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Abstract: n-3 and n-6 polyunsaturated fatty acids (PUFAs) are essential fatty acids that are provided
by dietary intake. Growing evidence suggests that n-3 and n-6 PUFAs are paramount for brain
functions. They constitute crucial elements of cellular membranes, especially in the brain. They are
the precursors of several metabolites with different effects on inflammation and neuron outgrowth.
Overall, long-chain PUFAs accumulate in the offspring brain during the embryonic and post-natal
periods. In this review, we discuss how they accumulate in the developing brain, considering
the maternal dietary supply, the polymorphisms of genes involved in their metabolism, and the
differences linked to gender. We also report the mechanisms linking their bioavailability in the
developing brain, their transfer from the mother to the embryo through the placenta, and their role
in brain development. In addition, data on the potential role of altered bioavailability of long-chain
n-3 PUFAs in the etiologies of neurodevelopmental diseases, such as autism, attention deficit and
hyperactivity disorder, and schizophrenia, are reviewed.

Keywords: n-3 PUFAs; n-6 PUFAs; neurodevelopment; neuroinflammation; ASD; ADHD; schizophre-
nia; DHA; EPA; FADS; ELOVL; polymorphism; microglia; sex differences; placenta

1. Introduction

Lipids are critical biochemical components of the brain and are essential for proper
brain functions. The lipid composition of the brain is unique and exceedingly diverse.
Aberrant brain lipid composition, metabolism, and signaling are associated with neurode-
velopmental, neuropsychiatric, and neurodegenerative diseases [1]. Polyunsaturated fatty
acids (PUFAs) from the n-6 and n-3 families are lipids that rely on dietary supply and
are considered crucial for brain development [1–3]. The PUFAs found in nuts, seeds, and
certain vegetables, such as alpha-linolenic acid (ALA, n-3) and linoleic acid (LA, n-6), are
essential to humans, and mammals in general, because they cannot synthesize them [4,5].
These PUFAs depend on nutritional intake, with ALA and LA found in very distinct
sources. Indeed, ALA is found in flaxseed (linseed), English walnut, hemp seed, and chia,
while LA is found in soybean oil, safflower oil, and corn oil. Once consumed, both ALA and
LA are metabolized into long-chain (LC) PUFAs; ALA to eicosapentaenoic (EPA, n-3) and
docosahexaenoic acid (DHA, n-3), and LA to arachidonic acid (ARA, n-6) [1]. Nutritional
sources of EPA and DHA are found in fat fishes, seafood, and marine microalgae or animal
products fed with ALA and/or DHA (such as eggs, fish, and livestock).

DHA and ARA are particularly aggregated in the brain during the developmental
period, while the accretion of EPA in the brain is negligible [6,7], which is discussed below.
Importantly, PUFAs from the mother represent the only source of LC n-3 PUFAs for the
fetus [8]. According to international agencies such as the National Health Security Agency
(ANSES), the European Scientific Committee on Food (ESCF), and the International Society
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for the Study of Fatty Acids and Lipids (ISSFAL), the recommendations for LC n-3 PUFA
intake for optimal development is around 500 mg/day of EPA and DHA [9]. Based on
clinical studies, the dose for EPA + DHA supplementation generally recommended to
pregnant women can range from 200 to 1000 mg/day [10]. Of note, health organizations
recommend increased consumption of LC n-3 PUFAs-rich marine products. Nevertheless,
there is no consensus on the exact dose of EPA and DHA required during gestation and
lactation for optimal brain development. In addition, the origin, safety, and sustainable
supply of the marine sources have raised concerns. Alternative sustainable sources, such as
microalgae-based LC n-3 PUFAs, are investigated [11]. Overall, there is a need for a better
understanding of how EPA and DHA contribute to brain development to define specific
recommendations for the fetal and post-natal brain. Conversion of LA and ALA to LC
PUFAs, respectively ARA-EPA and DHA, is mediated by successive steps of desaturation
and elongation. Importantly, both LA and ALA compete for the same enzymes in their
biosynthesis (Figure 1). The enzymes involved in desaturation and elongation are rate-
limiting enzymes. Delta-5 desaturase (D5D) and delta-6 desaturase (D6D) are respectively
encoded by fatty acid desaturase 1 (fads1) and fatty acid desaturase 2 (fads2). Elongase 2 (Elovl2)
and elongase 5 (Elovl5) are respectively encoded by elovl2 and elovl5 [12]. The last step
for DHA synthesis involves translocation of 24:6 n-3 from the endoplasmic reticulum to
peroxisomes, where two carbons are removed to form LC n-3 PUFAs [13]. Of note, Elovl4,
an enzyme that mediates elongation of LC PUFAs and saturated fatty acids (SFAs) to form
very LC PUFAs and very LC SFAs (28 to 38 carbon chain length), has been detected in the
brain [14,15]. EPA is preferred as a substrate for elongation to very LC PUFAs over ARA
and DHA [16]. However, the main Elovl4-derived products are very LC SFAs, with very
LC PUFAs being only present in traces in the brain [17]. More studies are needed for the
link between Elovl4 and very LC PUFAs in the brain. Desaturases have a higher affinity
for n-3 PUFAs; however, due to the general higher consumption of LA, desaturation of n-6
PUFAs is greater. Importantly, genetic variations in fads and elovl genes affect the status of
LC PUFAs independently of dietary effects [18]. Indeed, more attention is now given to
polymorphisms in these genes, especially during brain development [19]. Single Nucleotide
Polymorphisms (SNPs) within these genes can be associated with variations of LC PUFAs
in the plasma (Figure 1), as demonstrated before [20]. SNPs in fads have been shown to
be associated with various health outcomes (including markers of metabolic syndrome)
and the plasma lipid profile in children, as well as neurodevelopmental outcomes in
breastfed children [21]. The authors also found that breastmilk PUFAs content was inversely
correlated to the production of inflammatory factors such as cytokine in infants [21]. Of note,
low dietary intake of LC n-3 PUFAs leads to additional EPA and DHA deficiency in subjects
with fads and elovl gene polymorphisms. As an example, some recent data pinpoint that
low DHA status in vegetarian women may adversely affect the development of their
children [22]. On the contrary, it is not clear whether consumption of diets rich in LA could
be detrimental. Indeed, a clinical study conducted in 2001 on mothers supplemented with
cod liver oil (enriched in LC n-3 PUFAs) or corn oil (enriched in LC n-6 PUFAs) showed
no significant differences regarding pregnancy outcomes and cognitive development or
growth of children [23]. Until recently, the capacity of metabolization of PUFA precursors
into LC PUFAs was believed to be uniform in individuals and populations. The discovery
that European and African populations carry different forms of fads alleles may partially
explain the differences between blood levels of LC PUFAs in these populations (reviewed
in [24]). The geographical differences in fads alleles are probably linked to specific selection
in the European and African populations due to different food habits [25]. This knowledge,
in combination with dietary evaluation, may help to refine dietary recommendation target
more precisely population for personalized dietary supplementation in pregnant/lactating
women and children at risk of altered level of LC PUFAs.
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Figure 1. Single nucleotide polymorphisms (SNPs) within the metabolic pathways of n-3 and n-6 PUFAs lead to altered 
circulating levels of PUFAs. Desaturase enzymes (delta-5 desaturase (D5D) and delta-6 desaturase (D6D)) encoded by 
fatty acid desaturase genes 1 and 2 (fads1 and fads2 respectively), as well as elongase enzymes (elongase 2 (Elovl2) and 
elongase 5 (Elovl5)) encoded by elovl2 and elovl5 genes (respectively), are involved in desaturation and elongation of 
PUFAs from the n-6 (cyan) and n-3 (orange) families. Polymorphisms in those genes (SNPs) are associated with variations 
of plasma (grey) levels of LC PUFAs (represented by circles in the blood circulation). Bold letters represent higher amounts 
of LC PUFAs in the blood. fads: fatty acid desaturase; elovl: elongase; EPA: eicosapentaenoic acid; ARA: arachidonic acid; 
DHA: docosahexaenoic acid; ALA: α-linolenic acid; LA: linoleic acid; DPA: docosapentaenoic acid; D5D: delta-5 desatu-
rase; D6D: delta-6 desaturase; Elovl5: elongase 5; Elovl6: elongase 6. 

In addition to their crucial role in the structure and function of cell membranes, n-3 
and n-6 PUFAs are substrates for the production of several signaling molecules involved 
in the physiological function of the cells, especially in the brain [1,7]. Indeed, EPA, DHA, 
and ARA are hydrolyzed by the specific phospholipase A2 (PLA2) and can be further 

Figure 1. Single nucleotide polymorphisms (SNPs) within the metabolic pathways of n-3 and n-6 PUFAs lead to altered
circulating levels of PUFAs. Desaturase enzymes (delta-5 desaturase (D5D) and delta-6 desaturase (D6D)) encoded by fatty
acid desaturase genes 1 and 2 (fads1 and fads2 respectively), as well as elongase enzymes (elongase 2 (Elovl2) and elongase
5 (Elovl5)) encoded by elovl2 and elovl5 genes (respectively), are involved in desaturation and elongation of PUFAs from
the n-6 (cyan) and n-3 (orange) families. Polymorphisms in those genes (SNPs) are associated with variations of plasma
(grey) levels of LC PUFAs (represented by circles in the blood circulation). Bold letters represent higher amounts of LC
PUFAs in the blood. fads: fatty acid desaturase; elovl: elongase; EPA: eicosapentaenoic acid; ARA: arachidonic acid; DHA:
docosahexaenoic acid; ALA: α-linolenic acid; LA: linoleic acid; DPA: docosapentaenoic acid; D5D: delta-5 desaturase; D6D:
delta-6 desaturase; Elovl5: elongase 5; Elovl6: elongase 6.

In addition to their crucial role in the structure and function of cell membranes, n-3 and
n-6 PUFAs are substrates for the production of several signaling molecules involved in the
physiological function of the cells, especially in the brain [1,7]. Indeed, EPA, DHA, and ARA
are hydrolyzed by the specific phospholipase A2 (PLA2) and can be further metabolized
by cyclooxygenases (COXs), lipooxygenases (LOXs), and the cytochrome P450 system into
eicosanoids (prostaglandins, leukotrienes, and hydroxyeicosatetraenoic acids from ARA) or
docosanoids (resolvins, protectins, maresins, and neuroprotectin D1 from EPA and DHA),
which are named oxylipins. n-3 and n-6 PUFAs-derived oxylipins are crucial to homeostatic
functions but often have opposite activities, with ARA-derived eicosanoids being pro-
inflammatory and DHA/EPA-derived being anti-inflammatory and pro-resolutive [26–29].
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Their role in brain inflammation has been reviewed recently [7]; however, data on the
developing brain are rather scarce and are discussed in the present review.

The massive changes in dietary habits from a balanced n-3/n-6 PUFAs ratio to excess
n-6 PUFAs in Western societies across the twentieth century raises the question of its impact
on brain development and its contribution to neurodevelopmental disorders and later life
brain health [2]. Concerning n-3 PUFAs and infant brain development and mental health,
the understanding of gene/nutrient interactions may be particularly important for the
design of specific nutritional strategies, so-called precision nutrition [24,30].

In this review, we will discuss how maternal and child nutrition and polymorphism of
PUFA metabolism genes influence their aggregation and activity in the developing brain,
considering the placenta transfer to the in utero developing brain. Specific attention was
given to gender. Then, we will discuss the potential role of these PUFAs in neurodevel-
opmental disorders, focusing on autism spectrum disorders (ASD), attention deficit and
hyperactivity disorder (ADHD), and schizophrenia.

2. PUFAs and Brain Development
2.1. Accretion of PUFAs in the Developing Brain

Brain cell membranes are particularly rich in lipids (50–70%) [31], with LC PUFAs DHA
and ARA being the highest species detectable, even if other fatty acids are also detected
(such as monounsaturated and saturated fatty acids). As a result, the human prefrontal
cortex contains around 30% of PUFAs, with 14% of DHA and 9% of ARA [32]. In rodents,
the fatty acid composition of the brain is similar to humans; 12% of DHA and 10% of
ARA [33]. Fatty acids are esterified in several type of phospholipids: phosphatidylcholine
(PC, 42–44%), phosphatidylethanolamine (PE, 36–40%) phosphatidylserine (PS, 11–13%),
and phosphatidylinositol (PI, 2–3%) [31]. DHA is mostly esterified in PE and PS, whereas
ARA is esterified in PC and PI [1,34,35]. Striking differences can be found between the white
and the grey matter, with DHA and ARA levels being lower in the white matter compared
to the grey matter [36]. These differences could be due to the accumulation of DHA in
synaptosomes and ARA in vascular cell membranes of the brain, which is suggested to
serve as a depot for ARA [36,37]. Besides, the lipidic composition of the myelin sheath could
also explain these differences since cholesterol is abundant in myelinated axons, while the
grey matter is highly enriched in PUFAs [38,39]. High levels of DHA in synaptosomes are
consistent with previous data, demonstrating that DHA promotes neurite outgrowth and
synaptogenesis [40,41], which is discussed below.

Brain accumulation of both n-3 and n-6 PUFAs starts during gestation; a process often
referred to as “accretion”. As previously noted, the pre and post-natal increase in DHA
depends on maternal and infant DHA intake [42,43]. DHA accumulation in the brain is
massive, with a nearly 30-fold increase in the first two years of life [44]. In humans, DHA
accretion begins during the third trimester of pregnancy [45], while accretion during the
first or second trimester is low [46]. In the third trimester, accretion of DHA and ARA
is substantial, while accretion of the precursors LA and ALA is minimal [45] and EPA
remains poorly aggregated. In humans, exponential accretion of LC n-3 and n-6 PUFAs
was observed between gestational weeks 26 and 43, while post-natal LC PUFAs accretion
is rather steady [47]. In humans, DHA accretion reaches 40 mg/day in the fetus during the
final four weeks of gestation [48]. The high DHA demand for the fetal brain is sustained by
the mother, thanks to the increased DHA synthesis from ALA and mobilization of maternal
DHA stores from adipose tissue [49,50]. For comparison, in rodents, DHA accumulates in
the brain during the first three weeks of neonatal life with a 10-fold increase [51].

There is little data on the rate of accretion of LC PUFAs in different brain cell types (neu-
rons, astrocytes, microglia, and oligodendrocytes) during brain development. This knowl-
edge would be of high interest as neurons and glial cells do not proliferate or mature at the
same development stage. In addition, the role of DHA/ARA in the specificity of develop-
ment is still unknown. As previously mentioned, DHA accumulates in synaptosomes and
regulates the functions of synaptic proteins [40,52,53]. DHA is also found in astrocytes [54],
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microglia [55], and oligodendrocyte membranes [56,57]. Interestingly, recent data show
that DHA in the membrane of glial cells regulates their activity, the formation of syncytium
in astrocytes, neuroinflammation in microglia [7], or myelin formation in oligodendro-
cytes [58]. Of note, EPA is found in microglia [55,59], suggesting that these cells could play
an important role in mediating the neuroprotective effect of EPA dietary supplementation
in mood disorders [60]. However, the precise role of DHA, EPA, and ARA accretion in these
cells during development and the impact of altered accretion on glial cell development
remains to be investigated for both term and preterm neonates. Indeed, children born
preterm present major alterations of DHA and ARA accretion, as they normally accumulate
during the third trimester of gestation, thus exposing preterm neonates to a deficit in LC
n-3 PUFAs [61]. Recent data revealed a detrimental role of ARA in the microglia phagocytic
activity in the spine, a crucial mechanism of developmental neuronal network wiring [59].
More studies are needed to better understand the type of PUFAs and the dynamic of PUFAs
accretion in the different glial cells during development.

Overall, the massive increase in DHA and ARA in the third trimester of the developing
brain coincides with the growth spurt characterized by an intensive neuron outgrowth and
synaptic wiring [44]. Acquisition of new knowledge is promising for a better understanding
of the importance of the optimal nutritional amount of n-3 PUFAs during gestation and
lactation and young infants in both humans and rodents.

2.2. Needs of LC PUFAs to the Pre and Post-Natal Developing Brain: Transport and Dietary
Maternal Supply
2.2.1. Pre-Natal Maternal Supply of LC PUFAs to the Developing Brain via the Placenta
and the Blood-Brain Barrier

As previously reported, important concentrations of LC PUFAs, particularly ARA
and DHA, are accumulated in the brain during early life to support the growth and
development of the brain [62]. Numerous studies have demonstrated the importance
of LC n-3 and n-6 PUFAs intake by the mother for adequate intake in the fetus and
new-born. This contribution is made by maternal dietary intake, which is transferred
through the placenta during gestation [63], then by milk during lactation [64]. Particular
attention has been paid in the last years to DHA dietary intake in pregnant women to
promote optimal brain development of the fetus [65], as the fetus is not able to produce its
own DHA and is therefore dependent on maternal supply [66]. According to the World
Health Organization, pregnant women should consume at least 200 mg/day of DHA. This
amount of DHA intake is poorly met in the general population [67], raising the question of
supplementation in DHA of pregnant women, especially the ones at risk for premature
birth [68]. An omega-3 Index of 8–10% (DHA plus EPA levels in erythrocytes) is a target
range to avoid risks and complications during pregnancy and lactation, such as premature
birth [69]. Two major randomized controlled trials conducted in Australia and the United
States, respectively DHA to Optimize Mother Infant Outcome (DOMInO) and Kansas
DHA Outcomes Study (KUDOS), revealed that supplementation of mothers with 800
and 600 mg of DHA/day significantly reduced the number of preterm births [70] with a
poor effect on the neurodevelopment of children [71]. However, a large multicentric trial
(ORIP) aiming at studying the effect of prenatal LC n-3 PUFAs supplementation (800 mg of
DHA + 100 mg of EPA) on the incidence of preterm birth [72] did not observe a beneficial
effect on length of pregnancy [73]. Maternal plasma level of EPA + DHA below 2% in
the first trimester of gestation could be a standard evaluation to perform dietary LC n-3
PUFA supplementation [74]. This reinforces the need for monitoring LC PUFAs during
pregnancy to design appropriate dietary supplementation and prevent the adverse effects
of insufficient supply of these fatty acids to the developing brain.

Maternal lipids are transferred to the fetus across the placenta via free or specific
transport of unesterified fatty acids [75]. Indeed, during the third trimester of gestation,
PUFAs are transferred from mother to fetus via the placenta, thanks to fatty acid translo-
case (FAT/CD36) and fatty acid transport protein (FATP), both present at the placental
membrane [76]. These transporters are located on both microvillus and basal membranes
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(maternal and fetal sides, respectively) of human placental cells and can transport free fatty
acids in both directions. The placental membrane fatty acid-binding protein (p-FABPpm) is
only located on the microvillus membrane and can transport ARA and DHA from maternal
plasma to the fetus. The presence of p-FABPpm exclusively on the maternal side may favor
the unidirectional flow of LC PUFAs from the mother to the fetus. [76–78]. The cytosolic
form of FABP is also detected in both primary human trophoblasts and human placental
choriocarcinoma (BeWo) cells, two models of in vitro embryonic culture [76,79,80], as well
as in murine placenta [81–83].

Regarding DHA, which is crucial for optimal brain development, free DHA is trans-
ferred from the mother to the offspring via the placenta [84–87]. Several plasma pools
are a major source for free DHA [88]. Indeed, plasma DHA is esterified in several lipids,
phospholipids (PL), lysophospholipids, cholesteryl-esters, and triacyl-glycerol (TG). Hy-
drolysation of chylomicrons rich in TG by lipoprotein lipases (LPL) is an important source
of free DHA found in the blood. During gestation, a free DHA maternal pool is a crucial
source for placental and fetal DHA uptake and accretion [50,89].

The blood-brain barrier (BBB) limits the entry of blood cells, neurotoxic plasma
molecules, pathogens and regulates the delivery of metabolites and essential nutrients to
the brain, including LC PUFAs. Several transport systems regulating nutrients entry are ex-
pressed by endothelial cells of the BBB, such as glucose, specific amino-acids, vitamins, fatty
acids, and DHA transporters [90]. Free DHA and lysophosphatidylcholine (LPC)-DHA
are the primary sources of brain DHA [88]. The brain uptake of these forms of DHA relies
on several mechanisms, including free passage and specific transporters on the BBB [1].
Recently, the major facilitator superfamily domain-containing protein 2a (Mfsd2a), which
is located at the BBB, has been identified as a transporter of LPC-DHA, especially during
the post-natal period with an impact on neuronal arborization [91,92]. This transporter is
key to the brain amount of DHA [92] and the maintenance of the BBB while also inhibiting
the transport of toxic molecules [93,94]. During development, pericytes are necessary to
Mfsd2a expression and BBB formation [90]. Indeed, Mfsd2a confers to the endothelial cell
of the BBB a specific lipid composition that is crucial to its permeability [94]. In addition,
LPC-DHA, through Mfsd2a, represses de novo lipogenesis, with a profound effect on brain
cell membrane composition in phospholipids during development [92]. Mfsd2a has also
been identified in the human placenta, allowing the transport of LPC-DHA from mother to
the fetus [95,96]. Very interestingly, deletion or total mutations of mfsd2a are responsible
in humans of microencephaly and hypomyelination, further reinforcing its importance
in brain shaping during development, possibly through DHA brain supply [58,97,98].
Of note, a recent study reports that Zika infection during pregnancy, a flavivirus that
triggers fetal brain defect, including hydrocephalus, and alters Mfsd2a and DHA levels in
the developing brain [99]. In mice, the genetic deletion of mfsd2a reduces DHA brain level
and induces microcephaly [91,92]. Thanks to this KO in mice, the authors demonstrated
that the expression of Mfsd2a is regulated by sterol regulatory element-binding proteins
(Srebps) [92]. Srebp, a transcription factor, exists in three isoforms: Srebp-1a and -1c, both
regulating genes required for lipogenesis, and Srebp-2, regulating genes in the metabolism
of cholesterol with the two isoforms -1c and -2 being predominant in the brain [100]. A high
level of EPA/DHA in the diet in mice induces a decrease in the expression of Srebp-1 in the
brain [101]. Srebp-1 expression is significantly reduced in the dysbindin-1 KO mouse model
of schizophrenia and post-mortem brain tissue from patients with schizophrenia [102].
Recently, a team showed in mice that KO of Srebp-1c induced an alteration of GABAergic
transmission, leading to symptoms similar to schizophrenia: hyperactivity, depression-like
symptoms, and social deficits [103]. All these results show that SREBP-1 could play a role
in synaptic plasticity and transmission via the regulatory loop with n-3 PUFAs.

2.2.2. Post-Natal Maternal Supply of LC PUFAs to the Developing Brain via Breastmilk or
Infant Formula

As already mentioned, endogenous synthesis of LC PUFAs from their precursors (LA
and ALA) is limited during infancy [104]. Consequently, post-natal brain uptake of LC
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PUFAs relies on maternal milk or formulas [44]. In the maternal circulation, concentrations
of LC n-3 and n-6 PUFAs (mostly DHA and ARA) are lower than in the new-born, while
concentrations of precursors (ALA and LA) are higher in the maternal circulation [105].
Interestingly, post-mortem studies report that breastfed infants have greater amounts of DHA
in the cerebral cortex than formula-fed infants without ARA or DHA supplementation [106].
Breastfed infants also present higher post-mortem DHA levels in both erythrocytes and the
cortex but not in the retina [42]. Here we will focus on post-natal LC PUFAs supply via
maternal breastmilk or formulas.

According to the World Health Organization, only 41% of infants under the age
of six months are breastfed. Breastfeeding is the most adequate source of nutrients for
infants and provides protection against child infections, increases intelligence, and protects
against overweight and diabetes due to the presence of antibodies and lipids in maternal
milk [107]. Depending on the age of the new-born, three different phases of milk production
are distinguished, with three different milk compositions. First, the breast produces the
colostrum, beginning on the third trimester of pregnancy until few days after birth. These
fluids allow physiological adaptation of the new-born to extra uterine life. After transitional
milk (until two weeks after delivery), the breast produces mature milk, which provides
high amounts of lipids to the new-born [108]. During the first year of life, breast-milk LC
PUFAs concentrations remain rather stable. ARA content is equivalent to 1% of milk total
lipids in the colostrum and 0.5% within mature milk, which accounts for 14–15 mg/dL.
In parallel, DHA content is equivalent to 0.5% in the colostrum and 0.25% in mature milk,
accounting for 7–8 mg/dL [109]. The fatty acid patterns within maternal milk are greatly
influenced by maternal lipid intake [110,111]. In fact, lactating mothers with dietary fish
oil supplementation (rich in EPA and DHA) displayed increased levels of n-3 PUFAs in
breastmilk [112,113]. Levels of DHA and EPA increase in breast milk within two to four
days after initiation of supplementation with 10 mL per day of cod liver oil, while no
change in the levels of ARA has been observed [111]. Helland et al. also reported that
supplementation with cod liver oil increases DHA levels in a dose-response manner [111].
Therefore, nutritional strategies aiming at increasing DHA levels can be effective for
replenishing DHA levels in women facing several pregnancies since DHA levels can drop
over subsequent pregnancies [114]. Infants need high amounts of DHA for physiological
development [115]. The breastmilk content in LC PUFAs is not regulated by the mammary
gland but reflects the concentrations of LC PUFAs in maternal plasma that, in turn, are
dependent on maternal diet and maternal activities of the desaturases and elongases
involved in converting dietary LA and ALA to LC PUFAs [116].

FA from food sources in lactating mothers can be used in three ways: stored in adipose
tissues, transferred to the mammary gland for incorporation into milk, or used for energy.
However, a study showed that there is no effect of exercise on breastmilk content in LC
PUFAs [117]. Different factors can influence the content of LC PUFAs of human breastmilk,
such as maternal food intake, gestational age, or smoking. Infants of smoking mothers
are present with fewer markers of LC PUFAs synthesis [118]. Concentrations of DHA and
ARA in breastmilk presented variations depending on geographical locations, as reviewed
earlier [104]. Breastmilk DHA content is linked to dietary intake [119]. Optimum breastmilk
DHA concentrations were observed in artic Canada, Japan, the Dominican Republic, the
Philippines, and the Congo (between 1.4% and 0.6%), which mainly contain coastal or
insular populations, usually with high marine food intake [104]. Lower breastmilk DHA
concentrations were observed in Pakistan, rural South Africa, Canada, the Netherlands, and
France (between 0.06% and 0.14%), especially in inland regions or in developed countries,
where low marine food consumption is observed [104]. A recent review reports that ARA
is detected in animal and human milk, with its content being linked to maternal ARA
dietary intake [120]. Interestingly, several recent works report the presence of free and
esterified ARA, EPA, and DHA-derived oxylipins in human milk [121–123]. Of note, the
most abundant forms of oxylipins are the ones derived from LA [122], which have been
recently reported to be key to brain development in rats [124]. However, whether milk
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oxylipins play a role as signaling molecules for infant brain development has not been fully
investigated.

PUFAs supply to premature infants is a burning question, as these fatty acids are mas-
sively incorporated in the developing brain in the last trimester of pregnancy. According
to the World Health Organization, around 15 million premature births (before 37 weeks
of gestation) occur every year. Prematurity is the main cause of death in children under
the age of five [125]. Preterm infants have to face many neurodevelopmental disabilities,
including learning, visual and hearing problems [126]. Current treatments consist of mag-
nesium sulfate administration [127], caffeine for treatment of apnoea, and high doses of
DHA [128]. To avoid complications in premature infants, different nutritional supports are
used, such as enteral or parenteral nutrition, human breast milk, and formula milk [129].
Enteral nutrition is limited in preterm birth because of the immature gastrointestinal mo-
tor activity and risks of necrotizing enterocolitis [130]. Premature infants should be fed
with human milk, while parenteral nutrition is recommended if per os nutrition cannot be
achieved to supply adequate amounts of proteins. However, the best alternative to human
milk remains preterm formula [131]. In 2008, a study conducted on very preterm infants
with human milk supplementation using DHA and ARA brought interesting outcomes
regarding improved recognition memory at six months of age [132]. However, the effect
on visual, intellectual development, or growth of preterm infants with the addition of LC
PUFAs to formula remains unclear [133,134]. Another study showed that supplementation
with a 50:50 mixture of DHA:ARA had no negative effect on weight gain or growth [132].
A randomized control trial conducted in 2013 by Gould et al. underlined that preterm
infants fed high-dose DHA did not display increased mental development index [135]. This
can be explained by the fact that supplementation was conducted on fully- or partially-fed
formula infants with fatty acids doses equivalent to the content found in human milk [136].
Assessments of attention had also been conducted by the team of Gould et al. on children
from the n-3 Fatty Acids for Improvement in Respiratory Outcomes (N3RO) trial. The
authors hypothesized that supplementation in DHA could favor the restoration of normal
brain development [137]. Most of the studies carried out do not allow for a clear conclusion
on the effect of LC PUFAs supplementation on cognitive development of preterm birth
children [132,134,138,139], as also reported in a meta-analysis [140]. A recent review also
reports mixed effects of LC PUFAs on cognition in preterm children [141]. A randomized
controlled trial conducted on term infants in 2000 revealed that supplementation of formula
milk with DHA and AA at an early stage of life improved the Mental Development Index
of the Bayley Scales at 18 months of age [142]. Nonetheless, it is important to underline
that neurodevelopmental assessment should be performed with neuropsychological tests
and procedures adapted to the age of children.

To conclude, maternal dietary supply is crucial for the pre- and post-natal developing
brain as the fetus and newborn are not able to produce LC PUFAs. The pre-natal maternal
supply is accessed via the placenta and the BBB, thanks to specific transporters. The post-
natal supply of LC PUFAs with breastmilk and formulas allows the transfer of nutrients
to the developing brain. In the specific case of premature birth, formulas remain the best
alternatives to human milk, even though long-term beneficial effects are still unclear.

3. Endogenous Production of PUFAs in the Developing Brain
3.1. Expression of Key Enzymes in the Developing Brain

As previously mentioned, maternal PUFAs supply to the infant brain occurs during
gestation and lactation, but the developing brain seems to be able to form LC n-6 and
n-3 PUFAs from their respective precursors. For a long time, it was assumed that the
liver was the main location of elongation and saturation to form LC PUFAs, eventually
released in the developing brain, as shown by in vivo studies in rats [51,143]. In order to
bypass the metabolism of the liver, intra-cranial administration of labeled LA and ALA
has been performed in the post-natal rat (11 and 13 days post-partum). These results show
that the post-natal developing brain is capable of forming LC PUFAs, ARA, and DHA,
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respectively [144,145]. Similarly, Sanders et al. have shown that the brains of 21-day-old
fetal rats were also capable of forming LC PUFAs, in particular by the presence of D6D,
which converts LA and ALA [146,147]. At the end of the 1990s, the human fads1 [148]
and the mammalian fads2 [148,149] were cloned and characterized, while the fads1 gene
(coding for D5D enzyme) has been shown to be strongly expressed in the human fetal
brain [150]. In addition, several members of the Elovl family (Elovl 1, 3, 4, 5, and 6) have
been reported to be expressed in the brain, with strong differences between species. As an
example, the expression of Elovl2 and Elovl7 is very low in the mammalian brain, while
Elovl2 is expressed in non-mammal species (such as fish). Elovl4, which catalyses the
synthesis of very LC PUFAs, is expressed in the brain of fish and mammals. Several
SNPs in the fads1-fads2 gene cluster (rs174537, rs174761, and rs383458) are associated with
variations in desaturase activity, leading to different LC PUFAs levels, as summarised
in Table 1. An increase in EPA and DHA dietary intake is responsible for an increase
in D5D and a decrease in D6D activities [151]. In one study, the authors showed that
the presence of the rs174537 genotype resulted in dietary EPA and DHA modulation of
D5D activity [151]. Besides, a 2011 meta-analysis on genetic loci associated with plasma
phospholipids showed that SNPs in Fads1/2 are responsible for an increase in ALA levels
and a decrease in EPA levels, while SNPs on Elovl2 are more likely to induce an increase in
EPA (as well as docosapentaenoic acid, DPA) and a decrease in DHA plasma levels [152].
Mutations in either elovl4 or elovl5 cause neurological diseases in humans [153], as explained
below. During early embryogenesis in the zebrafish, Monroig et al. were able to detect
expression of the desaturase and elongation genes, using qRT-PCR and whole-mount in
situ hybridization, respectively showing temporal- and spatially-restricted expression [154].
They showed that the three transcripts fads, elovl2, and elovl5 were highly expressed in
the head area from the beginning of embryogenesis, which was also confirmed in another
study [155]. Early detection of these genes in the brain during embryonic development may
suggest that in situ production of LC PUFAs could be achieved; however, the contribution
of these genes as compared to the maternal PUFA supply have been poorly studied during
brain development.

Table 1. Major SNPs involved in variations of LC PUFAs levels. fads: fatty acid desaturase; elovl: elongase; LC n-3 PUFA:
n-3 long chain polyunsaturated fatty acid; EPA: eicosapentaenoic acid; ARA: arachidonic acid; DHA: docosahexaenoic acid;
ALA: α-linolenic acid; LA: linoleic acid; DPA: docosapentaenoic acid; D5D: delta-5 desaturase; D6D: delta-6 desaturase.

Study
(Year) Ref. SNPs Impact on LC PUFAs Levels Child Development

Morales
(2011) [18]

Mother:
fads

elovl5
Children:

fads
elovl5

Higher colostrum levels of LC n-3
PUFA.

Improved cognition at 14
months.

Modification of cognition
by breastfeeding.

de Groot et al.
(2019) [19]

fads1-fads2
(rs174537, rs175461, rs3834458)

elovl2
(rs953413)

Decreased levels of EPA and ARA.
Reduced DHA levels.

Tanaka et al.
(2009) [20]

fads
(rs174537)

elovl2
(rs953413)

Higher ALA, LA and lower ARA,
EPA, DPA and DHA levels.

Lower DHA and higher DPA and
ARA levels.

Al-Hilal et al.
(2013) [151] fads1-fads2

(rs174537)

Interaction of rs174537 genotype
with dietary EPA + DHA

supplementation influence D5D
and D6D activity.

Lemaitre et al.
(2011) [152]

fads1-fads2 Increase in ALA levels.
Decrease in EPA levels.

elovl2 Increase in EPA/DPA levels.
Decrease in DHA levels.
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3.2. Gender Differences in Brain PUFAs Accretion and Effect of PUFAs on Sex Determination

In humans, it is known that the brain develops differently depending on gender.
In a large human cohort, significant gender differences were observed regarding cortical
thickness, fiber organization, and total brain volume [156]. These anatomical differences
could explain that gender may play a significant role in neurodevelopmental disorders, as
observed with autism [157] and attention deficit and hyperactivity disorder [158]. Besides,
gender differences are also observed in patients with schizophrenia [159]. However, these
differences are sometimes attributed to methodological issues [160,161].

To our knowledge, there are very few studies on differential brain accretion of PUFAs
during development according to gender. In addition, previous studies did not focus on
whether the dietary status of PUFAs differentially influences brain accretion according
to gender. Nevertheless, some studies reported that PUFAs accretion is different in men
vs. women. Indeed, in humans, DHA status in serum is reported to be higher in adult
women than men. These differences have been associated with a better conversion of ALA
to LC n-3 PUFAs in women as compared to men [162,163]. Such metabolic capacity could
facilitate maternal supply to their offspring. On the other hand, the proportion of DPA n-3
to EPA is lower in serum of women [162,164]. Studies in rats have shown that D5D and D6D
enzymes at both the transcriptional and protein levels are more expressed in the liver of
females than males, in contrast to the brain, where similar expressions were found in both
genders [165,166]. Different studies suggested that higher serum DHA levels in women
than men may be due to the presence of estrogens that positively regulate DHA synthesis
from ALA [166,167]. Indeed, it has been shown that taking hormonal contraception induces
a significant increase in the level of DHA in women [168]. A recent study in rats has shown
that a diet containing low amounts of LA with an estrogen supply induced an increase in
the hepatic expression of D6D, Elovl2, and Elovl5, thus inducing an increase in plasma
levels of DHA [169]. An in vivo study in rats showed that dietary ALA intake induced a
greater proportion of DHA in erythrocytes but lower in the pre-frontal cortex in females
compared to males [170]. In this study, the authors showed that ovariectomy, together
with a diet rich in ALA, induced a decrease in the amount of DHA in erythrocytes, as
well as in the hippocampus, compared to control females fed with a diet rich in ALA.
Similarly, another study in rats also showed that ovariectomy-induced an increase on
hepatic fads1 and fads2 transcripts, but not in the brain, and a decrease in DHA levels in the
brain [171]. A study on deficiency or supplementation in n-3 PUFA during the perinatal
period and for 16 weeks after weaning in mice, shows that the changes in cerebellar FA
were more pronounced in offspring females, with diet having a significant effect [172], due
to the presence of estrogen (for a review, see [173]). All these results suggest that ovarian
hormones up-regulate DHA content in erythrocytes and brain regions. However, a recent
study examining the interaction effects between diet, sex, brain regions, and phospholipid
pools in mice demonstrated that DHA concentration was gender independent, while ARA
concentration was partially dependent on sex [174].

Gender may influence the preventive effects of n-3 PUFA supplemented diets on neu-
rodevelopmental disorders in animal models. In fact, supplementation with n-3 PUFAs in
pregnant spontaneously hypertensive rat dams (SHR) induced a reduction in hyperactivity
and impulsivity in the male offspring, but with no effect, or even opposite effects, in the
female offspring [175]. A recent study conducted in a two-hit model in mice showed the
sex-specific preventive effects of LC n-3 PUFAs [176].

All these studies show that there is a sex effect on the endogenous formation of LC
PUFAs. However, further studies are needed to understand the effect of gender, and
therefore hormones, on the accretion of PUFAs in the brain.

Trivers and Willard were the first to state that reproductive conditions could affect
the sex ratio in the offspring [177]. Numerous in vivo studies have shown an impact of
the maternal diet during pregnancy on the offspring sex ratio. Indeed, a low-fat diet
(reduced amounts of essential fatty acids, EFA) during pregnancy induces a reduction in
the number of males in the litter of mice without changing the total number of females [178].
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In opossums, diets rich in LC n-3 PUFAs during gestation induced a greater proportion of
males than females in litters [179], whereas a diet rich in n-6 LC PUFAs during gestation
induced a greater proportion of females than males, both in mice [180] and rats [181].
Diets rich in n-6 LC PUFAs induced an increase in the production of pro-inflammatory
derivatives, in particular prostaglandins, such as PGE2, PGF2α and its metabolite 13,14-
dihydro-15-keto PGF2α (PGFM) [182]. This in utero inflammation affects the ovarian cycle,
hormone production, and sperm fertilizing ability [183]. Besides, in utero inflammation also
affects vaginal pH, inducing more favorable conditions for fertilization with X sperm rather
than Y [184], as well as the loss of male embryos [181,182]. Surprisingly, it has been shown
that a diet rich in LC n-6 PUFAs induces a higher proportion of males, both in sheep [185]
and cows [186]. Various studies carried out in cows have shown that supplementation
with n-6 LC PUFAs induced a reduction in the level of progesterone and a delay in oocyte
maturation by an increase in the number of dominant follicles [187,188]. In cattle, it has
been shown in vitro that the oocytes that mature later are preferentially fertilized by Y
than X sperm [189] and that n-6 LC PUFAs supplementation during oocyte maturation
and fertilization induced a greater number of male embryos [186]. Additional studies are
necessary in order to understand these differences in results, as well as to decipher the
different mechanisms that exert PUFAs on hormonal secretions and fertilization. Therefore,
it appears that females have higher n-3 PUFAs in the serum, especially DHA, than males,
due to the presence of estrogen, which positively regulates its synthesis [167].

4. Mechanisms of Action of PUFAs on Neurodevelopment
4.1. Role of PUFAs in Synaptogenesis and Neuronal Development

As previously mentioned, DHA increases during perinatal development, while the
ARA/DHA ratio decreases, which is linked with active periods of synaptogenesis and
the establishment of structural connectivity [190,191]. The mechanisms through which
LC PUFAs contribute to brain development are still poorly understood. Indeed, several
developmental processes have been reported to be regulated by PUFAs from cell migration
to proliferation, differentiation, neurogenesis, and myelinisation to synaptogenesis, which
are the most well-described and will be the main focus of the mechanisms described in this
section.

Briefly, both DHA and ARA have been reported to influence neural stem cells (NSC)
proliferation and differentiation, and neurogenesis. Early-life n-3 PUFAs dietary defi-
ciency induces a delay in migration of neuronal cells in the embryonic brain [192] as well
as in new-borns and during post-natal life [193]. Recent data pinpoint that n-3 PUFA
deficiency-induced neurodevelopmental defects are linked to an early gliogenic fate shift
in NSCs, with ARA and DHA derivatives being key [194]. Indeed, neurogenic transition
of NSCs involves the DHA metabolite epoxydocosaexapentaenoic acids (EpDPE), while
the gliogenic transition of NSCs is driven by the ARA metabolite epoxyeicosatrienoic acid
(EET) [194]. In line with these results, other ARA metabolites such as PGE2 have been
reported to increase the proliferation of NSCs and to promote their differentiation into
neuronal-lineage cells [195]. DHA facilitates the differentiation of astrocytes in vitro [196]
through its binding to GPR120 and β2-AR [197]. Of note, dietary supply in LA promotes
ARA-derived endocannabinoids which, in turn, promotes astrogliogenesis from NSCs,
reinforcing the idea that ARA metabolites contribute to gliogenesis [198]. Further studies
on the exact role of LC PUFAS and their metabolites on NSCs fate (neurogenesis or glio-
genesis) should be performed to confirm the importance of LC n-3 and n-6 PUFA dietary
supply during brain development.

Regarding the role of LC PUFAs on synaptogenesis, a few lipid metabolism enzymes
have been identified at synaptic terminals, where they can locally modulate synaptic trans-
mission [199–201]. Mature synapses, formed during brain growth, require high amounts
of ARA and DHA incorporated into the expanding membrane surface [202]. During
perinatal rodent brain development, DHA modulates membrane signaling and synaptoge-
nesis [203] by accumulating in the neuronal growth cone [204,205] and mature synaptic
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membranes [56,206]. An in vivo model of Xenopus laevis embryos from adult female frogs
fed with adequate or n-3 PUFA deficient diets and then switched to a fish-oil supplemented
diet showed that maternal n-3 PUFA intake impacts the branching and the synaptic connec-
tivity of neurons in the developing brain. This model also revealed that these changes are
correlated with a decrease in brain-derived neurotrophic factor (BDNF) in the brain [207].
Moreover, PUFAs-depleted drosophila presented impairments of synaptic transmission at
synapses from the visual system [208]. Several in vitro studies have reported that DHA
promoted synapse formation [40,209–211]. This effect could be direct, through DHA effect
on specific receptors such as retinoid X receptor (RXR) [212] or indirect through specific
metabolites such as oxylipins or N-docosahexaenoylethanolamine (DHEA), which have
been reported to regulate NSCs differentiation (see below), neurite outgrowth, synaptogen-
esis and neuroinflammation [7,213,214]. Indeed, an ex vivo study on embryonic neurons
from E18 mouse hippocampus’ showed that DHEA, a DHA-derived endocannabinoid-like
metabolite, was crucial to neuronal development, promotes neurites and synaptogene-
sis [213]. Synapses enhancement and formation induced by DHA could also be linked to
its esterified form via its effect on physical membrane properties [215–218]. As a result,
in vivo DHA supplementation specifically promotes neurite growth, synaptogenesis, and
raises the levels of pre- and post-synaptic proteins involved in synaptic transmission and
long-term potentiation (LTP) [40].

Overall, the mechanistic data brought by animal studies further support the need
for LC PUFA for optimal brain development. Concerning post-natal periods, breast milk
remains the gold standard, as it provides both ARA and DHA [120]. Concerning infant
formulae, the amount of ARA and DHA to be added is still a matter of debate, as recently
reviewed [219]. The recent European recommendation does not pinpoint the need for the
addition of ARA in infant formulae while adding DHA is mandatory (reviewed in [219]).
The lack of recommendation on ARA in formulae has been pinpointed by several experts
as being a potential risk for improper brain development [220–222], as a diet poor in ARA
causes its decreased bioavailability for the brain [223]. Further studies are therefore needed
to better understand the mechanisms underlying ARA and DHA association on brain
developmental processes [224].

4.2. Role of PUFAs in the Regulation of Microglia and Neuroinflammation during Brain Development

More recently, specific attention has been given to the role of LC PUFAs on microglia
activity and neuroinflammation during brain development [55]. Microglia, the resident
macrophage-like brain cells which represent 5% to 15% of the brain cells, are well known
to be crucial in neuroinflammatory processes in response to injury or lesions, including
through interactions with brain infiltrating immune cells [225–227]. n-6 and n-3 PUFAs
regulate neuroinflammation either directly or through their metabolites such as oxylipins or
endocannabinoids (for a recent review, see [7]), including during brain development [228].
Of note, SNPs of genes involved in PUFAs metabolism have been reported to influence
inflammation and potentially neuroinflammation. Indeed, children of mothers with minor
alleles of fads rs174556 have been found to have higher ex vivo-stimulated production of
IL-10, IL-17, and IL-5 from peripheral blood mononuclear cells [21].

Although microglia are known to contribute to neuroinflammation, accumulating
evidence has pinpointed their role in brain wiring during development [229]. Microglia
are the first glial cells appearing in the embryonic brain. The developmental origins of
microglia have been the subject of intense debate [230]. A mesodermal or monocytic origin
of microglia has been first hypothesized until fate-mapping studies showed that microglia
derived from erythro-myeloid progenitors from the yolk sac around embryonic day (ED)
7.5 [231]. This primitive hematopoiesis gives rise to pre-macrophages that colonize the
whole brain from ED 9.5 and differentiate into microglia from ED 10.5 [232]. Microglia
develop according to temporal stages: early, pre, and adult, with the final step being
reached during the second post-natal week in mice [233]. Such an early-life origin of
microglia confers to these cells a specific life-long history, with gender and perinatal events
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potentially influencing their feature later in life [229]. During development, microglia
regulate many processes, including the phagocytosis of alive neuronal elements (including
synapses), dying and dead cells, and support myelinization, neurogenesis, and axon
fasciculation [234,235]. Importantly, inflammatory events during pregnancy or early-life
influence the microglial developmental trajectory, which may have adverse effects on
brain wiring, increasing the risk for neurodevelopmental disorders [236–239]. Indeed, the
mechanisms underlying normal and abnormal microglia-mediated synaptic pruning and
brain wiring are the subject of intense research [236].

Overall, microglia functioning is largely driven by their microenvironment, with neu-
rons and other glial cells constantly sending signals to which microglia respond. The role
of dietary PUFAs in the regulation of microglia developmental features has been poorly
addressed, but recent data pinpointed that these cells are influenced by dietary PUFAs.
Recently, we reported that maternal n-3 PUFA intake influences the offspring microglial
lipid composition (Figure 2) and the oxylipin signature [55,59]. Importantly, at weaning,
microglia display a unique fatty acid profile, with an enrichment of EPA, suggesting that
these cells could be a source of EPA-derived oxylipins with anti-inflammatory activities [59].
Indeed, resolvin D1 (RvD1) and resolvin E1 (RvE1), which are pro-resolutive oxylipins
derived from DHA and EPA, respectively, reduced pro-inflammatory cytokine expression
triggered in microglia by LPS in vitro [240]. On the other hand, maternal dietary n-3 PUFA
deficiency polarizes microglia toward a phagocytic phenotype, which leads to altered brain
wiring and memory impairment in the offspring at weaning [59,241]. In line with the impor-
tance of n-3 PUFAs in the regulation of microglia-dependant neuroinflammation [55,241–
245], a low dietary level of maternal n-3 PUFAs not only promotes a pro-inflammatory
microglial profile [241] but also exacerbates inflammatory response in pregnant dams
and the embryos after a prenatal LPS treatment [243]. This exaggerated embryonic brain
inflammatory response contributes to later-life cognitive, emotional, and neurobiological
impairments [243,246]. The mechanisms underlying the deleterious effect of both prenatal
dietary n-3 PUFA deficiency and inflammatory stimulus on later-life behavior have started
to be understood; for example, the exacerbated production of inflammatory factors in
the embryonic brain could disturb brain wiring [247], the microglia phagocytic activity
of spines, leading to excessive pruning [248] and/or microbiota disturbance [246], which
has been reported to be involved in neurodevelopmental disorders [249,250]. In particular,
we recently found that 12-HETE, which is overexpressed in n-3 PUFA deficient microglia,
contributes to dendritic spines decrease and memory impairment at weaning [59]. Ad-
ditional work needs to be conducted to decipher the exact mechanisms underlying n-3
PUFA deficiency and developmental microglia function and whether later-life dietary
intervention with n-3 PUFAs can restore the impairment associated with this early-life
deleterious developmental effect [251].

To conclude, co-occurring n-3 PUFA deficiency and maternal inflammation can po-
tentiate each other and induce synergistic effects on brain development and a higher risk
of developing neurodevelopmental disorders (Figure 2). As a result, women in the age
of procreating with low n-3 PUFA bioavailability (linked to diet and/or genetic) could be
at risk of higher sensitivity to early-life adverse inflammatory events. Indeed, there is a
need to pay attention to n-3 PUFAs bioavailability during pregnancy to limit the risk of
impaired brain development and neurodevelopmental disorders.
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5. Role of PUFAs in Neurodevelopmental Diseases

Neurodevelopmental disorders, which affect more than 3% of children worldwide,
are characterized by altered or disrupted developmental steps leading to the incapacity to
reach cognitive, emotional, communicative, and motor abilities, together with poor adap-
tation skills (recently reviewed in [252]). Among neurodevelopmental disorders, autism
spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), and intellectual
disability are common, with potential shared neuropathological mechanisms. The factors
contributing to neurodevelopmental disorders can be genetic and/or environmental. As an
example, clinical and pre-clinical studies show that genetic alterations of genes coding for
proteins involved in pre- and post-synapse functions have been found to be implicated in
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neurodevelopmental disorders. Schizophrenia, despite not being classified as a neurode-
velopmental disorder, is a neuropsychiatric disease with an etiology route of inadequate
brain development, with long-lasting consequences. Altogether, these diseases refer to the
theory of DOHAD (Developmental Origin of Health and Disease; [253]), with early-life
nutritional imbalance playing a key role [254].

Both genetic alteration and inadequate nutrition (amongst others), the latter leading to
insufficiency of LC n-3 PUFAs bioavailability, have been reported to be risk factors for neu-
rodevelopmental diseases [228] and schizophrenia [255]. Besides, abnormal features of the
placenta (physiological, morphological, and histological abnormalities) have been hypothe-
sized as risk factors for subsequent abnormal neurodevelopment [256,257]. In this section,
the potential role of LC PUFAs in neurodevelopmental diseases is discussed, especially the
role of the n-3 family. In particular, we focus on the link between perinatal low LC n-3 PU-
FAs and the risk of compromised brain development and whether dietary supplementation
with LC PUFAs could protect and/or correct neurodevelopmental abnormalities.

5.1. Early-Life n-3 PUFAs and Cognition in Infants

In humans, several studies have reported a link between n-3 PUFAs and cognitive
capacities. Explanations have been focused on the balance (ratio) between DHA and ARA,
as emphasized before [258–260]. Indeed, an association between low levels of DHA and
poorer reading abilities and working memory performance was observed in children [261].
Besides, a negative relationship was found between EPA-DHA consumption and overall
cognitive function and psychomotor speed in subjects aged 45–70 years old [262]. Moreover,
beneficial effects of maternal n-3 PUFA supplementation on child growth and development
have been reported [263], suggesting a positive effect on cognitive performance in later life.
Due to the observed positive association between n-3 PUFA serum levels and cognitive
abilities in infants [261,264], there have been various attempts to enhance cognition through
LC n-3 PUFAs supplementation in healthy children and adolescents [71,265–268] as well as
in youths from clinical populations, such as patients with autism spectrum disorder (ASD)
or attention deficits and hyperactivity disorder (ADHD) [269,270], which will be discussed
below.

Different studies have shown that n-3 PUFAs dietary supplementation of the mother
or the infant could have beneficial effects on development and cognition in children.
In fact, the intelligent quotient (IQ) can be improved at four years of age after LC n-3
PUFA supplementation (1183 mg of DHA and 803 mg of EPA per day) in the mother
during pregnancy and lactation [271]. Supplementation of infant formula with DHA
(0.36%) and ARA (0.72%) from an early age (four to six months) leads to improved visual
function at 12 months [272]. Using the same paradigm, another study found improved
visual acuity at six weeks of age [273]. Other studies have also shown that there is a
positive correlation between formula rich in ALA and neurodevelopment at one year of
age in infants born at full term of pregnancy [274]. It has also been shown that dietary
LC PUFAs supplementation (using both DHA and ARA) can improve visual acuity and
cognitive development [275]. However, the duration of breastfeeding, without dietary
supplementation and the performance score of infants are weakly associated [276]. These
studies strongly suggest that supplementation with both DHA and ARA during early life
can provide beneficial effects on cognition in infants. However, future studies will need to
decipher whether these effects are provided by either n-3 or n-6 LC PUFAs, or the synergy
of both.

In parallel, several animal studies have examined the impact of LC PUFAs on cogni-
tion. In a model of transgenic mice producing high levels of LC n-3 PUFAs in their milk
under dietary n-3 PUFAs deficiency (beta-casein n-3 desaturase transgenic mouse model),
pups raised under these conditions had increased brain levels of DHA and faster visual
development compared to pups raised by wild type mice [277]. In a review published
in 2006, Fedorova and Salem provided an overview of the different animal models used
to investigate the cognitive and behavioral effects of LC n-3 PUFAs [278]. Most of these
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models use LC n-3 PUFAs dietary deficiency; however, it is important to note that this
deficiency is far more severe than what can be found in human populations [136]. In mice,
n-3 PUFAs deficient diets during pregnancy and lactation induce spatial memory deficits
and behavioral impairment in the adult offspring [243,244,279,280].

5.2. Autism Spectrum Disorders (ASD)

Autism Spectrum Disorders (ASD) are neurodevelopmental diseases more frequently
diagnosed in males [281]. ASD is characterized by an early-childhood onset (first years
of life) with a long-term course and variation in developmental trajectory, a remarkable
clinical and biological variability, and a dramatically increased prevalence (0.05% in 1966
and close to 2% in 2019), with a wide symptomatology range in patients [282]. Patients
with ASD display a core of symptoms such as impairment in social-communicative skills
and restricted/repetitive behaviors/interests, often associated with other symptoms such
as intellectual disabilities, impaired language skills, and different medical conditions such
as gastrointestinal symptoms.

The substantial heterogeneity which underlies the neurobiology of ASD further sup-
ports that the etiology and pathophysiology of these disorders cannot be restricted to
a single genetic cause [283]. Indeed, genetic alterations [284], pollution, environmen-
tal/gestational stress, including inflammation and nutrition [285,286], as well as neu-
ral/anatomical dysfunctions [287–290] are combined risk factors for ASD development.
With regard to the link between ASD and PUFAs, polymorphisms in either the fads or elovl
genes have been linked to susceptibility for developing ASD [291].

In rodents, exposure to an n-6-PUFAs-rich diet during gestation and lactation pro-
duced social deficits in the adult offspring that resemble autistic features [292]. In a rat
model of autism, where pups are exposed to the neurotoxin propionic acid, decreased levels
of total n-3 and n-6 PUFAs were observed in the brain [293]. Another study found beneficial
effects of LC n-3 PUFAs (200 mg/kg/day for 30 days) in the same model [294]. In another
study, in which mice pups were exposed to an immune reaction during intrauterine life
(intraperitoneal injection of lipopolysaccharide at E17 in pregnant mice, mimicking bacte-
rial infection), adult animals developed impaired memory if fed with an LC n-3 PUFAs
deficient diet [243]. In another model of intrauterine exposure to infection (exposure to
PolyI:C on E9, mimicking viral infection), supplementation with LC n-3 PUFAs at weaning
(menhaden fish oil at 35 g/kg of diet) dampened the DNA hypo-methylations observed
at adulthood [295]. In a mouse model of ASD, in which animals are prenatally exposed
to valproic acid, n-3 supplementation with both α- and γ-linolenic acid protected against
the development of autistic-like features [296]. Besides, in an inbred mouse model of ASD
(BTBR mouse strain), dietary deficiency in n-3 PUFAs from gestation to early adulthood in-
duced developmental delay and altered sociability [297]. These results were also observed
when these animals were fed with dietary n-3 PUFAs supplementation [297], suggesting
that LC n-3 PUFAs cannot counterbalance the social deficits induced by such a genetic in-
breeding. Finally, in a study of Frm1 KO mice, another model mimicking ASD-like features,
n-3 PUFAs supplementation from weaning to adulthood, led to significant improvements
in sociability and emotionality [298], suggesting that n-3 PUFAs supplementation might be
used as a therapeutic tool in specific clinical situations.

PUFAs have been investigated for their potential role in alleviating the symptoms
of autism since reduced levels of PUFAs have been observed in autistic patients, espe-
cially concerning ARA and DHA [299–305], which are believed to be correlated to the
symptomatology of ASD [306]. However, one study observed increased levels of PUFAs
in high-functioning autistic children [307]. Besides, a decreased risk of ASD in children
born from mothers with high total dietary PUFA intake was also observed [308]. Another
study found that low dietary PUFAs intake during the second half of pregnancy appears to
be a risk factor for ASD [309]. In an open-label study, a six-week supplementation with
fish-oil capsules containing EPA + DHA (1.86 g/day) and vitamin E (10 mg/day) failed to
improve the behavioral symptoms of young adults with severe autism [310]. In a systematic
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review, PUFAs supplementation with either DHA or EPA alone, or in combination, was
found to be inefficient in modulating behavioral outcomes in adults and adolescents with
autism [311]. However, a recent case report provided evidence that supplementation with
EPA + DHA (respectively 2.4 and 1.2 g/day) and vitamin D (25,000 IU per week in a single
oral dose) are beneficial to improve the symptoms of a 23 years old autistic patient [312].
Similarly, a meta-analysis performed recently concluded that n-3 PUFAs supplementa-
tion could be effective in improving some of the symptoms of autistic patients [305]. A
recent randomized clinical trial observed beneficial effects of n-3 PUFAs supplementation
(722 mg/day of DHA for 12 months) on irritability and lethargy in 2.5–8 years old autistic
children [313], which was also observed in meta-analyses [314]. The beneficial effects of LC
PUFAs were also observed in preterm toddlers presenting with ASD symptoms [315,316].
Finally, supplementation with both LA (480 mg/day) and ALA (240 mg/day) for 16 weeks
provided therapeutic benefits in 21 patients with ASD [304]. Table 2 summarises the main
outcomes of case reports [312,317], open-label clinical trials [304,310,318–320], and random-
ized clinical trials [313,315,316,321–329] using LC PUFAs in patients diagnosed with ASD.
An elegant study has summarised the wide array of possible nutritional interventions for
patients with ASD and concluded that dietary interventions have little effect on ASD symp-
tomatology [330]. Recently, a meta-analysis conducted on four randomized clinical trials
revealed significant improvements in the symptoms presented by patients with ASD [305].

To conclude, the effects of LC n-3 PUFAs in clinical trials on ASD have led to mitigating
effects. As different risk factors can lead to ASD development, it is quite unclear which
treatments or dietary interventions could be efficient in preventing symptoms. However,
some clinical studies highlight the beneficial effect of dietary supplementation on symptoms
in young autistic patients.

Table 2. Interventional studies using LC PUFAs in patients with autistic spectrum disorder (ASD) or ASD-like symptoms.
ALA: α-linolenic acid; ARA: arachidonic acid; DHA: docosahexaenoic acid; EPA: eicosapentaenoic acid; GLA: γ-linolenic
acid; LA: linoleic acid, n-9: n-9 PUFAs.

Design Study (Year) Ref. Final Sample
Size Duration Intervention Main Outcome(s)

Case reports

Johnson (2003) [317] One patient 4 weeks EPA 540 mg/day
Significant

improvements in
symptoms.

Infante (2018) [312] One patient 24 months
EPA 204 g/day, DHA
1.2 g/day, vitamin D

25,000 IU/week

Beneficial
improvements in

psychiatric symptoms.

Open-label trials

Politi (2008) [310] 19 interventions 6 weeks
EPA + DHA 1.86 g/day,

vitamin E
10 mg/day

No significant effects.

Meiri (2009) [318] Nine
interventions 12 weeks EPA 380 mg/day, DHA

180 mg/day Some improvements.

Johnson (2010) [320] 10 interventions 3 months DHA 400 mg/day No significant effects.

Ooi (2015) [319] 41 interventions 12 weeks

DHA 840 mg/day, EPA
192 mg/day, ARA
66 mg/day, GLA

144 mg/day, vitamin E
60 mg/day, thyme

oil mg/day

Improved core
symptoms.

Yui
(2016) [304] 21 controls and

21 interventions 16 weeks LA 480 mg/day, ALA
240 mg/kg

Beneficial effects on
aberrant behaviours

and social
responsiveness.
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Table 2. Cont.

Design Study (Year) Ref. Final Sample
Size Duration Intervention Main Outcome(s)

Randomised
clinical trials

Amminger
(2007) [321]

Five controls and
seven

interventions
6 weeks EPA 0.84 g/day, DHA

0.7 g/day
Improved hyperactivity

and stereotypy.

Bent (2011) [322] 12 controls and
13 interventions 12 weeks EPA 0.7 g/day, DHA

0.46 g/day No significant effects.

Yui
(2011 and 2012) [323,324]

Six controls and
seven

interventions
16 weeks DHA 0.24 g/day,

ARA 0.24 g/day

Improvements in social
withdrawal and

stereotypy.

Bent (2014) [325] 28 controls and
29 interventions 6 weeks EPA 0.7 g/day, DHA

0.46 g/day No significant effects.

Voigt (2014) [326] 15 controls and
19 interventions 6 months DHA 0.2 g/day No significant effects.

Mankad (2015) [327] 19 controls and
18 interventions 6 months EPA + DHA 1.5 g/day No significant effects.

Parellada (2017) [328] 68 patients 8 weeks

EPA 577.5–693 mg/day,
DHA 385–462 mg/day,

vitamin E
1.6–2.01 mg/day

Within subject
improvements in social
motivation and social

communication.

Boone (2017) [329] 16 controls and
15 interventions 3 months

EPA 338 mg/day, DHA
225 mg/day, GLA

83 mg/day, n-9
306 mg/day

No significant effects.

Sheppard
(2017) [315] 12 controls and

12 interventions 3 months

EPA 338 mg/day, DHA
225 mg/day, GLA

83 mg/day, n-9
306 mg/day

Improved gesture and
word use.

Keim (2018) [316] 16 controls and
15 interventions 3 months

EPA 338 mg/day, DHA
225 mg/day, GLA

83 mg/day, n-9
306 mg/day

Improvements in
symptoms, but limited

to one subscale.

Mazahery
(2019) [313] 16 controls and

23 interventions 12 months DHA 722 mg/day,
vitamin D 2000 IU/day Improved irritability.

5.3. Attention Deficits and Hyperactivity Disorder (ADHD)

Attention deficits and hyperactivity disorder (ADHD) is classified as a neurodevel-
opmental disorder. The prevalence of ADHD is around 8% [331] and is diagnosed in
children. Some patients may also develop ADHD into adulthood [332]. According to
the Diagnostic and Statistical Manual of Mental Disorders (DSM, fifth version), symp-
toms of ADHD include impulsivity, inattention as well as social and academic difficulties,
although a certain fluidity exists [333]. Depending upon the symptoms, three different
types of ADHD can be distinguished: predominantly difficulty in concentration, predomi-
nantly hyperactivity and impulsiveness, and finally, a combination of all of the above [334].
ADHD can include a wide range of symptoms such as restlessness, fidgeting, anxiety,
attention deficit, distractibility, excessive talking, forgetfulness, and frequent interruption
of others [335]. In fact, in several studies, low birth weight, premature birth, infections,
or traumas could be considered as potential causes of ADHD [336,337]. A few studies
have also found an association between several protein-coding genes and ADHD. These
include dopamine transporters (DAT1), dopamine (D4, D5), serotonin (5-HT1B), and NMDA
2A receptors [338–340]. Finally, morphological abnormalities were found in the brain of
ADHD patients [341–343], although this is frequently disputed in the field. The etiology of
ADHD needs to be clarified more precisely.

Patients with ADHD present lower levels of PUFAs in the blood [344–348], which
appear to correlate to the symptomatology of ADHD [349]. In a recent cohort of children,
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lower dietary intakes of fatty fish and seafood were observed in ADHD patients compared
to control patients [350]. Thus, strategies aiming at increasing serum levels of PUFAs have
been investigated as potential dietary treatments for the management of ADHD symptoms.

Similar to ASD models, ADHD models in rodents are numerous [351]. Since dopamin-
ergic neurotransmission is markedly altered in ADHD [352–356], animal models have
focused on genetic alterations of dopaminergic neurotransmission. Indeed, some studies
used dopamine D2 autoreceptor KO mice to investigate ADHD-like symptoms. These mice
display spontaneous hyperlocomotion [357] and impulsivity [358], two features frequently
observed in ADHD [359]. Other studies used dopamine transporter (DAT) KO rodents,
which also present similarities with human symptomatology. In fact, DAT-KO animals
present traits of hyperactivity and motor stereotypy [360–364]. Some studies have evalu-
ated the potential effects of PUFAs on spontaneous hypertensive (SHR) rats, a rodent model
of ADHD [365]. Indeed, a study showed a significant correlation between a low level of n-3
PUFAs in the prefrontal cortex in rats and locomotor hyperactivity [366]. Interestingly, in
the SHR rat, a reduction in hyper-locomotion was observed following dietary enrichment
with LC n-3 PUFAs (LA 1.54% and ALA 0.27%) compared to deficiency in LC n-3 PUFAs
(LA 1.58% and ALA 0.01%) [367]. An EPA and DHA-enriched diet during pregnancy in
SHR dams enhanced reinforcement-controlled attention in males, and reduced hyperactiv-
ity and impulsiveness, while there is no change in females [175]. The authors explained
this sex-specific effect to be due to increased turnover ratios of dopamine and serotonin for
SHR males in the neostriatum, while there was no change for the females SHR.

A double-blind, randomized clinical trial performed in Iran revealed subtle improve-
ments in ADHD symptoms in patients under standard pharmacology (methylphenidate
1 mg/kg/day) combined with n-3 PUFAs supplementation (EPA 180 mg/day and DHA
120 mg/day) after eight weeks, compared to controls (pharmacological treatment alone) pa-
tients [368]. Similarly, n-3 PUFAs supplementation with 93 mg/day of EPA and 29 mg/day
of DHA during 15 weeks was able to alleviate ADHD-like symptoms in 104 children [369].
Identical results were found by another study, in which 20–25 mg/kg/day of EPA and
8.5–10.5 mg/kg/day of DHA were consumed for 16 weeks [370], while earlier studies
revealed mild improvements in such treatment [371,372]. A recent study on ADHD chil-
dren (6–18 years old) observed improvements in attention and vigilance after 12 weeks of
EPA supplementation (1.2 g/day), while attention was worsened by the treatment in pa-
tients presenting higher endogenous EPA levels at enrolment [270]. However, one clinical
trial in ADHD children (6–12 years old) found no beneficial effects of PUFAs supplemen-
tation (241 mg/day of DHA, 33 mg/day of EPA, and 150 mg/day of n-6 PUFAs) after
10 weeks of treatment [373], when combined with the standard pharmacological treatment
(methylphenidate 1 mg/kg/day). A meta-analysis performed on 699 children with ADHD
from 10 clinical trials revealed a small but significant effect of n-3 PUFAs supplementation
on ADHD symptoms [269], while another study failed to find beneficial effects of such a
supplementation [374], which might be explained by very different methodologies in all of
the clinical trials investigated. Finally, it was recently suggested that the combination of
EPA and DHA could be used as an adjuvant therapy, together with the standard pharma-
cological treatment, using methylphenidate, to improve the clinical symptomatology in
ADHD patients [375]. Table 3 summarises the main outcomes of an open-label trial [375]
and randomized clinical trials [270,368–373,376–398] using LC PUFAs in patients with
ADHD.
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Table 3. Interventional studies using LC PUFAs in patients with ADHD. ALA: α-linolenic acid; ARA: arachidonic acid;
DHA: docosahexaenoic acid; EPA: eicosapentaenoic acid; GLA: γ-linolenic acid; LA: linoleic acid; n-3: n-3 PUFAs; n-6: n-6
PUFAs.

Design Study (Year) Ref. Final Sample
Size Duration Intervention Main Outcome(s)

Open-label trial Checa-Ros
(2019) [375] 40 patients 1 month

EPA 70 mg/day, DHA
250 mg/day,

methylphenidate
1 mg/kg/day

Improved attention,
improved core

symptoms

Randomized
clinical trials

Aman (1987) [376] 31 patients 4 weeks LA 2.16 g/day, GLA
270 mg/day Only minimal effects.

Voigt (2001) [377] 27 controls and
27 interventions 4 months DHA 345 mg/day No significant effect.

Richardson
(2002) [371] 14 controls and

15 interventions 12 weeks

EPA 186 mg/day, DHA
450 mg/day, ALA

96 mg/day, LA
864 mg/day, ARA

42 mg/day, vitamin E
60 IU/day, thyme oil

8 mg/day

General behavioral
improvements and

small effects.

Stevens (2003) [372] 22 controls and
25 interventions 4 months

EPA 80 mg/day, DHA
480 mg/day, GLA
96 mg/day, ARA

40 mg/day, vitamin E
24 mg/day

No clear benefit but
some improvements.

Hirayama
(2004) [378] 20 controls,

20 interventions 2 months DHA 3.6 g/week Only minimal effects.

Sinn (2007) [369] 27 controls and
36 interventions 15 weeks

EPA 558 mg/day, DHA
174 mg/day, GLA

60 mg/day, vitamin E
10.8 m/day

Improvements in core
symptoms.

Sinn (2008) [379]

27–38 controls
and

72–88
interventions

15–30 weeks
EPA 558 mg/day, DHA

174 mg/day, GLA
60 mg/day

Improved attention.

Vaisman (2008) [380] 21 controls and
21 interventions 3 months Fish oil 799 mg/day Improved attention.

Bélanger (2009) [370] 13 controls and
13 interventions 16 weeks

EPA 20–25 mg/kg/day,
DHA

8.5–10.5 mg/kg/day,
vitamin E in traces

Improvements in core
symptoms.

Johnson (2009) [381] 38 controls and
37 interventions 3–6 months

EPA 558 mg/day, DHA
174 mg/day, GLA

60 mg/day, vitamin E
10.8 mg/day

Improved symptoms in
a subgroup.

Raz (2009) [382] 31 controls and
32 interventions 7 weeks

LA 480 mg/day, ALA
120 mg/day, vitamin E
10 mg/day, mineral oil

190 mg/day

No significant effect.

Gustafsson
(2010) [383] 42 controls and

40 interventions 15 weeks
EPA 500 mg/day, DHA
2.7 mg/day, vitamin E

10 mg/day
Improved attention.

Hariri (2012) [384] 50 controls and
53 interventions 8 weeks EPA 635 mg/day, DHA

195 mg/day Improved symptoms.

Manor (2012) [385] 47 controls and
100 interventions 15–30 weeks EPA 80 mg/day, DHA

40 mg/day Improved impulsivity.
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Table 3. Cont.

Design Study (Year) Ref. Final Sample
Size Duration Intervention Main Outcome(s)

Randomized
clinical trials

Milte (2012) [386] 90 patients 12 months
EPA 264–1109 mg/day,
DHA 108–1032 mg/day,

LA 1467 mg/day

Improved symptoms in
a subgroup.

Milte (2015) [387] 87 patients 12 months
EPA 264–1109 mg/day,
DHA 108–1032 mg/day,

LA 1467 mg/day

Improved symptoms in
a subgroup.

Perera (2012) [388] 46 controls and
48 interventions 6 months

n-3 592.7 m/day, n-6
361.5 mg/day,

methylphenidate
0.7–1 mg/kg/day,

Improved symptoms.

Behdani (2013) [389] 33 controls and
36 interventions 8 weeks

EPA 720 mg/day, DHA
480 mg/day,

methylphenidate
1 mg/kg/day

No significant effect.

Dashti (2014) [398] 28 controls and
28 interventions 3 days

n-3 1 g/day,
methylphenidate
0.9–3 mg/kg/day

Improved symptoms.

Dubnov-Raz
(2014) [390]

Nine controls and
eight

interventions
8 weeks ALA 1 g/day No significant effect.

Widenhorn-
Müller
(2014)

[391] 44 controls and
49 interventions 16 weeks EPA 600 mg/day, DHA

120 mg/day No significant effect

Bos (2015) [392] 19 controlsand
19 interventions 16 weeks EPA 650 mg/day, DHA

650 mg/day Improved attention.

Matsudaira
(2015) [393] 36 controls and

33 interventions 12 weeks

EPA 558 mg/day, DHA
174 mg/day, GLA

60 mg/day, vitamin E
9.6 mg/day

No significant effect.

Anand (2016) [394] 25 controls and
25 interventions 4 months EPA 180 mg/day, DHA

120 mg/day
Improved symptoms in

a subgroup.

Salehi (2016) [395] 50 controls and
50 interventions 8 weeks

EPA 100–400 mg/day,
methylphenidate
0.5–1 mg/kg/day

Improved symptoms.

Assareh (2017) [373] 40 patients 10 weeks

EPA 35 mg/day, DHA
241 mg/day, n-6 LC
PUFAs 150 mg/day,

methylphenidate
1 mg/kg/day

No significant effect.

Barragán (2017) [396] 30 controls and
30 interventions 12 months

EPA 558 mg/day, DHA
174 mg/day, GLA

60 mg/day,
methylphenidate
0.5–1 mg/kg/day

Improved symptoms.

Kean (2017) [397] 58 controls and
54 interventions 14 weeks

EPA 21.9–29.2 mg/day,
DHA 16.5–22 mg/day,

vitamin E
0.67–0.9 mg/day

Improved hyperactivity
and inattention.

Moghaddam
(2017) [368] 40 patients 8 weeks

EPA 180 mg/day, DHA
120 mg/day,

methylphenidate
1 mg/kg/day

Improvements in
symptoms.

Chang (2019) [270] 44 controls and
48 interventions 12 weeks EPA 1.2 g/day

Improved attention and
vigilance in patients

with low levels of
EPA only.
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To conclude, the effects of LC n-3 PUFAs supplementation on ADHD patients are
ambiguous. While some studies report beneficial effects, others report no significant effects.

Interventions using LC n-3 PUFAs in patients with neurodevelopmental disorders pro-
duced mitigated results. Indeed, in patients with ASD, 11 out of 18 interventions produced
beneficial effects (Table 2), while 21 out of 31 interventions produced beneficial/minimal
effects in patients with ADHD (Table 3).

5.4. Schizophrenia

Schizophrenia is a complex disorder, which affects 1% of the population worldwide.
The main symptoms are hallucinations, delusions, disorganized thought, blunted or inap-
propriate affect, social withdrawal, and cognitive dysfunction [399]. However, the etiology
is still unclear.

The possibility that schizophrenia might arise from abnormal neurodevelopment was
hypothesized long ago [400–403]. Emerging evidence suggests that a combined neurode-
velopment insult, together with another insult, such as inflammation [404], infection [405],
psychological trauma [406], consumption of cannabis [407], or malnutrition [408,409],
known as the two-hit hypothesis, can lead to schizophrenia. Dysfunction of a variety of
neurotransmitter systems (glutamatergic, serotonergic, and GABAergic) has been reported
in schizophrenia [410], while the brain dopamine systems seem to play an important role
in the disease [411]. Indeed, hyperactivity of the mesolimbic dopamine pathway could me-
diate the psychotic symptoms of schizophrenia. In addition, hypofunction of the prefrontal
cortex, which appears to involve decreased activity of mesocortical dopamine neurons,
has been reported in schizophrenic patients [412]. Importantly, effective anti-psychotic
drugs are dopamine D2 receptor (D2R) antagonists. A number of clinical studies report a
contribution of LC n-3 PUFA to schizophrenia. In fact, psychosis itself is associated with an
imbalanced dietary intake of LC PUFAs [413,414]. Not only low levels of PUFAs have been
associated with schizophrenia, but also some genetic alterations of genes involved in the
transport and the metabolization of PUFAs have been reported in schizophrenic patients.
As an example, SNPs in Fabp7, a transporter of LC PUFAs, and ALOX12, a gene encoding
an enzyme, which metabolizes both ARA and DHA into oxylipins, have been linked to
schizophrenia [415,416]. FADS2 and iPLA2, which hydrolyzes DHA in the cell membrane,
are highly expressed in the brain of schizophrenic patients [417,418]. Importantly, it is well
known that genetic or nutritional suboptimal levels of n-3 PUFA influence the dopaminer-
gic system [419], which is highly involved in several neuropsychiatric disorders, including
schizophrenia (recently reviewed in [255,420].

In rodents, prenatal deficiency in LC PUFAs (ARA and DHA) could model the prodro-
mal state of schizophrenia [421]. Dietary PUFA deficiency resulted in schizophrenic-like
symptoms, dysregulated expression of genes involved in oligodendrocyte and GABA
activity, and epigenetic silencing of the lipid receptors Rxr and Ppar, which have also been
reported in patients [421]. Similarly, LC n-3 PUFAs deficiency during gestation resulted
in prepulse inhibition impairments in mice [422], which parallels the abnormal prepulse
inhibition responses in patients with schizophrenia [423–425]. Interestingly, Fabp3 KO
mice, which have impaired brain PUFAs access, exhibit D2R dysfunction, impaired glu-
tamate release in the dorsal striatum and the anterior cingulate cortex [426,427] (ACC),
which could be hallmarks of schizophrenia and ADHD [428,429]. A causal link between
early-life dietary n-3 PUFA deficiency and dopaminergic system impairment has recently
been demonstrated in mice, further reinforcing the importance of dietary n-3 PUFA in
dopaminergic function [430]. This reinforces the demonstration that striatal D2R neurons
are particularly sensitive to fatty acids in rodents [431]. Indeed, both clinical and preclinical
studies suggest that inadequate supply of LC n-3 PUFAs during early brain development
leads to altered dopaminergic function and schizophrenic symptoms. This corroborates the
observation of reduced DHA in the blood and brain of schizophrenic patients. Altogether,
these data support the need for adequate n-3 PUFA supply during the perinatal period to
promote adequate neurodevelopment, in particular of the dopaminergic system.
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As in other neurodevelopmental diseases, the question of correcting schizophrenic
symptoms through the use of dietary supply in LC n-3 PUFAs has been questioned in
several clinical studies leading to puzzling results. One study observed preventive effects
of LC PUFAs (mainly EPA 700 mg/day, DHA 480 mg/day, and vitamin E 7.6 mg/day,
during 12 weeks) on the development of psychosis [432], probably via mechanisms im-
plicated in myelination [433,434]. A recent systematic review has summarized all the
interventional studies focused on the link between psychosis and LC PUFAs [435]. Patients
suffering from schizophrenia present decreased levels of LC PUFAs in the brain [436]
and erythrocytes [437–439]. As such, a study investigated the potential therapeutic ben-
efits of LC PUFAs in schizophrenia. Sixteen weeks of supplementation with LC PUFAs
(EPA 700 mg/day and DHA 400 mg/day) provided therapeutic improvements in pa-
tients [440]. A 2016 review has summarized all previous clinical trials using LC n-3 PUFAs
on schizophrenia [441]. While some clinical trials have proven clear beneficial effects of LC
n-3 PUFAs, others resulted in no significant effects [441].

6. Conclusions and Future Directions

The understanding of the mechanisms underlying perinatal dietary PUFAs to physi-
ological and pathological brain development remains incomplete. However, significant
advancements have been made in recent years, with more understanding of how low levels
of LC PUFAs (nutritional and/or genetic) during pregnancy and infancy contribute to the
etiopathology of neurodevelopmental disorders. This knowledge is essential to design
appropriate nutritional intervention with LC PUFAs in mothers and children with low
levels of LC PUFAs, children at risk of impaired neurodevelopment, or women facing
at-risk pregnancies. A more comprehensive understanding of the genetic, physiological,
and behavioral modulators of EPA and DHA status and response to intervention is needed
to allow refinement of current dietary LC n-3 PUFA recommendations and stratification of
advice to “vulnerable” and responsive subgroups. Overall, PUFA-based gene-diet interac-
tions in humans should provide a solid scientific basis for the development of personalized
nutritional intervention early in life.
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