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ABSTRACT

iii

DNA methylation is a widely studied epigenetic modification that can influence 

the expression and regulation of functional genes, especially those related to aging, cancer 

and other diseases. The common goal of methylation studies is to find differences in 

methylation levels between samples collected under different conditions. Differences can 

be detected at the site level, but regulated methylation targets are most commonly clustered 

into short regions. Thus, identifying differentially methylated regions (DMRs) between 

different groups is of prime interest. Despite advanced technology that enables measuring 

methylation genome-wide, misinterpretations in the readings can arise due to the existence 

of single nucleotide polymorphisms (SNPs) in the target sequence. One of the main 

pre-processing steps in DMR detection methods involves filtering out potential SNP-related 

probes due to this issue. In this work, it is proposed to leverage the current trend of collecting 

both SNP and methylation data on the same individual, making it possible to integrate SNP 

data into the DNA methylation analysis framework. This will enable the originally filtered 

potential SNPs to be restored if a SNP is not actually present. Furthermore, when a SNP is 

present or other missing data issues arise, imputation methods are proposed for methylation 

data. First, regularized linear regression (ridge, LASSO and elastic net) imputation models 

are proposed, along with a variable screening technique to restrict the number of variables 

in the models. Functional principal component regression imputation is also proposed as an 

alternative approach. The proposed imputation methods are compared to existing methods 

and evaluated based on imputation accuracy and DMR detection ability using both real and 

simulated data. One of the proposed methods (elastic net with variable screening) shows 

effective imputation accuracy without sacrificing computation efficiency across a variety of 

settings, while greatly improving the number of true positive DMR detections.
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1. INTRODUCTION

1.1. EPIGENETICS AND DNA METHYLATION

Genetics is the study of heritable changes involving modifications of the DNA 

sequence that exhibit variation between individuals. It includes the study of gene expression, 

genetic changes and multiple gene interactions. Changes to the DNA sequence are called 

mutations, and there are different types including deletions, insertions and translocations. 

Mutations can sometimes lead to the malformation of proteins, which may lead to disease. 

For example, sickle cell disease is caused by a single nucleotide mutation in the HBB gene 

that provides instructions for making one part of hemoglobin (Schnog et al., 2004). On the 

other hand, epigenetics is the study of heritable changes that are not associated with any 

alteration of the DNA sequence. Although all cells in an organism contain the same genetic 

information, the expression of genes can differ between cells. For example, different cell 

types require different genes to be active to perform their functions. Gene expression is 

regulated by epigenetics through different mechanisms, such as histone modifications, DNA 

methylation and non-coding RNA (Wei et al., 2017).

1.1.1. Mechanisms of DNA Methylation. DNA methylation (DNAm) plays an 

important role in gene regulation. It is one of the most studied epigenetic modifications 

in human cells that can affect gene expression and preserve cellular states through cell 

division without actually changing the DNA sequence. A nucleotide on a DNA molecule, 

specifically a cytosine, is methylated when a methyl group ( - CH3) is added to the carbon-5 

position of a cytosine, forming 5-methylcytosine. In mammals, DNAm is almost exclu­

sively found in CpG dinucleotides (a compound comprised of two nucleotides, cytosine 

(C) and guanine (G)) (Moore et al., 2013). The "p" simply indicates that "C" and "G" 

are connected by a phosphodiester bond. In stem cells and in plants, methylation is also
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found in the context of CHG and CHH where H is either A, T or C. A modified cytosine 

was first discovered in mammals by Hotchkiss (1948), who hypothesized that it was 5- 

methylcytosine and that it existed naturally in DNA. DNA methylation was demonstrated to 

be involved in gene regulation and cell differentiation in the 1980s (Holliday and Pugh, 1975; 

Compere and Palmiter, 1981). Further studies have revealed the important role of DNA 

methylation in many biological processes; including genomic imprinting (Tycko, 1997), 

transposable element silencing (Hollister and Gaut, 2009), stem cell differentiation (Sheaf- 

fer et al., 2014), embryonic development (Messerschmidt et al., 2014) and inflammation 

(Bayarsaihan, 2011), as well as cancer (Bock, 2012) and several other diseases.

1.1.2. CpG Island. A CpG island is a short part of the DNA sequence with a 

higher frequency of the CG dinucleotides sequence than other regions. CpG islands are 

often defined as a region with at least 200 base pairs (bp), a C and G percentage greater 

than 50%, and an observed-to-expected CpG ratio greater than 60% (Ongenaert, 2010). 

More stringent criteria have been proposed because this definition was unable to distinguish 

CpG islands from certain DNA repeat structures. Takai and Jones (2002) define a CpG 

island as having a minimal length of 500 bp, an observed-to-expected CpG ratio greater 

than 65%, and a C and G content of more than 55% are required. This largely solves the 

repeat problem, with the drawback that CpG islands that are smaller than 500 bp can not be 

predicted.

CpG islands typically occur at or near the transcription start site of genes, particularly 

housekeeping genes, in vertebrates. About 70% of human gene promoters have high CpG 

concentrations (Saxonov et al., 2006). DNA is wrapped around histone proteins forming 

small, packaged sections called nucleosomes. One of the common features of CpG islands 

is that they have less nucleosomes than other parts of DNA. This is often associated with 

modified histones and results in enhancing gene expression (Tazi and Bird, 1990). The CG
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dinucleotides sequence is not typically methylated in the promoter region of active genes. 

By contrast, the CG dinucleotides sequences in the promoter region of inactive genes are 

usually methylated to suppress their expression (Vinson and Chatterjee, 2012).

1.1.3. DNA Methylation and Cancer. It is well recognized that DNA methylation 

is an important epigenetic factor influencing gene activities, including genomic imprinting, 

aging and carcinogenesis. Cancer cells must undergo a series of molecular-level events to 

have the ability to replicate without limitation, as well as to invade and metastasize (Hana- 

han and Weinberg, 2011). Hypomethylation describes the unmethylated state of CpG sites 

that are normally methylated (a decrease in methylation); whereas hypermethylation refers 

to the methylated state of CpG sites in a specific sequence that are normally unmethylated 

(an increase in methylation). In cancer, global hypomethylation is accompanied by hyper- 

methylation of specific genes. Hypermethylation in the promoter regions of certain genes 

can suppress the expression of their functional proteins, including known tumor suppressor 

genes, leading to the silencing of those genes (Wajed et al., 2001). Epigenome-wide DNA 

methylation studies have shown that the methylation within functional promoter areas was 

associated with an increased risk of breast cancer, while the methylation of genomic regions 

outside the promoters was associated with a decreased risk (Severi et al., 2014). However, 

global hypomethylation has also been associated with oncogenesis (Das and Singal, 2004). 

Studies are ongoing to investigate the relationship between methylation patterns across the 

genome and specific types of cancer.

1.2. DNA METHYLATION TECHNOLOGIES

1.2.1. Bisulfite Sequencing. The development of technologies to measure levels 

of DNA methylation throughout the genome has been substantial in the past 30 years. 

These technological advances allow for significant improvement in understanding the role 

of epigenetics in medicine and biology in general. One method to detect DNA methylation at 

individual CpG sites is Bisulfite Sequencing combined with next generation sequencing (BS-
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seq) or whole genome bisulfite sequencing (WGBS). The basic principle of this approach 

involves bisulfite conversion on the unmethylated cytosines. Bisulfite conversion is a process 

in which DNA is denatured and treated with sodium bisulfite. The unmethylated cytosines 

are converted to uracils, while methylated cytosines remain unchanged. Following this 

process, the DNA is then treated by PCR amplification where the uracils are converted to 

thymines (Frommer et al., 1992). Comparing the sequence of converted DNA to untreated 

DNA creates a methylation profile of the sample. BS-seq or WGBS is the most thorough 

and informative approach to measure methylation status, thus it is capable of revealing 

subtle methylation patterns, and it achieves the most comprehensive coverage of a genome.

However, BS-seq is a costly and time-consuming procedure because the whole 

genome is tested. Reduced representation bisulfite sequencing (RRBS) is an efficient 

alternative for analyzing the genome-wide methylation profiles on a single cytosine level 

(Meissner et al., 2005). RRBS examines a subset of the genome by using a restriction 

enzyme to extract regions with a high CG dinucleotides content. The amount of nucleotides 

required to sequence is only 1% of the genome. These fragments often cover key promoter 

regions and CpG islands. This makes RRBS more economical and efficient. Therefore 

RRBS is suitable for large-scale comparative methylation studies across different tissues of 

cell types. On the other hand, a limitation of RRBS is that it can miss some CG dinucleotides 

and have lower coverage of some regions.

1.2.2. Infinium Beadchips. Illumina has developed a novel bead array technology 

using silica microbeads. On the surface of each array, tiny silica beads are located in 

microwells and coated with multiple probes. Probes are a collection of DNA spots that are 

attached to the solid surface for hybridization with the labeled target. Different probes are 

attached to each bead (Steemers and Gunderson, 2005). Illumina Infinium BeadChips have 

provided an easy to use, time efficient and cost effective way to measure methylation levels. 

The technology was first introduced with the Infinium HumanMethylation27 BeadChip 

(HM27). Quantitative measurements of DNA methylation can be determined for 27,578
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CpG dinucleotides spanning 14,495 genes using the HM27 platform. Like BS-seq, the initial 

step is bisulfite conversion, in which only a small amount of genomic DNA is required. 

Next, each sample is amplified, enzymatically fragmented, purified and then applied to the 

BeadChips for hybridization. There are two bead types that correspond to each CpG locus: 

one for the methylated and the other for the unmethylated state. Then, the array is stained 

with fluorescent dye and the intensities are measured (Weisenberger et al., 2008).

In 2011, an updated array called the Infinium HumanMethylation450 BeadChip 

(HM450) became the most widely used method for DNA methylation profiling. The 

HM450 array features 485,577 probes in coding and non-coding DNA regions, covering 

94% of the CpG sites on the HM27 array. Coverage is targeted to gene regions with sites 

in the promoter region, 5’ UTR, first exon, gene body, and 3’ UTR of RefSeq genes. CpG 

islands, CpG sites outside of CpG islands, and some enhancer regions are also covered by 

the HM450 array, as well as differentially methylated sites identified in tumor versus normal 

and across several tissue types. Notably, The Cancer Genome Atlas (TCGA) (TCGA, 2021) 

consortium used the HM450 platform to profile more than 8500 samples from over 52 

different cancer types.

There are two types of probes (Infinium I and Infinium II) on the HM450 array. 

Both probe types have assay chemistry technologies that are utilized to enhance the depth 

of coverage for methylation analysis. An illustration of the two probe types can be found 

in Figure 1.1. The Infinium I assay, also used in HM27, employs two bead types per 

CpG locus: one for the methylated and one for the unmethylated states. The Infinium II 

design uses one bead type, with the methylated state determined at the single base extension 

step. The addition of the Infinium II design enables each of up to three CpG sites to be 

either methylated or unmethylated on the probe with no impact on the result for the queried 

site. For the HM450 BeadChip, about 30% of CpG sites are measured using Infinium I 

probes and 70% of CpG sites are measured by the Infinium II probes. In 2016, the new 

Illumina Infinium Methylation EPIC array was released that can provide DNA methylation
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Infinium I
Unmethylated locus Methylated locus

uj Unmethylated bead type uj Methylated bead type I I CpG locus Bisulfite converted DNA

Infinium II
Unmethylated locus Methylated locus

J  Single bead type [ | CpG locus y  v Bisulfite converted DNA

Figure 1.1. Two types of Infinium probes. The Infinium I probes (top) have two bead types: 
one for the methylated and one for the unmethylated states. The Infinium II probes (bottom) 
has one bead type with the methylated state determined at the single base extension step. 
Figure from Illumina (2012).

levels for a total of 863,904 CpG sites. The EPIC array includes over 90% of the HM450 

probes, as well as additional probes dedicated to the enhancers revealed by the Functional 

Annotation of the Mammalian Genome project (FANTOM5) and the Encyclopedia of DNA 

Elements project (ENCODE). FANTOM5 and ENCODE are both public research projects 

aiming to identify functional elements in the human genome. Overall, data from the EPIC 

array at single loci are highly reproducible across technical and biological replicates and 

demonstrate high correlation with HM450 and WGBS data (Pidsley et al., 2016). In this
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work, the HM450 platform is utilized since data are accessible from TCGA. However, the 

methods can be generalized to methylation data obtained by other technologies, such as the 

EPIC array, WGBS or RRBS.

1.3. SNP AND METHYLATION MICROARRAYS

A single-nucleotide polymorphism (SNP) is a single nucleotide substitution in the 

DNA sequence (Figure 1.2). Typically there are two possible nucleotides altering at a 

given position (Vignal et al., 2002). SNPs are a common type of genetic variation among 

other DNA sequence mutations such as deletions, insertions and translocations. A variant is 

classified as a SNP when more than 1% of the population does not share the same nucleotide 

at the specific position on the genome. In humans, the occurrence rate of SNPs is about 

0.1%, meaning that there is one SNP in every 1,200 to 1,500 base pairs (Shastry, 2002). 

SNPs can occur anywhere in the genome, including in the coding regions of genes where 

they could lead to the changes in gene function and expression. SNPs can be identified 

through hybridization-based or enzyme-based methods. A SNP array is one detection 

method based on the hybridization of the fragmented DNA sequence and the immobilized 

allele-specific oligonucleotide probes (LaFramboise, 2009). DNA methylation microarrays 

also have a connection to SNP arrays. DNAm arrays interrogate DNA methylation states by 

sodium bisulfite conversion which transforms an epigenetic difference between a modified 

cytosine (including 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5hmC)) and 

an unmodified cytosine to a genetic C/T SNP (Frommer et al., 1992). Therefore, the DNAm 

microarrays are essentially SNP arrays because the Infinium arrays obtain the methylation 

intensity at a particular location by checking whether there is a C/T SNP present.



8

Figure 1.2. Single nucleotide polymorphism (SNP). At the fourth base, a SNP is present. 
The DNA sequence varies within a population at this site.

1.4. PREPROCESSING OF METHYLATION DATA

1.4.1. Probe Filtering. Some probes on the Illumina methylation arrays (including 

the HM450 array used in this work) are prone to giving inaccurate values that do not represent 

the underlying methylation state. This can arise due to a number of different reasons, that 

are each considered for initial filtering. One way this can happen is when a probe is present 

in low quantities because of amplification artifacts or mutation, resulting in a mismatched 

intended sequence. Such probes should be filtered out since they mostly carry background 

noise. To distinguish signal from noise, detection p-values are used. The background 

distribution is assumed normal, and the parameters are estimated using negative control
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probes. The p-value is computed using a Z-test (Heiss and Just, 2019). A small detection 

p-value indicates that the measured intensity is very likely to be a true (significant) signal 

and not background noise. Typically, significance levels of 0.05 or 0.01 are used. A 

sample is considered a bad sample when over 10% of the probes are problematic based on 

the detection p-values, and should be removed from the analysis. Bead counts are also a 

consideration of the probe quality. Usually, probes with less than 3 beads in at least 5% of 

samples per probe are filtered out. A larger proportion of non-CpG-target probes (Probe 

ID starting with “ch”) are potentially cross-hybridizing probes. Cross-hybridization is the 

tendency for chains of nucleic acids to bind to other chains of nucleic acids that have similar 

but not identical sequences. This makes the results difficult to interpret (Reilly et al., 2006). 

Of the 3,091 non-CpG probes on the HM450 microarray, only 39% can be mapped with 

a perfect match to the correct genomic location annotated by Illumina (Chen et al., 2013). 

Thus, all non-CpG probes are filtered out. Moreover, there are 65 built-in SNP probes 

(Probe ID starting with "rs") querying high-frequency SNPs in the HM450 array for the 

purpose of quality control, and they are typically removed in preprocessing steps.

The existence of SNPs can affect DNA methylation readouts in the Infinium arrays. 

SNPs can increase mismatches close to the 3’ end of the probe sequence and interfere with 

successful extension. It can also change the CpG dinucleotide sequence and therefore the 

ability of cytosines to be methylated. A special case would be the presence of an actual 

C/T polymorphism instead of the C/T introduced by bisulfite conversion. Also, for a Type I 

Infinium probe, the color channel depends on the extension base. If a SNP is present in the 

extension base, a potential color change could happen. Specifically, the color switch can be 

caused by an A/G SNP but not an A/T SNP, because A and T bases are both labeled with 

red fluorophores, and C and G are labeled with green. Therefore, probes with any SNP of 

global minor allele frequency (MAF) over 1% and within 5 bp from their targets, Infinium
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I probes with putative color channel switching SNPs, and Infinium II probes with SNPs of 

global MAF over 1% affecting the extension base are suggested to be filtered out (Zhou 

et al., 2016).

When aligning probe sequences to the human genome, some probes map to multiple 

sites. It has been shown that probes with non-unique alignments display significantly 

greater variance in methylation levels than uniquely mapping probes (Nordlund et al., 2013). 

Therefore, the multi-hit probes are usually filtered out in the preprocessing step. Typically, 

probes located in chromosome X and Y are removed to avoid sex related methylation biases.

1.4.2. Normalization. As mentioned in section 1.2, the Infinium HumanMethyla- 

tion450 and the EPIC BeadChip use two different types of chemical assays for their probes. 

This probe design can potentially cause problems for data analysis if they are not handled 

properly. It is shown that Infinium I and II probes usually have different distributions 

of methylation values, and that Infinium II probes are relatively less accurate and more 

sensitive for detecting extreme methylation values (Dedeurwaerder et al., 2011). In order 

to eliminate the influence of different probe types, remove sources of technical variation 

between measurements, as well as cancel background noise of the data, several different 

normalization methods have been developed.

Quantile normalization (Bolstad et al., 2003), first used in gene expression data, uses 

the mean intensity of the probes with the same rank from all studied arrays to replace the 

intensity of a probe. This helps make the distribution of probe intensities the same for each 

array. A peak-based correction (PBC) method (Dedeurwaerder et al., 2011) estimates the 

methylation peaks for the two probe types separately, then rescales the Infinium II values 

according to the initial range of Infinium I. The subset-quantile within array normalization 

(SWAN) method (Maksimovic et al., 2012) is based on normalization methods from mi­

croarray gene expression platforms. An average quantile distribution is determined using a 

subset of probes defined to be biologically similar based on CpG content. The intensities of 

the remaining probes are then adjusted by interpolation onto the distribution of the subset
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probes. The yS-mixture quantile normalization (BMIQ) method (Teschendorff et al., 2013) 

decomposes the methylation profiles of Infinium I and Infinium II probes into two mixtures 

of three methylation states (unmethylated, partially methylated and fully methylated), and 

then quantile normalizes the three distributions of the Infinium II profile corresponding to 

those of the Infinium I profile.

1.5. DIFFERENTIAL METHYLATION TESTING

1.5.1. Site Level Testing. A common goal of methylation studies is to discover 

individual CpG sites that have significantly different methylation levels between different 

conditions (e.g., normal vs. disease). These differentially methylated sites can be of 

substantial importance for the identification of novel disease biomarkers. In recent years, 

many statistical methods were developed for different types of methylation data to detect 

differentially methylated CpG sites.

For BS-seq, data can be summarized as counts of methylated and unmethylated 

reads at any given site. Fisher's exact test (FET) was one of the first approaches used 

to detect differentially methylated sites (Lister et al., 2009). However, FET does not 

account for the inherent biological variation that is present across biological replicates 

and it assumes independence between cytosine sites. BSmooth (Hansen et al., 2012) is an 

alternative approach that uses a “signal-to-noise” statistic to quantify differential methylation 

evidence at individual CpG sites by combining top ranked differentially methylated cytosines 

(DMCs), which are found using a t-statistic approach with either a quantile or direct t-statistic 

cutoff. BSmooth is not used directly for inference of differential sites, but rather uses the 

site level statistics to find differentially methylated regions. The beta-binomial model is an 

alternative statistical model for replicated BS-seq DNA methylation measurements. The 

beta-binomial distribution is the binomial distribution in which the probability of success
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in each of n trials is not fixed but randomly drawn from a beta distribution. It can account 

for both sampling and epigenetic variability. The beta-binomial model is used by methylSig 

(Park et al., 2014) and others for site level differential methylation detection.

Different from the count-based data obtained from BS-seq, DNA methylation arrays 

provide fluorescence intensities that are quantified as the relative level of methylated and 

unmethylated probes. Specifically, two types of data are used for downstream analyses. 

The yS-value is an estimate of the methylation level using the ratio of intensities between 

methylated and unmethylated alleles. They range between 0 and 1. Ideally, a value of 0 

indicates that all copies of the CpG site in the sample were completely unmethylated, and 

a value of 1 indicates that every copy of the site was methylated. The yS-value is defined 

below:
max(Methylated, 0)

max(M ethylated, 0) + max(Unmethylated, 0) + a "

The a  in the denominator is used to stabilize the estimate when both the methylated and 

unmethylated intensities are low. The a  value is set to 100 by default. Note that after 

correcting for background noise, the methylated and unmethylated intensities may have a 

negative reading. To avoid this, max(Methylated, 0) and max(Unmethylated, 0) are used 

to reset any negative values to 0 .

The other commonly used methylation measure is called an M-value. It is calculated 

as the log2 ratio of the intensities of methylated probes versus unmethylated probes, as 

defined below:
I max(Methylated, 0) + a  \

2 \max(Unmeth ylated, 0) + a)

The a  (by default equals 1) in the calculation is added in order to prevent unexpected large 

changes due to small intensity estimation errors. M-values can range from negative infinity 

to positive infinity. When the methylated and unmethylated probes have the same intensity 

value, the M-value is 0. Positive M-values indicate more methylation is occurring than not.
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The a  value in the calculations of both yS-value and M-value is typically negligible 

due to the fact that more than 95% of CpG sites have intensities higher than 1000 (Du et al., 

2010) and thus it typically does not have a large impact on the calculated methylation level. 

The relationship between the M- and yS-values can be expressed as:

M = log2
1 -  S

(1.1)

Although the yS-values are useful for interpretation, there are some advantages to using the 

M-values for statistical analysis, such as homogeneity of variance (Du et al., 2010). Also 

M-values range from negative infinity to positive infinity, making it more suitable to use 

statistical methods that have a normality assumption. Thus, M-values are recommended by 

Du et al. (2010) for conducting differential methylation analysis.

Several statistical methods have been proposed for DNA methylation microarray 

data to identify cytosine sites with significant differential methylation, including CpGassoc 

(Barfield et al., 2012), MENT (Baek et al., 2013), IMA (Wang et al., 2012), and COHCAP 

(Warden et al., 2013). The limma method (Smyth, 2004) is an approach first developed 

for detecting differential expression in gene expression microarray data, but it can also be 

used to test for differential methylation in DNA methylation microarray data. This method 

is further described since it is used in downstream region level analysis employed in this 

work. For DNA methylation studies, as well as other genomic studies like gene expression, 

typically only a small number of biological replicates are available. However, the studies 

are very complex, involving different aspects of biological processes and a large number 

of variables. It is challenging to find statistically significant and precise features between 

different conditions. The limma method (Smyth, 2004) tried to solve this problem by 

fitting a linear model to the M-value of each genomic position, then using empirical Bayes 

methods to estimate moderated t-test statistics. Global parameters are estimated using all 

the variables at once, which enables the incorporation of correlated neighboring genomic
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features. The empirical Bayes approach is equivalent to shrinkage of the estimated sample 

variances toward a pooled estimate. It borrows information between probes in order to 

moderate the residual variances, and ensures that small sample inference can be conducted 

with reliable and stable results (Ritchie et al., 2015).

1.5.2. Region Level Testing. While there are benefits of analyzing differential 

methylation at the site level, there are reasons both biologically and statistically to test 

differential methylation at the region level. It is shown that strong correlation exists between 

CpG methylation levels over short distances. This correlation dissipates the further away 

sites are from each other, such that it is no longer detectable at sites over 1000 bp apart 

(Eckhardt et al., 2006). Differential methylation targets are most commonly clustered into 

short regions. So it is meaningful to look at the differential methylation at a region level. 

Also, when the difference in methylation is small and undetectable at the site level, the 

persistence in small methylation differences over a region will provide a higher power for 

detection.

1.5.2.1. Defining regions. There are two ways to define a region when performing 

region level differential methylation testing. The first approach is to use predefined regions. 

The density of probes on HM450 data varies across the genome, with higher coverage in 

the promoter regions of genes and CpG islands (Illumina, 2012), as shown in Figure 1.3. 

Some differential methylation region (DMR) detection methods, such as IMA, COHCAP 

and QDMR (Zhang et al., 2011), concentrate on high density areas using predefined regions, 

compromising only a subset of the HM450 probes. This approach may miss meaningful 

clusters outside the predefined ones, but it can reduce the number of tests that need to be 

accounted for when controlling the false discovery rate.

The second way to define regions is to use a post-hoc aggregation method based on 

the data. After conducting the initial analysis on each cytosine site, probes are included in 

a region if they have significant site level differential methylation and are within a certain
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Figure 1.3. HumanMethylation450 BeadChip coverage of different regions. Figure from 
Illumina (2012).

distance of other significant sites. Bumphunter (Jaffe et al., 2012) and DMRcate (Peters 

et al., 2015) both use this approach to define a region. These methods are described in more 

details below since they will be utilized in this work.

I.5.2.2. Testing methods. Many DMR testing methods have been developed, such 

as Bumphunter, DMRcate and ProbeLasso (Butcher and Beck, 2015). In this study, Bum­

phunter and DMRcate are used since they are the most commonly used statistical methods 

for DMR detection in HM450 data. These methods are briefly described in this section
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and further details are provided in Chapter 2. Bumphunter is a data analysis pipeline de­

veloped to identify DMRs associated with disease (Jaffe et al., 2012). A statistical model 

is developed to take into account batch effects, which are a potential problem in large scale 

and high throughput studies with many samples. Batch effects are the unnoticed correlation 

between subgroups of samples which may be caused by experimental environments, such 

as the temperature and humidity. First, a linear regression model regressing the methylation 

value on the group status is applied to model differential methylation between the case and 

the control groups at each CpG site. This model can also incorporate batch effects. The 

slope coefficient corresponding to the group variable is then smoothed using loess. Clus­

ters of consecutive probes for which coefficients higher than a predetermined threshold are 

identified as candidate regions (bumps). Permutation tests, which permute sample labels to 

create a null distribution of candidate regions, are then conducted to estimate the statistical 

significance of the candidate DMRs.

DMRcate is a data-driven approach that can be used with WGBS data as well as 

HM450 array data (Peters et al., 2015). First, a linear model is fit at each CpG site using the 

limma method (Smyth, 2004). A Gaussian kernel with bandwidth A is used to smooth the 

estimated test statistics. The Gaussian kernel is calculated with a standard deviation a  = C, 

where C is a scaling factor for the bandwidth. Smoothed test statistics are then modeled and 

a p-value is calculated for each site. DMRs are defined by grouping the significant CpG 

sites that are at most A nucleotides from each other.

1.6. MOTIVATION

Human genomes are complex and are regulated at multiple levels. Various types 

of genomic data offer different aspects of complicated biological processes. Due to recent 

advances in high-throughput technologies, multiple types of genomic data (e.g. gene 

expression, methylation, SNP) can be collected on the same individual. The Cancer Genome 

Atlas (TCGA) is one of the most comprehensive cancer genomics programs. TCGA hosts
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a database with genomic sequence, expression, methylation, and copy number variation 

data on over 11,000 individuals, with samples in over 30 different types of cancer. TCGA 

is led by the National Cancer Institute (NCI) and the National Human Genome Research 

Institute (NHGRI) to map genomic and epigenomic changes with the goal of accelerating 

new discoveries in cancer-related research and to improve the prevention and treatment 

of cancer (Wang et al., 2016). The International Cancer Genome Consortium (ICGC) is 

another genomic data consortium, which provides data on genomic, transcriptomic and 

epigenomic abnormalities, as well as somatic mutations in over 50 different cancer types 

(Hudson et al., 2010).

Integrating and combining multiple types of genomic data can provide researchers 

with deeper insights into complex biological processes and help scientists reveal disease 

mechanisms for exploration, prevention and treatment. However, it is challenging to com­

bine these different layers of information. This study focuses on the integration of DNA 

methylation and SNP data to maximize the utilization of genomic information and improve 

biologically meaningful discoveries. When analyzing DNA methylation data, SNP probes 

are filtered out in a preprocessing step based on the population minor allele frequency and 

their location relative to the target sites. Any potential SNP is filtered out for all individuals 

due to the potential issues they pose for measuring methylation accurately. However, for 

each individual, one may or may not have the specific allele associated with the SNP. When 

SNP data are available, researchers can use the information to recover probes that are not 

affecting the quality of the methylation array. For those probes that are actually influenced 

by SNPs, imputation methods are proposed and investigated. Missing data are a common 

issue in different areas, including biology, genomics, social sciences and financial studies. 

Handling the missing value problem simply by deleting the missing instances can result in 

losing useful information. Simple solutions such as replacing the missing value with the 

mean may falsely lower the variability. This research will develop sophisticated imputa­
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tion methods based on the specific data structure. The nature of DNA methylation data 

and the correlation between neighboring sites will be considered when imputing missing 

methylation values.

In this dissertation, imputation methods are proposed based on the characteristics 

of DNA methylation data and these are described in Chapter 2. Predictive models built 

under the regularized linear regression framework are used to impute the missing values. 

The shrinkage approaches for the regression models include ridge, LASSO and elastic net. 

Moreover, functional principal component analysis is applied to perform linear models as 

an alternative imputation method. The proposed methods are evaluated and compared to 

existing imputation methods via a simulation study and analysis of real data, described in 

Chapter 3. The natural structure of the DNA methylation data is retained by using the real 

data when conducting the simulation. Two types of DMRs are investigated to mimic the 

methylation patterns in human genome. The performance of the imputation methods are 

assessed in terms of imputation accuracy and DMR detection ability. Finally, in Chapter 4, 

a summary of the work and discussion of future research is provided.
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2. DATA AND METHODS

2.1. DATA

2.1.1. Data. In this research, Infinium HumanMethylation450 BeadChip (HM450) 

DNA methylation data on breast cancer patients were obtained from The Cancer Genome 

Atlas (TCGA) (TCGA, 2021). Measurements of methylation levels on 485,577 CpG sites 

were given for the normal tissue and tumor tissue of 86 individuals. For 3 individuals, 

methylation data were only available for the tumor tissue. The raw data (provided in 

.idat files) were downloaded using the DTT UI from National Institutes of Health, the 

user interface (UI) design version of the Data Transfer Tool (DTT). Single-nucleotide 

polymorphism (SNP) data on “Pathogenic Germline Variants in 10,389 Adult Cancers” 

(Huang et al., 2018) were acquired from Genomic Data Commons (GDC). BCFtools (Li 

et al., 2009), a tool to process binary variant call format (BCF) and variant call format 

(VCF) files, was used to extract information on the 89 individuals for this study from the 

compressed VCF file of the combined variant calls.

The methylation data were processed through the Chip Analysis Methylation Pipeline 

(ChAMP) (Tian et al., 2017) in Bioconductor version 3.12 and R version 3.6.3. In addition 

to the raw .idat files, a table stating the sample names and their treatment groups is also 

required. The treatment group is acquired from the "Sample" code of each sample’s TCGA 

barcode (Figure 2.1). In the code, ‘01’ indicates the tumor sample type and ‘11’ is the 

normal sample type.

Prior to analyzing the DNA methylation data, several pre-processing steps are 

needed. One of these steps involves filtering out probes for different reasons, as described 

in Chapter 1. First, the data are filtered based on the detection p-values. Detection p-values 

measure the likelihood that the total intensity of the probes is generated by a background
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Figure 2.1. The Cancer Genome Atlas (TCGA) barcode label explanation. Figure obtained 
from (TCGA, 2011). ‘TSS’ is short for tissue source site.

distribution. If the detection p-value is below a specified significance level, it means the 

observed value of total intensity is unlikely to be generated by the background noise, thus 

the probe is considered detected (Heiss and Just, 2019). In this study, any probe with 

detection p-values greater than 0.01 are filtered out (Hernandez-Vargas et al., 2010). The 

percentage of problematic probes (based on the detection p-values) for each sample is also 

monitored. When the proportion is above 0.1, the sample will be removed from the analysis. 

Probes with less than three beads in at least 5% of samples per probe are also filtered out. 

All non-CpG probes and multi-hit probes are removed due to potential cross-hybridization 

and misinterpretation they may cause on methylation levels. In this research, the probes on 

the sex chromosome are kept because all the samples are females. If the samples are from 

both sexes, the probes located in chromosomes X and Y are suggested to be filtered out to 

exclude possible sex bias (Ma et al., 2013). A normalization step is also required before 

further analysis in order to adjust the bias caused by probe types and technical variation. In 

this work, the peak-based correction (PBC) normalization (Dedeurwaerder et al., 2011) is 

applied to the datasets before DMR detection.

Both a real dataset and a simulated dataset are used to study and evaluate proposed 

imputation methods with respect to the potential SNP probes. To improve the computation 

time without losing generality, in the real data analysis, a piece on the genome of a reasonable 

length is considered for the analysis. A total of 7,987 probes with genomic locations between



21

1 and 13,800,000 base pairs on Chromosome 1 is considered. In a typical analysis, the 

probes with a potential SNP are also recommended to be filtered out based on the list 

provided by Zhou et al. (2016). After performing the standard filtering criteria (including 

potential SNP probes), 6,838 probes are remaining for analysis on this segment. This set of 

probes is referred to as the incomplete dataset in the real data analysis.

The SNP filtering is based on the potential for an individual to have a SNP at a 

particular location based on population data. However, many individuals will not have a 

SNP but rather have the common variant in the population. In this research, SNP data are 

integrated into the filtering phase and each sample is checked to determine if they actually 

have a SNP or have the common variant at each potential location. This allows the recovery 

of probes that do not have an actual polymorphism. By integrating the SNP data of all 

the individuals into the filtering process, a dataset with the most information available is 

generated. This is called the complete data, which contain 7,668 probes. After this step, 

a list of DNA methylation probes that are actually affected by SNPs is obtained. These 

probes can not be recovered since they actually contain true SNPs. Imputation methods are 

developed to fill these positions in order to improve downstream analysis such as differential 

methylation region (DMR) detection.

2.1.2. Characteristics of DNA Methylation Data. Methylation is not a random 

process. Researchers have found that close neighboring CpG sites are likely to share the 

same methylation status (Sun et al., 2019). That is, the DNA methylation level of a given 

site is highly correlated with the methylation levels of neighboring probes. Neighboring 

probes are defined in terns of their physical proximity based on their genomic location 

on the chromosome (i.e., how far away in base pairs (bp) the sites are from each other). 

This phenomenon could be due to the working distance range of DNA methyltransferase 

(DNMT) in changing the methylation status of CpG sites (Jia et al., 2007). DNMT transfers 

the methyl group to DNA and could methylate two CpGs within its working distance range
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in one binding event. The correlation may also be due to the influence of the nearby CpG 

sites in the recruitment of DNA methyltransferase or demethylase enzymes (Lovkvist et al., 

2016). Demethylase enzymes remove the methyl group from methylated CpG sites.

Figure 2.2. Correlation between co-methylation and spatial distance in genomic base 
pairs (bp). The methylation values represented by the orange dots are averaged over 
25,000 individual measurements. Grey dots represent CpG methylation values based on 
re-sampling of random CpG positions. Blue dots represent CpG methylation values based 
on re-sampling of amplicons (obtained by PCR amplification). Correlation between CpG 
methylation and spatial distance is not detectable at distances larger than 1,000 bp. Figure 
from Eckhardt et al. (2006).

Eckhardt et al. (2006) mentioned that the methylation level of nearby probes have a 

significant correlation over short (up to 1,000 bp) distances. As shown in Figure 2.2, the 

correlation decreases rapidly at 1,000 bp and beyond. In the following statistical analysis
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steps, it is important to consider the genomic position of each probe and the potential of 

neighboring correlation when performing model building, variable selection and missing 

value imputation.

2.2. MISSING VALUE PROBLEM

Missing data can happen for many reasons that are beyond the control of the ex­

perimenter. For example, missing data can arise due to technical errors, improper data 

collection, respondents refusing to answer (e.g., in surveys) or participants that drop out. 

For array based genomic technologies, missing values may be caused by image corruption 

or low resolution (Troyanskaya et al., 2001). Missing values in DNA methylation are in­

troduced due to various reasons, such as filtering out probes with low detection p-values 

or low bead count, as well as removing multi-hit and non-CpG probes (Maksimovic et al., 

2012). One of the main sources of missing DNA methylation data is due to filtering out 

SNP probes. Addressing this issue is the main focus of this work.

The missing data mechanisms are categorized into three classes by Rubin (1976). 

If the probability of a missing value's occurrence is the same for all cases, and there is 

no correlation between the missing and the observed data, the missing data are called 

missing completely at random (MCAR). If the probability of being missing is the same 

within a group of the data, then the missing data are called missing at random (MAR). 

MAR means that there might be systematic differences between the missing and observed 

data, but these differences can be explained by some observed variables. For example, in a 

clinical trial studying blood pressure, some records are missing. People using manual blood 

pressure monitors tend to not record their blood pressure reads, whereas the reads can easily 

be recorded and stored for automatic digital blood pressure monitor users. The missing 

percentage is different between people using different devices, but it can be explained by a 

variable separating the two groups. Moreover, the variable is not related to the value that is 

missing. A violation of the rule would be when people with higher blood pressure record
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their results but people with normal blood pressure don’t record as often. The missing 

rate is related to the blood pressure values. This situation is the third type of missing data 

mechanism, missing not at random (MNAR). Missing data are classified as MNAR when 

there is a relationship between the tendency of a value to be missing and its value.

The underlying missing data mechanism has an impact on the choice and perfor­

mance of different imputation methods. However, for real data, the missing mechanism 

cannot be revealed by studying the data itself. In order to make reasonable assumptions, 

knowledge of the data and the data collection process is required. Due to the randomness 

of experimental and technological errors, MCAR/MAR is assumed for the HM450 data. 

For example, the missing value is higher at the positions where probes fail to capture target 

sequence, but the missing pattern is independent of the value itself (Lena et al., 2019a).

2.3. IMPUTATION METHODS

2.3.1. Traditional Solution for Handling Missing Values. One of the most fre­

quently used solutions for the missing value problem is listwise deletion. In this approach, 

all cases with missing values will be omitted from an analysis. This default method is con­

venient, but it reduces the sample size radically and can waste potentially useful information 

present in the deleted entries. For example, an individual answering a survey many answer 

only part of the questions and useful information may be contained in the subset of data that 

is available for that subject. Also, when the missing pattern is not MCAR, listwise deletion 

introduces large bias to the estimated mean (Little and Rubin, 2002).

Depending on the data type, there are several other convenient approaches to address 

missing values. If the variable is quantitative, the missing data can be replaced by averaging 

the non missing observations of the variable over all samples. If the missing value is quali­

tative, the mode of the non-missing observations can be used. However, mean imputation 

is problematic because it will shrink the standard deviation of the original distribution, and 

disturb the relationship between variables (Van Buuren, 2018). For example, values that are
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imputed by a variable’s mean have almost no relationship with other variables. As a result, 

the correlation between variables is biased toward zero, which is not wanted in data analysis. 

In this research, the mean imputation method is applied on the missing methylation data 

to provide a basis for comparison to a commonly used and easy approach. For each CpG 

site, the missing values among the samples are replaced with the mean over the methylation 

values of the non-missing samples of the same group for that site. As a result, if a CpG site 

has more than one missing entry, they will have the same imputed value.

For longitudinal data, last observation carried forward (LOCF) and baseline ob­

servation carried forward (BOCF) are widely used to address missing values, especially 

in clinical trials. In the LOCF method, the value at the last time point prior to a subject 

dropping out is used as the imputed value for all later time points in the study. Assumptions 

of LOCF are strong, including the assumption that observations do not change when data 

are missing and that a single data point can be used to estimate a distribution of potential 

values (Molenberghs et al., 2014). BOCF instead uses the baseline value of an individual 

as the imputed value for any missing data in the time sequence. It is suggested that the 

effect of actual outcomes as well as the reason for the missing values should be investigated 

before choosing this approach (Liu-Seifert et al., 2010).

2.3.2. KNN Imputation. K-nearest neighbors (KNN) imputation was proposed by 

Troyanskaya et al. (2001) to handle missing values in gene expression microarray data. 

The gene expression data are arranged in a matrix with genes in the rows and samples or 

experiments in the columns. For a gene with a missing expression value in sample i, K 

other genes will be found, which have an expression value in sample i. The missing value 

is estimated by a weighted average of the selected K gene expression values in sample i. 

The weight is decided by the similarity of each gene to the gene with missing value. It 

is found that the method is insensitive to the exact number of K within the range of 5-20. 

Similarities are measured by calculating the Euclidean distance between two genes using 

the rest of samples other than sample i.
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The idea of this method is applicable to DNA methylation imputation because it 

uses the summary value from similar genes. With methylation data, the missing value is 

estimated by a weighted average of methylation levels from K=10 CpG sites in the same 

sample with the missing value. The KNN method will be applied in this work as one of the 

comparison methods since it is a current approach in genomic literature. A drawback of 

the KNN method is when the missing rate is very high at a particular CpG site, the method 

fails when all the neighbors are missing in a particular position.

2.3.3. MethyLImp. In 2019, Lena et al. proposed a linear regression model for 

missing value imputation specifically for DNA methylation data. The idea aims to capture 

the correlation between methyation levels of CpG sites by a linear regression model. The 

missing values are imputed by iteratively performing linear regression on the available data. 

The methylation data are organized in matrix form, with each methylation probe (CpG site) 

being treated as a column variable and the rows correspond to each sample.

In the first step of methyLImp (Lena et al., 2019a), the first CpG site with missing 

values is found. The method also searches for other CpG sites which have missing values 

in the same samples as the first CpG site. The non-missing values for this site (or sites) are 

denoted as Yi and the missing values as Y2. The imputation goal is to find the estimates 

of Y2. Next, the cases with no missing value in the submatrix with only samples in Y1 

is denoted as X1. X2 is the matrix whose entries include the same columns (sites) as X1 

and same rows (samples) as Y2. An illustration of how these matrices are defined can be 

found in Figure 2.3. Any column (site) with missing values not included in Y1 and Y2 are 

not used in that specific imputation iteration. In this example, Y 1 is a two-column matrix 

instead of a vector. The missing values in site 1 and site 6 will be imputed together because 

samples with missing values are the same for those two sites.
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Figure 2.3. Example of the matrix definitions from the methyLImp method.

To address the limited range of the yS-values between 0 and 1, a logit function 

l o g i t (p) = log(y-p), p  e  [0,1] is applied on the Yj’s and the model is set up as:

l o g i t (Y) = X • a  +  e. (2.1)

Here Y corresponds to the Yi matrix, X is the Xi matrix, a  are the regression coefficients 

and e is the error term. The error term is assumed to be independently and identically 

distributed with a normally distribution. The coefficients a  of the regression model are 

estimated by using the pseudo-inverse of X:

a  =  X-1 • l o g i t  (Y).

The pseudo-inverse X 1 is computed using the singular value decomposition (SVD) of X 

(Golub and Reinsch, 1970).
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The SVD of an N x  p matrix X is:

X = UDV'

where U is an N x p matrix and V a p x p matrix. U and V are orthogonal to each other. 

D is a p x p diagonal matrix with entries d1 >  d 2 >  ... >  dp , and the entries are called the 

singular values of X.

Then, the Moore-Penrose pseudo-inverse (Penrose, 1955) has the form:

X-1 = VD-1U'

where D-1 is formed from D by taking the reciprocal of all the non-zero entries and leaving 

the zeros as they are.

After obtaining &, the estimates of a ,  the missing methylation levels are predicted 

as follows:

Y2 = l o g i t -1(X2 • a ).

In summary, the MethyLImp method uses X1 and Y1 to build a regression model and then 

predicts the missing values in Y2 by fitting X2 in the model. An R-package implementing this 

method called ‘methyLImp’ is available at GitHub (Lena et al., 2019b). Lena et al. (2019a) 

compared methyLImp to existing methods including mean, KNN, SVDmiss (Fuentes et al., 

2006), softImpute (Mazumder et al., 2010), imputePCA (Husson and Josse, 2013) and 

missForest (Stekhoven and Buhlmann, 2012). MethyLImp was shown to perform equally or 

better than these methods and with good computational efficiency. The imputation methods 

proposed in this work are compared to methyLImp since it is the primary imputation method 

for DNA methylation data available.
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2.4. REGULARIZED LINEAR REGRESSION IMPUTATION

The number of CpG sites in DNA methylation data is much larger than the sample 

size. For example, HM450 methylation data has over 450,000 probes but the sample size 

in most studies is usually limited to around 100 individuals. When using a regression 

model to impute missing values, this high dimensional problem is not negligible in the 

models. A common problem of models with a large number of variables is multicollinearity. 

Multicollinearity is the condition where two or more predictor variables in a statistical model 

are linearly related (Dormann et al., 2013). The existence of multicollinearity can result 

in increased variance of regression coefficients, which will lead to unstable estimation of 

parameter values. For least squares regression, the regression coefficients a  are estimated 

as a = (X'X)-1X'Y, where X is the design matrix and Y is the response vector. When the 

columns of the design matrix X are highly correlated, X'X is almost singular, leading to the 

instability of a  with small changes in the data.

Regularized linear regression imputation is proposed in this research to deal with 

the issues posed by high dimensional data. The regularization approach involves adding a 

constraint to the loss function. A loss function is used to penalize the prediction errors when 

fitting the model (Hastie et al., 2009). For example, assume f  is the function to predict Y 

based on the input X . A convenient loss function is the squared error loss:

l = (Y -  f  (X))2. (2.2)

Least square estimators are obtained by minimizing the squared error loss function. Regu­

larization methods involve adding different penalty terms to the loss function, which prevent 

coefficients from taking unreasonable values and help with the risk of overfitting. Three 

different regularization methods (ridge regression, LASSO and elastic net) are explored in 

this work for incorporation into the imputation process as described below.
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The imputation methods in this research iteratively evaluate the complete subset of 

variables with missing entries. The iteration starts with the first CpG site measured on a 

chromosome and works sequentially through the genomic locations. Here, the variables 

are the methylation levels at different CpG sites. The input data is organized as each row 

representing a sample and each column representing a probe for a particular CpG site as 

shown in Figure 2.3. Several lists are generated: the list of all sample names S, all column 

names C, and the names of columns with missing values V . The first step is to find the 

variables with missing values V1 in V. Denote the list of row names of those missing 

positions of V1 as SNA. Yi is the vector or data matrix with columns V1 and rows in S but 

not in SNA. If the missing value positions are exactly the same for more than one variable, 

Yi will be a matrix instead of a vector. Xi is the submatrix with the same rows as Yi and 

the columns in C but not in V . X2 is the submatrix with the samples in SNA and same 

columns as in X1. Finally, Y2 is the vector or submatrix of missing values at variables 

V and samples in SNA. After obtaining Y1, X1, and X2 in the first iteration, methods are 

applied to fit a generalized linear model with Y1, X1, and then predict Y2 by feeding X2 into 

the fitted model. After the missing value(s) are imputed at variable(s) V1, the lists S, C, V 

and SNA are updated accordingly. The algorithm will search for the next variable(s) with 

missing values and the complete samples, and construct new vectors or matrices Y1, X1, 

and X2. In this step, the imputed values for variable V1 will be treated as complete entries. 

The iteration will stop when S and V are empty, meaning all the missing values have been 

imputed.

This work is inspired by methyLImp to impute missing values in DNA methylation 

data by utilizing a regression model. When forming the sub-matrices for imputation in 

the previous steps, the number of variables is large compared to the number of samples 

available, resulting in a high dimensional data problem. The proposed methods in this 

research use regularization when fitting the model instead of using the pseudo-inverse of 

the design matrix, which is not unique. To address the issues posed by high dimensional
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data, regularization (also known as shrinkage) approaches are used to shrink estimated 

coefficients towards zero relative to the least squares estimates to reduce the variance and 

help prevent overfitting (Hastie et al., 2009). Depending on the type of shrinkage approach, 

some of the coefficients may be estimated to be exactly zero. In this work, the two best- 

known regression regularization techniques (ridge regression (Hoerl and Kennard, 1970) 

and the LASSO (Tibshirani, 1996)) are employed in the imputation step that involves fitting 

a generalized linear model. An additional approach, the elastic net (Zou and Hastie, 2005), 

is also explored that combines the ridge and LASSO methods.

2.4.1. Ridge Regression. Ridge regression was proposed by Hoerl and Kennard 

(1970). By adding a small constant value A to the diagonal entries of X'X, the least 

square estimator’s stability can be improved. The ridge regression estimator is a ridge = 

(X'X + AIp)-1X'Y . Ridge regression shrinks the regression coefficients by imposing a 

penalty on their size:

N p p
a ridge = arg m in { ^ (y i -  ao -  ^  xijaj)2 + A ^  a j }. (2.3)

a i=i j=i j=i

The first component in Equation 2.3, £ =  (yi -  a0 -  Z p=1 xij a j )2, is typically called the 

residual sum of squares or the Sum of Squares Error (SSE) and it represents the squared 

error loss described previously. The second component of Equation 2.3, A Zp=1 a j , is 

referred to as the penalty term, which performs the shrinkage of the coefficients. A > 0 is 

the tuning parameter that controls the amount of shrinkage. The larger the value of A, the 

more shrinkage towards zero is applied to the coefficients. Equation 2.3 can equivalently 

be written as:
N p

a ridge = arg min V (yi -  ao -  V xij aj )2 (2.4)
“ i=1 j =1

z
j =1

a .2 £ '

subject to 12 penalty
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with a one-to-one correspondence between A and t . This approach works via the trade-off 

between bias and variance. A small bias is allowed in the coefficient estimates to reduce 

the variance and make the estimates more stable.

The R package ‘glmnet’ is used to do the regularization by the cyclic coordinate 

descent (CCD) method, which was developed by Friedman et al. (2010). To determine the 

tuning parameter A, 100 values are generated. Two parameters are needed for the sequence 

of A. The first one is the largest value for A such that all the coefficients are zero (denoted 

Amax). Note that Amax = m  for ridge regression, so a value is picked corresponding to the 

coefficients close to zero. The second one is a pre-determined ratio of the smallest value of 

the generated A sequence to Amax. When the number of samples is greater than the number 

of probes in the model, the ratio is set to be 0.0001. In this study, the number of probes is 

greater than the number of samples, thus the ratio is set to be 0.01 to increase the penalty 

for complexity. Amin is obtained by Amin =0.01 • Amax. The ten-fold validation error for each 

A value is computed. The tuning parameter with the smallest cross-validation error is used 

to fit the model for each iteration.

2.4.2. LASSO Regression. The least absolute shrinkage and selection operator 

(LASSO) was proposed by Tibshirani (1996), which is an l1 penalized least squares method 

for linear models. The residual sum of squares (SSE) is minimized with a constraint that 

the sum of the absolute values of the coefficients is less than a constant. This approach is 

similar to ridge regression, but the use of the l1 penalty instead of the l2 penalty can force 

certain coefficients to be zero. This is different from ridge regression which never sets the 

value of coefficients to be exactly zero. Ridge regression can be challenging for model 

interpretation, whereas LASSO yields a sparse model that results in variable selection by 

identifying the predictors with non-zero coefficients.

The LASSO estimate is defined by:

N p p
a LASSO = a rg m in { ^ (y  -  ao -  ^  xij aj )2 + A ^  | aj |},

a i=i j=i j=i
(2.5)
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where A is the parameter that controls the shrinkage. Equation 2.5 can also be written as:

N p
a LASSO _ arg minV (y  -  ao -  V Xij aj )2 (2.6)

a i_i j_i

subject to l1 penalty

aj \< t

with a one-to-one correspondence between A and t . This makes the solutions nonlinear in yi 

and there is no closed form expression as in ridge regression, so the minimization problem 

needs to be solved analytically. Efficient algorithms have been developed to compute the 

estimates of LASSO, such as the least angle regression algorithm (Efron et al., 2004). The 

same tuning procedures are adopted from ridge regression to choose the optimal value for 

A with ten-fold cross validation from a sequence of 100 generated A values. To generate the 

100 values, Amax is selected to be the value that makes all the coefficients zero.

To visualize differences in estimation for LASSO and ridge regression, consider the 

simple case when there are two variables with corresponding coefficients a 1 and a2. LASSO 

has the constraint function | a 1 | + | a2 \< t . This implies that LASSO coefficients have 

the smallest loss function for all points that lie within the square, given by \ a 1 \ + \ a2 \< t . 

Ridge regression has the constraint function ®2 + < t . Figure 2.4 shows the shape of the

constraint regions for LASSO (square) and ridge regression (circle), along with the contours 

of the residual sum of squares. If the sum of squares hits one of the corners of the square, 

then the coefficient corresponding to the axis is shrunk to zero.

If some of the probes have no correlation with the true methylation levels at the 

specified sites, LASSO outperforms ridge regression by shrinking the coefficients of those 

probes to zero. One limitation of LASSO occurs when there are two or more highly 

correlated sites and LASSO randomly selects one of them. In methylation data, multiple
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Figure 2.4. Estimation picture for LASSO (left) and ridge regression (right). The green 
areas are the constraint functions and the red curves are the contours for the least squares 
error functions. Figure modified from (Hastie et al., 2009).

CpG sites work together on a biological process and the correlation among them should be 

high. LASSO will only pick one site in the same group, making the model less interpretable 

by researchers since potentially important sites are filtered out.

2.4.3. Elastic Net Regression. A compromise between ridge and LASSO was 

proposed by Zou and Hastie (2005) as the elastic net penalty. The elastic net estimate is:

N p p
a enet = arg min { ^ ( y  -  ®o -  ^  Xijaj)2 + A ^ (0i | aj | +O2a j )} (2.7)

a i=i j=i j=i

where

01 + 02 = 1.
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Figure 2.5. Comparison of the constraint functions for ridge, LASSO and elastic net 
regression. The solid red line represents elastic net regression when 61 = 02 = 0.5. Figure 
from Zou and Hastie (2005).

The l1 penalty part of the elastic net generates a sparse model and the l2 penalty part 

removes the limitation of LASSO that can only select a limited number of variables. Thus, 

important variables that work together can be included in the model together. Moreover, it 

stabilizes the li regularization path. Compare the matrix form of the elastic net estimator:

&enet = argmin a'( — 2 )a -  2y'Xa  + A1 | a  |1 (2.8)
a 1 + A2

and the lasso estimator:

a LASSO = argmin a'(X'X)a -  2y'Xa + A1 | a  |1 (2.9)
a
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where J 1, J 2 are two fixed non-negative numbers. Note that Q1 = j j r ^  and 02 = jj+j^. 

D enote2 = X'X, which is the sample version of the correlation matrix 2. Notice the 

following term in Equation 2.8:

X'X + J2I
1 + J

= (1 -  r ) 2 + y i

where y  = J 2/(  1 + J 2) shrinks 2 towards the identity matrix I . Equations 2.8 and 2.9 show 

that the elastic net penalization is equivalent to replacing 2 with its shrunk version in the 

LASSO.

A mixing parameter determines the type of penalty for regularization. As shown 

in Figure 2.5, the elastic net penalty is a mixture of the ridge and LASSO penalties. The 

mixing parameter is zero for ridge regression, one for LASSO regression and can vary 

between 0 to 1 for elastic net regression. In this research, the elastic net regularization 

method with the mixing parameters 0.2, 0.5 and 0.8 are explored. The same procedures 

to select the tuning parameter (J) are adopted from ridge regression. The optimal value 

for J  is chosen using ten-fold cross validation from a sequence of 100 generated J  values 

generated.

2.4.4. Summary. In this research, linear regression with regularized methods are 

proposed as imputation methods for missing DNA methylation data. As mentioned earlier in 

Section 2.4, for each CpG site with missing values, Y2 is imputed by generating predictions 

from applying X2 to model that was fit using X i and Y i. An improvement on imputation 

performance over methyLImp in terms of imputation accuracy is expected for the proposed 

methods because the potential problems caused by the nature of genomic data, such as high 

dimensionality and multicollinearity, are addressed. However, the computational efficiency 

is a challenge for the proposed methods because a ten-fold cross validation is required for 

parameter tuning for each iteration when fitting the model with Y i and a high dimensional 

X i. Section 2.5 describes the proposed solutions to handle this issue.
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2.5. REGULARIZED REGRESSION WITH VARIABLE SCREENING

In the linear model set up shown in Figure 2.3, the response variable Yi can be 

a matrix when the missing value positions are the same in more than one variable. The 

imputation will be performed using the same group of variables X1 for all the columns in 

Y1. However, in reality the variables in the submatrix Y1 are typically uncorrelated. Here 

a method to impute them individually instead of altogether is proposed. Additionally, the 

submatrices X1 and X2 involve thousands of variables, which make the computation cost 

very high. To solve this problem, an extra step is added in each iteration of the imputation 

process. After the formation of Y1, X1 and X2 (note here Y1 is always a vector), the 

dimensions of X1 and X2 are reduced to the length of Y1 (i.e., the number of samples) to 

get X i and X2. The selection is based on the Pearson correlation between the predictors 

and the response. Then, the regularization methods proposed in the previous section (ridge 

regression, LASSO, and elastic net regression) are applied to Y1 , X 1 and X2 to obtain 

imputed values for Y2. The steps for each imputation iteration are summarized below:

1. Matrices Y1, X1 and X2 are formed according to the description in Section 2.4 and 

Figure 2.3. Here, Y1 is a vector since each variable is imputed separately.

2. X 1 and X2 are obtained by reducing the dimensions of X1 and X2 to the length of Y1 

(i.e., the number of samples) using the Pearson correlation as a selection criteria.

3. A regularized linear regression model is fit using Y1 and X 1.

4. Y2 is predicted using X2 and the model in the previous step.

After each iteration, the algorithm will move to the next CpG site with missing value(s) and 

repeat the steps above until all missing entries are imputed.
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2.6. FUNCTIONAL DATA ANALYSIS IMPUTATION

The methylation level of each probe is dependent on the neighboring probes as 

described in Section 2.1.2. The methylation level values can be viewed as a curve over the 

genome. However, the previously described approaches do not incorporate this inherent 

ordering with neighboring dependency directly into the methodology. In this section, a 

functional data approach is proposed for imputation to address these issues. The basic 

concepts of functional data analysis (FDA) are introduced before proposing the functional 

principal component analysis (FPCA) imputation method.

The DNA methylation measurements for each sample can be treated as one single 

observation with underlying structure, rather than multiple observations of independent 

variables. The key assumption of functional data analysis is that there exists a function 

X  to represent the intrinsic structure of the data and the function is smooth. This can be 

expressed as:

Yij = Xi (tij) + €i,j (2.10)

where Yj represents the observed methylation level of individual i at the genomic location 

tij (i.e., CpG site), Xi(tij ) are the smooth functional data and ei,j is the error that account 

for "roughness" in the raw data. Here, i is the individual sample (i = 1 , . . . ,  n) and j  is the 

genomic location (j  = 1 , . . . ,  ni).

2.6.1. Basis Function. To approximate the data as a function, a basis function 

system is needed. A system of basis functions is a set of known functions, denoted as p k 

that are independent of each other. Let k = 1,2 ,3 ,..., K  where K  is the total number of 

basis functions. A linear combination of the basis functions constructs the desired function 

of the data as follows:
K

X (t) = ^  ck pk (t)
k=1

(2.11)
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where ck are the coefficients corresponding to the basis functions 0k. Some common 

basis functions include the monomial system (1, t, t2, t3, . . .) ,  the Fourier series system 

(1, sin(mt), cos(mt), sin(2mt), cos(2mt), sin(3mt), cos(3mt),. . .) ,  and the exponential basis 

system (e^1t, e^2t, eX3t, . . .) (Ramsay and Silverman, 2007).

2.6.1.1. Fourier series. For periodic data, the Fourier series basis functions are 

commonly used, since the trigonometric sin and cos functions are periodic. Suppose the 

function repeats itself over a time period T, and let m = 2 n /T . The Fourier series basis 

functions are defined as follows:

0 1(t) = 1 

02(t) = sin(mt)

<p3(t) = cos(mt)

<p4(t) = sin(2mt)
(2.12)

05 (t) = cos(2mt)

06 (t) = sin(3mt)

0K (t) = cos(mmt).

The total number of basis functions is K  where K = 2m + 1. Fourier series have traditionally 

been used as basis functions in the past due to their computational efficiency. The Fourier 

basis is useful for extremely stable functions and ideally for data with some degree of 

periodicity (Ramsay and Silverman, 2007). However, this basis is not appropriate for data 

with discontinuities in the function or in low order derivatives of the function.

2.6.I.2. Splines. Often, non-periodic functions are approximated by spline func­

tions. Especially for data involving a large number of observations, spline function basis 

systems have been developed. Splines are polynomial segments joined end-to-end, but the 

segments are constrained to be smooth at the joining points. The joining points are called
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knots. The order m of the polynomial is the number of its highest power (degree) plus one. 

Being smooth at the breakpoints means the function values should be equal at these points. 

Further, the derivatives up to order m -  2 are also required be the same at the breakpoints. 

The spline function is determined by the order m of the polynomial segments and the knot 

sequence t1 where l = 1 , . . . ,  L -  1. The number of parameters needed is m + L -  1.

The B-spline basis system is the most popular spline system. It was developed 

by De Boor (2001). The B-spline basis system has the following properties: (1) Each 

basis function is a spline function defined by m and t , (2) any linear combination of the 

basis functions is a spline function, and (3) any spline function defined by m and t  can be 

expressed as a linear combination of these basis functions in the system. This system also 

has a compact support property, which states that a B-spline basis of order m is positive 

over no more than m intervals, and these intervals are adjacent. This property makes splines 

also computationally efficient.

2.6.2. Roughness Penalty. The coefficients of the B-spline functions can be deter­

mined by least squares estimation. Consider the error sum of squares (SSE):

n
SSE = J] (y j  -  X(tj))2. (2.13)

j = 1

Here the notation for the i index is removed for simplicity. To ensure the fitted curve is 

smooth, a simple linear smoother is obtained by finding the ck ’s that minimize the following 

least squares criteria:
n K

^ [ y j  -  Y j  ck<Pk(tj )]2. (2.14)
j=1 k=1

The method is suitable under assumptions that 6j’s in model 2.10 are independently and 

identically distributed with mean zero and constant variance.

Fitting the data and the smoothness of the curve are two competing desires. The 

least squares approach can be modified to incorporate a roughness penalty to address this 

issue. Roughness penalty methods for smoothing work by optimizing a fitting criterion
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by penalizing the roughness of the curvature. The curvature of a function at t can be 

characterized by the square of the second derivative (D2X (t))2. The roughness of a function 

can thus be defined as the integral of this value ^ (D 2X(t))2dt. A parameter A is used to 

control the roughness by minimizing the penalized squared error (PENSSE) (Ramsay and 

Silverman, 2007):

PENSSEa(X) = [(yj -  X(tj)]2 + A J  (D2X(t))2dt (2.15)

where DX(t) is the slope of X(t), D2X(t) = dLX(t) is the second derivative of X(t) and 

thus represents its curvature. A is a smoothing parameter measuring compromise between 

fit and smoothness. As A increases, the roughness will be penalized more and X(t) will 

become linear. As A decreases, the penalty is reduced and X(t) will fit the data better. The 

Smoothing Spline Theorem (Ramsay and Silverman, 2007) states that the function X(t) that 

minimizes PENSSEA (X) is a spline function of order 4 with a knot at each sample point t j . 

Therefore, unequal spacing of the sampling points is not a problem, since smoothing splines 

automatically take care of high density areas in the data and areas with fewer observations.

2.6.3. Functional Principal Component Analysis Imputation. Principal compo­

nent analysis (PCA) (Jolliffe, 2002) is a dimension reduction tool for multivariate data. 

Principal components are a new set of variables where each component is a linear combina­

tion of the original variables. The weights in the first components are chosen to maximize 

variance. Each subsequent component maximizes remaining variation and is orthogonal to 

all other components. The principal components are computed and then used for a change of 

basis on the data. This allows the dominant modes of variation in the data to be represented 

in a small subset of components. Most of the time, the first few principal components are 

enough to explain the majority of the variability in the data, and the remaining principal 

components will be discarded, resulting in dimension reduction in the data. For an n x p  data 

matrix X , each column is a vector of observations on one variable. A linear combination a
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of the columns of matrix X: £ p=1 ajXj = X a is aimed to achieve maximum variance, where 

Var(Xa) = a'Sa and S is the covariance matrix. With the restriction a'a = 1, maximizing 

a'Sa provides the solution that a is a unit norm eigenvector of the covariance matrix S, 

with corresponding eigenvalue X’s. The covariance matrix S is a p x  p  real symmetric 

matrix, and thus should have exactly p real eigenvalues. The eigenvectors are defined to be 

orthonormal, such that ajaj* = 1 when j  = j * and 0 otherwise. This ensures each set of 

linear combination is uncorrelated. By using the top k largest eigenvalues, the data could be 

represented with most of the variance explained. X ak are called the principal components, 

the eigenvectors ak are called the principal component loadings.

PCA was extended to functional data and became widely used in functional data 

analysis to capture the dominant modes of variation in the smoothed curves. Functional 

principal component analysis (FPCA) converts infinite-dimensional functional data to a 

finite-dimensional vector of random scores. The underlying stochastic process can be 

represented by a finite sequence of uncorrelated random variables. These variables are 

called the functional principal component scores (FPC scores). Similar to PCA, usually 

only a finite subset of the sequence is used that captures most of the variation.

The following formulation illustrates how FPCA can be formulated in terms of 

DNA methylation data and used for imputation. Assume that the methylation levels across a 

chromosome have the pattern of function X , and X  has an unknown smooth mean function 

p (t) and a covariance function which is defined as:

cov(X (s )), X (t)) = G(s, t) (2.16)

where s, t e T, and T is the genomic location. G(s, t) can be expanded with the orthogonal 

expansion:
TO

G(s, t) = ^  Xk p k (s)(pk (t)
k= 1

(2.17)
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where Xk is the set of eigenvalues and p k are the corresponding eigenfunctions that form an 

orthonormal basis set with a unit norm in l2. The underlying pattern for the ith sample can 

be expressed as:
TO

Xi(t) = y.(t) + ^  Qkpk(t) (2.18)
k= l

where p k is the kth eigenfunction, and

cik = J ( X i ( t ) -  Mt))pk(t)dt (2.19)

is a coefficient projecting (Xi -  n ) in the direction of p k.

The data Yi (tij ) is the j  th observation of the random function Xi (•) at a random 

genomic location tij , also denoted as Yj, which can be represented as:

TO

Yi(tij) = Xi(tij) + 6ij = ^ (tij) + ^   ̂cikp k(tij) + p / . (2.20)
k=l

Here eij represents the measurement random errors of the ith sample at j  th genomic location, 

and are assumed to be independent and identically distributed with mean 0 and variance 

a 2. From Equations 2.19 and 2.20, it can be shown that:

Yi (t) (Xi(t) -  ju(t))pk(t)dtpk(t) + 6. (2.21)

The infinite series in Equation 2.18 can be truncated by L such that the first L components 

explains at least tx x 100% of the total variance, that is:

y  l  x

L = min{L > 1 : > t x} (2.22)
Z,k=i Xk

where M  is the largest number of components with Xk > 0 and t x is a user defined threshold 

between 0 and 1. When the observations Y(tij) are missing for some j , the missing entries 

can be imputed by the predicted values Xi(t).
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G <p = X(p. (2.23)

The estimate of G is obtained by smoothing the empirical covariances (Yao et al., 2005). 

Then the eigen-decomposition procedure is applied to the covariance function estimate to 

get the estimated eigenvalues Xj and eigenfunctions <pk (t).

The estimate of cik cannot be calculated easily through the approximation of Equa­

tion 2.19 because if the number of repeated observations is small or if there are missing 

positions, the integral is not accurate. Also the true Xi(t) cannot be observed. The observa­

tions are Yi (tij ) = Xi (tij ) + eij and bias will be introduced if Xi is replaced by Yi. An approach 

first proposed by Yao et al. (2005) provides a solution to these issues of estimating the cik 's. 

The eigenfunction basis is estimated from the data, and functional principal component 

score estimates are obtained by a conditioning step. The assumption is that the functional 

principal component scores cik and the error term q j are jointly Gaussian. The conditional 

functional principal component scores are:

To estimate X (t), the estimated values of l (t), c j  and $ k(t) are needed. To find the

estimates of the eigenfunctions <p and eigenvalues X, the eigenequation can be expressed as:

E (cik | Yi) = Xk$'ikEy; (Yi -  ) (2.24)

where Xk is the k th eigenvalue, Yi = [Y (tii),. . . ,  Y (tin)]', V i =  [ l i  (to ) , . . . ,  l i  (tim )]', Q ik =  

[<pk (tii ), . . . ,  (pk (tim)]/, and S Yi is the covariance matrix of Y i , with dimension m x m . The 

^Y; is represented as:

E y; = cov(Y i, Y i) = cov(X i, X i) + a 2\ n (2.25)

In scalar form this is:
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(£ y,.)j,i = G(tij, tii) + $ji (2.26)

with 6jl = 1 if j  = i and 0 if j  ^  i .

The estimated scores in Equation 2.24 are obtained by:

ci,k = 4 ^ \ kt y1 (Yi -  &i) (2.27)

where &  = [& (tn), . . . ,  fit (tin.)]' is the estimate of ^  = [$k (til),. . . ,  $k (tm)]' is the 

estimate of 0 ik and t Yi is the estimate of t Yi. The estimated score Q,k will be used as the 

functional covariates to perform functional linear regression with a scalar response.

2.6.4. Functional Linear Models. In traditional linear regression models, the de­

pendent variable and the independent variables are scalars. One way to set up a functional 

linear model is with a scalar dependent variable yi, but replace the independent variables 

by a function x  (t):

yi = ao + J  xi(t)a(t)dt + q-. (2.28)

One functional linear regression approach is to regress Y on the principal component 

scores as functional covariates (Ramsay and Silverman, 2007), and it will be referred to as 

Functional Principal Component Regression (FPCR) in this dissertation. A subset of the 

100 nearest available probes to the probe with missing values is utilized in the modeling to 

capture a relevant set of neighboring probes. Yi is an n l x 1 vector of the samples with 

complete entries for the probes with missing values. Y2 is an n2 x 1 vector and it represents 

the missing entries that need to be imputed. X2 is the n2 x 100 matrix with data on the 100 

neighboring probes with complete data and with the same rows of Y2. X1 is an n1 x 100 

matrix sharing the same rows with Y1 and the same columns with X2.

The R package ’fdapace’ is used to find the principal component scores via the 

Principal Analysis by Conditional Estimation (PACE) algorithm (Yao et al., 2005). The 

first step is to estimate the mean function ^  as in Equation 2.18 based on the pooled data of
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all individuals
Xi

, with local linear smoothers (Fan and Gijbels, 1996) for function and
X2

surface estimation. A one-curve-leave-out cross-validation is used to choose the smoothing 

parameter. The conditional expectation method is then used to estimate the FPC scores. 

Finally, the response Y1 is regressed on the functional principal component scores to build 

the functional linear model. The model is then used to predict Y2. After each iteration, the 

algorithm will search for the next CpG site with missing value(s). The process of FPCR 

model fitting and prediction will be repeated. Imputation is completed when there is no 

missing value remaining in the dataset.

2.7. DMR DETECTION

The proposed imputation methods based on regularized regression and FPCR will 

be compared with mean imputation, KNN imputation, as well as the methyLImp method. 

To evaluate these methods, imputation accuracy is important since it represents how close 

the imputed values are to the real values. However, the goal of imputation is to obtain 

statistically valid results from the incomplete data. Thus, the quality of the imputation 

should also be evaluated with respect to this ultimate goal of DMR detection. A simulation 

study will be conducted to evaluate the imputation accuracy, and more importantly, the 

influence of imputation on DMR detection. Bumphunter and DMRcate are commonly 

used methods for DMR detection that are used in this work to evaluate the imputation 

performance on DMR detection. An overview of these methods is provided below.

2.7.1. Bumphunter. The Bumphunter method implemented in the Bioconductor 

package ‘ChAMP’ is used to find DMRs. The statistical model used by Bumphunter is:

p q
Yij = ) + )Xi + ^  j Tk(tj )Zi,k + ^   ̂ai,jWi,l + Ei,j

k=1 l=1
(2.29)



47

where Yj is the epigenomic measurement at the j th genomic locus for individual i, tj 

denotes the location on the genome of the j  th locus, ^(tj) is the baseline level of epigenomic 

measurement, Xi is the condition of interest, J3(tj) measures the association between Xi and 

the epigenomic measurement Yij at location t j , Z ’s are potential measured confounders (e.g. 

sex, age, race), each column of Z represents a different confounder, yk(tj) is the effects of 

confounder k at locus t j , W represents potential unmeasured confounders or batch effects 

(e.g. temperature, humidity), ai,j is the effect of the unmeasured confounder l on locus t j , 

and ei,j is the unexplained variability.

In the Bumphunter analysis pipeine, the linear regression model 2.29 is fit by 

regressing the methylation value Yj on the group Xi to model differential methylation 

between the case and the control groups at each CpG site. The slope (3(tj) is then smoothed 

using the loess method with a smoothing window ranging from 300 to 900 base pairs 

to get the smoothed fi(t). For most genomic positions, the J3’s are zero because the 

methylation levels at these positions are not significantly different between groups. Each 

point is weighted based on the standard error obtained from the linear model. The smoother 

works well to reduce the effect of outliers. Clusters of consecutive probes for which all 

the smoothed fi(t) values that are greater than a predetermined threshold are identified 

as candidate regions (bumps) Rn, n = 1 , . . . ,  N . The maximum gap is a user determined 

distance. When neighboring probes are less than that distance, they will be included in one 

region. Next, clusters are defined using the following criteria: 1) the cluster has at least 4 

probes, and 2) the probes inside one cluster are all less than or equal to 500 base pairs. The 

99th percentile of the slope estimates is used as a cutoff to determine the candidate regions. 

This means the values of the estimate of the methylation profile above the cutoff or below 

the negated cutoff are treated as candidate regions.

Permutation tests, which permute sample labels to create the null distribution of 

candidate regions Rn, n = 1, . . . ,  N , are then conducted to estimate the statistical significance 

of the candidate regions. The regions that are produced in the permutations are considered
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null regions and can provide a null distribution for Rn . This method can solve the problem 

of correlated measurement errors, batch effects and so on. The number of resamples is 

set to be 10. Each of the 10 permutations will generate an estimated null distribution. 

The p-value is the percent of candidate regions obtained from the permutations that are as 

extreme as the observed region. False discovery rates (FDR) are calculated based on the 

p-values, and Q-value is defined as the minimum FDR at which the associated area may 

be called significant. The family-wise error rate (FWER) is also calculated, which is the 

proportion of permutations that had at least one region as extreme as the observed region.

2.7.2. DMRcate. The Bioconductor package ‘DMRcate’ is also used to find DMRs. 

At each CpG site, a linear model is fit using the limma (Smyth, 2004) method. The square of 

the t statistic Y = tj  is used as the local statistic at each site i. The use of the squared t statistic 

allows the method to obtain the magnitude between methylation levels of two groups instead 

the direction of effect. Gaussian smoothing is then applied to the test statistics using a given 

bandwidth A. Next, suppose there are n CpG sites on a chromosome; x\ < x2 < ••• < xn 

representing all the locations. A Gaussian smoother is used to smooth the Yi at locations 

xi for each chromosome. The Gaussian kernel weights are Kij = exp |  [xj a jj] j , where 

a  is the kernel scale factor, a  = A/C . The value for the bandwidth A is set to be 500. 

As mentioned in Section 2.1.2, the correlation on methylation levels between sites over 

longer distances is not noticable. C is also user defined, and is set to be 5. Smoothed test 

statistics are then modeled using the method of Satterthwaite (Satterthwaite, 1946), and a 

p-value is calculated for each site. Significant sites are reported after Benjamini-Hochberg 

adjustments on p-values. Finally, DMRs are defined by grouping the significant CpG sites 

that are at most A nucleotides from each other.
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3. RESULTS

3.1. OVERVIEW

In this chapter, an analysis based on real data as well as a simulation study are 

presented to evaluate the performance of the imputation methods proposed in this work 

compared to the existing methods. The DNA methylation data described in Section 2.1.1 

are utilized both for the real data analysis and to guide settings in the simulation study. 

The set-up of the simulation study is first described, followed by a discussion of how the 

imputation methods will be evaluated in both the real and simulated data. Results are then 

given for the real data followed by results for the simulation study.

Three existing methods (mean, KNN, methyLImp) are compared to the proposed 

methods on imputation accuracy and ability to detect true differentially methylated regions 

(DMRs). A total of 11 proposed methods are compared, which can be categorized into 

three groups. The first group includes the regularized methods: ridge regression (Ridge), 

LASSO, elastic net with 0.2 mixing parameter (elastic net 0.2), elastic net with 0.5 mixing 

parameter (elastic net 0.5), and elastic net with 0.8 mixing parameter (elastic net 0.8). 

The second group includes all of these regularized methods with variable screening and 

imputation on a site by site basis (1 by 1) rather than altogether. These methods are denoted 

the same as above with 1by1 at the end: Ridge 1by1, LASSO 1by1, elastic net 0.2 1by1, 

elastic net 0.5 1by1, and elastic net 0.8 1by1. The final alternative approach evaluated is 

the functional principal component regression (FPCR) method.
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3.2. SIMULATION STUDY

The purpose of the simulation study is to investigate the performance of the pro­

posed imputation methods on imputation accuracy and the ability to detect differentially 

methylated regions. It is important to simulate the data in a way that preserves properties 

of real methylation data. The HM450 dataset described in Section 2.1.1 is utilized to help 

create a simulated dataset with a realistic structure. The distribution of the HM450 probes 

is related to the length of each chromosome. As shown in Figure 3.1, Chromosome 1 has 

the most number of probes, Chromosome 6 has the second most number of probes and 

Chromosome Y has the least number of probes. For computational efficiency, simulation 

studies are performed on the 36,611 CpG probes located on the entire Chromosome 6. The 

86 Normal samples are preprocessed as previously described, resulting in 31,362 probes 

after the filtering steps. This is recognized as the incomplete dataset. Among the filtered 

probes, 5,076 probes are filtered out because of being potential SNPs. After integrating 

the SNP data from “Pathogenic Germline Variants in 10,389 Adult Cancers” (Huang et al., 

2018), 4,917 probes are restored since SNPs were not present in any of the samples. This 

provides the complete dataset with 36,279 probes. Thus, only 159 probes with true SNPs 

are excluded.

The next step involves identifying a set of regions in which methylation differences 

will be applied. To accomplish this, Adjacent Site Clustering (Sofer et al., 2013) is imple­

mented to find region clusters on Chromosome 6 of the 86 Normal samples. The algorithm 

merges a set of methylation sites wedged between two highly correlated CpG sites that are 

located physically close to each other along a chromosome. More specifically, the criteria 

is to merge two CpGs with Spearman correlation greater than 0.5 and are within 200 base 

pairs into a cluster. This resulted in 2,478 clusters (14,801 probes total) with 4 or more 

probes, among which 2,088 clusters contain 10 or fewer probes. 250 clusters are randomly
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Figure 3.1. The count of HM450 probes on each chromosome.

selected from the 2,088 clusters. It is found that 96 of these clusters have SNP probes that 

could be restored from the 4,917 probes. A differential methylation effect is added to these 

96 regions to evaluate the imputation techniques.

To ensure the nature of real data is well preserved, two key points are implemented 

in the simulation steps. First, real datasets from the same group (Normal group) are used 

as the base to add differential methylation effects. Moreover, the parameters used in the 

simulation process are derived from summarized results of the real data analysis between 

Tumor and Normal groups. The 86 Normal samples are randomly divided into two groups. 

Before introducing differentially methylated regions (DMRs), the two groups are compared 

using the DMR detection methods Bumphunter and DMRcate to make sure there is no DMR
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flagged. The yS-values are first converted to M-values using Equation 1.1. The M-values 

are not bounded between 0 and 1, thus after adding the differential methylation effects, the 

issue of out of limit values is avoided. An effect size of 1.5 is determined by comparing the 

difference between Tumor and Normal groups of the real data.

Figure 3.2. Histogram of the sizes for all 96 clusters selected to be DMRs. The number 
of probes in each cluster is marked on top of each bin. There are 46 clusters with 4 or 5 
probes, and 8 clusters with more than 20 probes.

The details of the cluster size for all 96 clusters selected to be DMRs are shown 

in Figure 3.2. It is a right skewed histogram, with more small clusters than large clusters. 

There are 46 clusters with 4 or 5 probes, and 8 clusters with more than 20 probes. To ensure 

the added treatment effects do not cancel out existing differences in M-values, for each CpG 

probe in the methylation cluster, the group means of the two groups are first compared. 

Treatment effects are then added to the group of probes with higher mean M-values.
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Previous studies have found that hyper- and hypomethylation can happen in the 

same regulatory region with one followed immediately by the other (Day et al., 2013). The 

methylation levels in the simulation are designed to mimic this situation in real data. For half 

of the clusters, a type 1 simulation is applied by adding a treatment effect of 1.5 to M-values 

of the probes with higher average M-values (Figure 3.3 a). In this case, values may be 

added to different treatment groups inside a cluster. For the other half of the clusters, a type 

2 simulation is applied as follows. The group mean of the M-values for each CpG probe 

in each cluster is compared. For the group which has more probes with higher M-values, 

a treatment effect of 1.5 is added to the M-values in the same group for the entire cluster 

(Figure 3.3 b).

3.3. EVALUATION CRITERIA

3.3.1. Evaluation of Imputation Accuracy. In both the real and simulated datasets 

a subset of the probes are randomly selected to be missing at different rates. It is important 

to evaluate how accurate the imputed values are compared to the true values for the different 

imputation methods. Performance of the imputation methods on accuracy are assessed by 

using four different measures (Lena et al., 2019a). These measures are used to evaluate 

imputation accuracy in both the real data and the simulated data imputation.

The imputed or predicted values are denoted as P, and the true values are denoted

as T . The Root Mean Square Error (RMSE) metric measures the square root of the average

squared difference between the predicted and the true values. It is the most widely used

metric for performance assessment of missing data imputation approaches and is given

below: ____________
Z?=i(Pi -  Ti)2RMSE (P, T ) =

n (3.1)
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a. An example of type 1 simulation clusters

33360000 33360500 33361000 33361500 33362000 33362500

Genomic Location

b. An example of type 2 simulation clusters

32035500 32036500 32037500 32038500

Genomic Location

Figure 3.3. Two types of simulation clusters. yS-values verses the genomic location are 
shown here to illustrate the effects added. Black dots represent the Normal group and red 
dots represent the Tumor group. The shaded areas are the differentially methylated clusters. 
a, the effects are added to the probes with higher average methylation levels between two 
groups. b, the effects are added to all the probes in a cluster.

The Mean Absolute Error (MAE) metric measures the average absolute difference between 

the predicted and true values. It provides the average error to expect on the imputed value. 

Note that by Jensen’s inequality, RMSE >MAE. The MAE is given below:

MAE (P, T) =
Z?=1 \P i -  Ti |

(3.2)
n
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The Pearson Correlation Coefficient (PCC) metric measures the amount of linear correlation 

between the predicted and true values. The PCC is given below:

PCC(P, T) =
Z U (P i -  P)(T -  T )) 

V^n=i(Pi -  p )2V z?=1 (t  -  t )2
(3.3)

where P and T represent the mean value of P  and T, respectively. The Mean Absolute 

Percentage Error (MAPE) metric expresses the accuracy as percentage of error on the true 

value. It gives an estimation of the error in terms of the magnitude of actual value. The 

MAPE is given below:

M APE (P, T) = 100 V  n ii= 1

I Pi -  Ti | 
I Ti |

(3.4)

Note that smaller values of RMSE, MAE, and MAPE indicate greater accuracy; whereas 

larger values of PCC are better.

3.3.2. Evaluation of DMR Detection. The goal of missing value imputation is to 

improve the ability to detect differentially methylated regions that are important and biolog­

ical meaningful. The simulation results will be compared with true DMRs to determine if 

there are any improvements with respect to true positive, false positive, and false negative 

regions. Note that true DMRs are unknown in the real data, so this evaluation is only con­

ducted for the simulated data. A true positive (TP) DMR is defined as a significant DMR 

declared by one of the detection methods (Bumphunter or DMRcate) that overlaps with a 

region in which a treatment effect was added to the methylation M-values. The overlap type 

is ‘any’, meaning any common genomic location between the compared regions will count 

as them as overlapping. A false positive (FP) DMR is defined as a significant DMR declared 

by one of the detection methods that does not overlap with any of the regions with added 

treatment effects. A false negative (FN) DMR is defined as a region with added treatment
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Table 3.1. Details of probes filtered out by each step of the default filtering process.

Filtering Step Probes Filtered Out Remaining Probes
quality control probes 65 485,512
detection p-value 25,900 459,612
bead count 874 458,738
SNP 53,959 404,779
multi-hit 11 404,768
non-CpG 1,833 402,935

effect that does not overlap with any significant DMRs found by the detection methods. It is 

possible that some true methylated regions are broken down into smaller regions for certain 

DMR detection methods, or that more than one true region is recognized as one DMR.

3.4. RESULTS FOR REAL DATA ANALYSIS

3.4.1. SNP Integration. Following the filtering steps in Section 2.1.1 for detection 

p-values, bead counts, SNP probes, multi-hit probes and non-CpG probes, a total of 485,577 

probes on the HM450 array are reduced to 402,935 probes. There are 65 built-in SNP 

probes in HM450 array for the purpose of quality control, and they are typically removed 

in preprocessing steps. The steps shown in Table 3.1 are sequential, meaning that each 

filtering step is based on the filtering result of previous step(s). For example, if the probes 

are filtered by bead count first, followed by detection p-value, the numbers in the second 

column would be different.

By integrating the germline SNP data, a large portion of probes are restored. As 

shown in Figure 3.4, 52,441 probes out of 53,959 (97.2%) are actually not SNP probes, thus 

it is not necessary to filter them out. With the large portion of probes being restored, the 

influence on DMR improvement is prominent. For the remaining 1,518 probes, imputation 

methods are developed and evaluated on these probes that cannot be restored.
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Figure 3.4. Details of probe restoration by integrating SNP data.

As briefly discussed in chapter 2, the dataset used for real data analysis is described 

below. Starting with a section of Chromosome 1 (7,987 probes between the genomic 

location 1 and 13,800,000), the filtering steps in Section 2.1.1 are conducted on the raw 

intensity files (idat). This step results in a dataset with 6,838 probes, and this dataset is 

noted as the incomplete data. After integrating the SNP data, 830 probes are restored. The 

dataset with 7,668 probes is called the complete dataset. Missing values are introduced 

in the 830 restored SNP probes at different missing rates. Imputation methods are then 

conducted to obtain the imputed dataset.

The imputation accuracy is compared between the true values and the imputed 

values. The DMR detection performance is evaluated using the complete dataset as a 

standard since the true DMRs are unknown for the real data. The complete dataset is the 

most informative since it utilizes the data from the most true probes possible for DMR 

detection compared to the incomplete and imputed datasets. In the next section, simulated 

data is used to assess the DMR detection improvements by imputation.

3.4.2. Im putation Accuracy. The performance of the imputation methods are 

compared by computing the RMSE, MAE, PCC and MAPE for each method. The im­

putation accuracy is assessed per CpG site. Three missing rates (20%, 50% and 70%) 

are explored. The Normal group and Tumor group are separated when conducting the
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imputation. Overall, imputation methods perform better on the Normal group than Tumor 

group, regardless of the detection method used or the missing rate. This likely due to the 

heterogeneous nature of tumor samples. Additional discussion about this issue can be found 

in Chapter 4.

Table 3.2 shows the performance with missing rate 20%. The performance of all 

imputation methods work uniformly better in the Normal group than the Tumor group. 

Take the mean imputation method as an example. The Tumor group has a RMSE of 0.116 

while the Normal group has a RMSE of 0.085. While the mean imputation has the largest 

RMSE in both groups, FPCR and KNN imputation perform only slightly better than mean 

imputation in the Tumor group. In the Normal group, the regularized linear regression 

imputation method using elastic net with mixing parameter 0.8 (elastic net 0 .8) has the 

smallest RMSE, MAPE and the highest PCC. The methyLImp, elastic net 0.2, elastic net 

0.8, LASSO 1 by 1, elastic net 0.2 1 by 1, elastic net 0.5 1 by 1 and elastic net 0.8 1 by 1 

methods have the smallest MAE. In the Tumor group, the elastic net 0.2 1 by 1, elastic net 

0.5 1 by 1 and elastic net 0.8 1 by 1 methods have the smallest RMSE, MAE and highest 

PCC. The elastic net 0.8 method has the smallest MAPE, followed by all three of the elastic 

net 1 by 1 methods.

Table 3.3 shows the performance of the imputation methods with missing rate 50%. 

While the mean method is still the worst, the performance of the KNN method becomes the 

next worst across all of the criteria in both groups. In the Normal group, all the regularized 

methods outperform methyLImp in terms of RMSE, PCC and MAPE. The LASSO, elastic 

net 0.2, elastic net 0.5, elastic net 0.8 and elastic net 0.2 1 by 1 methods have the lowest 

RMSE and highest PCC. The methyLImp, LASSO 1 by 1, elastic net 0.2 1 by 1, elastic net 

0.5 1 by 1 and elastic net 0.8 1 by 1 methods have the lowest MAE. The elastic net 0.2 1 by 

1 method has the lowest MAPE. In the Tumor group, the elastic net 0.2 1 by 1 and elastic
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Table 3.2. Imputation accuracy for real data with 20% missing rate. The optimal value(s)
for each criteria are in bold.

RMSE MAE PCC MAPE

mean 0.085 0.054 0.952 16.836
KNN 0.064 0.035 0.974 11.323

methyLImp 0.061 0.029 0.976 10.350
LASSO 0.059 0.030 0.977 9.965

Ridge 0.061 0.030 0.976 10.356
elastic net 0.2 0.056 0.029 0.979 9.652

Normal elastic net 0.5 0.059 0.030 0.977 9.957
elastic net 0.8 0.056 0.029 0.980 9.625

FPCR 0.066 0.036 0.972 11.428
LASSO 1by1 0.059 0.029 0.977 9.853

Ridge 1by1 0.060 0.032 0.976 10.532
elastic net 0.2 1by1 0.059 0.029 0.977 9.872
elastic net 0.5 1by1 0.059 0.029 0.978 9.819
elastic net 0.8 1by1 0.059 0.029 0.977 9.799

mean 0.116 0.079 0.908 25.595
KNN 0.092 0.058 0.943 17.957

methyLImp 0.085 0.050 0.953 15.597
LASSO 0.083 0.050 0.955 14.989

Ridge 0.090 0.054 0.947 17.334
elastic net 0.2 0.083 0.050 0.954 14.499

Tumor elastic net 0.5 0.083 0.050 0.955 15.059
elastic net 0.8 0.083 0.050 0.955 14.214

FPCR 0.095 0.060 0.941 17.900
LASSO 1by1 0.082 0.048 0.956 14.451

Ridge 1by1 0.088 0.053 0.949 16.603
elastic net 0.2 1by1 0.081 0.048 0.957 14.418
elastic net 0.5 1by1 0.081 0.048 0.957 14.250
elastic net 0.8 1by1 0.081 0.048 0.957 14.382

net 0.5 1 by 1 methods have the lowest RMSE. The elastic net 1 by 1 methods with mixing 

parameter 0.2, 0.5 and 0.8 have the lowest MAE and highest PCC. The elastic net 0.2 1 by 

1 method has the lowest MAPE.

Table 3.4 shows the performance of all imputation methods with missing rate 70%. 

The KNN method performs the worst in terms of RMSE, MAE, PCC and MAPE. In the 

Normal group, the elastic net 0.2, elastic net 0.5, Ridge 1 by 1 and elastic net 0.2 1 by 1



60

Table 3.3. Imputation accuracy for real data with 50% missing rate. The optimal value(s)
for each criteria are in bold.

RMSE MAE PCC MAPE

mean 0.084 0.053 0.953 16.742
KNN 0.067 0.038 0.971 11.664

methyLImp 0.062 0.030 0.975 11.469
LASSO 0.058 0.031 0.978 10.495

Ridge 0.059 0.031 0.977 10.725
elastic net 0.2 0.058 0.031 0.978 10.513

Normal elastic net 0.5 0.058 0.031 0.978 10.485
elastic net 0.8 0.058 0.031 0.978 10.484

FPCR 0.064 0.036 0.973 11.078
LASSO 1by1 0.059 0.030 0.977 9.855

Ridge 1by1 0.059 0.032 0.977 10.327
elastic net 0.2 1by1 0.058 0.030 0.978 9.752
elastic net 0.5 1by1 0.059 0.030 0.977 9.789
elastic net 0.8 1by1 0.059 0.030 0.977 9.821

mean 0.118 0.080 0.906 24.784
KNN 0.111 0.065 0.919 18.411

methyLImp 0.090 0.054 0.946 16.255
LASSO 0.088 0.053 0.949 15.661

Ridge 0.095 0.058 0.940 17.477
elastic net 0.2 0.089 0.054 0.948 16.032

Tumor elastic net 0.5 0.088 0.053 0.949 15.771
elastic net 0.8 0.088 0.053 0.949 15.797

FPCR 0.097 0.061 0.937 17.907
LASSO 1by1 0.087 0.052 0.950 15.264

Ridge 1by1 0.091 0.055 0.945 16.592
elastic net 0.2 1by1 0.086 0.051 0.951 15.182
elastic net 0.5 1by1 0.086 0.051 0.951 15.177
elastic net 0.8 1by1 0.087 0.051 0.951 15.219

methods have the lowest RMSE and highest PCC, The methyLImp method has the lowest 

MAE. The lowest MAPE is obtained by elastic net 0.2 1 by 1 method. In the Tumor group, 

the elastic net 0.2 1 by 1 method yields the lowest RMSE, MAE, MAPE and highest PCC.
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Table 3.4. Imputation accuracy for real data with 70% missing rate. The optimal value(s)
for each criteria are in bold.

RMSE MAE PCC MAPE

mean 0.085 0.054 0.952 16.657
KNN 0.108 0.059 0.923 25.502

methyLImp 0.063 0.032 0.974 10.593
LASSO 0.063 0.034 0.974 11.086

Ridge 0.063 0.034 0.974 11.131
elastic net 0.2 0.062 0.034 0.975 10.925

Normal elastic net 0.5 0.062 0.034 0.975 10.923
elastic net 0.8 0.063 0.034 0.974 10.920

FPCR 0.066 0.037 0.972 11.554
LASSO 1by1 0.064 0.033 0.973 10.725

Ridge 1by1 0.062 0.034 0.975 11.013
elastic net 0.2 1by1 0.062 0.033 0.975 10.540
elastic net 0.5 1by1 0.063 0.033 0.974 10.578
elastic net 0.8 1by1 0.064 0.033 0.973 10.680

mean 0.118 0.080 0.905 24.745
KNN 0.127 0.080 0.893 22.801

methyLImp 0.095 0.057 0.941 17.799

Tumor LASSO 0.097 0.059 0.938 17.774
Ridge 0.101 0.062 0.933 18.846

elastic net 0.2 0.096 0.059 0.939 18.043
elastic net 0.5 0.096 0.059 0.940 17.664
elastic net 0.8 0.096 0.059 0.939 17.642

FPCR 0.100 0.062 0.935 18.215
LASSO 1by1 0.096 0.057 0.939 17.040

Ridge 1by1 0.095 0.058 0.940 17.626
elastic net 0.2 1by1 0.093 0.055 0.943 16.688
elastic net 0.5 1by1 0.094 0.056 0.941 16.812
elastic net 0.8 1by1 0.095 0.056 0.941 16.917

3.4.3. DMR Detection. It is not possible to know the true regions that are differ­

entially methylated between Tumor and Normal groups in the real data. Thus the complete 

dataset described in Section 2.1.1 with the most information on hand is used as a standard
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for comparison. A potential false positive region is a region detected using the test data but 

not detected with the complete dataset. A potential false negative region is a region found 

by the complete dataset but not the test dataset.

Figure 3.5. Venn diagram of DMRs detected using incomplete, complete and imputed 
datasets.

Based on the imputation accuracy performance, elastic net 0.2 1 by 1 method is 

used to impute the missing values in the dataset. Then Bumphunter method is used to 

detect DMRs among incomplete, complete and imputed data. As shown in Figure 3.5, 

22 DMRs that overlap with the complete dataset are detected using the imputed data. 

This is an improvement compared to only 19 common DMRs between the incomplete and 

complete datasets. The number of potential false negative regions is reduced in the imputed 

dataset compared to the incomplete dataset. At the same time, the imputed dataset reduced 

the number of potential false positives to be only 1 compared to 7 using the incomplete 

dataset. Since the analysis on real data is conducted on a short section of Chromosome 1, 

these differences will accumulate when the entire genome is considered. More specifically, 

compared to a section with around 8000 probes, the entire genome has about 60 times more 

probes.
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3.5. RESULTS FOR SIMULATED DATA

The simulated data are filtered by the criteria introduced in Section 2.1.1. Effects 

are added to the 96 selected DMR clusters in the complete dataset with 36,279 probes. 

Missing values are introduced to the 4,917 probes that are restored from the SNP data with 

the missing rates of 20%, 50% and 70%. The imputation accuracy table and DMR detection 

performance for the methods are given below.

3.5.1. Im putation accuracy. Table 3.5 shows the imputation accuracy for the sim­

ulated data with 20% missing rate between the different imputation methods. The elastic 

net 0.5, elastic net 0.8, elastic net 0.2 1 by 1 and elastic net 0.5 1 by 1 methods have the 

lowest RMSE. The LASSO 1 by 1, elastic net 1 by 1 with mixing parameters 0.2, 0.5 and 

0.8 methods have the lowest MAE. All the elastic net methods and LASSO 1 by 1 yield the 

highest PCC. The elastic net 0.5 1 by 1 method has the lowest MAPE. For this missing rate, 

the overall performance of elastic net 0.5 1 by 1 method is the best.

Table 3.5. Imputation accuracy for simulated data with 20% missing rate. The optimal 
value(s) for each criteria are in bold.

RMSE MAE PCC MAPE

mean 0.090 0.058 0.953 19.627
KNN 0.070 0.040 0.972 13.020
methyLImp 0.069 0.036 0.973 12.490
LASSO 0.067 0.037 0.974 12.591
Ridge 0.071 0.037 0.972 12.584
elastic net 0.2 0.067 0.036 0.975 12.139
elastic net 0.5 0.066 0.036 0.975 12.072
elastic net 0.8 0.066 0.036 0.975 12.085
FPCR 0.074 0.043 0.969 13.874
LASSO 1by1 0.067 0.035 0.975 11.663
Ridge 1by1 0.067 0.037 0.974 12.287
elastic net 0.2 1by1 0.066 0.035 0.975 11.588
elastic net 0.5 1by1 0.066 0.035 0.975 11.580
elastic net 0.8 1by1 0.067 0.035 0.975 11.643
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Table 3.6 shows the imputation accuracy for simulated data with 50% missing rate. 

In terms of RMSE, elastic net 0.5 and Ridge 1 by 1 methods perform the best. Elastic net 0.2 

1 by 1 method yield the lowest MAE and MAPE. The elastic net (with mixing parameters 

0.2, 0.5, 0.8), Ridge 1 by 1, and elastic net 0.2 1 by 1 methods have the highest PCC. Table 

3.7 shows the imputation performance on simulated data with 70% missing rate. The Ridge 

1 by 1 method has the lowest RMSE and highest PCC. The elastic net 0.2 1 by 1 method 

has the lowest MAE and MAPE.

Table 3.6. Imputation accuracy for simulated data with 50% missing rate. The optimal 
value(s) for each criteria are in bold.

RMSE MAE PCC MAPE

mean 0.091 0.058 0.952 19.768
KNN 0.081 0.044 0.963 14.784
methyLImp 0.073 0.039 0.970 13.337
LASSO 0.072 0.041 0.970 13.779
Ridge 0.074 0.041 0.968 13.730
elastic net 0.2 0.072 0.040 0.971 13.445
elastic net 0.5 0.071 0.040 0.971 13.394
elastic net 0.8 0.072 0.040 0.971 13.478
FPCR 0.078 0.045 0.965 15.109
LASSO 1by1 0.074 0.040 0.969 13.233
Ridge 1by1 0.071 0.039 0.971 13.313
elastic net 0.2 1by1 0.072 0.038 0.971 12.912
elastic net 0.5 1by1 0.072 0.039 0.970 13.028
elastic net 0.8 1by1 0.073 0.039 0.969 13.146

The average running times in seconds on a MacBook Pro with Processor 2.7 GHz 

Intel Core i5 and Memory 8 GB 1867 MHz DDR3 over 30 runs for a select subset of the 

imputation methods are recorded. One of the standard regularized imputation methods 

(elastic net 0 .2), one of the 1 by 1 regularized imputation methods (elastic net 0.2 1 by 1) 

and the methyLImp method are compared. Elastic net 0.2 methods are chosen because they 

can represent other methods in the same method group, and their performance are stable 

among different settings. The elastic net 0.2 1 by 1 method is the fastest, while the elastic 

net 0.2 method is the slowest (Table 3.8).
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Table 3.7. Imputation accuracy for simulated data with 70% missing rate. The optimal
value(s) for each criteria are in bold.

RMSE MAE PCC MAPE

mean 0.092 0.059 0.951 20.534
KNN 0.114 0.066 0.925 31.077
methyLImp 0.078 0.043 0.965 15.027
LASSO 0.080 0.046 0.964 14.970
Ridge 0.080 0.046 0.964 14.991
elastic net 0.2 0.080 0.046 0.964 14.992
elastic net 0.5 0.080 0.046 0.964 14.991
elastic net 0.8 0.080 0.046 0.964 14.991
FPCR 0.083 0.048 0.961 15.488
LASSO 1by1 0.084 0.046 0.960 15.238
Ridge 1by1 0.077 0.044 0.966 14.416
elastic net 0.2 1by1 0.080 0.043 0.963 14.367
elastic net 0.5 1by1 0.081 0.044 0.962 14.630
elastic net 0.8 1by1 0.083 0.045 0.961 14.917

Table 3.8. Average running time in seconds over 30 runs

Average time (standard deviation)

elastic net 0.2 540.62 (9.87)
elastic net 0.2 1 by 1 57.87 (1.11)
methyLImp 59.99 (3.54)

Figure 3.6 provides a visualization of the RMSE verses the missing rate to compare 

the standard and 1 by 1 regularized methods in both the real and simulated data. The 

performance between the standard regularized imputation methods and the 1 by 1 methods 

are similar, yet the 1 by 1 methods are much more computationally efficient. Thus only the 

1 by 1 methods are further compared with other methods in Figure 3.7.

As a visualization and summary of Tables 3.2-3.7, Figure 3.7 compares the imputa­

tion accuracy of mean imputation, methyLImp, FPCR imputation and the 1 by 1 regularized 

methods with respect to RMSE for different missing rates in both the real and simulated 

data. The KNN method is not included in the figure since the RMSE is inflated dramatically
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Figure 3.6. The root mean square error (RMSE) verses missing rate to compare the standard 
regularized imputation methods and 1 by 1 regularized imputation methods. The standard 
regularized imputation methods and the 1 by 1 methods have similar performance.



67

when the missing rate is high. The mean imputation method has the highest RMSE in all 

three datasets (real data Normal group, real data Tumor group and simulated data), followed 

by the FPCR method. The FPCR imputation has the second highest RMSE in all three 

datasets and for all missing rates, except for the simulated data at 70% missing rate. In 

the simulated data group with 70% missing rate, FPCR outperforms mean and LASSO 1 

by 1 methods. The methyLImp method is shown to have higher RMSE than all the 1 by 1 

regularized methods in the real data Normal group with missing rate 20% and 50%, and it 

only outperforms Ridge 1 by 1 and elastic net 0.8 1 by 1 methods with missing rate 70%. 

In this dataset, elastic net 0.2 1 by 1 method has the lowest RMSE at all missing rates. 

In the real data Tumor group, the elastic net methods have better performance in terms of 

RMSE than methyLImp. In the simulated data, all the regularized methods outperform 

methyLImp with 20% missing rate. Only the LASSO 1 by 1 method performed worse than 

methyLImp with 50% missing rate. The elastic net 0.2 1 by 1 method works the best in 

terms of MAE among all missing rates. When considering the overall imputation accuracy 

results across all datasets, the elastic net 0.2 1 by 1 method is recommended since it provides 

good performance and offers reasonable computational efficiency.

3.5.2. DMR detection. Using the 1 by 1 elastic net method with 0.2 mixing param­

eter recommended above, the DMR detection performance is assessed at the three different 

missing rates. Two DMR detection methods (Bumphunter and DMRcate) are applied. The 

regions detected as differentially methylated by both detection approaches are compared 

with the simulated true DMRs. Two regions are counted as overlapping if they share any 

common genomic locations on the chromosome. The relationship between two overlapping 

regions could be exactly the same (Figure 3.8 a), one region lying within the other (Figure 

3.8 b), or one region partially in common with the other (Figure 3.8 c). Alternatively, one 

region can also overlap with multiple regions (Figure 3.8 d).
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Figure 3.7. The root mean square error (RMSE) verses missing rate to compare the different 
imputation methods. The elastic net 0.2 1 by 1 method has good and stable performance 
across the three datasets and different missing rates.
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Figure 3.8. Different cases of overlapping regions: a) two regions are exactly the same, b) 
one region is within the other region, c) two regions have partial overlap, and d) one pink 
region overlaps with two green regions.

There are 96 true DMRs. Figure 3.9 shows Venn Diagrams comparing the overlap in 

detecting the true DMRs before and after imputation using the Bumphunter method for the 

three different missing rates. Before imputation, using the data with missing entries, only 

2 or 3 of the 96 DMRs can be found across the different missing rates. After imputation, 

46 or 47 of the true DMRs can be detected. There are two numbers in the intersection of 

the Venn Diagrams for the ‘After Imputation’ results because one true DMR is broken into 

two regions, as shown in Figure 3.8 d. Using the Bumphunter method, the number of true 

positives increases by 45 (2 to 47) with 20% missing rate, and 43 (3 to 46) with 50% and 

70% missing rates. The number of false positives also increases by 22 with all missing 

rates after the imputation method is applied. Figure 3.10 provides the results when the
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DMRcate method is used for DMR detection. The imputation step increased the number 

of true positives by 86, 88 and 88 respectively for missing rates 20%, 50% and 70%, while 

also increasing the number of false positives by 58, 80, and 81, respectively.

Figure 3.9. Venn diagrams to compare the DMRs found via the Bumphunter method before 
(top row) and after (bottom row) imputation to the true DMRs for different missing rates. 
When there are two numbers in the intersection, it means that one or more true regions are 
detected as multiple regions. Numbers in parentheses represent the number of true regions.

The proposed imputation method improved the DMR detection results despite the 

different DMR detection methods. To compare the DMR detection improvements among 

the two methods, Figure 3.11 shows the detected DMRs using the imputed dataset by 

Bumphunter method (blue) and DMRcate method (red) comparing to true DMRs (yellow) 

at different missing rates. The counts in the Venn diagrams are recorded in terms of the 

number of true DMRs in each part. These results show that the improvement on DMR
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Figure 3.10. Venn diagrams to compare the DMRs found via the DMRcate method before 
(top row) and after (bottom row) imputation to the true DMRs for different missing rates. 
When there are two numbers in the overlapping part, it means that one or more true regions 
are detected as multiple regions. Numbers in parentheses represent the number of true 
regions.

detection by using the proposed imputation method is consistent for both DMR detection 

methods. All the true positive regions detected by Bumphunter are also detected by 

DMRcate method at all missing rates.

3.6. DISCUSSION OF RESULTS

When analyzing the real data, the imputation accuracy shows an apparent difference 

between Tumor group and Normal group. For example, using the same imputation method 

elastic net 1 by 1 with mixing parameter 0 .2, and the 20% missing rate, the imputation 

accuracy in terms of RMSE is 0.059 in Normal group and 0.081 in Tumor group. The 

worst RMSE for the Normal group is 0.085 while the best RMSE for the Tumor group 

is 0.081. This may be caused by cancer heterogeneity. Previous research has shown the
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Figure 3.11. The detected DMRs using the imputed dataset by Bumphunter method (blue) 
and DMRcate method (red) compared to true DMRs (yellow). The counts of true DMRs 
are shown in the Venn diagrams.

existence of epigenetic heterogeneity among cancers (Liu et al., 2019; Teschendorff et al., 

2016; Fernandez et al., 2012). In the study of Fernandez et al. (2012), DNA methylation 

profiles of 1505 CpG sites were examined on normal tissues and tumor tissues. It was 

found that little variation exists in the DNA methylation patterns of normal tissues but there 

was greater methylation heterogeneity among tumors. Hansen et al. (2011) suggested that 

the epigenetic instability of essential genomic domains in tumor cells can lead to increased 

methylation variability, and then contribute to cancer heterogeneity. The high variability in 

the methylation levels in the Tumor group can lead to the low imputation accuracy.

The KNN imputation method performed poorly at missing rates 50% and 70% as 

seen in Tables 3.3, 3.4, 3.6, and 3.7. The maximum percent of missing data allowed in each 

variable is limited for the KNN method. When the percentage is over a threshold (usually 

50%), the missing value will be imputed using the overall mean of each sample. With 

a higher missing rate, KNN’s performance is even worse than mean imputation, because 

the mean imputation uses the mean over all samples with complete entries of a particular 

methylation site, while the KNN uses the mean over variables from the same sample.
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The functional principal component regression imputation methods does not per­

form as well as the regularized linear regression imputation. The reason is likely due to the 

large distance between probes. The human genome contains about 3 billion base pairs but 

is covered by only around 450,000 probes on the microarray. Although probes are more 

dense in some regions, on average neighboring probes may be too far away to maintain the 

correlation mentioned in Section 2.1.2.

To summarize, the regularized linear regression imputation methods proposed in 

this work have outperformed methyLImp in terms of RMSE, PCC and MAPE for the real 

data under different missing rates. For simulated data, the regularized linear regression 

imputation methods have better performance than methyLImp in terms of all four criteria 

(RMSE, MAE, PCC and MAPE) under all missing rates. The 1 by 1 regularized methods 

are more computationally efficient without much sacrifice in performance compared to the 

regularized methods. The elastic net 0.2 1 by 1 method is recommended based on its 

overall stable and good performance across most settings. While applying the imputation 

methods for DMR analysis, true positive detection are improved. Although the number 

of false positive detections also increased after imputation, the increase is small compared 

to the increase of true positive detections. Take the 20% missing rate for example, using 

the Bumphunter method, the number of true positives increased by 22.5 times (2 to 47) 

while the number of false positives increased by 0.35 times (62 to 84). Using the DMRcate 

method, the number of true positives increased by 21.5 times (4 to 90) while the number of 

false positives increased by 0.60 times (97 to 155).
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4. CONCLUSION

4.1. SUMMARY

The filtering out of potential single nucleotide polymorphism (SNP) probes in the 

preprocessing step of DNA differential methylation studies causes an unnecessary waste 

of information. Incorporating SNP data into the DNA methylation analysis framework, 

allows a large proportion of the probes to be restored. The effects of recovering those 

probes are remarkable. The improvement on increasing the number of true DMRs has been 

demonstrated by both the real data analysis and simulation studies, which only utilize part 

of the genome. The effects will accumulate when the entire genome is considered.

In this research, SNP data are integrated with Infinium HumanMethylation450 

BeadChip (HM450) methylation data to recover potential SNP-probes that do not actually 

have SNPs and apply novel imputation methods for missing data due to true SNPs or 

for other reasons. Missing data are categorized according to their missing mechanism as 

missing completely at random, missing at random or missing not at random. Missing DNA 

methylation data because of filtering is assumed to fall into the missing at random category. 

Missing rates of 20%, 50% and 70% are used to develop and test the proposed methodology.

Imputation methods are proposed in Chapter 2 for DNA methylation data. Several 

regularized regression methods are proposed, along with a functional data approach, and 

compared to three existing methods. Previous studies have shown that methylation levels 

are correlated with neighboring probes within short distances on the chromosome (Eckhardt 

et al., 2006). It has also been found that the methylation levels are highly correlated with 

other probes from the same sample (Zhang et al., 2015). This information can be used to aid 

in imputing missing methylation levels. For each probe with missing values, submatrices 

are extracted from the data to fit a regression model that is used to attain the imputed values.
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The model is fit by using the available data at the missing probe as the response variable and 

data from other probes with complete information as the predictor variables. The imputation 

steps in this research iteratively evaluate all subsets of probes with missing entries. The 

input data is organized with each row representing a sample and each column representing 

a probe. First a predictive model is built under the regularized linear regression framework, 

then the missing values are imputed by prediction using complete entries of the same 

sample. Ridge, LASSO and elastic net regression are explored as shrinkage approaches. 

The tuning parameter that determines the amount of shrinkage for each model is selected 

by cross validation. This step makes the computational speed slow because cross validation 

is needed for each iteration. Therefore, variable screening before the regularization step 

is recommended. Also, imputing the missing values site by site is recommended since 

two sites may have different sets of most correlated predictors. The selection criteria for 

including variables in the model is the Pearson correlation between the predictors and the 

response variable. The number of probes used in the regression model is set to be the same 

as the number of samples in the model. In an alternative approach, the measurements of 

each sample are treated as one observation with a smooth curve representing the underlying 

structure based on the correlation between neighboring probes of DNA methylation data. 

Functional principal component analysis is performed and the component scores are used as 

inputs into a functional linear regression model, which is used to perform the imputations.

The proposed imputation methods are evaluated and compared to existing methods 

using both real and simulated data. A simulation study is conducted based on real data to 

keep the natural structure of the DNA methylation data. Adjacent site clustering is applied 

to reveal potential clusters (regions) using the normal samples of the real data. Among these 

clusters, a subset is randomly selected in which known effects are added to differentiate 

the two groups. Considering hyper- and hypomethylation patterns in the human genome 

(Peters et al., 2015), two types of simulated regions are applied. For 50% of the clusters,
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the effect is added to the entire cluster. For the other 50% of the clusters, the effect is added 

at the probe resolution, meaning that only the probe with high group mean will have the 

effect added to the specific probe.

Performance of the proposed methods is assessed by two aspects. The first is the 

imputation accuracy. The regularized methods have the best overall performance with 

respect to imputation accuracy, followed by methyLImp, then FPCR imputation. The 

traditional imputation methods such as mean and KNN imputation perform worse. In terms 

of computational efficiency, the regularized 1 by 1 approach is more efficient with similar 

imputation accuracy as the regularized methods. The second way imputation performance 

is evaluated is by investigating the impact on DMR detection. Using simulated data with 

true DMRs known, imputation using the 1 by 1 approach for the elastic net with mixing 

parameter 0.2 increased the number of true positives and decreased the number of false 

negatives compared to analyzing the data without doing imputation. The number of false 

positive detections also increased with the imputed dataset, but this increase was minimal 

compared to the increase in true positive detections.

4.2. FUTURE WORK

In this research, efforts have been focused on restoring the probes that are filtered 

out of HM450 data for the reason of potentially having a SNP. According to Table 3.1, high 

detection p-values are another main reason for probe filtering. Those probes are removed 

because they are carrying mainly noise instead of methylation information. Imputation and 

simulation studies can be conducted to improve the DMR detection ability of the regions 

involving those probes. Also, methods and theory can be tested and modified for other 

types of DNA methylation data such as Illumina Infinium Methylation EPIC array and next 

generation sequencing data. The FPCR method has a high potential to show improvement 

on whole genome bisulfite sequencing (WGBS) data due to the comprehensive and dense
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coverage of the genome it provides. The proposed methods in this study incorporate 

the correlation between genomic variables into the imputation process, so they may be 

generalized to other genomic data such as gene expression data.
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