in biofilm formation, and subsequently paves the way for secondary colonizers such as
Atopobium and Sneathia species [51]. This presents an entirely plausible mechanism for an increased risk of subsequent
HPV infection, CIN recurrence and cervical cancer development.

One of the major strengths of this study is the inclusion of paired samples and the further comparisons to an untreated
control population with normal cytology that permitted us to further infer on causal relationship between the VMB and
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cervical disease. A number of cross-sectional studies of HPV positive [13, 52, 53] and high-grade CIN cohorts [4, 14, 15], have
proposed that increased bacterial diversity in these women is a consequence of the pathology state. However, our results
showing no change in VMB composition following excision of CIN leads us to conclude that the presence of viral infection
and cervical disease does not drive high diversity [3, 5]. Rather, it appears more plausible that women with CIN have inherent
genetic, epigenetic and environmental factors that shape VMB composition before and after treatment. The presence of this
ongoing high-diversity VMB may induce a proinflammatory response as reflected by the high levels of pro-inflammatory
cytokines post-treatment, most notably IL-1β and IL-8 which remained persistently elevated after treatment compared to
controls despite the successful removal of the disease. This may be a factor that predisposes these women to acquisition of
oncogenic HPV infections, persistence and ultimately cervical oncogenesis. Consistent with this notion, clinical
epidemiological studies have consistently reported higher CIN recurrence rates and increased incidence of invasive cervical
and other HPV-related cancers in women treated with conisation for CIN [54–56]. Although this increased incidence may be
partly explained by residual infection/disease [55] and/or poor compliance with follow-up [54], it is also possible that these
high-risk women are highly sensitive to infection by HPV and as a results are more susceptible to the development of
persistent infection, precancer and ultimately cancer. Although a number of viral or host-related genetic, epigenetic and
immunological factors may be responsible for this susceptibility, it is also possible that an inherent genetic or
environmentally driven VMB diversity and the associated inflammation, creates a pro-carcinogenic environment that permits
HPV to express its oncogenic potential [5].

The factors that dictate a woman’s vaginal microbiota structure are not well understood. Whilst environmental factors, such
as smoking, endogenous hormone use and hygiene practices [57–59] are known to alter VMB composition, genetic factors
have also been described based on twin cohort studies [13, 60]. Genetic polymorphisms have been reported in women with
recurrent bacterial vaginosis in a variety of genes including those encoding mannose binding lectin [61, 62] and IL-1β [63],
both of which play key immune roles.

Our results permit further exploration of inflammatory mechanisms that promotes disease progression [64–66]. There has
been an ongoing effort to understand the mechanisms interlinking the VMB with mucosal immune response. The consensus
amongst a series of small studies is that Lactobacillus spp. depleted, high diversity VMB induces over-expression of pro-
carcinogenic biomarkers and cyto/chemokines leading to an altered mucosal immune pro-inflammatory environment [8, 9,
20, 41]. In our cohort the high levels of IL-1β and IL-8 pre-treatment, previously shown to be elevated in women with CIN [18],
remained significantly higher after treatment suggesting ongoing mucosal inflammation even in the absence of disease. In
contrast, high TNF-α levels pre-treatment fell and became similar to levels seen in the control group, suggesting that this
cytokine overexpression is induced by the disease and is reversed when the diseased tissue is excised in line with previous
reports associating elevated TNF-α levels to HPV persistence and disease progression [19]. Expression of INFγ, an antiviral
cytokine is known to be supressed by HPV oncogenes E6 and E7 in women with high-grade disease [21] [67]. In our cohort the
low levels pre-treatment became similar to those of controls after treatment. Our results are in agreement with a study by
Saftlas and colleagues of 65 treated women and 76 controls, reporting similar trends for cytokine levels although their results
were largely non-significant [68].

The cervix plays an immunological role in protecting against bacterial and viral species, and its production of antimicrobial
peptides (AMPs) is one layer in this sophisticated mucosal defence. Human beta-defensin-1 is an AMP with broad-spectrum
antibacterial and antiviral activity [69, 70] and secretory leucocyte protease inhibitor (SLPI) which has been found at high
concentration in the mucus plug likely plays a role in protection from infectious agents in pregnancy [71] and is upregulated
in cervical cancer cases [27]. Furthermore, both are suggested to play a role in defence against HPV [26, 72]. Polymorphisms
in the DEFB1 gene that encodes hBD-1 have been associated with increased susceptibility to HPV infection [24] and
upregulated hBD-1 expression has been observed in low-risk HPV-mediated genital warts [73]. SLPI has potent vial activity
against HIV [74], HSV [75] HPV (in head and neck cancers) [25] and up-regulation is seen in CIN [26] and cervical cancer [27].

The exploration of the two antimicrobial peptides hBD1 and SLPI known to play a role in mucosal defence were significantly
lower after treatment compared to untreated controls. Although these were heavily expressed in areas of high-grade disease
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versus normal tissue within the same sections, these were largely deficient in the healed scar on the treated cervix in two
women that had repeat cones and those sections of these cones were compared by immunohistochemistry. It was not
therefore surprising that excision of CIN dropped AMPs levels, as disease is likely to drive their expression. Most strikingly,
however, AMP levels remained significantly lower after treatment when compared to controls; both groups were free of
disease. Correlation analysis showed that particular anaerobic species are positively correlated with AMP expression prior to
treatment. Although the bacterial composition remains the same after treatment, these species do not appear to induce the
same expression of AMPs in the scarred cervix. These low AMPs levels that do not respond to the bacterial species and
persistent increased inflammation after treatment further support an inferior functional immune deficit of the treated cervix
which may contribute to the increased risk of adverse obstetric outcomes and disease recurrence in these treated women [39,
76–78].

There were of course limitations. Although this is the largest conducted study with over 100 paired samples from treated
women and the first to include an untreated healthy control population, the sample size in different subgroups comparisons
was small. We only collected samples at baseline and 6-month follow-up, in line with current routine visits in the clinic. More
intensive sampling of the patients after excision may provide further information on the transition between different
community state types and immune states post-treatment. Our predominantly young control group recruited in a central
London hospital had a high HPV positivity rate at 31%. Although this is higher than the overall rate reported by Rebolj and co-
workers in 578,547 women attending the English Cervical Screening Programme, it is in line with the 28% HPV positivity in
24–29 year olds reported by the age-stratified data in the same cohort [79].

Conclusion
This prospective interventional study represents the largest available cohort of paired samples investigating the impact of
excision of CIN on the VMB composition, along with immune factors, and is the first to compare these to an untreated control
group. This is the first study to report that women with CIN have a VMB composition that remains unchanged despite removal
of the disease suggesting that there be other genetic or environmental factors that determine a womans vaginal microbiota
structure. This permits further inference to causality and hints that the high-diversity of the microbiota in women with CIN is a
predisposing factor to the acquisition of HPV and development of precancer rather than being caused by CIN itself. This
inherent high rate of high diversity microbiome in these women coupled with a proinflammatory state as a result as shown by
the cytokine levels, may predispose these women to persistent HPV infection, progressive disease and ultimately malignant
transformation. This further supports the concept that manipulation of the VMB with pre- and probiotics, or even vaginal
microbiota transplants [80] may represent a novel therapeutic target.
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Table 1
Patient characteristics

  Analysis 1 Analysis 2 Analysis 3

  Pre-
treatment,
n = 103

Control,

n = 39

p
value

Pre-
treatment,
n = 103

Post-
treatment,
n = 103

p
value

Post-
treatment,
n = 103

Control,

n = 39

p
value

Age, years     0.0573     0.4131     0.0130

Mean (SD,
range)

31.9 (5.2,
25–45)

30.1
(4.4,
20–43)

  31.9 (5.2,
25–45)

32.5 (5.3,
25–46)

  32.5 (5.3,
25–46)

30.1
(4.4,
20–43)

 

Ethnicity, n/N
(%)

    0.0659     > 
0.9999

    0.0659

Caucasian 87/103
(85)

30/39
(77)

  87/103
(85)

87/103
(85)

  87/103
(85)

30/39
(77)

 

Asian 10/103
(10)

2/39
(5)

  10/103
(10)

10/103
(10)

  10/103
(10)

2/39
(5)

 

Black 6/103 (5) 7/39
(18)

  6/103 (5) 6/103 (5)   6/103 (5) 7/39
(18)

 

Parity, n/N (%)     0.5329     > 
0.9999

    0.5329

Nulliparous 73/103
(71)

30/39
(76)

  73/103
(71)

73/103
(71)

  73/103
(71)

30/39
(76)

 

Parous 30/103
(29)

9/39
(24)

  30/103
(29)

30/103
(29)

  30/103
(29)

9/39
(24)

 

Smoking
status, n/N
(%)

    0.1909     > 
0.9999

    0.2647

Current
smoker

27/103
(26)

6/39
(15)

  27/103
(26)

26/103
(25)

  26/103
(25)

6/39
(15)

 

Non-smoker 76/103
(74)

33/39
(85)

  76/103
(74)

77/103
(75)

  77/103
(75)

33/39
(85)

 

Phase of
menstrual
cycle, n/N (%)

    0.6472     0.4655     0.5388

Luteal 55/103
(53)

23/39
(58)

  55/103
(53)

50/103
(48)

  50/103
(48)

23/39
(58)

 

Follicular 38/103
(37)

14/39
(36)

  38/103
(37)

46/103
(46)

  46/103
(46)

14/39
(36)

 

Unknown 10/103
(10)

2/39
(5)

  10/103
(10)

7/103 (7)   7/103 (7) 2/39
(5)

 

Contraception,
n/N (%)

    0.7316     0.9982     0.6958

Nil 35/103
(34)

19/39
(49)

  35/103
(34)

34/103
(33)

  34/103
(33)

19/39
(49)

 

BNC: Borderline nuclear changes; CIN: Cervical intraepithelial neoplasia; COCP: Combined oral contraceptive pill; HSIL:
high-grade squamous intraepithelial neoplasia; HPV: Human Papillomavirus; IUD: Intrauterine device; IUS: Intrauterine
system; LSIL: low-grade squamous intraepithelial neoplasia; POP: Progesterone-only pill, SD: standard deviation.
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  Analysis 1 Analysis 2 Analysis 3

Condoms 17/103
(16)

5/39
(13)

  17/103
(16)

18/103
(17)

  18/103
(17)

5/39
(13)

 

COCP 37/103
(36)

12/39
(31)

  37/103
(36)

37/103
(36)

  37/103
(36)

12/39
(31)

 

POP 5/103 (5) 1/39
(2)

  5/103 (5) 5/103 (5)   5/103 (5) 1/39
(2)

 

Copper IUD 2/103 (2) 0/39
(0)

  2/103 (2) 1/103 (1)   1/103 (1) 0/39
(0)

 

Mirena IUS 5/103 (5) 1/39
(2)

  5/103 (5) 6/103 (6)   6/103 (6) 1/39
(2)

 

Contraceptive
implant

2/103 (2) 1/39
(2)

  2/103 (2) 2/103 (2)   2/103 (2) 1/39
(2)

 

Time since
last
intercourse,
n/N (%)

    0.7684     > 
0.9999

    0.7684

> 48 hours 92/103
(89)

34/39
(87)

  92/103
(89)

92/103
(89)

  92/103
(89)

34/39
(87)

 

< 48 hours 11/103
(11)

5/39
(13)

  11/103
(11)

11/103
(11)

  11/103
(11)

5/39
(13)

 

HPV status     -     -     -

Negative - 23/39
(59)

  - 82/103
(80)

  82/103
(80)

23/39
(59)

 

Positive - 12/39
(31)

  - 21/103
(20)

  21/103
(20)

12/39
(31)

 

Unknown - 4/39
(10)

  - 0/103 (0)   0/103 (0) 4/39
(10)

 

Cytology                  

Negative - 39/39
(100)

  - 81/103
(79)

  81/103
(79)

39/39
(100)

 

Borderline
nuclear
changes

- 0/39
(0)

  - 17/103
(16)

  17/103
(16)

0/39
(0)

 

LSIL - 0/39
(0)

  - 3/103 (3)   3/103 (3) 0/39
(0)

 

HSIL - 0/39
(0)

  - 2/103 (2)   2/103 (2) 0/39
(0)

 

Cytology &
HPV status

    -     -     -

Normal, HPV -
ve

- 23/39
(59)

  - 70/103
(69)

  70/103
(69)

23/39
(59)

 

Normal, HPV 
+ ve

- 12/39
(31)

  - 11/103
(10)

  11/103
(10)

12/39
(31)

 

BNC: Borderline nuclear changes; CIN: Cervical intraepithelial neoplasia; COCP: Combined oral contraceptive pill; HSIL:
high-grade squamous intraepithelial neoplasia; HPV: Human Papillomavirus; IUD: Intrauterine device; IUS: Intrauterine
system; LSIL: low-grade squamous intraepithelial neoplasia; POP: Progesterone-only pill, SD: standard deviation.
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  Analysis 1 Analysis 2 Analysis 3

Normal, HPV
status
unknown

- 4/39
(10)

  - 0/103 (0)   0/103 (0) 4/39
(10)

 

BNC, HPV -ve - 0/39
(0)

  - 12/103
(11)

  12/103
(11)

0/39
(0)

 

BNC, HPV + ve - 0/39
(0)

  - 5/103 (5)   5/103 (5) 0/39
(0)

 

LSIL, HPV -ve - 0/39
(0)

  - 0/103 (0)   0/103 (0) 0/39
(0)

 

LSIL, HPV + ve - 0/39
(0)

  - 3/103 (3)   3/103 (3) 0/39
(0)

 

HSIL - 0/39
(0)

  - 2/103 (2)   2/103 (2) 0/39
(0)

 

BNC: Borderline nuclear changes; CIN: Cervical intraepithelial neoplasia; COCP: Combined oral contraceptive pill; HSIL:
high-grade squamous intraepithelial neoplasia; HPV: Human Papillomavirus; IUD: Intrauterine device; IUS: Intrauterine
system; LSIL: low-grade squamous intraepithelial neoplasia; POP: Progesterone-only pill, SD: standard deviation.
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Table 2
Vaginal microbiota composition according to disease state

  CST I

(L. crispatus)

CST III

(L. iners)

CST IV

(Lactobacillus spp. deplete, high diversity)

Analysis 1      

Pre-treatment, n = 103 45/103 (44) 37/103 (36) 21/103 (20)

Control, n = 39 22/39 (56) 16/39 (41) 1/39 (3)

p value 0.1920 0.6978 0.0081

Analysis 2      

Pre-treatment, n = 103 45/103 (44) 37/103 (36) 21/103 (20)

Post-treatment, n = 103 40/103 (39) 44/103 (43) 19/103 (18)

p value 0.5715 0.3922 0.8604

Analysis 3      

Post-treatment, n = 103 40/103 (39) 44/103 (43) 19/103 (18)

Control, n = 39 22/39 (56) 16/39 (41) 1/39 (3)

p value 0.0873 1.000 0.0142

Sub-group analysis 3A      

Post-treatment, normal cytology, n = 81 32/81 (40) 35/81 (43) 14/81 (17)

Control, n = 39 22/39 (56) 16/39 (41) 1/39 (3)

p value 0.1166 0.8463 0.0354

Sub-group analysis 3B      

Post-treatment, Normal cyto, HPV

negative, n = 70

27/70 (38) 30/70 (43) 13/70 (19)

Control, HPV negative, n = 23 12/23 (52) 10/23 (44) 1/23 (4)

p value 0.3309 1.0000 0.1758

p-values represented are two-tailed Fisher’s exact (if < 5 observations in any group) and χ2 tests (where > 5 observations in
every group).

CST: Community state type, L.: Lactobacillus; HPV: Human Papillomavirus

Figures
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Figure 1

Study groups and Analyses. Analysis 1: Comparisons of 103 women immediately prior to excisional treatment versus 39
healthy, untreated controls with normal cytology; Analysis 2: Comparisons of 103 paired samples of women immediately
prior excisional treatment versus 6 months after; Analysis 3: Comparisons of 103 treated women at 6-month follow-up versus
39 healthy, untreated controls with normal cytology. Subgroup Analysis 3A: Comparison on 81 treated women with normal
cytology at follow-up versus 39 healthy, untreated controls with normal cytology. Subgroup analysis 3B: Comparison of 70
treated women with negative cytology and HPV test versus 23 healthy, untreated controls with negative cytology and HPV
test.
KEY: BNC: Borderline nuclear changes, HSIL: High-grade squamous intraepithelial lesion, HPV: Human Papillomavirus,
LSIL: Low-grade squamous intraepithelial lesion



Page 21/25

Figure 2

Heatmap to show vaginal microbiota composition in 103 women before (orange) and after (blue) excisional treatment and in
39 healthy, untreated controls (green)(A) and changes in richness (C) and diversity (D) indices associated with disease status.
A) Three of the previously described community state types (CSTs) were identified in our cohort. B) CST IV was significant
more prevalent in the treatment cohort both before & after treatment compared to 39 untreated controls (p=0.0081 & 0.0142
respectively, chi-squared test). There was no significant change in the vaginal microbiome composition before and after
treatment. C) Richness was significantly greater in women planned for excision both before (p=0.0003, unpaired t-test) and
after treatment (p=0.0005, unpaired t test) when compared to healthy untreated controls. D) Diversity was also increased in
women planned for treatment before (p<0.0001, unpaired t-test) and after treatment (p=0.0005 unpaired t-test) compared to
controls (D). Richness or diversity were no different before and after treatment. KEY: CST: community state type, Sobs:
Species observed, VMB: vaginal microbiota. (Dots depict individual samples, error bars denote mean  standard deviation,
***p < 0.001; **p < 0.01; *p < 0.05).
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Figure 3

LEfSe analysis identified vaginal microbiota differentially abundant taxa in the comparison of women pre-treatment (Analysis
1) and post-treatment (Analysis 3) versus normal untreated controls. (A) Analysis 1: Prevotella bivia and Sneathia amnii were
significant represented at a species level in women prior to treatment compared to untreated controls. (B) Analysis 3:
Prevotella bivia remained to be significantly overrepresented post-treatment, along with BVAB2 compared to controls, who
had significantly higher levels of Lactobacillus crispatus. There were no differentially abundant taxa for the comparison
before and after treatment (Analysis 2). i.	Histogram of LDA scores found to differ significantly in abundance between
women who had normal cytology pre-treatment (Analysis 1) or post-treatment (Analysis 3) compared to normal, untreated
controls.
ii.	Cladogram representing taxa at all phylogenetic levels with significantly different abundance in the compared two
groups. The size of the circle is proportional to the abundance of taxon represented.
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Figure 4

Sankey plot showing dynamics of vaginal microbiota composition pre- and post-treatment. Most patients (58/103, 56%) kept
a stable vaginal microbiota CST before and after treatment. The majority of the 45 women who switched to another CST,
switched between Lactobacillus spp.-dominant states (25/45, 56%).

Figure 5
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Levels of hBD-1(A) and SLPI levels (B) for 80 treated and 34 untreated healthy controls. Levels prior to treatment were
significantly higher than the controls (hBD-1 p=0.0033, SLPI p=0.0006, unpaired t-test) (Analysis 1). Excisional treatment led
to a significant reduction of levels for both hBD-1 and SLPI when assessed in paired samples (hBD-1 p<0,0001, SLPI
p<0.0001, paired t-test) (Analysis 2). The levels post-treatment were significantly lower than those of controls (hBD-1
p<0.0029, SLPI p=0.0382, unpaired t-test) (Analysis 3).
Dots depict individual samples, error bars denote median &
interquartile ranges, ***p < 0.001; **p < 0.01; *p < 0.05

Figure 6

Levels of IL-1 (A), IL-8 (B), IFN- (C) and TNF- (D) in 80 treated women and 34 controls.
IL-1 (A) and IL-8 (B) were both
significantly elevated prior to treatment in 80 women compared to 34 healthy controls (p<0.0001 and p=0.0014 respectively,
unpaired t-test). There was no significant change in levels after excision and they remained significantly higher than healthy
controls (p<0.0001, unpaired t-test and p=0.0035, paired t-test, respectively). IFN- (C) was significantly lower prior to
treatment compared to controls (p=0.01, unpaired t-test). Levels were significantly higher after treatment (p=0.002, paired t-
test) and were similar to those seen in controls (p>0.99, unpaired t-test). TNF- (D) was raised pre-treatment compared to
controls but this was not significant (p=0.62, unpaired t-test). After treatment, TNF- levels fell when compared to the paired
pre-treatment levels but this was non-significant (p=0.10, paired t-test), and was found at a level similar to that of untreated
controls (p>0.99, unpaired t-test).
Dots depict individual samples, error bars denote median & interquartile ranges, ***p < 
0.001; **p < 0.01; *p < 0.05
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Figure 7

Correlation between bacterial species, antimicrobial peptides and cytokines before (A) and after (B) treatment in 56 treated
women who subsequently had normal cytology, HPV negative at 6-month follow-up (Pearson correlation coefficient).
Anaerobes such as Prevotella bivia (p=0.02, Pearsons correlation coefficient), Atopobium vaginae (p=0.005, Pearsons
correlation coefficient), BVAB2 (p<0.001, Pearsons correlation coefficient), Streptomyces sp. (p<0.001, Pearsons correlation
coefficient) & Gemella asaccharolytic (p<0.001, Pearsons correlation coefficient) were positively correlated with AMP
expression prior to treatment, all of which were also positively correlated with expression of IL-1 (p<0.001, Pearsons
correlation coefficient). After treatment there is no significant change in bacterial composition, but AMP expression is no
longer correlated with these bacterial species.
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