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Abstract

Although research on Acoustic Scene Classification (ASC) is very close to, or

even overshadowed by different popular research areas known as Automatic Speech

Recognition (ASR), Speaker Recognition (SR) or Image Processing (IP), this field

potentially opens up several distinct and meaningful application areas based on

environment context detection. The challenges of ASC mainly come from dif-

ferent noise resources, various sounds in real-world environments, occurring as

single sounds, continuous sounds or overlapping sounds. In comparison to speech,

sound scenes are more challenging mainly due to their being unstructured in form

and closely similar to noise in certain contexts. Although a wide range of pub-

lications have focused on ASC recently, they show task-specific ways that either

explore certain aspects of an ASC system or are evaluated on limited acoustic

scene datasets.

Therefore, the aim of this thesis is to contribute to the development of a ro-

bust framework to be applied for ASC, evaluated on various recently published

datasets, and to achieve competitive performance compared to the state-of-the-

art systems. To do this, a baseline model is firstly introduced. Next, extensive

experiments on the baseline are conducted to identify key factors affecting final

classification accuracy. From the comprehensive analysis, a robust deep learning

framework, namely the Encoder-Decoder structure, is proposed to address three

main factors that directly affect an ASC system. These factors comprise low-level

input features, high-level feature extraction methodologies, and architectures for
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final classification. Within the proposed framework, three spectrogram transfor-

mations, namely Constant Q Transform (CQT), gammatone filter (Gamma), and

log-mel, are used to convert recorded audio signals into spectrogram representa-

tions that resemble two-dimensional images. These three spectrograms used are

referred to as low-level input features. To extract high-level features from spectro-

grams, a novel Encoder architecture, based on Convolutional Neural Networks, is

proposed. In terms of the Decoder, also referred as to the final classifier, various

models such as Random Forest Classifier, Deep Neural Network and Mixture of

Experts, are evaluated and structured to obtain the best performance.

To further improve an ASC system’s performance, a scheme of two-level hierar-

chical classification, replacing the role of Decoder classification recently mentioned,

is proposed. This scheme is useful to transform an ASC task over all categories

into multiple ASC sub-tasks, each spanning fewer categories, in a divide-and-

conquer strategy. At the highest level of the proposed scheme, meta-categories

of acoustic scene sounds showing similar characteristics are classified. Next, cate-

gories within each meta-category are classified at the second level. Furthermore,

an analysis of loss functions applied to different classifiers is conducted. This

analysis indicates that a combination of entropy loss and triplet loss is useful to

enhance performance, especially with tasks that comprise fewer categories.

Further exploring ASC in terms of potential application to the health ser-

vices, this thesis also explores the 2017 Internal Conference on Biomedical Health

Informatics (ICBHI) benchmark dataset of lung sounds. A deep-learning frame-

work, based on our novel ASC approaches, is proposed to classify anomaly cycles

and predict respiratory diseases. The results obtained from these experiments

show exceptional performance. This highlights the potential applications of using

advanced ASC frameworks for early detection of auditory signals. In this case,

signs of respiratory diseases, which could potentially be highly useful in future in

directing treatment and preventing their spread.
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Chapter 1

Introduction

1.1 Motivation and State-of-the-art Approaches

1.1.1 Motivation

The role of audio in communication applications has become essential to modern

human life, comparable to the role played by images or text. A historical develop-

ment of audio processing systems began with the invention of the phonograph in

the 1870s, and ran to current high-tech systems, as summarised by Ian McLough-

lin in his textbook [2]. This highlights the important, but often hidden, role of

audio-related research over the years. In terms of audio signal detection, there

are four major fields of research including Automatic Speech Recognition (ASR),

Speaker Recognition (SR) and non-speech research into Acoustic Event Detection

(AED) and Acoustic Scene Classification (ASC). As regards the first two research

areas, human languages are the focus, and impressive achievements have been

demonstrated from these research areas. For example, the Siri tool from Apple

and the Alexa tool from Amazon are two famous applications of ASR, while SR

has become popular in security systems that consider speech biometrics as one of

the necessary security layers, especially in modern telephone banking applications.
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CHAPTER 1. INTRODUCTION 2

Regarding the two remaining research areas, these are considered to be newly (or

recently) emerging fields over the past few years. One of the pioneers, Lyon [3],

termed this “Machine Hearing”, described in terms of how accurately a machine

could listen to and understand sounds in a real-world environment compared to

humans.

In terms of acoustic scenes in ASC, they refer to environmental sound occur-

rences such as the sounds heard in an office, on a train, in a car or in a forest.

Detecting surrounding environments could be described by the terms “scene de-

tection”, “context detection”, or “sound scene classification”. By detecting the

current location, devices could obtain useful information to enable them to re-

spond appropriately or adjust certain functions, opening up a wide range of dis-

tinct applications. For instance, [4, 5] show the contribution of scene detection for

enhancing the listening experience of users. Moreover, scene classifiers can support

sound event detection when these sound events are mixed in real-world environ-

ments [6]. There are also significant applications in robotics, where the function

of scene detection integrated into a robotics system was an early proposal made

by Clarkson et al. [7], followed by El-Maleh et al. with mobile applications [8].

Recent success in developing a distributed sensor-server system for acoustic scene

classification was described by Jakob Abeber et al. [9], which promisingly opens

up the likelihood of further practical applications in the near future.

Despite the great potential for enabling a variety of applications, compared

to the mature fields of automatic speech recognition (ASR) or speaker recogni-

tion (SR), ASC-based applications are still in their infancy due to the presence

of several challenges. In particular, analyses of audio recordings readily reveals

that sound events and sound scenes always exit simultaneously in real-world en-

vironments. For example, bird song is usually heard in a park, a car horn is

usually outdoors; but a barking dog could be outside or inside a house. If the

background and foreground are referred to as noise and signal respectively, it is
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a fact that the signal-to-noise ratio exhibits extremely high variability due to the

diverse range of environments and recording conditions. To complicate matters

further, a lengthy sound event could be considered background in certain contexts

and foreground in others. For instance, a pedestrian street recording may have a

generally quiet background, but with short vehicle engine foreground events, as

traffic passes. However, a lengthy engine sound in an recording on a bus would

be considered a background sound rather than a foreground event. Furthermore,

both background and foreground contain true noise – continuous, periodic or ape-

riodic acoustic signals that interferes with the understanding of the scene. Besides,

other challenges may come from the available datasets for studying this area. In

particular, some datasets lack sufficient recorded data, contain unbalanced data

(i.e. a large number of recordings of some classes with other classes having very

little data), or even high-cross correlation among sound categories. Recently, the

issue of mismatched recording devices, something which often occurs in practical

applications has been raised as a new challenge for the ASC task (i.e. different

devices record data in different classes, or data from some devices are used for

training, but different devices are used in practice).

The variabilities and difficulties mentioned make acoustic scene classification

(ASC) particularly challenging. To deal with such challenges, recent ASC publi-

cations have tended to focus on two main aspects of machine hearing, which are

discussed in the following subsections.

1.1.2 State-of-the-art Approaches

The first aspect of machine hearing addressed by most state-of-the-art systems

aims to solve the lack of discriminative information by exploiting various meth-

ods of low-level feature extraction. In particular, it is notable that early pub-

lications used Mel Frequency Cepstral Coefficients (MFCC) parameters [2] or
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combined MFCCs with temporal characteristics of audio sound such as loud-

ness, average short-time energy, zero-crossing rate, spectral flux, or spectral cen-

troid [10, 11, 12, 13]. More recently, ASC research has exploited spectrogram rep-

resentations, and has made efforts to explore information from different recording

channels [14, 15], different kinds of spectrogram [16, 17, 18, 19], and different

time resolutions of spectrogram input [15]. By using multiple input features, re-

cent ASC systems apply various ensemble methods such as majority voting, sum

or product fusion [20, 21] to fuse results obtained from discrete models. Although

using multi-input features, combined with ensemble models, helps to achieve high

performance, none of the publications has provided a comprehensive analysis of

how to select optimum input features for different tasks. Furthermore, ensemble

models exhibit a high cost of computation, which may include significant redun-

dancy. Due to the computation cost, almost all state-of-the-art systems were

evaluated on limited size datasets.

The second research trend found in state-of-the-art publications focuses on

constructing and training powerful learning models, with the aim of obtaining

high-performing high-level features. For example, Lidy and Schindler [22] pro-

posed two parallel CNN-based models with different kernel sizes to learn from a

CQT spectrogram input, capturing different regions of the spectrogram. Focusing

on pooling layers, where high-level features are condensed, Zhao et al. [23, 24]

proposed an attention pooling layer that showed an effective improvement com-

pared to conventional max or mean pooling layers. With the inspiration that

different frequency bands in a spectrogram contain distinct features, Phaye et

al. [25] proposed a SubSpectralNet network which is able to extract discriminative

information from 30 sub-spectrograms. These examples of ASC systems recently

mentioned all involve an end-to-end training process. In such systems, values of

the second to last layer are referred to as high-level features (or sometimes as

embeddings), while the final layer, normally implemented as a softmax, performs
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the final classification. Another approach applies two different models which are

trained separately. While the first model is used to extract high-level features,

the second model takes the role of the final classifier.

It can be seen that recent works have made efforts to improve the overall per-

formance of ASC systems with more and more complex approaches. However,

they mainly focus on specific aspects of an ASC system, and there are various is-

sues that have not been deeply considered or directly addressed. Firstly, although

multiple low-level features have been shown to be effective at enhancing the perfor-

mance of systems, no recent publication has addressed which low-level factors have

the greatest influence on overall performance. Furthermore, ensembles of multiple

input features face a direct trade-off between system performance and extensive

computation cost, essentially throwing computing power at the problem. This un-

fortunately makes the approaches incompatible with many real-time applications

or platforms which are constrained in terms of computing power or applications

which are constrained in terms of latency. A question arises as to whether there is

an effective way to combine the most important low-level features, thus solve both

the lack of refined input information and simultaneously avoid high computation

costs. Secondly, although systems using complicated deep-learning networks show

effectiveness in extracting good high-level features, none of the publications inves-

tigates the role of the final classifier in exploring those high-level features. Most

simply present a complete architecture without further experimentation or anal-

ysis. It can be seen that these issues mentioned above may be grouped into three

main topics of low-level feature input, high-level feature extraction, and output

classification – each of which affects ASC system performance in different ways.

Almost all state-of-the-art ASC systems are chosen or optimised in a task- specific

way (i.e. they perform well for one task, but are not evaluated for others), and no

consensus has emerged regarding an optimum choice for any of the three factors.

Finally, while the ability to perform early detection (i.e. low latency classification)
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is very useful for real-world applications such as human-robot interaction, noise

reduction during calls or in acoustic security systems, very few publications ex-

plore or even mention this [26, 27, 28]. These several factors motivate this research

to develop an ASC system that targets the three most important issues mentioned

above while providing a comprehensive analysis on the ability of early detection

and exploration of the main factors involved in ensuring good performance.

1.2 Contribution

During my PhD research in this field, I have made contributions in the five fol-

lowing areas;

A comprehensive analysis of low-level features in ASC. I have explored

a variety of low-level features to tackle the lack of input information in ASC

research. To understand how low-level features affect the classification result in

an ASC system, this thesis firstly proposes a baseline system which is used to

provide a comprehensive analysis. The baseline uses spectrogram representations

as low-level feature input and employs a C-DNN-based architecture (defined later

in Chapter 3) for classification. By using the baseline described, various low-level

feature settings such as channel information, spectrogram type, time resolution,

and data augmentation are evaluated. This analysis helps to identify the most

important low-level features and how they affect the final classification accuracy.

Part of this contribution was published in the Audio Engineering Society (AES)

2019 Conference [21] and the 20th INTERSPEECH 2019 Conference [29].

A novel Encoder-Decoder framework for Acoustic Scene Classifica-

tion. It is a fact that condensed and discriminative high-level features directly

affect the final classification accuracy in an ASC system. Therefore, successfully

developing a high-performing extractor is one of the most important aspects of

building an effective ASC system. This thesis contributes to ASC research by
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introducing a novel and robust architecture which we denote the Decoder-Encoder

framework. This enables a system to learn multiple low-level input features, from

which the framework generates high-performing high-level features (specifically,

this is the role of the Encoder). Furthermore, it then provides an analysis of

various final classifiers models (the Decoder function). This contribution was

published in Journal of Digital Signal Processing [30].

The ability of early detecting recording environments. Although early

detection of recording environments promisingly opens a wide range of applica-

tions as introduced in Section 1.1.1, a few of research [28, 27] mentioned and not

many experiments have been conducted. This contribution shows an analysis of

early detecting recording environments by using the novel Decoder-Encoder frame-

work recently mentioned. This contribution was published in Journal of Digital

Signal Processing [30].

Two-level hierarchical classification scheme as an effective encoder in

an ASC system. Further investigation to improve the final classifiers, referred to

as decoders mentioned under the description of the Decoder-Encoder framework.

This research contribution is to present a novel scheme of two-level hierarchical

classification. By exploiting cross-relation among environmental categories and

using the triplet loss function for training, the scheme is able to enhance system

performance. This contribution was published in the International Joint Confer-

ence on Neural Networks (IJCNN) 2020 [31].

Application of the above for early prediction of respiratory disease.

This thesis has already claimed that an effective ASC can enable important fu-

ture applications, and in this work one such important application is explored.

Up to this point, all evaluations have been done using public databases of audio

clips that are presented as part of worldwide ASC challenges, particularly as part

of Detection and Classification of Acoustic Scenes and Events (DCASE). These
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have real-world aspects, but are essentially artificially constructed datasets col-

lected under controlled conditions. This contribution now considers an important

real-time application – specifically the detection of respiratory diseases from lung

sounds. This follows the 2017 Internal Conference on Biomedical Health Infor-

matics (ICBHI) lung sound dataset and challenge. The results obtained show

the potential to apply the deep-learning frameworks developed in this research

(and described in the early chapters of this thesis) to create advanced compu-

tational techniques for early detection of respiratory diseases. Furthermore, for

these frameworks to be compatible with real time portable or wearable computa-

tional devices. This contribution is published in the 42nd Annual International

Conferences of the IEEE Engineering in Medicine and Biology Society [32] and

being considered for publication in IEEE Journal of Biomedical and Health Infor-

matics [33], the 43th Annual International Conferences of the IEEE Engineering

in Medicine and Biology Society [34]

1.3 Published and Preprint Papers

This section shows published and preprint papers that are relevant to and con-

tribute into the thesis.

-First-author papers:

1. L. Pham, I. McLoughlin, H. Phan, R. Palaniappan, and Y. Lang, “Bag-of-

features models based on C-DNN network for acoustic scene classification”,

in Audio Engineering Society Conference: 2019 AES International Confer-

ence on Audio Forensic (AES), 2019 [21].

2. L. Pham, I. McLoughlin, H. Phan, and R. Palaniappan, “A robust frame-

work for acoustic scene classification”, in Proc. Annual Conference of the

International Speech Communication Association (INTERSPEECH), pp.

3634–3638, 2019 [29].
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3. L. Pham, H. Phan, T. Nguyen, R. Palaniappan, A. Mertins, and I. McLough-

lin, “Robust acoustic scene classification using a multi-spectrogram encoder-

decoder framework”, Digital Signal Processing, vol. 110, 2021 [30].

4. L. Pham, I. McLoughlin, H. Phan, R. Palaniappan, and A. Mertins, “Deep

feature embed- ding and hierarchical classification for audio scene classifica-

tion”, in Proc. International Joint Conference on Neural Networks (IJCNN),

pp. 1-7, 2020 [31].

5. L. Pham, I. McLoughlin, H. Phan, M. Tran, T. Nguyen, and R. Palaniap-

pan, “Robust deep learning framework for predicting respiratory anoma-

lies and diseases”, in Proc. 42nd Annual International Conferences of the

IEEE Engineering in Medicine and Biology Society (EMBC), pp. 164-167,

2020 [32].

6. L. Pham, H. Phan, A. Schindler, R. King, A. Mertins, and I. McLoughlin,

“Inception- based network and multi-spectrogram ensemble applied for pre-

dicting res- piratory anomalies and lung diseases”, in Proc. 43nd Annual

International Conferences of the IEEE Engineering in Medicine and Biology

Society (EMBC), 2021 [34].

7. L. Pham, H. Phan, R. Palaniappan, A. Mertins, and I. McLoughlin, “Cnn-

moe based framework for classification of respiratory anomalies and lung

disease detection”, IEEE Journal of Biomedical and Health Informatics,

2021 [33].

8. L. Pham, A. Schindler, M. Schütz, J. Lampert, S. Schlarb, R. King “Deep

Learning Frameworks Applied For Audio-Visual Scene Classification”, The

4th International Data Science Conference, 2021 [35].

9. L. Pham, H. Tang, A. Jalali, A. Schindler, R. King “A Low-Compexity
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Deep Learning Framework For Acoustic Scene Classification”, The 4th In-

ternational Data Science Conference, 2021 [36].

10. L. Pham, C. Baume, Q. Kong, T. Hussain, W. Wang, M. Plumbley “An

Audio-Based Deep Learning Framework For BBC Television Programme

Classification”, in Proc. European Signal Processing Conference (EUSIPCO),

2021 [37].

-Co-author papers related to the thesis:

1. I. McLoughlin, Y. Song, L. Pham, H. Pham, P. Ramaswamy, and L. Yue,

“Early detection of continuous and partial audio events using CNN,” in Proc.

Annual Conference of the International Speech Communication Association

(INTERSPEECH), pp. 3314–3318, 2018 [28].

2. H. Phan, O. Y. Chen, P. Koch, L. Pham, I. Mcloughlin, A. Mertins, and

M. D. Vos, “Unifying isolated and overlapping audio event detection with

multi-label multi-task convolutional recurrent neural networks,” in Proc.

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 51-55, 2019 [20].

3. H. Phan, O. Y. Chen, P. Koch, L. Pham, I. McLoughlin, A. Mertins,

and M. De Vos, “Beyond equal-length snippets: How long is sufficient to

recognize an audio scene?,” in Audio Engineering Society Conference: 2019

AES International Conference on Audio Forensic (AES), Jun 2019 [20].

4. H. Phan, O. Y. Chen, L. Pham, P. Koch, M. De Vos, I. Mcloughlin, and A.

Mertins, “Spatio-temporal attention pooling for audio scene classification,”

in Proc. Annual Conference of the International Speech Communication

Association (INTERSPEECH), pp. 3845–3849, 2019 [38].
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5. D. Ngo, H. Hoang, A. Nguyen, T. Ly, and L. Pham, “Sound context classifi-

cation basing on join learning model and multi-spectrogram features” arXiv

preprint arXiv:2005.12779, 2020 [39].

6. H. Phan, L. Pham, P. Koch, N. Duong, I. Mcloughlin, and A. Mertins,

“On multitask loss function for audio event detection and localization,” in

Proc. Detection and Classification of Acoustic Scenes and Events (DCASE)

Workshop, pp. 160-164, 2020 [40].

7. H. Phan, HL. Nguyen, OY. Chen, L. Pham, P. Koch, I. Mcloughlin, and A.

Mertins, “Multi-view Audio and Music Classification”, in Proc. IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing (ICASSP),

pp. 611-615, 2021 [41].

1.4 Organisation of This Thesis

These remaining chapters of this thesis are organised as follows.

Chapter 2 carries out a comprehensive literature review of ASC research,

which covers state-of-the-art systems and recently published datasets. From the

detailed analyses, open issues related to the ASC task are raised and discussed.

Chapter 3 presents a baseline system applied for ASC. Using the baseline, the

effect of different low-level features (and their settings) on classification accuracy

is analysed, thus identifying low-level features which are able to perform well for

various scenarios. When the most influencing low-level features are indicated,

mixup data augmentation applied on these features is also evaluated (The first-

author paper 1 mentioned in Section 1.3 mainly contributes into this chapter).

Based on the comprehensive analysis of low-level features provided in Chap-

ter 3, Chapter 4 develops a novel Encoder-Decoder framework applied for ASC.

In particular, this chapter presents a novel Encoder architecture that helps to
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learn multiple spectrograms simultaneously, thus extracts and combines high-

performing high-level features. Furthermore, these high-level features extracted

are explored by various Decoder models, reports the final classification accuracy.

The results obtained prove the proposed Encoder-Decoder framework to be robust

and general for ASC (The first-author papers 2 and 3 mentioned in Section 1.3

mainly contribute into this chapter).

Chapter 5 proposes a scheme of two-level hierarchical classification. The

scheme is used to train and explore high-level features extracted from an Encoder

architecture mentioned in Chapter 3. The results obtained in this chapter in-

dicate that the combination of the proposed scheme and a triplet loss function

during training are useful to exploit the cross-correlation between environmental

categories, which helps to improve accuracy (The first-author paper 4 mentioned

in Section 1.3 mainly contributes into this chapter).

Chapter 6 further explores ASC, but this time in the context of investigating a

specific application of respiratory diseases detection. The extremely good results

obtained from this system indicate the great potential for applying such deep-

learning frameworks to not only the early detection of lung-related diseases, but

also to similar application areas (The first-author papers 5, 6 and 7 mentioned in

Section 1.3 mainly contribute into this chapter)..

Chapter 7 presents conclusion and future works.

Appendix where computation of spectrograms and network layers are de-

scribed in detail.



Chapter 2

Literature Review

This chapter first defines the ASC task, then introduces some acoustic scene

datasets which are popular in recent research literature. Next, it analyses acous-

tic scene representations and classification algorithms. From this analysis, this

chapter then continues to identify issues with current ASC research – which in

turn for the main motivation behind this thesis.

2.1 ASC Definition

The ASC task aims to classify a recording into one or more predefined categories

that characterise the environment in which it was recorded. For example, a record-

ing is classified into in caffe, on bus, in office or on train, as shown in Figure 1.

A general system structure for performing ASC is described as Figure 2, showing

a waveform analysed in two main steps; front-end feature extraction and back-

end classification, respectively. The purpose of the first step, front-end feature

extraction, is to transform a segment of recorded audio into another form that

contains compact information and is suitable for the subsequent stage of classi-

fication. A high-performed transformation generates well-presented features that

benefit the back-end classifier. By using features extracted during the front-end

13
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Figure 1: Task definition of Acoustic Scene Classification.
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Figure 2: A general system applied for Acoustic Scene Classification.

extraction step, the back-end classifier aims to classify an environmental recording

into certain predefined categories.

Techniques, which are generally applied to ASC systems, are diverse and have

often been borrowed from different related research fields as shown in Figure 3.

They focus on developing effective feature extraction techniques and robust models

for the classification.

2.2 ASC Datasets

Table 1 lists the most prominent acoustic scene datasets which have been pub-

lished as part of international challenges. These datasets were recorded in real

environments and released alongside the necessary meta information in Wave for-

mat (i.e. .wav files). The Litis-Rouen dataset [47] shows the highest number of
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Figure 3: Acoustic Scene Classification and relationship to overlapping research areas.

Table 1: The main Acoustic Scene Classification challenge datasets.
ASC Dataset Published In Classes Time Recorded Segment Lenght
(Name) (Year) (No.) (Hours) (Second)

DCASE 2019 Task 1A [42] 2019 10 40.00 10
DCASE 2019 Task 1B [42] 2019 10 46.00 10
DCASE 2019 Task 1C [42] 2019 10 44.00 10
DCASE 2018 Task 1A [43] 2018 10 24.00 10
DCASE 2018 Task 1B [43] 2018 10 28.00 10
DCASE 2017 Task 1 [44] 2017 15 17.50 10
DCASE 2016 Task 1 [45] 2016 15 13.00 30
AucoDer07 [46] 2015 4 4.20 not fixed
Litis-Rouen [47] 2014 19 25.51 30
DCASE 2013 [48] 2013 10 0.83 30
CASA 2010 [49] 2010 13 8.88 4
CASA 2009 [49] 2009 10 18.88 4
UEA-Series2 [50] 2006 10 2.92 not fixed
UEA-Series1 [50] 2006 10 0.66 not fixed

separate classes at 19, followed by DCASE 2016 [45] and DCASE 2017 [44] with

15 classes and CASA 2010 [49] with 13 classes. The remaining dataset challenges

have ten different environments, with the exception of AucoDer07 [46] which only

comprises 4 separate classes. Over time, as this research field has progressed, the

recorded duration has increased from 0.66 hours for UAE-Series1 [50] to 46 hours

for the recordings in DCASE 2019 [42]. Recently, the IEEE AASP Challenge on

Detection and Classification of Acoustic Scenes and Events (DCASE) has pro-

vided a diverse set of acoustic scene datasets, motivates a lot of publications that

have been evaluated with these datasets. In this thesis, the analysed systems are
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mainly evaluated over Litis-Rouen [47] and DCASE 2016 Task 1 [45], DCASE

2017 Task 1 [44], DCASE 2018 Task 1A & 1B [43] and DCASE 2019 [42] Task 1A

& 1B datasets. These datasets are independently evaluated (i.e. each dataset is

separated into Train. and Eva. subsets for training and evaluating, respectively).

2.3 Evaluation Metric

As this thesis evaluates ASC datasets of Litis Rouen and EEE AASP Challenge

on Detection and Classification of Acoustic Scenes and Events (DCASE) in years

of 2016, 2017, 2018 and 2019, the evaluation metric of accuracy used in this thesis

follows these challenges. In particular, if C is considered as the number of audio

segments which are correctly predicted, and the total number of audio segments

is T , the classification accuracy (Acc.%) mentioned in these challenges shares

the similar computation as (note that the segment length evaluated depends on

specific datasets),

Acc.(%) = 100C
T
. (1)

As these datasets are slightly unbalanced and experimental results across cate-

gories are shown, other metrics such as Recall, Precision, or F1 score are not

presented for ASC tasks in this thesis.

2.4 Acoustic Scene Representation

According to the basic stages in a typical ASC system presented in Section

2.1, the state-of-the-art systems applied to ASC use two main approaches for

front-end feature extraction, namely one-dimensional frame-base measures or two-

dimensional spectrogram representations respectively. As there are various trans-

formation used for generating spectrograms, mathematical definitions of transofr-

mation methods are described in detail in Section A separately. The outputs from
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the front-end feature extraction are referred to as low-level features, and these are

analysed in the following sections.

2.4.1 Frame-based Representations

Frame-based representations often utilise MFCC [2], and provide powerful feature

extraction capabilities which are borrowed from the ASR community [45]. To

improve discrimination between MFCC frames, MFCCs are often combined with

a wide range of temporal features such as loudness, probability of voicing, average

short-time energy, sub-band energy, zero-crossing rate, spectral flux, or spectral

centroid [10, 11, 12, 13] (note that an MFCC frame is represented as a real val-

ued vector, with the temporal features concatenated to that vector, effectively

increasing the feature dimension for each frame).

Some systems first transform audio signals into MFCC spectrograms or log-

mel spectrograms, then attempt to learn different aspects of those spectrograms

to extract frame-based features. For instance, Nico et al. [13] applied an Ampli-

tude Modulation Filter Bank (AMFB) method to analyse and extract features

from MFCC spectrogram before concatenating other temporal features such as

flux, centroid spectral entropy. Meanwhile, MultiScale-Kernel Fisher Discrimi-

nant Analysis (MSKFDA), coming from the emotion recognition field, was used

by Erik [10] to provide multi-scale analysis over acoustic scene factors (combi-

nations of MFCCs and temporal features). From log-mel spectrogram, Alain et

al. [47] applied Non-negative Matrix Factorisation (NMF) techniques to extract

condensed features. I-vector extraction, a powerful technique widely used in the

SR research community [51], has also recently been applied for ASC. Recent pub-

lications include various methods to extract i-vectors from MFCC spectrograms

by using a Universal Background Model (UBM) model [52, 53, 54] or Gaussian

Mixture Model (GMM) [55]. In an ASC system proposed by Abidin et al. [56],

frame-based features were extracted after many steps, via a complicated extractor.



CHAPTER 2. LITERATURE REVIEW 18

Firstly, auditory signals were transformed into a CQT spectrogram. Then, au-

thors used Local Binary Pattern (LBP) techniques, borrowed from image texture

extraction research, to extract a Time-Frequency Representation (TFR) from the

CQT spectrogram. The TFR was continuously solved by two different image pro-

cess techniques. The first method, using Histogram of Oriented Gradients (HOG),

extracted HOG features from the TFR. The second method, based on Local Bi-

nary Patterns (LBP), extracted histogram features located at linear zones of the

TFR. Eventually, two frame-based features, HOG and LBP, were concatenated

before being fed into a Support Vector machine (SVM) model for classification.

Operating directly with audio signals, Song et al. [57] applied the auditory

statistics of a cochlear filter model to extract discriminative features, operating

without any spectrogram transformation step in their proposed system.

2.4.2 Spectrogram Representations

Spectrogram images have higher resolution and contain richer information, in

terms of both temporal and frequency dimensions, than general frame-based ap-

proaches. This thesis therefore explores a variety of spectrograms including short

term Fourier transform (STFT), log-mel [16, 24, 25], MFCC [44], CQT [22],

Gamma [19, 58] and scalogram [59].

Further exploring spectrograms, publications applied various filters or image

processing techniques for improving spectrogram quality. For instance, Truc et

al. [16] applied a Nearest Neighbour Filter (NNF) on a log-mel spectrogram to

generate a new NFF spectrogram. By using a median-filtering harmonic percus-

sive source separation over a log-mel spectrograms, Octave Mariotti et al. [14]

and Yuma et al. [15] generated two spectrograms each of which focuses on either

the time or the frequency resolution. Yang et al. [60] used the Kullback-Leibler
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(KL) divergence scale to develop a KL filter bank. Next they applied these fil-

ters on a log-mel spectrogram, generating a KL spectrogram that experimen-

tally outperformed log-mel and CQT. Waldekar and Saha [61] firstly generated a

log-mel spectrogram. Then they applied a Haar wavelet on the log-mel spectro-

gram to generate new features named Mel-Frequency Discrete Wavelet Coefficients

(MFDWC).

Combining image texture techniques known as Difference of Gaussians (DoG)

and the Sobel edge detection operator [62], Wu et al. [63] applied these techniques

to log-mel spectrograms in order to enhance sound textures. Similarly, Park et

al. [64] extracted temporal energy density and energy variations for each frequency

bin of a Gamma spectrogram by using a covariance matrix (COV) and double Fast

Fourier Transform (FFT) image.

2.4.3 Multiple Low-level Input Features and Data Aug-

mentation to Address ASC Challenges

To deal with the ASC challenges mentioned in Section 1.1.1, publications adopt

two main approaches in terms of exploring low-level features. The first approach

considers that each low-level feature may capture distinct features of an audio

signal. Therefore, if multiple input features are used, it is effective at improving

system performance. Meanwhile, the second approach considers the use of data

augmentation to tackle the issues related to datasets, such as lack of, or unbalanced

nature of the data.

Multiple low-level input features: For frame-base representations, MFCCs

are often combined with temporal features as mentioned in Section 2.4.1, or even

with a variety of features such as perceptual linear prediction (PLP) coefficients,

power nomalised cepstral coefficients (PNCC), robust compressive gamma-chirp

filter-bank cepstral coefficients (RCGCC) or subspace projection cepstral coeffi-

cients (SPPCC) [65] that helps to achieve top-three system proposed in DCASE
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2016 challenge. For spectrogram representations, published papers show a di-

verse combination of log-mel and different types of spectrogram such as Mel-based

Nearest Neighbour Filter (NNF) spectrogram [16, 17], CQT [18], or MFCC and

Gamma [19]. Testing a wavelet-transform derived spectrogram representation,

Ren et al. [59] compared results from STFT spectrograms and both Bump and

Morse scalograms. They indicated that combination of STFT spectrogram and

Bump scalogram is useful to enhance the proposed ASC system.

By exploiting channel information, Yuma et al. [15] generated multi-spectrogram

input from two channels, the average and difference of two channels, and explored

separated harmonic and percussive spectrograms from each channel. By fusing re-

sults from channel information, the authors achieved the top-one score in DCASE

2018 challenge. Some papers proposed combining both frame-based and spectro-

gram features such as i-vectors with an MFCC spectrogram in [52, 53, 66].

Data augmentation: To deal with the challenges causing by unbalanced

classes within a dataset or the lack of representative data, some publications

have proposed a variety of data augmentation methods. These can improve the

robustness and enhance the learning ability of deep network models. Early data

augmentation methods combined the signals with multiple lengths of recorded

audio [67]. This idea was improved by Salamon and Bello [68] who provided

an analysis of various data augmentation methods, including pitch shifting, time

stretching, and the addition of background noise. The research indicated that

pitch shifting is useful for all types of experimental sound and a combination of all

augmentation methods helps to improve the ASC system proposed. Interestingly,

Zang et al. [69] proposed a sequence augmentation method. Firstly, an audio

signal was transformed into a STFT spectrogram. Next, a certain number of

continuous STFT frames, referred to as the segment length L, were grouped as

segments. These segments thus were shuffled, re-arranged at different positions,

and eventually were concatenated and generate a new sequence of STFF frames.
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By this way, the authors improved their proposed ASC system by 2% and show

that the proposed ASC system achieves the best performances with the segment

length set to L = 64.

Recently, mixing input data (mixup) [70, 71, 72] and the application of Gener-

ative Adversarial Network (GAN) for data augmentation [73, 74, 60] have become

popular, and are shown to be effective. The mixup method is easy to implement,

which makes it popular in ASC and other systems. Indeed, the top-eight highest

performance systems for DCASE 2018 Task 1A challenge used this method, it was

also used by almost all submitted systems for the DCASE 2019 Task 1A.

Using GAN to generate more fake data has been similarly shown to be ef-

fective in helping to improve system performance. This is proved by systems

in [73, 74, 60], achieving the highest scores in DCASE 2017 and 2019 challenges.

However, systems using GAN for data augmentation [73, 74, 60] show compet-

itive performance but are very complicated. In particular, these systems need

to configure and train a GAN network to be used to generate new data. After

training the GAN generator, they require a classified model to be trained as a

filter to be able to select generated data which shows an appropriate distribution

(SVM can be used). Both old data and generated data need to then be shuffled,

or interspersed, before being fed into a final classifier.

2.5 Classification Algorithms

It can be seen that the front-end feature extraction methods tend to fall under

one of two main approaches, either frame-based or spectrogram representations.

Meanwhile the back-end classification methods are also divided into two main

groups, analysed in some depth below.
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Figure 4: ASC framework using frame-based feature and machine learning model

2.5.1 Machine Learning Models

The frame-based feature approaches are normally combined with traditional ma-

chine learning models as shown in Figure 4 and Table 2. For example, baseline of

the DCASE 2016 challenge [45] introduced MFCC feature extraction and Gaus-

sian Mixture Model (GMM), which showed a very similar architecture to systems

used in ASR research. Similarly, Park et al. [65] applied GMM models to evaluate

various frame-based features such as MFCC, PLP, PNCC, RCGCC and SPCC.

Meanwhile, Support Vector Machine (SVM) was widely used with diverse types of

frame-based input features such as MFCC [55, 75], auditory-summary-statistics

features [57], HOG and LBP features in [56], MFDWC features in [61]. Linear-

based models have also been used, with Bisot et al. [76] proposing a modified

version of supervised dictionary model (TDL) to classify NMF features. Mean-

while, Hamidn et al. [52] used both Linear Discriminant Analysis (LDA) [77]

and Within-Class Covariance Normalization (WCCN) [78] to train i-vector fea-

tures. Recently, Multilayer-Perceptron-based (MLP-based) networks have been

very widely used to train frame-base features. For instance, MLP-based networks
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Table 2: The state-of-the-art frame-based ASC frameworks

Author Front-end Back-end
Feature Extraction Classification

Mesaros et al. [45] MFCC GMM
Park et al. [65] MFCC, PLP, PNCC, GMM

RCGCC, SPCC
Elizalde et al. [55] MFCC SVM
Mafra et al. [75] MFCC SVM
Abidin et al. [56] HOG, LBP SVM
Waldekar et al. [61] MFDWC SVM
Bisot et al. [76] NMF TDL
Eghbal-Zadeh et al. [52] i-Vector LDA,WCCN
Mafra et al. [75] MFCC MLP
Mika et al. [79] MFCC MLP
Kong et al. [80] MFCC MLP
Jee-Weon et al. [54] MFCC MLP
Moritz et al. [13] AMFB TDNN

in [75, 79], [80], [54] were used to learn MFCC, log-mel features, and a combina-

tion of MFCC and i-vector, respectively. A variant of MLP-based networks which

introduces a dependency in time between frames, namely the Time Delay Neural

Network (TDNN), was used in [13] to train AMFB features.

2.5.2 Deep Learning Models

Regarding the second approach of using spectrogram representations, publications

show a similar wide variety of back-end classification methods. In this case, most

are using deep learning networks as shown in Figure 5 and Table 3. Spectrogram

features resemble two-dimensional images, and so to feed these into deep-learning

models (note that the entire variable-length spectrogram for variable-length sound

input is normally split into small overlapping or non-overlapping patches of equal

size [29, 69, 21, 81, 16]). Some systems obtain short spectrograms by adjusting

hop size, and then feeding the entire spectrogram into back-end classifiers [43, 82].

Deep learning models applied to ASC can themselves be separated into three main

categories: Multilayer Perceptron (MPL), Convolutional Neural Network (CNN)

and Recurrent Neural Network (RNN) based architectures. The deep learning
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Figure 5: ASC framework using spectrogram and deep learning model

framework used as the baseline of the DCASE 2017 challenge is an example of

the first category of using MPL-based networks. The input features of the MPL

architecture systems need to be vectors, so the two-dimensional patches split from

the much larger full spectrograms are flattened into vectors in these systems be-

fore being fed into the network [80]. Although a wide range of deep learning

network are applied to ASC, CNN-based architectures are now the most popular

approach. Indeed, there are a variety of ASC systems using CNN-based network

such as Lenet [83], VGG [84], Resnet [85], Capsule [86], etc. which have published

recently. Analysing the system characteristics submitted to the DCASE challenges

over time, while half of DCASE 2016 submissions used traditional machine learn-

ing models and the remaining system applied CNN-based networks, CNN-based

architectures were used in almost all DCASE 2017 systems. In DCASE 2018 and

DCASE 2019 challenges, all submitted systems that achieved higher performance

than the two challenge baselines either completely applied CNN-based networks

or partly used them in their systems. To further analyse the CNN-based networks

that have been published, publications tend to make efforts to exploit certain as-

pects of the CNN networks. For examples, Yang et al. [87] proposed a complicated

CNN-based architecture called the xception network. This is inspired by the fact

that a deep learning network trained by a wide range of feature scales and over

separated channels can result in a very powerful model. Focusing on attention

mechanisms, an attention-based pooling layer proposed by Zhao Ren et al. [24, 23]

helped to improve the quality of pooling layers compared with traditional pooling

layers. Exploring different frequency bands in a spectrogram, Phaye et al. [25]
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Table 3: The state-of-the-art spectrogram based ASC frameworks

Author Front-end Back-end
Feature Extraction Classification

Kong et al. [80] MFCC MLP
Lecun et al. [83] log-Mel Lenet (CNN)
Simonyan et al. [84] log-Mel VGGish (CNN)
Ren et al. [24] log-Mel VGGish (CNN)
Zhao et al. [23] log-Mel VGGish (CNN)
Phaye et al. [25] log-Mel VGGish (CNN)
He et al. [85] log-Mel Resnet (CNN)
Patrick et al. [86] log-Mel Capsule (CNN)
Yang et al. [87] log-Mel x-Ception (CNN)
Zhang et al. [69] log-Mel LSTM (RNN)
Zhang et al. [89] log-Mel LSTM, attention (RNN)
Zhang et al. [81] log-Mel LSTM,temporal transformer (RNN)
Phan et al. [38] log-Mel GRU (RNN)
Phan et al. [58] log-Mel GRU, attention (RNN)
Phan et al. [20] log-Mel GRU, CNN (CNN & RNN)

proposed a SubSpectralNet network which was able to extract discriminative in-

formation from 30 sub-spectrograms. Recently, Song et al. [88] proposed a new

way to handle distinct features in a sound scene recording; a deep learning model

extracts a bag of features from a log-mel spectrogram, including both similar and

distinct ones, from which a back-end network is exploited to enhance accuracy.

RNN-based networks are very powerful methods able to learn sequences across

time series in addition to spectral relationships. Zang et al. [81, 69, 89] pro-

vided a deep analysis of the application of Long Short-term Memory (LSTM), a

kind of RNN network, for ASC. In particular, the authors not only evaluated a

single LSTM [69] but also conducted extensive experiments on combinations of

the LSTM with other techniques, such as an attention scheme [89] or a tempo-

ral transformer layer [81]. Another example showed to be effective in exploiting

RNN-based network was published by Huy et al. [20, 58, 38]. Instead of using

LSTM-based RNN, Huy et al. proposed using a Gate Recurrent Unit (GRU)

based RNN [38]. Then they further improved the model by applying an atten-

tion scheme [58] or combining this with CNN-based architectures [20]. Although
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RNN-based networks prove to be very powerful approaches in Acoustic Event De-

tection (AED) due to their effectiveness at capturing time sequence, they show

poor performance when applied to ASC compared with CNN approaches. Indeed,

not a single RNN-based model was submitted to the recent DCASE 2019 ASC

challenge, and furthermore, when RNN-based architectures are used in different

contexts, they are normally combined with a CNN network to improve system

performance [20].

2.5.3 High-level Features

It can be seen that deep-learning-based systems using spectrogram representa-

tions have complicated architectures [87, 25, 24, 20, 58]. A deeper analysis of

the kind of deep learning networks used in these systems, shows that they belong

to two main groups divided by the number of training processes used. Systems

which only use one training process are called end-to-end learning systems. In

these end-to-end systems, the network architecture is separated into two main

parts. While the first part helps to transfer low-level features (spectrogram rep-

resentation) to high-level features, which contain condensed and discriminative

information, the second part takes the role of classification from those condensed

features. In particular, high-level features are normally referred to as the values

of the next-to-last layer, and the final layer (normally using Softmax) is referred

to as the classification part [87, 25, 24]. In order to gain high-performed high-level

features, a variety of complicated architectures have been proposed. For examples,

Truc et al. [16] applied two parallel CNNs to learn from two type of spectrograms,

then concatenated outputs of the CNNs to generate high-level features. Similarly,

Lidy et al. [22] used two parallel CNNs, each of which used different kernel sizes to

capture different regions of a CQT spectrogram. Meanwhile, Soo et al. [90] used

both CNN and RNN to capture spatial and time sequence features. Normally,

high-level features extracted by CNN or RNN based structures are concatenated
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before feeding into fully-connected layers (i.e. Multilayer perceptron), referred to

as the final classifier.

Inspired by the idea that if results of a first training process used to model low-

level features are transferred into a second model to aggregate those features, it

can improve classification accuracy without requiring an unduly complex single

network architecture, the second group of ASC systems use two, or even more,

different learning models. While the first model is again used to extract high-level

features (note that these high-level features are also called embedded features or

embeddings in some papers), the second model aims to explore high-level fea-

tures, reporting final classification accuracy. An early system from this trend was

described in [91]. In that system, the authors applied Random Forests (RF) to

train from low-level Gamma spectrograms, converting the output into another

form of features called labelled tree embedded (LTE) features. These LTE fea-

tures were then classified by a SVM model. To further explore LTE features,

authors conducted various experiments on the second model by using both CNN

and SVM [19] or RNN [58]. Other examples were shown in [38, 20]. In these

systems, deep-learning frameworks of either parallel [20] or continuous [38] com-

binations of CNN and RNN were used to extract high-level features. Then, a SVM

model was used as the final classifier. This trend includes a variety of high-level

features such as x-vectors extracted from CNNs [18], feature maps from C-NN net-

works [92, 93], deep-scalogram representations from CNN [59]. Recently, transfer

learning technique [94], a variant of this basic approach, has been widely applied.

2.5.4 Ensemble Models

As mentioned in Section 2.4.3, recent publications reporting high performance

have tended to explore multiple low-level input features to deal with the lack of

sufficient training information. Systems using multi-input features often use sepa-

rated learning models, then fuse the models’ results to obtain a final classification
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accuracy. In general, these fusion methods are separated into three main groups,

namely max-fusion, mean-fusion and multiplication-fusion methods, each of which

is discussed in [20]. Although these systems prove to have a high cost of compu-

tation as well as a high volume of training parameters, they are able to achieve

competitive results. Indeed, the top-three performing systems in the DCASE

challenges [95, 52, 65, 73, 96, 97, 98, 15] and on the Litis-Rouen dataset [38, 81],

use a variety of fusion methods. In particular, these high-performing systems use

a spectrogram representation for low-level input features.

2.6 Open Issues

Several of the existing works mentioned above have described the open issues that

this thesis is going to analyse and investigate. Firstly, while multiple low-level

input features such as spectrograms, channels, frequency and time resolution, etc.

have been explored for use on ASC challenges, there has been much less com-

prehensive analysis to identify the most effective low-level feature. Furthermore,

using multiple input features usually combined with ensemble models, has a very

high computational cost – effectively throwing computational power at the prob-

lem. It would clearly be better to more precisely identify optimum features (and

their characteristic settings) rather than blindly combining a large set of multiple

features. In terms of back-end classification, although a wide range of deep learn-

ing frameworks have been proposed, they mainly exploit specific features (i.e. are

highly feature-specific) and are almost always evaluated over a very limited set of

datasets. The danger there is of building locally-optimum systems which work well

on one challenge, but perform poorly on others. As ASC challenges mainly come

from various sound events and scenes inside environmental recording datasets,

focusing on specific aspects of an ASC system easily causes overfitting issues, es-

pecially troublesome when a model is evaluated over different datasets to those
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it is trained for. Further analysis of back-end classification models shows that,

although some high-performance high-level features have been recently defined,

no current publications adequately explore the relationship between high-level

features which have been extracted from different low-level features. Moreover,

very few published papers explore the nature and the effect of those high-level

feature characteristics. Finally, although environmental sounds have high cross-

correlation due to the presence of similar types and degrees of background noise,

few publications provide an analysis of this aspect of systems.



Chapter 3

Low-Level Feature Analysis

This chapter aims to provide a comprehensive analysis of low-level features in an

ASC system and identify how these features affect the final classification accu-

racy. To this end, a wide range of low-level features such as channel information,

spectrogram types and various image patch sizes, etc., are evaluated. These ex-

periments are conducted over a C-DNN-based model, referred to as the proposed

baseline, and evaluated using the DCASE 2018 Task 1A, 1B dataset. After indi-

cating the most influencing low-level features, C-DNN baseline’s performance is

evaluated again with mixup data augmentation.

3.1 High-level Architecture

Starting with a spectrogram representation as the low-level feature, a general

system architecture for ASC is presented in Figure 6. It can be seen that the

entire ASC system is separated into two main processes. The first process (top

half) has the role of transforming the selected audio channels into one or more

types of spectrogram, and then splitting the full spectrogram into smaller patches

of different sizes to form a bag-of-features. In this case, the patches are non-

overlapping and of predefined size.

30
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Figure 6: The high-level architecture of proposed baseline.

The second process (bottom half) is a machine learning model which trains

the input patches extracted by the first process and performs classification. In

this case, the model is a CNN combined with a DNN (abbreviated to C-DNN).

The output of the machine learning model is the reported classification accuracy.

3.2 Low-level Feature Analysis

Due to ASC challenges discussed previously in Section 2.4.3, it is known that

an ensemble of multiple low-level features or models can promisingly enhance

the classification accuracy in current state-of-the-art systems. This motivates

the analysis and exploration of the effects on classification accuracy of different

bags-of-features. Specifically, it drives to explore into three groups as shown in

Table 4.

The first exploration focuses on the effect of different channels (since the data

sets include two-channel recordings namely Left and Right). The possibilities are

using the first channel alone (Left), the second channel alone (Right), and the

space information of two channels obtained by Average and Side, where Average
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Table 4: Bag-of-feature analysis settings for ASC.
Channels Channel 1, Channel 2,

Average, and Side of two channels
Patch sizes 0.37 s (64 bins), 0.74 s (128 bins),

1.11 s (192 bins), 1.48 s (256 bins)
Spectrograms log-mel, Gamma, and CQT

(each with 128 filters)

means (Left+Right)/2 and Side means (Left-Right).

The second exploration is for different patch sizes, in terms of the time duration

that they cover. The number of frequency bins used for the analysis is fixed at

128, but a different numbers of time bins are evaluated, specifically 64, 128, 192,

and 256 – giving rise to the four different patch durations shown in Table 4.

The third exploration considers the use of three alternative spectrogram trans-

formations, namely log-mel, gammatone (Gamma) and Constant Q Transform

(CQT). Since these spectrograms are derived from different auditory models, it

is plausible that they can each contribute distinct features for classification. By

ensuring that parameters such as window size, hop size and patch number are

fixed, the number of data items fed into the back-end learning model will be equal

for different types of spectrogram, hence any difference in classification accuracy

is due to the characteristics of each spectrogram, not due to different learning

requirements. In this thesis, while log-mel and CQT are generated by using a

popular toolbox namely Librosa [99], gammatone-like spectrogram toolbox [100]

is used to generate Gamma. The methods of transforming a selection of audio

signal into a spectrogram are presented in detail in Chapter A.

Furthermore, this chapter also analyses how mixup data augmentation, a

simple-implemented and popular method of data augmentation mentioned in

Chapter 2, affects to the classification accuracy. Description and settings for

mixup data augmentation are presented in detail in next Section 3.5.6.
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3.3 Propose a Baseline

Table 5: The primary operating parameters of the proposed baseline for
DCASE 2018 challenge, alongside the parameters from the challenge baseline.

System Setting Proposed C-DNN DCASE 2018
baseline baseline

Window size 0.044s 0.04s
Hop size 12.5% 50%
Spectrogram method log-mel log-mel
Filter number 128 40
Spectrogram size 128×1728 40×500
Like-image features 13 patches (128×128) entire spectrogram
Deep learning model C-DNN C-DNN

(Lenet-7) (The best model form DCASE 2016)

To analyse different bags-of-features, a baseline architecture is first established,

configured using the parameters set out on the left hand side in Table 5. Addition-

ally, this chapter also compares overall performance against the standard DCASE

2018 baseline system of [43]. The proposed C-DNN parameters are listed in Table

6.

Given by Table 5, it can be seen that the proposed baseline architecture uses

a window size of 0.044 s (albeit extracted from a higher dimension spectrogram)

and a smaller hop size of 12.5% compared with a window size at 0.04s and a

hop size of 50% in the DCASE 2018 baseline, since the baseline’s purpose aims

to extract additional useful information from the input spectrogram. Regarding

the spectrogram, the proposed architecture uses a log-mel filter with 128 bands

which is much larger than the 40 Mel filter bands of the DCASE 2018 baseline.

Based on these parameters, the proposed spectrogram, which is generated from

10-second segments with sample rate of 48,000 Hz, has a bigger size in both time

and frequency bins of 128×1728 compared with 40×500 in the DCASE 2018 base-

line. Then, the entire spectrogram of 128×1728 is split into 13 non-overlapping

patches of 128× 128 before feeding into a back-end classification.
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Table 6: The proposed C-DNN network configuration
(the upper part is for CNN and the lower part is for DNN).

Layers Output shape Kernel/Drop Ratio
Input 128×128×1 -
Convolutional 1 128×128×32 [3×3] @ 32
ReLU 1 128×128×32 -
Batch normalization 1 128×128×32 -
Average pooling 1 64×64×32 [2×2]
Dropout 1 64×64×32 10%
Convolutional 2 64×64×64 [3×3] @ 64
ReLU 2 64×64×64 -
Batch normalization 2 64×64×64 -
Average pooling 2 32×32×64 [2×2]
Dropout 2 32×32×64 15%
Convolutional 3 32×32×128 [3×3] @ 128
ReLU 3 32×32×128 -
Batch normalization 3 32×32×128 -
Average pooling 3 16×16×128 [2×2]
Dropout 3 16×16×128 20%
Convolutional 4 16×16×256 [3×3] @ 256
ReLU 4 16×16×256 -
Batch normalization 4 16×16×256 -
Global average pooling 4 256 -
Dropout 4 256 25%
Fully connected 5 512 -
ReLU 5 512 -
Drop out 5 512 30%
Fully connected 6 1024 -
ReLU 6 1024 -
Dropout 6 1024 35%
Fully connected 7 10 -
Softmax 7 10 -

As regards learning models, the DCASE 2018 baseline reuses the architecture

of the top ranked submission of DCASE 2016 [101]. However the DCASE 2016

system only had two convolution blocks (convolutional, batch normalization, rec-

tify linear unit, and dropout layers) followed by one dense layer and an output

layer with Softmax classification.

The new baseline is much more complicated, with four convolutional blocks

based on Lenet-7 [83]. In particular, the C-DNN proposed presents four convolu-

tional blocks, as configured in the upper part of Table 6, each of which includes
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a convolutional layer followed by a rectify linear unit (ReLU), a batch normal-

ization, an average pooling, and a dropout layer. At the final convolution block,

instead of using a average pooling layer, a global average pooling layer is applied

to enhance the accuracy based on the idea of considering the contribution of all

channels output to the final convolution block as a bag-of-features and reducing

noise.

The classification operation is shown in the lower part of Table 6 (note that

while blocks are separated by single line, the role of classification in the lower parts

is separated by a double line), handled by fully connected, ReLU and dropout

layers. At the final layer, a Softmax function is used for classifying into different

ten scene contexts.

3.4 Experimental Setting

3.4.1 Dataset

Experiments in this chapter are conducted using the development set (Dev. set)

of DCASE 2018 Task 1A and 1B [43]. The audio files in these datasets are all

wave file format recordings with a sample rate of 48000 Hz and have a 10-second

duration.

As DCASE 2018 Task 1A dataset, all of the audio files were recorded by the

same device, denoted ‘device A’ (Soundman OKM II Klassik/studio A3 electret

microphone and a Zoom F8 audio recorder), and are grouped into ten different

categories, with one category label per recording. The data is unbalanced so that

the number of recordings per category is slightly uneven. This can be seen in the

left hand side of Table 7 which identifies the categories and the number of 10-

second audio files that each categories contains. In total, the task includes 8640

audio files. Using the DCASE 2018 suggested test/train split [43], recordings of

the development set are separated into a Training subset (6122 audio files) and a
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Table 7: Development set of DCASE 2018 Task
1A and 1B datasets are split into Test/Training subsets

Categories Training subset Test subset Training subset Test subset
(1A) (1A) (1B) (1B)

Airport 599 265 707 301
Bus 622 242 730 278
Metro 603 261 711 297
Metro Station 605 259 713 295
Park 622 242 730 278
Public Station 648 216 756 252
Shopping Mall 585 279 693 315
Pedestrian Street 617 247 725 283
Traffic Street 618 246 726 282
Tram 603 261 711 297
Total files 6122 2518 7202 2878

Test subset (2518 audio files).

DCASE 2018 Task 1B reuses all audio files from Task 1A, but extends that

with additional recordings obtained from two other recording devices named B

and C (e.g. recorded from a variety of smart phones and cameras). However, it

should be noted that the number of recordings made by devices B and C is much

smaller than that of device A; in total just 4 hours for devices B and C compared

to 24 hours for device A.

While performance evaluation for subtask 1A is based on classification accu-

racy for device A recordings, scoring for subtask 1B is only based on the classi-

fication accuracy assessed for devices B and C. It thus tests how well a system,

trained mainly with recordings from one device, performs on recordings made on

other devices (which is a common real world scenario).

Like DCASE 2018 Task 1A, the subtask 1B dataset is split into test/train

portions [43]. Recordings within the development set are separated into a Training

subset (7202 audio files) and a Test subset (2878 audio files), shown in two right

hand columns of Table 7.
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3.4.2 Setting Hyperparametes and Training Process

To train the baseline, cross entropy, defined in Equation (2), is minimised to tune

the parameters, denoted as Θ.

LOSSEN(Θ) = −
C∑
c=1

yc log {ŷc(Θ)}+ λ

2 ||Θ||
2
2, (2)

where LOSSEN(Θ) is the entropy loss function for all parameters Θ of the

C-DNN model, λ denotes the `2-norm regularization coefficient set to 0.001 (The

setting of λ value is similar to [58, 20]), C is number of sound scene categories

classified, yc and ŷc are ground truth and predicted result for class c respectively,

in one-hot format.

The C-DNN baseline is built in the Tensorflow framework, set with epoch

number, batch size and initial learning rate of 100, 100 and 0.0001 respectively, and

using the Adam method for learning rate optimisation [102]. Trainable parameters

are initialised randomly with a normal distribution, having mean and variance set

to 0 and 0.1, respectively.

3.4.3 Ensemble Method

As the back-end classification models returns the predicted probability of sin-

gle patch, predicted probability of entire spectrogram is computed by taking the

average of all patches’ probabilities (this is similar to the mean-fusion method

mentioned in [20]). If pn = (pn1 , pn2 , ..., pnC), with C being the category number

and the nth out of N patches fed into learning model, are considered as the prob-

ability of a test sound scene instance, then the average classification probability

is denoted as p̄ = (p̄1, p̄2, ..., p̄C) where,

p̄c = 1
N

N∑
n=1

pnc (3)
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and the predicted label from the C-DNN is determined using,

ŷ = argmax
c∈{1,2,...,C}

p̄c (4)

As regards an ensemble of channels, spectrograms or patch sizes, this mean-

fusion method can also be applied in the same way. If pm.n = (pm.n1 , pm.n2 , ..., pm.nC ),

with C being the class number, the nth out of N patches fed into learning model,

and the mth out of M channels, spectrograms, or patch sizes, are considered as

the probability of a test sound scene instance. The mean classification probability

is then denoted as p̄ = (p̄1, p̄2, ..., p̄C) where,

p̄c = 1
M.N

M∑
m=1

N∑
n=1

pm.nc (5)

and similarly the predicted label is determined as in Equation (4). sddsss

3.5 Experimental Results

To evaluate how low-level features such as channel, patch size, type of spectro-

gram, and ensembles of these features affect ASC performance, the baseline with

using channel 1, patch size of 128×128, and log-Mel spectrogram proposed in Sec-

tion 3.3 is firstly compared with DCASE baseline. This comparison is described

in the next Section 3.5.1. Then, ensembles of channels, sizes of patches, and types

of spectrograms are conducted and compared to individual models (i.e. an in-

dividual model receives only one channel input, and use one type of patch size

and spectrogram), which are shown in Section 3.5.2, 3.5.3, and 3.5.4, respectively.

The comparison shows how ensembles help to improve performance, compared

with individual model and DCASE baseline. Next, these ensembles are compared

together, indicating the most effective low-level feature in Section 3.5.5. Finally,

the effect of data augmenation is evaluated in Section 3.5.6.
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3.5.1 Baseline Comparison

Table 8: Performance comparison (percentage category classification accuracy - %)
between DCASE 2018 Task 1A baseline and the proposed C-DNN baseline.

Categories DCASE 2018 Proposed C-DNN
baseline (%) baseline (%)

Airport 72.9 56.2
Bus 62.9 66.1
Metro 51.2 39.1
Metro Station 55.4 67.6
Park 79.1 80.6
Public Square 40.4 64.8
Shopping Mall 49.6 87.8
Street Pedestrian 50.0 46.6
Street Traffic 80.5 79.3
Tram 55.1 72.8
Average 59.7 66.2

The accuracy of every category reported by the DCASE 2018 Task 1A baseline

and by the proposed C-DNN network is displayed in Table 8. In general, the C-

DNN baseline improves average accuracy by 6.5%, compared to 59.7% of DCASE

2018, but not every category improves.

In terms of each category performance, Tram, Shopping Mall, Public Square

and Metro Station show significant improvements, increasing by 17.7%, 38.2%,

24.4%, and 12.2%, respectively. Performances on Airport, Metro, by contrast, de-

crease to 56.2% and 39.1%, compared to 72.9% and 51.2% of DCASE 2018. The

accuracy of the remaining categories is similar. To further analyse the C-DNN

baseline performance, 10 categories are divided into three meta categories, and

re-compute the performance on 3 meta categories rather than on 10 categories.

Specifically, grouping the categories is as follows - vehicle (Bus, Metro, Tram), in-

door (Airport, Metro Station, Shopping Mall) and outdoor (Park, Public Square,

Street Pedestrian, Street Traffic). The classification accuracy over each meta cate-

gory is 85.8%, 81.5% and 91.5% for indoor, vehicle and outdoor, respectively, with

an averaging of 86.3% over three meta categories. The relatively high performance

indicates that environmental sounds show high-cross correlation, with a majority
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Figure 7: Confusion matrix plot (displayed from two sides)
of C-DNN baseline performance per category.

of incorrectly recognized samples dropping into the same meta categories. Indeed,

the confusion matrix result of the C-DNN baseline, shown in Figure 7 and Table

9, indicates that incorrect cases in the same meta categories are larger than those

across different meta categories. These are in fact 20.7% and 13.1% on average,

respectively. This interesting discovery motivates a further comprehensive anal-

ysis on cross correlation among both individual and meta categories that will be

presented in Chapter 5.
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Table 9: Accuracy (Acc. %) and Inaccuracy (Inacc. %)
across individual and meta categories.

Categories Acc. Inacc. inside Inacc. outside
(%) meta category (%) meta category (%)

Airport 56.2 24.4 19.4
Bus 66.1 21.5 12.4
Metro 39.1 27.0 33.9
Metro Station 67.6 14.9 17.5
Park 80.6 15.0 4.4
Public Square 64.8 29.8 5.4
Shopping Mall 87.8 5.0 7.2
Street Pedestrian 46.6 31.6 21.8
Street Traffic 79.3 19.1 1.6
Tram 72.8 19.1 8.1
Average 66.2 20.7 13.1

3.5.2 Bag-of-channel Ensembles

Working from the proposed C-DNN baseline, the effect on classification accuracy

was analysed when using the four different channel arrangements (Note that com-

puting the ensemble of different channels is mentioned in Section 3.4.3). Results

are presented in Figure 8 and reveal that Channel 1 (Left), Channel 2 (Right),

their Side, and Average differ more widely at the output of the C-DNN baseline

with the highest score of 69.3% obtained from the average of the two channels.

Ensemble models exploiting different channels help to improve accuracy by 11.9%

better than the 59.7% achieved by the DCASE 2018 baseline.

3.5.3 Bag-of-feature-size Ensembles

This section presents an experiment to determine whether ensembles of different

patch sizes could improve accuracy as shown in Figure 9 (Note that computing

the ensemble of different patch sizes is mentioned in Section 3.4.3). In general, the

C-DNN performance results in different sizes are similar and are not significantly

improved. Ensemble result over all patch sizes slightly improve – by 2.1% and

8.6% compared to the C-DNN baseline and DCASE 2018, respectively, which

shows poorer performance than the channel ensemble.
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Figure 8: Class-wise performance with channel effect.

3.5.4 Bag-of-spectrogram Ensembles

Next, the effect of using the three spectrogram transformation types listed in

Table 4 for the classification of patches sized 128×128 (in the proposed baseline),

is evaluated (Note that computing the ensemble of different types of spectrogram

is mentioned in Section 3.4.3). The results, shown in Figure 10, indicate that the

best C-DNN result among the three spectrogram types is 67.3%, for the Gamma

spectrogram. While log-mel results are competitive to Gamma, CQT performance
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Figure 9: Class-wise performance with patch size effect.

tends to be significantly poorer than the others. However, CQT performs well with

vehicle-related categories. Noticeably, an ensemble among spectrograms helps to

improve the overall accuracy 13.4% more than that of DCASE 2018 baseline, and

on average 7.0% better than the highest single-spectrogram performance.

3.5.5 Comparison of bag-of-feature Ensembles

Comparing the performance of bag-of-feature ensembles with DCASE 2018 base-

line for Task 1A, as shown in Table 10, the spectrogram ensemble achieves the

highest scores, followed by the channel ensemble and then the patch size ensemble.
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Figure 10: Class-wise performance with spectrogram effect.

Noticeably, ensemble methods are clearly able to improve on the baseline perfor-

mance for almost all categories, with the exception of Airport. Specially, Tram,

Shopping Mall and Metro Stations categories show significant improvements when

applying ensembles. For both DCASE 2018 baseline and ensemble methods, Pub-

lic Square achieves the lowest scores. By contrast, Street Traffic achieves the

highest scores for all of the models evaluated.

Moving on to the DCASE 2018 Task 1B which addresses the issue of mis-

matched recording devices, it is noted that only one channel is provided and thus
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Table 10: Performance comparison (percentage accuracy - %) between
DCASE 2018 Task 1A baseline and bag-of-feature ensemble of C-DNN proposed.

Categories DCASE 2018 Spectrogram Patch Size Channel
baseline (%) Ensemble (%) Ensemble (%) Ensemble (%)

Airport 72.9 57.0 64.9 60.3
Bus 62.9 74.4 69.8 69.8
Metro 51.2 63.2 42.9 54.4
Metro Station 55.4 84.2 73.3 77.2
Park 79.1 84.7 80.5 83.4
Public Square 40.4 56.9 60.1 62.0
Shopping Mall 49.6 82.1 82.4 79.2
Street Pedestrian 50.0 59.9 51.4 61.9
Street Traffic 80.5 87.0 86.5 92.2
Tram 55.1 79.3 70.1 74.7
Average 59.7 73.1 68.3 71.6

Table 11: Performance comparison (percentage accuracy - %) between
DCASE 2018 Task 1B baseline with the use of spectrogram ensemble of the C-DNN.

Categories DCASE 2018 Ens. of Spec. DCASE 2018 Ens. of Spec.
Dev. A (%) Dev. A (%) Dev. B&C (%) Dev. B&C (%)

Airport 73.4 68.7 72.5 52.8
Bus 56.7 70.7 78.3 88.9
Metro 46.6 70.9 20.6 27.8
Metro Station 52.9 83.4 32.8 61.1
Park 80.8 82.2 59.2 83.3
Public Square 37.9 52.8 24.7 55.6
Shopping Mall 46.4 67.4 61.1 80.6
Street Pedestrian 55.5 64.0 20.8 52.8
Street Traffic 82.5 90.2 66.4 83.3
Tram 56.5 78.9 19.7 27.8
Average 58.9 72.9 45.6 61.4

channel ensemble is not possible (even though it performed well for Task 1A). The

performance of the spectrogram ensemble method is now explored in DCASE 2018

Task 1B, achieving the results shown in Figure 11 and Table 11.

From results shown in Figure 11, the classification performances on devices

B and C are poorer than A due to unbalanced data and mismatch recorded de-

vices, reporting an average of 72.9%, 61.7% and 61.1% for devices A, B, and C,

respectively. Compared to the DCASE 2018 baseline, results in Table 11 show a

significant improvement, increasing accuracy of B&C by 15.8% (note that DCASE

2018 Task 1B challenge only evaluates accuracy on device B&C).
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Figure 11: Performance comparison (Accuracy %) among Devices over DCASE 2018
Task 1B with spectrogram ensemble.

3.5.6 Effect of Mixup Data Augmentation

As mentioned in Section 2.4.3, applying multiple input features and data augmen-

tation are two main approaches to deal with ASC challenges in terms of low-level

features. The recently comprehensive analysis of bag-of-features has shown that

ensemble of spectrograms is effective to improve an ASC system’s performance,

outperform channel and time resolution features. In this section, the effect of

augmentation affects on classification accuracy is evaluated. In particular, Figure
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Figure 12: The baseline system architecture with mixup data augmentation.

12 describes how to apply mixup data augmentation in the baseline system pro-

posed. Firstly, only channel 1 is used to transform into three types of spectrogram

(log-mel, Gamma, and CQT). The entire spectrograms are thus split into non-

overlapping image patches of 128× 128. These two steps with setting parameters

such as the filter number, window size or hop size, etc. are the same as those

used in experiments of bag-of-features mentioned in Table 5. Next, mixup data

augmentation [71, 72] is applied on the image patches. Let consider X1 and X2 as

two image patches randomly selected from the set of original image patches with

their labels y1 and y2, respectively, mixup data augmentation helps to generate

new image patches as Equations below,

Xmp1 = αX1 + (1− α)X2, (6)

Xmp2 = (1− α)X1 + αX2, (7)

ymp1 = αy1 + (1− α)y2, (8)

ymp2 = (1− α)y1 + αy2. (9)

where α is drawn from both Uniform or Beta Distribution, Xmp1 and Xmp2 are two

new image patches resulted by mixing X1 and X2 with a random mixing coefficient
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Table 12: Effect of mixup data augmentation on individual and
ensemble spectrograms, evaluated on C-DNN baseline and DCASE 2018 Task 1A

and 1B dataset (only devices B & C in DCASE 2018 Task 1B dataset is reported).

C-DNN Task 1A (%) Task 1A (%) Task 1B (%) Task 1B (%)
(w/o mixup) (w/ mixup) (w/o mixup) (w/ mixup)

Gamma 67.3 68.3 55.5 58.9
log-mel 66.2 67.8 56.4 59.4
CQT 59.5 60.2 51.7 51.4

Ensemble 73.1 74.0 61.4 66.9

Table 13: Performance comparison of the proposed system
(multiple-spectrogram low-level features, mixup data augmentation,

C-DNN ensemble) to top-ten DCASE 2018 challenge.

DCASAE 2018 1A Acc. (%) DCASE 2018 1B Acc. (%)
Li [103] 72.9 Baseline [104] 45.6
Jung [66] 73.5 Li [105] 51.7
Hao [106] 73.6 Tchorz [107] 53.9
Christian [108] 74.7 Kong [109] 57.5
Zhang [110] 75.3 Wang [111] 57.5
Li [112] 76.6 Waldekar [113] 57.8
Dang [114] 76.7 Zhao [23] 58.3
Octave [14] 78.4 Truc [16] 63.6
Yang [87] 79.8
Golubkov [115] 80.1
Proposed system 74.0 Proposed system 66.9

α. Similarly, ymp1 and ymp2 are two new labels resulted by mixing y1 and y2. After

mixup, old data and generated data from mixup data augmentation are shuffled

and fed into C-DNN baseline proposed, double batch size and consider learning

time. Because of using multiple-spectrogram input features (log-mel, Gamma, and

CQT), effect of mixup data augmentation on individual and ensemble spectrogram

is evaluated.

By applying mixup data augmentation technique, the new labels ymp1 and

ymp2 of the two mixup patches are no longer one-hot labels, Kullback-Leibler

(KL) divergence loss [116] rather than the standard cross-entropy loss is used as

shown in Equation below,

LOSSKL(Θ) =
C∑
c=1

yc log
(

yc
ŷc(Θ)

)
+ λ

2 ||Θ||
2
2, (10)
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where LOSSKL(Θ) is KL loss function, Θ denotes the trainable network param-

eters and λ denotes the `2-norm regularization coefficient, set to 0.001. yc and

ŷc denote the ground truth and the network output at category c, respectively.

Other hyper parameters are same as those mentioned in Section 3.4. Obtained

experimental results conducted on DCASE 2018 Task 1A and 1B datasets are

shown in Table 12. It can be seen that performance of all experimental systems

is improved on both datasets. In particular, mixup data augmentation helps to

improve by 0.9% with ensemble of spectrograms on DCASE 2018 Task 1A. No-

ticeably, this technique is very effective for DCASE 2018 Task 1B when it shows

an improvement of 5.5%.

Compare the best results obtained (74.0% and 66.9% for DCASE 2018 Task

1A and 1B, respectively) to the top-ten DCASE 2018 challenge as shown in Table

13, it can be seen that C-DNN baseline model with multi-spectrogram input

and using mixup data augmentation stands on the top-eight position as regards

DCASE 2018 Task 1A, and outperforms DCASE 2018 Task 1B challenge.

3.6 Conclusion

From these experimental results obtained from the DCASE 2018 Task 1A and 1B

datasets, there is a clear indication that using different spectrograms, coming from

different auditory models, is effectively to improve classification accuracy. This

improvement can also be achieved on different ASC tasks (assessed by comparing

the classification performance on matched and mismatched recording devices).

Furthermore, applying mixup data augmentation on image patches is effective to

enforce learning ability of the back-end learning model, thus improve the accuracy.



Chapter 4

A novel Encoder-Decoder

Framework

Comprehensive analysis provided in Chapter 3 indicates that the combination of

using three spectrograms of log-mel, gammatonegram (Gamma) and CQT as low-

level features, along with mixup data augmentation, is effective at improving the

performance of an ASC system. However, the results from deep learning models

used in Chapter 3 show some issues of concern. Firstly, although an ensemble

of multi-spectrogram input is useful to enhance ASC system performance, this

method fuses the predicted probability of single models learned from individual

spectrograms, but does not explore the interrelation between those spectrograms.

Secondly, although both single models using individual spectrograms and multi-

spectrogram ensemble models were proposed in Chapter 3, and these outperform

DCASE 2018 baselines, their performance is not competitive with the most re-

cent, state-of-the-art systems. Furthermore, because the ASC systems proposed

in Chapter 3 were only evaluated on two datasets (DCASE 2018 Task 1A and

1B), there is still not enough evidence to conclude whether the proposed learning

models perform well or not in general, or whether they only work on a restricted

task.

50
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Motivated by these issues, this chapter aims to improve the back-end classifi-

cation process, proposes a novel deep learning model called the Encoder-Decoder

framework, then evaluates it over a wide variety of published datasets including

Litis Rouen [47], DCASE 2016 Task 1 [45], DCASE 2017 Task 1 [44], DCASE

2018 Task 1A [43], 1B, and DCASE 2019 Task 1A, 1B [42] – all of which will be

summarised below.

Conducted experiments below obtain very good results; competitive with the

best single-task systems, and far better than any previously published multi-task

methods.

4.1 High-level Architecture

An overall ASC system using the proposed Encoder-Decoder framework is illus-

trated as Figure 13. As the comprehensive analysis of various low-level features in

Chapter 3 identified the best settings to deal with ASC challenges, the Encoder-

Decoder framework only uses one channel 1 and one patch size based on that,

but applies it to three spectrograms (log-mel, Gamma, and CQT) for low-level

feature extraction. Firstly, the recorded audio signal from one channel (Channel

1 - Left) is transformed into three types of spectrogram (log-mel, Gamma, and

CQT) with 128 filters each. Next, the entire spectrograms are sliced into non-

overlapping patches of 128×128 before applying mixup data augmentation [71, 72]

as mentioned in Section 3.5.6. Patches after mixup are then fed into the Encoder

model to start the first training process. This training process helps to map low-

level features to high-level features which are vectors containing discriminative

and condensed multi-dimensional information. In other words, the role of the

Encoder is to be a high-level feature extractor. Next, the high-level features are

extracted patch-by-patch, mixup data augmentation is again applied, and the re-

sulting augmented dataset is used to train the Decoder model. The Decoder model
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Figure 13: High-level architecture of an ASC system
using the proposed Encoder-Decoder framework.

has the responsibility to perform final classification, and reports the classification

accuracy at its output.

4.2 Encoder-Decoder Network Configuration

4.2.1 Encoder as High-level Feature Extractor

The architecture of the Encoder network, performing high-level feature extraction,

is shown in Figure 14. Three types of image patches of size 128×128 pixels (i.e.

three types of image patches from CQT, Gamma, and log-Mel repectively), after

mixup, are fed into the three parallel networks each of which comprises a CNN

and a DNN-01 block, like the VGG-7 architecture [84]. Subscripts LM, GA, and

CQ are used to denote the three paths, as shown in Figure 14, referring to the

kind of spectrogram of log-Mel, Gamma, and CQT, respectively (e.g. CNNLM

and DNN−01LM blogs in Figure 14 are used for learning log-Mel input only).

The architecture of the CNNLM/GA/CQ and DNN−01LM/GA/CQ blocks are de-

scribed in the upper and middle sections of Table 14, resepective. As regards the
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Figure 14: High-level feature extraction from the Encoder network.

CNNLM/GA/CQ, they share the same architecture, which comprises six layers em-

ploying sub-blocks of batch normalization (BN), convolutional (Cv [kenel size] @

kernel number), rectified linear units (ReLU), average pooling (AP [kernel size]),

global average pooling (GAP), dropout (Dr(%)). The DNN−01LM/GA/CQ blocks

also share the same architecture, which performs fully connected (FC), and Soft-

max layers, with dimensions given in Table 14. The number of categories within

the given dataset is denoted by “C”; this depends on the particular evaluation

task.

The three parallel networks, each of which is configured to contain a CNNLM/GA/CQ

and DNN−01LM/GA/CQ, are used to learn and extract high-level features from one

type of spectrogram for each. While the structures of these three CNNLM/GA/CQ

as well as the three DNN−01LM/GA/CQ blocks are identical, they will contain

very different weights (trainable parameters) after training due to their different

spectrogram input.

The output of each of the CNNLM/GA/CQ block shown in the upper part of

Table 14 is a 256-dimensional vector. The vector extracted from each individual
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Table 14: Encoder network structures of the CNN (top),
DNN-01 (middle) and DNN-02 (bottom).

Encoder network architecture Output
CNNLM/GA/CQ shares the same architecture
Input layer (image patch) 128×128
BN - Cv [3×3] @32 - ReLU - BN - AP [2×2] - Dr (10%) 64×64×32
BN - Cv [3×3] @64 - ReLU - BN - AP [2×2] - Dr (15%) 32×32×64
BN - Cv [3×3] @128 - ReLU - BN - Dr (20%) 32×32×128
BN - Cv [3×3] @128 - ReLU - BN - AP [2×2] - Dr (20%) 16×16×128
BN - Cv [3×3] @256 - ReLU - BN - Dr (25%) 16×16×256
BN - Cv [3×3] @256 - ReLU - BN - GAP - Dr (25%) 256
DNN−01LM/GA/CQ shares the same architecture
Input layer (vector) 256
FC - Softmax C
DNN-02
Input layer (vector) 256
FC - ReLU - Dr (30%) 512
FC - ReLU - Dr (30%) 1024
FC - Softmax C

spectrogram is referred as to a high-level feature. To combine the three high-level

features, which are 256-dimensional vectors independently extracted from three

parralell network streams, into a single combined feature, the “Combiner” block,

as shown in Figure 14, is proposed. There are three methods to combine the

high-level features, which are evaluated. The vector outputs of the CNN blocks

are denoted as xLM/GA/CQ [x1, x2, ..., x256]. The first combination method, called

“sum-comb”, is the unweighted sum of the three vectors. i.e. the individual

vectors contribute equally to the combined high-level feature,

xsum−comb = xLM + xGA + xCQ (11)

The second method, which is called “max-comb”, obtains xmax−comb[x1, x2, ..., x256]

by selecting the element-wise maximum of the three vectors across the dimensions

as in Equation (12). The motivation is to pick the most important (highest mag-

nitude) feature from among the three high level feature vectors,

xmax−comb[xi] = max(xLM[xi],xGA[xi],xCQ[xi]) for 1 ≤ i ≤ 256 (12)
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For the final method, it is assumed that elements of three vectors have a linear

relationship across dimensions. Then, a simple data-driven combination method

called “lin-comb” is proposed by employing a fully connected layer trained to

weight and combine the three high level features, as in

xlin−comb = Relu {xLMwLM + xGAwGA + xCQwCQ + wbias} (13)

where wLM/GA/CQ/bias[w1, w2, ..., w256] are the trained parameters. The combined

high level feature vector from the output of the “Combiner” block is then fed into

DNN-02, with the structure shown in the lower part of Table 14. Note that the

combined high level feature vectors, like the individual high level vectors, have

a dimension of 256 – meaning that the higher layer classifier of the decoder can

be set for evaluation with either individual or combined feature input, without

changing its structure or complexity.

Regarding training loss, four loss functions to train the encoder network are

defined; three to optimize individual spectrograms, and the final one for their

combination. Eventually, the overall loss function LOSSES is computed as

LOSSES = α(LLM + LGA + LCQ) + βLcom (14)

and LLM , LGA, LCQ and Lcom are individual losses from the log-mel, Gamma and

CQT spectrograms, and their combinations. These are depicted from Figure 14

and will be defined in Section 3.2. The balancing parameters α and β focus

on learning particular features or combinations and are set to 1/3 and 1.0 here,

making the contributions from each spectrogram equal.

After training the Encoder network, the combined feature (i.e. the combined

feature is also the input of DNN-02 block in Figure 14) is extracted. Then, it is

fed into the Decoder described below for classification.
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4.2.2 Decoders for Back-end Classification

Table 15: MLP-based architecture of Decoder network.
Network architecture Output
Input layer (vector) 256
FC - ReLU - Dr (30%) 512
FC - ReLU - Dr (30%) 1024
FC - ReLU - Dr (30%) 1024
FC - Softmax C

As regards the baseline architecture proposed in Chapter 3, fully connected

layers with the final Softmax layer takes the role of classification. In the Encoder-

Decoder framework proposed in this chapter, the Decoder is responsible for this

role and receives combined high-level feature vectors extracted from Encoder as

its input (note that mixup data augmentation is applied on these feature before

feeding into Decoder network during training). There are three types of Decoder

evaluated: A Random Forest Classification (RFC) with classifier, a Multilayer

Perceptron (MLP), and a Mixture of Experts (MoE), described below,

a) Random Forest Classification (RFC Decoder): A regression for-

est [117] is a type of ensemble model, comprising multiple regression trees. The

role of each tree is to map the complex input space defined by the high level fea-

tures from the encoder network, into a continuous class-dimension output space.

Its nonlinear mapping is achieved by dividing the large original input space into

smaller sub-distributions. Individual trees are trained using a subset randomly

drawn from the original training set. By using many trees (e.g. 100), the structure

is effective at tackling overfitting issues that can occur with single trees. Addi-

tionally, the regressor structure benefits from the continuous mixed-class training

labels provided by employing mixup. Eventually, the decoded output spaces are

classified as in our previous work [91] by average pooling the output over all trees.

b) Multilayer Perceptron Network (MLP Decoder): The proposed

MLP Decoder comprises four fully connected dense blocks as shown in Table

15. Comparing the MLP Decoder architecture to DNN-02 block used in Encoder,
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Figure 15: Proposed mixture of experts (MoE) as back-end decoder network.

one more fully connected layer with 1024 nodes is added – this is to handle the

additional complexity of the input information.

c) Mixture of Experts (MoE Decoder): MoE is a machine learning tech-

nique that divides the problem spaces into homogeneous regions by using an ar-

ray of different trained (but in this case identical structure) models, referred to

as experts [118]. A conventional MoE architecture comprises many experts and

incorporates a gate network to decide which expert is applied in which input re-

gion. The MoE technique is used to classify the combined high-level features, as

shown in Figure 15. Specifically, the 256-dimensional input vector goes through

three dense layers with dropout, having 512, 1024, and 1024 hidden nodes, re-

spectively, matching MLP Decoder in the number of hidden units. The output

enters the MoE layer, which is explained in Figure 15. The combined result from

the experts is gated before passing through a Softmax layer to determine the final

C class scores. Each MoE expert comprises a dense block with a Relu activation

function. Its input dimension is 1024 and its output size is C. The gate network is

implemented as a Softmax gate – an additional fully connected layer with Softmax
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activation function and a gating dimension equal to the number of experts.

If e1, e2, . . . eK ∈ RC is considered as the output vectors of the K experts, and

g1, g2, . . . , gK as the outputs of the gate network where gk ∈ [0, 1],∑K
k=1 gk = 1

The predicted output is then defined as,

ŷ = softmax

{
K∑
k=1

ekgk

}
. (15)

4.3 Experiment Setup

4.3.1 Dataset

To clearly demonstrate the general performance of the proposed systems, five

different ASC tasks are used for the evaluation. While it is relatively easy to

perform well in one challenge, it is considerably more difficult to do so for all –

this helps to explore one of the hypothesised strengths of this proposed combined-

spectrogram approach, that it can be more generic. Four of the datasets used are

derived from annual DCASE challenges (DCASE 2016 Task 1, DCASE 2017 Task

1, DCASE 2018 Task 1A and 1B, DCASE 2019 Task 1A and 1B), whereas the

fifth is the extensive LITIS Rouen dataset. Each is described below.

DCASE 2016 Task 1A and DCASE 2017 Task 1A: Firstly, DCASE 2016

Task 1 dataset [45] as shown in Table 16 were recorded at a sample frequency at

44100 Hz with a 30-second recording duration for every audio file. The data is

subdivided into two sets; a development set (Dev. Set) and an evaluation set (Eva.

Set), one for training and another for evaluating, with 15 categories as described

in detailed in Table 16. In total, the development and evaluation sets comprise

13 hours of data. As regards DCASE 2017 Task 1 dataset as shown in Table 16

[44], it reuses all DCASE 2016 dataset. In particular, each 30-second segment

from the DCASE 2016 dataset was split into three 10-second segments used in

DCASE 2017 dataset. Besides, more 10-second audio segments were recorded and
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Table 16: Development and Evaluation Sets of
DCASE 2016 Task 1 and DCASE 2017 Task 1 Datasets.

Categories DCASE 2016 DCASE 2016 DCASE 2017 DCASE 2017
Dev. Set Eva. Set Dev. Set Eva. Set

Beach 78 26 312 108
Bus 78 26 312 108
Cafe/Restaurant 78 26 312 108
Car 78 26 312 108
City center 78 26 312 108
Forest Path 78 26 312 108
Grocery Store 78 26 312 108
Home 78 26 312 108
Library 78 26 312 108
Metro station 78 26 312 108
Office 78 26 312 108
Park 78 26 312 108
Residential area 78 26 312 108
Train 78 26 312 108
Tram 78 26 312 108

included, which create a total of 17.5 hours for both development and evaluation

sets. Similar to DCASE 2016 settings, while the development set (Dev. Set) is

used to train the model, the evaluation set (Eva. Set) is for evaluating. Both

DCASE 2016 and DCASE 2017 contain balanced data, and each challenge has 15

categories.

DCASE 2018 Task 1A, 1B and DCASE 2019 Task 1A, 1B: As DCASE

2018 Task 1A and 1B challenges [43] have not released their evaluation sets, only

the development sets are explored in this Chapter. Description and setting eval-

uation for DCASE 2018 Task 1A and 1B development set are similar and were

introduced in previously Chapter 3. Regarding DCASE 2019 Task 1A and 1B

datasets [42], these reuses DCASE 2018 Task 1A and Task 1B data, but incor-

porates additional audio segments. Therefore, the recording files in DCASE 2018

and DCASE 2019 challenges have similar formats as well as the same number

of categories, as shown in Table 17. The proposed Encoder-Decoder framework

described above was submitted to compete in the DCASE 2019 challenge, so this
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Table 17: Development and Evaluation set of DCASE 2019 Task 1A and 1B datasets.
Categories Dev. Set Eva. Set Dev. Set Eva. Set

(1A) (1A) (1B) (1B)
Airport 911 421 1019 529
Bus 928 415 1036 523
Metro 902 433 1010 541
Metro Station 897 435 1005 543
Park 946 386 1054 494
Public Station 945 387 1053 495
Shopping Mall 896 441 1004 549
Pedestrian Street 924 429 1032 537
Traffic Street 942 402 1050 510
Tram 894 436 1002 544
Total files 9185 4185 10265 5265

thesis also reports the results over the evaluation set via the DCASE 2019 com-

petition, even through this evaluation dataset has not been released publicly yet.

Litis-Rouen dataset: This extensive dataset [47], as shown in Table 18, com-

prises 19 urban scene classes with 3026 segments, divided into 20 training/testing

splits. The audio was recorded at a sample rate of 22050 Hz, with each segment

duration of 30 seconds. Following the mandated settings, the dataset is sepa-

rated and organised for 20 times cross validation, reporting the final classification

accuracy by averaging over the 20 testing folds.

4.3.2 Setting Hyperparametes and Training Process

The Tensorflow framework is used, and the Kullback-Leibler (KL) divergence

loss [116] as in Equation (16) is applied to all of the proposed networks. This

is a common loss function for training ASC systems, typically obtaining good

performance.

LOSSKL(Θ) =
C∑
c=1

yc log
{

yc
ŷc(Θ)

}
+ λ

2 ||Θ||
2
2, (16)

where LOSSKL(Θ) is the KL loss function, Θ denotes the trainable network pa-

rameters and λ denote the `2-norm regularization coefficient, set to 0.001. C is
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Table 18: Litis-Rouen Dataset.
Categories Segment No.
Plane 192
Busy Street 143
Café 120
Car 243
Hall Gate 269
Kid Game 145
Market 276
Metro Pari 139
Metro Rouen 249
Pedestriant Street 122
Plane 23
Pool 155
Quite Street 90
Restaurant 133
Shop 203
Student Hall 88
Train High Speed 147
Train Normal 164
Tube 125
Total files 3026

the class number. yc and ŷc denote the ground truth and network output at class

c, respectively. Experiments use the Adam optimiser [102] to adjust learning rate,

with a batch size of 50. Results were obtained after 100 epochs (in practice only a

small degree of performance was lost by not continuing beyond this, but it helped

significantly to reduce the duration of experiments). Trainable parameters are

initialised by a Normal Distribution with mean and variance set to 0 and 0.1,

respectively. As aforementioned, mixup data augmentation is applied to enhance

the training processes. As regards the training process on the Encoder, each of the

raw 128×128 dimensional feature was repeated twice by including same-dimension

Beta and Uniform Distribution mixup images of the same dimension. It is similar

when training the Decoders where mixup is applied on the high-level feature vec-

tors prior to the final classifier. In each case, both original and generated mixup

data are used in the training processes to improve performance, at the cost of

increasing the training time.
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4.4 Experimental Results and Comparison

In this section the performance of the Encoder network is firstly analysed to

specifically understand the contribution made by different spectrogram types, as

well as their combinations. The performance of the decoder, thus, is evaluated to

assess different back-end classifiers, then the overall performance is compared to

a range of state-of-the art methods.

4.4.1 Performance of Each Spectrogram by Class

Firstly, a baseline architecture is proposed and evaluated to determine how dif-

ferent spectrogram types contributed to the performance of different classes. To

do this, three C-DNN Encoder networks, comprising CNN and DNN-02 blocks,

each Encoder for an individual spectrogram input, are trained. Meanwhile, an-

other C-DNN encoder network, the entire network as in Figure 14 for spectrogram

combination, is also trained. These four trained systems are subsequently used

as high-level feature extractors to train the Decoder and then to test the overall

system. Four different Encoders, using the MLP Decoder architecture from Sec-

tion 4.2.2 to assess individual spectrogram performance are used to combine with

four Encoders. These extensive experiments were conducted using the DCASE

2018 Task 1B Dev. set. To compare performance, class-wise accuracies for the

three spectrograms and their combinations are shown in Figure 16, with overall

average performance shown at the bottom. Clearly, the combined features per-

formed best overall, with the log-mel and Gamma performing similarly, and both

being better than CQT. However, a glance at the per-class accuracy shows some

interesting variation. For example, the CQT spectrogram was particularly good

at discriminating the Bus and Metro classes, compared to the other spectrograms.

Also, while log-mel and Gamma performances were similar, the former excelled

on Airport and Public Square classes, whereas the latter tended to be slightly



CHAPTER 4. A NOVEL ENCODER-DECODER FRAMEWORK 63

0 20 40 60 80 100

Accuracy, %

Average

Tram

Street Traffic

Street Pedestrian

Shopping Mall

Public Square

Park

Metro Station

Metro

Bus

Airport

CQT

log-Mel

Gamma.

Combined

Figure 16: Performance comparison of different spectrograms types,
and their combination, for the DCASE 2018 Task 1B Dev. set.

better for classes containing vehicular sounds (with the exception of the Metro

class). It can be concluded that the three spectrograms represent sounds in ways

that have affinity for certain types of sounds (mirroring a conclusion in [119],

albeit on very different types of sound data). It is therefore unsurprising that

intelligently combining the three spectrograms into a high-level feature vector can

achieve significant performance gaining over single spectrograms.
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Figure 17: Performance comparison for different recording
devices within the DCASE 2018 Task 1B Dev. set.

4.4.2 Spectrogram Performance for Each Device

DCASE 2018 Task 1B includes highly unbalanced data recordings from three dif-

ferent devices as described in Section 3.4.1. The performance of different spectro-

grams for those three devices is analysed next, results reported as plot in Figure

17. The device with the largest amount of training data (Device A) obviously

scored best, achieving the accuracy around 9.0% better than devices B and C.

Again, the Gamma and log-mel results were similar, but each ‘preferred’ a differ-

ent minority device. Although there were not enough devices included in the test

for the evidence to be conclusive, this variability indicates that spectrograms differ

in their affinity for different devices (or device locations, or channels). Again, the

combined features effectively leveraged the advantages of each spectrogram type.

4.4.3 Spectrogram Performance by Segment Length

Inspired by some recent research considering the ability of systems to recognise

a sound class early (or using partial data) [27, 28], this ability for the different

spectrogram types is also evaluated. Figures 18 and 19 plot early classification
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Figure 18: Classification performance as a function of the length of
the test signal (second - s) over DCASE 2018 Task 1B Dev. set - all devices.

accuracy for DCASE 2018 Task 1B for all devices and for devices B+C, respec-

tively. Early classification means that class assignment is only performed on the

first part of the audio recording, rather than the entire duration (i.e. on cropped

audio). Performance is plotted for a number of cropped segment lengths between 1

second and the full 10 seconds. From both plots, immediate observations are that

the combined high-level features performed much better than the individual spec-

trogram types. The CQT performed worst while the other two spectrograms had

similar performance (as in the experiments above). Looking closer at Figure 18

(accuracy for all devices), the score for all features continued to climb as duration

progressed towards the full 10 seconds. This provides a strong indication that the

system was data-constrained and is likely to perform better with longer duration

recordings. By contrast, Figure 19 contains indications that the performance of

the log-mel and Gamma spectrograms began to plateau as duration exceeded to

5 seconds, indicating that performance might not substantially increase if longer
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Figure 19: Classification performance as a function of the length of
the test signal (second - s) over DCASE 2018 Task 1B Dev. set - devices B&C.

duration recordings were available. However the continued improvement of the

CQT representation as length increased gave the combined features an ability to

gain higher accuracy from longer recordings: The strength of CQT may lie in

the analysis of longer recordings. However, in these experiments, CQT perfor-

mance lagged the combined features by around 15.0% absolute, with the other

spectrograms lagging by only around 5.0% absolute – apart from the area in Fig-

ure 19 where they plateaued. Most remarkable is the one with just 2 seconds

of input data from a recording, our proposed combined high-level feature was

able to match and outperform any of the individual spectrograms operating with

the full 10 seconds of input data. This clearly demonstrates a major advantage

of the proposed system. It effectively captures the advantages of the individual

spectrogram features, which vary in their affinity for different classes and devices,

and yields extremely good performance even when a restricted amount of data is

available for classification.
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4.4.4 Performance of Different Classifiers in The Decoder

Three methods were proposed in Section 4.2.2 to incorporate the three high-level

spectrogram features into a combined high-level feature in the Encoders network.

These methods were namely “sum-comb”, “max-comb” and “lin-comb”. To make

use of the combined features, three back-end classifier methods for the Decoders

block are introduced, namely RFC Decoder, MLP Decoder and MoE Decoder in

Section 4.2.2. In total, the three classifiers and three combiners yield 9 models

to evaluate. In this section, performance among these 9 models are compared,

evaluated on the DCASE 2018 Task 1B Dev. dataset. It is noted that the accuracy

of the Encoders network (i.e. the feature extractor, alone) and the full system

accuracy (i.e. incorporating the decoder) are separately reported. Results are

presented in Table 19, again split into Device A and Devices B & C performance.

Best performance for both device sets, highlighted in bold, was achieved by the

MoE Decoder classifier with the “lin-comb” combiner. However some interesting

trends were evident. Firstly, MLP Decoder was only very slightly inferior to MoE

Decoder for all combiners and device types. Secondly, looking at the Encoders

network results for the Device A evaluation, the “max-comb” combiner actually

outperformed the accuracy of “lin-comb”, although the latter performed best for

most of the full systems. This means that the optimal high-level feature combiner

for the full system was not the best combiner for loss computation when training

the Encoder network. However the situation reverses when looking at Devices B

& C – an indication that the performance gain of “lin-comb” may have been due

to better generalisation.

4.4.5 Per-class Performance of Different Decoders

Given that the results presented so far indicate that the lin-comb combiner per-

formed best, these high-level features are fed into the three alternative decoders

to explore class-by-class performance. Table 21 presents results for DCASE 2018
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Table 19: Performance of Encoder/Decoder (%) over DCASE 2018 Task 1B Dev. set.
Device A RFC Decoder MLP Decoder MoE Decoder
sum-comb 71.5/75.6 71.5/72.2 71.5/71.9
max-comb 74.1/75.3 74.1/74.7 74.1/75.5
lin-comb 73.7/75.2 73.7/75.5 73.7/75.9
Devices B & C: RFC Decoder MLP Decoder MoE Decoder
sum-comb 63.9/64.4 63.9/65.6 63.9/63.9
max-comb 61.4/65.3 61.4/63.9 61.4/63.9
lin-comb 64.2/68.9 64.2/69.2 64.2/70.6

Table 20: Performance comparison (Acc. %) to DCASE 2018 baselines
for Task 1B Dev. set on Device A (using “lin-comb”

for extracting high-level features in Encoder).
Categories D.2018 RFC Decoder MLP Decoder MoE Decoder
Airport 73.4 67.5 60.4 66.8
Bus 56.7 78.5 80.2 80.2
Metro 46.6 67.0 72.8 69.3
Metro station 52.9 84.6 82.6 80.3
Park 80.8 89.7 86.8 88.4
Public square 37.9 47.7 52.8 50.9
Shopping Mall 46.4 74.6 75.3 73.8
Street Pedestrian 55.5 65.6 72.5 71.3
Street Traffic 82.5 91.1 90.7 92.3
Tram 56.5 83.1 79.3 83.1
Average 58.9 75.2 75.5 75.9

Table 21: Performance comparison (Acc. %) to DCASE 2018 baselines
for Task 1B Dev. set on Devices B+C (using “lin-comb”

for extracting high-level features in Encoder).
Categories D.2018 RFC Decoder MLP Decoder MoE Decoder
Airport 72.5 55.6 69.4 75.0
Bus 78.3 88.9 86.1 88.9
Metro 20.6 75.0 63.9 66.7
Metro station 32.8 50.0 61.1 50.0
Park 59.2 91.7 91.7 94.4
Public square 24.7 52.8 47.2 47.2
Shopping Mall 61.1 80.6 80.6 80.6
Street Pedestrian 20.8 66.7 75.0 77.8
Street Traffic 66.4 75.0 77.8 77.8
Tram 19.7 52.8 38.9 47.2
Average 45.6 68.9 69.2 70.6

Task 1B (Dev. set). Device A and Device B & C results are again shown sep-

arately, and the “D.2018” column is the DCASE 2018 baseline. Results show

that the three classifiers all outperformed the baseline – with the mixture of ex-

perts system improving accuracy by 17.0% and 25.0% absolute, for Device A and



CHAPTER 4. A NOVEL ENCODER-DECODER FRAMEWORK 69

Devices B & C, respectively.

4.4.6 Performance Comparison to State-of-the-art Systems

While performance against the baseline score of DCASE 2018 is good, the same

model configuration (i.e. “lin-comb” combiner and MoE Decoder back-end clas-

sifier) is evaluated on various datasets and competitions, to compare the perfor-

mance against the state of the art at the time of writing. The results, listed in

Table 22, show that the system proposed achieves the highest accuracy for two

datasets – achieving 70.6% and 98.9% for DCASE 2018 Task 1B Dev. and LITIS

Rouen, respectively. For DCASE 2016, an accuracy of 88.2% was achieved, holding

second position on the challenge table, and ranked top-four among state-of-the-art

systems. DCASE 2017 performance is a little less competitive at 72.6%. DCASE

2018 Task 1A performance was 77.5%, taking third place on the challenge table.

Participating in the recent DCASE 2019 challenge, this system achieved 76.8%

and 72.8% for DCASE 2019 Task 1A and 1B, respectively. It should be noted that

there is some inconsistency between the accuracies reported in the DCASE 2018

technical reports and those published on the DCASE 2018 challenge website 1.

Therefore, Table 22 carefully reports the accuracies stated in the peer-reviewed

published papers and technical reports submitted to the challenge, rather than

the figures advertised on the websites, which may differ slightly in some cases.

4.5 Conclusion

This chapter has presented a novel Encoder-Decoder deep learning framework

applied for ASC. The framework addresses three main factors: low-level feature

input, high-level feature extraction, and output classification that affects the final

accuracy.
1http://dcase.community/challenge2018/
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1. Firstly, inspired by the belief that low-level features each contain valu-

able and complementary information, three different spectrograms (log-mel,

Gamma, and CQT) were evaluated, as well as their combination.

2. Hence, the Encoder network was proposed to effectively combine three differ-

ent spectrograms (log-mel, Gamma, and CQT), extracting high-performance

high-level feature vectors.

3. Then the Decoder was proposed as a final classifier. Three different models

were explored and evaluated, the Random Forest Classification (RFC), the

MLP-based network, and the Mixture of Expert (MoE).

The final combined system achieved very competitive results on various datasets,

and has been evaluated against state-of-the-art systems to prove that the proposed

Encoder-Decoder framework is both powerful in terms of performance and also

general in terms of particular ASC task.
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Chapter 5

Two-level Hierarchical

Classification

Inspired by the high cross-correlation between sound scenes mentioned in Section

3.5.1, the original “flat”ASC task, i.e. classification of all categories at once, might

be better structured into multiple hierarchical sub-tasks operating in a divide-and-

conquer manner. This chapter further explores the high cross-correlation between

sound scenes, then based on that, it develops a two-level classification scheme for

ASC.

In particular, sound scenes, which are expected to be acoustically similar, are

firstly grouped into meta categories. The meta-categories constitute the first level

of the classification hierarchy. Next, each category within the meta categories is

classified by the second level of the two-level classification scheme. The two levels

could also be referred to as coarse and fine grained classification. As experiments

in this Chapter are conducted on DCASE 2018 Tasks 1A and 1B, the proposed

hierarchy scheme is constructed based on them, as shown in Figure 20 (note

that meta categories, such as Indoor, Outdoor and Vehicle, are selected based on

analysis of the incorrect classification cases in Section 3.5.1).

The hierarchical classification is performed in a top-down fashion. Firstly,
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Figure 20: The two-level hierarchy of scene categories constructed by
examination of the categories used in the DCASE 2018 dataset.

the meta-categories are classified, followed by the fine-grained classification of the

scene categories within each individual meta-category. As a result, four classifiers

are trained: one for meta-category classification (referred to as meta-category

classifiers), then three are trained for classification of categories within the three

meta-categories (namely a “vehicle” classifier, “indoor” classifier, and “outdoor”

classifier, respectively). An unseen example will be then be deemed to have clas-

sified correctly only if it is correctly classified at both levels of the hierarchy. For

example, a “on bus” scene example is correctly classified if it is both correctly

classified as “vehicle” by the meta-category classifier and as “bus” by the “vehi-

cle” classifier. Any misclassifcation by one or both of the classifiers will result in

the example being wrongly classified overall.

5.1 The Proposed System

5.1.1 High-level Architecture

The high-level architecture of an ASC system applying the hierarchical scheme

is described in Figure 21. As regards front-end feature extraction, three types

of spectrogram (log-mel, Gamma, and CQT) are used to extract spectrogram

information from channel 1. The entire spectrograms are then split into image

patches of 128× 128 before applying mixup data augmentation.
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Figure 21: High-level system architecture applying
a two-level hierarchical classification scheme.

Other settings for the front-end feature extraction such as filter number, win-

dow size, hop size, etc., are re-used from the baseline proposed in Section 3.3. The

resulted mixup data is used to train a network for high-level feature extraction,

referred as to C-DNN Encoder. The high-level features extracted from the C-DNN

Encoder are fed into the two-level hierarchical classification scheme as described in

Figure 20, which in turn then report the final classification accuracy. Compared

to the novel Encoder-Decoder framework architecture introduced in Chapter 4,

the two-level hierarchical scheme proposed in this Chapter takes the role of an

MLP Decoder, RF Decoder, or MoE Decoder .

5.1.2 C-DNN Encoder Architecture

The high-level feature extractor in this Chapter uses a deep C-DNN as described

in Table 23, comprising batch normalization (BN), convolutional (Cv [kernel size]

@ kernel number), rectified linear unit (ReLU), average pooling (AP [kernel size]),

dropout (Dr) and fully connected (FC) layers.

To clarify it, C-DNN Encoder is separated into two parts: the CNN part (the

upper of Table 23) for feature learning and the DNN part (the lower of Table 23)
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Table 23: The C-DNN architecture used for high-level feature extraction.
Layers Output
Input layer (image patch) 128×128
BN - Cv [3×3] @ 32 - ReLU - BN - AP [2×2] - Dr (10%) 64×64×32
BN - Cv [3×3] @ 64 - ReLU - BN - AP [2×2] - Dr (15%) 32×32×64
BN - Cv [3×3] @ 128 - ReLU - BN - Dr (20%) 32×32×128
BN - Cv [3×3] @ 128 - ReLU - BN - AP [2×2] - Dr (20%) 16×16×128
BN - Cv [3×3] @ 256 - ReLU - BN - Dr (25%) 16×16×256
BN - Cv [3×3] @ 256 - ReLU - BN - AP [2×2] - Dr (25%) 8×8×256
BN - Cv [8×8] @ 256 - ReLU - BN - Dr (30%) 256
Input layer (vector) 256
FC - ReLU - Dr (30%) 512
FC - ReLU - Dr (30%) 1024
FC - Softmax 10

for classification. Both are based on the previous architectures in Chapter 4, but

instead of using a Global Average Pooling layer at the output of the CNN as in

the Encoder of Section 4.2.1, an additional convolutional layer with kernel size of

[8×8] is incorporated. This equates to the time-frequency resolution of the output

from the previous layer, and is included to capture the interaction across the

convolutional channel dimension. In the other words, the final convolutional layer

helps to scale temporal and frequency dimensions into one value with trainable

parameters learning all pixels of temporal-frequency images.

Once the network has been trained, the feature-learning CNN part of the net-

work is used as a feature extractor and its last convolutional layer is considered

to provide high-level features. In this way, when presented with a new input, the

high-level feature extractor will process the input starting from the first convo-

lutional layer, through to the final convolutional layer and produce a high-level

feature vector of dimension 256.

5.1.3 Two-level Hierarchical Classification as Decoder

Most existing works follow a “flat” classification scheme in which all scene cat-

egories are classified at once. By contrast, this Section proposes performing the

classification hierarchically, as recently introduced in Figure 20. The classifiers
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Table 24: MLP-based architecture used
in the two-level hierarchical scheme

Layers Output Shape
Input layer 256
FC - ReLU - Dr (30%) 512
FC - ReLU - Dr (30%) 1024
FC - ReLU - Dr (30%) 1024
FC - Softmax C

involving in the hierarchical classification are realized by Multilayer Perceptron

(MLP) based networks. The 256 dimensional high-level features presented in Sec-

tion 5.1.2 are obtained from the mixup image patches and used to train the MLPs.

There are in total four MLPs (one for the meta-categories at the first level and

three for fine classification within the meta-category groups of Indoor, Outdoor

and Vehicle at the second level), each comprises four fully connected layers and is

parametrized as summarised in Table 24. Note that the MLPs share a common

architecture but are trained separately depending on their respective sub-tasks in

the hierarchical classification.

The number of categories classified C depends on the specific task in the

hierarchical scheme. For example C is 3 for meta-category classification and for

the Vehicle and Indoor group categories. It is 4 for classification of the categories

in the Outdoor group.

5.2 Experimental Setting

5.2.1 Datasets

To evaluate the two-level hierarchical scheme, DCASE 2018 Task 1A and 1B

development datasets [43] are used to conduct experiments. For consistency, the

relevant settings used for these datasets are mentioned and reused from Section

3.4.1 and Section 4.3.1.
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5.2.2 Setting Hyperparameters and Training Process

Since the labels of the mixup data input are no longer one-hot, the network is

trained with Kullback-Leibler (KL) divergence loss [116] rather than the standard

cross-entropy loss over mixup training image patches:

LOSSKL(Θ) =
C∑
c=1

yc log
{

yc
ŷc(Θ)

}
+ λ

2 ||Θ||
2
2, (17)

where Θ denotes the trainable network parameters and λ denotes the `2-norm

regularization coefficient set to 0.001. yc and ŷc denote the ground-truth and the

network output of class c, respectively.

In addition to the KL-divergence loss, the triplet loss function [156] is addi-

tionally employed to train the MLPs in the second-level classifiers to encourage

the networks to improve their discrimination power. The motivation is that the

triplet loss function has been shown to be efficient in learning a discriminative

metric which simultaneously minimises same-category distance while maximising

between-category distances. In this way, it enhances Fisher’s criterion [156] (i.e.

the ratio of the between- class distance to the within-class variance in the feature

space).

Suppose that there are two samples from different categories presented to an

MLP. The ground-truth label of the first sample is the anchor a, the prediction

for the first sample is positive p, and the prediction for a second sample is positive

n, then the triplet loss is given as:

LOSST = max{d(a,p)− d(a,n) +margin, 0}, (18)

where d is the squared Euclidean distance and the margin is set to 0.3.

The final loss function is then a combination of the KL-divergence loss and
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the triplet loss as follows:

LOSSES = γLOSSKL + (1− γ)LOSST (19)

The networks are implemented using the Tensorflow framework. The coefficient

λ in (17) is set to 0.001, and γ in (33) is experimentally set to 0.2. The network

training is accomplished with the Adam optimiser [102] with an initial learning

rate of 10−4, a batch size of 100, and a fixed termination after 100 epochs.

5.2.3 Multi-spectrogram Ensemble

As for the comprehensive analysis of low-level features in Chapter 3, using multiple

input types, provided a rule of thumb for performance ASC, now all three time-

frequency input types are used: log-mel [99], gammatone filter (Gamma) [100],

and Constant Q Transform (CQT) [99]. Together these three will enable con-

struction of an ensemble of three systems. The final decision of each classification

task (meta-category classification at the first level or the fine-grained second level

classification. shown in Figure 20) is obtained by aggregating the individual deci-

sions of the three classifiers (each with one type of spectrogram) in an ensemble.

In particular, if p̄log-mel, p̄Gamma, p̄CQT are probabilities corresponding log-mel,

Gamma, and CQT spectrogram input, sum of three probability p̄[p̄1, p̄2, ..., p̄C ] is

computed by

p̄ = p̄log-mel + p̄Gamma + p̄CQT (20)

where C = 10 denotes the number of categories classified in DCASE 2018 Task

1A & 1B. Thus, the final classification label is determined as,

ŷ = argmax
c∈{1,2,...,C}

p̄c. (21)

where ŷ denotes the final label.
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5.3 Experimental Results

5.3.1 Performance comparison to DCASE 2018 baseline

Table 25: Performance comparison (in percentage accuracy)
between the proposed system (with and without triplet loss),

the DCASE 2018 baseline, and the C-DNN Encoder baseline.
Systems Compared Task 1A Task 1B
DCASE 2018 baseline [43] 59.7 45.6
The C-DNN Encoder 70.9 61.1
The proposed w/o triplet loss 73.3 62.2
The proposed w/ triplet loss 75.3 58.9

To evaluate the hierarchical scheme, the C-DNN Encoder which uses only

the Gamma spectrogram is referred as to the baseline. The performance of the

DCASE 2018 baseline, C-DNN Encoder baseline, the entire system (applying the

two-level hierarchical scheme without ensemble) are compared in Table 25. As can

be seen, the proposed system outperforms the DCASE 2018 baseline by a large

margin, around 15.6% absolute (with triplet loss) on Task 1A and 16.6% absolute

on Task 1B (without triplet loss). Improvements of the individual categories can

also be visualised in Figure 22, which compares the proposed system with triplet

loss against the DCASE 2018 baseline on Task 1A. It is notable that several cat-

egories enjoy a significant gain of more than 20.0%, such as shopping mall, tram,

metro and street-pedestrian. Compared to C-DNN Encoder, the proposed system

gains an accuracy of 2.4% and 1.1% on Task 1A and Task 1B, respectively, when

the triplet loss is not used. When the triplet loss is used, a significant accuracy im-

provement is seen on Task 1A: 2.4% absolute compared to that without triplet loss

and 4.4% compared to the developed baseline thanks to the proposed hierarchical

classification scheme. However, using triplet loss seems to be counter-productive

on Task 1B as the accuracy is reduced by 3.3% absolute compared to the system

without triplet loss. This is presumably due to the device mismatch or the lack of

training data on the target devices (device B & C) or both. However, averaging
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Figure 22: Category-wise performance comparison between the proposed system with
triplet loss and the DCASE 2018 baseline on Task 1A.

over all the devices, the proposed system with triplet loss outperforms all other

counterparts, as shown in Figure 23. To further shed light on the performance of

the classifiers in the proposed hierarchical classification scheme, their confusion

matrices are presented in Figure 24. Overall, the meta-categories are discrimi-

nated very well by the meta-category classifier, with an average accuracy of 94%.

Given the good performance of the meta-category classifier, the test examples are

expected to be directed to the correct groups in the lower level. Even though the

fine-grained classifiers’ performance are not as good as that of the meta-category

classifier, this is to be expected since the categories in a group tend to be similar

acoustically, however in each group, the fine classification network is able to avoid

confusion between its categories and those in other groups.

Further compared to Encoder-Decored systems proposed in Chapter 4, while
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Figure 23: Accuracy obtained by the systems developed in this work on different
devices of Task 1B.
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Figure 24: Confusion matrices obtained by different classifiers in the proposed
hierarchical classification scheme on Task 1A.

the best Encoder-Decored system using lin-comb, MoE Decoder, and three spec-

trogram inputs achieves the accuracy of 75.9% on DCASE 2018 Taks 1A as shown

in Table 19, the two-level hierarchical classification system proposed achieves the

competitive result of 75.3% on the same task with only using Gammatone spec-

trogram input.

5.3.2 Results of Multi-spectrogram Ensemble

Further experiments are conducted over individual time-frequency inputs (i.e.

Gamma, log-mel, and CQT spectrograms). The gammatone spectrogram seems

to perform best as shown in Figure 25 while the CQT spectrogram performs the
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Figure 25: Performance of individual time-frequency representations
and their ensemble on Task 1A.

worst. However, aggregation of the classification outputs of all three, results in

significant improvements over the individual ones. This is observed over all sys-

tems; the proposed system with triplet loss, the proposed system without triplet

loss, and the developed baseline. It is expected as different time-frequency rep-

resentations have been shown to be good for different scene categories, and their

individual strength is leveraged in the ensemble to improve the performance gain.

The obtained results are further compared with the previous works (both the

DCASE 2018 challenge submission systems and the recent works), providing a

comprehensive performance comparison on Task 1A and Task 1B in Table 26. It

should be noted that there are inconsistencies between the accuracies reported

in the DCASE 2018 technical reports and those published in DCASE 2018 chal-

lenge website 1. The results in Tables 26 are collated from the technical reports

which are the original sources of the reported accuracies. For clarity, only top

10 DCASE 2018 challenge submissions are presented in the tables. In the one

hand, the proposed system outperforms the recent works (i.e. after the DCASE
1http://dcase.community/challenge2018/
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Table 26: Comparison between the top-10 DCASE 2018 challenge (top), recent papers
(middle), and the proposed system (bottom)

D.2018-1A Acc. (%) D.2018-1B Acc. (%)
Li [103] 72.9 Baseline [104] 45.6
Jung [66] 73.5 Li [105] 51.7
Hao [106] 73.6 Tchorz [107] 53.9
Christian [108] 74.7 Kong [109] 57.5
Zhang [110] 75.3 Wang [111] 57.5
Li [112] 76.6 Waldekar [113] 57.8
Dang [114] 76.7 Zhao [23] 58.3
Octave [14] 78.4 Truc [16] 63.6
Yang [87] 79.8
Golubkov [115] 80.1
Bai [148] 66.1 Zhao [24] 63.3
Gao [150] 69.6 Truc [151] 64.7
Zhao [24] 72.6 Truc [17] 66.1
Phaye [25] 74.1 Yang [154] 67.8
Heo [155] 77.4
The proposed w/ triplet loss 78.0 The proposed w/o triplet loss 66.9

2018 challenge) on Task 1A while retaining as top-4 performer in the context of

the DCASE 2018 submission systems. In the other hand, our proposed system

achieves very competitive results on Task 1B, achieving an accuracy of 66.9% and

outperforming the DCASE 2018 submission systems.

5.4 Conclusion

This chapter has presented an approach that trains deep feature embedding net-

works to extract high-level features for audio scene signals via a C-DNN based

Encoder and proposed a novel hierarchical classification scheme to accomplish

scene classification. In the classification hierarchy, the similar scene categories

are first grouped into meta-categories. Meta-category classification is carried out

first, followed by the fine-grained classification within the meta groups. MLPs

were trained, with the contribution of triplet loss, to play the role of the classifiers

in the classification hierarchy. Experiments on the DCASE 2018 Task 1A and 1B

datasets demonstrated that the proposed methods outperform DCASE baseline.



Chapter 6

Respiratory Disease Detection

According to the World Health Organization (WHO) [157], respiratory illness,

which comprises lung cancer, tuberculosis, asthma, chronic obstructive pulmonary

disease (COPD), and lower respiratory tract infection (LRTI), accounts for a sig-

nificant percentage of mortality worldwide. Indeed, records indicate that around

10 million people currently have tuberculosis (TB), 65 million have COPD, and

334 million have asthma. Notably, the WHO estimates that about 1.4, 1.6, and 3

million people die from TB, lung cancer or COPD annually, respectively.

To deal with respiratory diseases, early detection is the key factor in enhancing

the effectiveness of intervention, including treatment and limiting spread. During

a respiratory examination, lung auscultation (listening to the sounds of breathing

through a stethoscope) is an important aspect of respiratory disease diagnosis.

By listening to respiratory sounds during lung auscultation, experts can recog-

nise adventitious sounds (including Crackles and Wheezes) during the respiratory

cycle. These often occur in those who have pulmonary disorders. If automated

methods can be developed to detect such anomalous sounds, it will improve the

early detection of respiratory disease and enable screening of a wider population

than manual screening.

Inspired by the deep learning techniques that I had developed for effective

84
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Acoustic Scene Classification in Chapters 3, 4 and 5, I decided to apply these

advances on a real world problem: respiratory sound analysis. Thus, this chapter

introduces a robust deep learning framework aiming to classify anomalies in respi-

ratory cycles for detecting disease from respiratory sound recordings. It evaluates

using a standard benchmark, the 2017 International Conference on Biomedical

Health Informatics (ICBHI) [1] dataset. The framework proposed for this task is

derived from the baseline mentioned in Chapter 3. It begins with front-end feature

extraction to transform input sound into a spectrogram representation. Then, a

back-end deep learning network is used to classify the spectrogram features into

categories of respiratory anomaly cycles or disease classes.

The framework proposed confirms three main contributions towards respiratory-

sound analysis. Firstly, it allows an extensive exploration of the effects of spec-

trogram type, spectral-time resolution, overlapped/non-overlapped windows, and

data augmentation, thus indicating which feature has the greatest effect on final

prediction accuracy. This leads to a proposal for a novel deep learning system,

developing the proposed framework further, which is shown to significantly outper-

form current state-of-the-art methods. However the complexity of that structure

is quite high, and so a Teacher-Student scheme is developed and applied with the

aim of achieving a trade-off between model performance and complexity. This ad-

ditionally helps to increase the potential of the proposed framework for building

real-time applications, such as in mobile devices which are constrained in terms

of processing power.

Before discussing the framework architecture, state-of-the-art systems used for

respiratory sound analysis will be analysed, and thus a benchmark dataset used

to conduct experiments as well as specific task definition over this dataset are

presented.
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6.1 State-of-the-art Respiratory Sound Analysis

6.1.1 Literature Review

Research into the niche domain of automated detection or analysis of respiratory

sounds has some precedents [158, 159, 160], but has drawn attention in recent

years as robust machine hearing methods have been developed, leveraging on ever

more capable deep learning techniques. Like traditional ASC systems, most ex-

isting respiratory sound analysis systems tend to rely upon frame-based feature

representations such as Mel-Frequency Cepstral Coefficients (MFCC) [161, 162],

borrowed from the Automatic Speech Recognition (ASR) and Speaker Recogni-

tion (SR) fields. However, Grønnesby et al. [163] found that MFCCs did not

represent crackles well. They thus replaced them with five-dimensional feature

vectors, comprising four time domain features (variance, range, and sum of simple

moving average (coarse and fine)), and one frequency domain feature (spectrum

mean). Meanwhile, Hanna et al. [164] firstly extracted spectral information from

bark-bands energy, Mel-bands energy, MFCCs, rhythm features from beat loud-

ness, harmonicity and inharmonicity features, as well as tonal features such as

chords strength and tuning frequency. Next, they computed statistical features

including standard deviation, variance, minimum, maximum, median, mean, first

derivative, second derivative from those features in addition to mean and variance

of the raw signal. This extensive list aimed to maximize the chance of achiev-

ing a discriminative feature set. To further explore audio features, Mendes et

al. [165] went further to propose 35 different types of feature, mainly coming

from Music Information Retrieval research. Inspired by the finding that only

some features contributed to the final result, Datta et al. [166] firstly assessed

features such as power spectral density (PSD), FFT and Wavelet spectrograms,

MFCCs, and Linear Frequency Cepstral Coefficients (LFCCs). Next, they applied

a Maximal Information Coefficient (MIC) [167] to score each feature, selecting
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Table 27: The state-of-the-art frame-based frameworks

Author Front-end Back-end
Feature Extraction Classification

Okubo et al. [161] MFCC HMM
Kok et al. [162] MFCC, DWT, & Handcrafted features RUSBoost
Grønnesby et al. [163] MFCC & Handcrafted features KNN, DT, SVM
Hanna et al. [164] MFCC & handcrafted features DT
Mendes et al. [165] MFCC & Music based features LR
Datta et al. [166] PSD, FFT, Wavelet, MFCC, LFCC SVM
Sengupta et al. [168] MFCC & LBP KNN, SVM

only the most influencing before feeding into a classifier to improve performance

and reduce complexity. Similarly, Kok et al. [162] applied the Wilcoxon Sum

of Rank test to indicate which features among MFCCs, Discrete Wavelet Trans-

form (DWT) and a set of time domain features (namely power, mean, variance,

skewness and kurtosis of audio signal) mainly affected final classification accu-

racy. Image processing techniques were then employed by Sengupta et al. [168],

who applied Local Binary Pattern (LBP) analysis on Mel-frequency spectral co-

efficients (MFSCs) to capture texture information from the MFSC spectrogram,

thus obtained an LBP spectrogram. The LBP spectrogram was converted into

a histogram presentation before feeding it into a back-end classifier, which was

shown to outperform the previous MFCC-based methods. In these systems, the

time stream of audio feature vectors is classified by a range of traditional ma-

chine learning techniques. These include Logistic Regression (LR) [165], k-Nearest

Neighbour (KNN) [163, 168], Hidden Markov Models (HMM) [161, 169, 170],

Support Vector Machines (SVM) [163, 166, 168, 171, 172] and Decision Trees

(DT) [162, 163, 164, 173].

As we know from earlier chapters, deep learning techniques have achieved

strong and robust detection performance for general sound classification [174], [175].

Feature extraction in state-of-the-art deep learning based systems typically in-

volves generating two-dimensional time-frequency spectrograms that are able to

capture both fine grained temporal and spectral information as well as present
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Table 28: The state-of-the-art spectrogram based frameworks

Author Front-end Back-end
Feature Extraction Classification

Perna et al. [180] MFCC LeNet (CNN)
Aykanat et al. [179] MFCC LeNet (CNN)
Liu et al. [177] log-Mel VGG (CNN)
Minami et al. [184] STFT & Wavelet Parallel VGGs (CNN)
Chen et al. [185] Optimized S-transform ResNet50 (CNN)
Perna et al. [181] MFCC LSTM (RNN)
Kochetov et al. [183] MFCC LSTM & GRU (RNN)
Acharya et al. [178] log-Mel Hybrid (CNN & RNN)

a much wider time context than single frame analysis. While a variety of spec-

trogram transformations have been utilised, Mel-based methods such as log-mel

spectra [176, 177, 178] and stacked MFCC features [176, 179, 180, 181, 182, 183]

are the most popular ones. Some researchers combined different types of spectro-

gram, e.g. STFT and Wavelet as proposed by Minami et al. [184] or optimized

S-Transformations in [185]. Although extracting good quality representative spec-

trograms is very important for a back-end classifier in general, researchers to date

have not yet extensively explored the settings used in this step. This applies to

both traditional sound classification, as well as to respiratory sound classification.

The most recent deep learning classifiers used with spectrogram input for re-

search into respiratory sound analysis are mainly based on Convolutional Neural

Networks (CNN), Recurrent Neural Networks (RNN), or hybrid architectures.

These CNN-based systems span some diverse architectures such as LeNet6 [180,

179], VGG5 [177], two parallel VGG16s [184], and ResNet50 [185]. Inspired by

the fact that respiratory indicative sounds such as Crackle and Wheeze present

certain sequential characteristics, RNN-based networks have been developed in or-

der to capture the sequential information. For example, Perna and Tagarelli [181]

analysed the use of a Long Short-term Memory (LSTM) network for two tasks

of classifying anomalous respiratory sounds and classifying respiratory diseases.

By using LSTM and Gated Recurrent Unit (GRU) cells in a RNN-based network,

Kochetov et al. [183] proposed a novel architecture, namely the Noise Masking
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Recurrent Neural Network, which aimed to distinguish both noise and anomalous

respiratory sounds. In hybrid architectures proposed in [178], a CNN was firstly

used to map a spectrogram input to a temporal sequence. Then, LSTM was used

to learn sequence structures before classification takes place via fully connected

layers. Compared to traditional machine learning approaches, state-of-the-art

respiratory sound detection performance comparisons presented in [181, 184, 185]

indicate that deep learning classifiers are robust and effective.

6.1.2 Exiting Issues and Proposed Solution

As the above literature review of respiratory sound analysis systems shows, both

frame-based and spectrogram-based systems deployed for respiratory sound classi-

fication are very similar to the state-of-the-art ASC systems mentioned in Chapter

2. Basically, the current systems used for respiratory analysis makes use of both

machine learning in general, and deep learning techniques in particular, to achieve

good results. However, there exist specific issues that differ from the ASC research

field. Firstly, the state-of-the-art systems involve ever-increasing model complex-

ity, especially for those employing deep learning models, limiting their potential

implementation within mobile or wearable real-time devices. While choosing a

platform for ASC applications is flexible and less affected by efficiency in general,

the practicalities of implementing respiratory sound analysis on edge devices is an

important aspect of the benefit of such systems. For instance, if the function of

respiratory sound analysis can be integrated into mobile phones, patients could

self-check their situation at home, to track disease or recovery progression, for ex-

ample. Additionally, analysing respiratory sound on real-time embedded devices

helps to reduce the cost of manufacturing devices significantly, thus potentially

increasing the ability of observation of lung disease, and the application on a much

larger scale. A more serious issue with this research field has been the difficulty

of comparing between techniques due to the lack of standardised datasets used by
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authors for evaluation. Most publications evaluated on proprietary datasets that

are unavailable to others [165, 166, 169, 176, 182]. Comparing this to ASC, it is

much easier to record an ASC dataset (no ethics approvals required, no access to

patients, no infection control issues etc.) and so a number of good ASC dataset

have been published for research and academic activities. Having more data, and

more diversity of data available, is usually beneficial when building deep learning

based systems, but for respiratory sound detection data is lacking.

To tackle these main issues, this chapter proposes a deep learning framework

in the following way;

• Firstly to ensure repeatability and ease of comparison, the 2017 Interna-

tional Conference on Biomedical Health Informatics (ICBHI) [1] dataset is

used for all experiments. The ICBHI dataset is one of the largest currently

available which includes audio recordings. Using this resource, factors can

be comprehensively analysed. This includes investigating different types of

spectrogram, the use of overlapped or non-overlapped windowing, variable

spectrogram patch sizes, the use of data augmentation techniques. In each

case, the standard database allows their effects on performance to be pre-

cisely pinpointed.

• From this analysis, a deep learning framework is proposed to target two

related tasks of anomaly sound classification and respiratory disease detec-

tion. Two methods of train/test splitting are used in the literature (namely

random 5-fold cross validation and 60/40 splitting as per the ICBHI chal-

lenge’s recommendation). Both are evaluated here, and compared directly

to state-of-the-art systems.

• To aid in the trade-off between performance and complexity, a Student-

Teacher scheme is proposed. Specifically, the best deep learning framework,

which is used for the task of respiratory disease detection and requires a
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Table 29: ICBHI dataset [1]
Database Testing Set Traing Set

ESSUA AUTH All ESSUA AUTH All
Patients 38 11 49 72 7 79
Recordings 617 64 381 507 32 539
Wheezes 588 61 649 459 42 501
Crackles 273 112 385 1140 111 1215
Crackles & Wheezes 106 37 143 335 28 363
Normal 1216 363 1579 1740 323 2063

large number of trainable parameters, is referred to as the Teacher. Clas-

sification information from the Teacher model is extracted and distilled to

train another network architecture with fewer trainable parameters, referred

to as the Student. Finally, a reduced-size Student network results, and when

evaluated, is shown to achieve similar performance to the Teacher, but with

significantly lower complexity.

6.2 ICBHI Dataset and Tasks Proposed

6.2.1 ICBHI Dataset

The 2017 ICBHI dataset [1], which was collected from School of Health Sciences,

University of Aveiro (ESSUA) an Aristotle University of Thessaloniki (AUTH)

as shown in Table 29, provides a large database of labelled respiratory sounds

comprising 920 audio recordings with a combined duration of 5.5 hours. The

recording lengths are uneven, ranging from from 10 to 90 seconds, and were

recorded with a wide range of sampling frequencies from 4000 Hz to 44100 Hz.

In total, the dataset contains recordings from 128 patients, who are identified in

terms of being healthy or exhibiting one of the following respiratory diseases or

conditions: COPD, Bronchiectasis, Asthma, upper and lower respiratory tract

infection, Pneumonia, Bronchiolitis. These respiratory condition labels are linked
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to audio recording files. Within each audio recording, four different types of res-

piratory cycle are presented – called Crackle, Wheeze, Both (Crackle & Wheeze),

and Normal. These cycles, labelled by experts, include identified onset and offset

times. The cycles have various recording lengths ranging from 0.2 up to 16.2 sec-

onds, with the number of cycles being unbalanced (i.e. 1864, 886, 506 and 3642

cycles respectively for Crackle, Wheeze, Both, and Normal).

6.2.2 Main Tasks Proposed for ICBHI Dataset

Given the ICBHI recordings and metadata, this chapter targets performance over

two main tasks.

Task 1, respiratory anomaly classification, is separated into two sub-tasks.

The first aims to classify four different cycles (Crackle, Wheeze, Both, and Nor-

mal). The second is to classify the four types of cycle into two groups of Normal

and Anomaly sounds (the latter group consisting of Crackle, Wheeze, and Both).

For convenience, these are named Task 1-1 and Task 1-2, respectively in this

thesis.

Task 2, respiratory disease prediction, also comprises two sub-tasks. The first

aims to classify audio recordings into three groups of disease conditions: Healthy,

Chronic Disease (i.e. COPD, Bronchiectasis and Asthma) and Non-Chronic Dis-

ease (i.e. upper and lower respiratory tract infection, Pneumonia, and Bronchioli-

tis) (Note that individual disease condition is not directly classified as the dataset

is unbalanced, especially only 1 patient with Asthma disease and 2 patients with

LRTI disease). The second sub-task is for classification into two groups of Healthy

and Unhealthy (comprising the Chronic and Non-Chronic disease groups com-

bined). These sub-tasks are referred to as Tasks 2-1 and Task 2-2, respectively

in this thesis. While Tasks 1-1 and 1-2 are evaluated over individual respiratory

cycles, Task 2-1 and 2-2 are evaluated over entire audio recordings.

State-of-the-art published systems that used the ICBHI dataset follow two
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different approaches to split the database into training and testing portions. The

first [170, 172, 173, 184] followed the ICBHI challenge recommendations [1] to

divide the dataset into non-overlapping 60% and 40% portions for training and test

subsets, respectively. Notably, this avoids a situation in which audio recordings

from one subject are found in both of the subsets. Meanwhile, the second [162,

164, 177, 180, 181] randomly separated the entire dataset into training and test

subsets, with different ratios.

To evaluate our proposed framework on each task in this chapter, the ICBHI

dataset is firstly separated (6898 respiratory cycles for Task 1 and 920 entire

recordings for Task 2) into five folds for cross validation. Next, a baseline system

is introduced to evaluate the effects of a number of settings and influencing factors

as noted above. Due to extensive training times, this initial exploration evaluates

on one cross-validation fold. Then, following the initial exploration, two systems

are proposed; one for anomaly cycle detection (Tasks 1-1 and 1-2) and the other

for respiratory disease detection (Tasks 2-1 and 2-2). Each of those systems is

then trained and evaluated with both the full 5-fold cross validation and 60/40

split as the ICBHI challenge’s recommendation. Each system is then compared

against state-of-the-art methods.

6.2.3 Evaluation Metrics

The baseline and proposed framework variants are assessed using the metrics of

Sensitivity (Sen.), Specitivity (Spec.), and ICBHI score [181, 1]. To understand

these scores, a confusion matrix for Task 1 as presented in Table 30 is considered.

In this case, C, W, B, and N denote the numbers of cycles of Crackle, Wheeze,

Both, and Normal respectively, whereas c, w, b, and n subscripts indicate the

classification results. The sums Ct, Wt, Bt and Nt are the total numbers of cycles.
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Table 30: Confusion matrix of anomaly cycle classification.
Crackle Wheeze Both Normal

Crackle Cc Wc Bc Nc

Wheeze Cw Ww Bw Nw

Both Cb Wb Bb Nb

Normal Cn Wn Bn Nn

Total Ct Wt Bt Nt

Table 31: Confusion matrix of respiratory disease detection.
Chronic Non-chronic Healthy

Chronic Cc NCc Hc

Non-chronic Cnc NCnc Hnc

Healthy Ch NCh Hh

Total Ct NCt Ht

Sensitivity is computed for Task 1-1 (4-class anomaly classification) as:

Sensitivity = Cc +Ww +Bb

Ct +Wt +Bt

(22)

and for Task 1-2 (binary anomaly classification) as:

Sensitivity = Cc+w+b +Wc+w+b +Bc+w+b

Ct +Wt +Bt

(23)

where Cc+w+b = Cc+Cw+Cb, Wc+w+b = Wc+Ww+Wb, and Bc+w+b = Bc+Bw+Bb.

Then, Specificity can be defined

Specificity = Nn

Nt

(24)

Similarly, Task 2’s confusion matrix as shown in Table 31 is considered. In this

case, C, NC and H are the numbers of recordings of the three Task 2 classes. c, nc

and h subscripts indicate the classification results. As before, Ct, NCt, and Ht are

the total numbers of Chronic, Non-chronic, and Healthy recordings, respectively.

For Task 2-1, Sensitivity is defined as follows:

Sensitivity = Cc +NCnc
Ct +NCt

(25)
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and for Task 2-2 as:

Sensitivity = (Cc + Cnc) + (NCc +NCnc)
Ct +NCt

(26)

Specificity is then defined as

Specificity = Hh

Ht

(27)

Regarding the composite ICBHI score, this represents an equal trade-off between

the two metrics and is computed in the same way for each task – namely averaging

the Sensitivity and the Specificity scores.

ICBHIscore = 1
2(Specificity + Sensitivity) (28)

6.3 High-level Framework Architecture

6.3.1 High-level Description

The high-level architecture of the proposed system is described in Figure 26. The

architecture is divided into two main parts: front-end feature extraction (the upper

part) and back-end deep learning models (the lower part). In general, respiratory

cycles in Task 1 or entire audio recording in Tasks 2 are transformed into one or

more spectrogram representations. The spectrograms are then split into equal-

sized image patches. During training, mixup data augmentation [71, 72] is applied

to the patches to generate an expanded set of training data that is fed into a deep

learning classifier.
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Figure 26: The high-level architecture and
processing pipeline of the proposed framework.

6.3.2 Baseline System

From the high-level architecture shown in Figure 26, it can be seen that a vari-

ety of factors in front-end feature extraction could affect the performance of the

classifier. These include the type of spectrogram used, the size of image patches

and their degree of overlap, and the use of data augmentation. These factors are

investigated, thus indicate the most influencing factors among those listed above.

To limit the investigation scope to manageable proportions, the deep learning

architecture assessed is constrained, thus a C-DNN baseline like VGG-7 [84] is

proposed, defined below.

The main characteristics and settings of this baseline architecture are listed

in Table 32, while the network architecture is presented in Table 33. During

processing, all audio recordings are re-sampled (they were, as aforementioned,

recorded with various sample rates) to 16000 Hz mono. Since respiratory cycle

lengths differ quite widely, short cycles are repeated to ensure that inputs for Task

1 have a minimum length of 5 seconds or longer. This is of course unnecessary for

Task 2 which uses entire recordings. Next, each cycle (for Task 1) or recording (for

Task 2) is transformed into a spectrogram with 64 features per analysis frame.

For example, the log-mel spectrogram is extracted with a window size of 1024
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Table 32: Baseline system settings.
Factors Setting
Re-sample 16kHz
Cycle duration (only for Task 1) 5s
Spectrogram log-mel
Patch splitting non-overlapped
Patch size 64× 64
Data augmentation None
Deep learning model C-DNN based architecture

Table 33: Baseline C-DNN network architecture
Architecture Layers Output

Input layer (image patch) 64×64
Conv. Block 01 BN - Cv [3×3] @ 64 - ReLU - BN - AP [2×2] - Dr (10%) 32×32×64
Conv. Block 02 BN - Cv [3×3] @ 128 - ReLU - BN - AP [2×2] - Dr (15%) 16×16×128
Conv. Block 03 BN - Cv [3×3] @ 256 - ReLU - BN - Dr (20%) 16×16×256
Conv. Block 04 BN - Cv [3×3] @ 256 - ReLU - BN - AP [2×2] - Dr (20%) 8×8×256
Conv. Block 05 BN - Cv [3×3] @ 512 - ReLU - BN - Dr (25%) 8×8×512
Conv. Block 06 BN - Cv [3×3] @ 512 - ReLU - BN - GAP - Dr (25%) 512
Dense Block FC - Softmax C

samples, a hop size of 256 samples, and 2048-point FFT, followed by average

pooling in the frequency direction to yield a spectrogram with 64 frequency bins.

Whichever type of spectrogram is used, the resulting time-frequency output is

split into square non-overlapping patches of size 64×64. Since data augmentation

is one of factors evaluated, this technique is not applied to the baseline system.

As can be seen from Table 33, the network architecture consists of seven blocks

– six are convolutional and one is a dense block. The former blocks comprise batch

normalization (BN) layers, convolutional (Cv [kernel size] @ kernel number) lay-

ers, rectified linear units (ReLU), average pooling (AP [kernel size]) and global

average pooling (GAP) layers, and use dropout (Dr (dropout percentage)). The

dense block comprises a fully connected (FC), and a final Softmax layer for clas-

sification. C refers to the number of classes, which depend on the specific task

being evaluated (i.e. two separate C-DNN models are trained and test with C set

to 4 and 3 for Tasks 1 and 2, respectively).
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6.3.3 Experimental Settings for The Baseline System

All the systems are implemented using TensorFlow. Network training makes use

of the Adam optimiser [102] with 100 training epochs, a mini batch size of 100,

and cross entropy loss:

LOSSEN(Θ) = −
C∑
c=1

yc log {ŷc(Θ)}+ λ

2 ||Θ||
2
2, (29)

where Θ are all trainable parameters, C is the number of categories classified,

and constant λ is empirically set to 0.001. yc and ŷc denote ground truth and

predicted results of class c, respectively.

An entire spectrogram or cycle is separated into smaller patches and applied

patch-by-patch to the C-DNN model which then returns the probability computed

over each patch. The probability of an entire spectrogram is the average of all

patches’ probabilities. Let us consider pn = (pn1 , pn2 , . . . , pnC) the probability ob-

tained from the nth out of N patches. Then, the mean probability of a test sound

instance is denoted as p̄ = (p̄1, p̄2, . . . , p̄C) where

p̄c = 1
N

N∑
n=1

pnc (30)

The predicted label ŷ is then determined as

ŷ = argmax
c∈{1,2,...,C}

p̄c. (31)

6.4 Analysis of Influencing Factors

By using the baseline system mentioned above, the impact of various factors on

performance is investigated below.
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6.4.1 Influence of Spectrogram Type
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Figure 27: Comparison of baseline performance using different spectrograms.

From previous work on natural sound datasets [29, 21], it is clear that the

choice of spectrogram is one of the most important factors that affects final clas-

sification accuracy. Therefore, the effect of spectrogram types on ICBHI perfor-

mance for each task is evaluated. To this end, all settings as described in Table 32

are maintained, but four spectrogram types: log-mel spectrogram, Gamma spec-

trogram, stacked Mel-Frequency Cepstral Coefficients (MFCC), and rectangular

Constant Q Transform (CQT) spectrogram are used. Each of the spectrogram

types is evaluated on all four subtasks. Just as in the experiments presented in

Chapter 3, while log-mel, MFCC, and CQT spectrograms are generated by using

the Librosa toolbox [99], and the Gamma spectrogram by [100] (note that detailed

computation of these spectrograms are described in the Appendix).

The obtained results in terms of ICBHI Score are shown in Figure 27, reveal-

ing that MFCC, log-mel, and Gamma spectrogram perform competitively, and

are much better than CQT for all subtasks. Compared to log-mel, Gamma spec-

trogram results achieve an improvement of 0.04 for Task 1-1 and 0.03 for Task 1-2.

However log-mel slightly outperforms its Gamma counterpart for Task 2. MFCC

is, meanwhile, better than log-mel in Task 1-1 (0.01) but the opposite is seen for

all other subtasks.
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These results suggest that the Gamma spectrogram is optimal for anomaly

cycle classification (Task 1) while the log-mel spectrogram works best for detection

of respiratory diseases (Task 2). As a result these two spectrograms are adopted

in the following experiments for those respective tasks.

6.4.2 Influence of the overlapping degree

Table 34: Baseline performance loss or gain on each subtask
when overlapping spectrogram patches are used (ICBHI Score).

Patches Task 1-1 Task 1-2 Task 2-1 Task 2-2
No overlap 0.79 0.84 0.75 0.77
Overlap 0.78 0.83 0.77 0.79

As the spectrogram of an entire cycle or audio recoding is large in temporal

dimension and is of variable length, they are split into smaller patches of 64× 64

for presentation before feeding to the back-end deep learning models. In tradi-

tional signal processing systems, overlapping analysis windows are used to prevent

occlusion of important features in the original data by edge effects. Therefore, the

effect of overlapped or non-overlapped patches on ICBHI performance is exam-

ined in this section. Specifically, the baseline with non-overlapping patches (the

settings in Table 32) is contrasted to the system with patches overlapped by 50%

(note that Gamma and log-mel are applied on Task 1 and Task 2, respectively).

Results shown in Table 34 reveal that Task 1 performs better with non-

overlapped patches (subtask scores of 0.79 and 0.84, respectively) while those

results for Task 2 performs better with overlapped patches (subtask scores of 0.77

and 0.79, respectively). These results can be explained by two potential factors:

firstly different spectrogram types were used in the two tasks, and secondly Task

1 repeats respiratory cycles, whereas Task 2 classifies unrepeated recordings.
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Figure 28: Performance comparison between different time resolutions on each task.

6.4.3 Influence of Time Resolution

The baseline network operates on fixed-size patches where the time span encoded

in each patch is defined by its horizontal dimension and sampling rate. Features

are presented sequentially, and therefore the time span also defines the tempo-

ral resolution of features presented to the classifier. In this section, the effect

of different temporal resolution is explored by adjusting patch widths to 0.6 s,

1.2 s, 1.8 s, 2.4 s, and 3.0 s. This is achieved by changing the patch size to be

64×32, 64×64, 64×96, 64×128, and 64×160, respectively, then repeat the exper-

iments for each of them. Note that all settings are reused from Table 32 with

exception that Gamma and log-mel spectrograms are used for Task 1 and Task 2,

respectively. The frequency resolution (vertical dimension) remains unchanged in

each case. The dimension of the network input layer is increased or decreased to

accommodate the differing time resolution.

The obtained results are shown in Figure 28 for the four subtasks. As can be

seen, patch size of 64 × 64 (i.e. 1.2 s time resolution) as in the baseline system

performs best for Task 1-1 and second best for Task 1-2 (achieving 0.79 and 0.84,

respectively). However, a double sized patch, 64× 128 (i.e. 2.4 s time resolution)

is clearly the best for Tasks 2-1 and 2-2 (achieving 0.81 and 0.85, respectively).
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6.4.4 Influence of Data Augmentation

Table 35: Performance (ICBHI Score) with and without mixup data augmentation.
Task 1-1 Task 1-2 Task 2-1 Task 2-2

Non-mixup 0.79 0.84 0.75 0.77
mixup 0.80 0.85 0.84 0.85

Data augmentation (DA) has been shown useful to improve the learning ability

of deep learning models in tasks involving natural sound classification [21, 29].

Therefore, DA in the form of mixup [71, 72] is applied and evaluated its effect on

respiratory sound classification.

By using two types of Uniform or Beta Distribution to generate mixing coef-

ficient α, this doubles the data size and hence, the training time. Note that in

Task 1, the DA mixes the Normal class with one of the other classes (since there

is already one mixed class in the dataset, i.e. Crackle & Wheeze), whereas it ran-

domly mixes samples of all classes for Task 2. After mixup, the generated patches

are shuffled and fed into the C-DNN baseline. Since the labels ymp1 and ymp2 of

the resulting patches are no longer one-hot encoded, it is, therefore, necessary to

replace the cross-entropy loss by the Kullback-Leibler (KL) divergence loss [116]:

LOSSKL(Θ) =
C∑
c=1

yc log
{

yc
ŷc(Θ)

}
+ λ

2 ||Θ||
2
2. (32)

Again, Θ denotes the trainable network parameters and λ denote the `2-norm

regularization coefficient, set to 0.001. C is the number of categories classified, yc
and ĉn denote the ground-truth and the network output at class c, respectively.

Using the settings in Table 32 with Gamma spectrogram in Task 1 and the

log-mel spectrogram in Task 2, the improvement over the baseline ICBHI score for

each subtask due to mixup data augmentation can be assessed. Results shown in

Table 35 indicate that mixup data augmentation substantially improves the ICBHI

score in Task 2 by 0.09 and 0.08 on Tasks 2-1 and 2-2, respectively. However,

modest improvements are seen for Task 1.
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6.5 Enhanced Deep Learning Framework

Table 36: Deep learning frameworks for Tasks 1 and 2.
Factors Anomaly cycle Respiratory disease

classification detection
Resample 16000 Hz 16000 Hz
Cycle duration 5s N/A
Spectrogram Gamma log-mel
Patch splitting non-overlapped overlapped
Patch size 64× 64 64× 128
Data augmentation Yes Yes

From the analysis of influencing factors presented above, two systems are pro-

posed. One for Task 1 anomaly cycle classification, and the other for Task 2

respiratory disease detection, both summarised in Table 36. In this section, the

performance of the C-DNN architecture is enhanced by incorporating a mixture-

of-experts (MoE) technique into the DNN part of the network, leading to a CNN-

MoE architecture, similar to that in Chapter 5.

6.5.1 CNN-MoE Network Architecture

According to the C-DNN architecture entailed in Table 33, the first six convolu-

tional blocks are used to map the image patch input to condensed and discrimi-

native embeddings, often referred to as high-level features. The features are then

classified by a dense block comprising a fully-connected layer and Softmax. On

the basis that the embedding may contain more information than a single fully

connected layer can unlock, the dense block in replaced by a mixture-of-experts

(MoE) block as shown in Figure 29. The MoE block architecture is reused and

mentioned in Section 4.2.2

The proposed systems, as defined in Table 36, are trained with KL-divergence

loss [116] (due to the use of mixup data augmentation) and use the same training

settings as the previous experiments with the C-DNN baseline.
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Figure 29: The proposed CNN-MoE architecture.

6.5.2 Performance Comparison

This section firstly compares the performance of using C-DNN and CNN-MoE,

analyses if MoE technique is effective to improve the classification accuracy. Next,

the best systems proposed are compared to the state of the art.

Comparing C-DNN to CNN-MoE: The efficiency of the MoE technique

(experimentally using K=10 experts) is evaluated and compared to the C-DNN

system, reporting the performance of both in Table 37 (note that both the systems

follows the settings in Table 36, with the back-end classifier being either C-DNN

or CNN-MoE – there are thus eight systems in total, two C-DNNs and two CNN-

MoEs for each kind of data split). The results in Table 37 clearly indicate that the

CNN-MoE systems perform best overall. Although only marginal gains is seen

over the C-DNN for Task 1, results in improvement with a margin as large as 0.06

absolute in terms of ICBHI score with both the data splits, 5-fold cross validation

and ICBHI challenge’s data split, in Task 2.

Comparing to state-of-the-art systems: Next, the proposed framework

is contrasted to state-of-the-art systems. For each task, challenge’s data split is
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Table 37: ICBHI score comparison between the C-DNN and CNN-MoE frameworks
over 5-fold cross validation and ICBHI challenge splitting (highest scores in bold).

C-DNN CNN-MoE C-DNN CNN-MoE
Tasks (5-fold) (5-fold) (ICBHI) (ICBHI)

1-1, 4-category 0.77 0.79 0.43 0.47
1-2, 2-category 0.84 0.84 0.53 0.54
2-1, 3-category 84.7 0.91 0.79 0.84
2-2, 2-category 0.86 0.92 0.79 0.84

Table 38: Comparison against state-of-the-art systems with
ICBHI challenge splitting (highest scores in bold).

Tasks Method Spec. Sen. Score
1-1, 4-category DT [173] 0.75 0.12 0.43
1-1, 4-category HMM [170] 0.38 0.41 0.39
1-1, 4-category SVM [172] 0.78 0.20 0.47
1-1, 4-category CNN-RNN [184] 0.81 0.28 0.54
1-1, 4-category Our system 0.68 0.26 0.47

evaluated twice – once with the ICBHI challenge train/test split, and once with

random splitting (as described in Section 6.2.3). Considering the first splitting

method specified in the ICBHI challenge, Table 38 presents scores obtained by the

proposed framework and state-of-the-art published systems (where available). It

is noted that the proposed framework lies second in terms of Task 1-1 evaluation.

Our results for other subtasks were listed in Table 37. Only Task 2-2 is found in

the literature (for the ICBHI data split) achieved 0.72 [178], which is surpassed

by 0.84 obtained by our system.

Table 39 compares the performance obtained by our system with previously

published results that use the random train/test splitting method. For Tasks 1-1

and 1-2, the proposed framework clearly outperforms other systems quite consis-

tently. Meanwhile for Task 2-1 and 2-2 the proposed method also outperforms

other systems in terms of overall ICBHI score, but not necessarily simultaneously

for both subcomponents of specificity or sensitivity.
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Table 39: Performance comparison between the proposed system and state-of-the-art
systems following random splitting (highest scores are highlighted in bold).

Tasks Methods train/test Spec. Sen. Score
1-1, 4-category Boosted DT [164] 60/40 0.78 0.21 0.49
1-1, 4-category CNN [180] 80/20 0.77 0.45 0.61
1-1, 4-category CNN-RNN [178] 5 folds 0.84 0.49 0.66
1-1, 4-category LSTM [181] 80/20 0.85 0.62 0.74
1-1, 4-category Our system 5 folds 0.90 0.68 0.79
1-2, 2-category Boosted DT [164] 60/40 0.78 0.33 0.56
1-2, 2-category LSTM [181] 80/20 - - 0.81
1-2, 2-category CNN [177] 75/25 - - 0.82
1-2, 2-category Our system 5 folds 0.90 0.78 0.84
2-1, 3-category CNN [180] 80/20 0.76 0.89 0.83
2-1, 3-category LSTM [181] 80/20 0.82 0.98 0.90
2-1, 3-category Our system 5 folds 0.86 0.95 0.91
2-2, 2-category Boosted DT [164] 60/40 0.85 0.85 0.85
2-2, 2-category CNN [180] 80/20 0.78 0.97 0.88
2-2, 2-category RUSBoost DT [162] 50/50 0.93 0.86 0.90
2-2, 2-category LSTM [181] 80/20 0.82 0.99 0.91
2-2, 2-category Our system 5 folds 0.86 0.98 0.92

6.5.3 Discussion

Comparing Tables 38 and 39, it is notable that those systems following the ICBHI

data split (i.e. recordings from the same patient are never found in both train/test

subsets) exhibit considerably lower performance over all tasks than those follow-

ing random splitting. This indicates that the ICBHI dataset presents a very high

dependence on patient characteristics, which is likely make respiratory cycle clas-

sification challenging in practice.

However, all the results obtained by the proposed framework for Tasks 2-1 and

2-2 (with both splitting methods) exceed 84%. These results for recording-based

classification of lung disease – which is highly related to the overall aim of lung

disease detection – provide a strong indicator of the robustness of the proposed

framework. As does the fact that the same proposed framework is capable of

performing well for all subtasks.
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6.6 Student-Teacher Scheme for Respiratory Dis-

ease Detection

6.6.1 The Proposed Student-Teacher Arrangement
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Figure 30: Architecture of the Student-Teacher scheme.

Recent works on sound scene and sound event detection reported the effective-

ness of Teacher-Student learning schemes [186, 187]. Among other advantages,

these schemes offer a trade-off between model size and performance. Since the

complexity of our best model based on the proposed MoE framework may be

a barrier to future real-time implementation, it is explored whether a student-

teacher scheme can be used to train a network with much lower complexity and

perform well on the task of respiratory disease detection (Task 2).

The proposed solution, as shown in Figure 30, comprises two networks, namely

the Teacher and the Student. The teacher network re-uses the high-performance

CNN-MoE architecture introduced in Section 6.5.1. The student network features
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Table 40: The Student network architecture.
Architecture Layers Output

Input layer (image patch) 64×128
Conv. Block 07 Cv [3×3] @ 128 - ReLU - AP [4×4] 16×32×128
Conv. Block 08 Cv [3×3] @ 512 - ReLU - GAP 512
Dense Block FC - Softmax 3

a compact architecture, comprising two convolutional blocks (identified Conv.

Block 07 and Conv. Block 08 in the figure), and a dense block whose configuration

is the same as the one in Table 40 (note that the student network does not apply

batch normalisation, dropout or mixup data augmentation).

Training the Teacher-Student network is separated into two phases. First, the

Teacher is trained as usual. Afterwards, the Teacher’s embedding is distilled to

the Student’s embedding to assist in the Student’s learning process. The influence

of this knowledge distillation on the student network’s performance is empirically

investigated. With the presence of this knowledge distillation, training the stu-

dent network, therefore, aims to minimize two losses: (1) the Euclidean distance

LOSSEU between the teacher and student embedding, and (2) the standard cross-

entropy loss LOSSEN on the student’s classification output. The combined loss

function is therefore,

LOSS = (1− γ)LOSSEN + γLOSSEU (33)

Here, the hyperparameter γ is empirically set to 0.5 to balance the two constituent

losses. Other hyper-parameters and settings are inherited from Section 6.5.1.

6.6.2 Results From the Teacher-Student Scheme

The experimental results obtained by the student network in comparison with

the teacher network are shown in Table 41. On the one hand, it can be seen

that without knowledge distillation from the teacher network, the small-footprint

student network obtains a substantially low specificity score, although it maintains
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Table 41: Performance comparison between Teacher
and Student with and without knowledge distillation.

Five-fold random split ICBHI split
Tasks Models Spec. Sen. ICBHI Score Spec. Sen. ICBHI Score

Teacher 0.86 0.95 0.91 0.71 0.98 0.84
2-1, 3-category Student w/o knowledge distill 0.43 0.94 0.68 0.41 0.97 0.69

Student w/ knowledge distill 0.86 0.90 0.88 0.71 0.98 0.84
Teacher 0.86 0.98 0.92 0.71 0.98 0.84

2-2, 2-category Student w/o knowledge distill 0.43 0.99 0.71 0.41 0.99 0.70
Student w/ knowledge distill 0.86 0.96 0.91 0.71 0.98 0.84

Table 42: Model footprint comparison between Teacher and Student
Features Teacher Student
Trainable Convolutional Layers 6 2
Trainable Fully-connected Layers 11 1
Batch normalization 12 0
Number of trainable parameters 4.5× 106 0.6× 106

Number of MAC operations 44,886 K 9,513 K

a very good sensitivity. This observation is consistent with the overall ICBHI score

and can be explained by the simplicity of the network which results in low learning

capacity. On the other hand, distilling knowledge from the teacher significantly

boosts the student performance, yielding specificity, sensitivity, and ICBHI scores

that are very competitive to those of the teacher network – even though the

student network is much smaller and simpler.

Details of the model footprint are shown in Table 42, it can be seen that

the Teacher uses six convolutional layers, eleven fully-connected layers and twelve

batch normalization layers that together contribute to a large model size with

4.5 × 106 trainable parameters. Meanwhile, the Student only uses two convolu-

tional layers and one fully-connected layer, requiring only 0.6 × 106 parameters,

approximately one-seventh of the Teacher’s. The model footprints also scale in

terms of computational cost of multiply-accumulate (MAC) operations during in-

ference. While an inference process on the Teacher costs 44,886 kMAC operations,

the Student only costs 9,513 kMAC (the MAC operation computation for a deep

learning network is presented in [188]). The inference process for a 20-second

long recording in Task 1-1, conducted by a Tesla P100 GPU, takes 0.5 second;
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nearly ten times longer than the 0.045 second required for the Student’s inference

process.

6.7 Conclusion

This chapter has presented a robust deep learning framework for the analysis

of respiratory anomalies and detection of lung diseases from lung auscultation

recordings. Extensive experiments were conducted with different architectures

and system settings using the ICBHI dataset, and two defined tasks related to

that. The proposed system is evaluated against existing state-of-the-art methods,

outperforming them for most of the challenge tasks. Furthermore, to facilitate

implementation in real-time systems, a Teacher-Student learning scheme was em-

ployed to significantly reduce model complexity while still achieving very high

accuracy. The final experimental results validate the application of deep learning

for the timely diagnosis of respiratory diseases, bringing this research area one

step closer to clinical applications.



Chapter 7

Conclusion and Future Work

7.1 Summary

Concretely, this thesis has focused on dealing with the task of acoustic scene

classification (ASC), and then applied the techniques developed for ASC to a

real-life application of detecting respiratory disease.

To deal with ASC challenges, this thesis addresses three main factors that di-

rectly affect the performance of an ASC system. Firstly, this thesis explores input

features by making use of multiple spectrograms (log-mel, Gamma, and CQT) for

low-level feature extraction to tackle the issue of insufficiently discriminative or

descriptive input features. Next, a novel Encoder network architecture is intro-

duced. The Encoder firstly transforms each low-level spectrogram into high-level

intermediate features, or embeddings, and thus combines these high-level features

to form a very distinct composite feature. The composite or combined feature is

then explored in terms of classification performance, with different Decoders such

as Random Forest (RF), Multilayer Perception (MLP), and Mixture of Experts

(MoE). By using this Encoder-Decoder framework, it helps to reduce the compu-

tation cost of the reference process in ASC systems which make use of multiple

spectrogram inputs. Inspired by high-cross correlation among sound categories,

111
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and the potentially useful information that this might yield, the architecture is fur-

ther explored, and a hierarchical classification, referred as to Decoder, is proposed

to make use of that. The scheme helps to structure the original “flat” ASC task

into multiple hierarchical sub-tasks that operates in a divide-and-conquer manner.

Since each sub-task is only suitable for some sound categories, a combination of

triplet loss and cross entropy loss proves effective to enhance the classification ac-

curacy. To evaluate the Encoder-Decoder framework, recently published datasets

(Litis Rouen and DCASE 2016 Task 1A, DCASE 2017 Task 1A, DCASE 2018

Task 1A & 1B, DCASE 2019 Task 1A & 1B) are used, and demonstrate very

competitive results compared to the state-of-the-art systems. Additionally, the

obtained results also indicate that the framework is effective for early detection of

sound scenes, which is potentially very useful for real-time applications on edge

devices. The results strongly demonstrate that the proposed Encoder-Decoder

framework is robust for ASC tasks.

Since the proposed techniques applied for general ASC tasks were shown to

be highly effective, this inspired an application to a specific real-life application.

This was namely the 2017 Internal Conference on Biomedical Health Informatics

(ICBHI) respiratory sound dataset. Building upon the proposed ASC framework,

the ICBHI tasks were tackled with a deep learning framework, and the resulting

system shown to be capable at detecting respiratory anomaly cycles and diseases.

The experimental results obtained validated the deep learning techniques used

in the general ASC task for the timely diagnosis of respiratory diseases, thus

potentially for a wide ranges of clinical applications.

7.2 Future Work

Applying deep learning techniques developed for ASC tasks for specific appli-

cations, like the respiratory disease detection task mentioned in Chapter 6, has
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promise for a number of audio detection problems. However, the challenge to

implement complicated deep learning frameworks on edge devices (e.g. mobile

and low powered hardware) is the high degree of complexity of the computa-

tion required. To deal with such challenges, model compression techniques have

drawn increasing attention in recent years. Two main approaches of compression

are quantization and pruning. Recently, the Tensorflow framework 2.0 provides

a complete guide for both the compression methods mentioned in [189]. The

toolbox is very usable and is quick to compress an originally complicated model

to a more simple Tensorflow lite model that can be suitable for embedding on a

wide range of embedded operating systems. Therefore, one item of future work

proposed in this thesis is to implement the deep learning framework applied for

respiratory disease detection in Chapter 6 on an embedded or edge hardware plat-

form. Successfully achieving a real-time system for detecting respiratory disease

will help patients to self-observe their situation, reduce the cost of fabrication and

possibly increase the scale of respiratory disease detection.

As mentioned in Chapter 2, acoustic scene classification (ASC) and acous-

tic event detection (AED) are two main tasks of the emerging ‘machine hearing’

research field [3]. Currently, these two tasks are considered to be separate. In par-

ticular, while ASC datasets are easily recorded in nature, it is hard to collect AED

datasets in real-life environments. Therefore, current AED datasets were synthe-

sised which enable AED and ASC tasks in challenges to be independent yet share

the same underlying database. Furthermore, sound events follow certain struc-

tures, but this is not always true for sound scenes. Techniques applied to detect

sound events and sound scenes are therefore basically different. While CNN-based

architectures are explored for sound scenes, analysis of sound events tend to use

RNN-based networks which are robust for time sequence information. However,

sound context awareness abilities integrated in certain devices in the future should
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be base on both ASC and AED techniques to achieve high performance. For in-

stance, quite environments such as in park or in home are very challenging to

detect if only based on static sound scene information. However, such quite en-

vironments are easier to recognize if specific sound events can be detected, such

as bird song in a park or sound of tap water inside a home. Therefore, if both

sound events and scenes can be integrated into sound-based systems, it would be

effective at improving sound context awareness. From the analysis above, another

idea for future work is exploring the high-cross correlation between ASC and AED

to improve the sound context awareness of future sound-based systems.



Appendix A

Mathematical definitions

This appendix provides the detailed derivation of the spectrogram transforma-

tions, namely the log-mel, CQT and Gamma used in experiments in Chapter 3,

4, 5, and MFCC mentioned in Chapter 6. Additionally, this appendix details

the computation of network layers used in this thesis such as convolutional (Cv),

batch normalization (BN), rectify linear unit (ReLU), dropout (Dr), fully con-

nected (FC), and Softmax layers. Note that “×” is used for matrix product.

A.1 Spectrogram Computation

A.1.1 STFT spectrogram

The Short-Time Fourier Transform (SFFT) applies a Fourier Transform to a frame

of the time series signal to extract the frequency content of the local section of

analysed input. If s(n) is considered as the digital audio signal, then the STFT

spectrogram, denoted by STFT[F, T ], is computed as,

STFT =
N∑
n=1

s[n]w[n]e−j2πFn/N (34)
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where w[n] is a window function, typically Hamming. While time resolution (T )

of the STFT spectrogram is set by the hop size, the frequency (F ) resolution

depends on window length and the sample rate of the audio signal.

A.1.2 log-mel spectrogram

To generate a log-mel spectrogram, the section of time series audio being anal-

ysed is first transformed into an STFT spectrogram as noted above. Next, a

Mel filter bank, which simulates the overall frequency selectivity of the human

auditory system is applied. The filter bank uses the frequency warping Fmel =

2595.log10(1+F/700) [2] to generate a Mel spectrogram MEL[Fmel, T ] (note that

frequency resolution Fmel depends on the number of Mel filters). Logarithmic

scaling is then applied to obtain the log-mel spectrogram.

If COEMEL[Fmel, F ] is considered as a matrix storing coefficients of the Mel

filters, then log-mel spectrogram LOG MEL[Fmel, T ] is a matrix computed by a

multiplication of the two matrices as follows,

LOG MEL[Fmel, T ] = log10 (COEMEL[Fmel, F ]×STFT[F, T ]) (35)

A.1.3 MFCC spectrogram

From log-Mel spectrogram, Discrete Cosine Transform (DCT) is used to extract a

sequence of uncorrelated coefficients crossing frequency dimension, reducing log-

Mel frequency resolution into smaller space. A pixel value dct[fdct, tdct] of DCT

matrix DCT[Fdct, Tdct], where Fdct and Tdct are frequency and time resolutions, is
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computed by:

dct[fdct, tdct] =
( 2
Fmel

) 1
2
( 2
T

) 1
2
Fmel−1∑
fmel=0

T−1∑
t=0

Λ(fmel)cos
[
πfdct
Fmel

(2fmel + 1)
]

Λ(t)cos
[
πtdct
T

(2t+ 1)
]

log−mel[fmel, t] (36)

where

Λ(x) =


1√
2 if x = 0

1 otherwise
(37)

T , Fmel, and log−mel[fmel, t] are time resolution, frequency resolution, and mag-

nitude of a pixel of log-mel spectrogram, respectively.

A.1.4 Gamma spectrogram

Gammatone filters are designed to model the frequency-selective cochlea activa-

tion response of the human inner ear [190], in which filter output simulates the

frequency response of the basilar membrane. The impulse response is given by

g[k] = kP−1T P−1e−2bπkT cos(2πfkT + θ) (38)

where P is the filter order, θ is the phase of the carrier, b is filter bandwidth, and f

is central frequency, and T is sampling period. The filter bank is then formulated

on the equivalent rectangular bandwidth (ERB) scale [191] as

ERB = 24.7(4.37.10−3f + 1) (39)
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To quickly and conveniently generate the gammatonegram, Ellis et al. [100] intro-

duced a toolbox which first transforms the audio signal into STFT spectra as men-

tioned above. Then, a matrix of gammatone weighting COEGAMMA[Fgamma, F ]

is applied to the STFT to obtain the Gamma spectrogram.

GAMMA[Fgamma, T ] = COEGAMMA[Fgamma, F ]×STFT[F, T ] (40)

where Fgamma is frequency resolution the depends on the number of gammatone

filters used.

A.1.5 Constant Q Transform (CQT)

The CQT applies a bank of filters corresponding to tonal spacing, where each

filter is equivalent to a subdivision of an octave, with central frequencies given by,

Fk = (2 1
b )kfmin (41)

where Fk denotes the frequency of the kth spectral component, fmin is the mini-

mum frequency, and b is the number of filters per octave. As the name suggests,

the Q value (which is commonly known to be the ratio of central frequency to

bandwidth in electrical and control systems), is set to a constant as in,

Q = Fk
∆Fk

= Fk
Fk+1 − Fk

=
(
2 1

b − 1
)−1

(42)

Like the STFT, the CQT spectrogram CQT[Fk, T ] is extracted using Fourier-

based transformation,

CQT = 1
N(k)

N(k)−1∑
n=0

s[n]w[k, n]e−i2π
nQ

N(k) (43)
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where

N(k) = Q
fs

Fk
(44)

w[k, n] = α + (1− α)cos 2πn
N(k)− 1 (45)

and fs is the sample rate of the input signal.

A.2 Computation of Network Layers

if X[F,T,C] ∈ RF×T×C and x ∈ RN are considered as an input tensor and input

vector, where F, T , C are frequency, time, channel dimensions of the input tensor

and N is the dimension of input vector, the computation of network layers used

in thesis is described in detail as below,

A.2.1 Rectify Linear Unit (ReLU) Layer

Relu function takes each pixel xf,t,c of input tensor X and thus returns the output

fRelu(xf,t,c) as,

fReLU(xf,t,c) =


xf,t,c, if xf,t,c > 0

0, if xf,t,c <= 0
(46)

As regards input vector x[x1, ..., xN ] , this function takes xn and returns

fReLU(xn) =


xn, if xn > 0

0, if xn <= 0
(47)
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A.2.2 Dropout Layer

Dropout function fDrop for input tensor X is computed by,

fDrop(X) = XD (48)

and for input vector x as

fDrop(x) = xd (49)

where D ∈ RF×T×C is a matrix with similar dimension of input tensor X and

d ∈ RN is a vector with similar dimension of input vector x. D and d are

generated by D/d ∼ Bernoulli(1− p) where p is the percentage of input dropped.

A.2.3 Batch Normalization Layer

If a batch of B tensor is described by X = {X1,X2, ...,XB}, where Xb is a tensor

input, the batch normalization function takes a tensor Xb, and thus returns an

output fBatch(Xb) as

fBatch(Xb) = λ
Xb − µ√
σ + ε

(50)

where µ and σ are defined by

µ = 1
B

B∑
b=1

Xb (51)

σ = 1
B

B∑
b=1

(Xb − µ)2 (52)

and λ and ε are scale and ship parameters that are learned during training process.

In this thesis, the batch normalization function is only applied over input tensors

and across the channel dimension.
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A.2.4 Fully Connected Layer

In this thesis, the fully-connected layer is applied for input vector. The output

vector y[y1, y2, ..., yM ] with output dimension of M is computed by

ym =
N∑
n=0

wm,nxn + bm (53)

where pixel wm,n in the coefficient matrix W[M,N] and bm in bias vector b[b1, ..., bM ]

are trainable parameters.

A.2.5 Softmax Layer

In this thesis, the Softmax layer is applied on input vectors. The output vector

y = [y1, y2, ..., yN ] of this layer is computed by

yn = exp(xn)∑N
n=1 exp(xn)

(54)

Note that the output and input vectors of Softmax layer have same dimension of

N .

A.2.6 Convolutional Layer

In this thesis, convolutional layer is applied on input tensors. if C ′ kernels with

size of [K,P ] are applied on the input tensor X[F,T,C] in a convolutional layer,

the output tensor has size of Y[F,T,C′] (note that the frequency F and time T

dimensions are remained by adding zero padding), a pixel yf,t,c′ of output tensor

Y is computed by,

yf,t,c′ =
K∑
k=1

P∑
p=1

C∑
c=1

wk,p,c,c′xk,p,c + bc′ (55)
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where pixel xk,p,c is in tensor input X[F,T,C]; pixel wk,p,c,c′ in coefficient matrix

W[K,P,C,C′] and bc′ in bias vector b = [b1, ..., bC′ ] are trainable parameters.
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