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Abstract

We introduce a family of implicit probabilistic integrators for initial value problems
(IVPs), taking as a starting point the multistep Adams–Moulton method. The
implicit construction allows for dynamic feedback from the forthcoming time-
step, in contrast to previous probabilistic integrators, all of which are based on
explicit methods. We begin with a concise survey of the rapidly-expanding field of
probabilistic ODE solvers. We then introduce our method, which builds on and
adapts the work of Conrad et al. (2016) and Teymur et al. (2016), and provide a
rigorous proof of its well-definedness and convergence. We discuss the problem of
the calibration of such integrators and suggest one approach. We give an illustrative
example highlighting the effect of the use of probabilistic integrators—including
our new method—in the setting of parameter inference within an inverse problem.

1 Set-up, motivation and context

We consider the common statistical problem of inferring model parameters ✓ from data Y . In a
Bayesian setting, the parameter posterior is given by p(✓|Y ) / p(Y |✓)p(✓). Suppose we have a
regression model in which the likelihood term p(Y |✓) requires us to solve an ordinary differential
equation (ODE). Specifically, for each datum, we have Yj = x(tYj ) + "j for some latent function
x(t) satisfying ẋ = f(x, ✓) and vector of measurement errors " with spread parameter �.

We can write the full model as p(✓,�, x|Y ) / p(Y |x,�)p(x|✓)p(✓)p(�). Since x is latent, it is
included as an integral part of the posterior model. This more general decomposition would not need
to be considered explicitly in, say, a linear regression model for which x = ✓1 + ✓2t; here we would
simply have p(x|✓) = �x(✓1 + ✓2t). In other words, given ✓ there is no uncertainty in x, and the
model would reduce to simply p(✓,�|Y ) / p(Y |✓,�)p(✓)p(�).
In our case, however, x is defined implicitly through the ODE ẋ = f(x, ✓) and p(x|✓) is therefore
no longer trivial. What we mean by this is that x can only be calculated approximately and thus—
following the central principle of probabilistic numerical methods (Hennig et al., 2015)—we assign
to it a probability distribution representing our lack of knowledge about its true value. Our focus here
is on initial value problems (IVPs) where we assume the initial value X0 ⌘ x(0) is known (though
an extension to unknown X0 is straightforward). We thus have the setup

p(✓,�, x|Y,X0) / p(Y |x,�)p(x|✓, X0)p(✓)p(�). (1)

For our purposes, the interesting term on the right-hand side is p(x|✓), where hereafter we omit X0.
In the broadest sense, our aim is to account as accurately as possible for the numerical error which
is inevitable in the calculation of x, and to do this within a probabilistic framework by describing
p(x|✓). We then wish to consider the effect of this uncertainty as it is propagated through (1), when
performing inference on ✓ in an inverse problem setting. An experimental example in this context is
considered in Section 3.
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1.1 Probabilistic numerical methods

Before we give a summary of the current state of probabilistic numerical methods (PN) for ODEs,
we take a brief diversion. It is interesting to note that the concept of defining a distribution for p(x|✓)
has appeared in the recent literature in different forms. For example, a series of papers (Calderhead
et al., 2009; Dondelinger et al., 2013; Wang and Barber, 2014; Macdonald et al., 2015), which arose
separately from PN in its modern form, seek to avoid solving the ODE entirely and instead replace
it with a ‘surrogate’ statistical model, parameterised by �, with the primary motivation being to
reduce overall computation. The central principle in these papers is to perform gradient matching
(GM) between the full and surrogate models. A consequence of this framework is the introduction
of a distribution p(x|✓,�) akin to the p(x|✓) appearing in (1). The aim is to approximate x using
statistical techniques, but there is no attempt to model the error itself—instead, simply an attempt to
minimise the discrepancy between the true solution and its surrogate. Furthermore, the parameters
� of the surrogate models proposed in the GM framework are fitted by conditioning on data Y,

meaning p(x|✓,�) needs to be viewed as a data-conditioned posterior p(x|✓,�, Y ). In our view this
is problematic, since where the uncertainty in a quantity of interest arises solely from the inexactness
of the numerical methods used to calculate it, inference over that quantity should not be based on
data that is the outcome of an experiment. The circularity induced in (1) by Y-conditioning is clear.

The fundamental shift in thinking in the papers by Hennig and Hauberg (2014) and Chkrebtii et al.
(2016), building on Skilling (1991), and then followed up and extended by Schober et al. (2014),
Conrad et al. (2016), Teymur et al. (2016), Kersting and Hennig (2016), Schober et al. (2018) and
others is that of what constitutes ‘data’ in the algorithm used to determine p(x|✓). By contrast to
the GM approach, the experimental data Y is not used in constructing this distribution. Though
the point has already been made tacitly in some of these works, we argue that this constitutes the
key difference in philosophy. Instead, we should strive to quantify the numerical uncertainty in x

first, then propagate this uncertainty via the data likelihood to the Bayesian inversion employed
for inferring ✓. This is effectively direct probabilistic modelling of the numerical error and is the
approach taken in PN.

How then is x inferred in PN? The common thread here is that a discrete path Z ⌘ Z1:N is generated
which numerically approximates X ⌘ X1:N—the discretised version of the true solution x—then
‘model interrogations’ (Chkrebtii et al., 2016) F := f(Z, ✓) are thought of as a sort of numerical
data and x is inferred based on these. Done this way, an entirely model-based description of the
uncertainty in x results, with no recourse to experimental data Y .

1.2 Sequential inference

Another central feature of PN solvers from Chkrebtii et al. (2016) onward is that of treating the
problem sequentially, in the manner of a classic IVP integrator. In all of the GM papers, and indeed
in Hennig and Hauberg (2014), X is treated as a block – inferred all at once, given data Y (or, in
Hennig and Hauberg, F ). This necessarily limits the degree of feedback possible from the dynamics
of the actual ODE, and in a general IVP this may be the source of significant inaccuracy, since errors
in the inexact values Z approximating X are amplified by the ODE itself. In a sequential approach,
the numerical data is not a static pre-existing object as the true data Y is, but rather is generated as
we go by repeatedly evaluating the ODE at a sequence of input ordinates. Thus it is clear that the
numerical data generated at time t is affected by the inferred solution at times before t. This iterative
information feedback is qualitatively much more like a standard IVP solver than a block inference
approach and is similar to the principle of statistical filtering (Särkkä, 2013).

We now examine the existing papers in this area more closely, in order to give context to our own
contribution in the subsequent section. In Chkrebtii et al. (2016) a Gaussian process (GP) prior is
jointly placed over x and its derivative ẋ, then at step i the current GP parameters are used to predict
a value for the state at the next step, Zi+1. This is then transformed to give Fi+1 ⌘ f(Zi+1, ✓).
The modelling assumption now made is that this value is distributed around the true value of the
derivative Ẋi+1 with Gaussian error. On this basis the new datum is assimilated into the model,
giving a posterior for (x, ẋ) which can be used as the starting prior in the next step. This approach
does not make direct use of the sequence Z; rather it is merely generated in order to produce the
numerical data F which is then compared to the prior model in derivative space. The result is a
distributional Gaussian posterior over x consistent with the sequence F .
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Conrad et al. (2016) take a different approach. Treating the problem in a discrete setting, they
produce a sequence Z of values approximating X , with Fi+1 ⌘ f(Zi+1, ✓) constituting the data and
Zi+1 calculated from the previous values Zi and Fi by employing some iterative relation akin to a
randomised version of a standard IVP solver. Note that there is no attempt to continuously assimilate
the generated values into the model for the unknown X or Ẋ during the run of the algorithm. Instead,
the justification for the method comes post hoc in the form of a convergence theorem bounding the
maximum expected squared-error maxi E||Zi�Xi||2. An extension to multistep methods—in which
Zi+1 is allowed to depend on multiple past values Fi —is introduced in Teymur et al. (2016) and
utilises the same basic approach. Various extensions and generalisations of the theoretical results in
these papers are given in Lie et al. (2017), and a related idea in which the step-size is randomised is
proposed by Abdulle and Garegnani (2018).

This approach is intuitive, allowing for modified versions of standard algorithms which inherit known
useful properties, and giving provable expected error bounds. It is also more general since it allows
for non-parametric posterior distributions for x, though it relies on Monte Carlo sampling to give
empirical approximations to it. Mathematically, we write

p(Z|✓) =
Z

p(Z,F |✓) dF =

Z "
N�1Y

i=0

p(Fi|Zi, ✓)p(Zi+1|Zi, Fi)

#
dF. (2)

Here, Z ⌘ Z1:N is the approximation to the unknown discretised solution function X ⌘ X1:N ,
and each Fi ⌘ f(Zi, ✓) is a piece of numerical data. We use Fi to mean (Fi, Fi�1, Fi�2, . . . ).
Using the terminology of Hennig et al. (2015), the two constituent components of the telescopic
decomposition in the right-hand side of (2) correspond to the ‘decision rule’ (how the algorithm
generates a new data-point Fi) and the ‘generative model’ (which encodes the likelihood model for
Z) respectively. Note that, from a statistical viewpoint, the method explicitly defines a distribution
over numerical solutions Z rather than an uncertainty centred around the true solution x (or X). The
relationship of the measure over Z to that over X is then guaranteed by the convergence analysis.

The term p(Fi|Zi, ✓) is taken in both Conrad et al. (2016) and Teymur et al. (2016) to be simply
a deterministic transformation; this could be written in distributional form as �Fi(f(Zi, ✓)). The
term p(Zi+1|Zi, Fi) is given by Conrad et al. as a Gaussian centred around the output Zdet

i+1 of
any deterministic single step IVP solver, with variance scaled in accordance with the constraints of
their theorem. Teymur et al. introduce a construction for this term which permits conditioning on
multiple previous Fi’s and has mean equivalent to the multistep Adams–Bashforth method. They
give the corresponding generalised convergence result. Their proof is also easily verified to be valid
for implicit multistep methods—a result we appeal to later—though the specific implicit integrator
model they suggest is methodologically inconsistent, for reasons we will explain in Section 2.

In all of the approaches described so far, Monte Carlo sampling is required to marginalise F and
thereby calculate p(Z|✓). This constitutes an appreciable computational overhead. A third approach,
related to stochastic filtering, is presented in Schober et al. (2014), Kersting and Hennig (2016) and
Schober et al. (2018). These papers develop a framework which does not rely on sampling, but instead
makes the simplifying assumption that all distributions are Gaussian, and propagates the uncertainty
from step to step using the theory of Kalman filtering (Särkkä, 2013). This is an alternative settlement
to the accuracy/computational cost trade-off, a point which is acknowledged in those papers.

For the sake of comparison, we can loosely rewrite their general approach in our notation as follows:

p(x|✓) =
Z Y

i

p(Z̃i+1|x[i]
, F0:i)p(Fi+1|Z̃i+1, ✓)p(x

[i+1]|Z̃i+1, Fi+1)

�
dF dZ̃, (3)

where we write x
[i] instead of Zi to emphasise that this represents an i-times updated model for the

continuous solution x, rather than the i’th iteration of an algorithm which generates an approximation
to the discrete Xi. This algorithm predicts a value for the new state Z̃i+1 from the current model and
all previous data, then generates a data point based on that prediction, and then updates the model
based on this new datum. Note that all distributions in this framework are Gaussian, to permit fast
filtering, and as a result the non-linearities in f are effectively linearised, and any numerical method
which produces non-Gaussian errors has Gaussians fitted to them anyway.

This filtering approach is interesting because of the earlier-stated desideratum of maximising the
degree of feedback from the ODE dynamics to the solver. The predict-evaluate-update approach
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suggested by (3) means that information from the ODE function at the next time step ti+1 is fed
back into the procedure at each step, unlike in other methods which only predict forwards. In
numerical analysis this is typically a much-desired feature, leading to methods with improved stability
and accuracy. However, it is still a three-part procedure, analogous for example to paired Adams–
Bashforth and Adams–Moulton integrators used in PEC mode (Butcher, 2008). This connection is
referred to in Schober et al. (2018).

2 Our proposed method

We now propose a different, novel sequential procedure which also incorporates information from
the ODE at time step ti+1 but does so directly. This produces a true implicit probabilistic integrator,
without a subtle inconsistency present in the method suggested by Teymur et al. (2016). There, the
analogue of (2) defines a joint Gaussian distribution over Zi+1 and Fi+1 (the right-hand component,
with Fi replaced by F(i+1)) but then generates Fi+1 by passing Zi+1 through the function f (the
left hand component). This gives two mutually-incompatible meanings to Fi+1, one linearly and one
non-linearly related to Zi+1. Our proposed method fixes this problem. Indeed, we specifically exploit
the difference in these two quantities by separating them out and directly penalising the discrepancy
between them.

To introduce the idea we consider the one-dimensional case first, then later we generalise to a multi-
dimensional context. We first note that unlike in the explicit randomised integrators of Conrad et al.
(2016) and Teymur et al. (2016), we do not have access to the exact deterministic Adams–Moulton
predictor, to which we could then add a zero-mean perturbation. An alternative approach is therefore
required. Consider instead the following distribution which directly advances the integrator one step
and depends only the current point:

p(Zi+1 = z|Zi, ✓, ⌘) / g(r(z), ⌘). (4)

Here, r(z) is a positive discrepancy measure in derivative space defined in the next paragraph, and
g is an ⌘-scaled functional transformation which ensures that the expression is a valid probability
distribution in the variable z.

A concrete example will illuminate the definition. Consider the simplest implicit method, backward
Euler. This is defined by the relation Zi+1 = Zi + hFi+1 and typically can only be solved by an
iterative calculation, since Fi+1 ⌘ f(Zi+1, ✓) is of course unknown. If the random variable Zi+1 has
value z, then we may express Fi+1 as a function of z. Specifically, we have Fi+1(z) = h

�1(z � Zi).
The discrepancy r(z) between the value of Fi+1(z) and the value of f(z, ✓) can then be used as
a measure of the error in the linear method, and penalised. This is equivalent to penalising the
difference between the two different expressions for Fi+1 arising from the previously-described naive
extension of (2) to the implicit case. We write

p(Zi+1 = z|Zi, ✓, ⌘) = K
�1 exp

⇣
� 1

2⌘
�2

�
h
�1(z � Zi)� f(z, ✓)

�2⌘
. (5)

Comparing (4) and (5), r(z) is the expression h
�1(z � Zi) � f(z, ✓), and g is in this case the

transformation u 7! exp(�u
2
/2⌘2). This approach directly advances the solver in a single leap,

without collecting explicit numerical data as in previous approaches. It is in general non-parametric
and requires either sampling or approximation to be useful (more on which in the next section). Since
f is in general non-linear, it follows that r is non-linear too. It then follows that the density in equation
(5) does not result in a Gaussian measure, despite g being a squared-exponential transformation.
The generalisation to higher order implicit linear multistep methods of Adams–Moulton (AM) type,
having the form Zi+1 = Zi + h

Ps�1
j=�1 �jf(Zi�j , ✓), for AM coefficients �j , follows as

p(Zi+1 = z|Zi, ✓, ⌘) =
1

K
exp

0

@� 1

2⌘2

 
h
�1(z � Zi)�

Ps�1
j=0 �jFi�j

��1
� f(z, ✓)

!2
1

A . (6)

2.1 Mathematical properties of the proposed method

The following analysis proves the well-definedness and convergence properties of the construction
proposed in Section 2. First we show that the distribution (6) is well-defined and proper, by proving
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the finiteness and strict positivity of the normalising constant K. We then describe conditions on
the h-dependence of the scaling parameter ⌘, such that the random variables ⇠i in (8) satisfy the
hypotheses of Theorem 3 in Teymur et al. (2016). In particular, the convergence of our method
follows from the Adams–Moulton analogue of that result.

Denote by  h
✓,s : Rd⇥s ! Rd the deterministic map defined by the s-step Adams–Moulton method.

For example, the implicit map associated with the backward Euler method—the ‘zero step’ AM
method—for a fixed parameter ✓ is  h

✓,0(Zi) = Zi + hf( h
✓,0(Zi), ✓). More generally, the map

associated with the s-step AM method is

 h
✓,s(Zi�s+1:i) = Zi + h

h
��1f

�
 h

✓,s(Zi�s+1:i), ✓
�
+
Ps�1

j=0 �jf(Zi�j , ✓)
i
, (7)

where Zi�s+1:i ⌘ (Zi, Zi�1, . . . , Zi�s+1), and the �j 2 R+ are the Adams–Moulton coefficients.
Note that  h

✓,s(Zi�s+1:i) represents the deterministic Adams–Moulton estimate for Zi+1. Given a
probability space (⌦,F ,P), define for every i 2 N the random variable ⇠

h
i : ⌦! Rd according to

Zi+1 =  h
✓,s(Zi�s+1:i) + ⇠

h
i . (8)

The relationship between the expressions (6) and (8) is addressed in part (i) of the following Theorem,
the proof of which is given in the supplementary material accompanying this paper.
Theorem. Assume that the vector field f(·, ✓) is globally Lipschitz with Lipschitz constant Lf,✓ > 0.

Fix s 2 N [ {0}, Zi�s+1:i 2 Rd⇥s
, ✓ 2 Rq

, and 0 < h < (Lf,✓��1)�1
. If ⌘ = kh

⇢
for some k > 0

independent of h and ⇢ � �1, then the following statements hold:

(i) The function defined in (6) is a well-defined probability density.

(ii) For every r � 1, there exists a constant 0 < Cr < 1 that does not depend on h, such that

for all i 2 N, E[k⇠ikr]  Crh
(⇢+1)r

.

(iii) If ⇢ � s+ 1
2 , the probabilistic integrator defined by (6) converges in mean-square as h ! 0,

at the same rate as the deterministic s-step Adams–Moulton method.

2.2 Multi-dimensional extension

The extrapolation part of any linear method operates on each component of a multi-dimensional
problem separately. Thus if Z = (Z(1)

, . . . , Z
(d))T , we have Z

(k)
i+1 = Z

(k)
i + h

P
j �jF

(k)
i�j for

each component k in turn. Of course, this is not true of the transformation Zi+1 7! Fi+1 ⌘
f(Zi+1), except in the trivial case where f is linear in z; thus in (2), the right-hand distribution is
componentwise-independent while the left-hand one is not. All previous sequential PN integrators
have treated the multi-dimensional problem in this way, as a product of one-dimensional relations.

In our proposal it does not make sense to consider the system of equations component by component,
due to the presence of the non-linear f(z, ✓) term, which appears as an intrinsic part of the step-
forward distribution p(Zi+1|Zi, ✓, ⌘). The multi-dimensional analogue of (6) should take account
of this and be defined over all d dimensions together. For vector-valued z, Zk, Fk, we therefore define

p(Zi+1|Zi, ✓, H) / exp
�
� 1

2r(z)
T
H

�1
r(z)

 
. (9)

where r(z) = �
�1
�1(h

�1(z�Zi)�
Ps�1

j=0 �jFi�j)� f(z, ✓) is now a d⇥1 vector of discrepancies in
derivative space, and H is a d⇥ d matrix encoding the solver scale, generalising ⌘. Straightforward
modifications to the proof give multi-dimensional analogues to the statements in the Theorem.

2.3 Calibration and setting H

The issue of calibration of ODE solvers is addressed without consensus in every treatment of this
topic referenced in Section 1. The approaches can broadly be split into those of ‘forward’ type, in
which there is an attempt to directly model what the theoretical uncertainty in a solver step should be
and propagate that through the calculation; and those of ‘backward’ type, where the uncertainty scale
is somehow matched after the computation to that suggested by some other indicator. Both of these
have shortcomings, the former due to the inherent difficulty of explicitly describing the error, and
the latter because it is by definition less precise. One major stumbling block is that it is in general a
challenging problem to even define what it means for an uncertainty estimate to be well-calibrated.
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In the present paper, we require a way of setting H . We proceed by modifying and generalising an
idea from Conrad et al. (2016) which falls into the ‘backward’ category. There, the variance of the
step-forward distribution Var(Zi+1| · · · ) is taken to be a matrix ⌃Z = ↵h

⇢ Id, with ↵ determined
by a scale-matching procedure that ensures the integrator outputs a global error scale in line with
expectations. We refer the reader to the detailed exposition of this procedure in Section 3.1 of
that paper. Furthermore, the convergence result from Teymur et al. (2016) implies that, for the
probabilistic s-step Adams–Bashforth integrator, the exponent ⇢ should be taken to be 2s+ 1.

In our method, we are not able to relate such a matrix ⌃Z directly to H because from the definition
(9) it is clear that H is a scaling matrix for the spread of the derivative Fi+1, whereas ⌃Z measures
the spread of the state Zi+1. In order to transform to the correct space without linearising the ODE,
we apply the multivariate delta method (Oehlert, 1992) to give an approximation for the variance of
the transformed random variable, and set H to be equal to the result. Thus

H = Var(f(Zi+1)) ⇡ Jf (E(Zi+1))⌃ZJf (E(Zi+1))
T

= ↵h
⇢
Jf (E(Zi+1))Jf (E(Zi+1))

T
,

(10)

where Jf is the Jacobian of f . The mean value E(Zi+1) is unknown, but we can use an explicit
method of equal or higher order to compute an estimate Z

AB
i+1 at negligible cost, and use Jf (ZAB

i+1)
instead, under the assumption that these are reasonably close. Remember that we are roughly
calibrating the method so some level of approximation is unavoidable. This comment applies equally
to the case where the Jacobian is not analytically available and is estimated numerically. Such
approximations do not affect the fundamental convergence properties of the algorithm, since they
do not affect the h-scaling of the stepping distribution. We also note that we are merely matching
variances/spread parameters and nowhere assuming that the distribution (9) is Gaussian. This idea
bears some similarity to the original concept in Skilling (1993), where a scalar ‘stiffness constant’ is
used in a similar way to transform the uncertainty scale from solution space to derivative space.

We now ascertain the appropriate h-scaling for H by setting the exponent ⇢. The condition required
by the univariate analysis in this paper is that ⌘ = kh

⇢; part (iii) of the Theorem shows that we
require ⇢ � s + 1

2 , where s is the number of steps in the corresponding AM method.2 Choosing
⇢ = s+ 1

2 —an approach supported by the numerical experiments in Section 3—the backwards Euler
method (s = 0) requires ⇢ = 1

2 . The multidimensional analogue of the above condition is H = Qh
2⇢

for an h-independent positive-definite matrix Q. Since Jf is independent of h, this means we must
set ⌃Z to be proportional to h

2(s+ 1
2 ), and thus we have H = ↵h

2s+1
Jf (E(Zi+1))Jf (E(Zi+1))T .

Our construction has the beneficial consequence of giving a non-trivial cross-correlation structure
to the error calibration matrix H , allowing a richer description of the error in multi-dimensional
problems, something absent from previous approaches. Furthermore, it derives this additional
information via direct feedback from the ODE, which we have shown is a desirable attribute.

2.4 Reducing computational expenditure

In the form described in the previous section, our algorithm results in a non-parametric distribution for
Zi+1 at each step. With this approach, a description of the uncertainty in the numerical method can
only be evaluated by a Monte Carlo sampling procedure at every iteration. Even if this sampling is
performed using a method well-suited to targeting distributions close to Gaussian—we use a modified
version of the pre-conditioned Crank–Nicolson algorithm proposed by Cotter et al. (2013)—there is
clearly a significant computational penalty associated with this.

The only way to avoid this penalty is by reverting to distributions of standard form, which are easy to
sample from. One possibility is to approximate (6) by a Gaussian distribution—depending on how
this approximation is performed the desideratum of maintaining information feedback from the future
dynamics of the target function can be maintained. For example, a first order Taylor expansion of
f(z) ⇡ f(Zi)+Jf (Zi)(z�Zi), when substituted into r(z) as defined in (9), gives an approximation
r̃(z) which is linear in z. This yields a non-centred Gaussian when transformed into a probability
measure as in (9). Defining � ⌘ (h��1Id)�1 � Jf (Zi) and w ⌘ f(Zi, ✓) + �

�1
�1(

Ps�1
j=0 �jFi�j),

2We take this opportunity to remind the reader of the unfortunate convention from numerical analysis that
results in s having different meanings here and in the previous paragraph—the explicit method of order s is the
one with s steps, whereas the implicit method of order s is the one with s� 1 steps.
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some straightforward algebra gives the moments of the approximating Gaussian measure for the next
step as µ = Zi + ��1

w and Var = ↵h
2s+1��1

JfJ
T
f �

�T . We note that this procedure is merely to
facilitate straightforward sampling—though r̃(z) is linear in z, the inclusion of the first additional
term from the Taylor expansion means that information about the non-linearity (in z) of f are still
incorporated to second order, and the generated solution Z is not jointly Gaussian across time steps i.
Furthermore, since ��1 is order 1 in h, this approximation does not impact the global convergence of
the integrator, as long as H is set in accordance with the principles described in Section 2.3. This
method of solving implicit integrators by linearising them in f is well-known in classical numerical
analysis, and the resulting methods are sometimes called semi-implicit methods (Press et al., 2007).

3 Experimental results

We illustrate our new algorithm by considering the case of a simple inverse problem, the FitzHugh–
Nagumo model discussed in Ramsay et al. (2007) and subsequently considered in a several papers
on this topic. This is a two-dimensional non-linear dynamical system with three parameters ✓ =
(✓1, ✓2, ✓3), the values of which (✓1 = 0.2, ✓2 = 0.2, ✓3 = 3.0) are chosen to produce periodic
motion. With the problem having a Bayesian structure, we write down the posterior as

p(✓, Z|Y ) / p(Y |Z,�)p(Z|✓, ⇠)p(✓)p(⇠). (11)

This expression recalls (1), but with Z substituting for x as described in Section 1.2. We write
p(Z|✓, ⇠) to emphasise that the trajectory Z depends on the sequence of random perturbations ⇠0:N .
For simplicity we use the known value of � throughout, so do not include it in the posterior model.

Conrad et al. (2016) remark on the biasing effect on the posterior distribution for ✓ of naively
evaluating the forward model using a standard numerical method. They showed that their probabilistic
integrator returns wider posteriors, preventing misplaced overconfidence in an erroneous estimate. We
now extend these experiments to our new method. In passing, we note interesting recent theoretical
developments discussing the quantitative effect on posterior inference of randomised forward models,
presented in Lie et al. (2018).

Figure 1: 500 Monte Carlo repetitions of the probabilistic backward Euler (AM0) method
applied to the FitzHugh–Nagumo model with h = 0.1 and 0  t  20. The approximation
from Section 2.4 is used and ↵

⇤
AM0 = 0.2. The upper pane plots the ensemble of discrete

trajectories, with the path of the deterministic backward Euler method in light blue. The
lower pane is based on the same data, this time summarised. The ensemble mean is shown
dashed, and 1�, 2� and 3� intervals are shown shaded, with reference solution in solid black.
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3.1 Calibration

The first task is to infer the appropriate value for the overall scaling constant ↵ for each method, to
be used in setting the matrix H in (10). As in Conrad et al. (2016), we calculate a value ↵

⇤ that
maximises the agreement between the output of the probabilistic integrator and a measure of global
error from the deterministic method, and then fix and proceed with this value.

For each of several methods M , ↵⇤
M was calculated for a range of values of h and was close to

constant throughout, suggesting that the h-scaling advocated in Section 2.3 (ie. taking the equality
in the bound in part (iii) of the Theorem) is the correct one. This point has not been specifically
addressed in previous works on this subject. The actual maxima ↵⇤

M for each method are different and
further research is required to examine whether a relationship can be deduced between these values
and some known characteristic of each method, such as number of steps s or local error constant of
the underlying method. Furthermore, we expect these values to be problem-dependent. In this case,
we found ↵

⇤
AB1 ⇡ 0.2, ↵⇤

AB2 ⇡ 0.1, ↵⇤
AB3 ⇡ 0.2, ↵⇤

AM0 ⇡ 0.2, ↵⇤
AM1 ⇡ 0.05, ↵⇤

AM2 ⇡ 0.05.

Having calibrated the probabilistic integrator, we illustrate its typical output in Figure 1: the top pane
plots the path of 500 iterations of the probabilistic backward Euler method run at ↵ = ↵

⇤
AM0 = 0.2.

We plot the discrete values Z1:N for each repetition, without attempting to distinguish the trajectories
from individual runs. This is to stress that each randomised run (resulting from a different instantiation
of ⇠) is not intended to be viewed as a ‘typical sample’ from some underlying continuous probability
measure, as in some other probabilistic ODE methods, but rather that collectively they form an
ensemble from which an empirical distribution characterising discrete-time solution uncertainty can
be calculated. The bottom pane plots the same data but with shaded bands representing the 1�, 2�
and 3� intervals, and a dotted line representing the empirical mean.

3.2 Parameter inference

We now consider the inverse problem of inferring the parameters of the FitzHugh–Nagumo model in
the range t 2 [0, 20]. We first generate synthetic data Y ; 20 two-dimensional data-points collected at
times tY = 1, 2, . . . , 20 corrupted by centred Gaussian noise with variance � = (0.01) · I2. We then
treat the parameters ✓ as unknown and run an MCMC algorithm—Adaptive Metropolis Hastings
(Haario et al., 2001)—to infer their posterior distribution.

In Conrad et al. (2016), the equivalent algorithm performs multiple repetitions of the forward solve
at each step of the outer MCMC (each with a different instantiation of ⇠) then marginalises ⇠ out to
form an expected likelihood. This is computationally very expensive; in our experiments we find that
for the MCMC to mix well, many tens of repetitions of the forward solve are required at each step.

Instead we use a Metropolis-within-Gibbs scheme where at MCMC iteration k, a candidate parameter
✓
⇤ is proposed and accepted or rejected having had its likelihood calculated using the same sample
⇠
[k]
0:N as used in the current iteration k. If accepted as ✓[k+1], a new ⇠

[k+1]
0:N can then be sampled and

the likelihood value recalculated ready for the next proposal. The proposal at step k + 1 is then
compared to this new value. Pseudo-code for this algorithm is given in the supplementary material.

Our approach requires that p(Z|✓, ⇠) be recalculated exactly once for each time a new parameter
value ✓

⇤ is accepted. The cost of this strategy is therefore bounded by twice the cost of an MCMC
operating with a deterministic integrator—the bound being achieved only in the scenario that all
proposed moves ✓⇤ are accepted. Thus the algorithm, in contrast to the calibration procedure (which
is relatively costly but need only be performed once), has limited additional computational overhead
compared to the naive approach using a classical method.

Figure 2 shows kernel density estimates approximating the posterior distribution of (✓2,✓3) for
the forward Euler, probabilistic forward Euler, backward Euler and probabilistic backward Euler
methods. Each represents 1000 parameter samples from simulations run with step-sizes h =
0.005, 0.01, 0.02, 0.05. This is made of 11000 total samples, with the first 1000 discarded as burn-in,
and the remainder thinned by a factor of 10. For each method M , its pre-calculated calibration
parameter ↵⇤

M is used to set the variance of ⇠.

At larger step-sizes, the deterministic methods both give over-confident and biased estimates (on
different sides of the true value). In accordance with the findings of Conrad et al. (2016), the
probabilistic forward Euler method returns a wider posterior which covers the true solution. The
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Figure 2: Comparison of the posterior distribution of (✓2, ✓3) from the FitzHugh–
Nagumo model in cases where the forward solve is calculated using one of four
different integrators (deterministic and probabilistic backward- and forward-Euler
methods), each for four different step sizes h = 0.005, 0.01, 0.02, 0.05. All density
estimates calculated using 1000 MCMC samples. Dashed black lines indicate true
parameter values. Full details are given in main text.

bottom right-hand panel demonstrates the same effect with the probabilistic backward Euler method
we have introduced in this paper.

We find similar results for second- and higher-order methods, both explicit and implicit. The scale of
the effect is however relatively small on such a simple test problem, where a higher-order integrator
would not be expected to produce much error in the forward solve. Further work will investigate the
application of these methods to more challenging problems.

4 Conclusions and avenues for further work

In this paper, we have surveyed the existing collection of probabilistic integrators for ODEs, and
proposed a new construction—the first to be based on implicit methods—giving a rigorous description
of its theoretical properties. We have given preliminary experimental results showing the effect on
parameter inference of the use of different first-order methods, both existing and new, in the evaluation
of the forward model. Higher-order multistep methods are allowed by our construction.

Our discussion on integrator calibration does not claim a resolution to this subtle and thorny problem,
but suggests several avenues for future research. We have mooted a question on the relationship
between the scaling parameter ↵ and other method characteristics. Insight into this issue may be the
key to making these types of randomised methods more practical, since common tricks for calibration
may emerge which are then applicable to different problems. An interesting direction of enquiry,
being explored separately, concerns whether estimates of global error from other sources, eg. adjoint
error modelling, condition number estimation, could be gainfully applied to calibrate these methods.
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