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Abstract
The deposition of excess fine sediment and clogging of benthic substrates is recognised as a global threat to ecosystem func-
tioning and community dynamics. Legacy effects of previous sedimentation create a habitat template on which subsequent 
ecological responses occur, and therefore, may have a long-lasting influence on community structure. Our experimental 
study examined the effects of streambed colmation (representing a legacy effect of fine sediment deposition) and a suspended 
fine sediment pulse on macroinvertebrate drift and community dynamics. We used 12 outdoor stream mesocosms that were 
split into two sections of 6.2 m in length (24 mesocosm sections in total). Each mesocosm section contained a coarse bed 
substrate with clear bed interstices or a fine bed substrate representing a colmated streambed. After 69 days, a fine sediment 
pulse with three differing fine sediment treatments was applied to the stream mesocosms. Added fine sediment influenced 
macroinvertebrate movements by lowering benthic density and taxonomic richness and increasing drift density, taxonomic 
richness, and altering drift assemblages. Our study found the highest dose of sediment addition (an estimated suspended 
sediment concentration of 1112 mg  l−1) caused significant differences in benthic and drift community metrics and drift 
assemblages compared with the control treatment (30 l of water, no added sediment). Our results indicate a rapid response 
in drifting macroinvertebrates after stressor application, where ecological impairment varies with the concentration of 
suspended sediment. Contrary to expectations, bed substrate characteristics had no effect on macroinvertebrate behavioural 
responses to the fine sediment pulse.
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Introduction

At a global scale, many freshwater ecosystems experience 
increased fine sediment loadings that impact their ecologi-
cal functioning and biodiversity (Ormerod et al. 2010). 
Fine sediments (generally defined as inorganic and organic 
particles < 2 mm in size: Wood and Armitage 1997; Jones 
et al. 2012) can infiltrate into bed substrates and cause stre-
ambed colmation/clogging (Mathers et al. 2017a; Wilkes 

et al. 2019; McKenzie et al. 2020), which can alter mac-
roinvertebrate community structure and functioning (Jones 
et al. 2012; Descloux et al. 2013; Wood et al. 2016; Mathers 
et al. 2017b). The ecological impacts of fine sediment on 
macroinvertebrates depends on the magnitude, frequency 
and duration of fine sediment supply and transport (Evans 
and Wilcox 2014). In addition, previous abiotic and biotic 
legacies influence the habitat template on which subsequent 
ecological responses occur (Parsons et al. 2006). Therefore, 
colmation may have a long-lasting influence on macroin-
vertebrate communities and effect their responses to future 
disturbances. Identifying the legacy effects of colmation and 
other stresses on river ecosystems is important for water 
managers and conservation efforts in order to understand 
the responses of macroinvertebrate communities to future 
disturbances.

High loads of suspended particles and deposited fine 
sediment have a complex mix of direct (physical and chemi-
cal) and indirect effects on macroinvertebrate communities 
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(Sear et al. 2008; Jones et al. 2012; Wharton et al. 2017). 
Suspended fine sediment and saltating particles can physi-
cally dislodge periphyton and macroinvertebrates from the 
substrate by abrasion (Bilotta and Brazier 2008; Neale et al. 
2008), and cause damage to fleshy body parts and gills in 
macroinvertebrates (Jones et al. 2012; Wharton et al. 2017). 
Increased turbidity reduces available light for primary pro-
ducers and visual predators (Rowe and Dean 1998; Parkh-
ill and Gulliver 2002) and alters the feeding efficiency of 
filter-feeders and grazers (Broekenhuizen et al. 2001). Suc-
cessive pulses of fine particles in gravel-bedded rivers can 
infill void spaces in bed substrates and modify particle size 
composition (Evans and Wilcox 2014). Thus, historical fine 
sediment pulses (i.e. legacy effects) may influence the eco-
logical responses of macroinvertebrates to future sediment 
disturbances. Previous studies have examined invertebrate 
community responses to suspended fine sediment additions 
(e.g. Gibbins et al. 2007a; Larsen and Ormerod 2010; Béjar 
et al. 2017), but less research has incorporated the legacy 
effects of previous fine sediment pulses on the response of 
macroinvertebrates to future sediment disturbances.

Colmated streambeds can cause changes to benthic 
macroinvertebrate community structure and functioning 
(Growns et al. 2017; Mathers et al. 2017b, 2019; Beermam 
et al. 2018; Blöcher et al. 2020). Previous studies have 
demonstrated declines in benthic diversity and density, and 
changes in assemblage composition with increased deposited 
fine sediment (Lenat et al. 1979; Waters 1995). Invertebrates 
tolerant of low dissolved oxygen concentrations and taxa 
capable of burrowing into the substrate tend to dominate 
colmated streambeds (Angradi 1999; Zweig and Rabeni 
2001; Rabeni et al. 2005). Furthermore, taxa that are vul-
nerable to damage of filter-feeding apparatus or gills tend to 
be absent from colmated streambeds (Wood and Armitage 
1997; Larsen et al. 2009). The proportion of Ephemeroptera, 
Plecoptera and Trichoptera (EPT) typically declines with 
increases in suspended and deposited fine sediment (Bjornn 
et al. 1977; Lenat et al. 1979), whilst other taxa, such as Oli-
gochaeta, show the opposite pattern (Angradi 1999; Zweig 
and Rabeni 2001; Gayraud et al. 2002). These changes in 
benthic assemblages are partly due to habitat homogeni-
sation, and reductions in porosity and interstitial habitat 
(Descloux et al. 2013). In colmated sediments, reduced 
porosity and permeability influence the volume of interstitial 
space for invertebrates and the size of movement pathways 
between grains (Stubbington 2012). Coarse-grained frame-
works allow bidirectional migration of macroinvertebrates 
between the benthic and the hyporheic zone, but colmation 
can limit or prohibit vertical movement, leading to changes 
in the hyporheic community (Jones et al. 2015). Yet, there is 
an absence of research examining the behavioural response 
of macroinvertebrates to pulse disturbances when vertical 
migration pathways are disrupted.

Key invertebrate behavioural responses to suspended and 
deposited fine sediment, and other stresses include drift (i.e. 
the active or passive downstream movement of organisms; 
Bilton et al. 2001), vertical migration to the hyporheic zone 
(e.g. the hyporheic refuge hypothesis; Palmer et al. 1992), 
and aerial colonisation (Heino 2013). Less common disper-
sal mechanisms include upstream migration by some rheo-
philic taxa (Bruno et al. 2012), and lateral movements to 
floodplain habitats by crawling, flying or swimming (Turner 
1993). Invertebrate drift may reflect an individual’s deci-
sion to maximise foraging opportunities (Hildebrand 1974; 
Kohler 1985) and to avoid predators and other unfavourable 
abiotic conditions (both natural behavioural decisions; Gib-
bins et al. 2007b; James et al. 2009; Larsen and Ormerod 
2010). Periodicity of drift density is typically crepuscular 
with peaks at dawn/dusk (Neale et al. 2008) and seasonal 
peaks linked with emergence behaviour (Townsend 1980; 
Cellot 1989; Sagar and Glova 1992). The density of drift-
ing invertebrates generally increases with high-velocity flow 
conditions and suspended fine sediment loads (Culp et al. 
1986; Doeg and Milledge 1991; Suren et al. 2005; Larsen 
and Ormerod 2010). Substantial drift can modify benthic 
community composition, but dispersal abilities and propen-
sity to drift vary between taxa. Bivalves and gastropods are 
sedentary, less motile and depend on drifting to colonise 
new habitats, whereas more motile taxa, such as trichopter-
ans and plecopterans also crawl and swim (Mackay 1992). 
Abundant taxa in the drift include baetid and leptophlebiid 
mayflies, Gammarus (Gammaridae), and simuliid and chi-
ronomid fly larvae (Giller and Malmqvist 2003). Caddis fly 
larvae from the families Hydropsychidae and Polycentropo-
didae are also common drifters, whereas heptageniid may-
flies, planarians, cased caddis, and molluscs are rarer in the 
drift (Giller and Malmqvist 2003). Nevertheless, the extent 
to which macroinvertebrates use drift to avoid unfavourable 
conditions depends on what other avoidance strategies are 
possible. Few studies have examined how bed substrate char-
acteristics impact the propensity of macroinvertebrates to 
drift during a suspended fine sediment pulse.

This study addresses the individual and interactive effects 
of a suspended fine sediment pulse and streambed colma-
tion on macroinvertebrate community response using out-
door stream mesocosms. Outdoor flow-through channels or 
stream mesocosms that are naturally fed by river water and 
colonised by invertebrates are useful to reproduce natural 
conditions and examine the effects of stressors on macroin-
vertebrate communities (Connolly and Pearson 2007), whilst 
allowing users to reduce confounding factors present in 
field settings (O’Hop and Wallace 1983). This study aimed 
to identify the effect of differing doses of suspended fine 
sediment on the propensity of invertebrates to drift whilst 
accounting for the legacy effects of previous streambed col-
mation. The following hypotheses were tested:
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1. Suspended fine sediment additions will lower benthic 
and increase drift density, taxonomic richness, and mod-
ify benthic and drift assemblages.

2. Differences in bed substrate (i.e. coarse and fine) will 
influence benthic and drift invertebrate structure (i.e. 
densities, taxonomic richness and assemblages) before 
and during the fine sediment pulse. We predict a higher 
density of invertebrates drifting from the fine compared 
with the coarse bed substrate, but with differing drift 
responses between taxa.

Colmated streambeds are characterised by fine parti-
cles and small pores restrict large individuals and limit 
vertical migration into the hyporheic zone (Gayraud and 
Philippe 2001; Descloux et al. 2013; Vadher et al. 2015; 
Mathers et al. 2019). If individuals are unable to access 
subsurface sediments, there may be increased invertebrate 
drift from a colmated streambed in response to suspended 
fine sediment pulses due to limited interstitial space.

Materials and methods

Study site

Twelve outdoor flow-through stream mesocosms were used 
for the experiment at the River Laboratory in Dorset, in the 
UK (Fig. 1). The stream mesocosms are fed by the Mill 
Stream, which is a branch of the River Frome. The River 
Frome is a lowland meandering river (8.1–264.6 mAOD) 
and is dominated by pool-riffle-glide morphology (National 
River Flow Archive [NRFA] 2020). The catchment area 
is 414  km2 and the land-use is predominantly agriculture/
horticulture (47.3%) and grassland (37.5%), with other 
minor land-uses of woodland (9.4%), urban sites (3.6%) 
and heathland/bog (1.3%; NFRA 2020). The Frome flows 
through Jurassic limestones, mudstones and cretaceous 
upper greensand in the headwaters, cretaceous chalk bedrock 
in the upper and middle reaches, and mixed tertiary geology 
including sands, gravels and clays in the lower reaches (Col-
lins and Walling 2007; Environment Agency 2012). Mean 
annual discharge was 6.662  m3  s−1 and the baseflow index 
was 0.86 during 1965–2018 at East Stoke gauging station, 
which is located at the study site (NRFA 2020).

Fig. 1  Position of the stream mesocosms at the River Laboratory in Dorset, UK
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Experimental design and procedure

The experiment ran between June and September 2015 using 
12 flow-through stream mesocosms. The mesocosms were 
arranged in four blocks containing three steel linear stream 
mesocosms, situated at ~ 140° to the Mill Stream. Each mes-
ocosm was 0.33 m in width, 12.4 m in length and 0.30 m 
in depth, and the distance between each block was 2.5 m. 
We split each stream mesocosm into two 6.2 m sections to 
provide 24 mesocosm sections.

Sediment for the coarse and the fine bed substrate was 
obtained from a local quarry who sourced the sediment from 
a gravel pit on the River Frome floodplain. The coarse bed 
substrate comprised sand (< 2 mm, 6.6%), gravel (10 mm, 
13.3%), pebble (20 mm, 66.6%) and cobbles (> 64 mm, 
13.3%), whereas the fine bed substrate contained sand 
(25%), gravel (37.5%) and pebble (37.5%). The sediment 
proportions were selected to reflect the particle range found 
in chalk streams (Armitage 1995; Ledger et al. 2009). The 
coarse bed substrate had clear bed interstices and represented 

a reach with relatively little fine sediment deposition. The 
fine bed substrate was used to represent a colmated stre-
ambed that had experienced high fine sediment deposition 
and lacked interstitial space. We filled each mesocosm 
section to a depth of 20 cm with either coarse or fine dry 
substrate, which provided 12 coarse and 12 fine mesocosm 
sections (Fig. 2).

Water from the Mill Stream was diverted through each 
block of mesocosms on 9 June 2015 (day 1). Average current 
velocity in the mesocosms was 0.11  ms−1 ± 0.01 (mean ± SE; 
n = 24) and average water depth was 5.16 ± 0.18 cm (n = 24; 
measured once on day 99). Mesocosms were left for 69 days 
for natural colonization by drifting invertebrates and algae 
from the Mill Stream (Jones et al. 2015). Natural coloniza-
tion in each mesocosm was supplemented by adding inverte-
brates from four 3 min kick samples collected from the Mill 
Stream. Benthic macroinvertebrates were sampled from four 
riffles that possessed a coarse-grained structure with no fine 
sediment infiltration. Equal aliquots were added directly to 
the head of each mesocosm. During the colonization phase, 

Fig. 2  Experimental setup of 
bed substrate and suspended 
fine sediment treatments in the 
stream mesocosms
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shade cloths covered the mesocosms to reduce the develop-
ment of diatom mats that may have encouraged fine sedi-
ment deposition (Jones et al. 2014).

Sediment for the suspended fine sediment treatments was 
obtained from deposited material in nearby reaches of the 
River Frome. The sediment was frozen for 48 h to eliminate 
any invertebrates and sieved using a 2 mm mesh to remove 
any coarse particles. This sediment was mixed with water 
from the Mill Stream to produce three suspended fine sedi-
ment treatments: (1) no sediment (30 l of water), (2) a mod-
erate suspended fine sediment input (a suspension of 15 kg 
sediment in 30 l of water = 0.5 kg  l−1), and (3) a concen-
trated slurry of fine suspended (i.e. a high treatment of 30 kg 
sediment in 30 l of water = 1 kg  l−1). Over a 4-h period, 
we calculate the medium and high suspended fine sediment 
treatment would give suspended sediment concentrations of 
556 mg  l−1 and 1112 mg  l−1 (based on average velocity and 
depth values). The suspended fine sediment treatments were 
added at the head of each of the 24 mesocosm section in a 
crossed design with the bed substrate types (Fig. 2).

Prior to the addition of the suspended fine sediment treat-
ments, a 5-l sample of substrate was taken randomly from 
the coarse and the fine bed substrate to ensure consistency 
within the bed sediment types between the mesocosm sec-
tions, and to confirm differences between the coarse and the 
fine bed sediment upon installation. The substrate in each 
sample was oven dried at 60 °C and sieved into the follow-
ing size fractions: < 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 31.5, 45 
and 63 mm or greater. Each size fraction was weighed to 
determine the particle size distribution within each substrate 
sample.

Macroinvertebrate sampling

Drifting invertebrates were collected using drifts nets 
(0.4 × 0.25 m; 1 mm mesh size) that were positioned at the 
end of each mesocosm section (at 6.2 m and at 12.4 m) to 
intercept all the flow and thus, to reduce any influence of 
spatial variation (Neale et al. 2008). The drift nets spanned 
the width of the mesocosms (i.e. 0.33 m). Each mesocosm 
section was treated as a separate, independent experimental 
unit. Drift samples were collected before, during, immedi-
ately after (24 h after suspended fine sediment input) and 
30 days after the suspended fine sediment pulse. On each 
sampling occasion, drift nets were deployed for 24 h and 
invertebrates were collected every 6 h (i.e. providing four 
6-h drift samples for each sampling period) to accommo-
date the crepuscular nature of macroinvertebrate drift. The 
experimental set-up comprised 24 mesocosm sections × four 
6-h drift samples × 4 sampling occasions, which provided 
384 drift samples.

Benthic invertebrates were sampled from each mesocosm 
section on the day before, immediately after (24 h after 

suspended sediment input) and 30 days after suspended fine 
sediment addition. A benthic sample was taken at a random 
upstream and downstream location within each mesocosm 
section using a Surber sampler (0.2  m2, 250 μm mesh net) 
where the bed substrate was disturbed using a metal rod for 
two minutes. In total, 144 benthic samples were collected 
(i.e. 2 benthic invertebrate samples × 24 mesocosms × 3 sam-
pling occasions). All benthic and drift invertebrate samples 
were sieved through a 250 μm mesh and were preserved in 
the field using 99% industrial methylated spirits. Inverte-
brates were identified to the lowest taxonomic level pos-
sible, in many cases to species, although, Oligochaeta and 
Hydracarina were identified at the class level.

Statistical analysis

Variation in bed sediment particle size and the percentage 
of fine particles between the colmated and the clean bed at 
the start of the experiment were examined using a one-way 
Analysis of Similarity (ANOSIM) and visualised using a 
cumulative frequency graph. A square root transformation 
was applied to the particle size data to decrease any effects 
of skewed distributions before the ANOSIM analyses and 
Euclidean distance was used as a dissimilarity measure 
(Clarke and Gorley 2006).

Before statistical analysis, macroinvertebrate data was 
log10 (x + 1) transformed to normalise residuals. Differences 
in benthic and drift density (the number of drifting inverte-
brates per 100  m−3) and taxonomic richness to suspended 
fine sediment additions and bed substrate conditions were 
tested by linear mixed effects models (LMMs) using the 
lme function from the package nlme (Pinheiro et al. 2018). 
Bed substrate type, time, and suspended fine sediment treat-
ment were included as fixed interacting factors and block 
was specified as a random factor to account for any poten-
tial positional effect caused by the mesoscosms. All LMMs 
were fitted using the restricted maximum likelihood (REML) 
estimation function. Tukey’s honestly significant difference 
(HSD) tests were used for all pairwise differences (i.e., for 
bed substrate, time and suspended fine sediment treatments) 
to decrease the probability of a Type I error. These tests were 
undertaken using the glht function in the multcomp package 
(Hothorn et al. 2008).

First, LMMs identified any effect of bed substrate on 
benthic and drift community metrics before suspended fine 
sediment was added. Bed substrate was fitted as a fixed inter-
acting factor and block as a random effect. This LMM aimed 
to examine the effect of bed substrate on the four-community 
metrics before stressor application. Further LMMs identi-
fied the individual and interactive effects of suspended fine 
sediment treatment, bed substrate and time (all fixed factors 
with block as a random factor) on benthic and drift com-
munity structure (i.e. the four-community metrics). Lastly, 
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LMMs determined any differences in drift community struc-
ture with varying suspended fine sediment treatments during 
and after the fine sediment pulse. This analysis aimed to test 
if the fine sediment pulse caused an immediate or a delayed 
response in drift. All univariate analyses were carried out 
using R, version 3.6.3 (R Development Core Team 2015).

Permutational Multivariate Analysis of Variance (PER-
MANOVA) models were used to determine any differences 
in benthic and drift assemblages caused by the main fac-
tors and their interactions. Similar to the univariate analy-
sis, a PERMANOVA model examined the influence of bed 
substrate on benthic and drift assemblages before the fine 
sediment pulse. A further PERMANOVA determined the 
effect of time and suspended fine sediment treatments on 
drift assemblage. Bed substrate, time, and suspended fine 
sediment treatments were fitted as fixed factors and block 
was a random factor in both PERMANOVA models. Simi-
larity percentage analysis (SIMPER) was conducted to 
determine which species were driving differences in assem-
blages between the main factors, and Non-metric Multidi-
mensional Scaling (NMDS) ordination plots were used to 
visualise compositional patterns. Bray–Curtis similarity 
coefficients were used for all multivariate analyses (i.e., all 
PERMANOVA models, SIMPERs and NMDS ordination 
plots) on the invertebrate data set. All multivariate analy-
ses, including the particle size data were performed using 
PRIMER V7 and the PERMANOVA + add-on (PRIMER-
E Ltd, Plymouth, UK; Clarke and Gorley 2006; Anderson 
et al. 2008).

Results

Bed sediments

Before the suspended fine sediment pulse, there was a signif-
icant difference in the size of bed sediment particles between 
the coarse and the fine bed substrate (ANOSIM; r = 0.907, 
p < 0.001; Fig. 3). The colmated bed contained a higher per-
centage of fine particles (18%) compared with the coarse bed 
(3.89%; ANOSIM; r = 0.655, p = 0.001).  D50 was 8.79 mm 
in the colmated bed and 16.51 mm in the clean bed. The 
ANOSIM analysis was visually supported by a cumulative 
frequency plot that shows distinct particle size distributions 
between the fine and the coarse bed (Fig. 3).

Influence of colmation on benthic and drift metrics 
and invertebrate assemblages

Tanypodinae and Tanytarsini (both dipterans: Chironomi-
dae) dominated the benthic community, accounting for 27.7 
and 27.4% of the total benthic invertebrate abundance. Ten 
other taxa comprised 1–9% of the benthic community: Oli-
gochaeta (8.8%), Asellus aquaticus (Asellidae; 7.8%), Bae-
tidae (5.1%), Gammarus pulex (Gammaridae; 4.4%), Hyd-
ropsyche pellucidula (Hydropsychidae; 4.2%), Hydroptila 
spp. (Hydroptilidae; 2.2%), Radix balthica (Lymnaeidae; 
2.1%), Chironomini (1.9%), Ostracoda (1.2%), and Ephem-
era danica (Ephemeridae; 1.1%). These 12 taxa accounted 
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for 93.9% of the benthic community with another 38 taxa 
constituting the remaining benthic invertebrate abundance.

The drift assemblage was characterised by R. balthica 
(19% of total abundance), G. pulex (15.4%) and baetids 
(11%). A total of 14 other taxa comprised 1–7% of the drift 
assemblage: Limnius volckmari (Elmidae; 6.4%), Brachy-
centrus subnubilus (Brachycentridae; 6.1%), H. pellucidula 
(5.3%), Tanytarsini (5.2%), Hydroptila spp. (3.8%), Tanypo-
dinae (3.5%), A. aquaticus (3.4%), Crangonyx pseudogra-
cilis (Crangonyctidae; 3%), Hydrophilidae (1.6%), Hyd-
ropsyche contubernalis (Hydropsychidae 1.4%), Corixidae 
(1.2%), Psychodidae (1.1%), Simuliidae (1.1%) and Elmis 
aenea (Elmidae; 1%). These 17 taxa contributed 89.7% 
of the drift assemblage whilst a further 45 taxa accounted 
for < 1%.

Before the suspended fine sediment additions, LMMs 
showed no difference in benthic density and taxonomic rich-
ness between the fine and the coarse bed (Table 1). Simi-
larly, there were no difference in drift density and taxonomic 
richness between bed substrates (Table 1). Baetis rhodani, 
B. subnubilus and G. pulex were the most abundant taxa 
drifting from the coarse bed. Similarly, B. subnubilus, B. 
rhodani and R. balthica occurred in high densities from the 
colmated bed. Streambed colmation had no effect on the 
benthic (PERMANOVA; F value = 2.33, p > 0.05) or the 
drift assemblage (PERMANOVA; F value = 1.21, p > 0.05) 
prior to the suspended fine sediment pulse (Fig. 4).

Effect of suspended fine sediment additions 
and substrate on benthic and drift structure

Benthic density and taxonomic richness differed with time 
but did not vary with suspended fine sediment treatment or 
bed substrate (Table 2). Both benthic community metrics 
indicated a significant difference before and immediately 
after the suspended fine sediment pulse (LMMs; both p val-
ues < 0.001). Benthic densities increased from immediately 
after to 30 days post the fine sediment pulse (LMM; F value 
− 2.59, p value < 0.05). None of the two-way or three-way 

interactions were significant for any of the benthic commu-
nity metrics (Table 2).

Drift density and drift varied with time and suspended 
fine sediment treatment (Table 2). Post-hoc tests revealed 
drift density and drift taxonomic richness significantly dif-
fered between sampling occasions. Both drift community 
metrics differed before and 30 days after suspended fine sed-
iment addition, during and 30 days after suspended fine sedi-
ment addition, and between 1 and 30 days after suspended 
fine sediment addition (Supporting Information Table S1). 
Differences in both community metrics also existed between 
suspended fine sediment treatments. Post-hoc tests showed 
significantly higher drift density and higher drift taxonomic 
richness from the high suspended fine sediment treatment 
compared with the control, but no significant difference in 
community metrics were detected between the moderate and 
the high suspended fine sediment treatments (Table 1 and 
Supporting Information Table S2). Furthermore, no differ-
ences in drift density or drift taxonomic richness existed 
between bed substrates, indicating no effect of the colmated 
bed. LMMs also indicated no interactive effects between any 
of the main factors (all p values > 0.05; Table 1).

Drift assemblage (PERMANOVA; F = 6.52, p < 0.001) 
differed significantly with time (Table  3 and Fig.  5a). 
Planned contrasts revealed drift assemblages differed signifi-
cantly between all time periods (Table 3). The drift assem-
blages of the different time periods were widely dispersed 
and overlapping, indicating high community heterogeneity 
within groups, but were still significantly different from 
one another (Fig. 5a). The top five taxa characterising the 
time period before suspended fine sediment addition were 
B. rhodani (26.3% contribution to the dissimilarity), R. bal-
thica (17.9%), B. subnubilus (14%), G. pulex (12.6%) and 
Tanypodinae (6.2%). These five taxa accounted for 77% of 
the drift assemblage. During the fine sediment pulse, L. vol-
ckmari (27.6%), G. pulex (23.1%), B. rhodani (13.1%), R. 
balthica (8.1%) and H. pellucidula (5.8%) dominated the 
drift assemblage (accounting for 77.6% of the composition). 
24 h after the suspended fine sediment pulse, three of the 
five taxa continued to characterise the assemblage: R. bal-
thica (34.2%), G. pulex (24.4%), and Baetidae (9.5%) with 
C. pseudogracilis and Tanypodinae contributing smaller 
abundances (5.8% and 4.9% respectively). These five taxa 
cumulatively accounted for 78.7% of the assemblage. Post 
30 days, the drift assemblage continued to comprise high 
abundances of R. balthica (25%) and G. pulex (18%). H. 
pellucidula (8.4%), B. rhodani (7.3%) and Hydroptila spp. 
(6.2%) contributed smaller abundances (cumulatively the 
five taxa accounted for 64.8% of the drift assemblage). 
Although many taxa occurred in most time periods, varia-
tion in abundances of these taxa contributed to significant 
differences in drift assemblage between sampling occasions.

Table 1  Effect of bed substrate on benthic and drift invertebrate 
structure before the suspended fine sediment pulse

Significant values (p < 0.05) are presented in bold

Metric F value p value

Benthic structure
 Density 3.47 0.069
 Taxonomic richness 3.92 0.054

Drift structure
 Density 1.71 0.104
 Taxonomic richness − 0.15 0.883
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The different concentrations of suspended fine sediment 
added also impacted macroinvertebrate drift assemblages 
(PERMANOVA; F = 1.65, p < 0.05). A significant difference 
was evident between the drift assemblages that experienced 
no added fine sediment (i.e. the control) and the high sus-
pended fine sediment treatment (Table 2; Fig. 5b). Macroin-
vertebrate taxa causing compositional differences between 
sediment treatments were G. pulex (contributing 8.8% to 
the dissimilarity), B. rhodani (8.4%), R. balthica (7.8%), L. 
volckmari (6%) and B. subnubilus (5.5%), which all occurred 
in higher abundances in the high suspended fine sediment 
treatment. Bed substrate did not influence drift assemblages 

and none of the interactions between the main factors were 
significant (Table 3; Fig. 5c).

Influence of suspended fine sediment treatment 
on drift structure during and immediately 
after the fine sediment pulse

Drift macroinvertebrate density and drift taxonomic rich-
ness were greater in the high suspended fine sediment 
treatment than the control during the suspended fine 

Fig. 4  NMDS ordinations of bed substrate on a benthic and b drift assemblages

Table 3  Summary of PERMANOVA outputs for differences in drift 
assemblages associated with time, bed substrate and fine sediment 
treatments

Significant values (p < 0.05) are presented in bold

Variable df Assemblage compo-
sition

F value p value

 Time (T) 3 6.52  < 0.001
 Substrate (S) 2 0.40 0.937
 Fine sediment treatment (FST) 3 1.65 0.036
 T × S 3 1.06 0.399
 T × FST 6 0.75 0.917
 S × FST 2 0.65 0.874
 T × S × FST 6 0.78 0.889

Planned contrasts
 Time
  Before vs during 1 2.63 0.005
  Before vs 1 day after 1 5.15 0.002
  Before vs 30 days after 1 5.92 0.002
  During vs 1 day after 1 3.55 0.004
  During vs 30 days after 1 6.18  < 0.001
  After vs 30 days after 1 4.43 0.009

 Suspended fine sediment treatment
  Control vs high FST 2.70 0.019

Table 2  Influence of time, fine sediment treatment and bed substrate 
on benthic and drift univariate community metrics

Significant values (p < 0.05) for the LMMs are presented in bold

Source of variance df Benthic structure Drift structure

F value p value F value p value

Density
 Time (T) 3 6.40 0.002 14.37  < 0.001
 FS treatment (FST) 2 1.27 0.285 6.07 0.004
 Substrate (S) 1 1.72 0.192 1.23 0.271
 T × FST 6 0.19 0.941 0.94 0.475
 T × S 3 0.83 0.440 0.18 0.911
 FST × S 2 0.32 0.729 0.57 0.568
 T × FST × S 6 0.17 0.953 0.25 0.959

Taxonomic richness
 T 3 8.29  < 0.001 10.47  < 0.001
 FST 2 1.69 0.189 3.7 0.03
 S 1 3.32 0.071 0.19 0.666
 T × FST 6 0.47 0.759 1.01 0.427
 T × S 3 1.08 0.343 0.378 0.769
 FST × S 2 0.73 0.485 0.13 0.879
 T × FST × S 6 0.51 0.730 0.34 0.913
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sediment pulse (Table 4). Drift densities and taxonomic 
richness were also greater in the high compared to the 
moderate suspended fine sediment treatment. Differ-
ences in both drift community metrics changed rapidly 
with time after the fine sediment pulse. No differences 

occurred in any of the drift community metrics 24 h after 
the disturbance event (Table 4).

Crepuscular drift

An increase in drift density occurred immediately after the 
high suspended fine sediment treatment was added, but drift 
density from the control and moderate suspended fine sedi-
ment treatment initially remained comparable to pre-distur-
bance densities (Fig. 6). In all three suspended fine sediment 
treatments, drift densities increased significantly during the 
first evening and night after the fine sediment pulse (sampling 
period 17:50–23:50 and 23:50–5:50 h). A second, smaller 
peak in invertebrate drift occurred the second night after sedi-
ment input in mesocosms that experienced the moderate and 
high suspended fine sediment treatment (sampling period 
21:00–3:00 and 3:00–9:00 h). However, drift densities from 
the control were noticeably lower compared with the other sed-
iment treatments and exhibited no distinct second night peak.

Fig. 5  NMDS ordinations of the drift assemblage grouped by a time, b suspended fine sediment treatment and c bed substrate

Table 4  Effects of fine sediment treatment on drift structure during 
and immediately after the suspended fine sediment pulse

Significant values (p < 0.05) are presented in bold

Fine sediment treatment During After

F value p value F value p value

Drift density
 Control vs moderate 4.29 0.063 0.24 0.633
 Control vs high 19.51 0.001 3.48 0.089
 Moderate vs high 18.24 0.001 0.99 0.340

Drift taxonomic richness
 Control vs moderate 0.76 0.403 0.11 0.747
 Control vs high 7.87 0.017 0.30 0.597
 Moderate vs high 18.24 0.001 1.13 0.311
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Discussion

Effects of increased suspended fine sediment

Our first hypothesis that increases in suspended fine sedi-
ment will lower the density and taxonomic richness of the 
benthos, cause greater drift rates, and alter the composition 
of the drift assemblage was supported. Invertebrates typi-
cally leave the bed in increasing numbers as suspended fine 
sediment increases (e.g. Ciborowski et al. 1977). Key mech-
anisms suggested for increased drift include abrasion and 
clogging of gills and filter-feeding apparatus (Allan 2004; 
Jones et al. 2012). Abrasion by fine material can dislodge 
invertebrates from the bed (i.e. passive drift), but individu-
als may also actively release from the bed as a behavioural 
response to escape higher suspended sediment loads (i.e. 
active drift; Jones et al. 2012). Active drift may also occur in 
response to changes in bed composition caused by increased 
suspended sediment loads, i.e. an increase in fine sediment 
in the surface drape. Although many invertebrate species 
benefit from inputs of organic (food) particles associated 
with high fine sediment inputs, problems occur when sedi-
ment accretion exceeds the ability of invertebrates to exca-
vate themselves (Wood et al. 2005). Increases in drift density 
may also be a behavioural response to the threat of burial 
(Béjar et al. 2017). Invertebrates may also enter the drift to 
avoid altered habitat conditions and decreased food quality 
and availability (Hildebrand 1974; Buendia et al. 2013a,b), 
a knock-on effect of bed composition changes. Our study 
demonstrated an initial increase in drift densities under the 
high fine sediment treatment, indicating either dislodgement 
or immediate avoidance behaviour to the fine sediment addi-
tion. However, most of the increase in invertebrate drift was 

delayed until after sunset (c. 21:00 h in summer) coinciding 
with a peak in drift in the control and moderate suspended 
fine sediment treatment (Fig. 6). This delayed response may 
reflect a behavioural reaction to changed benthic conditions 
after the suspended fine sediment pulse had passed or be a 
consequence of the crepuscular pattern of drifting (Tanaka 
1960; Waters 1962; Muller 1963; Neale et al. 2008). Inver-
tebrates actively drifting at night may also be deliberate to 
reduce predation risk from visually foraging, drift-feeding 
fishes (Allan 1978; Flecker 1992).

Previous studies examining interactions between sus-
pended fine sediment transport, deposition and invertebrate 
drift dynamics have often focussed on short temporal scales 
(i.e. < 3 days; e.g. Gibbins et al. 2007b; Larsen and Ormerod 
2010). A key feature of our study is the temporal scale as we 
monitored drift patterns 30 days after stressor application. 
Drift density was double and taxonomic richness increased 
30 days after the suspended fine sediment addition, but there 
was no lasting effect of the experimental fine sediment pulse 
(i.e. no difference amongst treatments). Invertebrate drift 
often exhibits seasonal trends (Keeley and Grant 1997; Jen-
kins and Keeley 2010), but the direction and magnitude dif-
fers among studies (Naman et al. 2016). In temperate river 
networks, drift densities generally peak in summer and 
decrease in autumn, partly due to the life history characteris-
tics of the drifting taxa (Fjellheim 1980; Cellot 1996; Giller 
and Malmqvist 2003), but spring (Hieber et al. 2003; Leese-
berg and Keeley 2014) and autumn peaks (Stoneburner and 
Smock 1979) have also been reported. Neale et al. (2008) 
found higher densities of drifting invertebrates in summer 
(June and July) compared with spring (April and May) in 
a temperate chalk stream in the UK, but the study did not 
measure autumnal drift. In our study, we suggest increased 

Fig. 6  Diel invertebrate drift 
density (N/100  m3) before, 
during and immediately post 
suspended fine sediment input. 
Time shown on the x axis rep-
resents the time of sampling in 
6-h intervals
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drift rates after 30 days were likely due to seasonal and other 
factors, such as temperature, discharge, food resources, and 
the life history traits of drifting taxa rather than any legacy 
effects of increased sediment addition. This finding is impor-
tant by highlighting the effects of suspended fine sediment 
inputs are short-lived, transient events, and with time, other 
abiotic and biotic factors are more influential in determining 
drift community structure.

Impact of suspended fine sediment treatment

Suspended fine sediment additions influenced drift rates 
and the taxonomic structure of the drift, which supports our 
first hypothesis. Drift assemblage structure differed between 
the control (i.e. no added fine sediment) and the high fine 
sediment treatment but did not differ between the moder-
ate and the high suspended fine sediment treatments. There 
are numerous mechanisms that might account for increased 
drift rates during spates that tend to deliver fine sediments 
to rivers. Elevated discharges are generally accompanied 
with increases in near-bed shear stress, turbulence and the 
entrainment and transport of coarse and fine sediment (Vin-
son 2001; Bond and Downes 2003; Naman et al. 2017). 
Saltating particles and fine organic matter scour exposed 
benthic invertebrates (Gibbins et al. 2007a). If flows are suf-
ficiently high, mobilisation of bed particles can occur and 
cause entrainment of surface and near-surface invertebrates 
(Anderson and Lehmkuhl 1968). In addition to increased 
near-bed shear stress and movement of bed particles, pulsed 
fine suspended sediment events are an additional pressure 
upon invertebrate communities. In our study, we did not 
increase flow substantially such that mobilisation of the bed 
would have occurred. Hence, the differences in drift between 
the sediment treatments (i.e. the control and the high fine 
sediment treatment) can be attributed to the effects of the 
fine sediment alone. This finding is important by revealing 
different mechanisms governing invertebrate drift, which is 
useful in developing effective conservation and management 
strategies.

Influence of substrate characteristics

Our second hypothesis that bed substrate characteristics 
will cause differences in benthic densities, drift rates and 
assemblage during increased suspended fine sediment was 
unsupported. Benthic and drift density, and taxonomic 
richness were similar from both bed substrates before, dur-
ing and after the suspended fine sediment pulse. B. sub-
nubilus and B. rhodani were the most common EPT taxa 
drifting from the colmated bed. Brachycentrus (Trichop-
tera) are filter feeders and use their forelimbs extended into 
the water to trap particles (Gallepp 1974), but switch to 
grazing when suspended sediment loads are high (Voelz 

and Ward 1992), possibly due to abrasion from particles or 
reduced quality of food (Jones et al. 2012). B. rhodani is 
a grazer and is intolerant of sediment deposition (Rabeni 
et al. 2005; Pollard and Yuan 2010), and drifts quickly as 
bedload transport rises (Gibbins et al. 2005). The higher 
drift densities from the colmated bed may reflect increased 
drift to avoid unfavourable patches or predators, and 
imply individuals have fewer escape routes in colmated 
sediments.

Past studies have found the hyporheic zone is an impor-
tant invertebrate refuge that promotes community resil-
ience during disturbances (Vander Voste et al. 2016). The 
effectiveness of the hyporheic zone as a refuge may be 
restricted by fine sediment reducing interstitial space and 
limiting vertical connectivity on invertebrates accessing 
lower sedimentary layers (Descloux et al. 2013; Vadher 
et al. 2015, 2017). We predicted a higher likelihood of 
invertebrates entering the drift from the fine compared 
with the coarse bed due to restricted interstitial space 
within colmated sediments. However, we found no interac-
tion effects between colmation and the suspended fine sed-
iment treatment on drift assemblages. Although physical 
dislodgement may be responsible for the initial increase 
in drift, as we detected a delayed response to the effects 
of the suspended fine sediment pulse in drift density, it is 
clear that at least part of the increase in drift is a driven 
by an active behavioural response from the macroinver-
tebrates. Hence, active use of the hyporheos to avoid the 
negative effects of a fine sediment pulse is possible: the 
influence of colmation on this avoidance mechanism could 
be tested by well-planned field, mesocosm and/or labora-
tory testing.

The advantages of mesocosms and spatial 
and temporal scales

Identifying the effects of multiple stresses on invertebrate 
responses to disturbances is complex (Beermann et al. 
2018). Outdoor stream mesocosms are highly useful to 
determine the single and interactive effects of stresses 
if an appropriate set-up is used. A distinct advantage of 
using mesocosms that are fed by river water and colonised 
by invertebrates by drift or aerial oviposition is that the 
mesocosms have the same light, water temperature and 
chemistry as the feeder stream (Beerman et al. 2018). Fur-
thermore, specific environmental conditions and stresses, 
such as bed composition and differing doses of sediment 
additions can be manipulated. Whilst using stream meso-
cosms to identify ecological responses to effects of stress-
ors has many benefits, our mesocosms may only represent 
conditions from small streams. Rivers contain a mosaic 
of different physical habitats, including erosional and 
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depositional patches, and a range of refugia that cannot be 
replicated within stream mesocosms (Larsen and Ormerod 
2010). However, our findings are comparable with field 
surveys of greater spatial scales (e.g. Larsen and Ormerod 
2010; Béjar et al. 2017) that have examined the impact of 
fine sediment on invertebrate communities.

Conclusion

This study shows the impacts of increased suspended fine 
sediment on benthic and drift structure. Drift structure 
(i.e. density and taxonomic richness) and assemblage com-
position were strongly influenced by the suspended fine 
sediment addition. Both drift structure and assemblage dif-
fered significantly between the control and the high fine 
sediment treatment. This finding demonstrates that the 
concentration of suspended fine sediment influences inver-
tebrate behaviour. Invertebrates exhibited an immediate 
increase in drift and delayed avoidance behaviour where 
they drifted downstream after the fine sediment addition 
had finished. Despite assumptions that colmation of bed 
sediments would affect the drift response, as refuge in the 
hyporheos would be compromised, we found no difference 
in drift between the colmated and coarse sediments. Future 
research should evaluate the ecological impact of differ-
ing suspended fine sediments on invertebrate behaviour 
and examine multiple dispersal pathways simultaneously. 
Understanding the impacts and interactions of depos-
ited and suspended fine sediment on macroinvertebrate 
behaviour is important for water management strategies 
to deploy effective conservation measures and address 
activities which result in increased fine sediment loading 
to river ecosystems.
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