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Abstract: Internet of Things (IoT) is a concept adopted in nearly every aspect of human life, leading
to an explosive utilization of intelligent devices. Notably, such solutions are especially integrated in
the industrial sector, to allow the remote monitoring and control of critical infrastructure. Such global
integration of IoT solutions has led to an expanded attack surface against IoT-enabled infrastructures.
Artificial intelligence and machine learning have demonstrated their ability to resolve issues that
would have been impossible or difficult to address otherwise; thus, such solutions are closely
associated with securing IoT. Classical collaborative and distributed machine learning approaches
are known to compromise sensitive information. In our paper, we demonstrate the creation of a
network flow-based Intrusion Detection System (IDS) aiming to protecting critical infrastructures,
stemming from the pairing of two machine learning techniques, namely, federated learning and
active learning. The former is utilized for privately training models in federation, while the latter is a
semi-supervised approach applied for global model adaptation to each of the participant’s traffic.
Experimental results indicate that global models perform significantly better for each participant,
when locally personalized with just a few active learning queries. Specifically, we demonstrate how
the accuracy increase can reach 7.07% in only 10 queries.

Keywords: IoT; IDS; critical infrastructure; federated learning; machine learning; active learning;
personalization

1. Introduction

Machine learning solutions currently have universal utilization in IoT applications [1–3].
Specifically, machine learning helps to extract insights and knowledge from IoT data, at-
tributes which would have been extremely difficult to obtain with other means [4]. For this
purpose, machine learning has been successfully applied in multiple areas, from AI-enabled
assistants [5] and speech recognition [6], to the time-critical industrial sector [7,8]. In addition,
with the help of machine-learning-enabled solutions, robust IDS can be created and applied
for rapid and accurate detection of malicious attempts against the network [9–11].

Attacks against the industrial sector, as indicated from past incidents, can have severe
consequences. Such incidents include the December 2015 cyberattack against Ukraine’s
power grid, which resulted in complete electricity disruption for 225,000 people [12,13].
In addition, as Stuxnet, the first known cyber warfare weapon [14,15], indicated, nuclear
power plants have also been targeted by cyberattacks, thus emphasizing the urgent need
for adequate security measures in such critical domains. As such, the adoption of se-
curity measures, such as IDS for rapid attack detection, is necessary to ensure safe and
secure operations.
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Machine learning for the creation of IDS is not a new concept, as intelligent solutions
can boost the efficiency of IDS. However, creating IDS with multiple nodes, characterized by
differences in traffic, is not an easy task. Traditional centralized solutions assume a central
server, receiving IoT data [16] and utilizing them to train models capable of distinguishing
regular traffic from attack attempts [17]. Such solutions consume network resources,
as massive data from all IoT devices would have to be sent to the central server [18].
Furthermore, such solutions raise issues with data privacy [19] and single-point-of-failure
concerns [20]. As data would flow from the devices to the server for training, data loss is a
possibility, as well as data tampering or false data injection from a malicious entity.

Such issues are addressed with Federated Learning (FL). FL is a technique that re-
quires model updates to be sent to the server, while data remain locally on each device,
thus ensuring data privacy during model training [21]. However, traffic from multiple IoT
devices may not be characterized by the same attributes. As such, final model personaliza-
tion methods are required. Notably, dataset labelling is an expensive and time-consuming
process, especially regarding large datasets composed by IoT devices [22]. Active Learn-
ing (AL) solutions have emerged to tackle such limitations, as the learner can choose the
samples to learn from [23], thus, making this technique excellent for model personalization.

The purpose of this paper is three-fold:

• present a 2-stage methodology for pairing FL and AL strategies, with the former
offering distributed, secure and private global model training as the first training
stage, and the latter for improving the generated model’s performance, as the last
training stage.

• analyse and compare the amount of annotating effort, or, AL queries needed to achieve
a sufficiently better, customized local model.

• design and implement an attack detection and classification model based on DNNs,
with the utilization of DNP3-specific attacks, transformed into flow-based traffic
representations, serving as a training set.

The rest of the paper is structured as follows. In Section 2, related previous work is
explained. Then, in Section 3, our proposed methodology is presented, and is described
in detail through Sections 3.2–3.4. Section 4 indicates our experimental process and the
results obtained by applying our methodology, and finally, Section 5 concludes this paper.

2. Previous Work

Currently, data privacy is one of the focal research points, especially due to the
General Data Protection Regulation (GDPR) adopted by the European Union [24]; thus,
federated learning has gained a lot of attention for allowing distributed model training
without local data exchange [25]. A lot of research has been conducted with regards
to the application of federated learning for creating IDS. The authors in [26] propose a
federated training approach, on Gated Recurrent Units (GRUs) models, to detect anomalies
in IoT networks, in order to timely recognize intrusion attempts. Similarly, the authors
in [27] target the insufficiency of current IDS by proposing DÏoT, an autonomous self-
learning system capable of detecting compromised IoT devices, without needing a human
to intervene in the process, or labeled datasets. Specifically, DÏoT detects anomalies
in devices’ communication, by aggregating behavior profiles with the utilization of the
federated learning approach. Federated learning is also utilized for the creation of an
IDS catering to the needs of Medical Cyber-Physical Systems (MCPS), where patients
are clustered based on their profiles, and each cluster develops its own federated model
according to the input that is received by the registered patients. If any abnormality is
detected due to a malicious intervention such as data modification or injection attack, alerts
are generated [28].

As noted, active learning reduces the amount of labeled samples required for model
training, by locating query-worthy samples to be learn from. The integration of this method-
ology for detecting attacks has been researched in the past. Specifically, active learning
for network intrusion detection can be seen as an unsupervised task according to [29].
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Furthermore, the authors propose a novel querying strategy to reduce labelling effords.
Experimental results indicated that the ActiveSVDDs were able to distinguish normal and
attack data, while reducing labelling actions. The authors in [30] present a method of reduc-
ing outlier detection to a classification problem by representing outliers using artificially
generated examples, and later applying active learning for selective sampling. According
to experiments conducted, the proposed methodology yields better results than methods
which apply the same reduction, but use regular classification procedures. The authors
in [31] suggest building active learning procedures on top of deep learning solutions for
unsupervised anomaly detection. This is achieved by adding an Unsupervised to Active
Inference (UAI) layer on top of unsupervised deep learning architectures. Experimental
results showed that models were able to achieve similar or improved results than their
non-active learning enhanced counterparts.

As noted, a lot of great research has been conducted for finding solutions for private,
distributed model training and active learning for anomaly detection and classification. As
such, we aim to further contribute in the aforementioned research areas, specifically by
combining federated learning, active learning and Deep Neural Network (DNNs) strategies
to enhance data privacy, and introduce personalization methods in a semi-supervised
approach in order to create attack classification-based IDS.

3. Methodology

As described in Section 2, a lot of research has been conducted in order to identify op-
timal methods for cyberattack detection and classification, aiming in the creation of robust
IDS, especially for the critical industrial sector where rapid and precise attack detection is
of essence. An important aspect for consideration while training classification models for
application on each device on the network, is the difference in traffic attributes. As such,
personalization methods should be applied in order to ensure that models running on each
device cover a plethora of attack cases, while also being customized to the devices’ needs.

3.1. Overall Description

The proposed methodology provides a data privacy-friendly approach for training
a DNN on attack detection and classification, while adapting the final model to the re-
quirements of each device, in order to produce accurate, and personalized results. In the
methodology proposed, to ensure that local data would never leave the device and thus
reducing the amount of messages constrained devices would have to communicate, while
simultaneously addressing the issue of training data tampering, the multi-class classifica-
tion DNN model training based on various attack scenarios was conducted with FL. After
the FL process comes to a halt, the global model is personalized with AL, by each of the
participating devices. The proposed methodology is divided into two stages:

1. the FL global model training and
2. the personalisation stage using AL.

Figure 1 below, represents the entire methodology of this paper.
The entire machine learning process is divided into two stages, the FL and the AL

stage. We assume N participating entities, where each party p ∈ [1, N] holds locally two
inputs, the DFp input used for training the attack detection and classification model in
federation with the rest of the participants, and the DAp input used for adapting the final
global federated model to each of the participants’ traffic. During the FL stage, each party
p pre-processes the DFp inputs by applying feature normalization to turn data into values
in the [0, 1] range, as demonstrated in (1) [32] where xsc is the scaled feature value, x is the
feature vector and xi is the initial feature value;
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Figure 1. The proposed methodology combining FL for global model formation and AL for model per-
sonalization.

xsc =
xi −min(x)

max(x)−min(x)
(1)

then, the resulting inputs which are transformed in Xp
F data points and Yp

F labels, are fed
into the DNN in order to train the attack detection and classification model via supervised
learning. As a result of the training procedure each p obtains the updates Wp, and via
aggregating the results from each p, the global model W is formed. After the FL stage
concludes, the AL is initiated, during which, each p divides the DAp input into two
parts and transforms the first part into Xp

A data points, via normalization, (1) and Yp
A

corresponding labels while transforming the latter part, also via normalization (1), into
the Xp

AU sampling pool, containing only unlabeled data points. W is further trained in
a supervised manner by each p using the Xp

A data points and the Yp
A labels; then, by

following a querying strategy, the model selects the most informative samples from the
data pool Xp

AU 6= Xp
A. When the active training process concludes, each p has formed the

final, personalized attack detection and classification model.
In the sections below, the FL and AL stage are explained in detail, while the attack

detection and classification model is presented.

3.2. Federated Learning for Cyber-Attack Detection

We consider the scenario where network traffic data containing normal and malicious
records, is located in various devices. Specifically, the p-th device, or party, p = 1, . . . , N ∈ N,
has (Xp

F , Yp
F) ∈ DFp local database, containing lp data points, given as

Xp
F =


xp

F1
...

xp
Flp

, Yp
F =


yp

F1
...

yp
Flp

 (2)

where a label yp
Fk
∈ R, with k ∈ [1, . . . , lp], is associated with each training data point

xp
Fk
∈ R. Each device p uses its database DFp to train a local model, represented by

vector Wp. Training is carried out to minimize a local objective f (W; DFp), based on a loss
measure L(·) [33], where W represents the global model’s vector. The local objective for p
is given by:
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f (W;
{

xp
Fk

, yp
Fk

}lp
k=1) =

1
lp

lp

∑
k=1
L(xp

Fk
, yp

Fk
, W) (3)

Thus, the objective of every p is to obtain the parameters Wp which minimize (3):

Wp = arg min
W

f (W; DFp) (4)

An aspect for consideration while training models with federated learning, is the
fusion technique used by the central aggregator, to combine model updates coming from
multiple participants p. According to the iterative averaging approach, the server requests
local model updates Wr

p from parties p at each federated round r, and then the averaging
aggregation is performed over the collected models’ weights, where the global model Wr

is updated by the mean of all the collected local models’ weights, like so:

Wr =
Wr

p + Wr
p+1 + . . . + Wr

N

N
(5)

The federated learning procedure combines local training described by (4) and global
aggregation and fusion, described by (5) in a set of iterative steps, followed until the desired
convergence is achieved, without having parties share their local database. Specifically, at
each round r:

1. The server sends the global model Wr to the participants, and each p sets their local
model to be the global model Wr

p = Wr.

2. Each party p updates the model from Wr
p to W(r+1)

p , based on (4), by utilizing their
local database DFp .

3. The participants send their locally calculated updates back to the server for global
model formation, according to (5).

In Algorithm 1 below, the federated process is described.

Algorithm 1 FL Stage

1: Aggregator Side
2: for r do
3: for p = 1, 2, . . . , N do
4: Send Wr to p
5: end for
6: for p = 1, 2, . . . , N do
7: Wr += Request W(r+1)

p from p
8: end for
9: W(r+1) ← Wr

N
10: end for
11: Worker Side
12: Wr

p = Wr

13: for epochs do
14: W(r+1)

p ← Train Wr
p with (Xp

F , Yp
F) ∈ DFp

15: end for
16: On Request Send W(r+1)

p to Aggregator

3.3. Attack Detection and Classification Model

DNNs are powerful machine learning tools, utilized in problems with high complexity.
As such, the attack detection and classification model implemented in this paper, follows a
DNN architecture. Specifically, the various layers composing the DNN, can be observed in
Figure 2. The classification model is compiled with Categorical Crossentropy (6), a loss
function suitable for classification problems where K denotes the number of classes, bkc is
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a binary indicator that detects whether the kth input belongs to the c category, while the
output okc denotes the predicted probability for the kth input to belong to the c category.
Finally, the optimization algorithm used was Adam with a learning rate of 0.001.

Dense Layer
(V, 64)

Dense Layer
(64, 32)

Dense Layer
(32, 16)

Dense Layer
(16, 8)

Dense Layer
(8, 9)

Dense Layer
(9, K)Inputs

(V)
Outputs

(K)

Figure 2. The proposed DNN architecture, receiving V features as an input and producing K outputs.

LCCE = −
K

∑
c=1

bkclog(okc) (6)

The architecture of the DNN, as observed in Figure 2, consists of 6 layers, all of which
are Dense. The first layer takes as an input a V number of features, while it consists of
64 neurons. The next 3 layers have a decreasing number of neurons, while the 5th layer
consists of 9 neurons. Finally, the output layer has K neurons, where K denotes the number
of classes. All layers but the output one, are activated by the ReLu activation function (7)
with x denoting the input value:

f (x) =
{

0 if x ≤ 0
x if x > 0

(7)

The last layer is activated by the Softmax activation function (8), utilized in multi-class
classification problems, which turns input values to probabilities. Specifically, for each
output of the last layer, Softmax provides a probability distribution of class membership.
This is achieved by dividing the exponential value of output zi with the summation of
all exponentials:

SM(zi) =
ezi

∑K
j=1 ezj

(8)

3.4. Active Learning

Active Learning is a semi-supervised machine learning approach which addresses the
difficulties of adding manually labels to an unlabeled dataset, by dynamically choosing
samples and querying an oracle for the provision of labels. Initially, the learner located in
each party p, is trained on a set of fully labeled samples, (Xp

A, Yp
A) ∈ DAp , containing dp

data points, given as:
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Xp
A =


xp

A1
...

xp
Adp

, Yp
A =


yp

A1
...

yp
Adp

 (9)

where, a label yp
Ak
∈ R, with k ∈ [1, . . . , dp], is associated with each training data point

xp
Ak
∈ R.
After the first round of training, the learner gets introduced to a pool of un-annotated

samples, Xp
AU ∈ DAp 6= Xp

A, containing zp data points:

Xp
AU =


xp

AU1
...

xp
AUzp

 (10)

Following a querying strategy, the learner selects the most informative, or the most
uncertain instance xp

AUi ∈ Xp
AU, with i ∈ [1, . . . , zp] and poses a query to the handler in

order to be informed about the corresponding label yp
AUi. The learner, expands its knowl-

edge, having obtained the yp
AUi to the queried xp

AUi. This process reiterates until a preferred
accuracy is achieved. An example of the aforementioned AL process is represented in
Algorithm 2, below.

Algorithm 2 AL Stage

1: p Side
2: Initial adaptation of W with (Xp

A, Yp
A) ∈ DAp → learner

3: for iter = 1, 2, . . . , R do
4: Select xp

AUi ∈ Xp
AU

5: Label Query xp
AUi → yp

AUi
6: Train learner with (xp

AUi, yp
AUi)→ personalizedmodel

7: end for

The querying strategy utilized successfully in multiple scenarios, namely Uncertainty
Sampling, emphasizes on selecting unlabeled samples which the learner is mostly uncertain
about. Several measures can be used for this, one being classification uncertainty defined
in (11), where xp

AUk is the instance to be predicted and pyp
AUk is the most likely prediction

probability for this instance:

S(xp
AUk) = 1− P(pyp

AUk|x
p
AUk) (11)

In order to pick the most informative instance xp
AUi, the learner aims to choose a

sample amongst Xp
AU for which the classification uncertainty S is the highest (12).

xp
AUi = arg max

xp
AUk∈Xp

AU

S(xp
AUk) (12)

As such, AL employs statistical analysis to ensure that the most informative data
points are selected for labelling from a pool of samples, thus minimizing the annotation
efforts, and providing a cost-effective solution for training machine learning models.

4. Results

The proposed approach for collaborative model training and customization, is divided
into the two machine learning stages explained in Section 3 above, namely the FL stage
described in Section 3.2 to preserve worker data privacy, and the AL stage described in
Section 3.4 for global model personalization based on each of the participant’s needs. We
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consider that each party’s local database, containing network traffic data is characterized
by different attributes. Thus, to ensure its suitability, the global model is personalized and
adapted to each participant’s communication characteristics.

The database used for distributed model training and personalization consists of
network traffic data in the form of network flows. The protocol used in the experiments
in DNP3, a protocol widely used in industrial settings; DNP3 assumes a central master
node directing and requesting data from multiple slave nodes, which in turn handle and
respond to the master’s requests. For experimental purposes, normal DNP3 communication
was simulated, while attacks were conducted against the simulated infrastructure to
gather malicious packets. Specifically, the attacks were either DNP3-specific, targeting the
protocol’s vulnerabilities, or generic. DNP3-specific attacks included scanning for DNP3
ports with nmap DNP3-centered scripts, like DNP3 enumerate and DNP3 info, malicious
cold and warm restart requests crafted to restart the slaves, packets created with the
purpose of damaging slaves’ data by re-initializing their local database, attacks directing
the slaves to cease DNP3 applications with the stop application attack, and ordering slaves
to disable their ability to send unsolicited responses, thus making them unable to notify the
master in case of abnormalities. The replay attack was performed as a generic malicious
attempt, aiming to replay or delay the transmission of a normal packet.

Network packets containing malicious and normal traffic of DNP3, were captured and
processed into DNP3-specific network flows, consisting of 100 features, centered around
the protocol’s attributes such as MostCommonREQ FUNC CODE, referring to the most
common DNP3 function code used in the DNP3 master’s requests, DeviceRestartFragment,
which counts the DNP3 slave’s responses indicating a restart, different DNP3 layers payload
size, etc.; in addition, general network traffic features are present in each flow, such as
packet inter-arrival times, flow bytes/sec, etc. Each flow was utilized as the input to the
model, while the corresponding label, describing the nature of the flow, is considered as
the desired output of the model. As this is an attack detection and classification problem,
the labels were classified in a total of 9 classes, describing the attack performed, or a
normal flow state. The goal of the machine learning process is to develop models trained to
recognize a variety of attacks, without having to share data with the server, while adapting
the final model to the participants’ requirements.

Initially, the FL approach described in Section 3.2 was applied, to train models in r = 3
consecutive federated rounds. Specifically, p = [1, 2, 3], or 3 workers were deployed for
distributed training, each one holding locally FL datasets DF1 , DF2 , DF3 containing instances
from all 9 classes, however, for each of the workers, the FL dataset was biased towards a
specific class by 50%. The training loss and accuracy of the FL procedure for each worker
can be observed in Figure 3, where the X-axis represents the federated rounds, while the
Y-axis represents the corresponding value of the accuracy or loss.

(a) Worker 1 (W1) FL Training Metrics

Figure 3. Cont.
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(b) Worker 2 (W2) FL Training Metrics

(c) Worker 3 (W3) FL Training Metrics

Figure 3. FL Training. X-axis: Federated Rounds, Y-axis: value of accuracy(blue and loss (red).

After the FL training concludes, each worker obtains an identical global model, created
by the server, who fuses local model updates using Equation (5). At this point, the workers
measure how well the global model is able to perform, by utilizing their local validation set.
Each worker’s validation set, shows a 30% bias towards the same class as the dataset used
during the FL procedure. In order to measure how well the model performs, the accuracy,
precision and F1 scores where used, as described in Equations (13)–(15) respectfully, where
TP is the number of true positives, TN is the number of true negatives, FP is the number
of false positives and FN is the number of false negatives classified by the model. The
aforementioned results can be observed in Table 1.

accuracy =
TP + TN

TP + TN + FP + FN
(13)

precision =
TP

TP + FP
(14)

F1 =
TP

TP + 1
2 (FP + FN)

(15)

Table 1. Evaluation of the global FL model produced after r = 3, using Worker 1’s (W1), Worker 2’s
(W2) and Worker 3’s (W3) evaluation datasets.

Accuracy Precision F1

W1 0.8013 0.8190 0.8004
W2 0.7508 0.7781 0.7431
W3 0.7037 0.7529 0.7034
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The next training step for each worker refers to the application of AL to further train
the global model with local inputs, thus customizing it to each of the workers’ traffic. The
AL step was divided into 4 sub-experiments, in order to measure the final local models’
performance under multiple local dataset balance scenarios. To this end, the AL inputs for
each worker, were divided into the following categories, and models resulting from each
category where evaluated:

1. 20% Bias, towards the same class as FL
2. 50% Bias, towards the same class as FL
3. 70% Bias, towards the same class as FL
4. No Bias (Equal number of class instances)

As previously mentioned, dataset annotation is an expensive and time-consuming
process. To this end, we assume a budget of maximum 40 queries answered during the
AL sampling process, per local dataset, to keep the labelling effords to a minimum, while
still offering model adaptation. Thus, for each category mentioned above, models were
evaluated after AL training with 10, 20, 30 and 40 queries.

4.1. Category 1: 20% AL Bias

This category assumes a 20% bias of the local AL dataset, towards the same class as
the worker’s FL dataset. In order to provide a fair comparison, the evaluation process was
conducted with the same data as FL, and the same evaluation methods. In Table 2, the
accuracy, precision and F1 score of the AL process for each workers’ local model is shown,
while Figure 4 visualizes the accuracy score, per number of queries, with the workers’
corresponding FL score considered as the starting point.

Table 2. Evaluation of W1, W2 and W3’s personalized models generated with 20% AL dataset bias
after Q = 10, 20, 30, 40 queries, using their corresponding evaluation datasets. Underlined results
mean increased metrics in comparison with the corresponding FL evaluation.

Accuracy Precision F1
W1 W2 W3 W1 W2 W3 W1 W2 W3

Q = 10 0.7979 0.7609 0.7744 0.8348 0.8171 0.7188 0.7815 0.7414 0.7191
Q = 20 0.8383 0.7676 0.7272 0.8567 0.7425 0.7658 0.8260 0.7440 0.6914
Q = 30 0.8282 0.7845 0.7609 0.8581 0.8100 0.7070 0.8218 0.7774 0.7053
Q = 40 0.8249 0.7979 0.7744 0.8461 0.8173 0.7184 0.8127 0.7921 0.7195

AL Q=10 AL Q=20 AL Q=30 AL Q=40
Queries

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

W1 Accuracy
W2 Accuracy
W3 Accuracy

Figure 4. Accuracy of W1, W2 and W3’s models personalized with 20% AL dataset bias (Y-axis) per
Query (X-axis), evaluated using their corresponding evaluation datasets. The FL accuracy for each
worker is represented by the horizontal line of the worker’s respective color.
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As observed in the underlined results in Table 2 and Figure 4 above, the metrics show
an increase when compared to the corresponding FL metrics in Table 1 in the vast majority
of cases. It is worth noting that, even in cases where the metrics show a minor decrease,
such as W1 AL model’s accuracy with 10 queries, the model is able to classify correctly all
of the network flows which belong to W1’s biased class, namely DISABLE UNSOLICITED,
whereas the global federated model showed inability to do so. The confusion matrices
resulting by W1’s FL and AL evaluation for 10 queries can be observed in Figure 5. In
addition, through Figure 4 it is becomes clear that for W1 and W3, 10–20 queries suffice
for increasing the accuracy of their local model, while for W2, training can be stopped
after 10–20 queries in case of a strict budget, as there is still improvement in accuracy.
Specifically, for W3 the improvement is massive compared to W1 and W1, as its accuracy
increased by 7.07% in only 10 AL queries.

(a) W1’s evaluation of global FL model
after r = 3 using its evaluation dataset

(b) W1’s evaluation of customized
model by AL, after Q = 10 queries, using

its evaluation dataset

Figure 5. W1 Confusion Matrices.

4.2. Category 2: 50% AL Bias

This category assumes a 50% bias of the local AL dataset, towards the same class
as the worker’s FL dataset; similarly to Category 1’s results, the evaluation process was
conducted with the same data as FL, and the same evaluation methods are applied. The
results are depicted in a similar manner, with the higher metric value highlighted in Table 3
and the accuracy shown in Figure 6 below.

Table 3. Evaluation of W1, W2 and W3’s personalized models generated with 50% AL dataset bias
after Q = 10, 20, 30, 40 queries, using their corresponding evaluation datasets. Underlined results
mean increased metrics in comparison with the corresponding FL evaluation.

Accuracy Precision F1
W1 W2 W3 W1 W2 W3 W1 W2 W3

Q = 10 0.8215 0.7441 0.7205 0.7940 0.8192 0.6066 0.8011 0.7062 0.6315
Q = 20 0.8181 0.7946 0.7643 0.8286 0.8419 0.7067 0.8112 0.7777 0.7103
Q = 30 0.8552 0.8350 0.7609 0.8590 0.8471 0.7300 0.8514 0.8295 0.6946
Q = 40 0.8080 0.7777 0.7744 0.8322 0.8051 0.7361 0.8051 0.7694 0.7163
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W3 Accuracy

Figure 6. Accuracy of W1, W2 and W3’s models personalized with 50% AL dataset bias (Y-axis) per
Query (X-axis), evaluated using their corresponding evaluation datasets. The FL accuracy for each
worker is represented by the horizontal line of the worker’s respective color.

It is observed that W3 shows a drop in Precision and F1 scores, although the overall
accuracy is improved by training with AL, compared with standalone FL. However, W3 is
able to classify correctly all validation samples which belong to the biased class, namely
WARM RESTART, with only 10 queries, when the FL global model is unable to perform as
well. This can be seen in Figure 7, which depicts the confusion matrices of W3’s evaluation
of the FL and AL model with 10 queries. Furthermore, for 50% biased local database,
models seem to peak in accuracy with 30 queries for W1 and W2, with the increase being
5.39% for the former and 8.42% for the latter, while W3 shows significant accuracy increase
of 6.06% after 20 queries.

(a) W3’s evaluation of global FL model
after r = 3 using its evaluation dataset

(b) W3’s evaluation of customized
model by AL, after Q = 10 queries, using

its evaluation dataset

Figure 7. W3 Confusion Matrices.
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4.3. Category 3: 70% AL Bias

Similarly to the previous categories, Category 4 supposes a 70% bias of the local AL
dataset, towards the same class as the worker’s FL dataset. The evaluation process was
conducted with the same data as FL, and the same evaluation methods. The results of AL
training with 70% biased datasets, are depicted in Table 4 and Figure 8 below.

Table 4. Evaluation of W1, W2 and W3’s personalized models generated with 70% AL dataset bias
after Q = 10, 20, 30, 40 queries, using their corresponding evaluation datasets. Underlined results
mean increased metrics in comparison with the corresponding FL evaluation.

Accuracy Precision F1
W1 W2 W3 W1 W2 W3 W1 W2 W3

Q = 10 0.8350 0.8013 0.7205 0.8190 0.8270 0.6257 0.8113 0.7870 0.6402
Q = 20 0.7777 0.8013 0.7710 0.8025 0.8226 0.7159 0.7610 0.7886 0.7153
Q = 30 0.8282 0.7845 0.7744 0.8333 0.8062 0.7188 0.8227 0.7756 0.7191
Q = 40 0.8249 0.7878 0.7744 0.8300 0.8364 0.7150 0.8198 0.7705 0.7210

AL Q=10 AL Q=20 AL Q=30 AL Q=40
Queries

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

W1 Accuracy
W2 Accuracy
W3 Accuracy

Figure 8. Accuracy of W1, W2 and W3’s models personalized with 70% AL dataset bias (Y-axis) per
Query (X-axis), evaluated using their corresponding evaluation datasets. The FL accuracy for each
worker is represented by the horizontal line of the worker’s respective color.

From Table 4, it is observed that Worker 1’s customized model with 20 queries shows
lower metric values when evaluated against the FL global model. However, the AL model
is able to predict correctly all of the class instances which belong to the biased class category,
namely DISABLE UNSOLICITED. This can be validated through the confusion matrices
shown in Figure 9, proving that the personalized model is able to perform better when
taking as an input an instance which better describes the worker’s dataset. Moreover, local
models perform significantly better in terms of accuracy with only 10 queries for W1 and
especially W2, with the former showing improved accuracy of 3.37% and the latter of 5.05%
as seen in Figure 8.
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(a) W1’s evaluation of global FL model
after r = 3 using its evaluation dataset

(b) W1’s evaluation of customized
model by AL, after Q = 20 queries, using

its evaluation dataset

Figure 9. W1 Confusion Matrices.

4.4. Category 4: Balanced AL

The final experiment assumes a fully balanced AL dataset, and follows the same
evaluation process are the categories above. The results can be observed in Table 5 below.

Table 5. Evaluation of W1, W2 and W3’s personalized models generated with no AL dataset bias
after Q = 10, 20, 30, 40 queries, using their corresponding evaluation datasets. Underlined results
mean increased metrics in comparison with the corresponding FL evaluation.

Accuracy Precision F1
W1 W2 W3 W1 W2 W3 W1 W2 W3

Q = 10 0.8148 0.7912 0.6969 0.7800 0.8133 0.7705 0.7849 0.7837 0.6866
Q = 20 0.8316 0.7946 0.7340 0.8469 0.8177 0.8248 0.8224 0.7872 0.7241
Q = 30 0.8080 0.7744 0.7138 0.8214 0.8057 0.7925 0.8048 0.7648 0.6946
Q = 40 0.8316 0.7474 0.7340 0.8474 0.8184 0.76944 0.8245 0.7161 0.7313

AL Q=10 AL Q=20 AL Q=30 AL Q=40
Queries

0.65

0.70

0.75

0.80

0.85
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cu

ra
cy

W1 Accuracy
W2 Accuracy
W3 Accuracy

Figure 10. Accuracy of W1, W2 and W3’s models personalized with balanced AL dataset (Y-axis) per
Query (X-axis), evaluated using their corresponding evaluation datasets. The FL accuracy for each
worker is represented by the horizontal line of the worker’s respective color.
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In the case of datasets with overall balanced number of class instances, it is observed
in Figure 10 that a sufficient increase in the overall accuracy in the range of 3.03% to 4.38%
is achieved with 20 queries, for all workers.

4.5. Discussion

The above subsections have proven that further customizing the model trained in
federation by the 3 workers with AL methods, results in increased accuracy compared with
the federated model, for all of the AL dataset bias cases. As such, our methodology is a cost-
effective solution for not only improving the overall metrics of the model resulted through
the federated procedure, but also for tailoring the model to the participant’s network traffic
characteristics. Table 6 below, indicates the average accuracy, precision and F1 percentage
difference after training with AL, taking into consideration all the above dataset cases, for
each worker.

Table 6. Average difference in percentage of the customized models’ accuracy, precision and F1,
considering all dataset balance cases of Sections 4.1–4.4.

Accuracy Precision F1
W1 W2 W3 W1 W2 W3 W1 W2 W3

Q = 10 1.60% 2.35% 2.43% −1.20% 4.11% −7.25% −0.57% 1.15% −3.41%
Q = 20 1.51% 3.87% 4.54% 1.47% 2.81% 0.04% 0.48% 3.13% 0.69%
Q = 30 2.85% 4.38% 4.87% 2.40% 3.92% −1.58% 2.48% 4.37% 0.00%
Q = 40 2.11% 2.69% 6.06% 1.99% 4.12% −1.82% 1.51% 1.89% 1.86%

Notably, although a massive percentage increase did not arise from the experimental
results, the customized models are able to classify correctly all instances which belong
under the biased category, in all cases, even after 10 queries only. When creating effective
IDS to be utilized in critical settings, priority should be given in accurately classifying
samples belonging to the worker’s communication characteristics, especially when training
models in collaboration, as each worker’s traffic may vary significantly from the rest.

With the above into consideration, we conclude that the fusion of the federated and
active learning techniques is a cost-effective, budget-friendly method of cooperative model
training, for the creation of robust IDS, able to succeed in the rapid recognition of threats in
order to provide the protection needed in critical industrial systems.

5. Conclusions

Federated learning is a collaborative training approach which certainly enhances data
privacy, however, global models can still improve in terms of performance. To address the
high expense of annotating large datasets, active learning is proposed as a personalization
method. Specifically, in this paper we have shown that the pairing of federated learning
with active learning is able to achieve overall better final model performance with fewer
data samples required for personalized training. It is observed that in most cases, 10 to 20
AL queries suffice for creating better, customized local models in a variety of local database
settings. Notably, in the case of W3 for 20% AL training dataset bias, the model was able
to achieve an increase of 7.07% in accuracy with only 10 AL queries. Furthermore, the
average accuracy percentage increase for all dataset bias cases, falls in the range of 1.51%
to 6.06%, for all workers, and for all query instances. In addition, even in the cases where
metrics show a decrease or in the cases where the increase in accuracy is not significant, the
final customized model is able to classify correctly all samples which belong to a class that
the local AL dataset is biased towards; in contrast, standalone federated learning is unable
to perform as well in this aspect. This indicates that our methodology ensures the security
and privacy of the collaborative training process, while also supporting the adaptability of
the final local model to the worker’s network traffic, with a minimum labelling budget.
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