
Kent Academic Repository
Full text document (pdf)

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version.
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down
information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Bichhawat, Abhishek, Rajani, Vineet, Garg, Deepak and Hammer, Christian (2014) Generalizing
Permissive-Upgrade in Dynamic Information Flow Analysis. In: PLAS'14: Proceedings of
the Ninth Workshop on Programming Languages and Analysis for Security. PLAS'14: Proceedings
of the Ninth Workshop on Programming Languages and Analysis for Security. . pp. 15-24. Association

DOI

https://doi.org/10.1145/2637113.2637116

Link to record in KAR

https://kar.kent.ac.uk/90566/

Document Version

Publisher pdf

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/478778455?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Generalizing Permissive-Upgrade in

Dynamic Information Flow Analysis

Abhishek Bichhawat1 Vineet Rajani2 Deepak Garg2 Christian Hammer1

1Saarland University 2MPI-SWS

{bichhawat,hammer}@cs.uni-saarland.de {vrajani,dg}@mpi-sws.org

Abstract

Preventing implicit information flows by dynamic pro-
gram analysis requires coarse approximations that re-
sult in false positives, because a dynamic monitor sees
only the executed trace of the program. One widely de-
ployed method is the no-sensitive-upgrade check, which
terminates a program whenever a variable’s taint is up-
graded (made more sensitive) due to a control depen-
dence on tainted data. Although sound, this method
is restrictive, e.g., it terminates the program even
if the upgraded variable is never used subsequently.
To counter this, Austin and Flanagan introduced the
permissive-upgrade check, which allows a variable up-
grade due to control dependence, but marks the vari-
able “partially-leaked”. The program is stopped later if
it tries to use the partially-leaked variable. Permissive-
upgrade handles the dead-variable assignment prob-
lem and remains sound. However, Austin and Flanagan
develop permissive-upgrade only for a two-point (low-
high) security lattice and indicate a generalization to
pointwise products of such lattices. In this paper, we
develop a non-trivial and non-obvious generalization of
permissive-upgrade to arbitrary lattices. The key dif-
ficulty lies in finding a suitable notion of partial leaks
that is both sound and permissive and in developing a
suitable definition of memory equivalence that allows
an inductive proof of soundness.

Categories and Subject Descriptors D.2.0 [Soft-
ware Engineering]: Protection Mechanisms

General Terms Security, Languages

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

PLAS’14, July 29, 2014, Uppsala, Sweden.
Copyright c© 2014 ACM 978-1-4503-2862-3/14/07. . . $15.00.
http://dx.doi.org/10.1145/2637113.2637116

Keywords Dynamic information flow control, permi-
ssive-upgrade, partial leak, security lattice

1. Introduction

Information flow control (IFC) is often used to enforce
confidentiality and integrity of data. In a language-
based setting, IFC may be enforced statically [8, 9, 11,
15, 17, 21], dynamically [1, 3, 4, 10, 13, 20], or in hybrid
ways [5, 12, 16, 18]. We are particularly interested
in dynamic IFC and, more specifically, dynamic IFC
for JavaScript, which has features like runtime code
construction and runtime modification of scope chains
that make static analysis difficult.

Dynamic IFC usually works by tracking taints or la-
bels on individual program values in the language run-
time. A label represents a mandatory access policy on
the value. For example, the label L (low confidential-
ity) conventionally means that data may be read by an
(unspecified but fixed) adversary and H (high confiden-
tiality) means the opposite. More generally, labels may
be drawn from any lattice of policies, with higher labels
representing more restrictive policies. A value v labeled
A is written vA. IFC analysis propagates labels as data
flows during program execution. Flows are of two kinds.
Explicit flows are induced by expression evaluation and
variable assignment. For example, if either variable y or
z is labeled H (confidential), then the result of comput-
ing y + z will have label H , which makes it confidential
as well.1

Implicit flows are induced by control flow dependen-
cies. For example, in the program of Listing 1, the value
in variable x at the end of line 3 depends on the value
in z (so the value in x at the end of line 3 must be la-
beled H if the value in z is confidential), but x is never
assigned any expression that explicitly depends on z.
To track such implicit flows, dynamic IFC maintains
an additional taint, usually called the program counter
taint or program context taint or pc, which is an upper

1 By “z is labeled H” we actually mean “the value in z is labeled
H”. This convention is used consistently.

1 x = false, y = false

2 if (not(z))
3 x = true

4 if (not(x))
5 y = true

Listing 1. Implicit flow from z to y

1 x = false

2 if (not(z))
3 x = true

4 if (y) f() else g()
5 x = false

Listing 2. Impermissiveness of the NSU strategy

bound on the control dependencies that lead to the cur-
rent instruction being executed. In our example, if z is
labeled H , then at line 3, pc = H because of the branch
in line 2 that depends on z. By tracking pc, dynamic
IFC can enforce that x has label H at the end of line 3,
thus taking into account the control dependency.

However, simply tracking control flow dependencies
via pc is not enough to guarantee absence of information
flows when labels are flow-sensitive, i.e., when the same
variable may hold values with different labels depending
on what program paths are executed. The program in
Listing 1 is a classic counterexample, taken from [3].
Assume that z is labeled H and x and y are labeled L

initially. We compute the final value in y as a function
of the value in z. If z contains trueH , then y ends with
trueL: The branch on line 2 is not taken, so x remains
falseL at line 4. Hence, the branch on line 4 is taken,
but pc = L at line 5 and y ends with trueL. If z contains
falseH , then similar reasoning shows that y ends with
falseL. Consequently, in both cases y ends with label
L and its value is exactly equal to the value in z. Hence,
an adversary can deduce the value of z by observing y

at the end (which is allowed because y ends with label
L). So, this program leaks information about z despite
correct use of pc.

Handling such flows in dynamic IFC requires coarse
approximation because a dynamic monitor only sees
program branches that are executed and does not know
what assignments may happen in alternate branches
in other executions. One such coarse approximation
is the no-sensitive-upgrade (NSU) check proposed by
Zdancewic [22]. In the program in Listing 1, we up-
grade x’s label from L to H at line 3 in one of the two
executions above, but not the other. Subsequently, in-
formation leaks in the other execution (where x’s label
remains L) via the branch on line 4. The NSU check
stops the leak by preventing the assignment on line 3.
More generally, it stops a program whenever a variable’s

label is upgraded due to a high pc. This check suffices to
provide termination-insensitive noninterference, a stan-
dard security property [21]. However, terminating a pro-
gram pre-emptively in this manner is quite restrictive
in practice. For example, consider the program of List-
ing 2, where z is labeled H and y is labeled L. This
program potentially upgrades variable x at line 3 under
a high pc, and then executes function f when y is true

and executes function g otherwise. Suppose that f does
not read x. Then, for y 7→ trueL, this program leaks no
information, but the NSU check would terminate this
program prematurely at line 3. (Note: g may read x, so
x is not a dead variable at line 3.)

To allow a dynamic IFC to accept such safe execu-
tions of programs with variable upgrades due to high pc,
Austin and Flanagan proposed a less restrictive strat-
egy called permissive-upgrade [4]. Whereas NSU stops
a program when a variable’s label is upgraded due to
assignment in a high pc, permissive-upgrade allows the
assignment, but labels the variable partially-leaked or
P . The taint P roughly means that the variable’s con-
tent in this execution is H , but it may be L in other
executions. The program must be stopped later if it
tries to use or case-analyze the variable (in particu-
lar, branching on a partially-leaked Boolean variable is
stopped). Permissive-upgrade also ensures termination-
insensitive noninterference, but is strictly more permis-
sive than NSU. For example, permissive-upgrade stops
the leaky program of Listing 1 at line 4 when z con-
tains falseH , but it allows the program of Listing 2 to
execute to completion when y contains trueL.

Contribution of this paper Although permissive-
upgrade is useful, its development in literature is incom-
plete so far: Austin and Flanagan’s original paper [4],
and work building on it, develops permissive-upgrade
for only a two-point security lattice, containing levels
L and H with L ⊏ H , and the new label P . A gen-
eralization to a pointwise product of such two-point
lattices (and, hence, a powerset lattice) was suggested
by Austin and Flanagan in the original paper, but not
fully developed. As we explain in Section 3, this gener-
alization works and can be proved sound. However, that
still leaves open the question of generalizing permissive-
upgrade to arbitrary lattices. It is not even clear hith-
erto that this generalization exists.

In Section 4, we show by construction that a gen-
eralization of permissive-upgrade to arbitrary lattices
does indeed exist and that it is, in fact, non-obvious.
Specifically, the rule for adding partially-leaked labels
and the definition of store (memory) equivalence needed
to prove noninterference are reasonably involved. On
powerset lattices, the resulting IFC monitor is differ-
ent from the result of the product construction, and
we show that our system can be more permissive than

e := n | x | e1 ⊙ e2

c := x := e | c1; c2 |

if e then c1 else c2 |

while e do c1

A := L | H

pc := A

k, l, m := A

Figure 1. Syntax

the product construction in some cases. By developing
this generalization, our work makes permissive-upgrade
applicable to arbitrary security lattices like other IFC
techniques and, hence, constitutes a useful contribution
to IFC literature.

2. Language and Basic IFC Semantics

Our technical development is based on a simple imper-
ative language shown in Figure 1.2 The language’s ex-
pressions include constants or values (n), variables (x)
and unspecified operators (⊙) to combine them. The
set of variables is fixed upfront. Labels (A) are drawn
from a fixed security lattice. For now, the lattice con-
tains only two labels {L, H} with the ordering L ⊏ H ;
we generalize this later in the paper. Join (⊔) and meet
(⊓) operations are defined as usual on the lattice. The
program counter label pc is an element of the lattice.

2.1 IFC Semantics and NSU

The rules in Figure 2 define the big-step semantics of
the language, including standard taint propagation for
IFC: the evaluation relation 〈e, σ〉 ⇓ nk for expressions,
and the evaluation relation 〈c, σ〉 ⇓pc σ′ for commands.
Here, σ denotes a store, a map from variables to labeled
values of the form nk. For now, labels k ::= A; we
generalize this later when we introduce partially-leaked
taints.

The evaluation relation for expressions evaluates an
expression e and returns its value n and label k. The
label k is the join of labels of all variables occurring in e
(according to σ). The relation for commands executes a
command c in the context of a store σ, and the current
program counter label pc, and yields a new store σ′. The
function Γ(σ(x)) returns the label associated with the

2 Austin and Flanagan’s work on permissive-upgrade is based on
a λ-calculus with dynamic allocation, which is more general than
this language [4]. However, our key ideas are orthogonal to the
choice of language and generalize to the language of [4] easily. We
use a simpler language to simplify non-essential technical details.

value in x in store σ: If σ(x) = nk, then Γ(σ(x)) = k.
We write ⊥ for the least element of the lattice. Here,
⊥ = L.

We explain the rules for evaluating commands. The
rule for sequencing c1; c2 evaluates the command c1

under store σ and the current pc label; this yields a
new store σ′′. It then evaluates the command c2 under
store σ′′ and the same pc label, which yields the final
store σ′.

The rules for if-else evaluate the branch condition
e to a value n with label A. Based on the value of
n, one of the branches c1 and c2 is executed under a
pc obtained by joining the current pc and the label A
of n. Similarly, the rules for while evaluate the loop
condition e and execute the loop command c1 while e

evaluates to true. The pc for the loop is obtained by
joining the current pc and the label A of the result of
evaluating e.

Rules for assignment statements are conspicuously
missing from Figure 2 because they depend on the
strategy used to control implicit flows. In the remainder
of this paper we consider a number of such rules. To
start, the rule for assignment corresponding to the NSU
check is shown in Figure 3. The rule checks that the
label l of the assigned variable x in the initial store σ is
at least as high as pc (premise pc ⊑ l). If this condition
is not true, the program gets stuck. This is exactly the
NSU check described in Section 1.

2.2 Termination-Insensitive Noninterference

The end-to-end security property usually established for
dynamic IFC is termination-insensitive noninterference
(TINI). Noninterference means (in a technical sense,
formalized below) that two runs of the same program
starting from any two stores that are observationally
equivalent for any adversary end with two stores that
are also observationally equivalent for that adversary.
For our observation model, where the adversary sees
only initial and final memories, termination-insensitive
means that we are willing to tolerate the one-bit leak
when an adversary checks whether or not the program
terminated (for programs with intermediate observable
outputs, termination-insensitivity may leak more than
one bit [2]). In particular, this discounted one-bit leak
accounts for termination due to failure of the NSU
or permissive-upgrade check. Technically, termination-
insensitivity amounts to considering only properly ter-
minating runs in the noninterference theorem.

Store equivalence is formalized as a relation ∼A, in-
dexed by lattice elements A, representing the adversary.

Definition 1. Two labeled values nk
1 and nm

2 are A-
equivalent, written nk

1 ∼A nm
2 , iff either:

1. (k = m) ⊑ A and n1 = n2 or

2. k 6⊑ A and m 6⊑ A

Expressions:

const:
〈n, σ〉 ⇓ n⊥

var:
nk := σ(x)

〈x, σ〉 ⇓ nk

oper:
e = e′ ⊙ e′′ 〈e′, σ〉 ⇓ n′k′

〈e′′, σ〉 ⇓ n′′k′′

n := n′ ⊙ n′′ k := k′ ⊔ k′′

〈e, σ〉 ⇓ nk

Statements:

seq:
〈c1, σ〉 ⇓pc σ′′ 〈c2, σ′′〉 ⇓pc σ′

〈c1; c2, σ〉 ⇓pc σ′
if-else-t:

〈e, σ〉 ⇓ nA n = true 〈c1, σ〉 ⇓pc ⊔ A σ′

〈if e then c1 else c2, σ〉 ⇓pc σ′

if-else-f:
〈e, σ〉 ⇓ nA n = false 〈c2, σ〉 ⇓pc ⊔ A σ′

〈if e then c1 else c2, σ〉 ⇓pc σ′
while-f:

〈e, σ〉 ⇓pc nA n = false

〈while e do c1, σ〉 ⇓pc σ

while-t:
〈e, σ〉 ⇓ nA n = true 〈c1, σ〉 ⇓pc ⊔ A σ′′ 〈while e do c1, σ′′〉 ⇓pc ⊔ A σ′

〈while e do c1, σ〉 ⇓pc σ′

Figure 2. Semantics

assn-NSU:

l := Γ(σ(x)) pc ⊑ l

〈e, σ〉 ⇓ nm k := pc ⊔ m

〈x := e, σ〉 ⇓pc σ[x 7→ nk]

Figure 3. Assignment rule for NSU

This definition states that for an adversary at secu-
rity level A, two labeled values nk

1 and nm
2 are equiva-

lent iff either A can access both values and n1 and n2

are equal, or it cannot access either value (k 6⊑ A and
m 6⊑ A). The additional constraint k = m in clause (1)
is needed to prove noninterference by induction. Note
that two values labeled L and H respectively are dis-
tinguishable for the L-adversary.

Definition 2. Two stores σ1 and σ2 are A-equivalent,
written σ1 ∼A σ2, iff for every variable x, σ1(x) ∼A

σ2(x).

The following theorem states TINI for the NSU
check. The theorem has been proved for various lan-
guages in the past; we present it here for completeness.

Theorem 1 (TINI for NSU). With the assignment rule
from Figure 3, if σ1 ∼A σ2 and 〈c, σ1〉 ⇓pc σ′

1 and
〈c, σ2〉 ⇓pc σ′

2, then σ′
1 ∼A σ′

2.

Proof. Standard, see e.g., [3]

Although we have restricted our security lattice to
two elements L and H , the rules of Figures 2 and 3, the
definition of equivalence above and the theorem above
(for NSU) are all general and work for arbitrary lattices.

3. Permissive-Upgrade on a Two-Point

Lattice

As described in Section 1, the NSU check is restric-
tive and halts many programs that do not leak in-
formation. To improve permissiveness, the permissive-
upgrade strategy was proposed as a replacement for
NSU by Austin and Flanagan [4]. However, that devel-
opment is limited to a two-point lattice L ⊏ H and to
pointwise products of such lattices. We present the key
results of [4] here (using modified notation and for our
language) and then build a generalization of permissive-
upgrade to arbitrary lattices in the next section. Read-
ers should keep in mind that in this section, the lattice
has only two levels: L (public) and H (confidential).

We introduce a new label P for “partially-leaked”.
We allow labels k, l, m on values to be either elements
of the lattice (L, H) or P . The pc can only be one
of L, H because branching on partially-leaked values is
prohibited. This is summarized by the revised syntax of
labels in Figure 4. The figure also lifts the join operation
⊔ to labels including P . Note that joining any label with
P results in P . For brevity in definitions, we also extend
the order ⊏ to L ⊏ H ⊏ P . However, P is not a new

A := L | H

pc := A

k, l, m := A | P

k ⊔ k = k

L ⊔ H = H

L ⊔ P = P

H ⊔ P = P

Figure 4. Syntax of labels including the partially-
leaked label P

“top” member of the lattice because it receives special
treatment in the semantic rules.

The intuition behind the partial-leak label P is the
following:

A variable with a value labeled P may have been
implicitly influenced by H-labeled values in this
execution, but in other executions (obtainable by
changing H-labeled values in the initial store), this
implicit influence may not exist and, hence, the
variable may be labeled L.

The rule for assignment with permissive-upgrade is

assn-PUS:
l := Γ(σ(x)) 〈e, σ〉 ⇓ nm

〈x := e, σ〉 ⇓pc σ[x 7→ nk]

where k is defined as follows:

k =

m if pc = L

m ⊔ H if pc = H and l = H

P otherwise

The first two conditions in the definition of k correspond
to the NSU rule (Figure 3). The third condition applies,
in particular, when we assign to a variable whose initial
label is L with pc = H . The NSU check would stop
this assignment. With permissive-upgrade, however, we
can give the updated variable the label P , consistent
with the intuitive meaning of P . This allows more
permissiveness by allowing the assignment to proceed in
all cases. To compensate, we disallow any program (in
particular, an adversarial program) from case analyzing
any value labeled P . Consequently, in the rules for
if-then and while (Figure 2), we require that the label
of the branch condition be of form A, which does not
include P .

The noninterference result obtained for NSU earlier
can be extended to permissive-upgrade by changing

the definition of store equivalence. Because no program
can case-analyze a P -labeled value, such a value is
equivalent to any other labeled value.

Definition 3. Two labeled values nk
1 and nm

2 are equiv-
alent, written nk

1 ∼ nm
2 , iff either:

1. (k = m) = L and n1 = n2 or

2. k = m = H or

3. k = P or m = P

Theorem 2 (TINI for permissive-upgrade with a two–
point lattice). With the assignment rule assn-PUS, if
σ1 ∼ σ2 and 〈c, σ1〉 ⇓pc σ′

1 and 〈c, σ2〉 ⇓pc σ′
2, then

σ′
1 ∼ σ′

2.

Proof. See [4].

Note that the above definition and proof are specific
to the two-point lattice.

Generalization from [4] Austin and Flanagan point
out that permissive-upgrade on a two-point lattice, as
described above, can be generalized to a pointwise prod-
uct of such lattices. Specifically, let X be an index set
— these indices are called principals in [4]. Let a label
l be a map of type X → {L, H, P } and let the subclass
of pure labels contain maps A, pc of type X → {L, H}.
The order ⊏ and the join operation ⊔ can be general-
ized pointwise to these labels. Finally, the rule assn-PUS
can be generalized pointwise by replacing it with the
following rule:

assn-PUS’:
l := Γ(σ(x)) 〈e, σ〉 ⇓ nm

〈x := e, σ〉 ⇓pc σ[x 7→ nk]

where k is defined as follows:

k(a) =

m(a) if pc(a) = L

m(a) ⊔ H if pc(a) = H and l(a) = H

P otherwise

It can be shown that for any semantic derivation in
this generalized system, projecting all labels to a given
principal yields a valid semantic derivation in the sys-
tem with a two-point lattice. This immediately implies
noninterference for the generalized system, where ob-
servations are limited to individual principals.

Definition 4. Two labeled values nk
1 and nm

2 are a-
equivalent, written nk

1 ≈a nm
2 , iff either:

1. k(a) = m(a) = L and n1 = n2 or

2. k(a) = m(a) = H or

3. k(a) = P or m(a) = P

Theorem 3 (TINI for permissive-upgrade with a prod-
uct lattice). With the assignment rule assn-PUS’, if
σ1 ≈a σ2 and 〈c, σ1〉 ⇓pc σ′

1 and 〈c, σ2〉 ⇓pc σ′
2, then

σ′
1 ≈a σ′

2.

Proof. Outlined above.

assn-1:
l := Γ(σ(x)) 〈e, σ〉 ⇓ nm l = Ax ∨ l = Ax

⋆ pc ⊑ Ax k := pc ⊔ m

〈x := e, σ〉 ⇓pc σ[x 7→ nk]

assn-2:
l := Γ(σ(x)) 〈e, σ〉 ⇓ nm l = Ax ∨ l = Ax

⋆ pc 6⊑ Ax k := (pc ⊓ Ax)⋆

〈x := e, σ〉 ⇓pc σ[x 7→ nk]

Figure 5. Assignment rules for the generalized permissive-upgrade

A := L | M | . . . | H

pc := A

k, l, m := A | A⋆

A1 ⊔ A2
⋆ := (A1 ⊔ A2)⋆

A1
⋆ ⊔ A2

⋆ := (A1 ⊔ A2)⋆

Figure 6. Labels and label operations

Remark This generalization also makes sense if the
principals are pre-ordered by a relation, say, ≤, with
a ≤ b meaning that “if a has access, then b must
have access”. It can be proved that the following is
an invariant on all labels l that arise during program
execution: ((a ≤ b) ∧ (l(a) = L)) ⇒ l(b) = L. Hence,
the intuitive meaning of the order ≤ is preserved during
execution.

This generalization of the two-point lattice to an
arbitrary product of such lattices is interesting because
an arbitrary powerset lattice can be simulated using
such a product. However, this still leaves open the
question of constructing a generalization of permissive-
upgrade to an arbitrary lattice. We develop such a
generalization in the next section.

4. Permissive-Upgrade on Arbitrary

Lattices

The generalization of permissive-upgrade described in
this section applies to an arbitrary security lattice. For
every element A of the lattice, we introduce a new
label A⋆ which means “partially-leaked A”, with the
following intuition.

A variable labeled A⋆ may contain partially-leaked
data, where A is a lower-bound on the ⋆-free labels
the variable may have in alternate executions.

The syntax of labels is listed in Figure 6. Labels
k, l, m may be lattice elements A or ⋆-ed lattice ele-

1 if (x′)
2 z = y1

3 else

4 z = y2

5 if (x1)
6 z = x1

7 if (not(x2))
8 z = x2

9 if (z)
10 w = z

Listing 3. Example explaining rule assn-2

H

M1 M2

L′L1 L2

L

Figure 7. Lattice explaining rule assn-2

ments A⋆. In examples, we use suggestive lattice ele-
ment names L, M, H (low, medium, high). Labels of the
form A are called ⋆-free or pure. Figure 6 also defines
the join operation ⊔ on labels, which is used to combine
labels of the arguments of ⊙. This definition is based
on the intuition above. When the two operands of ⊙
are labeled A1 and A2

⋆, A1 ⊔ A2 is a lower bound on
the pure label of the resulting value in any execution
(because A2 is a lower bound on the pure label of A2

⋆

in any run). Hence, A1 ⊔ A2
⋆ = (A1 ⊔ A2)⋆. The reason

for the definition A1
⋆ ⊔ A2

⋆ = (A1 ⊔ A2)⋆ is similar.
Our rules for assignment are shown in Figure 5. They

strictly generalize the rule assn-PUS for the two-point
lattice, treating P = L⋆. Rule assn-1 applies when the
existing label of the variable being assigned to is Ax or
Ax

⋆ and pc ⊑ Ax. The key intuition behind the rule is
the following: If pc ⊑ Ax, then it is safe to overwrite the
variable, because Ax is necessarily a lower bound on the
(pure) label of x in this and any alternate execution (see

w = falseL1 , x1 = trueL1 , y1 = falseM1 , y2 = trueM2

x′ = trueL
′

x′ = falseL
′

x2 = trueL2 x2 = falseL2

assn-2 with condition k := Ax
⋆ assn-2 with condition k := (pc ⊓ Ax)⋆

if (x′) if-branch taken, pc = L′

z = y1 z = falseM1

else else-branch taken, pc = L′ else-branch taken, pc = L′

z = y2 z = trueM2 z = trueM2

if (x1) branch taken, pc = L1 branch taken, pc = L1 branch taken, pc = L1

z = x1 z = trueL1 z = trueM2
⋆

z = trueL
⋆

if (not(x2)) branch not taken branch taken, pc = L2 branch taken, pc = L2

z = x2 z = falseL2 z = falseL
⋆

if (z) branch taken, pc = L1 branch not taken execution halted
w = z w = trueL1

Result w = trueL1 w = falseL1 (leak) execution halted (no leak)

Table 1. Execution steps in two runs of the program from Listing 3, with two variants of the rule assn-2

the framebox above). Hence, overwriting the variable
cannot cause an implicit flow. As expected, the label of
the overwritten variable is pc ⊔ m, where m is the label
of the value assigned to x.

Rule assn-2 applies in the remaining case — when
pc 6⊑ Ax. In this case, there may be an implicit flow,
so the final label on x must have the form A⋆ for some
A. The question is which A? Intuitively, it may seem
that one could choose A = Ax, the pure part of the
original label of x. The final label on x would be Ax

⋆

and this would satisfy the intuitive meaning of ⋆ written

in the framebox above. Indeed, this intuition suffices
for the two-point lattice of Section 3. However, for a
more general lattice, this intuition is unsound, as we
illustrate with an example below. The correct label is
(pc ⊓ Ax)⋆. (Note that this correct label is independent
of the label m of the value assigned to x. This is sound
because x is ⋆-ed and cannot be case-analyzed later, so
the label on the value in it is irrelevant.)

Example We illustrate why we need the label k :=
(pc ⊓ Ax)⋆ instead of k := Ax

⋆ in rule assn-2. Consider
the lattice of Figure 7 and the program of Listing 3.
Assume that, initially, the variables z, w, x1, x′, x2,
y1 and y2 have labels H , L1, L1, L′, L2, M1 and
M2, respectively. Fix the attacker at level L1. Fix the
value of x1 at trueL1 , so that the branch on line 5 is
always taken and line 6 is always executed. Set y1 7→
falseM1 , y2 7→ trueM2 , w 7→ falseL1 initially. The
initial value of z is irrelevant. Consider two executions
of the program starting from two stores σ1 with x′ 7→
trueL

′

, x2 7→ trueL2 and σ2 with x′ 7→ falseL
′

, x2 7→
falseL2 . Note that because L′ and L2 are incomparable
to L1 in the lattice, σ1 and σ2 are equivalent for L1.

We show that requiring k := Ax
⋆ in rule assn-

2 causes an implicit flow that is observable for L1.

The intermediate values and labels of the variables for
executions starting from σ1 and σ2 are shown in the
second and third columns of Table 1. Starting with σ1,
line 2 is executed, but line 4 is not, so z ends with
falseM1 at line 5 (rule assn-1 applies at line 2). At
line 6, z contains trueL1 (again by rule assn-1) and
line 8 is not executed. Thus, the branch on line 9 is taken
and w ends with trueL1 at line 10. Starting with σ2,
line 2 is not executed, but line 4 is, so z becomes trueM2

at line 5 (rule assn-1 applies at line 4). At line 6, rule
assn-2 applies, but because we assume that k := Ax

⋆

in that rule, z now contains the value trueM2
⋆

. As the
branch on line 7 is taken, at line 8, z becomes falseL2

by rule assn-1 because L2 ⊑ M2. Thus, the branch on
line 9 is not taken and w ends with falseL1 in this
execution. Hence, w ends with trueL1 and falseL1 in
the two executions, respectively. The attacker at level
L1 can distinguish these two results; hence, the program
leaks the value of x′ and x2 to L1.

With the correct assn-2 rule in place, this leak is
avoided (last column of Table 1). In that case, after
the assignment on line 6 in the second execution, z

has label (M2 ⊓ L1)⋆ = L⋆. Subsequently, after line 8,
z gets the label L⋆. As case analysis on a ⋆-ed value
is not allowed, the execution is halted on line 9. This
guarantees termination-insensitive noninterference with
respect to the attacker at level L1.

4.1 Store equivalence

To prove noninterference for our generalized permissive-
upgrade, we define equivalence of labeled values rela-
tive to an adversary at arbitrary lattice level A. The
definition is shown below. We explain later how it is
obtained, but we note that clauses (3)–(5) here refine
clause (3) of Definition 4 for the two-point lattice. The
obvious generalization of clause (3) of Definition 4 —

nk
1 ∼A nm

2 whenever either k or m is ⋆-ed — is too
coarse to allow us to prove noninterference inductively.
For the degenerate case of the two-point lattice, this
definition also degenerates to Definition 4 (there, A is
fixed at L, P = L⋆ and only L may be ⋆-ed).

Definition 5. Two values nk
1 and nm

2 are A-equivalent,
written nk

1 ∼A nm
2 , iff either

1. k = m = A′ ⊑ A and n1 = n2, or

2. k = A′ 6⊑ A and m = A′′ 6⊑ A, or

3. k = A1
⋆ and m = A2

⋆, or

4. k = A1
⋆ and m = A2 and (A2 6⊑ A or A1 ⊑ A2), or

5. k = A1 and m = A2
⋆ and (A1 6⊑ A or A2 ⊑ A1)

We obtained this definition by constructing (through
examples) an extensive transition graph of pairs of la-
bels that may be assigned to a single variable at cor-
responding program points in two executions of the
same program. Our starting point is label-pairs of the
form (A, A). We discovered that this characterization
of equivalence is both sufficient and necessary. It is suf-
ficient in the sense that it allows us to prove TINI in-
ductively. It is necessary in the sense that example pro-
grams can be constructed that end in states exercis-
ing every possible clause of this definition. A technical
appendix, available from the authors’ homepages, lists
these examples.

4.2 Termination-Insensitive Noninterference

Using the above definition of equivalence of labeled val-
ues, we can prove TINI for our generalized permissive-
upgrade. A significant difficulty in proving the theorem
is that our definition of ∼A is not transitive. The same
problem arises for the two-point lattice in [4]. There, the
authors resolve the issue by defining a special relation
called evolution. Here, we follow a more conventional
approach based on the standard confinement lemma.
The need for evolution is averted using several auxil-
iary lemmas that we list below. Detailed proofs of all
lemmas and theorems are presented in our technical ap-
pendix.

Lemma 1 (Expression evaluation). If 〈e, σ1〉 ⇓ nk1

1 and
〈e, σ2〉 ⇓ nk2

2 and σ1 ∼A σ2, then nk1

1 ∼A nk2

2 .

Proof. By induction on e.

Lemma 2 (⋆-preservation). If 〈c, σ〉 ⇓pc σ′ and Γ(σ(x)) =
A⋆ and pc 6⊑ A, then Γ(σ′(x)) = A′⋆ and A′ ⊑ A.

Proof. By induction on the given derivation.

Corollary 1. If 〈c, σ〉 ⇓pc σ′ and Γ(σ(x)) = A⋆ and
Γ(σ′(x)) = A′, then pc ⊑ A.

Proof. Immediate from Lemma 2.

HH

LH HL

LL

Figure 8. A powerset/product lattice

Lemma 3 (pc-lemma). If 〈c, σ〉 ⇓pc σ′ and Γ(σ′(x)) =
A, then σ(x) = σ′(x) or pc ⊑ A.

Proof. By induction on the given derivation.

Corollary 2. If 〈c, σ〉 ⇓pc σ′ and Γ(σ(x)) = A⋆ and
Γ(σ′(x)) = A′, then pc ⊑ A′.

Proof. Immediate from Lemma 3.

Using these lemmas, we can prove the standard con-
finement lemma and noninterference.

Lemma 4 (Confinement Lemma). If pc 6⊑ A and
〈c, σ〉 ⇓pc σ′, then σ ∼A σ′.

Proof. By induction on the given derivation.

Theorem 4 (TINI for generalized permissive-upgrade).
If σ1 ∼A σ2 and 〈c, σ1〉 ⇓pc σ′

1 and 〈c, σ2〉 ⇓pc σ′
2, then

σ′
1 ∼A σ′

2.

Proof. By induction on c.

4.3 Incomparability to the Generalization of

Section 3

We have two distinct and sound generalizations of the
original permissive-upgrade for the two-point lattice:
The generalization to pointwise products of two-point
lattices or, equivalently, to powerset lattices as de-
scribed in Section 3, and the generalization to arbitrary
lattices described earlier in this section. For brevity, we
call these generalization puP and puA, respectively (P
and A stand for powerset and arbitrary, respectively).
Since both puP and puA apply to powerset lattices,
an obvious question is whether one is more permissive
than the other on such lattices. We show here that the
permissiveness of puP and puA on powerset lattices
is incomparable — there are examples on which each
generalization is more permissive than the other. We
explain one example in each direction below. Roughly,
incomparability exists because puP tracks finer taints
(it tracks partial leaks for each principal separately),
but puA’s rules for overwriting partially-leaked vari-
ables are more permissive.

We use the powerset lattice of Figure 8 for both our
examples. This lattice is the pointwise lifting of the
order L ⊏ H to the set S = {L, H} × {L, H}. For
brevity, we write this lattice’s elements as LL, LH , etc.

1 if (y)
2 z = 2
3 x = y + z

4 if (y)
5 x = 3
6 if (x)
7 y = 5

Listing 4. Example where puA is more permissive
than puP

1 if (y)
2 x = 2
3 if (z)
4 x = z

5 if (x)
6 z = x

Listing 5. Example where puP is more permissive than
puA

When puP is applied to this lattice, labels are drawn
from the set {L, H, P }×{L, H, P }. We write these labels
concisely as LP , HL, etc. For puA, labels are drawn
from the set S ∪ S⋆. We write these labels LH , LH⋆,
etc. Note that LH⋆ parses as (LH)⋆, not L(H⋆) (the
latter is not a valid label in puA applied to this lattice).

Example We start with an example program which
executes completely under puA, but gets stuck under
puP (since puA is sound, there is no actual information
leak in the program). This example is shown in List-
ing 4. Assume that x, y and z have initial labels LL,
HH and LH , respectively and that y 7→ trueHH , so
the branches on lines 1 and 4 are both taken. The ini-
tial values of x and z are irrelevant but their labels are
relevant.

Under puP, z obtains label P H at line 2 by rule assn-
PUS’. At line 3, x obtains the label (HH)⊔(P H) = P H .
At line 5, the label of x stays P H by rule assn-PUS’. At
line 6, the program halts because the branch condition
x’s label contains P .

On the other hand, under puA, the program executes
to completion. At line 2, z obtains the label ((HH) ⊓
(LH))⋆ = LH⋆ by rule assn-2. At line 3, x obtains the
label (HH) ⊔ (LH⋆) = HH⋆. At line 5, the label of x

changes to HH : the pc at this point (equal to the label
of y) is HH , so rule assn-1 applies. Since HH is pure,
the program does not stop at line 6.

Hence, on this example, puA is more permissive than
puP.

Example Next, consider the program in Listing 5.
For this program, puP is more permissive than puA.
Assume that x, y and z have initial labels LH , HL

and LH , respectively and that the initial store contains
y 7→ trueHL, z 7→ trueLH , so the branches on lines 1
and 3 are both taken. The initial value in x is irrelevant
but its label is important.

Under puA, x obtains label ((HL) ⊓ (LH))⋆ = LL⋆

at line 2 by rule assn-2. At line 4, the same rule applies
but the label of x remains LL⋆. When the program tries
to branch on x at line 5, it is stopped.

In contrast, under puP, this program executes to
completion. At line 2, the label of x changes to P H

by rule assn-PUS’. At line 4, the label changes to LH

because pc and the label of z are both LH . Since this
new label has no P , line 5 executes without halting.

Hence, for this example, puP is more permissive than
puA.

5. Related Work

We directly build on, and generalize, the permissive-
upgrade check of Austin and Flanagan [4]. Earlier sec-
tions describe the connection of that work to ours. In
recent work, we implemented the permissive-upgrade
check for JavaScript’s bytecode in the WebKit browser
engine [5]. Our formalization in that work is limited to
the two-point lattice, and generalizing that formaliza-
tion motivated this paper. In working with JavaScript
bytecode, we found permissive-upgrade indispensable:
The source-to-bytecode compiler in WebKit generates
assignments to dead variables under high pc, which halts
program execution if the no-sensitive-upgrade check
(NSU) is used instead of permissive-upgrade.

The permissive-upgrade check is just one of many
ways of avoiding implicit flows in dynamic IFC when
labels on variables are flow-sensitive (not fixed upfront).
A pre-cursor to the permissive-upgrade is the NSU
check, first proposed by Zdancewic [22]. A different way
of handling the problem of implicit flows through flow-
sensitive labels is to assign a (fixed) label to each la-
bel; this approach has been examined in recent work by
Buiras et al. in the context of a language with a dedi-
cated monad for tracking information flows [7]. The pre-
cise connection between that approach and permissive-
upgrade remains unclear, although Buiras et al. sketch a
technique related to permissive-upgrade in their system,
while also noting that generalizing permissive-upgrade
to arbitrary lattices is non-obvious. Our work confirms
the latter and shows how it can be done.

Birgisson et al. [6] describe a testing-based approach
that adds variable upgrade annotations to avoid halting
on the NSU check in an implementation of dynamic IFC
for JavaScript [13]. Hritcu et al. improve permissive-
ness by making IFC errors recoverable in the language
Breeze [14]. This is accomplished by a combination of
two methods: making all labels public (by upgrading
them when necessary in a public pc) and by delaying
exceptions.

Finally, IFC with flow-sensitive labels can be en-
forced statically or using hybrid techniques that com-
bine static and dynamic methods [15, 19]. Russo et

al. [19] show formally that the expressive power of
sound flow-sensitive static analysis and sound flow-
sensitive dynamic monitors is incomparable. Hence,
there is merit to investigating hybrid approaches.

6. Conclusion

Permissive-upgrade is a useful technique for avoiding
implicit flows in dynamic information flow control. How-
ever, the technique’s initial development was limited
to a two-point lattice and pointwise products of such
lattices. We show, by construction, that permissive-
upgrade can be generalized to arbitrary lattices and
that the generalization’s rules and correctness defini-
tions are non-trivial.

Acknowledgments

We thank anonymous reviewers for their excellent feedback

on this paper’s presentation. This work was funded in part

by the Deutsche Forschungsgemeinschaft (DFG) grant “In-

formation Flow Control for Browser Clients” under the pri-

ority program “Reliably Secure Software Systems” (RS3),

and the German Federal Ministry of Education and Re-

search (BMBF) within the Center for IT-Security, Privacy

and Accountability (CISPA) at Saarland University.

References

[1] A. Askarov and A. Sabelfeld. Tight enforcement of
information-release policies for dynamic languages. In
Proc. IEEE Computer Security Foundations Symposium
(CSF), pages 43–59, 2009.

[2] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands.
Termination-insensitive noninterference leaks more
than just a bit. In Proc. European Symposium on Re-
search in Computer Security (ESORICS), pages 333–
348, 2008.

[3] T. H. Austin and C. Flanagan. Efficient purely-dynamic
information flow analysis. In Proc. ACM SIGPLAN
Workshop on Programming Languages and Analysis for
Security (PLAS), pages 113–124, 2009.

[4] T. H. Austin and C. Flanagan. Permissive dynamic
information flow analysis. In Proc. ACM SIGPLAN
Workshop on Programming Languages and Analysis for
Security (PLAS), pages 3:1–3:12, 2010.

[5] A. Bichhawat, V. Rajani, D. Garg, and C. Hammer.
Information flow control in WebKit’s JavaScript Byte-
code. In Proc. Conference on Principles of Security and
Trust (POST), pages 159–178, 2014.

[6] A. Birgisson, D. Hedin, and A. Sabelfeld. Boosting the
permissiveness of dynamic information-flow tracking by
testing. In Proc. European Symposium on Research in
Computer Security (ESORICS), pages 55–72, 2012.

[7] P. Buiras, D. Stefan, A. Russo, and D. Mazieres. On
dynamic flow-sensitive floating label systems. In Proc.
IEEE Symposium on Computer Security Foundations
(CSF), 2014. To appear.

[8] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged
information flow for JavaScript. In Proc. ACM Confer-
ence on Programming Language Design and Implemen-
tation (PLDI), pages 50–62, 2009.

[9] D. E. Denning and P. J. Denning. Certification of
programs for secure information flow. Communications
of the ACM, 20(7):504–513, July 1977.

[10] D. Devriese and F. Piessens. Noninterference through
secure multi-execution. In Proc. IEEE Symposium on
Security and Privacy (Oakland), pages 109–124, 2010.

[11] S. Guarnieri, M. Pistoia, O. Tripp, J. Dolby, S. Teilhet,
and R. Berg. Saving the World Wide Web from vulner-
able JavaScript. In Proc. International Symposium on
Software Testing and Analysis (ISSTA), pages 177–187,
2011.

[12] G. L. Guernic, A. Banerjee, T. Jensen, and D. A.
Schmidt. Automata-based confidentiality monitoring.
In Proc. Asian Computing Science Conference on Se-
cure Software (ASIAN), pages 75–89, 2006.

[13] D. Hedin and A. Sabelfeld. Information-flow security for
a core of JavaScript. In Proc. IEEE Computer Security
Foundations Symposium (CSF), pages 3–18, 2012.

[14] C. Hritcu, M. Greenberg, B. Karel, B. C. Pierce, and
G. Morrisett. All your IFCException are belong to
us. In Proc. IEEE Symposium on Security and Privacy
(Oakland), pages 3–17, 2013.

[15] S. Hunt and D. Sands. On flow-sensitive security
types. In Proc. ACM-SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL),
pages 79–90, 2006.

[16] G. Le Guernic. Automaton-based confidentiality mon-
itoring of concurrent programs. In Proc. IEEE Com-
puter Security Foundations Symposium (CSF), pages
218–232, 2007.

[17] A. C. Myers. JFlow: Practical mostly-static information
flow control. In Proc. ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL),
pages 228–241, 1999.

[18] F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and
G. Vigna. Cross-site scripting prevention with dynamic
data tainting and static analysis. In Proc. Network and
Distributed System Security Symposium (NDSS), 2007.

[19] A. Russo and A. Sabelfeld. Dynamic vs. static flow-
sensitive security analysis. In Proc. IEEE Computer
Security Foundations Symposium (CSF), pages 186–
199, 2010.

[20] A. Sabelfeld and A. Russo. From dynamic to static
and back: Riding the roller coaster of information-flow
control research. In Proc. Perspectives of Systems In-
formatics (PSI), pages 352–365, 2010.

[21] D. Volpano, C. Irvine, and G. Smith. A sound type
system for secure flow analysis. Journal of Computer
Security, 4(2-3):167–187, 1996.

[22] S. A. Zdancewic. Programming Languages for Informa-
tion Security. PhD thesis, Cornell University, 2002.

