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Abstract

Adaptive Resonance Theory (ART) was introduced by Steven Grossberg as a theory of human cognitive
information processing (Grossberg 1976, 1980). Extending the capabilities of the ART 1 model, which
can learn to categorize patterns in binary data, fuzzy ART as described in (Carpenter, Grossberg, and
Rosen 1991) has become one of the most commenly used Adaptive Resonance Theory models (Brito da
Silva, Elnabarawy, and Wunsch 2019). By incorporating fuzzy set theroy operators, fuzzy ART is capable
of learning from binaray and bounded real valued data. Its advantage over other unsupervised learning
algorithms lies in the flexibility of the learning rule. If a given input feature does not resemble a known
category satisfactorily, as determined by the vigilance test, a new category is initialized. Hence, the total
number of categories (or clusters) is not determined a-priori, like k-means, but chosen in accordance with
the data and the context of already learnt representations. This vignette explores the use of the fuzzy
ART implementation as provided by the FuzzyART R package.
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Packacke Usage

Feel free to use this package as specified by the license (MIT). However, please consider citing this work in
any publication that this package may contribute to.

To install the package run

devtools::install_gitlab(repo = "acil-group/rFuzzyART", host = "git.mst.edu")

and run

library(FuzzyART)

to load the package for use.

Training

Before the fuzzy ART model can be trained, one needs to determine a minimum set of parameters: - rho:
Vigilance parameter in (0,1). - alpha: Choice parameter alpha > 0. Can be viewed as a regularization
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parameter penalizing large weights. - beta: Learning rate in (0,1).

Input Pre-processing

Before training, it is important to remember scaling the inputs to lie in the d-dimensional unit hypercube
([0, 1]d), where d is the dimension of the inputs. In other words, each input variable needs to be normalized
to the interval [0, 1]. This can easily be done with the normalize() function.

library(FuzzyART)

library(mclust)

#> Warning: package 'mclust' was built under R version 4.1.0

#> Package 'mclust' version 5.4.7

#> Type 'citation("mclust")' for citing this R package in publications.

print("Original data:")

#> [1] "Original data:"

summary(iris)

#> Sepal.Length Sepal.Width Petal.Length Petal.Width

#> Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100

#> 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300

#> Median :5.800 Median :3.000 Median :4.350 Median :1.300

#> Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199

#> 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800

#> Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

#> Species

#> setosa :50

#> versicolor:50

#> virginica :50

#>

#>

#>

print("Normalized data:")

#> [1] "Normalized data:"

iris.normalized = normalize(df = subset(iris,select = -Species))

summary(iris.normalized)

#> Sepal.Length Sepal.Width Petal.Length Petal.Width

#> Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.00000

#> 1st Qu.:0.2222 1st Qu.:0.3333 1st Qu.:0.1017 1st Qu.:0.08333

#> Median :0.4167 Median :0.4167 Median :0.5678 Median :0.50000

#> Mean :0.4287 Mean :0.4406 Mean :0.4675 Mean :0.45806

#> 3rd Qu.:0.5833 3rd Qu.:0.5417 3rd Qu.:0.6949 3rd Qu.:0.70833

#> Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.00000

Training the ART model

In our Iris example we shall use parameters close to the ones used in (Hoa and Bui 2012); that is alpha ≈

0.8, beta ≈ 0.1, rho ≈ 0.5. For the wine dataset, the parameters as specified in (Elnabarawy, Tauritz, and
Wunsch 2017) appear superior. We will demonstrate to power of this implementation on a number of popular
datasets.

The true membership of individual observations is indicated by the symbol while the color corresponds to the
category membership according to our trained fuzzy ART model. The Rand Index measures the similarity
between two sets of clustering partitions. In this case, we benchmark the performance of the unsupervised
fuzzy ART model against the ground truth, the labels associated with each observation.
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Iris

# load data

inputs = subset(iris,select = -Species)

labels.true = as.numeric(unlist(iris$Species))

normalized_inputs = normalize(df = inputs)

# train model

mod = FuzzyART_train(normalized_inputs,alpha = .8,rho = .5,

beta = .12, max_epochs = 1000,max_clusters =20,

random_seed = 4, show_status = FALSE, beta_decay = .9)

plot(inputs, col = mod$Labels, pch = labels.true,

main = paste0("Dataset: Iris -- Rand Index: ",

round(adjustedRandIndex(mod$Labels,labels.true),digits = 2)))
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Dataset: Iris −− Rand Index: 0.61

Wine

Note that for a better presentation, we will only be displaying the first four features of the wine dataset.
However, all features were used during training.

# load the wine dataset

wine.address <- "http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data"

wine <- read.csv(wine.address,header = FALSE)

wine.colnames = c("Label","Alcohol", "Malic acid", "Ash", "Alcalinity of ash", "Magnesium",

"Total phenols", "Flavanoids", "Nonflavanoid phenols", "Proanthocyanins",
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"Color intensity", "Hue", "OD280/OD315 of diluted wines", "Proline")

colnames(wine)<-wine.colnames

# prepare model inputs

inputs = subset(wine,select = -Label)

labels.true = wine$Label

normalized_inputs = normalize(df = inputs)

# train the model

mod = FuzzyART_train(normalized_inputs,alpha = .8679,rho = .375,

beta = .9797,max_epochs = 2000,max_clusters =20,

random_seed = 4,show_status = FALSE, beta_decay = .9)

plot(inputs[1:4], col = mod$Labels, pch = as.numeric(labels.true),

main = paste0("Dataset : Wine -- Rand Index: ",

round(adjustedRandIndex(mod$Labels,labels.true),digits = 2)))

Alcohol

1
3

5

11 13

1
0

2
0

3
0

1 2 3 4 5 6

Malic acid

Ash

1.5 2.5

10 20 30

1
1

1
3

1
.5

2
.5

Alcalinity of ash

Dataset : Wine −− Rand Index: 0.14

Evaluation of package performance

The examples as shown here certainly have further potential for fine tuning. Nevertheless, in reference to
results achieved in (Illetskova et al. 2019), the achievable performance as demonstrated here appear to be on
par with the baseline algorithm (as described in the cited work). This can be verified via:

#Iris

inputs = subset(iris,select = -Species)

labels.true = as.numeric(unlist(iris$Species))
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normalized_inputs = normalize(df = inputs)

test_iris = function(seed)

{

mod = FuzzyART_train(normalized_inputs,alpha = .8,rho = .5,

beta = .12,max_epochs = 1000,max_clusters =20,

eps = 10ˆ-8,random_seed = seed, show_status = FALSE,

beta_decay = .9)

return(adjustedRandIndex(mod$Labels,labels.true))

}

res_iris = sapply(X = 1:50,FUN = test_iris)

print(paste0("Mean: ", mean(res_iris)))

print(paste0("StD: ",sqrt(var(res_iris))))

boxplot(res_iris, main = "Boxplot of Rand Index -- Iris")

#Wine

inputs = subset(wine,select = -Label)

labels.true = wine$Label

normalized_inputs = normalize(df = inputs)

test_wine = function(seed)

{

mod = FuzzyART_train(normalized_inputs,alpha = .8679,rho = .375,

beta = .9797,max_epochs = 2000,max_clusters =20,

eps = 10ˆ-8,random_seed = seed,show_status = FALSE,

beta_decay = .9)

return(adjustedRandIndex(mod$Labels,labels.true))

}

res_wine = sapply(X = 1:50,FUN = test_wine)

print(paste0("Mean: ", mean(res_wine)))

print(paste0("StD: ",sqrt(var(res_wine))))

boxplot(res_wine, main = "Boxplot of Rand Index -- Wine")

#> [1] "Mean: 0.588421981887455"

#> [1] "StD: 0.0825407082831491"

#> Registered S3 method overwritten by 'GGally':

#> method from

#> +.gg ggplot2

#> Registered S3 method overwritten by 'sets':

#> method from

#> print.element ggplot2

#> Warning: replacing previous import 'GGally::%>%' by 'sets::%>%' when loading

#> 'bootcluster'
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