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ABSTRACT

Models with a conditional heteroscedastic variance structure play a vital role in 

many applications, including modeling financial volatility. In this dissertation several 

existing formulations, motivated by the Generalized Autoregressive Conditional 

Heteroscedastic model, are further generalized to provide more effective modeling of price 

range data well as count data. First, the Conditional Autoregressive Range (CARR) model 

is generalized by introducing a composite range-based multiplicative component 

formulation named the Composite CARR model. This formulation enables a more effective 

modeling of the long and short-term volatility components present in price range data. It 

treats the long-term volatility as a stochastic component that in itself exhibits conditional 

volatility. The Generalized Feedback Asymmetric CARR model presented in this 

dissertation is a generalization of the Feedback Asymmetric CARR model, with lagged 

cross-conditional range terms added to allow complete feedback across the two equations 

that model upward and downward price ranges. A regime-switching Threshold 

Asymmetric CARR model is also proposed. Its formulation captures both asymmetry and 

non-linearity, which are two main characteristics that exist in the price range data. This 

model handles asymmetry and non-linearity better than its range-based competitors, based 

on the Akaike’s Information Criteria. In addition to the above models, a Time Varying 

Zero Inflated Poisson Integer GARCH model is introduced. This model enables the 

modeling of time series of count data with excess number of zeroes where this excess varies 

with time. In this model, the zero inflation component is modeled either as a deterministic

function of time or as a vector of stochastic variables.
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1. INTRODUCTION

Time series analysis plays a vital role in modeling empirical data, especially in 

areas of econometrics and finance, but its usefulness also extends to fields such as biology 

and engineering. There are two primary methodological areas time series analysts focus 

on, namely the modeling of the underlying data generating process and forecasting future 

values. The former involves fitting statistical models to temporally observed data for 

extraction of meaningful information and uncover important features embedded in the time 

series. Such endeavors may focus on uncovering seasonal components or determining if 

the underlying process has a unit root in its autoregressive polynomial. The aim is on 

building explanatory models that provides insight into the underlying data generating 

process. In forecasting, the primary focus is on obtaining accurate forecasts rather than 

uncovering insights into the data generating mechanism. One may, however, argue that 

such insights would lead to better predictive models. The models proposed in this 

dissertation are an attempt to provide more flexibles models to explain the underlying data 

generating process, but they can also be used for forecasting future values, as illustrated 

through real-life examples.

To implement effective time series modeling strategies, practitioners need to pay 

attention to the nuanced features found in empirical series. For example, the variability 

associated with a time series can change over time and therefore it is unreasonable to 

assume homogeneity of variance over the observed time period. This phenomenon, known 

as heteroscedasticity, can refer to the unconditional variance of a time series or the 

conditional variance. While variance is one measure of the stochastic variability of the
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random variables that compose a time series, other measures such as the range is also used. 

The term conditional heteroscedasticity refers to the changing variability of the time series 

at a given time point, conditional on past observations. In the area of finance, conditional 

heteroscedasticity is useful in explaining the clusters of high variability and low variability 

periods, which are common in stock market data. High variability is associated with periods 

of high financial uncertainty and low variability reflects a period of less uncertainty, with 

both these phenomena triggered by recent economic news and market conditions. By 

contrast, unconditional heteroscedasticity explains the general structural changes in the 

variability which are not related to events during the prior period.

Volatility is another term use to refer to the uncertainty, or the variability, that exists 

in the financial market and reflected in time series data. In general, volatility is defined as 

the degree of dispersion of a random variable over time and it is usually quantified either 

by standard deviation, variance, or the range of the random variable of interest. Volatility 

modeling is employed in many areas such as economics and finance, but such models have 

applications in fields such as engineering and biology. Econometricians define volatility as 

the risk related to the value of the assets changing over time. The volatility is discussed 

broadly as historical and implied volatilities. The historical volatility estimates the changes 

of an asset by measuring the price changes over the predetermined periods while implied 

volatility is derived from the market price of a market traded derivative.

Traditional time series models assume that the variance is constant, meaning the 

statistical dispersion remains unchanged across different time periods. However, it is not 

uncommon for empirical time series to exhibit volatility clusters. In other words, when the 

volatility is high it is likely to remain high and when it is low and it is likely to remain low.
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Clearly, the homogeneity of variance assumption is violated in such situations. Therefore, 

it is fundamentally inaccurate to fit the statistical models that assume constant variance 

over time. To address this issue, especially in the case of modeling financial volatility, 

Engle (1982) introduced the Autoregressive Conditional Heteroscedastic (ARCH), model. 

The ARCH model explains the future volatility based on current observables. The ARCH 

process describes the variability as a weighted average of previously estimated squared 

errors from historical data, and these weights provide more influence to the recent 

information and less to that of the distant past. Furthermore, an ARCH process can handle 

a higher number of extreme values than what is expected from a standard normal 

distribution, hence it is more applicable during high volatility periods.

Tim Bollerslev (1986) expanded on the ARCH model and proposed a class of 

heteroscedastic models called the Generalized Autoregressive Conditional Heteroscedastic 

(GARCH) models. Subsequently, the GARCH formulation was rapidly expanded to 

include what is known as the GARCH family of models. The GARCH model constitutes 

of three variance components: a constant variance portraying the long-run average, the 

variance forecast from the previous period, and the variance arising from the new 

information. The weights of the last two forecasts govern the fluctuations to the long-run 

average returns due to the arrival of new information and the volatility observed in the 

immediate past.

The ARCH and the GARCH family models became popular among researchers due 

to their versatility in modeling financial data. Motivated by the fact that the ARCH and the 

GARCH models are useful tools to explain the real-world phenomena and successfully 

forecast future volatiles, researchers added variations to the standard ARCH and GARCH
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models. A wide variety of ARCH and GARCH type models were proposed, including the 

Exponential GARCH (EGARCH) by Nelson (1991), Threshold ARCH (TARCH) and 

Threshold GARCH (TGARCH) by Zakoian (1994), GJR-GARCH by Glosten, 

Jagannathan and Runkle (1993), Quadratic GARCH (QGARCH) by Sentana (1995), 

Integrated GARCH (IGARCH) from Engle and Bollerslev (1986), Fractionally Integrated 

GARCH (FIGARCH) of Baillie, Bollerslev, & Mikkelsen (1996), and the Fractionally 

Integrated EGARCH (FIEGARCH) by Bollerslev & Mikkelsen (1996). For many other 

important developments see Engle (2003). These models try to incorporate characteristics 

such as nonlinearity, asymmetry, and long memory properties of volatility, utilizing a 

variety of parametric and non-parametric approaches. Another closely related, but 

econometrically distinct, volatility model called the Autoregressive Conditional Duration 

or ACD model was proposed by Engle and Russell (1998). Since transactions greater than 

a certain magnitude can be linked to financial volatility, where more frequent transactions 

reflect higher volatility, ACD formulations are used as an alternative way to estimate 

volatility through the modeling of durations between transactions.

The ARCH and the GARCH family models are mainly focused on modeling and 

forecasting financial volatility and risk based on price returns. In many financial 

applications, the standard deviation is the most common measure of stock return volatility. 

Therefore, they can be identified as examples of return-based volatility models. Since the 

concept of volatility was introduced, researchers have sought alternative measures of 

financial volatility. One such alternative is the range. Parkinson (1980) argued that 

volatility measures could be calculated by considering the daily high, daily low, and 

opening price of a stock in addition to the traditional closing prices. He also compared
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traditional measures of volatility that were calculated simply by using closing prices, with 

extreme value methods by taking high and low prices of an asset. He concluded that the 

range-based method is far superior to the standard methods based on returns. Beckers 

(1983) tested the validity of different volatility estimators. This paper concludes that the 

range of a stock price yields far more important and fresh information. Beckers also stated 

that using the range of a stock price is better than using close-to-close changes. Kunitomo 

(1992) improved Parkinson’s original result and proposed a new range-based estimator, 

which, according to the author, is ten times more efficient than the standard volatility 

estimator. In another study, Alizadeh, Brandt, and Diebold (2002) proved that the range- 

based volatility estimators are highly efficient when compared to the classical volatility 

proxies that were based on log absolute returns or squared returns and showed that log 

range is approximately normal. Hence, the range of an asset price for a given period can 

be used as a more informative proxy variable to measure an asset’s volatility for a well- 

defined period such as a day. Therefore, the range of an asset price for a given period can 

be used as a more informative proxy variable to measure the volatility of the asset during 

that period. Researchers studied this alternative approach to volatility modeling and 

developed new theoretical range-based models with comprehensive empirical examples 

illustrating their utility.

Chou (2005) introduced a range-based volatility model called the Conditional 

Autoregressive Range or the CARR model. The CARR model is primarily an ACD type 

formulation. It is employed to explain the price volatility of an asset by considering range 

of the log prices for a given fixed time interval while the ACD process is used to model the 

time intervals between events. The CARR model is quite similar to the standard volatility
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models such as the GARCH model. One distinct difference between the two models is that 

the GARCH model uses the rate of return as its volatility measure, and the CARR model 

uses the range as its volatility measure. The CARR model proposed by Chou is a simple 

and efficient tool for analyzing the volatility clustering property when compared to the 

GARCH models. For example, Chou (2005) showed that the effectiveness of volatility 

estimates produced by the CARR models is higher than the estimates of standard return- 

based models such as GARCH models. Due to the growing interest in the CARR model, 

variations of it, such as Exponential CARR, Weibull CARR, CARR-X (Chou 2005), 

Asymmetric CARR (Chou 2006), Lognormal CARR (Chaing 2016), Gamma CARR (Xie 

and Wu 2017), and Feedback Asymmetric CARR (Xie 2018) were developed. The range- 

based models introduced in this dissertation adds to this family of range-based volatility 

models.

In the next section a review of the ARCH, GARCH, and CARR model is provided.

1.1. THE AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTIC (ARCH) 
MODEL

The Autoregressive Conditional Heteroscedastic (ARCH) formulation was first 

proposed by Engle (1982) to model the time dependent variance of a time series. The 

ARCH process is used to model the conditional variances which is also referred to as 

conditional volatility, and it is expressed as a linear function of the squared errors. The 

large squared returns may signal a relatively high volatile period while series of small 

squared returns may signal a relatively low volatile period.
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1.1.1. The ARCH (p) Model. Let s t be the real valued discrete-time stochastic 

process, and Ft-1 denotes the sigma field generated from the information set up to time t-

1. Then the ARCH model of orderp  is formulated as:

st = ° tzt; zt ~ i i d . N  (0 ,0 ,

st \ Ft_1 ~ N  (0, o f ) ,

Var (s t \ Ft_i) = E (s? \ Ft_i) -  [E  (s t \ Ft-i ) J  = E ( s? \ Ft-i) = o f ,

o f  = a 0 +yZ ^ i s,
2
t-i,

i=1
a 0 > 0, a, > 0, i = 1,...,p.

(11)

When p  = 1, the ARCH (p) model can be rewritten as the ARCH (1) process. 

Sometimes it is important to rearrange the ARCH (1) model as an AR (1) process. To do 

so, define the serially uncorrelated zero-mean stochastic process such that:

Tjt = ss - a 2. After replacing o f  in equation (1.1) by s f  - p t , the ARCH process of order 

1 can also be specified as the AR (1) model: s f  = a 0+alsf_l +Tt. Here,

E E (sf  | Ft - ) !  = E (o f ) = - a > 0 and 0 < a, ^  1. In a separate study done by Ling and
- v ’J v ’ 1 - a

McAleer (2002), the condition 0 < aj < 1 is shown to be the necessary and sufficient

condition for the weak stationarity of an ARCH (1) process.

A main application of the ARCH model is to forecast future conditional variances. 

Assume of+1 is the one step ahead conditional variance in the ARCH (1) model. Then one 

can write:

o f  1 = E (s f  1 I Ft ) = a 0 + a 1°t2.
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1.1.2. Parameter Estimation of ARCH Models. Engle (1982) stated that the 

parameters can be estimated by the Maximum Likelihood Estimation (MLE) method. Let

0  be the parameter vector such that 0  = (a0 , . . . , ^ )  andp  is the order of the ARCH

model. Then under the normality assumption, the likelihood function for the ARCH (p) is 

formulated as follows:

n

f  ( e i , . . . , e n | 0 )  =  f  ( s i , . . . , S p  | 0 ) x n f  ( e t I e ^ e : 0 ) .
t = p +1

Here, f  ( e , . . . , e  I 0 ) is the joint pdf function of {et}p=l, where conditional pdf of et given 

sigma field generated by all the information set up to time t-1, Ft-1 is:

f  (et 1 Ft-1 ) = f  (et 1 e1, . ,e t-1: 0 ) ,
f  _2 A

V2̂ ^exp
2X j

where, a f  is defined as given in the equation (1.1). As pointed out by Engle (1982), the

exact form of the joint pdf of f  (e1,...,ep | 0 ) is complicated, and therefore it is replaced

by a joint distribution obtained by conditioning on the firstp  observations. The resulting 

conditional likelihood function of ARCH (p) can be written as:

n 1
exp

y 2 a 2

r e,2 ^
t=p+1 V 2<  j

Finally, the conditional log likelihood function can be presented as:

(0 1 e  }nt=p+1 ) = - t  1  log (2 n ) + 1  log ( a 2) ■t=p+ 1 2 2

Engle (1982) also proved that the parameters are asymptotically independent hence,

1

l

they can be maximized separately using available numerical optimization methods.
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Figure 1.1 shows the simulated ARCH (1) time series plot of size n =500, with the 

parameter vector 0  = (0.10,0.90). The simulated data exhibited volatility clustering,

which means larger (smaller) changes in volatility are followed by larger (smaller) changes 

in volatility and they group together. Since the order of the ARCH process is 1, it has the 

ability to adjust quickly after a large fluctuation in volatility.

Figure 1.2 exhibits the Autocorrelation (ACF) and the Partial ACF (PACF) of the 

simulated ARCH (1) time series, mentioned above. According to the ACF and the PACF 

plots, only lag 8 had a mildly significant result. Except for the lag 8 all the other lags in the 

ACF and the PACF plots, failed to show significant correlations. Therefore, the simulated 

data are serially uncorrelated for all practical purposes.
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Figure 1.2: Sample ACF and PACF plots of simulated ARCH (1) process data with
0  = ( 0.10,0.90)'

Figure 1.3 presents the ACF and PACF plots of the squared values for the simulated 

ARCH (1) process. The PACF plot shows that lag 1 was significant, hence, it is clear that 

the ARCH (1) process is appropriate for the squared series.

Figure 1.3: Sample ACF and PACF plots of squared simulated ARCH (1) process data
with 0  = ( 0.10,0.90)'

1.2. THE GENERALIZED AUTOREGRESSIVE CONDITIONAL 
HETEROSCEDASTIC (GARCH) MODEL

Bollerslev (1986) first proposed the Generalized ARCH (GARCH) model, which

is a natural generalization of the ARCH model introduced by Engle (1982). As discussed
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in the previous section, the ARCH processes model the conditional variance returns as a 

linear function of past lags of actual squared returns. Conversely, the GARCH method is 

an extension of the ARCH method, which models the conditional variance of the returns 

as a linear function of the past values of true squared returns as well as the conditional error 

variances of previous returns.

1.2.1. The GARCH (p, q) Model. Let s t be the real valued discrete-time stochastic

process, and Ft-1 denotes the sigma field generated from the information set up to time t-

1. Then the GARCH model of orderp  and q is expressed as:

Kt ° t zt, Z ~ i.i.d. N  (0,1),

Ft_!~ N  (0, o f  ), (1.2)

0  =  « c  + Z  a i £ t - i + Z  j 2-  j  ’
i=1 j =1

= « c + A  ( L  K + B  ( L  ) o > (1.3)

where,

p  > 0, q > c,
«c > 0, a t > 0, i = 1,...,p,
P  > c, j  = 1,..., ^

P

A (L ) = Z a,L  •
i=1
q

B  (L ) = Z Pj L' ■
j =1

Here, o f  is the conditional variance of the s t , given all the information, set up to time t- 

1 such that, Var(et | F ^ ) = E (K  | F ^ ) - [ E (et | F ^ ) ] 2 = E (K  | F ^ )  = o f. The Lag 

operator, L, is defined by Lky t = y t_k for all k g U . When the order of the GARCH model
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q is equal to 0, then the GARCH process reduces to the ARCH process with orderp  (ARCH 

(P))-

The following theorem from Bollerslev (1986) provided the necessary and 

sufficient conditions for weak stationarity of the GARCH (p, q) process.

Theorem 1. The GARCH (p, q) process defines in (1.2) and (1.3) is weakly stationary

, p  q

with E  ( s  ) = ^  var ( s  ) = « o ( 1 -  0  0 ) - B  (0 )  =a o 1- £ a - £ 0 and
V i=l i =1 J

cov(st,e s) = 0 for t ^  5 , if  and only if 1 - £ a  - £ P < 1.
V i=l }=l J

Sometimes, it is advantageous to express the GARCH process as an ARMA time series. 

Let rjt be a stochastic process defined as:

I t  = s f  -  A -  = (A - 1)^ 2, with A ~ i i d . N (0,1). (1.4)

From equation (1.4) it can be verified and is a serially uncorrelated series with

E(pt) = 0. Substituting the equation (1.4) to the GARCH (p, q) process as defined in (1.2) 

- (1.3), then the GARCH (p, q) process can be rewritten as:

p  q
a 2 - i t = a  +  £  a s l ,  +  £  P  ( s 2-  i -  n -  j ) ,

i=1 i=1

p  q

£ a , s l  + £ p j  ( s i  j - p t -  j  )  +  V t ,s t = a  +
i=1
p  q q

s t  = a  + £  a s l i  +  £  P  s 2- i + n  - £  p p t -  i . (1.5)
i=1 j =1 j =1

Therefore, the GARCH process of orderp, q in equation (1.5) can be interpreted as ARMA 

process in s f  of orders m = max (p , q ) and q .
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1.2.2. The GARCH (1, 1) Model. The GARCH (1, 1) process is the most frequently 

used GARCH process in empirical studies and it can be derived by setting p=1 and q=1 in 

the equation (1.3):

o f  = a 0 + a 1sf_1 + f i a t ,  a 0 > 0 , a 1 ^ 0, fi1 ^ 0. (1.6)

Based on Theorem 1, the GARCH (1, 1) process is stationary if a 1 + f i  < 1 .

1.2.3. Parameter Estimation of the GARCH Model. In this section, the Maximum 

Likelihood Estimation (MLE) method to estimate the GARCH model parameters is 

discussed. For the illustrative purposes, we consider the GARCH (1,1) process with normal 

innovations was considered. Generalization to the GARCH (p, q) process is 

straightforward.

Let 0  be the parameter vector such that 0  = ( a 0 a  f i  ) and st | FM ~ N  (0, o f  )

, where o f  is defined as in equation (1.6). The conditional pdf and the joint pdf of st given 

information set up to time t-1 is expressed as:

1
f (s t 1 Ft-1 )=  i----- -exp -

yj2mjt y

f  ( S n ,  . . , S 1 ) =  f  ( S „ - 1 , . . . , S 1 )  f  - S t

.2 A

2 ot J

- 1 , . . . — 1̂ ) .

(1.7)

Therefore, from equation (1.7) the conditional log likelihood of the data l (0 1 { s} ”=1) can

be derived as follows:

l  ( 0 i { s X , )
n
2

1 n
l o g ( 2 ^ ) -  -  E

2
l o g  ( ° 2t )

(1.8)



14

For more derivations of the MLE method see Bollerslev (1986). Note that Nelson and Cao 

(1992) proved the necessary and sufficient conditions to guarantee the non-negativity of 

the GARCH (p, q) process.

Figure 1.4 shows the simulated GARCH (1, 1) time series plot of size n=500, with 

the parameter vector 0  = (0.01,0.05,0.90) . According to the time series plot, there are

periods with high (low) volatility followed by high (low) volatile periods. The ACF and 

the PACF of the time series data are given in the Figure 1.5. According to the ACF and the 

PACF plots of the time series, there are no significant correlation lags, hence the time series 

looks to be uncorrelated.

Since there are no closed form solutions for the maximum likelihood estimators for the

parameters a 0, a1 and P1, they are estimated by maximizing the equation (1.8) numerically.

Figure 1.4: Simulated GARCH (1, 1) time series with 0  = (0.01,0.05,0.90)
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Figure 1.5: Sample ACF and PACF plots of simulated GARCH (1, 1) process data with
0  = (0.01,0.05,0.90)'

Figure 1.6: Sample ACF and PACF plots of squared simulated GARCH (1, 1) process
data with 0  = (0.01,0.05,0.90)
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Figure 1.6 shows the sample ACF and PACF of the squared values of simulated 

GARCH (1, 1) data. These plots indicated existence of significant autocorrelation patterns; 

hence the squared series is serially correlated.

1.3. CONDITIONAL AUTOREGRESSIVE RANGE (CARR) M ODEL

Chou (2005) introduced the CARR which is primarily a range-based model. The 

CARR model is used to fit the price volatility of an asset by considering range as a measure 

of price volatility. Let Ps be the logarithmic price of an asset at a time point s e (t - 1, t]

and R  be the price range defined over the fixed time period (t - 1, t] , and it is formulated

as: R  = P high - P low s e (t - 1,t].t s s  V ’  J

The CARR model of order (p, q) is presented as CARR (p, q) and defined as 

follows:

R  = AtS ,

E (Rt I Ft-1 ) = 4  ® + X  a rRt-r + £  P A - j ,
i=1 j=1

st ~ f  CX i.i.d., E (st ) = 1,

® > 0,^i ^ 0,Pj ^  0. ( 19 )

Here, At is the conditional expectation of the price range based on the sigma field Ft-1 

generated by all information set up to time, t-1. The non-negative disturbance term, also 

known as the standardized range, is denoted by s t , which is independent and identically

distributed with probability density function f  (.) with non-negative support and a unit

p  q
mean. Moreover, Chou (2005), proved that if 0 < £ a t + £ p  < 1, holds then the CARR

i  j
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model presented in equation (1.9) is weakly stationary. Since s t has a non-negative

support, standardized residuals can be explained by using an exponential distribution with 

unit mean. This results in an exponential CARR, which is abbreviated as the ECARR 

model.

1.3.1. Properties of the ECARR Model. The ECARR model with order p  =1 and 

q =1 is a widely used CARR model in financial time series and ECARR (1, 1) model is 

represented as:

R = Atst,
E(R IFt-1) = ̂  = 0+aRt_1 +p\_v

The unconditional expectation of the ECARR (1, 1) model can be obtained by:

E (R  ) = E(A,s, ) = E [ E (Rt | F t )] = E(At),

E (At ) = o + a E  ( R  ) + fiE  (At ),

considering the weak stationary assumption, E  (R  ) = E (R_.) = p, so that:

p  = E (R ) = E (A ) = -— ^  . Here, 0 < a + fi < 1.

The unconditional variance of the ECARR (1, 1) model can be derived from:

Since s t ~ exp(1) with E (s t) = 1andE (s f  ) = 2, we have:

E (R ) = E ( A s  )2 = E (A f) E ( s f ) = 2E (A f) .

Under the weak stationarity assumption:
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E  W )
A 1 - ( a  + p ) 2

1 -  2 a  - p 2 -  la p  

var (R, ) = E  (R ) - [  E  (R,) ] 2,

= 2 e  y s ,

1 - ( a  + p 'f

1 -  l a 2- p 2 -  la p  

A  (1 - p 2 -  la p )

1 -  l a 2- p 2 -  la p '

A ,

From the above results, to have a finite variance for the ECARR (1, 1) process parameters 

in the model, it must satisfy the following condition: 2 a 2 + p 2 + la p  < 1. Let R  (1) be

the one step ahead forecast value Rt+1 where Rt+1 = R+1st+1, with R +1 = rn + a R  + p R . Then,

Rf  (1) = E (R,+1 1 F,-1 ) = 4 +1 = a  + aR, + p R .

Some properties of the ECARR model can be inferred from the ARMA process. 

Therefore, it is important to know how to formulate the CARR model as an ARMA process. 

Define stochastic difference random variable i t such that:

i t = R  - E (R  | F ,- ) = R - | . (110)

H ere E (it ) =  E (R  ) =  0  and cov (it i s  ) = E (itis  ) - E  (it ) E (is  ) =  E (itls  ) =  0.

From equation (1.10), the ECARR (p, q) model was rewritten as:

R, = a  + 'Z ( a j + p j )Rt -  + it -  -  -  ,
j j  11

where, g  = m ax(p , q) and a y = 0: j  > p, and pj = 0: j  > q. Therefore, equation (1.9) is in

the form of an ARMA process with order g  and q.
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1.3.2. P aram eter Estim ation of the ECARR Model. In this section, the use of the

Maximum Likelihood Estimation technique to estimate the parameters of the ECARR (p,

q) model is discussed. Let 0  be the parameter vector such that 0  = ( ^ , a 1,...,ap, R R ?) 

and g  = max (p , q). The likelihood function of the data is:

n

f  (R . A  10)=f  (R  A 10)* n  f  (R | R . ,R- 1 : 0)
i=g +1

Here {r  R  } the past realization of the range series data and conditional pdf of R

given the sigma field Ft-1 generated from all the information set up to time t-1 denoted 

bY:

f  (Rt I Ft-l, 0) = y exp 
A

f  n ^
Rt

V At J

Then the conditional log likelihood function of the data is formulated by:

n

i  ( 0 I R 1 . . . R ,  )  =  - !
t =g +1

Since there are no closed form equations for the parameter estimates, an optimization 

algorithm can be used to estimate the model parameters in 0 . Chou (2005) mentioned that 

usual asymptotic theories of maximum likelihood estimates hold for the ECARR (p, q) 

process when {R }n,=i is weakly stationary.

Figure 1.7 shows the simulated range data from the ECARR model with order (1, 

1). The height of the spikes indicates the volatility, and higher heights imply higher 

volatility periods. The simulated data clearly show volatility clustering. Figure 1.8 shows
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the ACF of the simulated ECARR model. The ACFs are highly significant. Therefore, the

serial dependence of the data is verified.

Figure 1.8: The ACF function of simulated ECARR (1, 1) series with
0  = (0.01,0.20,0.70)'

The results presented in this dissertation extends the CARR and the Feedback 

Asymmetric CARR (FACARR) models in three papers. In addition, another paper presents
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a generalized zero-inflated Poisson model whose formulation parallels the GARCH model. 

The basic structure of this model for count data is based on what is known as the 

Autoregressive Conditional Poisson (ACP) model introduced by Heinen (2001, 2003). The 

ACP model is connected to the ACD models mentioned earlier in the same way a Poisson 

process is related to a recurrent event process where the durations between events are 

exponentially distributed. Unlike the regular homogenous Poisson processes and recurrent 

event processes with independent durations between events, the ACP and the ACD allow 

serial correlation. Note that the ACP model is the same as the Integer GARCH 

(INGARCH) process independently proposed by Ferland, Latour, and Oraichi (2006) if the 

underlying distribution of the count process is Poisson.

1.4. DISSERTATION RESEARCH

This dissertation contains of four papers. Three of these are generalizations of the 

CARR type models and one is derived from the Autoregressive Conditional Poisson (ACP) 

model which is related to the ACD model.

Paper I: In this paper a new class of composite range-based component model for 

volatility to analyze long-term and short-term volatilities in daily price range data is 

developed. The proposed Composite CARR (CCARR) is a multiplicative component 

model similar to the Spline-GARCH model of Engle and Rangel (2008). The long-term 

volatility is modeled using a stochastic volatility component, which itself exhibits 

conditional volatility. The long-term and the short-term components in the CCARR model 

are driven by the past realizations of the range model. The application of the proposed 

model is illustrated by using S&P 500 and FTSE 100 stock indices.
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Paper II: This paper generalizes the Feedback Asymmetric CARR (FACARR) 

model of Xie (2018) and introduce the Generalized FACARR (GFACARR) model. The 

FACARR model limits the cross feedback to past ranges and does not include past 

conditional means. The proposed Generalized Feedback Asymmetric Conditional 

Autoregressive Range Model (GFACARR) removes this limitation and allows the upward 

range model to include past upward and past downward ranges, along with their respective 

conditional means. A similar model was defined for modeling a downward range as well. 

The proposed model is more aligned with the multivariate CARR model. The use of the 

GFACARR model is illustrated by its application to several price series, including S&P 

500, CAC 40, and NIKKEI 225 stock indices.

Paper III: In this paper a Threshold Asymmetric Conditional Autoregressive Range 

(TACARR) model for the price ranges of financial assets is proposed. The disturbance term 

of the range process is assumed to follow a threshold distribution with positive support. 

The study assumes that the conditional expected range process switches between two 

market regimes. The two market regimes are namely the upward market and the downward 

market. This model addresses several inefficiencies found in previous price range models 

including Conditional Autoregressive Range (CARR), Asymmetric CARR (ACARR), 

Feedback ACARR (FACARR), and Threshold Autoregressive Range (TARR) models. 

The performance of the TACARR model is assessed using IBM index data. Empirical 

results show that the proposed TACARR model is useful in-sample prediction and out of 

sample forecasting of volatility.

Paper IV: This paper introduced a time varying zero-inflated Poisson process to 

model time series from count data with serial dependence. The model assumed that the
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intensity of the underlying Poisson process evolves according to a generalized conditional 

heteroskedastic (GARCH) type model. The proposed model is a generalization of the Zero 

Inflated Poisson Integer GARCH (ZIP-INGARCH) model proposed by Fukang Zhu in 

2012, which, in return, was considered a generalization of the Integer GARCH 

(INGARCH) model proposed by Ferland, Latour, and Oraichi in 2006. The proposed 

model is built on these previous formulations and it incorporate the flexibility for the zero- 

inflation parameter to vary over time, according to a deterministic function or be driven by 

exogenous variables. Two applications based on the real-world data are discussed and the 

proposed time varying ZIP-INGARCH (TVZIP-INGARCH) model fitted better with the 

data compared to Zhu’s constant ZIP-INGARCH model.
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PAPER

I. M ODELING AND FORECASTING FINANCIAL VOLATILITY USING 
COM POSITE CARR MODELS

ABSTRACT

The literature showed that forecasting realized volatility and the Conditional 

Autoregressive Range (CARR) models that utilize the daily range of a commodity price, 

they outperform the traditional the Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH) approach that models the daily returns. The CARR models, 

however, assume that the unconditional mean range is constant over time, which hold only 

if the unconditional volatility remains fixed throughout the study period. As several 

researchers reported, there is strong empirical evidence suggesting the feasibility of 

modeling a slow-varying change in the unconditional volatility over the study period using 

a long-term volatility component. This paper proposed a new composite range-based 

component model to analyze both long-term and short-term volatility components in daily 

price range data. The proposed CCARR models long-term volatility changes as a stochastic 

component which itself exhibits conditional volatility and the application of the proposed 

model was illustrated by using the S&P 500 and the FTSE 100 stock indices.

Key W ords: CARR Models, Range Estimators, Financial Time Series, Market 

Volatility, Duration Models
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1. INTRODUCTION

Financial volatility is a measure of the dispersion of returns for a given asset. It is 

the conventional measure in assessing the risk of speculative assets. In general, the 

riskiness of the market is directly proportional to the volatility. Volatility is closely linked 

with the stability of the financial market and plays a vital role in determining the level of 

economic activity. It is also a key input for asset pricing. Thus, financial volatility is an 

essential factor that policy makers and regulators should consider before any form of 

financial decision making. Moreover, modeling volatility is crucial in understanding the 

nature of the dynamics of the finical market.

Modeling the financial volatility of asset prices was discussed extensively in the 

financial and econometric literature. One of the most successful volatility models used by 

researchers to model time series volatilities is the Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH) model introduced by Bollerslev (1986). This paper was 

based on the ideas put forth in the seminal paper by Engle (1982), which proposed the 

Autoregressive Conditional Heteroscedasticity (ARCH) model to address the complexities 

of time-varying volatility and volatility clustering in the financial time series. The ARCH 

approach models the error variance as a function of actual errors of the previous periods, 

while the GARCH method, which is an extension of the ARCH method, models the 

variance of the error as a function of error terms and its conditional variance.

Owing to the significance of modeling and forecasting asset price volatilities, a 

wide range of empirical and theoretical investigations were completed within the context 

of econometric literature to select the ideal model. Akgiray (1989), mentioned that 

GARCH (1, 1) models fit the daily return series data reasonably well after considering the
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evidence from the time series behavior of stock prices. The GARCH model used in this 

paper employed rate of return to study the volatility and found that daily return series 

demonstrated a significant level of second-order dependence, which cannot be modeled 

using merely a linear white noise process.

Due to the growing interests and developments in financial time series during the 

1990s, some researchers became invested in modeling the time intervals between events. 

The first durational model was proposed by Engle and Russell (1998). In their publication, 

they introduced a new statistical model that is capable of analyzing irregularly spaced 

financial transaction data and they named the model the Autoregressive Conditional 

Durational (ACD) Model. Since then, multiple authors have proposed related versions of 

ACD models such as the Logarithmic ACD (LACD) model by Bauwens and Giot (2000), 

Nonlinear ACD by Zhang, Russell and Tsay (2001), and Box-Cox ACD by Hautsch 

(2002).

In many financial time series applications, the standard deviation is the most 

common measure of stock return volatility because it not only calculates the dispersion of 

returns, but it also summarizes the probability of seeing extreme values in returns. 

Researchers have also focused their attention on finding alternative measures of financial 

volatility, such as range. It is well-known in statistics that the range is a measure of the 

variability of a random variable. Parkinson (1980) argued that volatility measures could be 

calculated by considering the daily high, daily low, and opening price of a stock, in addition 

to the traditional closing prices. Parkinson also compared traditional measures of volatility 

that are calculated by using the closing prices, with extreme value methods by taking high 

and low prices of an asset. The study concluded that a range-based method is far superior
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to the available standard methods. Beckers (1983) tested the validity of different volatility 

estimators and states that the range of a stock price has more important and fresh 

information. It is also claimed that using the range of a stock price is better than using the 

close-to-close changes. Hence the range of an asset price for a given period can be used as 

a more informative proxy variable to measure the volatility of the asset during that period. 

Researchers who studied this alternative approach to volatility modeling developed new 

theoretical range-based models with comprehensive empirical examples. For example, 

Brandt and Jones (2006) fitted effective Exponential GARCH (EGARCH) models to range 

data from the S&P 500 index.

Chou (2005) first introduced the Conditional Auto Regressive Range (CARR) 

model, which is primarily an ACD model. While the ACD model is used to model the time 

intervals between events with positive observations, the CARR is employed to model the 

price volatility of an asset by considering the range of the log prices for a given fixed time 

interval. The CARR model is similar to the standard volatility models such as the GARCH 

model. However, one distinct difference between the two models is that the GARCH model 

uses the rate of return as its volatility measure, and the CARR model uses the range as its 

volatility measure. The CARR model proposed by Chou is a simple but efficient tool for 

analyzing the volatility clustering property, when compared to the GARCH models. This 

was illustrated empirically via out-of-sample forecasting for S&P 500 data. Chou showed 

that the effectiveness of volatility estimates produced by the CARR models was higher 

than the estimates of standard return-based models, such as GARCH models. Zou (2014) 

used the CARR model and the GARCH model to forecast the volatility of the stock index 

in the Shanghai stock market. This paper used the Root Mean Squared Error (RMSE) and
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the Mean Absolute Error (MAE), which were also used by Chou (2005), to compare the 

Weibull-CARR model with the GARCH-t models. Zou concluded that the Weibull CARR 

model outperformed the ARCH-t model in forecasting ability. Quiros (2011) discussed 

volatility forecasting with range models. He improved previous work done by Chou (2005) 

by extending the time-period studies and analyzing the performance of the CARR model 

in contrasting situations such as in periods with upward trends and in periods with 

downward trends. He proposed various range estimators to analyze the forecasting 

performance, and he further stated that Parkinson’s (1980) model is preferable to the 

CARR model during periods with upward trends, while the CARR is recommended for 

periods with downward trends.

Chaing (2016) proposed the Lognormal Logarithmic Conditional Auto Regressive 

(Lognormal Log CARR) model intending to examine the volatility outliers and improve 

the accuracy of forecasting. This model was influenced by the Logarithmic Autoregressive 

Conditional Duration (Log ACD) model of Bauwens and Giot (2000). One major 

advantage to using either a Log ACD or a Log CARR model is that these models relax 

positivity restrictions on the parameters of the conditional expectation function. Fernandes, 

Mota, and Rocha (2005), proposed the multivariate extension of the CARR model, derived 

the conditions for the existence of statistical properties, such as the first moment, 

stationarity of the model.

The broad scope of volatility models proposed by various researchers provide 

copious opportunities to model volatility as a single component. Recent studies carried out 

on the subject, led to examination of the economic and financial variables’ volatility as 

functions of long and short-term components.
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Engle and Lee (1999) introduced an additive component to GARCH models with 

long-term and short-term components. The Spline GARCH model proposed by Engle and 

Rangel (2008) models equity market volatilities as a combination of macroeconomic 

activities and time series dynamics. In this same paper, Engle and Rangel named the slow- 

moving trend in the volatility process as low-frequency volatility and presented the 

functional form of the low-frequency volatility by adopting a non-parametric approach. In 

essence, they considered the low-frequency component was deterministic. Instead of using 

an additive component, a multiplicative component was used in the Spline-GARCH model 

to separate low and high-frequency volatilities. Therefore the ‘high-frequency return 

volatility’ is a product of a slow-moving deterministic volatility component that can be 

represented by an exponential spline combined with a unit GARCH model. This model 

was able to capture short and long-term behaviors of financial market volatilities. The 

slow-moving volatility component can be used to model the long-run dynamic behavior of 

the market while the unit GARCH model can be employed to capture short-term dynamics. 

Based on the Spline GARCH model Engle, Ghysels, and Sohn (2013) proposed a new 

component model with a direct link to the economic activities and this new class of models 

was named as the GARCH MIDAS. This paper explained the long-term volatility using an 

approach that can handle stock volatilities and economic activities recorded in different 

frequencies, namely: daily monthly, or quarterly. The mixed data sampling (MIDAS) 

technique was initially introduced by Ghysels (2006) and is used to build a link between 

the long-run volatility component and macroeconomic variables. The unit GARCH process 

was used as in the Spline GARCH approach to model the short-run volatility component. 

The GARCH MIDAS model is a multiplicative model with differentiated short and long-
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run components of volatility. The conditional volatility of returns in this model depends on 

macroeconomic variables and previous economic periods or lags. Engle et al. (2013) 

formulated long-term movement with inflation and industrial production growth. They 

found that including macroeconomic variables in the model outperforms the traditional 

time series in terms of long and short horizon forecasting. With the motivation of the 

GARCH MIDAS model, Swanson (2017) proposed the CARR MIDAS model. In this 

study, volatility was decomposed into short and long-term components, and the short-run 

volatility component was explained by an exponential CARR (1, 1) model. The long-run 

volatility component is computed by aggregating measures of scaled realized range over 

past k  low-frequency periods.

Several other authors also utilized empirical data to illustrate the modeling of short 

and long- term volatility components using the Spline GARCH and the GARCH MIDAS 

models. Nguyen and Walther (2017) conducted an empirical study using commodity 

futures, which are traded in the New York Stock Exchange (NYMEX). They fitted both 

the Spline GARCH and the GARCH MIDAS models. They found that disentangling high 

and low volatility components produced better results for in-sample fit in both models.

More recent provided a basic insight into different types of volatility models 

including the range-based volatility models and discussed the importance of analyzing the 

long-term and the short-term volatility components in them. While the CARR model 

assumes a constant unconditional mean range over time, several other studies namely Engle 

et al. (2013) and Conrad, Christian, Custovic, Anessa, Ghysels, & Eric (2018) suggested 

with empirical evidence, that unconditional volatility in return series changed over the 

study periods.
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In the paper, a new class of composite range-based component model for volatility 

to analyze long-term and short-term volatilities in daily price range data was proposed. We 

introduced a stochastic component to model the long-term volatility in daily price range 

data, which in itself exhibits conditional volatility. The long-term and the short-term 

components are driven by the past realization of range price series.

The remainder of the paper is organized as follows: Section 2, presents the proposed 

Composite CARR (CCARR) model. Thereafter, an estimator to estimate the unobserved 

long-term volatility component and discuss the parameter estimation procedure is 

introduced. Further, the Maximum Likelihood Estimation (MLE) procedure to estimate 

the model parameters is discussed in Section 3, which is followed by the simulation study 

is presented in Section 4. In Section 5, the proposed CCARR model is applied to multiple 

indices such as S&P 500 and FTSE 100 are used for the empirical study and compare the 

prediction and forecasting ability of the CCARR model against the single component 

CARR model. Section 6 concludes the paper.

2. THE M ODEL SPECIFICATION AND DISCUSSION

2.1. THE CONDITIONAL AUTOREGRESSIVE RANGE (CARR) M ODEL

Chou (2005) proposed the CARR model which is primarily a range-based model. 

The CARR model is employed to fit the price volatility of an asset by considering range as 

a measure of price volatility. A CARR model of order (p, q) is presented as CARR (p, q)

and defined as follows:
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Rt = Ats t ,

E (Rt i Ft-i ) = A = ® + Z  a iRt - i+ Z  j  - j ,
i=i j=i

s t □ i.i.d.f(<p,st).

Here, At is the conditional expectation of the range, based on all information up to time t- 

1. The non-negative disturbance term, also known as the standardized range, is defined by

R

st =  R - , which is independent and identically distributed with probability density function
At

f  (.) with a unit mean. Since R  and At are positive, the coefficients of the conditional 

mean range equation have the following restrictions:

a >  0,at > 0, J3j> 0, for all i = 1,2,3,...,p  and j  = 1,2,3,...,q.

Let Rt be the price range defined over the time interval [ topen, such that:

R  = max(PT) -  min(PT) , where r  e [ topen, tclose] . Here, we le tPTbe the price of an asset at 

a given time r  .

2.2. THE COM POSITE CONDITIONAL AUTOREGRESSIVE RANGE (CCARR) 
M ODEL

Let p  11 be the logarithmic price of a speculative asset defined at time j  of a given

short-term period (i.e., day) t of any arbitrary long-term period t such as month, quarter and 

year. Here j , i ,t e  [i t,iclose J  and i = 1,2,3,...,Nt where Nt is the number of days for the

given long-term period t . Here t = 1,2,3,...,T where T be the number of long-term periods

in total time span. The observed price range over the short-term time period i at a given
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long-term period t is denoted as Ri t , and it is defined as follows.

Rit = max(Pu j  ) -  min(P/ j j ) : 100. (2.1)

The Composite Conditional Autoregressive Range (CCARR) model for the range 

is defined as follows:

Ri, t Ttgi, t£i, t , (2.2)

where, sit d. f(c r ,s i t ) with a unit mean (i.e. E(e-; ) = 1 ),V7 = 1,2,3,...,Nt and 

t = 1,2,3,...,T. Observe that the daily price range (= R  t ) is separated into short-term and

long-term volatility components.

The long-term volatility componentTt is given by,

t t t

° t  = r0 + r1T, -1  +Sa, - 1-

a = E I t | F  ,. t { t 1 (t -1) J
(2.3)

Here, a t is the mean of the long-term volatility component conditioned on all information

up to time t-1, and F(,_1} is the sigma field generated by the information setup to long-term

period t-1. The long-term disturbance term is denoted b y nt , where nt ~ i i d . f  (v ,jjt) and

E(nt) = 1. The long-term volatility component Tt is modeled as a stochastic component

that, itself, exhibits conditional volatility according to the Conditional Autoregressive 

Range (CARR (1, 1)) process.
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The short-term volatility component g it is given by,

gi,t = (1 ~ a ~P) + aR‘-u +Pg ‘,-U,

R*-1, =

*
Si - i . t

RN , - i ,  --:i = 1
r,t - i

R - i . t :i > 1

SN t-i.t-i •i 1

Si-1 ,t : i > 1 (2.4)

Here, the short-term volatility component git is defined as obeying a unit CARR (1, 1)

model similar to Engle and Rangel (2013). Following the derivation given by Engle et al. 

(2013) for the short-term volatility component, we can prove that unconditional 

expectation of short-term volatility component isE (g  t) = 1. Both the short-term and the

long-term volatility components are driven by the past realization of the range series.

3. ESTIM ATIONS OF CCARR M ODEL

3.1. ESTIM ATING OF THE LONG-TERM  VOLATILITY COM PONENT

Observe that the range observed on short-term period i and long-term period t is 

given by,

R ,t =  T t g , , t £ , , t ,
N, N, N,

E R ,t JL T t g i , t £ i,t Z g ‘t s ‘,t
_  i=1 .R  i=1 _  i=1 _  i=1

N N N

Since
t \ E  E  (  Si,t ^ t i F i -1 , t )  [
^ = ^ ----------------------------------------- - = 1

N
= 1, it concludes that:

<

T
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R t * r t. (3.1)

Therefore, the long-term unobserved volatility component can be estimated using the mean 

range for the given fixed long-term period.

3.2. PARAM ETER ESTIM ATION OF THE CARR M ODEL

In this section, the log likelihood function for the proposed CCARR model is derived. 

For this derivation, it is assumed that the model disturbance term sit is independent and

identically distributed as a lognormal distribution with mean —  and variance a 2 such 
2

that:

f
s. □ i.i.d. LN  
i,t

V  J

The reason for this assumption is empirical evidence gathered from the two data sets, which 

are analyzed in Section 5. However, other distributions may also be utilized. Under the 

assumption of the lognormal distribution, EXsit) = 1 and var— () = exp— 2) -1 .  The long

term disturbance term —t is assumed to be independently and identically distributed as a

v  2lognormal distribution with mean and variance v such that: i)

i) □ i.i.d. LN 7

'  2 — v 2

Hence, the E— ) = 1 and variance var— ) = exp(v2) -1 . Further we assume that s it and 771

are independent.
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We consider equation (2.2), (2.3) and (2.4) to obtain the following results:

R i,t =  t & A j  ,

l n (  R t , t )  =  H t & A j  X

l n (  R  )  =  l n f a )  + l n (  g i , t )  +  l n ( S , t  X

l n ( R ,t)  =  l n ( » t )  +  l n ( 7 t )  +  l n ( g i , t )  +  l n ( S , t ) .

Since s it and 7]t are lognormal distributions, ln (s ,)a n d  ln(%) are normal distributions,

Q
and l n ( s ) + ln (^ ) is normally distributed with mean and variance Q where

Q = g 1 + v 2. Then the conditional distribution of R t given F._u  is expressed as:

f  ( R J F i - U , O )  =
V 2nQR-

exp
l n (  R  t )  -  l n ( ® t )  -  l n (  g t, t )  +

- 2 Q

Q
1

Here O = ( a , f3,y0,y1,5 ,cr2,v 2) is the parameter vector. Thus, the conditional log 

likelihood function can be derived as follows:

L ( ° i R ) = n  f (R l t \ ? } - 1 t )
V i , t  x i , '  i 1, '

t  i - 1 ,  t )

T
l ( O  | R )  =  ln [ L  ( O  | R ) ] =  2  ln 

Vi, t  [
f  IR  i F. ,
J  ' i, V  i - 1, t

(
(  Q ) 2

)

1 T 9 Vln( R , ) - ln(® , '  - ln( g , ' + 2 )
l  (O  i R )  =  -  - 2

Vi, t
l n ( 2 ^ ) + l n ( a 2 ) +  2 ln (R . ) + 

i , t Q
>

V )
(3.2)
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Here,

a t =

gi , t z

r 0 + r f t - i+ 8a - n  

= ( 1  - « - £ )  +  « R - 1 , t  + P g '-u .

f R vv t -1,t -1 
*I V 1

R - 1 , t  
*

Ttk 1

:i = 1

, g i- 1,t

:i > 1

: i = 1 

:i > 1
a n d  t*= R 1 .

In this paper, the Maximum Likelihood Estimation (MLE) was employed to obtain 

the model parameters for the proposed CCARR model. To utilize the MLE method, initial 

parameter values must be obtained. Determination of these initial values are discussed in 

the following sub-section.

3.3. INITIAL VALUE ESTIM ATION

First, we needed to find an estimator for the unobserved long-term volatility 

component ( = zt ). The unobserved long-term volatility component was estimated by using 

monthly mean value of daily price ranges as derived in Section (3.1). Therefore, the long

term volatility component was estimated by Rt ( ~ z t ). Then the long-term volatility 

component was modeled by using CARR (1, 1) process as given follows:

r 0
- r1 - S ) '

After fitting a CARR (1, 1), we found the initial values for parameters r 0, r 1, 8 , a n d a 2. 

Next we needed to find the initial values for the model parameters in the short-term 

volatility component model g  t . Let R* be the daily adjusted price range which is defined

a = r 0 + r 1 Rt-1 + 8at_13 where, a  =
(1

as follows:
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Where, git is given by,

R * - u  =
- i

R - i  ,t

T t

■:i = 1

:i > 1

R i,t g i , t ^ i , t '

g it = ( 1  - a - P)  +  a R t  1,t +  Pg,- 1,t •

* | gN,_
gi-u = ■

gii-1,t

: i = 1 

: i > 1

We next fitted a unit CARR (1, 1) model to the adjusted daily price range and found the 

initial parameter values fo r a , p  andv 2

4. SIMULATION STUDY

The finite sample performance of estimators was investigated using a simulation 

study. We used ‘nloptr’, which is a nonlinear optimization function of R software to 

generate the relevant data. The length of the long-term time series was set to n = 360 and 

n =720, and the length of the short-term period was set to c =22, which represented the one 

business month. Therefore, the length of the time series m (=  cn) and 5= 500 simulation 

runs were completed for each parameter sample size combination. The simulation study 

consisted of two parts. First, the price range data for the proposed CCARR model was 

generated as given in the equation (2.2), (2.3), and (2.4). Then, maximized the profile 

likelihood function (3.2) using the constrained nonlinear optimization function ‘nloptr’ in 

R. The Mean Absolute Deviation Error (MADE) was utilized as the evaluation criterion.
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The MADE is defined as, where s is the number of replications. Simulation

results are reported in Table 1.

Table 1: Means of MLE method estimates and MADE in parenthesis

Model n a P 70 71 8 e

True

Parameters
0.30 0.60 0.10 0.20 0.70 0.60

M1

360
0.2994

(0.0103)

0.5988

(0.0130)

0.1121

(0.0270)

0.2016

(0.0271)

0.6850

(0.0443)

0.5995

(0.0077)

720
0.2995

(0.0070)

0.5998

(0.0089)

0.1048

(0.0157)

0.19994

(0.0192)

0.6955

(0.0277)

0.5998

(0.0055)

True

Parameters
0.30 0.50 0.02 0.20 0.40 1.00

M2

360
0.2995

(0.0126)

0.4982

(0.0180)

0.0208

(0.0040)

0.2006

(0.3021)

0.3829

(0.0920)

0.9991

(0.0128)

720
0.2994

(0.0085)

0.4996

(0.0127)

0.0205

(0.0027)

0.1993

(0.0223)

0.2913

(0.0648)

0.9997

(0.0091)

True

Parameters
0.20 0.70 0.10 0.30 0.60 0.25

M3

360
0.1996

(0.0080)

0.6983

(0.0134)

0.1166

(0.0312)

0.3017

(0.0349)

0.5810

(0.0532)

0.2498

(0.0032)

720
0.1996

(0.0055)

0.6997

(0.0094)

0.1075

(0.0188)

0.2990

(0.0252)

0.5934

(0.0351)

0.2499

(0.0023)

According to the simulation results, the MLE method can be used to estimate the 

parameters with higher accuracy. The accuracy of the estimates was increased when the 

length of the long-term volatility period was increased.
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5. AN EM PIRICA L ANALYSIS

5.1. THE DATA SETS

In this study, two stock indices, namely: the Standard and Poor’s 500 (S&P 500) 

index of United States and the Financial Times Stock Exchange 100 (FTSE 100) index on 

the London Stock Exchange were used. The sample periods for both S&P 500 and FTSE 

100 start on January 4, 1990 and ended on December 31, 2018. Daily values for the opening 

price, closing price, high price, low price and adjusted price were reported over the span of 

the study period. The data set was downloaded from the Yahoo Finance from the web site 

(https://finance.yahoo.com/) using the ‘quantmod’ package in R software. The data set was 

divided in to two samples where one sample spanned from January 4, 1990 to December 

29, 2017 and was used for the model parameter estimation and in-sample predictions. The 

out-of-sample predictions were done by using the sample from January 1, 2018 to 

December 31, 2018. The same sample separation procedure was used for both stock 

indices.

Table 1 presents the summary statistics of the daily price range series for the S&P 

500 and the FTSE 100 indices. The daily price range ( = Ri t ) of a given day i on a month

t was obtained as given in Equation (2.1).

The high values for Kurtosis indicated a strong deviation from the normal 

distribution. Both price ranges had large positive skewness and it is suggested that a 

positively skewed density should be used to model disturbance term. The Jarque-Bera test 

statistics fell far from zero and had extremely low p-values (<0.0001) leading to a rejection

https://finance.yahoo.com/)using
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Table 2: Summary statistics for daily S&P 500 and FTSE 100, January 04, 1990 -
December 29, 2017 (p-value)

Summary Statistics S&P 500 FTSE 100
Mean 1.2524 1.2926

Maximum 10.9041 10.7532
Minimum 0.1456 0.0762

Standard Deviation 0.9185 0.9042
Skewness 3.2012 2.8668
Kurtosis 18.7175 14.9450

Jarque-Bera 115093(<0.0001) 75987(<0.0001)
Ljung-Box Q-22 41938(<0.0001) 42047(<0.0001)

of the null hypotheses that the data is normally distributed. The Ljung-Box test null 

hypothesis was that the time series data are independently distrusted. In this study, time 

lags of 22 trading days, which was the approximate number of trading dates for a month, 

was used for the test. After 22 lags of sample autocorrelations were examined, the large 

test statistic values and very small p-values (<0.0001) conclude that the data exhibited a 

strong persistence in daily price range data. Time series plots for the daily price range data 

of S&P 500 and FTSE 100 over the in-sample period are given in Figure 1 and Figure 2.

Both graphs exhibit the same behavior over the period of study. Height of the spikes 

is an indication of price volatility and if the spikes were high during a certain period, then 

that period was considered to be highly volatile.

5.2. ESTIM ATION OF CARR M ODEL

Initially, a single component CARR model to daily price range data was fitted to 

explain price volatility over the study period. We assumed the disturbance term st in 

CARR (p  = 1, q = 1) model specified in the Equation (2.1) follows the Exponential

(ECARR), Weibull (WCARR) and the Lognormal (LNCARR) distributions.



42

Figure 1: S&P 500 daily price range from 01/04/1990 to 12/29/2017

Figure 2: FTSE 100 daily price range from 01/04/1990 to 12/29/2017
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Table 3: Estimation of CARR (1, 1) model using daily S&P 500 index data (p-value)

ECARR (1,1) WCARR (1,1) LNCARR (1,1)
70 0.0193 (<0.0001) 0.0286 (<0.0001) 0.0149 (<0.0001)

71 0.1679 (<0.0001) 0.1780 (<0.0001) 0.1653 (<0.0001)

5 0.8163 (<0.0001) 0.7979 (<0.0001) 0.8228 (<0.0001)

AIC 15870.63 9868.95 8507.40

Table 4: Estimation of CARR (1, 1) model using daily FTSE 100 index data (p-value)

ECARR (1,1) WCARR (1,1) LNCARR (1,1)

70 0.0212 (0.0060) 0.0334 (<0.0001) 0.0140 (<0.0001)

71 0.1715 (<0.0001) 0.1953 (<0.0001) 0.1677 (<0.0001)

5 0.8116 (<0.0001) 0.7772 (<0.0001) 0.8223 (<0.0001)

AIC 16507.90 10050.41 9424.89

Since, daily price range data had large positive skewness, positively skewed 

distributions like the Exponential, Weibull or the lognormal should be used to model the 

data. According to the AIC values given in Table 3 and Table 4, the LNCARR (1, 1) had a 

lower AIC value, hence it fitted the daily price range data better for both stock indices.

5.3. ESTIM ATION OF CCARR M ODEL

The proposed CCARR process models daily price volatility by using short-term 

and long-term volatility components. In this study, day was considered as a short-term time 

period, while the month was used as the long-term period of interest. Initially we need to 

find an estimator for the unobserved long-term volatility component, rt, and it was 

estimated by using the monthly mean as previously derived in Section(3.1). Figures 3 and
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4 present the comparison of daily price range data and monthly mean as a long-term 

volatility component for each of the indices. According to the Figures 3 and 4 monthly 

mean closely followed the long-term changes in price volatility and it did a quite good job 

capturing the periods with high volatility.

D ally  P r ic e  R a n g e  a n d  M o n th ly  M e a n  fo r  S & P 5 0 0

1990 1995 2000 2005 2010 2015

Time

Figure 3: Daily price ranges (black) and monthly observed mean for S&P 500 (red) from
01/04/1990 to 12/29/2017

Based on the method describe the Section 3.3 we estimated the initial values for 

both indices. Initial values for the S&P 500 parameters were (0.20, 0.63, 0.27, 0.20, 0.70, 

0.25) and that of the FTSE 100 were (0.13, 0.64, 0.25, 0.20, 0.68, 0.26). After determining 

the initial values for the model parameters, the conditional log likelihood function (3.2) 

was maximized by using ‘nloptr’ package which is a nonlinear optimization algorithm in 

R. Table 5 presents the MLE results for the CCARR model.
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Figure 4: Daily price ranges (black) and monthly observed mean for FTSE 100 (red) from
01/04/1990 to 12/29/2017

Table 5: Estimation of the CCARR model using daily S&P 500 index data and FTSE 100
index data (p-value)

S&P 500
Estimated Coefficients

FTSE 100
Estimated Coefficients

r 0 0.0353 0.0359

7\ 0.1595 0.2214
5 0.8053 0.7536
a 0.1753 0.1855
P 0.7758 0.7566
0 0.1820 0.1900

Ljung-Box Q-22 33.048 (0.0619) 24.442 (0.3245)

The Ljung-Box Q test was used to assess whether the residual series were 

independently distributed. Large values for Ljung-Box Q-22 test for the price range 

indicated that there was a significant persistence in the volatility. However, the residual 

series for the fitted CCARR model demonstrated a significant reduction in the Ljung-Box
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Q-22 statistics with p-values exceeding 0.05, suggesting the absence of serial

autocorrelation up to 22 trading days.

5.4. COM PARISON BETW EEN LNCARR M ODEL AND CCARR M ODEL

In this section, we tested the in-sample prediction and out-of-sample forecasting 

ability of the proposed CCARR model. To test the differences in prediction and forecasting 

power between the CCARR and the LNCARR, we conducted in-sample prediction and 

out-of-sample forecasting. To test how well the proposed CCARR models performed in 

extreme situations, such as a recession period, we conducted the analysis for the period 

from December 2007 to June 2009 for S&P 500 and April 2008 to June 2009 for FTSE 

100.

The in-sample prediction for the LNCARR was its conditional mean range and that 

of the CCARR is the product of estimated long-term and short-term volatility components. 

To compare the in-sample prediction and out-of-sample forecasting ability, we calculated 

AIC and Mean Absolute Error (MAE) statistics for the CCARR and the LNCARR. The 

MAE is calculated as follows:

The unobserved real volatility is represented by M Vt t , and here we use price range (R  t) 

as proxy variable for real volatility. Predicted values PVit are the fitted values for price

MAE =
N

range ( Ri ,t)
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Table 6 presents the model comparison between the LNCARR (1, 1) model and the 

CCARR model. The CCARR model showed a better performance over the LNCARR 

model for all periods. During the full period of in-sample and the time of recession the 

CCARR models had smaller MAE values and lower AIC values, when compared to the 

LNCARR models for both stock indices. Furthermore, diagnostic test results for the 

residuals indicated that they were independently and identically distributed in the CCARR 

model. However, there was a clear rejection of the null hypothesis in the LNCARR model 

where errors showed high persistence in the residual of price range data. We calculated the 

one step ahead out-of-sample forecasted values for both stock indices. Based on the out- 

of-sample statistics, the CCARR model dominated over the LNCARR model with respect 

to the MAE statistics.

Table 6: Model comparison between LNCARR (1, 1) and CCARR for S&P 500 and
FTSE 100 (p-value)

Sample
Period

S&P 500 FTSE 100

LNCARR
(1,1)

CCARR LNCARR
(1,1)

CCARR

In-Sample MAE 0.422 0.420 0.415 0.410
Standardized 

Residuals Q (22)
51.724

(0.0003)
33.048

(0.0612)
50.084

(0.0050)
24.442

(0.3245)

AIC 8507.395 8466.001 9424.89 9375.982

Recession MAE 0.88 0.87 0.93 0.92
Out-of
sample

MAE 0.47 0.46 0.34 0.33
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Figure 5: In-sample prediction by CCARR model for S&P 500

Figure 6: In-sample prediction by CCARR model for FTSE 100

Figure 7: 1-step ahead forecasted value comparison between LNCARR (1, 1) and
CCARR for S&P 500
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Figure 8: 1-step ahead forecasted value comparison between LNCARR (1, 1) and
CCARR for FTSE 100

Figure 7 and Figure 8 show how well the proposed model performed in 1 -step ahead 

prediction. It can be seen in the figures that the CCARR model picked high volatility 

periods (high spikes), as the LNCARR did however, the CCARR quickly captured the low 

volatile periods (short spikes) while the LNCARR did not have the flexibly to adapt to such 

situations.

6. CONCLUSIONS

In this study, we proposed a composite range-based model to estimate the long

term and the short-term volatility components. The proposed methodology modeled the 

long-term volatility by using a stochastic process, which exhibited conditional volatility. 

Furthermore, both the short-term and the long-term volatility components are driven by the 

past realization of price range data. The empirical results based on the MAE and the AIC 

values showed that the CCARR model dominated the LNCARR model (which was 

selected based on performance out of other CARR models) in performance, especially
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during the recession periods. The proposed CCARR model also did better than the single

component LNCARR model with respect to the residual diagnostics.
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II. A GENERALIZED FEEDBACK ASYM M ETRIC CONDITIONAL 
AUTOREGRESSIVE RANGE M ODEL

ABSTRACT

The Conditional Autoregressive Range (CARR) model is an alternative to the 

Generalized Autoregressive Conditionally Heteroscedastic (GARCH) approach of 

modeling volatility. The former models the price range and the latter focuses on modeling 

the price returns. The Asymmetric CARR (ACARR) model was introduced for separate 

modeling of upward and downward ranges observed within each day, with the actual range 

expressed as the sum of these two components. This formulation, however, ignores 

feedback from one type of range to another. The Feedback Asymmetric Conditional 

Autoregressive Range (FACARR) was introduced in 2018 to remedy this drawback. The 

FACARR, however, limits this cross feedback to past ranges and does not include past 

conditional means. The proposed Generalized Feedback Asymmetric Conditional 

Autoregressive Range Model (GFACARR) removes this limitation and allows the upward 

range model to include past upward and past downward ranges, along with their respective 

conditional means. A similar model is defined for modeling downward range as well. The 

proposed model is more aligned with the multivariate CARR model. The use of the 

GFACARR model is illustrated by its application to several price series, including the S&P 

500.

Key W ords: Volatility Modeling, CARR Models, ACARR, Price Range, Time

Series.
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1. INTRODUCTION

Financial volatility is a factor that policy makers and investors should consider prior 

to any form of financial decision making. Modelling volatility is crucial to understanding 

the nature and dynamics of the financial market. Financial volatility of asset prices has 

been discussed extensively in past financial and econometric literature. One of the most 

successful volatility models used in a time series setting is the Generalized Autoregressive 

Conditional Heteroscedasticity (GARCH) model introduced by Bollerslev (1986). Engle 

(1982) proposed the Autoregressive Conditional Heteroscedasticity (ARCH) model to 

address the complexities of time varying volatility and volatility clustering in the financial 

time series. In the ARCH formulation, the conditional volatility is modeled as a function 

of past returns. The GARCH model is an extension of the ARCH formulation and models 

the conditional volatility as a function of lagged squared returns, as well as past conditional 

variances. Since all aforementioned models focus on exhibiting price returns, they can be 

identified as examples of return-based volatility models.

In many financial time series applications, standard deviation is the most common 

measure of the stock return volatility because it not only calculates the dispersion of returns 

but also summarizes the probability of seeing extreme values in returns. Since the time the 

concept of volatility was introduced, researchers have sought alternative measures of 

financial volatility. One such alternative is the range. Range measures the dispersion of a 

random variable. Parkinson (1980) argued that volatility measure could be calculated by 

considering the daily high, daily low, and opening prices of a stock, in addition to the 

traditional closing prices. The paper also compared traditional measures of volatility that 

were calculated simply by using closing prices with extreme value methods; Parkinson did



55

this by taking the high and low prices of an asset. The paper concluded that the range-based 

method was far superior to the standard methods based on returns. Beckers (1983) tested 

the validity of different volatility estimators. In this paper, Beckers mentioned that the 

range of a stock price contains important and fresh information. He also mentioned that 

using the range of a stock price was better than using the close-to-close changes. Kunitomo 

(1992) improved the Parkinson’s original result and proposed a new range-based estimator, 

which was 10 time more efficient than the standard volatility estimator. In another study, 

Alizadeh, Brandt, and Diebold (2002) proved that the range-based volatility estimators 

were efficient compared to the classical volatility proxies, based on log absolute returns or 

squared returns. It showed that log range was approximately normal. Hence, the range of 

an asset price for a given period can be used as an informative proxy variable to measure 

an asset’s volatility for a well-defined period, such as a day.

According to the results of Alizadeh et al. (2002), the GARCH family of models 

and stochastic volatility models (Tylor, 1986) ignored the price fluctuations of the 

reference period, making them relatively inaccurate and inefficient. Therefore, some 

researchers focused on an alternative approach to volatility modeling and developed the 

theoretical framework for range-based models with comprehensive empirical examples. 

For examples, refer to Chou (2005), Chou (2006), Brandt and Jones (2006), and Chou and 

Liu (2010). Chou (2005) introduced the Conditional Auto Regressive Range (CARR) 

model as a special case of the Autoregressive Conditional Duration (ACD) model of Engle 

(1998). The CARR is employed to model price volatility of an asset by considering range 

of the log prices for a given fixed time interval. The CARR model is similar to the standard 

volatility models, such as the GARCH formulation. However, one distinct difference



56

between the two models is that the GARCH model uses rate of return as its volatility 

measure, while the CARR model uses the range as its volatility measure. The CARR model 

proposed by Chou is a simple, but an efficient, tool to analyze the volatility clustering 

property when compared to the GARCH models. This was shown empirically by Chou via 

out of sample forecasting from S&P 500 data. Chou showed that the effectiveness of 

volatility estimates produced by the CARR model is higher than the estimates from 

standard return-based models, such as the GARCH. Brandt and Jones (2006) integrated the 

properties of the exponential GARCH (Nelson, 1991) with daily log range data, and he 

proposed the range-based EGARCH model. This model has a simple framework but is an 

effective tool for capturing the important characteristics in stock return data, such as 

clustering, negative correlation, and log normality. The range-based EGARCH model is 

different from the CARR model in many ways. For example, it utilizes the lagged log 

range, rather than lagged range, as in the CARR model. Moreover, the range-based 

EGARCH model formulate conditional return volatility, while CARR explain the 

conditional mean of the range data.

Extensive modifications were made to the original CARR model. Chiang, Chou, 

and Wang (2016) suggested the lognormal log CARR model in an outlier detection process 

and showed that the proposed method effectively detected outliers. One major advantage 

of using the Log CARR model is that these models relax positivity restrictions on the 

parameters of the conditional expectation function. Xie and Wu (2017) explained the 

disturbance term in the CARR model by using the gamma distribution (GCARR) and 

showed through empirical data that the GCARR outperformed the Weibull CARR 

(WCARR) model in forecasting ability. The multivariate extension to the CARR
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(MCARR) model was proposed by Fernandes, Mota and Rocha (2005), and they derived 

conditions for stationarity, geometric ergodicity, and beta-mixing with exponential decay. 

Chou and Liu (2009) incorporated the return-based Dynamic Conditional Correlation 

(DCC) model of Engle (2002) with the CARR model and introduced the new class of 

range-based DCC models. They concluded that the range-based DCC model outperformed 

other return-based models (MA100, EWMA, CCC, return-based DCC, and diagonal 

BEKK) using the RMSE and the MAE, the accepted benchmarks of implied and realized 

covariance. Different types of range-based volatility models such as Chou and Liu (2010), 

Miao, Wu and Su (2012), and Xie and Wang (2013) are some of the variations that were 

found in the published literature. For additional details, refer to Chou, R., Chou, H., and 

Liu (2015), which provided a comprehensive review of range-based models.

The asymmetric volatility, which is a key phenomenon in financial data, suggested 

that conditional volatilities show higher fluctuations during downward trends than during 

upward trends. Traditional methods of modelling return series, such as the ARCH and the 

GARCH models, use standard deviation, which treat price returns symmetrically. Hence, 

they are not effective tools for capturing the asymmetric behavior present in the financial 

data. To model the asymmetry in stock returns, several econometric models were 

introduced in the literature. The asymmetric ARCH model from Nelson (1991); EGARCH 

by Nelson and Cao (1992); GJR-GARCH model by Glosten, Jagannathan and Runkle 

(1993); and QGARCH by Sentana (1995) were developed. These models overcame the 

drawbacks of the GARCH models. In their paper, Engle and Ng (1993) analyzed how the 

news effected the conditional volatility and concluded that the EGARCH and the GJR- 

GARCH capture the asymmetry, but the latter is the better model.
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All the above models capture the asymmetry in return data. The CARR model 

proposed by Chou (2005) use range as the measure of price volatility. The study treated 

the maximum and the minimum price symmetrically. However, in the same study, he 

suggested that the CARRX models (CARRX-a, and CARRX-b) by including exogenous 

variables such as (a) lagged return and (b) lagged absolute returns in the conditional mean 

equation. The purpose of this incorporation was to model one form of asymmetry, which 

was the leverage effect of Black and Nelson (1991). Chou (2006) presented an Asymmetric 

CARR (ACARR) model in which upward and downward price ranges are treated 

separately. The upward range is defined as the difference between the maximum price and 

the opening price, and the downward range is defined as the difference between the opening 

price and the minimum price, all of which are observed within one trading day. These 

definitions can be extended to periods beyond a day in a similar fashion. Instead of treating 

the high and the low prices for a given fixed period symmetrically, as in the CARR, the 

ACARR model incorporate a form of asymmetry by allowing the dynamic structure of the 

upward price movements to be different from that of the downward price movements. The 

ACARR model was extended to the ACARRX model by including exogenous variables, 

such as trading volume (Lamourex and Lastrapes, 1990), lag return to count leverage effect 

(Black, 1976; Nelson, 1990), or a seasonal factor. It assumed independence between the 

upward ranges and the downward ranges; therefore, parameters were estimated separately 

for each movement by using the QMLE method. An empirical study showed that the 

volatility forecasting ability of the ACARR model was superior to that of the CARR model. 

Chou and Wang (2014) combined the ACARR model, to capture current asymmetric 

volatility, with extreme value theory (EVT) to estimate the tail of the residual distribution.
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Motivated by the independence between upward swing and downward plunge 

assumptions made by Chou (2006), Xie (2018) proposed the Feedback Asymmetric CARR 

(FACARR) model. By providing satisfactory evidence, Xie questioned the validity of the 

independence assumption and found cross-interdependence between upward movement 

and downward movement. Hence, the FACARR model was proposed as a more practical 

extension of the ACARR model. Put simply, both upward and downward movements of 

asset prices were not only modeled asymmetrically, but the conditional mean upward 

(downward) range was modeled by incorporating lagged downward (upward) ranges into 

each sub-model. Extensive empirical studies showed that the proposed FACARR 

performed significantly better than ACARR for both in sample and out of sample 

forecasting.

It is reasonable to assume that the dynamic movement of the upward (downward) 

range does not depend only on the lagged downward (upward) price range but also on the 

conditional mean of downward (upward) ranges. By consolidating on this fact, it was 

decided to generalize the previous class of asymmetric CARR models and introduce the 

Generalized Feedback Asymmetric CARR (GFCARR) model. The proposed model 

attempt to overcome the limitation of previous models by incorporating the cross-feedback 

term to account for the past conditional means. Since the proposed GFACARR model treat 

upward and downward price ranges separately, this approach also allow the modeling of 

the asymmetry found in financial data.

This methodology gave better Value at Risk (VaR) estimates than the GARCH model as

used by McNeil and Frey (2000).
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The paper is organized as follows. In Section 2, a brief introduction to the CARR, 

ACARR and FACARR models are given. The proposed GFACARR model is introduced, 

in addition to its statistical properties, in section 3. Econometric methodology is presented 

in Section 4, and the results of a simulation study are presented in Section 5. An empirical 

study based on three different stock market indices namely, S&P 500, CAC 40 and 

NIKKEI 225 is discussed in Section 6, and the conclusion is given in Section 7.

2. REVIEW  OF CARR, ACARR AND FACARR MODELS

2.1. THE CONDITIONAL AUTOREGRESSIVE RANGE (CARR) M ODEL

Chou (2005) proposed the CARR, which is primarily a range-based model. The 

CARR formulation is used to model the price volatility of an asset by considering range as 

a measure of this volatility. Let R  be the price range defined over the fixed time period t,

where R  is the difference between the highest (p  g ) and the lowest ( p  ) logarithmic 

prices of an asset during the time period t. That is,

p  _  pfogh _  plow

The CARR model of order (p, q) is presented as CARR (p, q) and defined as follows:

Rt = \ st,

E (R  I Ft_,) = R = ® + t aA-, + t , P A - j ,
j=1

i.i.d.f  (.),E(et~) = 1, and

0 <' L ai +i ^ j  < 1,ai > ^  fij > °.
i=1 j=1
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Here R is the conditional expectation of the price range based on all information up to 

time t-1. The non-negative disturbance term, also known as the standardized range, is 

denoted by st , which is independent and identically distributed with probability density

function f  (.) with a non-negative support and a unit mean.

2.2. THE ASYM M ETRIC CONDITIONAL AUTOREGRESSIVE RANGE 
(ACARR) M ODEL

The ACARR model presented by Chou (2006) decomposed the range ( R ) series 

into two components, namely upward range ( R  ) and downward range ( R  ). The upward 

and downward ranges are defined using the differences between the daily high ( P R ), the

daily low ( P R ), and the opening (P °pm) logarithmic price of an asset over the time interval 

associated with t as follows:

p u  p high p open

p d   p open p l ow

p ^   p u p d  p high p open ^  p open p l ow  p high p l ow (2.1)

Here, the upward range measures the maximum gain or the positive shock to the stock 

while downward range calculates the minimum gain or the negative impact to the stock 

price for the time period t .

The CARR model is symmetric because it treats the high and low price in a 

symmetric way. However, it is possible that the upward and the downward movements are 

different in their dynamics of stock propagation. To allow the asymmetric behavior in price 

range data, Chou (2006) proposed and developed the ACARR model. The ACARR model 

of order (p, q) is as follows:
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R  = R  + R f ,

R  = R s ] ,

R  = R R d,

R  =© “ + Z < R - i  + Z P  Rt- j ’i =1 
P

j =1 
q

R  = ®: + '£ a : lRl_,+'£p-;Rj t - j ’i=1 j=1
i. i d . f ■ (.), £  (R  ) = 1,

ii. : .f : (.), E Rd  ) = 1,

0 < ^ <  + ^ P ] < l , <  > 0 ,P] > 0, and
i=1 j=1
p q

o < ’L a d + 'L P ‘, < 1-a d >o.Pd >o.
i=1 j=1

(2.2)

Here R  (= E (R] | F,^)) is the conditional mean of the upward range and R  (= E (Rd | F,^))

is the conditional mean of the downward range, both conditional on all information up to 

time period t-1. The disturbance term of the upward (downward) range model s] ( s f  ) is

independently and identically distributed with the density function f  (.) ( f d (.)) with unit 

mean. Moreover, the upward and downward disturbance terms are independent such that: 

cov(s] , s f  ) = 0. The pairs of parameters, (au, a d) , (a],af  ) , (pu,p f  ) identify the

asymmetric behavior between the upward range and downward range components.

2.3. THE FEEDBACK ASYM M ETRIC CONDITIONAL AUTOREGRESSIVE 
RANGE (FACARR) M ODEL

The ACARR model assumes that there is independence between the upward and 

downward range components and Xie (2018), argued against this assumption and presented 

the FACARR model. This model includes the cross-interdependence terms on top of the
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ACARR setting. Following the same definitions and notations, the FACARR model is

defined as follows:

R  = R  + R  ,

R  = K R ,
R  = Xdt s dt ,

p q i
X  = m: + £ « ,  +'£fi';x;_ j +’£ f X k’>

i=1 j=1 
q

k=1 
i

x  = md + 'Z a ? K i  + Z V X -  j + Z r t K k ,
i=1

j t-J
j=1 k=1

i.i.d. f : (.), E(sU ) = 1, 

i i d ,  f d ( ) ,  E (sd ) = 1,

0 < Y j a : + ^ P : < 1, a : > 0, p : > 0, and
i=1 j=1
p q

0 < T a d  + L P  < 1,ad  > 0 ,Pd > 0.
i=1 j=1

(2.3)

Similar to the ACARR model the independence between upward and downward 

disturbance terms are assumed (i.e., cov(sU,sdt ) = 0 ) in the FACARR model. In addition

to the previous parameter set discussed in the model (2.2), the FACARR has a new pair of 

parameters, namely, ( f  , rd) , which measures the magnitude and the direction of the

lagged upward (downward) range on conditional mean range.
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Let popen, phgh and Po  be the opening, high and low logarithmic prices of the 

speculative asset, respectively, at a given time period t (i.e., day). The observed price range 

for the time period t is denoted as Rt , and it is defined as the sum of the upward range ( R"

) and downward range ( Rd ):

R  = p high _  plow =  |“phigh _  popen J  +  ^ popen _  plow  J  =  r u +  R d

Here, upward and the downward range components are defined the same as in the ACARR 

model. The proposed GFACARR model is as follows:

Rt _ RU + R ,
T)U -I U -U
Rt _ At £t ,

Rf = ,

E  (R  | F, _1) = XU = w" + J l aURU_, + f l %R_, +f,rURf_t + £ $ ' A f
t  _ l ,

i=1
d

j =1 k=1
d

l =1

k=1
e (Rf  | f ,_,) = X  =wd + ' Z a fRf_, + 'LPfXf_j +’LrfR"_k + Z ,* fX

i=1 j=1
s" ~ i i d  f "  (.), E  (e" ) = 1, 

s f  ~ i.i.d f d (.), E ( s f  ) = 1, and

w" > 0,a" > 0 ,p" > 0;wd > 0 ,^ d > 0 ,p f  > 0. (3.1)

Here Xt (= E (R" | F,_1)) is the conditional mean of the upward range based on all

information up to time period t-1, and X/ (= E (Rdt | )) is the conditional mean of the

downward range on all information up to time period t-1. Note that the sigma field 

generated using information from setup to time period t-1, is denoted by F,_j. The upward
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In contrast to the FACARR model introduced by Xie (2018), the significance of the 

proposed formulations that GFACARR model is capable of modeling the conditional 

expected upward (downward) range at time t based on the lagged downward (upward) 

ranges along with the previous conditional expectation of downward (upward) ranges.

(downward) range disturbance term is denoted by st (sdt ), and it is independently and

identically distributed with unit mean.

3.1. THE GFACARR M ODEL

Here, the mean conditional upward (downward) range at time period t, is modeled 

by considering both downward (upward) range and mean conditional downward (upward) 

range at time t-1, in addition to the existing terms.

The GFACARR model given in the equation (3.1) can be re-written as a bivariate 

CARR (1, 1) model as follows:

Rt = A t (0 ) e t, (3-2)

where A,(®) = diag \ x nt , Xdt } and A‘ (i = u, d ) , is the conditional mean of R  (i = u, d ) given

Ft-1. Here <& = (®u, a u, f iu, y u,S u, o d, a d, /3d, y d,8 d) is the parameter vector and 

et = (c" c ") has following conditions imposed on it:

Case 1: cov(s u, s dt ) = 0.

A. | ^ , t e Z +| i s  a sequence of independent and identically distributed□ 2-valued

random variables with A
V * ( s d ) j

f \ \

vR
. For the illustrative purpose it is
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assumed that s\ ~exp (1), Vi = u, d. Then, the covariance matrix becomes

r  =
( 1  0  ̂

v  0  1 y  M
=  1 2.

B. cov(s' , s \ ) = 0, Vj v k, Vi = u,d

C. From conditionsl and 2, conditional covariance matrix of Rt as follows and it is 

given by Ht (®) such that,

/ /  „ \ 2

H (®) =
(a; ) 0

0 (a  )2 y2.
= A2, (<S).

Case 2: cov ( s  ,£,d) = a *  0.

A. Z+J is anD 2 -valued random variables withF^ey j :
v  £  S  ) y v 1 y

. For the

illustrative purpose, itis assumed that s\ ~exp(1), Vi = u, d. Then the covariance

matrix becomes r  =
(1 a ̂

v a  1 y

B. cov (s ' ,s'k ) = 0, Vj v  k, Vi = u, d .

C. From conditions 1 and 2, conditional covariance matrix of Rt as follows and it is 

given by H (®) such that,

H  (®) =
(a; )2 a (AuAd)

a (a; a d) (a  )2
= A2, (®).

This representation of model (3.1) coincides with the bivariate GARCH (1, 1) process with 

constant correlation (see. Bollerslev, 1990; Jeantheau, 1998).
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The GFACARR process can be formulated as a bivariate CARR (1, 1) model as

follows:

' a  " V  yu' uRt-1 '  ( u 5 u'= + +
U f j yG> j y  ad y

D d o d
K5 (3d j U - .  J

At = a + A R t_l +BAt_v (3.3)

Here, \  

If  the

U d J

vector

A C
T)d

K R-1 J
a =

f a ? '

J
.A =

f au yu'

\.yd adj

0 e D and all the coefficients in2
>0 5

and B
5 d ( d, .

A G \_at j , B !E\_bi j ]Vi, j ; and

i = 1,2; j  = 1,2. are non-negative, then this is sufficient for the non-negativity of the 

At e L l 0. However, in this proposed model negative values are allowed for the coefficients

of the newly introduced lagged conditional expected upward (downward) term. Since both 

the range and the conditional mean range are positive variables, it is important to preserve 

the positivity of the model. We studied closely the conditions for the non-negativity and 

positivity imposed in the Dynamic Conditional Correlation Multivariate GARCH models 

(Engle and Sheppard, 2001). Nelson and Cao (1992) introduced non-negativity constraints 

for the GARCH (p, q) models by relaxing the above mentioned sufficient condition. Since 

these conditions were not readily applicable to our model, we modified the conditions to 

suit our model. Our conditions are that co e  2(J, with positive coefficients, and that 

[a  , ] e [  and [&. . ] e □ such that [a  . + b.}. ] e □ , Vi, j. with eigenvalues of (A + B)2 2, 

expressed as \  and A2, follow the restrictions | Aj | < 1 and |A21 < 1.
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3.2. STATISTICAL PRO PERTIES OF THE GFACARR M ODEL

3.2.1. W eak Stationarity of GFACARR Model. Since the GFACARR can be 

presented as the bivariate CARR (1, 1) model, and it can be reparametrized as a bivariate 

ARMA (1, 1) model. Derivation is given:

Jt = R t - n t = o +  A R + B  -  ̂  ), 

Rt = a > +  A R t_j + B R t x + r j t +  ( - B ) rjt x. (3.4)

Let rjt be the difference vector and Rt = a> + (A + B)Rt x + 77, - B tĵ  be a Bivariate ARMA 

(1, 1) model. If all the eigenvalues of the matrix (A + B ) are positive, but less than one,

then the Bivariate ARMA (1, 1) model for Rt is weakly stationary (Tsay, 2002). By

following this claim, we proposed the weak stationarity conditions for the GFACARR 

model.

Theorem 1: Let At =a> + ARt_1 +BAt_x be the GFACARR process defined in (3.1) - (3.4).

If all the eigenvalues of (A  + B ) , namely A1 and A2 are such that |A.| < 1 V i, then the

GFACARR model for Rt is weak stationary.

The Proof of this theorem will be presented in the Appendix A.

3.2.2. Unconditional Expectation of GFACARR Model. Under the weak

stationarity assumption, e (r ^  = E  (/( ,) , and E{rj^ = E{Rt —)1^ = 0 so that:

Rt = co + (A + B) Rt_1 + 77, + (-R ) T7,_,,

E ( R )  = m+{A + B)E( tC iy E ( v )  + E [ { - B ) i Z  

E^R^ = a+(A + B)E{R^_^ = a+(A + B)E{R^,

\i - { a + b )]e (r) I = o.
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The Rt is a weakly stationary and det [ /  -  (A + 5 ) ]  ^  0, hence E  ̂  ) exists. Thus,

e (r^  = [I ~(A + B)Y  (O,

[1 - ( A + B)J
' i  - ( a u + p u)

v - ( /  +sd)
( f  +BU) T
(ad+pd))

I -(A + B )]-1 = 1 -(ad + pd) + (/ + Su)

+(rd+sd) 1 -(au+pu)| 1 - (a- + Pu )][1- (ad + Pd )]-I?‘ *S- | /  +Sd ]j

1 -(ad + pd) + (/ + Su)

+(yd + Sd) 1- (au +pu)

(1 -(ad +pd ))au + (/ + Su )ad 
{[l -(«"+/?")] [l - (ad +pd)\- [ f  + ] [ /  + Sd ]} [(l -(«"+/?")) a? + ( /  + Sd) ffl"

f1-(«“ + pu )][1-(ad +pd )]-I^“ +£“ J /  + £d ]j

The unconditional mean of upward range e  ( r; ) and unconditional mean of downward

range E (Rdt ), can be expressed as follows:

e  ( r ; ) 

e  (Rd)

[1 - ( a d + pd )]mu + (yu + Su )®d 

{[1 -  (au +pu)] [1 - ( a d +pd ) ] - ( / u +Su ) ( /  +Sd ) j ’

[1 - ( a u +pu )]md +(yd +Sd )mu 

{[1 - ( a u +pu)][1 - ( a d + pd) ] - ( f  +Su) ( /  +Sd)j '

Finally, the unconditional mean range E (Rt) is calculated as:

E (R ) = E ( R; ) + E (R  ),

E (R )
[ 1 - ( a d + p d )]rn + ( f  + 5u )md + [ 1 - ( a u + p u )]md + ( /  + 5 d )© 

[1 - ( a u + p u )][1  - ( a d + p d ) ] - ( /  + S u) ( /  + S d )
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4. ESTIM ATION OF GFACARR M ODEL

4.1. BIVARIATE EXPONENTIAL GFACARR TYPE a (BEGFACARR-a)
M ODEL

Let {sut } ({sdt j) be the sequence of independent and identically distributed

exponential disturbance term w ithE (s; ) = 1 (e (s? ) = 1), and \ R j  = { R ,R ,...,R } 

({ R  j ^  = { R ,R ,R3 ,...,R dn})be the realization of the model R  = R s t (R  = R s dt ). The

parameter vector O = ( a u , a u, R  ,y u , S u ,wd, a d, R d,y d,8 d ) can be estimated by using the

conditional likelihood method. In this section, we derive the log likelihood function for the 

proposed GFACARR model.

The conditional distribution of R  and R  given the information up to t-1, can be 

expressed as follows:

A,
■exp

■exp

f  r R

v ~ k j
f  \

7 d
V At J

Since cov (s ut , s dt ) = 0, conditional distributions of f  (Rut | R , o ) and f  (Rdt | R , o ) are

conditionally independent, then the conditional joint distribution of the realized range data 

at time t, given the information set up to time t-1 is given by:

f  (R , Rtd |Ft-1, o )  = [ f  (R Ft-1, o ) | f  (R -1, O )

f  ( R , Rtd |Ft _!, O)
1 f R  ^ [ 1 f  R  ^

—  exp
a; p n u

V a  j _b exp J (4.1)
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Therefore, the conditional likelihood function L (o 1{Rf, Rf }  ) and the log likelihood

l (o |{R: , Rf  ̂  ).function of the data l jO  | can be derived as follows:

L (o  | {RU, Rf }^ ) = n  f  (Rf , Rf | Ft-1,0 ),
' t =2

l (o  | {Rf , Rf f ,  ) = ln [L (o  | {Rf, Rf  ̂ )] = ±  ln [.f  (R , Rf  | Ft_,, O)

l ( ° | { r: , Rf  L ) = - i ln ( R ) + Rv  + ln ( R )
A f

Rf
R  j

(4.2)

4.2. BIVARIATE EXPONENTIAL GFACARR TYPE b (BEGFACARR-b)
M ODEL

In this section, we relax the assumption of the independence between the residual 

durations by introducing the second bivariate distribution with exponential margins. This 

was proposed by Gumbel (1960), and here the parameters e [-1,1] is used to capture the 

potential correlation p  between the upward and downward residual components. However, 

the coefficient of correlation moves in the narrow interval such that p  e [-0.25,0.25].

Let {s“} ({s f  }) be the sequence of upward (downward) residual components with

E (s f ) = 1 (E(sf ) = i) andcov( s f , s f ) = a = — . Since the marginal distributions are

exponentially distributed the conditional distribution of Rf  and R f  givenFt-1, it can be

expressed as follows:
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At

exp

(  r R

v ~ k j
f  \

7 d
V f  J

Since cov(s ut , s dt ) = a, then the conditional joint distribution of R  and R  the realized 

range data at time t, given the information set up to time t-1 is given by:

f  (R , R l F  „; ° )  = - ^  exp
" f R  R  Y r y  j R 1 y „ j  Rd 1 T
L U  + f  .Jj 1 + o 1 2 exp iR  J- 1 2exp I T  J- 1JJ (4.3)

The parameter vector Q = (®u , a u, f iu, y u,S U,wd, a d, (3d, y d,8 d,o ) can be estimated by 

maximizing the conditional likelihood function l ( o  | |R U, R  j J  . Therefore, the

conditional likelihood function L ( o  | ^ R , R  j and the conditional log likelihood

function of the data l ( o  | {R“, R  j  )̂

0 |  [ru, Rd r  1 =  n  f  (RU, Rd | F  , o ) ,
1 t t \t = 1 l  t t t - 1  /

0 |  [ru, Rd j  
l ( t  t t l J

can be derived from:

0 |  R , Rd
t t t = 1

L
L V 

n

t - 1  

n
0 | \RU, Rd 

t t h  = i

= -  S

t = 2

f
ln ( f  ) + —t u

J

u 
t

J t = 2

IV t t

f  (Ru, R
L t t

d

| Ft -- r * ) J

f u VR
+ -t- -  ln 1 + o 2 exp

Rut
■-1 2exp ■

Rt
j

ft J V
f

l  t > J V
fl t J

1 - 1

(4.4)

5. SIMULATION STUDY

We investigated the finite sample performance of estimators using a simulation 

study. We used ‘nloptr’, a nonlinear optimization function of R software to generate the
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relevant data. Length of the time series studied was set to n =1000 and n =3000, and 

m = 1000. Simulation runs were carried out for each parameter sample size combination. 

We carried out this simulation study for two different cases of the GFACARR model, 

namely the BEGFACARR-a and the BEGFACARR-b, including or excluding 

independence between the upward and the downward range disturbance terms. In this 

simulation study, first, we generated the data for the BEGFACARR-a and the 

BEGFACARR-b models based on the equations (4.1) and (4.3), respectively. Then the 

profile likelihood functions (4.2) and (4.4) were maximized by using the constrained 

nonlinear optimization function ‘nloptr’ in R. The Mean Absolute Deviation Error

(MADE) was utilized as the evaluation criterion. The MADE is defined as, —
m ~[ '

where m is the number of replications. Simulation results for the BEGFACARR-a models 

are reported in Table 1 and Table 2. The BEGFACARR-b model results are summarized 

in Table 3 and Table 4.

Table 1 and Table 2 show the simulation results related to the upward range 

component parameters of the BEGFACARR-a model, while Table 2 presents the 

downward range component of the BEGFACARR-a model. The results show that the 

estimates are close to the true parameter values in most cases, and that the MADE values 

are reasonably small, with an improvement seen in the 3000 sample size case. The 

conclusion based on this simulation study is that the maximum likelihood method provides 

reliable estimates of the model parameters, in spite of the complex nature of the model 

when compared to CARR or the FACARR models.
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Table 1: Means of MLE estimates and MADE (within parentheses), for upward range
component in BEGFACARR-a model

Upward
Model

Sample Size uW ua Pu 5u

True Coefficients 0.01 0.20 0.40 0.10 0.20

UPR_M1

n=1000 0.0113
(0.0103)

0.1968
(0.0320)

0.3871
(0.1111)

0.0973
(0.0256)

0.2079
(0.1203)

n=3000 0.0101
(0.0068)

0.1992
(0.0183)

0.3937
(0.0620)

0.0989
(0.0139)

0.2063
(0.0775)

True Coefficients 0.01 0.30 0.50 0.10 -0.02

UPR_M2

n=1000 0.0117
(0.0049)

0.2960
(0.0315)

0.5081
(0.0662)

0.0991
(0.0106)

-0.0235
(0.0216)

n=3000 0.0105
(0.0026)

0.2984
(0.0183)

0.5028
(0.0363)

0.0996
(0.0057)

-0.0211
(0.0116)

True Coefficients 0.15 0.20 0.60 0.10 -0.10

UPR_M3

n=1000 0.1548
(0.0255)

0.2047
(0.0279)

0.5428
(0.0943)

0.0968
(0.0153)

-0.0724
(0.0276)

n=3000 0.1522
(0.0136)

0.2026
(0.0164)

0.5714
(0.0500)

0.0986
(0.0080)

-0.0863
(0.0137)

Table 2: Means of MLE estimates and MADE (within parentheses), for downward range
component in BEGFACARR-a model

Downward
Model

Sample Size o d a d p d 5 d

True Coefficients 0.02 0.10 0.80 0.02 -0.05

DWNR_M1
n=1000

0.0235
(0.0089)

0.1011
(0.0221)

0.7714
(0.1115)

0.0183
(0.0261)

-0.0430
(0.0989)

n=3000
0.0210

(0.0040)
0.1006

(0.0224)
0.7929

(0.0118)
0.0201

(0.0510)
-0.0500
(0.0143)

True Coefficients 0.04 0.10 0.60 0.03 0.60

DWNR_M2
n=1000

0.0438
(0.0142)

0.0965
(0.0257)

0.5919
(0.0642)

0.0322
(0.0612)

0.6157
(0.1788)

n=3000
0.0415

(0.0077)
0.0990

(0.0144)
0.5935

(0.0374)
0.0295

(0.0354)
0.6154

(0.1084)
True Coefficients 0.10 0.20 0.40 0.10 0.50

DWNR_M3
n=1000

0.1004
(0.0593)

0.1975
(0.0308)

0.3934
(0.1171)

0.0951
(0.0490)

0.5213
(0.2376)

n=3000
0.0934

(0.0355)
0.1991

(0.0172)
0.3954

(0.0643)
0.0967

(0.0278)
0.5242

(0.1440)
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In the previous simulation study, we assumed the independence between the 

upward and downward residual components. In the next subsection, we considered the case 

of dependence between upward and downward residual components. Therefore, we fitted 

the second bivariate exponential distribution of Gumbel (1960). The BEGFACARR-b 

model parameters are estimated using MLE method and results are summarized in Table 3 

and Table 4. Table 3 exhibits the parameter estimated results for the upward range model 

parameters and the MADE results, while Table 4 shows that of the downward range 

component.

Based on the simulation results, both the upward and downward parameters are 

estimated with reasonable accuracy. Furthermore, the estimated upward and downward 

components parameters in the BEGFACARR-b model has lower MADE value when 

compare to the BEGFACARR-a model. However, the estimates for the newly added u 

term has a low accuracy when compare to the other model parameters.

6. EM PIRICA L STUDY

6.1. THE DATA SET

In this study, three stock indices from different markets were used to gauge the 

performance of the proposed GFACARR model. Daily data of the Standard and Poor’s 500 

(S&P 500) index of United States, CAC 40, which is a benchmark index of the French 

stock market, and Japan’s NIKKEI 225 index were considered. The sample periods for 

S&P 500, CAC 40, and NIKKEI 225 were January 02, 2002 to December 31, 2019. Daily 

values for the opening price, closing price, high price, low price, and adjusted price were
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Table 3: Means of MLE estimates and MADE (within parentheses), for upward range
component in BEGFACARR-b model

Upward
Model

Sample
Size

uW ua Pu du V

True Coe ficients 0.01 0.20 0.40 0.10 0.20 -0.40

UPR M1
n=1000

0.0113
(0.0100)

0.1970
(0.0318)

0.3818
(0.1123)

0.0999
(0.0241)

0.2103
(0.1175)

-0.2918
(0.1223)

n=3000
0.0099

(0.0069)
0.1995

(0.0185)
0.3922

(0.0597)
0.1003

(0.0139)
0.2076

(0.0728)
-0.2879
(0.1126)

True Coe ficients 0.01 0.30 0.50 0.10 -0.02 -0.20

UPR_M2
n=1000

0.0115
(0.0051)

0.2973
(0.0316)

0.5002
(0.0681)

0.0998
(0.0099)

-0.0212
(0.0218)

-0.1463
(0.0916)

n=3000
0.0105

(0.0026)
0.2986

(0.0185)
0.5010

(0.0384)
0.1002

(0.0056)
-0.0209
(0.0122)

-0.1439
(0.0650)

True Coe ficients 0.15 0.20 0.60 0.10 -0.10 -0.40

UPR M3
n=1000

0.1573
(0.0279)

0.1990
(0.0293)

0.6043
(0.1338)

0.1004
(0.0137)

-0.1082
(0.0586)

-0.2912
(0.1231)

n=3000
0.1524

(0.0147)
0.1992

(0.0179)
0.6011

(0.0715)
0.1006

(0.0077)
-0.1029
(0.0297)

-0.2875
(0.1131)

Table 4: Means of MLE estimates and MADE (within parentheses), for downward range
component in BEGFACARR-b model

Downward
Model

Sample Size a d a /3d 7d d d

True Coefficients 0.02 0.10 0.80 0.02 -0.05

DWNR_M1
n=1000

0.0225
(0.0082)

0.0989
(0.0210)

0.7907
(0.0989)

0.0228
(0.0189)

-0.0599
(0.0786)

n=3000
0.0207

(0.0038)
0.1000

(0.0119)
0.7964

(0.0482)
0.0194

(0.0124)
-0.0505
(0.0423)

True Coefficients 0.04 0.10 0.60 0.03 0.60

DWNR_M2
n=1000

0.0435
(0.0146)

0.0952
(0.0260)

0.5977
(0.0651)

0.0461
(0.0432)

0.5921
(0.1635)

n=3000
0.0409

(0.0077)
0.0990

(0.0150)
0.6008

(0.0358)
0.0337

(0.0285)
0.5934

(0.0978)
True Coefficients 0.10 0.20 0.40 0.10 0.50

DWNR_M3
n=1000

0.1100
(0.0637)

0.1944
(0.0320)

0.3735
(0.1217)

0.0973
(0.0472)

0.5454
(0.2355)

n=3000
0.1022

(0.0065)
0.1986

(0.0162)
0.3888

(0.0691)
0.0960

(0.0279)
0.5226

(0.1442)
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Finance web page (https://finance.yahoo.com/) by using a ‘quantmod’ package in R 

software. The data set was divided in to two sub-samples where the first sub-sample, also 

known as in-sample period, was used to estimate the model parameters and in-sample 

predictions. In-sample periods for S&P 500, CAC 40, and NIKKEI 225 spanned from 

January 02, 2002 to December 31, 2018. The second-sub sample, which is also called the 

out-of-sample period, was used for out-of-sample forecasting. The out-of-sample periods 

for S&P 500, CAC 40, and NIKKEI 225 were from January 1, 2019 to December 31, 2019. 

In general, Table 5 presents the summarization of the three stock indices; more specifically 

Table 5A, Table 5B and Table 5C present the summary statistics of the S&P 500, CAC 40, 

and NIKKEI 225 daily stock indices, respectively. Daily price range, daily upward range, 

and daily downward range values were calculated as discussed in equation (2.1).

According to the summary statistic results, both upward and downward price range 

series for all three stock indices have large positive skewness, and these values are 

suggested that a positively skewed density functions should be used to model the 

disturbance terms. After 22 lags of sample autocorrelations were examined, the large test 

statistic values and very small p-values (<0.0001) conclude that the data exhibit a strong 

persistence in daily price range data. Downward range components have higher Ljung-Box 

statistic than that for the upward range components, which means that downward range 

component is more persistent than the upward range component. Furthermore, higher 

values for the mean and standard deviation of the downward range component when 

compare to the upward range component, is a primary indication of the difference between 

the upward and downward range components’ volatility structures. The correlation 

coefficient between upward range and downward range components for all the three stock

https://finance.yahoo.com/
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indices are significant at 0.001 significance level, and these negative correlation values 

suggest that periods of higher downward range volatility are related to lower upward range 

volatility periods.

Table 5: Summary statistics of the daily range, upward range and downward range of 
S&P 500, CAC 40 and NIKKEI 225 indices

Table 3A: Summary statistics of S&P 500: 01/02/2002 -  12/31/2019

Summary Statistics Upward Range 
Component

Downward Range 
Component Range

Minimum 0.0000 0.0000 0.1456
Mean 0.6019 0.6466 1.2484

Maximum 10.2457 9.5522 10.9041
Standard Deviation 0.7189 0.8340 0.9931

Skewness 3.5231 3.3977 3.3472
Q (22) 3552.20*** 6906.20*** 32270.00***

Correlation (UPR, WNR) -0.1885***
Table 3B: Summary statistics of CAC 40: 01/02/2002 -  12/31/2019

Summary Statistics Upward Range 
Component

Downward Range 
Component Range

Minimum 0.0000 0.0000 0.1388
Mean 0.7029 0.7969 1.4998

Maximum 8.4229 7.7503 9.2607
Standard Deviation 0.7430 0.8635 1.0222

Skewness 2.7823 2.4814 2.3132
Q (22) 2339.00*** 7267.30*** 27538.00***

Correlation (UPR, WNR) -0.1969***
Table 3C: Summary statistics of NIKKEI 225: 01/02/2002 -  12/31/2019

Summary Statistics Upward Range 
Component

Downward Range 
Component Range

Minimum 0.0000 0.0000 0.0000
Mean 0.6233 0.6794 1.3027

Maximum 11.7433 13.7634 13.7634
Standard Deviation 0.6897 0.8199 0.9123

Skewness 3.3471 4.3674 3.8723
Q (22) 2029.80*** 1548.60*** 14469.00***

Correlation (UPR, WNR) -0.2791***

Note: *** indicate significance at 1% level. Q (22) is the Ljung-Box statistics of lag 22.
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Figure 1: S&P 500 daily price range (black), daily upward range (red) and daily 
downward range (green) for the period of 01/02/2002: 12/31/2019

Figure 2: CAC 40 daily price range (black), daily upward range (red) and daily 
downward range (green) for the period of 01/02/2002: 12/31/2019
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Figure 3: NIKKEI 225 daily price range (black), daily upward range (red) and daily 
downward range (green) for the period of 01/01/2002-12/31/2019

Time series plots for the daily price range, daily upward range, and daily downward 

range series of the S&P 500, CAC 40, and NIKKEI 225 are presented in Figures1 through 

3, respectively. According the figures, both upward and downward price range data have 

zeros. This is an important factor that needs to be considered when selecting the appropriate 

distributions to model the price series separately. In this study, we used exponential 

distribution to model both the upward and downward price ranges because the support of 

this distribution includes zero.

6.2. IN-SAMPLE ESTIM ATION RESULTS

In this section, we discussed the parameter estimation for the FACARR and 

compared it with the BEGFACARR-a and BEGFACARR-b models. Model parameters 

were estimated using the MLE method, as discussed in Section 4, and results are presented
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in Tables 6 through 8. The Ljung-Box Q test based on 22 lags was considered to check 

whether the residual series of upward and downward range components over time are 

random and independent. The Pearson correlation between upward disturbance term and 

downward disturbance term was calculated and significance was tested. In addition to that, 

the AIC, AICC and BIC values were also employed as the model selection criteria.

Based on the Ljung Box Q test results for upward (downward) range disturbance 

term, for the FACARR, BEGFACARR-a and BEGFACARR-b are random and 

independent for all three stock indices namely S&P 500, CAC 40 and NIKKEI 225. The 

FACARR and BEGFACARR-a models assume that the upward and downward disturbance 

terms are independent, while BEGFACARR-b assumes that they are correlated. According 

to the Pearson correlation and their corresponding p-values (<0.0001) all three models 

exhibit significant correlation between upward and downward disturbance terms for all the 

stock indices. Therefore, among the three fitted models BEGFACARR-b satisfied all the 

model assumptions for all the three stock indices.

Based on the AIC, AICC, and BIC values of the FACARR, BEGFACARR-a, and 

BEGFACARR-b models for all three stock indices indicate that BEGFACARR-a model 

performs slightly better than the other two models during upward and downward range 

components. However, the BEGFACARR-b model fit better to the full range period data 

than the FACARR and BEGFACARR-a models. Moreover, when compared to the 

FACARR model, with BEGFACARR-a and BEGFACARR-b processes, the latter models 

captured the negative relationship between the current conditional mean of upward 

(downward) range and previous price range data or conditional mean of downward 

(upward) range. Since we selected the BEGFACARR-b model over the FACARR and
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BEGFACARR-a process by considering ability to satisfying all the model assumptions and 

overall model selection criteria, we compared the BEGFACARR-b model performance 

with the FACARR model. Tables 9, 10, 11, and 12 summarize the comparison of results 

between the FACARR and the BEGFACARR-b models, including their performance 

during the 2007-2009 recession period. Table 9 presents the in-sample comparison between 

the FACARR model and the BEGFACARR-b model. For the overall range component, the 

BEGFACARR-b model have higher prediction accuracy when compared to the FACARR 

model. In certain situations, the FACARR model had lower RMSE, MAE, or both RMSE 

and MAE values than the BEGFACARR-b process for the upward range and downward 

range components. Based on the results in Table 8, the proposed BEGFACARR-b model 

has lower RMSE and MAE when compared to the FACARR model during the recession 

period. This suggests that the BEGFACARR-b model fits the data from the recession 

periods better than the FACARR model.

In-sample prediction by the EGFACARR model for the S&P 500, CAC 40 and 

NIKKEI 225 are given in the Figure 4, Figure 5 and Figure 6.

6.3. OUT-OF-SAM PLE FORECAST

The out of Sample performance from the proposed BEGFACARR-a and 

BEGFACARR-b models were compared with the FACARR model, and the MAE and the 

RMSE were used as the forecasting performance evaluation indicators. The model with the 

smaller forecasting error values indicates that it is relatively better than the other models.
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Table 6: Parameter estimated values, residual diagnostic results and model selection
criteria of FACARR and BEGFACARR-a and BEGFACARR-b models for S&P 500

index (p-value)

S&P 500
FACARR BEGFACARR-a BEGFACARR-b

o f 0.0152 0.0061 0.0025

a u 0.0262 0.0045 0.0079

p u 0.7810 0.6297 0.4922

f 0.1576 0.1450 0.1409

S u 0.1890 0.3158

cod 0.0124 0.0058 0.0034

a d 0.1004 0.1193 0.1252
p d 0.8499 1.1004 1.2202

r d 0.0325 0.0160 0.0163

8 d -0.2596 -0.3973
V -1.0000

s ut ~  i.i.d. 32.8260
(0.0644)

23.1810
(0.3916)

22.1000
(0.4540)

s dt ~  i.i.d. 26.6620
(0.2244)

28.592
(0.1569)

29.3370
(0.1355)

cor{s t  >s t ) -0.5721
(<0.0001)

-0.5759
(<0.0001)

-0.5778
(<0.0001)

AIC-UPR 3187.6410 3177.6420 3179.6690
AIC-DWNR 3906.1750 3898.9990 3900.5730
AIC-RANGE 7093.8160 7076.6410 5211.4510
AICC-UPR 3187.6510 3177.6570 3179.6830

AICC-DWNR 3906.1840 3899.0130 3900.5880
AICC-RANGE 7093.8500 7076.6930 5211.5130

BIC-UPR 3213.0870 3209.4500 3211.4760
BIC-DWNR 3931.6200 3930.8060 3932.3810
BIC-RANGE 7144.7080 7140.2560 5281.4280
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Table 7: Parameter estimated values residual diagnostic results and model selection
criteria of FACARR and BEGFACARR-a and BEGFACARR-b models for CAC 40

index (p-value)

CAC 40

FACARR BEGFACARR-a BEGFACARR-b

o f 0.0269 0.0325 0.0324

a u 0.0371 0.0341 0.0618

p u 0.7680 0.2485 0.4631

f 0.1381 0.1305 0.1689

5 u 0.4602 0.2136

f d 0.0133 0.0326 0.0122

a d 0.1116 0.1359 0.1021

p d 0.8213 1.1448 0.8903

r d 0.0573 0.0360 0.0373

s d -0.7421 -0.0450

u -1.0000

Sut ~  i.i.d.
30.6070
(0.1044)

32.6820
(0.0665)

33.6310
(0.0535)

s dt ~  i.i.d.
27.5340
(0.1916)

30.7230
(0.1019)

29.8980
(0.1210)

c o r f e s ?  )
-0.5239

(<0.0001)
-0.5297

(<0.0001)
-0.5298

(<0.0000)

AIC-UPR 4951.2570 4938.7700 4946.6420

AIC-DWNR 6032.7320 6030.7500 6037.0630

AIC-RANGE 10983.9900 10969.5200 9514.4300

AICC-UPR 4951.2670 4938.7840 4946.6560

AICC-DWNR 6032.7420 6030.7640 6037.0770

AICC-RANGE 10984.0200 10969.5700 9516.4900

BIC-UPR 4976.7660 4970.6570 4978.5280

BIC-DWNR 6058.2410 6062.6360 6068.9490

BIC-RANGE 11035.0100 11033.2900 9586.8600
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Table 8: Parameter estimated values, residual diagnostic results, and model selection
criteria of FACARR and BEGFACARR-a and BEGFACARR-b models for NIKKEI 225

index (p-value)
NIKKEI 225

FACARR BEGFACARR-a BEGFACARR-b

(0U 0.0319 0.0133 0.0313

a u 0.0758 0.0649 0.0579

p u 0.6973 0.2297 1.7412

f 0.1613 0.1690 0.1269

8 U 0.4552 -0.8795

cod 0.0196 0.0122 0.0394

a d 0.1012 0.1322 0.1549
p d 0.8198 1.2345 -0.1289

r d 0.0561 0.0593 0.0067

s d -0.4808 0.9686
u -1.0000

s ut ~  i.i.d. 18.1580
(0.6966)

15.2400
(0.8518)

18.7420
(0.6612)

s dt ~  i.i.d. 16.4550
(0.7927)

13.2460
(0.9261)

16.8580
(0.7712)

cor(s t  ,s t ) -0.4826
(<0.0001)

-0.4858
(<0.0001)

-0.4917
(<0.0001)

AIC-UPR 3917.9450 3902.9700 3912.8760

AIC-DWNR 4768.6140 4767.1500 4768.1290

AIC-RANGE 8686.5590 8670.1180 7047.8510

AICC-UPR 3917.9540 3902.9850 3912.8910

AICC-DWNR 4768.6230 4767.1630 4768.1430

AICC-RANGE 8686.5930 8670.1710 7047.9140

BIC-UPR 3943.2840 3934.6450 3944.5510

BIC-DWNR 4793.9540 4798.8230 4799.8040

BIC-RANGE 8737.2380 8733.4680 7117.5350



86

Table 9: In-sample comparison between FACARR, and EGFACARR-b models for S&P
500, CAC 40 and NIKKEI 225

Index Model

Upward

Range

Downward

Range
Range

MAE RMSE MAE RMSE MAE RMSE

S&P 500
FACARR 0.4156 0.6145 0.4953 0.7405 0.4011 0.6038

BEGFACARR-b 0.4128 0.6142 0.4931 0.7417 0.3947 0.6037

CAC40
FACARR 0.4691 0.6758 0.5340 0.7584 0.4680 0.6861

BEGFACARR-b 0.4694 0.6733 0.5352 0.7609 0.4661 0.6823

NIKKEI225
FACARR 0.4413 0.6236 0.5117 0.7866 0.4572 0.7051

BEGFACARR-b 0.4393 0.6267 0.5135 0.7884 0.4497 0.7040

Table 10: In-sample recession period comparison between FACARR, and 
BEGFACARR-b models for S&P 500, CAC 40 and NIKKEI 225

Index Model
Recession

Period
MAE RMSE

S&P500
FACARR 0.5582 0.7210

BEGFACARR-b 0.5477 0.7195

CAC40
FACARR 1.0340 0.6958

BEGFACARR-b 1.0235 0.6825

NIKKEI225
FACARR 0.4977 0.6170

BEGFACARR-b 0.4862 0.6082
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Figure 4: In-sample perdition of fitted BEGFACARR-b model (green) for the S&P 500
price range (red) index

Figure 5: In-sample perdition of fitted BEGFACARR-b model (green) for the CAC 40
(red) index
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Figure 6: In-sample perdition of fitted BEGFACARR-b model (green) for the NIKKEI
225 (red) index

For out of sample prediction, a recursive window estimation method was performed. Table 

9 presents the out of sample forecasting results. Based on the forecasting errors, the 

BEGFACARR-b model have lower MAE and RMSE values for all the three stock indices 

when compared to those from the FACARR model. Moreover, Diebold & Marino’s (1995) 

test is used to check for a significant difference between the BEGFACARR-b model 

forecasting accuracy and that of the FACARR model. If a significant difference exists, then 

we checked the BEGFACARR-b model against the FACARR model for accuracy in 

forecasting future price range data. The DM test statistics and corresponding p-values 

suggested with 90% confidence that the proposed BEGFACARR-b model is more accurate 

than FACARR model in forecasting future values for CAC 40 and NIKKEEI 225 indices. 

However, for the S&P 500 stock index, there is no significant difference between the 

BEGFACARR-b and the FACARR forecasting accuracy. The out of sample data and the
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forecasted values from the BEGFACARR-b model are presented in the Figures 7 through

10.

Table 11: Out of sample comparison between FACARR, BEGFACARR-a and 
BEGFACARR-b models for S&P 500, CAC 40 and NIKKEI 225

Stock Index Model
Accuracy

MAE RMSE

S&P500
FACARR 0.3136 0.4071

BEGFACARR-a 0.3102 0.4048

BEGFACARR-b 0.3050 0.4018

CAC40
FACARR 0.3358 0.4589

BEGFACARR-a 0.3305 0.4545

BEGFACARR-b 0.3295 0.4540

NIKKEI225
FACARR 0.2943 0.3719

BEGFACARR-a 0.2858 0.3615

BEGFACARR-b 0.2786 0.3566

Table 12: DM test statistics results

Stock Index Alternative Hypothesis Test Statistics (p-value)

S&P 500 BEGFACARR-b model and FACARR -0.5694
model have different forecast accuray (0.5691)

CAC40
Forecast BEGFACARR-b model is more -1.3112
accurate than that of the FACARR model (0.0949)

NIKKEI Forecast BEGFACARR-b model is more -3.5957
225 accurate than that of the FACARR model (0.0002)
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Figure 7: Out-of-sample forecasted values by BEGFACARR-b (green) for the S&P 500
(red) index

Figure 8: Out-of-sample forecasted values by BEGFACARR-b (green) for the CAC 40
(red) index

Figure 9: Out-of-sample forecasted values by BEGFACARR-b (green) for the
NIKKEI 225 (red) index
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7. CONCLUSIONS

In this paper, we proposed the GFACARR model, which is a bivariate CARR type 

model, to accommodate asymmetric propagation of upward and downward ranges, while 

accommodating a complete dynamic feedback mechanism between these two components 

and their conditional means. The GFACARR process uses previous downward (upward) 

price ranges and conditional mean downward (upward) range values to model the 

conditional mean upward (downward) range. Furthermore, the GFACARR model is 

capable of modeling the negative relationship between upward and downward range data, 

which could not be achieved using the FACARR model. In this study, we proved the weak 

stationarity conditions for the proposed GFACARR model. In addition to that, we 

considered the two different scenarios based on the upward and downward range 

component disturbance terms. If the two terms were independent, we used the Bivariate 

Exponential GFACARR type a (BEGFACARR-a) model, and if the two components 

correlated, we employed the Bivariate Exponential GFACARR type b (BEGFACARR-b) 

model to perform the analysis. According to the simulation study, the MLE method can 

be employed to estimate model parameters in the BEGFACARR-a and the BEGFACARR- 

b models with greater accuracy. The performance of the proposed model was gauged 

through an empirical study by using three stocks indices, namely S&P 500, CAC 40, and 

NIKKEI 225. Since the BEGFACARR-b model was satisfied all the model assumptions 

and provided the lowest AIC, AICC and BIC values for price range period when compared 

to BEGFACARR-a, it was selected to model the in-sample data. Then the BEGFACARR- 

b model performance was compared to the FACARR model. According to the performance



92

evaluation indicators we employed, the BEGFACARR-b model has relatively lower errors 

when predicting the overall range, and it performs better at predicting ranges during 

recession periods. However, in some non-recession situations, the FACARR has slightly 

better performance in in-sample predictions, than the BEGFACARR-b model, with respect 

to predicting upward or downward ranges. Smaller forecasting error values were obtained 

for the out of sample price range data from the BEGFACARR-b model for two indices 

studied namely CAC 40 and NIKKEI 225, and the performance of the FACARR and 

BRGFACARR-b were not statistically significant for the S&P 500 index. Overall, the 

results indicated that BEGFACARR-b model beats the FACARR model for out of sample 

forecasting.
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APPENDIX

Proposition 1: Let A1 and A2 be the eigenvalue of the matrix (A + B) . If A1 and A2

satisfy |A.|< 1Vi, then det[I  - (A + B ) z] has roots z1 and z2 such that |z.| > 1, Vi.

Proof of Proposition 1:

?it = (D + A  ,

R -  E (R IF -i ) = R = %.

R = n  ( A \ II) R , . «/; . ,

The Eigenvalues of (A  + B) are:

det [( A + B ) -  AI ] = det
' a u + p u y u + S u ^ fA 0 ^
Ky d + S d a d + p d)  [ 0  A_

det [(A + B ) -  AI] = [ a u + p u -  A) (a d + p d -  A) -  [  + [  ) ([ d + [  ) ] ,

f  (A) = A2 - ( a u + p u +ad + p d) A + ( a u + p u) ( a d + p d) - [ y u +Su) ( /  +Sd) = 0,

The solutions for the f  (A) = 0, are A1 and A 2, the eigenvalues of (A  + B ) and:

( a u + p u + a d + p d) + , 

A, = -------------------------------- --

( a u + pu + a d + pd) -  4 |^(a“ + pd) ( a d + pd) -  ( / “ + S d) (yd + S d) ]  

2

A =■
( a u + p u + a + pd) -  J  ( a “ + P “ + a d + p d) - 4 |^(a“ + p ) ( a d + p d) - ( / “ + S “) (yd + S d) ]

L etQ (L)R t =ct>+M{L)rjt , be a bivariate ARMA (1, 1) process similar to the 

model (3.4) where L be the lag operator and Q (z ) = [I  -  (A + B ) z ] .

2
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Let z1 and z2be the roots of the equation det [Q (z )] = 0, such that

det [ q  (z  )] = det [ Q (z2)] = 0.

Then,

(a“ + f t  + a d + f t  ) + yJ (a“ + f i “ + a d + f t  )  -  4 \(a“ + P “ )(a d +  f id)  -  [ r “ + S “ )  [  + [  ) ]

2 \L{a “ + P u ) ( ad + P “ ) - ( f  + S U) ( /  + [  ) ]

( a “ + + a d + f i d) -  ( a “ + + a d + f i d) -  4 [ [ a “ + f iu) ( a d + f i d) -  [ r “ + S“) [  + Sd )]

i _ _ ^  _ ]
A1A 2 / A2

2 [[ “ +PU )(ad +P“ )- [  +S  ) ( /  +[  )]
_ A2 _ 1 /  

A1A2 / V

N  _

Here|A .|< 1 V i . Hence roots of det[ Q (z)] _ 0, are z1 and z2 such that

A \ > 1and| _ ^ > 1

Theorem 1: Let Xt = a  + ARt_l +BXt_l be a GFACARR process defined in (3.1) - (3.4). If 

all the eigenvalues of (A  + B ) , namely A1and A2are such that |A .|< 1 V i, then the

GFACARR model for Rt is weakly stationary.

Proof of Theorem 1:

Let consider the model in equation (3.3),

f  f  A fK

VK K

O

V® J
+ a “ r “

y r d a d

\  fR“-1 fi u £ “

f  f „«A f
K

v K  j

O

V® J
+

a u yu 

Vrd a

J V R -1J
u u

VS  f id JV-t-1 J

t-1
d

uK“ss-1 ) i f i u s u V K-1
id d c*d nd n, d

j v K-1st-1 J V s  fi JVK-1 j
(A.1)

The expression in (A.1) can be reparametrized in a manner similar to Jeantheau 

(1998) and can be presented in the following matrix form:

V,® _ (A (S-1) + B )V-1,0 + W . (A.2)

z1 _
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Here,

V'u„ = (x; (O ) (O )) , W = (a u a d  ),

A  ( s t - 1 )  +  B
( a u s ut_ , +  p u r u s d _ , + s u N

. ,d « .
V r  s -1 + 8 a d s , - 1  + P d j

Finally, we can derive above V ® with 4 ' = s \_ i= (s4  s d,_x) and

V , o  = f  (4 ) V - 1 . , + w ,

V , o  = F  ( 4 ) ( F  (4 - ) V - 2 . O  + W ) + W = F  (4 )  F  (4-1 )V - 2 . O  + W + F  (4 )W .

k - 1

V.o = F  ( 4 ) F  (4 - ,)  F  (4-2) ...F (4-k+, )V ,-k,+  W + X  F (4 )  F  (4-1) ...F  (4-,+1 )W .
i=1

k -1
First. we have to prove that X  F  ( 4 )  F  (4 - .)  . . .F  (4 -m )W  — —— i 1, when

i=1

k  —— to.

Let consider E (F ( 4 ) F 4 ) ....F(4_,.+1))W  = F W , here F  = A + B = UDU

( 4  o ^
based on the spectral decomposition of F with D = where 4  and X2 are the

l 0 J

eigenvalues such that U.I < 1 and F  = U
( tf  0  ^

V 0
U -1 —  0  .

k-1
Therefore, X F ( 4 ) F ( 4 - )  ...F(4+ )W — —— i .

i =1

Now we have to prove that F ( 4 ) F (4_ i)F (4 -2) . F (4 -f+i )V -f,® ——— £*when 

k  — to. Let assume that k  — to and V_t 0 — C.

Then. E ( F ( 4 ) F (4-1)F (4 -2 ) ...F (4-,+1 )V -k, , )  = F — (V-k , , )  = F kC — ——— 0.

Finally, we can conclude that V ->£.a .s
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In another independent study Bollerslev and Engle (1993) proved that vector 

GARCH (p, q) process is covariance stationary if and only if all the roots of the 

characteristic polynomial det / /  -  /  ( / )  -  /  (z )] = 0 lie outside the unit circle. By applying

the proposition 1 to the GFACARR process defined in (3.1) -(3.4) we can show that the 

det/ / - A (z ) - B (z )] = 0 has roots outside the unit circle. Combining the above result

with results Bollerslev and Engle (1993) we can conclude that GFACARR is weekly 

stationary.

Therefore, we can conclude that if  the eigenvalues of (A  + B) , A1 and A2 such

that A  < 1 Vi, then the GFACARR is weak stationary.
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HI. THRESHOLD ASYM M ETRIC CONATIONAL AUTOREGRESSIVE
RANGE (TACARR) M ODEL

ABSTRACT

This paper proposes a Threshold Asymmetric Conditional Autoregressive Range 

(TACARR) formulation for modeling the daily price ranges of financial assets. The 

disturbance term of the range process is assumed to follow a threshold distribution with 

positive support. The study assumes that the conditional expected range process switches 

between two market regimes. The two market regimes are named as the upward market 

and the downward market. A self-adjusting threshold component that is driven by the past 

financial information determines the current market regime. The proposed model is able to 

capture aspects such as asymmetry and heteroscedastic behavior in the financial markets. 

This model addresses several inefficiencies found in existing price range models including 

the Conditional Autoregressive Range (CARR), Asymmetric CARR (ACARR), Feedback 

ACARR (FACARR) and Threshold Autoregressive Range (TARR) models. Parameters of 

the model are estimated using the Maximum Likelihood Estimation (MLE). The simulation 

studies show that the MLE method performs well and it estimate the TACARR model 

parameters with high accuracy. We assessed the performance of the TACARR model using 

IBM index data and results show that the proposed TACARR model was useful for in

sample prediction and out-of-sample forecasting volatility.

Key W ords: Volatility Modeling, Asymmetric Volatility, CARR Models,

Threshold Variables.
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1. INTRODUCTION

Modelling economic volatility is indispensable to better understanding the 

dynamics of financial markets. Financial volatility of asset prices has been discussed 

extensively in the financial and econometric literature over past few decades. Engle (1982) 

proposed the Autoregressive Conditional Heteroscedasticity (ARCH) model to address the 

complexities of time-varying volatility and volatility clustering in financial time series. In 

the ARCH formulation, the conditional volatility is modeled as a function of past returns. 

Bollerslev (1986) proposed the Generalized Autoregressive Conditional Heteroscedasticity 

(GARCH), which remains one of the most popular volatility models up to date. The 

GARCH model is an extension of ARCH formulation, and it models the conditional 

volatility as a function of lagged squared returns, as well as past conditional variances. 

Since both models aforementioned focus on modeling price returns, they can be identified 

as examples of return-based volatility models.

In many financial time series applications, standard deviation is the most common 

measure of stock return volatility since it not only calculates the dispersion of returns, but 

also summarizes the probability of seeing extreme values in returns. Since the origination 

of the concept of volatility, researchers have sought alternative measures of measuring it. 

Parkinson (1980) argued that volatility measures could be calculated using the daily high, 

daily low, and opening prices of a stock in addition to the traditional closing prices. 

Parkinson concluded that the range-based method was far superior to the standard methods 

based on returns. Beckers (1983) tested the validity of different volatility estimators. The 

study showed that using the range of a stock price was better than using the close-to-close 

changes. Kunitomo (1992), improved the Parkinson’s original result and proposed a new
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range-based estimator which is ten times more efficient than the standard volatility 

estimator. In another study, Alizadeh, Brandt and Diebold (2002) proved that the range- 

based volatility estimators are highly efficient compared to the classical volatility proxies 

based on log absolute returns or squared returns.

Some scholars focused on the alternative approach to modeling volatility and 

developed theoretical frameworks for range-based models, along with comprehensive 

empirical examples. For example, the works of Chou (2005), Chou (2006), Brandt and 

Jones (2006), and Chou and Liu (2010). Chou (2005) introduced the Conditional Auto 

Regressive Range (CARR) model as a special case of Autoregressive Conditional Duration 

(ACD) model of Engle (1998). The CARR is employed to model price volatility of an asset 

by considering range of the log prices for a given fixed time interval. Formulation of the 

CARR model is similar to that of the standard GARCH volatility model. One distinction 

between the two models is that the GARCH model uses rate of return as its volatility 

measure, while the CARR model uses the range as its volatility measure. The CARR model 

proposed by Chou is a simple, but an efficient, tool to analyze the volatility clustering 

property compared to the GARCH model. Chou showed this empirically via an out-of

sample forecasting of S&P 500 data. Brandt and Jones (2006) integrated the properties of 

exponential GARCH (Nelson, 1991) with daily log range data and proposed a ranged-based 

Exponential GARCH model. This model has a simple framework, but it is an effective tool 

for capturing the important characteristics that are present in stock return data such as 

clustering, negative correlation, and log normality.

Extensive modifications to the CARR model include works of Chiang, Chou and 

Wang (2016), who suggested the application of the Lognormal Log CARR model in the
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outlier detection process. They showed that the proposed method could effectively detect 

outliers. One major advantage of using a Log CARR model is that it allows the relaxing of 

positivity restrictions on the parameters when calculating conditional expectation. Xie and 

Wu (2017), explained the disturbance term in the CARR model using the gamma 

distribution (GCARR) and showed that the GCARR outperformed Weibull CARR 

(WCARR) model in its forecasting ability through an empirical study.

The asymmetric volatility, which is a key phenomenon in financial data, suggested 

that conditional volatilities show higher fluctuations during downward trends than during 

upward trends. The CARR model proposed by Chou (2005), used range as the measure of 

price volatility. The study treated maximum price and minimum price symmetrically. 

However, in the same study, he suggested the CARRX models (CARRX-a, and CARRX- 

b) including exogenous variables such as (a) lagged return and (b) lagged absolute returns 

in the conditional mean equation. The purpose of this incorporation was to model one form 

of asymmetry, the leverage effect of Black and Nelson (1991). Chou (2006) presented the 

Asymmetric CARR (ACARR) model in which both upward and downward price ranges 

were treated separately. The upward range is defined as the difference between the 

maximum price and the opening price, whereas the downward range is defined as the 

difference between the opening price and the minimum price, all observed within a trading 

day. These definitions can be extended to periods beyond a day in a similar manner. The 

ACARR model was extended to the ACARRX model by including exogenous variables 

such as trading volume (Lamourex and Lastrapes, 1990), lag returns (Black, 1976; Nelson, 

1990), or a seasonal factor to count leverage effect. The FACARR model was proposed by 

Xie (2018), which is a more practical extension of the ACARR model. In addition to the
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asymmetric nature price ranges, Xie allowed the conditional mean upward (downward) 

range to be modeled by incorporating lagged downward (upward) ranges into each sub

model. Extensive empirical studies showed that the proposed FACARR performed 

significantly better than the ACARR in both in-sample and out-of-sample forecasting.

All the above models capture the asymmetry in price range data either by 

introducing a leverage variable or treating upward and downward price range series 

separately. Another popular approach to examine the asymmetric behavior in volatility is 

the use of threshold component. In general, a threshold is introduced to time series process 

to examine the behavioral changes according to the different cut off points. The initial idea 

of threshold models in time series analysis was introduced by Tong (1978). Tong pointed 

out the limitations in the linear Gaussian time series models and emphasized the advantage 

of using nonlinear time series models. He also proposed a nonlinear threshold 

autoregressive (TAR) model. Tsay (1989), introduced a simple but effective method for 

testing and modeling procedures for TAR models. Threshold ARCH (TARCH) proposed 

by Zakoian (1991) model the standard deviation conditional on the sign of the previous 

time periods’ returns. Zakoian (1994) improved the existing TARCH model by 

incorporating the lagged conditional standard deviation and named it as the Threshold 

GARCH (TGARCH). The GJR-GARCH model developed by Glosten, Jagannathan, and 

Runkle (1993) and the TGARCH model share notable conceptual similarities. Li and Lam 

(1995) modeled the asymmetric behavior in the stock returns using a threshold-type ARCH 

model. Using the Hang Seng index, they showed that the conditional mean of the return 

series fluctuated according to the ups and downs of the financial market on the previous 

day. Zhang, Russel, and Tsay (2001) proposed a nonlinear durational model and named it
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as Threshold Autoregressive Conditional Duration (TACD) to analyze the transaction data. 

The TACD permits the expected duration to behave nonlinearly based on past durations. 

Men, Kolkiewicz and Wirjanto (2019) proposed the Threshold Stochastic Conditional 

Duration (TSCD) model which is an extension to the SCD models originally proposed by 

Bauwens, Luc and David (2004). In the TSCD model, innovations follow the threshold 

distributions with positive support, and employ Gamma and Weibull distributions to model 

innovations. The latent random variable in the TSCD follows a TAR (1) process, and it 

switches between two regimes. Chen, Gerlach and Lin (2008) proposed the threshold 

heteroscedastic models in a range-based setting to analyze the intraday price range. In this 

paper they introduced a nonlinear volatility model for range and named it as the Threshold 

Conditional Autoregressive Range (TARR) model. This model is able to capture the 

asymmetry in range volatility by using a fixed threshold. They also introduced the TARRX 

model in which an exogenous variable is used, which is compared against a preset threshold 

value to determine the regime switching behavior. All the above threshold models switch 

regimens based on a fixed, predetermined threshold. Therefore, there is need to develop 

models where regime switching occurs dynamically, with past data alone determining the 

switch without a predetermined threshold. The main goal of this paper is to fill this need.

This paper proposes a parsimonious nonlinear time series model that can capture 

the heteroscedastic and asymmetric behaviors existing in the financial markets. We name 

this process the Threshold Asymmetric Conditional Autoregressive Range (TACARR) 

model. The TACARR model permits conditional mean range to depend nonlinearly on the 

past range series values. In this model, disturbance term of the price range model is 

expected to follow a threshold distribution with a positive support. Additionally, we
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assumed that the conditional mean switches between one of the two market regimes 

(upward market and downward market). In our formulation, the threshold values are self

adjusting, and every time new information arrives it dynamically determines the status of 

the market regime. The dynamic threshold component is driven by past upward and 

downward price returns. Moreover, the proposed TACARR model models the 

heteroscedastic volatility structure and capture the asymmetric behavior with fewer 

parameters compared to competing models such as the FACARR. Another objective of this 

study was to demonstrate the usefulness of the TACARR model in estimating and 

forecasting volatilities. In this paper, we estimate the model parameters for both 

exponential and lognormal TACARR models using the maximum likelihood method. We 

also derive expressions for the one step ahead out-of-sample volatility forecasting. Finally, 

we compare the performance of TACARR model with other range-based and asymmetric 

models by using IBM data.

This paper is organized as follows. Section 2 reviews the conditional 

heteroscedastic ranged-based models such as CARR, ACARR and TARR models. Section 

3 introduces the TACARR model and its statistical properties. Following that, in Section 

3, we develop maximum likelihood estimation methods to estimate the model parameters 

for Exponential TACARR (ETACARR) model and Lognormal TACARR (LNTACARR) 

model. Section 4 presents the out-of-sample forecasting method and performance 

evaluation techniques. Section 5 discusses the simulation study for both ETACARR and 

LNTACARR models. In Section 6, results of an empirical study of the proposed TACARR 

models based on IBM data is presented and the results are compared with those for other 

range-based models. Finally, Section 7 presents the concluding remarks.
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2. REVIEW  OF CARR, ACARR, FACARR AND TARR MODELS

2.1. THE CONDITIONAL AUTOREGRESSIVE RANGE M ODEL

Chou (2005) proposed the CARR, which is primarily a range-based model. The 

CARR model is used to fit the price volatility of an asset by considering range as a measure 

of price volatility. Let Ps be the logarithmic price of an asset at time point s e (t - 1, t ], and

the highest and lowest logarithmic prices of an asset during the interval (t - 1, t] are Pth'gh

and P1™ respectively. Let Rt be the price range defined over the fixed time period (t - 1,t] 

is formulated as follows:

p  _  p h i g h  _  p l o w

The CARR model of order (p, q) is presented as CARR (p, q) and defined as 

follows:

R  = Kst,

E (R I Ft-1) = 4  = ® + Z  a R -i + Z  M  - j ,
i=1 j=1

st ~ f  (.), ii.d ., E(s t ) = 1 

0 < Z ai +Z@j  < 1,at > 0,Pj > 0.i=1 j=1

Here, At is the conditional expectation of the price range based on all information up to 

time t. The non-negative disturbance term, also known as the standardized range, is denoted 

by s t which is independent and identically distributed with probability density function 

f  (.) with a non-negative support and a unit mean.
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2.2. THE ASYM M ETRIC CONDITIONAL AUTOREGRESSIVE RANGE 
(ACARR) M ODEL

The ACARR model presented by Chou (2006), decomposed the range (R ) series 

into two components, namely upward range (R“) and downward range (Rd ) . Upward and 

downward ranges are expresses as the differences between the daily high (Pth,gh) , daily 

low (PtImv), and the opening (Ptopen) logarithmic price of an asset respectively, over the 

time interval t.

p u  p high p open

p d  p open p l ow

R  = R u + R d = Pt high -  Ptd   jjh igh  jjopen  ^  p open p l ow  p high p l ow

(2.1)

Here, the upward range measures the maximum gain or the positive shock to the stock, 

while downward range calculates the minimum gain or the negative impact to the stock 

price for the time period t.

The CARR model is symmetric because it treats the high and low price 

symmetrically. However, it is possible to assume that the upward and downward 

movements exhibit different in their dynamics of the volatility shocks. To allow the 

asymmetric behavior in price range data, Chou (2006) proposed and developed the 

ACARR model. ACARR model of order (p, q) is presented as follows:
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R  = R  + R  

RU = R R ,
R f =A,dsd ,

E  (R |F t  _1) = 2] =w" -i Z p R l ,
i=1 j=1

E  (Rf 1 Ft _,) = %  = a d
i=1 j=1

s] ~ f  (.), i.i.d, E  (s] )1 = 1,

sS ~ f d ( ) , l i d . , E E ) = 1,

0 < Z <  + E P ] <i>a ? > 0,P] > o,i=1
p

j=1
9

0 < I X  + Z P "  < a  > 0, P  > 0.
i=1 j=1 (2.2)

Here, A] (= £ ( R  | F,. 4)) is the conditional mean of the upward range on all information up

to time period t-1, and R  (= E (R  | )) is the conditional mean of the downward range

on all information up to time period t-1. The disturbance term of the upward (downward) 

range model is s] ( s f ) independently and identically distributed as the density function

f u (.) ( f d (.)) with unit mean. Moreover, the pairs of parameters,

(cou ,a d ), (a ] ,a d ) , (p ] , p f  ) are identified the asymmetric behavior between the upward 

range and downward range.

2.3. THE FEEDBACK ASYM M ETRIC CONDITIONAL AUTOREGRESSIVE 
RANGE (FACARR) M ODEL

The ACARR model assumes that there is independence between the upward and 

downward shocks, and Xie (2018) argued against this assumption and presented the 

FACARR model. This model includes the cross-interdependence terms on top of the
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ACARR setting. Following the same definitions and notations, the FACARR model is 

defined as follows:

R  = R  + R ,

R  = %uSU,

R  = R R ,

% =®u + 'L < R -i + Z R  %-j + Z r t R k 5
i =1 3 =1

q
k =1 

i
%  =m‘< + Z  “? K ,  + Z  R R  j + Z  r tR U ,

i=1 3 =1 k =1

St ~ f  (.), "  d ., E (s;  ) = 1,

R  ~ f  ( .) ,i.i.d., E (sS ) = 1,

0 < 2 R  + Z R  k 1,aU > 0 ,R  > 0, and
i=1 3=1
p q

0 < 2 “ /  + Z R d  < ! ,< ' > 0, Rd > 0.
i=1 3=1 (2.3)

In addition to the previous parameter set discussed in the ACARR model in (2.2), 

FACARR has a new pair of parameters, namely (yu ,y d), which measures the magnitude

and the direction of the lagged upward (downward) range on conditional mean range.

2.4. THE THRESHOLD AUTOREGRESSIVE RANGE (TARR) M ODEL

Chen el.at (2008) proposed the Threshold Autoregressive Range (TARR) model 

which is a range-based threshold heteroskedastic model to analyses the price range data. 

Let Ps be the logarithmic price of an asset at time s e ( t  -1 , t ], and the price range of fix

time interval ( t -1 , t] is defined as R  = P R h -  P R , then the TARR model with order (1, 

1) is defined as given in the equation (2.4). Moreover, the market regimes were defined 

based on the previous range data Rt-i such that if  Rt-i is greater (lower) than the predefined
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fixed threshold value (i.e., mean, median or a quartile). In this study in-sample mean price 

range R  was considered as the threshold value.

R  = R s ,,

E  (Rt I F,-1 ) = R =

A r = ^ "  + 1 a r )R-i + I t '"R -j : R > R, (")
i=1

R r ' 2' + i « i" 21R,-i + i t > ;  '-'A, - j : R - i < R
i =1

j=1 
q

j=1

et = i

('1) A'1f  (r1)(.) ii.d ., E  ( s (r1)) = 1 : R  , > R

(r2) rir2f (r 2)(.) i.i.d., E (s (' 2)) = 1: Rt-i < R

cov ( s (r1) ,s f ' 2)) = 0.

0 (r1)> 0,a (r1)> 0, tS r1)> 0,

0 (r 2)> 0, a (r 2)> 0, t ('  2)> 0.(' ')/ \  / ('2)
(2.4)

Here, r l  represents the market regime 1, while r2 denotes the market regime 2. In this

model market regimes are determined by a constant threshold R , which is estimated using 

the sample data. To be more specific, if  the stock performs above the average stock price, 

then market belongs to r l  regime and if it below the average stock then it belongs to r2 

market regime.

3. THRESHOLD ASYM M ETRIC CONDITIONAL AUTOREGRESSIVE RANGE 
(TACARR) M ODEL AND STATISTICAL PROPERTIES

Let {R } be a sequence of price range values for the speculative asset defined over 

N  time intervals such that t = 1,2,3,...,N. Here Rt is calculated by taking difference 

between the highest (Pth'sh) and lowest (Ptlow ) logarithmic price of an asset during the time
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period t. In this study, we divided the market into two regimes namely upward market and 

downward market which were determined based on past information about upward price 

range and downward price range components. In contrast to TARR, where the threshold 

remained static, in this paper, we introduced a novelty method whereby the threshold 

values kept self-adjusting as and when the new information arrived.

The proposed TACARR model of order (l,p, q) is presented as follows:

Rt = ^,s , ,

E (Rt | F t ) = Z, =
r  ) = 0  >+t « ( U' Rt- + t p ' j : c u 1 > C

i=1 

p

AU) > n (D)
j  =1 

q
p ) = 0 D) Rt-i , :C ) < Cl,D1

i=1 j=1

= i

(U) (U)f U'( .)  i.id ., E  (s<U ') = 1: CU ’ > Cl 

/ 1D1(.) i.i.d., E  (s ;Dj  = 1: C "  >< Cl
l

CU ' = t  A  R -i > Ri =1

l
CD ’ = t  t [ R-, < R

D),t
(D) t

cov (s(U) , s (D)) = 0,'t ’ ^t
(U) (U)

(3.1)

0 ; ) > 0 ,a .; ) > 0,p f  ) > 0,

0 D) > 0 ,a fD) > 0 ,p ^  > 0.

Here, l  be the length of the time span which is used to determine the market regime. 

The error term for a given market regime m=(U=upward market, D=downward market),

is denoted by | s | m) J and is an independent and identically distributed sequence with non

negative support [0, w) density function / (m)(.) such E 1and cov (s fJ) ,s \D )) = 0.

Here, Ft-1 be the sigma field generated from all the information set including range, upward
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range and downward range up to time t-1, which is expressed as {{R } ^  } } ^ . Let

M t = m be the current market condition at time t , that is determined based on the lagged 

values of upward (RV) and downward (R ) price range series which is expressed as

{ {R }  >{RC  = M t - c  Ft - 4where, M tis the sigma field generated from upward and 

downward range information up to time t-1 . To be more specific M t is defined as:

\U : C ft }> D

[ D  : CU )< CDV (3.2)

Here,

n (m) _Cl ,t ~ g ({r; , R } s < t —
l

l) where R ) = £  I i [ R -.. > Rd C(D) _l ,t =Z [ r ;

Then At be the conditional expectation of Rt given Ft—1 and this term is formulated by

considering different the market regimes m. Moreover, upward market regime means that 

the stock price is rising over the time, while downward market regimes implies that the 

stock price is dropping over the time.

We proposed the TACARR model as an alternative to the regular CARR model in 

which conditional expectation is expressed by assuming symmetric behavior of the price 

range series. The proposed TACARR model could overcome this major drawback in the 

regular CARR model by permitting the conditional mean to depend nonlinearly on past 

price series information and using threshold to capture the asymmetry. The proposed the 

TACARR model considered the most recent dynamic structure to segregate the market 

which was the main advantage over the TARR model in which fixed value is used to 

determine the market regimes. Moreover, the TACARR model can also be viewed as an
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asymmetric alternative to the ACARR and FACARR models. Both models treated price

ranges asymmetrically however the proposed TACARR model had the freedom to model

price volatility using a less (or equal) number of variables with compare to the FACARR 

(ACARR) model. Therefore, the TACARR model was an effective parsimonious model. 

Moreover, empirical studies showed that upward and downward price range data contained 

excess number of zero thus, some distributions such as lognormal distribution had to be 

discarded. However, in our proposed model, we analyzed the range data, which was 

positive in nature, hence we were able to consider positive support distributions to analyze 

the price range data.

3.1. THE ARMA REPRESENTATION OF TACARR M ODEL

This section derives the ARMA representation of the proposed TACARR model. 

Let define zero mean martingale difference process {%} such that:

The proposed TACARR (l, p, q) given in (3.1) can be rearranged as an ARMA 

process with order k  and q, where k  = m ax(p , q ) ,

% = Rt -  E  (Rt | Ft-1 ) = Rt - 4 ,
E  (% ) = E  (R t- I t  ) = 0,

cov (%, % - h) = E (%% - h) = 0 for h > 1

Rt - % =  + £  a \m) Rt- ,  +  X  j  (Rt -  j  -  % -  j ) ,n  (m )Rt - % =rnK ) +

i=1 j=1 j =1

k = m a x (  p ,q ) q

Here a {jm) = 0, for i > p  and j3(.m) = 0, for j  > q , where m= (U, D).
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3.2. THE UNCONDITIONAL EXPECTATION OF TACARR M ODEL FO R  
EACH M ARKET REGIM E

Under the stationary assumption E  (R  . ) = E  (R  ) = E  (A .), then the unconditional 

expectation of price range data can be derived as follows:

Let F,_, = { { R M  ,_,} be the sigma field generated from all the information set

up to time t-1,

E  (R, I Ft-, ) = E  (R  | { R }« , M , ) = A, = ®( + 1  R -i + ± R m,A - j ,
i=1 j=1

E E ( r \{r. c. m ,-. )]=e a ) f
i = E m)+± a im) R -i +± R m)A

V i=1
q

t - j
}=1 J

E (R  ) = E (A, ) = a [m' + ± a ',m] E  (R -1 ) + ± j  E (A,-. ),
i=1 j=1

E  (R  ) =

a (u)

1 - ± « ! u ]- ± $
j=1i=1

a (d)

1 - ± a ! d > - ± R/)
i=1 j=1

-,VR e U

, VR  e D

<

4. PARAM ETER ESTIM ATION M ETHOD

In this section the Maximum Likelihood Estimation (MLE) method was developed 

to estimate the proposed TACARR model parameters. Here, we considered two versions 

of the TACARR model based on the distribution of the residual terms {^}. In the

Exponential TACARR (ETACARR) model, the residuals of the price range process follow 

a threshold exponential distribution expressed as (4.1). The Lognormal TACARR
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(LNTACARR) process has residuals which follows a threshold lognormal distribution in 

which the parameters of the distribution are driven by market behavior presented in (4.4). 

Latter parts of this section, out-of-sample forecasting and performance evaluation methods 

were presented and discussed.

4.1. PARAM ETER ESTIM ATION M ETHOD FO R  EXPONENTIAL TACARR 
(ETACARR) M ODEL

Let | sjm-1 J be the sequence of independent and identically distributed exponential

disturbance term for a given market behavior m= (U =upward market, D =downward 

market) such that:

s t

Where cov (s fJ ̂ , s (D ))

s tU] ~ exp(1) i i d .,E (s tU]) = 1: c f t J > c1DD

stD) ~ exp(1)i i d ..E (s t(D)) = 1:C/,J} < C\Pt D (4 1)

= 0.The parameter vector 0  =  ( ^ U),a U , ),®D ,a!'D'), ^ 'D'>̂) can

be estimated by using the conditional likelihood function applying maximum likelihood 

estimation procedure.

4.1.1. The Log Likelihood Function for the ETACARR Model. The conditional 

distribution of Rt given the information up to t-1 can be expressed as follows:

( _ % )
{ 4 /

f{Rt -7 exp
A

A =<

A U) = « (U) ^ a ? )Rt-i A - j :CJU) > Cl(D) l ,t
i=1
p

j=1
q

4 D)=(o<D>+ Z a ! D)R - , A - j : CU1 < ClD1
i=1 j=1 (4.2)
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Therefore, the conditional likelihood function L (O  | F(_j ) and the log likelihood function

of the data l (O  | F(_j) can be derived as follows:

L (O  | F, ) = n  f  (R ,|F ,-1. 0 ) .
t=2

n
l(O  | Ft-1) = ln [L (O  | Ft-1)] = £ ln [ f  (R  | F,-p O )].

t=2
n ( T?

l (O  | Ft-1 ) = - £  ln (it,)+ R
t=i A (4.3)

4.2. PARAM ETER ESTIM ATION M ETHOD FO R  LOGNORM AL TACARR 
(LNTACARR) M ODEL

In this section, we employed the lognormal distribution to model the error term in 

the model. Let | s \m) J be the sequence of independent and identically distributed lognormal

disturbance term for a given market regimes m= (U=upward market, D=downward 

market) such that:

s t =1

f  e 2
s (J] ~ LN

s (D) ~ LN

V

^ e 2

(J |. Cp-
2 e U )

i.i.d;E ( s f }) = 1: C(J"] > C\(D) > c i ,t

\
-Dl-&
2 ;eD)

i i d ; E (s(D)) = 1: C(J ] < C\( D ) 
l ,t

J (4.4)

where cov(sSÛ . s \D̂ ) = 0. The maximum likelihood estimation procedure is used to 

estimate the parameter vectorO = (®J ,̂ a {(Ĵ ,^ Û , 0 D ,a (D), ^ (D), ^ ) , ^ ) )  .

4.2.1. The Log Likelihood Function for the LNTACARR Model. The

conditional distribution of Rt given the information up to t-1 can be expressed as follows:
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f  ( R JF - i . ® ) = )R
exp

)
ln (R  ) - ln (At ) +

e,2 A2
(Mt )

l = \
) + ± ^ )Rt-i + £ $ %  : Cft ) > CD

i=1 
p

j=1 
q

l t D> = <o'D)+ X « ('D)Rt-i + L $ ° 'R - j : C lt1 < c ((D)
t (4.5)

l i=1 j=1

Here, M t is the current market condition, as formulated in (3.2), which is driven by the 

information of upward and downward price range series up to time t-1. Therefore, the 

conditional likelihood function L (O  | F(_j) and the log likelihood function of the data

l (O  | F(_j) can be derived as follows:

L ( 0 |F , -1) = f  (R  | F,-1, O ),
n

1 (O  | F,-1) = ln [L (O | F,-1)] = X  ln [ f  (R  | F,-1, O )],

l ( 0 |F ,-1) = - 1 X
2 ,=2 )) + 2ln( R ) + 0 2

1

(Mt)
ln (Rt ) - ln ( ^  ) + -

a
2 2
(M)

(4.6)

The parameters for the proposed model were estimated by using the MLE method 

as discussed in the above section using in-sample data. Next, we evaluate the in-sample 

performance of the proposed TACARR model with other conditional heteroscedastic 

range-based model by comparing the Root Mean Square Error (RMSE) and the Mean 

Absolute Error (MAE) values.

RMSE =
X( R -R ,  X| R-R

N
■: MAE = ■

N

,=2

Here, R, is the price range at time , and R, be the predicted price range at time ,.
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4.3. OUT-OF-SAM PLE FORECASTING

Under out of sample forecasting, we used the rolling window approach to forecast

out-of-sample values. In the rolling window approach, first we divided the entire sample

period (sample size =T) into two periods namely in-sample period (in-sample size=N<T)

and out-of-sample period. The first one-step-ahead out-of-sample forecasting is carried out

using the all the N  in-sample data. The method is given bellow:

Let define, RVN (1) be the one step ahead forecast of RN+1 where RN+1 = XN+1sN+1.

Then:

Therefore, one step ahead forecast value RVN (1) is calculated by using the 

conditional expectation of range given information up to time N.

( f N+i = r vn (1)), then the sample window is moved to(2: N+1) to forecast (N+2)th 

observation ( f N+2). Next, we considered the window of (2: N+1) as the new in-sample data

and recalculated the model parameters based on this new data. After the estimation, the 

estimated parameters were applied to the one step ahead forecasting method in equation 

(5.1) to calculate R ,N+: (1) which the forecasted value is fo rf N+2. This process was

R n  ( 1 )  =  E  (  R n  + , |  f „  )  =  4  + ,N +1

(5.1)

After calculating the forecasted value for the (N+1)1,th observation

repeated until all the future values were estimated in the out-of-sample data. Moreover, to 

check the forecasting accuracy of the proposed model with other competitive range models 

DM test was used (see Diebold & Marino, 1995).
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5. SIMULATION STUDY

We investigated the finite sample performance of estimators using a simulation 

study. We used ‘nloptr’, which is a nonlinear optimization function of R software to 

generate the relevant data. Length of the time series studies was set to n = 1000 and 

n = 3000, and s = 1000 simulations runs were carried out for each parameter sample size 

combination. We carried out this simulation study for the two different error distributions 

such as exponential and lognormal. The idea of the proposed model was motivated by the 

TARR model, and in both TARR and TACARR models we had different regimes. In this 

study, we proposed two TACARR type models namely exponential TACARR and 

lognormal TACARR model. In this simulation study, we considered the different 

parameter combinations for ETACARR (1, 1, 1) model and LNTACARR (1, 1, 1). 

Simulation study consisted of two parts. First, we generated the price range data for the 

proposed ETACARR model and the LNTACARR model based on the equation (4.1) -

(4.2) and (4.4) -  (4.5), respectively. Then, we maximized the profile likelihood functions

(4.3) and (4.6), for the ETACARR model, and LNTACARR model respectively using the 

constrained nonlinear optimization function ‘nloptr’ in R. The Mean Absolute Deviation 

Error (MADE) is utilized as the evaluation criterion. The MADE is defined as,

1 -y I *
— ̂  U. -  where s is the number of replications. Simulation results are reported in Table

j=1

1 and Table 2.

Table 1 presents the simulation study results for the ETACARR model, and

according to the results, we can see that MLE method did a good job in estimating model 

parameters. Accuracy increased with the size of the sample size.
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According to the simulation results presented in Table 2, we can see that 

LNTACARR model parameters were estimated with higher accuracy by using the MLE 

method mentioned in the above equation (4.6). It can also be seen that MADE value was 

decreasing when the sample size was increasing.

Table 1: Means of MLE estimates and MADE (within parentheses), for ETACARR
model with order (1, 1, 1)

Upward M arket Downward M arket

(u) y  ’ (u) a  ’ 0 " ) (D) y  ’ (D) a  ’ 0 ° '
True

Parameter 0.01 0.10 0.80 0.10 0.20 0.70

n=1000 0.0170
(0.0152)

0.0977
(0.0253)

0.7864
(0.0449)

0.0996
(0.0248)

0.1982
(0.0340)

0.7045
(0.0599)

n=3000 0.0130
(0.0101)

0.0995
(0.0142)

0.7943
(0.0283)

0.1003
(0.0153)

0.2004
(0.0196)

0.6995
(0.0367)

True
Parameter 0.01 0.30 0.60 0.10 0.20 0.50

n=1000 0.0132
(0.0096)

0.3011
(0.0379)

0.5867
(0.0583)

0.1001
(0.0170)

0.1964
(0.0407)

0.5033
(0.0769)

n=3000 0.0110
(0.0058)

0.3007
(0.0223)

0.5955
(0.0349)

0.1008
(0.0098)

0.2006
(0.0239)

0.4965
(0.0443)

True
Parameter 0.05 0.15 0.50 0.10 0.20 0.30

n=1000 0.0551
(0.0247)

0.1542
(0.0395)

0.4702
(0.1581)

0.0985
(0.0261)

0.1959
(0.0462)

0.3122
(0.1582)

n=3000 0.0517
(0.0126)

0.1505
(0.0221)

0.4897
(0.0809)

0.1008
(0.0154)

0.2015
(0.0264)

0.2944
(0.0933)



Table 2: Means of MLE estimates and MADE (within parentheses), for LNTACARR model with order (1, 1, 1)

n=3000 n=1000 True
Parameter n=3000 n=1000 True

Parameter n=3000 n=1000 True
Parameter

0.0490
(0.0077)

0.0502
(0.0122) 0.05 0.0106

(0.0054)
0.0125

(0.0085) 0.01 0.0110
(0.0075)

0.0131
(0.0109) 0.01 8

3

0.1525
(0.0209)

0.2080
(0.0597) 0.15 0.3002

(0.0235)
0.2974

(0.0394) 0.30 0.0998
(0.0102)

0.0983
(0.0178) 0.10 a

3

Upward
Market0.5037

(0.0514)
0.4430

(0.0928) 0.50 0.5974
(0.0338)

0.5906
(0.0551) 0.60 0.7980

(0.0204)
0.7950

(0.0318) 0.80

0.0898
(0.0026)

0.0911
(0.0046) 0.09 0.9968

(0.0279)
0.9924

(0.0489) 1.00 0.2491
(0.0071)

0.2483
(0.0125) 0.25 q w

0.1008
(0.0071)

0.0997
(0.0111) 0.10 0.1002

(0.0092)
0.1005

(0.0157) 0.10 0.1002
(0.0126)

0.1000
(0.0195) 0.10 b̂

0.2136
(0.0200)

0.2009
(0.0298) 0.20 0.1995

(0.0233)
0.1991

(0.0410) 0.20 0.2000
(0.0166)

0.1997
(0.0289) 0.20 b̂

Downwar

0.2824
(0.0468)

0.3007
(0.0727) 0.30 0.5000

(0.0428)
0.5007

(0.0756) 0.50 0.7002
(0.0302)

0.7016
(0.0482) 0.70 •5.

d Market

0.0401
(0.0011)

0.0398
(0.0021) 0.04 0.9993

(0.0274)
0.9947

(0.0516) 1.00 0.6401
(0.0171)

0.6379
(0.0317) 0.64 w
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6. EM PIRICA L RESULTS

6.1. THE DATA SET

In this study, IBM stock indices were used to gauge the performance of the 

proposed TACARR model and compare it with the competitive models. The sample 

periods for the IBM data spanned from January 01, 2002 to March13, 2020. Daily values 

for the opening price, closing price, high price, low price, and adjusted price were reported 

over the span of the study period. The data set was obtained from the Yahoo Finance 

(https://finance.yahoo.com/) by using the ‘quantmod’ package in R software. The data set 

was divided in to two sub samples: the first sub sample which was also known as in-sample 

period and this sample was used to estimate the model parameter and in-sample 

predictions. In-sample periods for IBM spanning from January 01, 2002 to December 31, 

2019. The second sub sample, which was also called as out-of-sample period, and this 

sample was used for out-of-sample forecasting. Out-of-sample periods for IBM, elapsed 

from January 1, 2020 to March 13, 2020. Table 3 presents the summary statistics of the 

IBM range data, which was calculated as given in (2.1).

Summary statistics for the IBM stock index is presented in the Table 3. According 

to the table we detected the high persistence on the IBM stock. For an example, the Ljung- 

Box statistics results for lags 1, 5 and 22 show that all form of range data exhibit highly 

significant correlations. Since the upward component had higher Ljung-Box test statistic 

values for all lags, than the downward price range component specified that the high 

persistence exist in the downward price range series. The price range data did not have zero 

range, but upward range and downward range components had a considerable number of

https://finance.yahoo.com/
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zero data points. Positive skewness and absence of zeros in range data suggested positive 

support pdf, such as a lognormal can be used. By contrast, upward range and downward 

range components were positively skewed with notable numbers of zeros that implies a 

positively skewed nonnegative support pdf, such as an exponential distribution, must be 

used to model these components.

Table 3: Summary statistics of the IBM price range data

Statistics Price Range Upward Price 
Range

Downward Price 
Range

Number of Days 4581 4581 4581

Minimum 0.2928 0.0000 0.0000

Mean 1.6834 0.8717 0.8118

Maximum 11.2642 8.0510 8.4991

Standard Deviation 1.0774 0.8279 0.8741

Skewness 2.7976 2.4293 2.7510

Number of Zeros 0 107 160

Q (1) 1891.7*** 235.45*** 467.34***

Q (5) 8013*** 923.36*** 2954***

Q (22) 25498*** 3271.1*** 5915***

Note: *** indicates 1% significance level.

Figure 1: IBM price range data for the period of 01/01/2002 to 03/13/2020
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According to the IBM price range data, as shown in Figure 1, the price volatility 

was high at the beginning of the sample period and it decreased. Then the daily price 

volatility fluctuated rapidly during 2007-2009 recession due to the financial crisis. After 

the economic bubble ended volatility dropped down and again at end of the year 2019 to 

the beginning of the year 2020, volatility was increased. This is due to the Covid-19 

pandemic and its influence on the financial market.

6.2. IN-SAMPLE ESTIM ATION RESULTS

In this paper, we introduced two versions of the TACARR models based on the pdf, 

which were used to model the residuals distribution. For an example the ETACARR model 

as mentioned in (4.1) - (4.2), used the exponential density to model the disturbance term 

while the LNTACARR model (4.4) -(4.5), used the lognormal densities to model the 

residual terms, which were representing different market segments. It was vital to identify 

which model better fit the dynamic structure of the price range data. To do that 

Kolmogorov-Simonov (KS) test was employed. The KS test was used to compare whether 

the standardized residual series followed the reference distribution. Moreover, we 

calculated the LLF (Log Likelihood Function), AIC (Akaike Information Criteria), and 

BIC (Bayesian Information Criteria) for each model and compared the results. The model 

with smaller AIC, BIC values and larger LLF value were considered to be a significantly 

better model than the other. Furthermore, diagnostic tests, such as the Ljung-Box test, for 

residuals were considered to check whether residuals were independent and identically

distributed.
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Parameter estimation results for the IBM price range data for the ETCARR and 

LNTACARR are summarized in the Table 4, and it contains two panels where upper panel 

(A) presents the parameter estimation results and model selection statistics such as LLF, 

AIC and BIC values. The lower panel (B) summarizes the diagnostic test results for the 

standardized residuals. The KS tests for the exponential and lognormal cases were 

separately considered to identify whether the residual series followed the hypothesized 

distribution with the estimated parameters. Then Ljung-Box test statistics for 1, 5 and 22, 

lags with the corresponding p-values were used to check whether the residual series are 

exhibited any serial correlations.

According to Table 4, Lognormal TACARR (/, 1,1) models for all the different 

cases of / values, had smaller AIC, smaller BIC and larger LLF values when compared to 

its exponential alternative. Hence, it suggests that the LNTACRR models fit the data better 

than its exponential alternative. The LNTACARR models indicate that upward and 

downward markets have different variance parameters ( 6 ^  ^ 6 f t ) .  The persistence

estimates for the downward market is higher than that of the upward market 

( o f t  ̂+ f t Û < a>D) + f t D)). This shows that the downward market was more volatile than 

the upward market. Moreover, KS tests for the LNTACRR models suggest that the 

standardized residuals followed the hypothesized threshold lognormal distribution. 

However, for the ETACARR models the standardized residuals did not follow the proposed 

threshold exponential distribution and this proven by the KS test statistics. Based on the p- 

values for the Ljung-Box test for lags 1, 5, and 22, it can be concluded that we failed to 

reject the null hypothesis at 0.01 significance level, and it suggest that residual series were
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not serially correlated. Therefore, it can be concluded that the LNTACARR model fits 

better than the ETACARR model for all three cases of l values.

Table 4: Estimation and diagnostic test results of the TACARR models with exponential 
and lognormal disturbance term for IBM data

Table 4A: Estimation of the TACARR model (standard errors)
TACARR (22,1,1) TACARR (5,1,1) TACARR (1,1,1)

Exponential Lognormal Exponential Lognormal Exponential Lognormal

/ '  >
0.0569

(0.0324)
0.0535

(0.0119)
0.0749

(0.0359)
0.0684

(0.0129)
0.0855

(0.0493)
0.0798

(0.0181)

a  >
0.1680

(0.0432)
0.1683

(0.0164)
0.1776

(0.0428)
0.1674

(0.0155)
0.1615

(0.0395)
0.1573

(0.0147)

p  )
0.7944

(0.0544)
0.7960

(0.0207)
0.7682

(0.0543)
0.7831

(0.0197)
0.7672

(0.0553)
0.7777

(0.0206)

^ )
0.1316

(0.0039)
0.1361

(0.0039)
0.1386

(0.0040)

(D) )
0.0554

(0.0316)
0.0488

(0.0114)
0.0364

(0.0366)
0.0321

(0.0135)
0.0313

(0.0547)
0.0248

(0.0198)

a (D)
0.2301

(0.0455)
0.2175

(0.0168)
0.2169

(0.0438)
0.2138

(0.0163)
0.2373

(0.0456)
0.2291

(0.0166)

f t  D)
0.7374

(0.0562)
0.7535

(0.0207)
0.7680

(0.0559)
0.7720

(0.0209)
0.7627

(0.0631)
0.7709

(0.0230)
0.1411

(0.0042)
0.1359

(0.0040)
0.1313

(0.0040)
LLF -6547.26 -3609.47 -6546.68 -3605.79 -6544.64 -3592.76
AIC 13106.52 7234.95 13105.36 7227.57 13101.27 7201.51
BIC 13145.03 7286.30 13143.87 7278.92 13139.79 7252.86

Table 4B: Diagnostic test results of the TACARR model (p-values)
TACARR (22,1,1) TACARR (5,1,1) TACARR (1,1,1)

Exponential Lognormal Exponential Lognormal Exponential Lognormal

KS
0.3578

(0.0000)
0.0254

(0.1080)
0.3593

(0.0000)
0.0274

(0.0672)
0.3609

(0.0000)
0.0252

(0.1136)

Q (1)
4.615

(0.3169)
6.2995

(0.0121)
5.2874

(0.0215)
7.014

(0.0081)
3.7791

(0.0519)
5.2215

(0.0223)

Q (5)
10.672

(0.0583)
12.26

(0.0315)
11.805

(0.0376)
13.271

(0.0210)
9.8418

(0.0799)
11.281

(0.0461)

Q (22)
30.55

(0.1102)
33.61

(0.0538)
32.457

(0.0699)
35.575

(0.0337)
28.95

(0.1463)
31.66

(0.0834)
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Figure 2: ACF plot of the LNTACARR (1, 1, 1) residuals

The ACF plot indicat that all residual of the LNTACARR (1, 1, 1) were within the 

95% confidence interval. Therefore, graphically, it is seen that residuals are independent 

and identically distributed.

In the next sub section, we discuss how to select the optimal lag (/) in the proposed 

LNTACARR model. The optimal lag selection is an important task because it decides how 

many previous periods (i.e., day, week, or months) that we need to consider for 

categorizing the market. Here we considered three different lag values: 1, 5 and 22. In the 

case where /=1determined whether the status of the market regime was an upward market 

or downward market, based on the previous days upward and downward range data. Put 

simply, /=1, considered the most recent financial information to decide the market regime. 

Similar to that, when /=5 market is segregated based on the volatility information of the 

past business week, while the case of /=22 divided the market into two regimes, based on 

the market information flow throughout last business month. (Please note econometrics 

and finance literature 5 days is considered as one business week, and 22 days equals one
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business month). Since the number of lags became the deciding factor of market conditions, 

it is important to select the optimal lags. To select the optimal lags, we compared the AIC, 

BIC and LLF values of LNTACARR (l, 1, 1) model and picked the suitable l. To be more 

specific, we selected the LNTACARR (l, 1, 1) model with lowest AIC, BIC and largest 

LLF values. According to Table 4, the LNTACARR (1, 1, 1) model had the lowest AIC 

and BIC values and also largest LLF value; therefore, for the IBM data l=1, is the optimal 

number of previous lags to decide the market structure. This concludes that most recent 

market information, such as previous day financial news, is vital to deciding the status of 

the market regime or the current market structure rather than the financial knowledge 

gathered from the previous business month. This can also be viewed as, LNTACARR 

model with l=1 is more sensitive to the market information through the self-adjusting 

threshold component. This threshold component decide the market status by comparing 

upward and downward lagged price range data. Since price range data is not treated 

symmetrically, as was done in CARR models, we can say that the proposed model 

addresses the asymmetric behavior in the financial market.

Among all the TACARR (l, 1, 1) models, we accounted from the previous section, 

we finally selected LNTACARR (1, 1, 1) model as our candidate model for the IBM stock 

data. We also used this model to compare and contrast the adequacy with other conditional 

heteroscedastic range-based models.

) = 0.0798 + 0.1573R^ + 0 .7 7 7 7 ^  : R% >
A =

S  1 (D)

A t(D) = 0.0248 + 0.2291R j + 0.7709A  : R ^  < R% 

s ( U) ~ L N (-0.0693;0.1386) : R"_x > R ^  

s \ D) ~ L N (-0.0656;0.1313) : R"_x < R d_/
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To gauge the in-sample performance of the chosen LNTACARR (1, 1, 1) model 

we considered RMSE and MAE values. Then, we compared the accuracy measurements 

with other competitive alternative range models, such as the LNCARR (1, 1), ACARR 

(1, 1), FACARR (1, 1) and LNARR (1, 1). However, the empirical study showed that 

upward and downward ranges had large numbers of zeroes for the IBM price range data. 

Due to this, lognormal distribution cannot be considered to model upward and downward 

price range components. Therefore, exponential upward and downward disturbance terms 

were used in the ACARR and the FACARR models. Moreover, we extended the 

comparison between models for the 2007-2009 economic recession period.

Based on the comparison results presented in the Table 5, the proposed 

LNTACARR model had the lowest RMSE and MAE values for the in-sample period when 

compared to that of the other candidate models. This result suggested that with respect to 

the model accuracy measurements, the proposed model performed slightly better than the 

others. Moreover, during the economic recession period, the lowest RMSE value was 

recorded in LNTACARR model. However, MAE value was lower in the FACARR model. 

This implied that the above model maintains higher prediction accuracy and more suitable 

to analyze the high volatile data with compared to the LNCARR (1, 1), ACARR (1, 1), 

FACARR (1, 1) and LNTARR (1, 1) models.

In-sample prediction for the LNTACARR model with order (1, 1, 1) for IBM data 

is presented in the Figure 3. According to the figure the proposed model had the same 

structural pattern that can be seen in the observed data. When there was a period with high 

volatilities, the LNTACARR model also estimated the high values for these periods.
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Table 5: In-sample comparison between LNCARR (1, 1), ACARR (1, 1), FACARR 
(1, 1), LNTARR (1, 1) and LNTACARR ( 1, 1) for IBM data

Table 5A : Model performance comparison during full in-sample period

Statistic
LNCARR

(1,1)

ACARR

(1,1)

FACARR

(1,1)

LNTARR

(1,1)

LNTACARR

(1,1,1)

RMSE 0.7289 0.7568 0.7241 0.7276 0.7224

MAE 0.4989 0.5139 0.4969 0.4967 0.4946

Table 5B: Model performance comparison during economic recession period

Statistic
LNCARR

(1,1)

ACARR

(1,1)

FACARR

(1,1)

LNTARR

(1,1)

LNTACARR

(1,1,1)

RMSE 0.9347 0.9396 0.9233 0.9370 0.9224

MAE 0.6970 0.6815 0.6890 0.6983 0.6890

Figure 3: In-sample prediction (green) of the LNTACARR (1, 1, 1) model for the IBM
price rage data (red)
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6.3. OUT-OF-SAM PLE FORECASTING

Out-of-sample performance of the proposed Lognormal TACARR (1, 1, 1) model 

was compared with four other models namely the LNCARR (1, 1), ACARR (1, 1), 

FACARR (1, 1), and the LNTARR (1, 1). In this study, the out-of-sample period started 

on January 01, 2020 and ended on March 13, 2020. Length of the out-of-sample period 

equals to 50 days. The out-of-sample period showed high volatility due to the impact of 

the Covid-19 Pandemic on the financial market. First, the RMSE and MAE values were 

calculated and used these values as the performance indicator to gauge the performance of 

the proposed model. These results are presented in the Table 6. Then, we considered the 

Diebold & Marino (DM) test to check whether the proposed LNTACARR model with 

order (1, 1, 1) had a better forecasting accuracy than the other competitive models. In this 

test, the null hypothesis was that the LNTACARR (1, 1, 1) model had lower forecasting 

accuracy. The alternative hypothesis was stated that the one step ahead forecasted value of 

the LNTACARR (1, 1, 1) model was more accurate than the forecast values of its 

competitive model. The DM test result is summarized in Table 7.

Table 6: Out-of-sample comparison between LNCARR (1, 1), ACARR (1, 1), LNTARR 
(1, 1) and LNTACARR (1, 1, 1) for IBM data

Statistic LNCARR
( M l

ACARR
( M l

FACARR
( M l

LNTARR
( M l

LNTACARR
(1,1,1)

RMSE 1.2720 1.5203 1.2205 1.2828 1.1858

MAE 0.8371 0.9414 0.8024 0.8440 0.7752

According to Table 6, the LNTACARR model with order (1, 1, 1) had the lowest 

RMSE and MAE when compared to the other four models. Therefore, based on these
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accuracy measurements, it was concluded that proposed model performs better than 

LNCARR, ACARR, FACARR and LNARR models.

Figure 4 exhibits the graphical comparison LNTACARR model for out-of-sample 

forecasting values with LNCARR, ACARR and LNTARR models. According to the 

comparison, the proposed model has the ability to pick the high volatility values when 

compared to the other three models. In general, all the models in this study had larger 

forecasting errors during the out-of-sample period because this time spans represented the 

early COVID -19 days, and this was a high volatile period. However, the proposed model 

quickly adapted to the situation based on the past market volatility, hence it performed 

slightly better than the other four models.

Table 7: Diebold & Marino (DM) test results on IBM out-of-sample data

Null Hypothesis
DM test statistics 

(p value)

Forecast LNCARR (1,1) model is more accurate than that of -2.4721

the LNTACARR (1,1) (0.0067)

Forecast ACARR (1,1) model is more accurate than that of the -2.7660

LNTACARR (1,1) (0.0028)

Forecast FACARR (1,1) model is more accurate than that of the -2.2861

LNTACARR (1,1) (0.0111)

Forecast LNTARR (1,1) model is more accurate than that of the -2.7505

LNTACARR (1,1,1) (0.0032)

According to Table 7, it was concluded with 95% confidence that the propose 

LNTACARR model had higher forecasting accuracy than the other asymmetric range- 

based heteroscedastic models, such as LNCARR, ACARR and LNTARR.
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Figure 4: The out-of-sample forecast value comparison for IBM price range data

7. CONCLUSIONS

In this paper, we proposed Threshold Asymmetric Conditional Autoregressive 

Range (TACARR) model, which is a threshold heteroscedastic range-based model for 

modeling and forecasting financial price range data. We introduced a novel method 

whereby the threshold values self-adjust as new information arrives. Therefore, the 

proposed model is an effective approach for capturing the financial asymmetric behavior 

in the market by adjusting the threshold value according to the market behavior. In this 

study two market behaviors (regimes), namely upward market and downward markets were 

considered. Since the market regime is decided based on the past values of upward and 

downward price range data, it can be seen as a tool for dynamically capturing the regime 

switching while capturing the asymmetric behavior in price range volatility. Also, we allow 

the disturbance term in the model to behave differently in each market regime. We also 

investigated the best time frame over which switching decision should be made, based on
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historical data. We compared previous one day, previous one week, and previous one 

month as periods over which a switching decision can be made. In addition, we developed 

maximum likelihood estimation methods to estimate the model parameters for both 

ETACARR and LNTACARR models, which a simulation study showed as providing 

accurate parameters estimates. IBM price range data was used for to illustrate the model 

fit to empirical data. This study results show that the LNTACARR model performed better 

than its exponential alternative across all the different periods considered for making 

switching decisions. Moreover, we found that switching based on previous day’s upward 

and downward ranges provided the best fit. For the in-sample and recession data, the 

predicted values of LNTACARR (1, 1, 1) model had higher accuracy when compared to 

the LNCARR, ACARR, FACARR and LNTARR models. Diagnostic test results for the 

model suggested that the residuals were independent and identically distributed, and it 

followed a lognormal distribution. Finally, out-of-sample forecasting evaluation was 

considered and according to the RMSE and MAE values the LNTACARR performed 

slightly better than the other four models. Furthermore, the DM test for the forecasting 

accuracy indicated that the proposed model had more accurate forecast than LNCARR, 

ACARR, FACARR and LNTARR models for the IBM price range data.
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IV. AN IN TEG ER GARCH M ODEL FO R  POISSON PROCESSES W ITH 
TIM E VARYING ZERO  INFLATION

ABSTRACT

A time-varying zero inflated Poisson process is proposed to model a time series of 

count data with serial dependence. The model assumes that the intensity of the underlying 

Poisson Process evolves according to a generalized conditional heteroskedastic (GARCH) 

type model. The proposed model is a generalization of the zero-inflated Poisson Integer 

GARCH model, as proposed by Fukang Zhu in 2012, which in return can be considered a 

generalization of the Integer GARCH (INGARCH) model proposed by Ferland, Latour, 

and Oraichi in 2006. The proposed model builds on these previous formulations by 

incorporating flexibility to allow the zero inflation parameter to vary over time, according 

to a deterministic function or to be driven by an exogenous variable. Both the Expectation 

Maximization (EM) and the Maximum Likelihood Estimation (MLE) approaches were 

presented as possible estimation methods. A simulation study showed that both parameter 

estimation methods provided good estimates. Application to two real-life data sets showed 

that the proposed INGARCH model with the time varying zero inflated component 

provided a better fit than the traditional zero-inflated INGARCH model.

Key W ords: Poisson Process, Integer-valued Time Series, Count Data, GARCH 

models, Periodicity, Zero Inflation.
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The standard Poisson point process, which assumes statistical independence 

between observations, is not suitable for modeling the time series of counts that display 

serial dependence. One way to address this deficiency is to define a Poisson process with 

its conditional mean at a given time dependent on the past conditional means and or past 

counts. Rydberg and Shepard (1999) proposed such a model, where the current conditional 

mean is a linear function of both the observed count and the conditional mean at the 

pervious time point. Similar models were also proposed by other authors, and these were 

discussed in Chapter 4 of the book by Kedem and Fokianos (2002). Andreas Heinen (2003) 

generalized the lag one model of Rydberg and Shepard to include an arbitrary number of 

lags for both the past counts and past means and named it the Autoregressive Conditional 

Poisson model with lags p  and q (ACP (p, q)). The formulation of this model resembles 

that of a generalized conditional heteroscedastic (GARCH) model, but unlike the GARCH 

formulation that models the conditional variance of the process, the ACP models the 

conditional mean. Heinnen, however, derived the properties of his model only for the ACP 

(1, 1) case and properties for the general case was investigated by Gharamani and 

Thavaneswaran (2009), who referred to the Heinen paper as the origin of the ACP model. 

Independently, Ferland, Latour, and Oraichi (2006) proposed to the authors what he termed 

the Integer GARCH (INGARCH) process, which is essentially the same as the ACP model. 

The INGARCH (or ACP) model, however, did not accommodate zero inflation, and Zhu 

(2012a) proposed a zero inflated INGARCH formulation to incorporate the ability to model 

count data with zero counts that cannot be fitted well by the regular INGARCH model. The

1. INTRODUCTION
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zero inflation probability in Zhu’s model is constant over time, which is a drawback in 

situations where the relative number of zero counts tends to vary seasonally or with time. 

The proposed time-varying zero inflated Poisson INGARCH model (TVZIP-INGARCH) 

was developed to address this shortcoming.

Modelling integer-valued time series was discussed extensively in a broad range of 

disciplines, such as biostatistics and finance. Integer-valued Autoregressive (INAR) 

Poisson models were introduced by McKenzie (1985) as well as by Al-Osh and Alzaid 

(1987) for analyzing equidispersed count data with serial correlation. Quddus (2008) 

conducted an empirical study using an INAR model to analyze traffic accidents in Great 

Brittan and compared the performance with the results from fitting a real-valued 

Autoregressive Moving Average (ARMA) model; he found that the INAR Poisson model 

performed well when the counts are relatively low. Another formulation developed for 

analyzing count data time series was the Generalized Linear Autoregressive Moving 

Average (GLARMA) model (Davis et al., 2003). In this model, the conditional mean of 

the Poisson process depends on the past count information as well as current and past 

values of explanatory variables. In their approach, the logarithm of the conditional mean 

of the Poisson process expressed a linear function of covariates, with the noise process 

rewritten as an ARMA model. As mentioned before, the Autoregressive Conditional 

Poisson (ACP) model, which is similar to the observation driven GLARMA model, as 

introduced by Andreas Heinen (2003), addresses the common issues in time series count 

data such as discreetness, over dispersion and serial correlation. In ACP models, counts are 

assumed to be generated via a Poisson distribution with its conditional mean (intensity) 

obeying an autoregressive process expressed either by using the classical Generalized



140

Autoregressive Conditional Heteroskedastic (GARCH) model (Bollerslev, 1986) or the 

Autoregressive Conditional Duration (ACD) model (Engle and Russell, 1998). In contrast 

to the GLARMA model, the ACP formulation models the conditional mean of the Poisson 

process directly, rather than its logarithm. The unconditional variance of the count variable 

in the ACP model is higher than the unconditional expectation. This class of models 

accommodates both over dispersion and autocorrelation. As mentioned previously, the 

ACP model is exactly the same as the model proposed by Ferland et al. (2006). When 

discussing published literature on this topic, these models are referred to as ACP or 

INGARCH, interchangeably, based on what the authors of the cited works use in referring 

the model. When not discussing a particular publication, itis referred to as the INGARCH 

model.

The ACP formulation utilizes the classical GARCH (p, q) model to describe how 

the conditional mean of a Poisson process propagates over time. The ACP model (as well 

as the INGARCH Model) of order (p, q) is defined as follows:

X, \Y,  _1~ P ( J ); V/ e Z
p q

K ~ a 0 + 2  a iX /-i + 2  P A -  j >
j=i (11)

where {X t : t e □ } is the count process, \  defines the conditional mean of X t given the

past information, a 0 > 0, a  > 0, Pj > 0, i = 1,..., p , j  = 1,..., q, p  > 1, q > 0 with the added

p q
condition 0 < 2  a  + 2 p  < 1. Note that some of the results presented in this paper are

i=1 j=1

available in Heinen (2003) but are reported herein for completeness. In addition to
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presenting the model, Heinen also derived the stationarity conditions, covariance functions, 

and addressed the problem of maximum likelihood estimation (MLE) of the parameters.

Testing the parameters of a Poisson autoregressive model was considered by Zhu 

and Wang (2011). To address the scarcity of literature available in the general case of 

INGARCH (p, q) models, Weib (2008) extended the previous results and derived the set 

of Yule-Walker type equations for the autocorrelation function for the general INGARCH 

case. As pointed out by several authors (Weib, 2008 and Zhu 2012b), the INGARCH 

formulations area popular set of tools utilized in modeling the over-dispersion and serial 

dependency inherent to count data. Negative Binomial (NB), Generalized Poisson (GP), 

and Double Poisson (DP) are well known discrete distributions that can also be used as an 

alternative to the Poisson process (Zhu, 2012c). Combining such models with a zero 

inflation component is a natural step.

Zhu (2011) discussed the modelling of integer valued time series with over 

dispersion and handling potential extreme observations. Zhu (2012b) generalized the 

Poisson INGARCH process to handle both over dispersion and under dispersion cases. 

Further, he provided real examples for the proposed model. In this paper, Zhu used a 

maximum likelihood method to estimate the parameters. A negative binomial INGARCH 

model (NB-INGARCH), which is an alternative to the Poisson INGARCH model, was 

proposed and the stationary conditions and the autocorrelation function of the process were 

obtained by Ye, Garcia, Pourahmadi, and Lord (2012). These authors also allowed the 

negative binomial INGRACH model to incorporate covariates, so that the relationship 

between a time series of counts and correlated external factors could be properly modeled. 

Zhu (2012a) extended his previous work in Zhu (2011) and introduced the zero-inflated
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Poisson and zero-inflated negative Binomial integer-valued GARCH models, and he 

showed how the EM algorithm can be used to estimate the parameters of the model. The 

underlying processes in Zhu’s models are based on either zero-inflated Poisson or zero- 

inflated negative binomial, but they do not allow such zero inflation to be varied by time 

or influenced by any external factor.

Some empirical time series count data with large number of zero counts display 

strong cyclical behavior or seasonality with respect to the observed zero values. Ignoring 

this time varying property of the zero inflation parameter decreases the performance of the 

model. Recognizing this, Yang (2012), discussed the importance of modeling zero inflation 

as a time varying function. In his article, he assumed that both the zero inflation and the 

intensity parameter is driven by the linear combination of past observations of exogenous 

variables and connects them to the mean of the count data via a log link function.

We proposed a somewhat different approach. In our approach, it is the zero inflation 

probability, rather than the mean of the Poisson process that is allowed to be governed by 

exogenous variables. We also allow the zero inflation probability to be driven by a 

deterministic function, such as a sinusoidal wave. In addition, the intensity of the Poisson 

process is assumed to vary dynamically through a GARCH type model. Thus, the 

INGARCH part of the proposed model can be viewed as observation driven, in the sense 

that recursive substitutions can be employed to show that the current intensity of the 

process conditional on the past is a linear function of past observations.

The remainder of this paper is organized as follows: In Section 2, the Time Varying 

Zero Inflated Poisson INGARCH model (TVZIP-INGARCH) with a deterministic 

cyclically varying zero-inflation component is introduced; thereafter, the TVZIP-
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INGARCH model in which the zero-inflation parameter will be driven by an exogenous 

set of stochastic variables is discussed. Parameter estimation procedures are presented in 

Section 3, which is followed by the simulation study presented in Section 4. Results and 

interpretations of the results based on fitting the proposed model to empirical data are 

presented in Section 5. A discussion and conclusions are presented in Section 6.

2. THE TIM E VARYING ZERO  INFLATED INGARCH M ODEL

As Zhu (2012a) supplied, probability mass function (pmf) of a zero inflated Poisson 

model with parameter vector (A,®), with representing the count, can be written in the

following form:

p  (x  = k  ) =  ® S k ,0 +(1 - ®)
k _ - AA ke

k !

Sk ,0 = ■

k  = 0,1,2,..., w h e re o < ® < l and

1; k = 0
0; k * 0.

Further, Zhu (2012a) presented the mean and the variance of the distribution as follows:

E ( X  ) = A(1 -® )  and Var ( X ) = A(1-® )(1 + A ® ) >  E ( X ) for 0  < ® <  1 .

Moving on to define the time-varying zero inflated INGARCH model, {X t :(e  } 

is a discrete time series of count data, and also Ff-1 is the sigma field generated by 

{X t :l < t -1} .The conditional distribution of X t given Ft-1 is described by a zero inflated 

Poisson distribution (ZIP) with parameter vector (A ,® ) . Then, X t | FM ~ ZIP (A ,® )

where,
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P  (X, = k |F ,- i) 

P  (X, = k  | F,-i)

1 k -—c. \ —t e —
= 0 A,0 + (1 - 0 ,  ) ^ “  ,

0  +(1 - 0) e~—; k = 0,
= < —ke~—

(1 - a t)—----- ;k  ^  0.
v u  k ! (2.1)

The dynamic propagation of the conditional mean of the Poisson process is defined by 

—* = « 0 + ^ a ,X t-I + ^ P j —t- j , where >0;i = 1,2,3,...p ; j  = 1,2,3,...,q ;p  > 1,q > 1, and
i=1 j=1

t e  □ .Furthermore, o t = g(V (, r )  e (0 ,l) V  t e □ , is a function of variables, propagating 

over time, which are later used to model the time varying zero inflation function. Note that 

elements of the vector Vt may consist of stochastic exogenous variables that vary with 

time, or it may be a scaler equal to time t. In addition, r  denotes vector of parameters. It 

is assumed that 0 < cot < 1 for all f e l l .

The above model is denoted by TVZIP-INGARCH (p, q). If p  > 0 and q = 0, then 

the model becomes a TVZIP-INARCH model with orderp  or in abbreviated form TVZIP- 

INARCH (p). The conditional mean and conditional variance of X , are given by the 

following equations:

E (Xt lF*-1 ) = (1 -0 t) —, Var (X * | Ft-1 ) = (1 - 0t ) — (1+ 0 —  ). (2.2)

See Appendix A., for the derivation of the conditional mean and conditional variance.

The conditional variance to conditional mean ratio or the dispersion ratio of ZIP 

distribution is:

Var ( X*|F* - )  
E  ( X* | F* | )

( ! - 0 t) — (1 + 0 —  ) 
( ! - 0 t ) —

> ( 1 + —0  ) (2.3)
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The result in (2.3) indicates that TVZIP-INGARCH(p, q) can be used to model integer 

valued time series with over dispersion, if  the values of 0t bounded below by a positive 

constant.

2.1. CASE 1: ZERO  INFLATION DRIVEN BY A DETERM INISTIC FUNCTION 
OF TIM E

It is assumed that the zero inflation function 0t = g  (Vt,T ) is such Vt is a scaler 

equal to t. For illustrative purposed we will assume the function g  is defined as follows:

0, = g (Vt, E) = A sin —  11 + B  cos
l  S J

f  2n  ^
— t 1 + C

l  S J
(2.4)

where S is the seasonal length, and T =
f  A )  
B

l C J

As mentioned above, the time-varying zero inflation function 0t = g  (Vt, T) should 

always be bounded between zero and one. The values of A, B , and C needed to satisfy the 

above criterion are derived in Appendix B. Note that a simple example is used where the 

function g  consists of a sine function and a cosine functions of equal period, but g  could be 

any other function that, with proper selection of parameters, can be bounded between zero 

and one.

2.2. CASE 2: ZERO  INFLATED FUNCTION DRIVEN BY AN EXOGENOUS 
VARIABLES

The above model also accommodates the case where the zero inflation probability 

is determined by one or more exogenous variables. In this case g  (Vt, T) is considered a
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logistic regression function of the vector of exogenous variables Vt, which is a scaler 

seasonal autoregressive time series, a vector seasonal time series, or a scaler or vector time 

series that varies non-seasonally. For illustrative purposes, consider the case where Vt is a

scaler purely seasonal autoregressive time series, denoted by Vt , with period 5. Then we 

can write,

Vt -  TjVt-s + St, where St are i.i.d. ~ N  (0,1);

a t g  ( Vt
1

1 +  e ~ ( s ° + s 1Vt ) ’
(2.5)

with r  - ^0  ̂  

V̂ 1 J
■ H eretoandSl e  D

3. ESTIM ATION PROCEDURE

The use of both the Expectation Maximization (EM) algorithm and the Maximum 

Likelihood (ML) method to estimate the model parameters was discussed in the following. 

For brevity, only the TVZIP-INGARCH (1, 1) process was considered, but the procedure 

for the general case followed a similar manner, even though the computations would be 

more complex.

3.1. EXPECTATION M AXIM IZATION ESTIM ATION FO R TVZIP-INGARCH 
(1, 1)

Let X j , X  2,..., X n be generated from the model (2.1). Following the formulation in

Section 2, there are two types of zeros generated by this model. They are the zeroes coming
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from the Poisson distribution with the intensity parameter Xt and the zeroes generated by

a Bernoulli process with the probability of obtaining a zero given by the zero inflation 

parameter. Therefore, a given observation is hypothetically categorized as arising out of a

Bernoulli process or is an observation from the Poisson distribution. Let us define {Z t } to 

be a Bernoulli random variable such that Zt = 1 if  X t is a generated from the Bernoulli 

process and Zt = 0 if  it is generated by the Poisson distribution. Then: Zt ~ Bernoulli (a t) 

with P (Zt = 1) = a>t and P (Zt = 0) = (1 - a t ).

Also, let Z = (Zx,Z2,...,Zn) , Q = (a0,a1, ...,a p, ^ fi^ ..^P qf  = (00,01, ...,0p+q)

and a t = g (V  E) .Note that T  = (y0,y1,...,yr) , where r is the dimension of the vector Vt .

For notational simplicity, we define the composite parameter vector

0  = ( r r ,0 T) =(<p1,^2,...,^k) c R r+p+q+2, with the original parameters renamed as (frj,

j=  1, 2 _ k . This simplified notation is used in situations where generic statements are made

without reference to a specific portion of (2.1).

Paralleling the derivations in Zhu (2012), the conditional log likelihood can be 

written as (see Appendix B for details),
n

l (® )=  X  {Z, log ( a )  + (1 -  Z, )[log  (1 - a , ) + X, log (X,) - ! ,  -  log ( X t!)]}.
t = P  +  1

The first derivatives of the conditional log likelihood function (3.1) with respect to

r  = (n »/1, ..., / r ) and Q = (d0,6l,...,dp+q) are as follows:
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dl (o ) _ dl (o ) d O  _ y  |Z L - ( l - Z l l |d ^ L  / _ 01 r
dy, d o t dy, t_p+x W  (1 -<at )J dy , ’ ’ ’ ’ ’

(3.2)

dl (O ) dl (O ) d l  . f X  1 d l
— -—~ _ — -—- — - _  P  (1 -  Zt ) \ —  - 1 )— - , j  _  0,1,..., p  +  q. 

d d , d l  d d , p v t }  \ l  I dd (3.3)
Lt j  t_  p+1

Finally, by combining (3.2) and (3.3) the first derivative of the conditional log likelihood 

function with respect to O is given by:

d l(O ) _ d l(O ) O  + dHO) d±_ . ( r  0 .
d$k d a t d$k d l  d$k ’ k ’ ’

d k / -i—i d i /-"-v
_ 0 , if  $k g r  and —— _ 0 if $k g 0.

d $k
(3.4)

The two step (E step and M step) Expectation Maximization algorithm is used to 

estimate the parameter vector O _ ( r T, 0 T ) . Let zt _ E  (Zt | X t, O ) and we replace Z t 

by Zt _  zt , and define Z _  (Zx,Z 2, ... , Zn)T . Following this replacement of Z  in the log 

likelihood function, l (o , Z ) will be maximized.

E Step: Find zt using the equation:

O + (1 - o t ) t
: X  _ 0

: X  > 0.

M  Step: After Z t is replaced by its estimate, we proceed to maximize l (o , Z ). First set

dl (O)
_ 0 for all k  .

0
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If O  is the solution to the system of equations in (3.4) exists, then S  ( O )  =  0 , where 

S  ( O ) is the fishers score matrix, and O  is the vector that minimizes the log likelihood

providing us with the estimate of the parameter vector O  =  ( r T,  0 T ) .

Since a closed form solution does not exist, we require an iterative procedure to 

find the estimates. Let us consider the first order Taylor expansion of S evaluated at

the value ® around the initial parameter values O0 , yielding. 

^  ^ (D-cp0). We also let the

log likelihood function is defined as H  (O ) =

matrix of the second derivatives of the 

d 2  (O) dS (O)
d OdOT d O

From the above, we obtain the first order approximation 

O = O 0 - i f  1(O 0) JS'(O0), and this result provides the standard Newton-Raphson

algorithm. For an appropriate chosen initial value O0, the above Newton Raphson

algorithm is used to obtain a sequence of improved estimates recursively. The improved 

estimates at ith iteration are updated as the initial values for the next iteration as follows:

O (i+1) = O (i) -  H _1 (O (i)) s (O (i)) .

This Process is repeated until the differences between successive estimates are 

sufficiently close to zero. In our study, convergence of the EM procedure is determined by 

using the following criterion:
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3.2. MAXIMUM LIK ELIHO O D  ESTIM ATION FO R  THE TVZIP-INGARCH (1, 1)

The conditional likelihood function L (O ) of the TVZIP-INGARCH model (2.1)

is,

L ) = n  , . 0  o  + o - . ) e n X (t )>0
Xx*e~^

(1 - . ) A - ^ ~  
v ’ X !

(3.5)

The conditional log likelihood function, l (O) obtained from (3.5) is given by

l (O)= £  lo§. +(1 )e~A|+ £  [ lo§(1 - . )+ x tlo§(A ) -A t - l o §(x t !) ]
x (t )= 0 X (t )>0

(3.6)

Let P0,t = mt +(1- . t) e A and I (X (t) = 0) = x0,t . Then,

dl (O )
d  . t t=1

x 0,t (1  e  A‘ )  (1  x 0 , t )

p A
(3.7)

and

dl (O)

dA, £
t t=1

x0 .  +  ( X t - A t )

P0,t A (3.8)

The first derivatives of the conditional log likelihood function (3.6) are as follows,

dl (O ) dl (O ) d  y
dyt d . t dyt =

x 0,t (1 e  ^  )  (1  x 0 , t )

P A

dco.
d r t

— i  =  0  1 f  ?1 • • •? * ? (3.9)

d l ( O ) _ d l (O) d A A _ Y

d 0 i d A  d 0 i £j t j ‘ 1

x 0 . t  +  ( X t - A t )

P0,t A

dA,

d 6 ,
t , J = 0,1,..., p  + q, (3.10)

d?(O ) = dK O )d .  + d !(O )d A  , ( r e )
d$k drnt d$k dA  d$k ’ k ’ ’

d . = 0 ,  if h « r  4 « r  and P A  = 0 ,  if 4 « e .
d Qk d Vk

(3.11)

N
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We can use Newton-Raphson (NR) iterative procedure to obtain the maximum

dl ( i )
likelihood estimated for the equation (3.5) by setting —-—- = 0 for all k. With a

d4

reasonable initial starting value O (0), the ith iteration is calculated using

®(W)= ® (0- H-' (O (i)) S ® (')) , where S  (O ) = d l (O ) |<O and H  (O ) = -d ( O U i > .
V y '  d& 1 y 1 d $ M  '

We stop the algorithm once pre specified convergence criteria is satisfied.

4. SIMULATION STUDY

We investigated the finite sample performance of estimators using a simulation 

study. We used ‘poissrnd’ function of Matlab software to generate the relevant data. 

Lengths of the time series studies were set to «=120 and n=360 and thousand (w=1000) 

simulations runs were carried out for each parameter sample size combination. We carried 

out two separate sets of simulation studies based on the zero inflation function was 

introduced in Section 2. We maximized the profile likelihood functions (3.1) and (3.5) 

using the constrained nonlinear optimization function ‘fmincon’ in Matlab. The zero

inflation (®t = g  (Vt, r ) )  was allowed to vary cyclically or to be driven by an exogenous

variable. Similar to the work Zhu (2012a) presents, the Mean Absolute Deviation Error

(MADE) was utilized as the evaluation criterion. The MADE is defined as, —

where m is the number of replications. Simulation results are reported in Tables 1 through

Table 12.



152

4.1. SIMULATION RESULTS FO R  CASE 1: SINUSOIDAL ZERO  INFLATION 
FUNCTION

In this simulation study, the sinusoidal zero inflated function mt =g  ( r )

expressed in Equation (2.4) was used to generate cyclically varying zero inflation 

probabilities between zero and one. We set the following constraints to the parameter

r  a  }

vector r B

v C

mt g (r, s ) = a sin
2n
Y t 1+B cos

2n
Y + C ,

where C = VA2 + B2 +5  > VA2 + B2 and A2 + B 2 < 2  where
4 A| 1< —

2 lB l < 1  and 5 is a
2

fixed value such that 5 > 0 .Note that the above constraints were applied to bound the zero 

inflation probabilities between 0 and 1.

Tables 1 through 3 provide the simulation results for the MLE estimation 

techniques, while Tables 4 through 6 provide simulation results for the case where 

estimates were obtained using the EM algorithm. The frequency of the sinusoidal wave 

was set at S=12, mimicking a 12 month cycle in present in monthly data. The parameter

vector for the simulation study was expressed as 0  = (A, B ,a0,a x,a 2, f ) , where a and b

are the parameters in the sinusoidal model while ( a 0, a x), (a0,a x,a 2) and (a0,a x, f  ) 

are the parameter combinations in TVZIP-INARCH (1), TVZIP-INARCH (2), TVZIP- 

INGARCH (1, 1), respectively. The parameter combination of r  = (A, B )  was set at 

(0.10, 0.10), (0.25,-0.20) and (-0.35,-0.30) and represented, minimal to minimal, minimal
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to moderate, and minimal to maximum zero inflation, while maintaining a fixed 

S = 0.0001.

The following models were considered:

(A) TVZIP-INARCH (1) models: O = (A, B ,a0,a 1)

A1. (0.10, 0.10, 1.00, 0.40)

A2. (-0.25, -0.25, 2.00, 0.50)

A3. (-0.35, -0.30, 1.00, 0.70)

(B) TVZIP-INARCH (2) models: O = (A, B, a 0, a ,  a 2)

B1. (0.10, 0.10, 1.00, 0.20, 0.20)

B2. (-0.25, -0.25, 2.00, 0.30, 0.20)

B3. (-0.35, -0.30, 1.00, 0.40, 0.30)

(C) TVZIP-INGARCH (1,1) models: O = (A, B ,a0,a l, f t  )

C1. (0.10, 0.10, 1.00, 0.20, 0.20)

C2. (-0.25, -0.25, 2.00, 0.30, 0.20)

C3. (-0.35, -0.30, 1.00, 0.40, 0.30)

Based on the simulation study results, it was observed that both EM and MLE 

procedures produced similar results for the estimated values of parameter sets in TVZIP- 

INGARCH (1) and TVZIP-INARCH (2). However, in some parameter combinations for 

TVZIP-INGARCH (1, 1) process, there was a slight difference between the MLE and EM 

estimated results. In general, bigger sample sizes produced more accurate results. The 

MADE for the time varying Zero inflation parameters (A, B) were relatively lower than
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Table 1: Means of MLE estimates and MADE (within parentheses), for
TVZIP-INARCH (1) models where zero inflation is driven by sinusoidal function

Model n A B «0 «1

True Parameters 0.10 0.10 1.00 0.40

A1
120 0.0893

(0.0561)
0.0845

(0.0566)
1.0472

(0.1433)
0.3712

(0.0903)
360 0.0986

(0.0321)
0.0951

(0.0299)
1.0172

(0.0802)
0.3917

(0.0479)
True Parameters -0.25 -0.25 2.00 0.50

A2
120 -0.2488

(0.0401)
-0.2475
(0.0399)

2.0467
(0.2210)

0.4800
(0.0873)

360 -0.2504
(0.0225)

-0.2478
(0.0223)

2.0203
(0.1311)

0.4925
(0.0484)

True Parameters -0.35 -0.30 1.00 0.70

A3
120 -0.3468

(0.0457)
-0.2959
(0.0482)

1.0369
(0.1621)

0.6675
(0.1163)

360 -0.3508
(0.0250)

-0.2970
(0.0263)

1.0178
(0.0963)

0.6875
(0.0629)

Table 2: Means of MLE estimates and MADE (within parentheses), for TVZIP-INARCH 
(2) models where zero inflation is driven by sinusoidal function

Model n A B «0 «1 a i

True Parameters 0.10 0.10 1.00 0.20 0.20

B1
120 0.0872

(0.0559)
0.0838

(0.0538)
1.0529

(0.1602)
0.1877

(0.0873)
0.1765

(0.0864)

360 0.0955
(0.0317)

0.0971
(0.0290)

1.0239
(0.0945)

0.1943
(0.0496)

0.1906
(0.0503)

True Parameters -0.25 -0.25 2.00 0.30 0.20

B2
120 -0.2485

(0.0430)
-0.2476
(0.0395)

2.0524
(0.2563)

0.2842
(0.0952)

0.1906
(0.0931)

360 -0.2514
(0.0234)

-0.2470
(0.0224)

2.0254
(0.1478)

0.2989
(0.0500)

0.1901
(0.0536)

True Parameters -0.35 -0.30 1.00 0.40 0.30

B3
120 -0.3478

(0.0455)
-0.2941
(0.0486)

1.0357
(0.1712)

0.3839
(0.1305)

0.2781
(0.1324)

360 -0.3510
(0.0282)

-0.2974
(0.0273)

1.0149
(0.1004)

0.3975
(0.0709)

0.2914
(0.0762)
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Table 3: Means of MLE estimates and MADE (within parentheses), for TVZIP-
INGARCH (1, 1) models where zero inflation is driven by sinusoidal function

Model n A B «0 «1 A
True Parameters 0.10 0.10 1.00 0.20 0.20

C1
120

0.0939
(0.0521)

0.0882
(0.0541)

0.9420
(0.2205)

0.2226
(0.0789)

0.2078
(0.1399)

360
0.1057

(0.0300)
0.0983

(0.0295)
0.9511

(0.1544)
0.2295

(0.0554)
0.1977

(0.1162)
True Parameters -0.25 -0.25 2.00 0.30 0.20

C2
120

-0.2522
(0.0396)

-0.2472
(0.0402)

1.7725
(0.3498)

0.3609
(0.0979)

0.1929
(0.1178)

360
-0.2516
(0.0231)

-0.2500
(0.0221)

1.8088
(0.2330)

0.3843
(0.0884)

0.1540
(0.0859)

True Parameters -0.35 -0.30 1.00 0.40 0.30

C3
120

-0.3589
(0.0414)

-0.2937
(0.0456)

0.9463
(0.2131)

0.4666
(0.1294)

0.2327
(0.1689)

360 -0.3591
(0.0259)

-0.2984
(0.0265)

0.9426
(0.1442)

0.4958
(0.1088)

0.2022
(0.1372)

Table 4: Means of EM estimates and MADE (within parentheses), for TVZIP- 
INARCH (1) models where zero inflation is driven by sinusoidal function

Model n A B «0 «1
True Parameters 0.10 0.10 1.00 0.40

A1

120
0.0898

(0.0557)
0.0850

(0.0561)
1.0472

(0.1433)
0.3712

(0.0903)

360
0.0986

(0.0321)
0.0951

(0.0299)
1.0172

(0.0802)
0.3917

(0.0479)

True Parameters -0.25 -0.25 2.00 0.50

A2
120

-0.2487
(0.0401)

-0.2476
(0.0398)

2.0467
(0.2210)

0.4800
(0.0873)

360
-0.2504
(0.0225)

-0.2478
(0.0222)

2.0203
(0.1311)

0.4925
(0.0484)

True Parameters -0.35 -0.30 1.00 0.70

A3
120

-0.3468
(0.0457)

-0.2959
(0.0482)

1.0369
(0.1621)

0.6675
(0.1164)

360
-0.3508
(0.0250)

-0.2970
(0.0263)

1.0178
(0.0963)

0.6876
(0.0629)
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Table 5: Means of EM estimates and MADE (within parentheses), for TVZIP-
INARCH (2) models where zero inflation is driven by sinusoidal function

Model n A B «0 «1 a i
True Parameters 0.10 0.10 1.00 0.20 0.20

B1
120

0.0875
(0.0556)

0.0841
(0.0536)

1.0529
(0.1601)

0.1877
(0.0874)

0.1765
(0.0863)

360
0.0955

(0.0317)
0.0972

(0.0290)
1.0239

(0.0945)
0.1943

(0.0496)
0.1906

(0.0503)
True Parameters -0.25 -0.25 2.00 0.30 0.20

B2
120

-0.2485
(0.0430)

-0.2476
(0.0395)

2.0524
(0.2563)

0.2842
(0.0952)

0.1906
(0.0931)

360 -0.2514
(0.0234)

-0.2470
(0.0224)

2.0254
(0.1478)

0.2989
(0.0500)

0.1901
(0.0536)

True Parameters -0.35 -0.30 1.00 0.40 0.30

B3
120 -0.3480

(0.0453)
-0.2940
(0.0485)

1.0358
(0.1712)

0.3839
(0.1305)

0.2781
(0.1324)

360
-0.3510
(0.0282)

-0.2974
(0.0273)

1.0149
(0.1004)

0.3975
(0.0709)

0.2914
(0.0762)

Table 6: Means of EM estimates and MADE (within parentheses), for TVZIP- 
INGARCH (1, 1) models where zero inflation is driven by sinusoidal function

Model n A B a 0 a1 A
True Parameters 0.10 0.10 1.00 0.20 0.20
C1 120 0.0952

(0.0534)
0.0898

(0.0558)
0.9376

(0.2188)
0.2218

(0.0793)
0.2142

(0.1415)
360 0.1058

(0.0301)
0.0983

(0.0296)
0.9436

(0.1589)
0.2292

(0.0556)
0.2042

(0.1206)
True Parameters -0.25 -0.25 2.00 0.30 0.20
C2 120 -0.2515

(0.0395)
-0.2466
(0.0404)

1.7578
(0.3261)

0.3616
(0.0972)

0.1936
(0.1175)

360 -0.2516
(0.0231)

-0.2500
(0.0221)

1.8070
(0.2347)

0.3843
(0.0884)

0.1539
(0.0859)

True Parameters -0.35 -0.30 1.00 0.40 0.30
C3 120 -0.3583

(0.0415)
-0.2931
(0.0453)

0.9280
(0.2186)

0.4671
(0.1288)

0.2364
(0.1683)

360 -0.3590
(0.0258)

-0.2984
(0.0264)

0.9350
(0.1494)

0.4961
(0.1086)

0.2018
(0.1367)
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that of the INGARCH (or INARCH) related parameters (a0,a 1,a 2,P1) in the model.

Therefore, parameter combination of a andb were estimated with higher accuracy, while 

other parameter estimates were reasonable. This phenomenon was common for all three 

minimal to minimal, minimal to moderate and minimal to maximum zero inflation cases.

4.2. SIMULATION STUDY FO R  CASE 2: ZERO  INFLATION FUNCTION 
DRIVEN BY AN EXOGENOUS VARIABLE

In this study, we allowed the exogenous variable to generate zeros through a logistic

model as described in Equation (2.5). The parameter vector for the simulation study under

this scenario was O = (S0,Sl,a0,a l,a2, fi1) , where 4 and 4 are the parameters in the

logistic model, while ( a 0,a 1) {a0,a l,a 2) and (a 0,a l,P l ) are the parameter 

combination in TVZIP-INARCH (1), TVZIP-INGARCH (2) and TVZIP-INGARCH (1, 

1) models, respectively. The parameter combination 4 and 4 were set to (-2, 0), (-1, -1)

and (2, 1) representing minimal, moderate, and large zero inflations, respectively. We 

generated an exogenous stationary AR (12) time series using r  = 0.25, and the following 

models were considered:

(A) TVZIP-INARCH (1) models: O = (S0,Sl,a 0,a l)

A1. (-2.00, 0.00, 1.00, 0.40)

A2. (-1.00, -1.00, 2.00, 0.50)

A3. (2.00, 1.00, 1.00, 0.70)
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(B) TVZIP-INARCH (2) models: O = (S0,S1,a 0,a1,a 2)

B 1. (-2.00, 0.00, 1.00, 0.20, 0.20)

B2. (-1.00, -1.00, 2.00, 0.30, 0.20)

B3. (2.00, 1.00, 1.00, 0.40, 0.30)

(C) TVZIP-INGARCH (1,1) models: O = (S0,S1,a 0,a 1, fa )

C1. (-2.00, 0.00, 1.00, 0.20, 0.20)

C2. (-1.00, -1.00, 2.00, 0.30, 0.20)

C3. (2.00, 1.00, 1.00, 0.40, 0.30)

Tables 7 through 9 provide the simulation results for the MLE estimation 

techniques, while Tables 10 through 12 provide EM (Expectation Maximization) algorithm 

simulation results.

Table 7: Means of MLE estimates and MADE (within parentheses), for TVZIP- 
INARCH (1) models where zero inflation is driven by exogenous variable

Model n
*0 4 «0 «1

True Parameters -2.00 0.00 1.00 0.40

A1

120 -2.4301
(0.7134)

-0.0331
(0.5515)

1.0169
(0.1381)

0.3808
(0.0837)

360 -2.0982
(0.3258)

-0.0162
(0.2559)

1.0143
(0.0817)

0.3892
(0.0487)

True Parameters -1.00 -1.00 2.00 0.50

A2

120 -1.0467
(0.2382)

-1.0711
(0.2580)

2.0193
(0.2143)

0.4864
(0.0836)

360 -1.0209
(0.1338)

-1.0182
(0.1400)

2.0073
(0.1199)

0.4932
(0.0476)

True Parameters 2.00 1.00 1.00 0.70

A3

120 2.0047
(0.4342)

1.1592
(0.4153)

0.9914
(0.2978)

0.4605
(0.3699)

360 1.9976
(0.2197)

1.0365
(0.1947)

1.0037
(0.1694)

0.5662
(0.2739)
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Table 8: Means of MLE estimates and MADE (within parentheses), for TVZIP-
INARCH (2) models where zero inflation is driven by exogenous variable

Model n A 4 «0 «1 a i

True Parameters -2.00 0.00 1.00 0.20 0.20

B1
120

-2.4576
(0.7430)

-0.0369
(0.5504)

1.0217
(0.1560)

0.1947
(0.0741)

0.1846
(0.0729)

360
-2.1479
(0.3557)

0.0024
(0.2779)

1.0147
(0.0950)

0.1956
(0.0474)

0.1904
(0.0453)

True Parameters -1.00 -1.00 2.00 0.30 0.20

B2
120

-1.0505
(0.2390)

-1.0593
(0.2436)

2.0354
(0.2494)

0.2911
(0.0829)

0.1930
(0.0721)

360
-1.0132
(0.1258)

-1.0191
(0.1345)

2.0092
(0.1418)

0.2989
(0.0476)

0.1977
(0.0453)

True Parameters 2.00 1.00 1.00 0.40 0.30

B3
120

1.9814
(0.4398)

1.1959
(0.4396)

0.9418
(0.2881)

0.3127
(0.2752)

0.2656
(0.2253)

360
1.9801

(0.2139)
1.0532

(0.1973)
0.9797

(0.1665)
0.3584

(0.2285)
0.2952

(0.1940)

Table 9: Means of MLE estimates and MADE (within parentheses), for TVZIP- 
INGARCH (1, 1) models where zero inflation is driven by exogenous variable

Model n 40 41 a 0 a1 A
True Parameters -2.00 0.00 1.00 0.20 0.20

C1
120

-2.1527
(0.4716)

-0.0183
(0.3284)

0.9318
(0.2158)

0.2257
(0.0790)

0.2090
(0.1381)

360
-2.0880
(0.3031)

0.0025
(0.2342)

0.9411
(0.1509)

0.2280
(0.0512)

0.1887
(0.1070)

True Parameters -1.00 -1.00 2.00 0.30 0.20

C2
120

-1.0226
(0.2184)

-1.0412
(0.2332)

1.7477
(0.3285)

0.3924
(0.1142)

0.1620
(0.1008)

360
-1.0083
(0.1244)

-1.0131
(0.1340)

1.8084
(0.2163)

0.3992
(0.1021)

0.1337
(0.0869)

True Parameters 2.00 1.00 1.00 0.40 0.30

C3
120

1.9804
(0.3863)

1.0538
(0.2881)

0.8406
(0.3229)

0.3927
(0.3003)

0.2271
(0.2395)

360
1.9927

(0.2193)
1.0375

(0.1920)
0.8296

(0.2337)
0.4782

(0.2648)
0.2271

(0.2242)
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Table 10: Means of EM estimates and MADE (within parentheses), for TVZIP-INARCH
(1) models where zero inflation is driven by exogenous variable

Model n 4, 4 «0 «1
True Parameters -2.00 0.00 1.00 0.40

A1
120 -2.5278

(0.8110)
-0.0402
(0.5931)

1.0160
(0.1386)

0.3806
(0.0837)

360 -2.1031
(0.3307)

-0.0154
(0.2575)

1.0144
(0.0817)

0.3892
(0.0487)

True Parameters -1.00 -1.00 2.00 0.50

A2
120

-1.0467
(0.2382)

-1.0711
(0.2580)

2.0193
(0.2143)

0.4864
(0.0836)

360 -1.0209
(0.1338)

-1.0182
(0.1400)

2.0073
(0.1198)

0.4932
(0.0476)

True Parameters 2.00 1.00 1.00 0.70

A3
120

2.0083
(0.4307)

1.1504
(0.4065)

0.9923
(0.2968)

0.4606
(0.3699)

360 1.9976
(0.2196)

1.0365
(0.1947)

1.0037
(0.1694)

0.5662
(0.2739)

Table 11: Means of EM estimates and MADE (within parentheses), for TVZIP- 
INARCH (2) models where zero inflation is driven by exogenous variable

Model n 40 41 «0 «1 a i

True Parameters -2.00 0.00 1.00 0.20 0.20

B1
120

-2.1663
(0.4741)

-0.0180
(0.3259)

1.0296
(0.1554)

0.1957
(0.0746)

0.1852
(0.0730)

360
-2.0915
(0.3012)

0.0072
(0.2335)

1.0165
(0.0946)

0.1958
(0.0474)

0.1907
(0.0453)

True Parameters -1.00 -1.00 2.00 0.30 0.20

B2
120

-1.0505
(0.2390)

-1.0593
(0.2436)

2.0354
(0.2494)

0.2911
(0.0829)

0.1930
(0.0721)

360
-1.0132
(0.1258)

-1.0191
(0.1345)

2.0092
(0.1418)

0.2989
(0.0476)

0.1977
(0.0453)

True Parameters 2.00 1.00 1.00 0.40 0.30

B3
120

1.9865
(0.4348)

1.1890
(0.4326)

0.9420
(0.2878)

0.3137
(0.2752)

0.2649
(0.2248)

360
1.9801

(0.2139)
1.0532

(0.1973)
0.9797

(0.1655)
0.3585

(0.2285)
0.2944

(0.1936)
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Table 12: Means of EM estimates and MADE (within parentheses), for TVZIP-
INGARCH (1, 1) models where zero inflation is driven by exogenous variable

Model n *0 4 «0 «1 A
True Parameters -2.00 0.00 1.00 0.20 0.30

C1
120

-2.1170
(0.4717)

-0.0190
(0.3224)

0.9289
(0.2108)

0.2251
(0.0794)

0.2120
(0.1371)

360
-2.1166
(0.3504)

0.0029
(0.2631)

0.9347
(0.1536)

0.2275
(0.0514)

0.1925
(0.1082)

True Parameters -1.00 -1.00 2.00 0.30 0.20

C2
120

-1.0236
(0.2191)

-1.0413
(0.2330)

1.7423
(0.3318)

0.3924
(0.1141)

0.1612
(0.0994)

360
-1.0083
(0.1244)

-1.0131
(0.1340)

1.8084
(0.2163)

0.3992
(0.1021)

0.1337
(0.0869)

True Parameters 2.00 1.00 1.00 0.40 0.30

C3
120

1.9798
(0.3665)

1.0452
(0.2845)

0.8236
(0.3205)

0.3963
(0.3005)

0.2297
(0.2359)

360
1.9871

(0.2187)
1.0339

(0.1909)
0.8092

(0.2478)
0.4805

(0.2631)
0.2202

(0.2147)

Both EM and MLE methods produced fairly accurate estimates for the parameters 

across all three types of models, especially for those parameters associated with zero 

inflation function. In general, for larger sample sizes, all the three models produce more 

accurate estimates for both methods. In the moderate zero inflation case, estimates for the 

parameter combination of (40, 4 )  had higher accuracy (i.e., lower MADE) than the

minimal and maximum zero inflation cases, and this behavior persisted for all three 

TVZIP-INARCH (1), TVZIP-INARCH (2) and TVZIP-INGARCH (1, 1) models.

In the next sections, we compared the model selection performance of two versions 

of ZIP-INGARCH (p, q) models namely, Zhu’s Fixed ZIP-INGARCH (p, q) model and 

proposed TVZIP-INGARCH (p, q) model. The underline model can either be FZIP-
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INGARCH (p, q) or the proposed TVZIP-INGARCH (p, q) model. For an example a time 

series for FZIP-INGARCH (p, q) model was generated with sample size n=360 using 

‘poissrnd’ function of Matlab software. Using the generated data, both the FZIP- 

INGARCH (p, q) and the TVZIP-INGARCH (p, q), were fitted to the data, and the model 

parameters were estimated for both the models using the EM algorithm. Next, information 

criteria were used to compare the model performance in this proposed study. Thereafter, 

the AIC values were compared for FZIP-INGARCH (p, q) and TVZIP-INGARCH (p, q) 

models; and thereby, the model with the lowest AIC value was selected. Likewise, we also 

simulated m=1000 time series and measure the accuracy as a percentage defined below:

c
Accuracy = — *100% „ _

m (4.1)

Here, c is the number of correct classifications and m is the total number of time 

series generated. The same procedure was repeated for a simulated dataset using the 

TVZIP-INGARCH (p, q) model. Simulation results are reported in Tables 13 through 

Table 16.

4.3. M ODEL SELECTION FO R  CASE 1: SINUSOIDAL ZERO  INFLATION 
FUNCTION

In this section, time series data were generated using two time series. First, Zhu’s 

FZIP-INGARCH (p, q) model was used to generate the data and then fitted both FZIP- 

INGARCH (p, q) and TVZIP-INGARCH (p, q) process to the data. Then, checked which 

process fitted better to the simulated data based on the AIC values. In similar way, we also 

consider TVZIP-INGARCH (p, q) model as the underline process to generate time series 

data and tried to fit both the time varying and the constant INGARCH models to discern
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the number of correctly classified cases based on AIC values. Finally, the accuracy was 

calculated using the equation 4.1, for both aforementioned methods. In this section, the

sinusoidal zero inflation function = g (Vt, T ) , mentioned in the equation (2.4), was used

to generate the zero inflated data for the proposed TVZIP-INGARCH (p, q) model. Table 

13 provides the model selection results for underline FZIP-INGARCH (p, q) process, and 

Table 14 presents that of the TVZIP-INGARCH (p, q) models.

Table 13: Model selection accuracy for the underline FZIP-INGARCH (p, q) process

Model

FZIP-INGARCH (p, q) 

True Parameter (O )
Accuracy

(%)O a 0 a x a 2 P

FM1 0.15 1.00 0.90 74.7

FM2 0.25 2.00 0.50 99.7

FM3 0.80 2.00 0.70 100

FM4 0.15 1.00 0.20 0.70 86.8

FM5 0.25 2.00 0.20 0.50 99.9

FM6 0.80 2.00 0.10 0.80 100

FM7 0.15 2.00 0.30 0.20 95.1

FM8 0.25 2.00 0.40 0.20 99.8

FM8 0.80 2.00 0.30 0.10 100

According to the Table 13, there are nine time series models (FM1-FM9) and they 

can be mainly categorized into three types: FZIP-INARCH (1), FZIP-INARCH (2) and
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FZIP-INGARCH (1, 1). Models listed under FZIP-INARCH (1) are FM1, FM2 and FM3. 

Models denoted by FM4, FM5 and FM6 belong to FZIP-INARCH (2). Models represented 

by FM7, FM8 and FM9 exhibit FZIP-INGARCH (1, 1) type behavior. We considered three 

distinct fixed values, 0.15, 0.25 and 0.80, for each category to represent minimal, moderate,

and high zero inflation for the zero-inflation parameter ®t = ® . All three categories time

series models with fixed minimal zero inflation have lower accuracies and higher constant 

zero inflation values when compared to other time series models. If the constant zero 

inflation component happened to take fixed minimum values, it was possible that time 

varying zero inflation components with low values of A and B could pick it, thus it was 

misclassified as a TVZIP-INGARCH (p, q) type process.

Table 14 presents the model selection accuracy for nine different time varying ZIP- 

INGARCH (p, q) models. TVM1, TVM2 and TVM3 represent time varying zero inflation 

INARCH (1) processes; there are three TVZIP-INARCH (2) types of time series models, 

and they are labeled as TVM4, TVM5 and TVM6, whereas TVM7, TVM8 and TVM9 are 

the ZIP-INGARCH (1, 1) models. Three pairs of A and B values were used to represent 

minimal-minimal, minimal-moderate, and minimal-maximum coverage of zero inflation 

values. When compared to the results presented in the Table 13, there is a 99% minimum 

accuracy that it can be classified correctly if the data were simulated using TVZIP- 

INGARCH (p, q) process. This level of accuracy was an anticipated result because it was 

difficult to model the time varying zero inflation component when only using a constant 

zero inflation component.
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Table 14: Model selection accuracy for the underline TVZIP-INGARCH (p, q) process
with sinusoidal zero inflation function

Model

TVZIP-INGARCH (p, q) 

True Parameter (O ) Accuracy
(%)

A B « 0 P
TVM1

0.05 0.05 1.00 0.90 99.2

TVM2 -0.25 -0.25 2.00 0.50 100

TVM3 0.35 0.30 2.00 0.70 100

TVM4 0.05 0.05 1.00 0.20 0.70 99.3

TVM5 -0.25 -0.25 2.00 0.20 0.50 100

TVM6 0.35 0.30 2.00 0.10 0.80 100

TVM7 0.05 0.05 2.00 0.30 0.20 99.4

TVM8 -0.25 -0.25 2.00 0.40 0.20 100

TVM9 0.35 0.30 2.00 0.30 0.10 100

4.4. M ODEL SELECTION FO R  CASE 2: ZERO  INFLATION FUNCTION IS 
DRIVEN BY EXOGENOUS VARIABLE

In this section, zero inflated time series data was simulated, based on two methods. 

First, Zhu’s constant ZIP-INGARCH (p, q) type process, presented in the above section, 

was used to generate the time series data and tried to classify whether the simulated data 

belonged to the appropriate process, which was an underline time series (i.e. in this case 

FZIP-INGARCH (p, q) process) or proposed TVZIP-INGARCH (p, q) model, where time 

varying component is modeled by an exogenous process. The results, based on this
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approach, are presented in the Table 15. In the next section, we considered proposed 

TVZIP-INGARCH (p, q) process to simulate time series data, and then tried to classify 

whether the simulated count data belong to underline TVZIP-INGARCH (p, q) process or 

the Zhu’s FZIP-INGARCH (p, q) process. Summarized results are presented in the Table

16. It was assumed that the zero inflation function 0 = g (Vt  0  was driven by an

exogenous variable, as described in equation (2.5), and Vt was AR (12) process with 

p = 0.25.

Table 15: Model selection accuracy for the underline FZIP-INGARCH (p, q) process

FZIP-INGARCH (p, q) 

True Parameter (® ) Accuracy

Model O a 0 a x a 2 P (%)

FM1 0.15 1.00 0.40 60.9

FM2 0.30 2.00 0.50 78.9

FM3 0.80 1.00 0.60 72.3

FM4 0.15 1.00 0.20 0.20 59.6

FM5 0.30 2.00 0.30 0.20 79.1

FM6 0.80 1.00 0.40 0.30 73.0

FM7 0.15 1.00 0.20 0.20 59.7

FM8 0.30 2.00 0.30 0.20 79.1

FM9 0.80 1.00 0.40 0.30 72.6
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Both FZIP-INGARCH (p, q) and TVZIP-INGARCH (p, q) are fit into the process 

to investigate which model better explains when the data are generated by using FZIP- 

INGARCH (p, q) time series. Table 15 shows the model selection accuracy, and, in this 

case, accuracy is low with compare to the case 1 results presented in the above Table 13.

If the S1 parameter in the TVZIP component is close to zero, and the time varying

component behaves more like a constant. This may lead to the misclassification of FZIP- 

INGARCH (p, q) model, as a TVZIP-INGARCH (p, q) model and reduce the model 

selection accuracy. As in case 1, three models are considered based on the minimal, 

moderate, and higher constant zero inflation component in each of the FZIP-INGARCH 

(1), FZIP-INGARCH (2) and FZIP-INGARCH (1, 1) cases.

Table 16 presents the model selection accuracy when the time series of count data

were originally simulated from a TVZIP-INGARCH (p, q) type process with 0t , being 

modeled by an exogenous time series variable. According to the Table 16, the coefficient 

of model selection accuracy had lower values for relatively small S 1. When smaller S1

values were presented time varying zero inflation function 0t , behaved more like fixed

zero inflation function O  (i.e. lima  = o ) ,  and hence it was difficult to correctly^ 0  1

categorized as a TVZIP-INGARCH (p, q) process.
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Table 16: Model selection accuracy for the underline TVZIP-INGARCH (p, q) process 
with zero inflation function is driven by exogenous variable

Model

TVZIP-INGARCH (p, q) 
True Parameter (®)

Accuracy
(%)

*0 4 a 0 a x a 2 P

TVM1 -2.00 0.50 1.00 0.40 82.9

TVM2 -1.00 -1.00 2.00 0.50 100

TVM3 2.00 1.00 1.00 0.60 100

TVM4 -2.00 0.50 1.00 0.20 0.20 79.2

TVM5 -1.00 -1.00 2.00 0.30 0.20 100

TVM6 2.00 1.00 1.00 0.40 0.30 100

TVM7 -2.00 0.50 1.00 0.20 0.20 82.1

TVM8 -1.00 -1.00 2.00 0.30 0.20 100

TVM9 2.00 1.00 1.00 0.40 0.30 100

5. REAL DATA EXAM PLE

In this section, the proposed TVZIP-INGARCH (p, q) process was applied to a real- 

world dataset and compared the performance of these models to that of Zhu (2012a). The 

Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) were 

employed to select the best model among the collection of competing models. In the 

following subsections, we considered two examples: the first example was based on
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“Influenza A associated pediatric deaths”. The data set was downloaded from the Center 

for Disease Control and Prevention (https://www.cdc.gov) web page. This data was 

modeled by using the TVZIP-INGARCH (p, q) model with sinusoidal zero inflation 

function. In the second example, we used “Pediatric mortality caused by Influenza B” data 

set, which was downloaded from the same web page (https://www.cdc.gov) to demonstrate 

the performance of TVZIP-INGARCH (p , q) process where the zero inflation was driven 

by an exogenous variable.

5.1. REAL DATA EXAM PLE - USE OF A SINUSOIDAL ZERO  INFLATION 
FUNCTION

In this section, “Influenza A associated pediatric mortality” data set was applied to 

the proposed TVZIP-INARCH (1), TVZIP-INARCH (2) and TVZIP-INGARCH (1, 1) 

models with sinusoidal zero inflation and compared to the results of those from fixed zero 

inflation, as discussed by Zhu (2012a). We chose the weekly U.S. data of pediatric death 

caused by virus type A over the time period of week 40from year 2015 to week 43 from 

year 2018. The data was taken from weekly U.S. Influenza Surveillance report, which was 

published by Center for Disease Control and Prevention (CDC) 

(https://gis.cdc.gov/GRASP/Fluview/PedFluDeath.html). Data sets contain 160 weekly 

observations of pediatric death counts. Summary statistics of the data showed the mean of 

1.506 and a variance of6.352, suggestive of over dispersion. Figure 1 illustrates the 

frequency of each pediatric mortality case caused by virus type “A” using a bar chart. 

Observe that there are 86 zeros, which comprises 53.8% of the total time points.

Figure 2 illustrates the original time series of the data set followed by its ACF plot 

and PACF plot, respectively.The bar chart shows the excess number of zeros in the data,

https://www.cdc.gov/
https://www.cdc.gov/
https://gis.cdc.gov/GRASP/Fluview/PedFluDeath.html
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and the time series plot demonstrates prolonged periods of zero counts, which supports the 

use of zero inflated poisson time series models to analyze this data. Furthermore, we can 

observe an annual seasonality in the peaks and the low periodsof the time series.

Since we chose the zero inflated poisson model to fit the data, we need to find the 

best model that describs the zero inflation behaviour. To understand the zero inflation 

behaviour of this data set, we aggregate weekly data in to its corresponding calendar month 

and constructed the total monthly zero mortality counts.It was converted into a monthly

Figure 1: Bar chart of the pediatric deaths caused by virus type “A”
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proportion by dividing each monthly count by its maximum. The plot of the monthly 

proportion of zero counts exhibited a sinosidual behaviour throughout the observed time 

span. Thus, the general sinosidual function mentioned in Equation (2.4) was used to model 

the zero inflation behaviour of this data.

Figure 2: Pediatric mortality time series plot, sample auto covariance plot and sample
partial auto covariance plot
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Figure 3: Monthly proportion of zero mortality counts (red) versues the fitted sinusoidal
zero inflated function (blue)

Three time series models were fitted namely; TVZIP-INARCH(1) (MZ),TVZIP- 

INARCH (2) (M2) and TVZIP-INGARCH (1,1) (M3), for three different senarios ( SZ, S2, 

and S3) . In senario SZ, it was assumed that there was a constant zero inflated value 

throughout the time period as assumed by Zhu (2012a). In the model listed as S2, we 

assumed a constant zero inflation for short term periods (weeks) of a given long term 

period (month),while the zero inflation component of the long term period (monthly) was 

allowed to vary, according to a sinusoidal zero inflation function.The models under S3 

used a sinusoidal function to exemplify the time varying zero inflated function at each unit 

time. The EM algorithems were used to estimate the model parameters and the results were 

recorded in the Table 17. We used both AIC and BIC model selection criterion to identify

the best fit for the data.
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Table 17: Estimated parameters, AIC and BIC for the pediatric death counts cause by
virus A

Model G A B ao a i a  2 Pi AIC BIC

S1M1 0.1806 0.4714 0.8416 451.6289 460.8544

S1M2 0.1012 0.2539 0.4967 0.4187 419.8733 432.1740

S1M3 0.0909 0.0807 0.4804 0.5057 420.6112 432.9119

S2M1 0.1023 0.4467 1.1030 0.7165 411.1064 423.4071

S2M2 0.0775 0.4266 0.7446 0.4715 0.3595 397.4778 412.8537

S2M3 0.0733 0.4219 0.3730 0.4832 0.4413 401.4099 416.7857

S3M1 -0.3116 0.3214 1.0292 0.7193 420.2297 432.5304

S3M2 -0.3074 0.2613 0.6460 0.4544 0.3927 402.9449 418.3208

S3M3 -0.3009 0.2420 0.2726 0.4698 0.4773 407.6126 422.9885

According to results in Table 17, in general, models with cyclically varying zero 

inflation function had lower AIC and BIC values, when compared to the results for models 

Zhu (2012a) proposes. Put simply, models introduced under the S2 and S3 fitted the data 

better than the models discussed in S1. Among all the TVZIP-INARCH (1), TVZIP- 

INARCH (2) and TVZIP-INGARCH (1, 1) models TVZIP-INARCH (2) process had lower 

AIC and BIC values, when compared to the results for models Zhu (2012a) proposes. Put 

simply, models introduced under the S2 and S3 fitted the data better than the models 

discussed in S1. Among all the TVZIP-INARCH (1), TVZIP-INARCH (2) and TVZIP- 

INGARCH (1, 1) models TVZIP-INARCH (2) process had lower AIC and BIC values in 

all the three scenarios. Finally, based on these information criteria, the TVZIP-INARCH 

(2) model with zero inflation model S2, provided the best fit to the data. In this model, we 

assumed that week’s within any given month has a constant zero inflation, yet monthly 

zero inflation varies cyclically.
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5.2. REAL DATA EXAM PLE - ZERO  INFLATION FUNCTION IS DRIVEN BY 
EXOGENOUS VARIABLE

In this section, we examined the performance of the TVZIP-INGARCH (p, q) 

models where the zero inflated function was driven by an exogenous variable. “Influenza 

B associated pediatric mortality” data set was used, and the data is applied to the TVZIP- 

INARCH (1), TVZIP-INARCH (2) and TVZIP-INGARCH (1, 1) models. We selected the 

weekly average of nationwide low temperatures as the exogenous variables that drive the 

zero inflation probability. Influenza B associated pediatric mortality data was taken from 

the weekly U.S. Influenza Surveillance Report

(https://www.cdc.gov/flu/weekly/index.htm), and the temperature data was taken from 

weather prediction center (https://www.wpc.ncep.noaa.gov). Both data sets spanned over 

the time period of week 40 for year 2014 to week 39 for year 2018. B oth data sets contained 

209 weekly observations of pediatric death counts and number of tests done. Summary 

statistics of infant mortality cases due to influenza B showed the mean as 0.8517 and 

variance as 2.4538. Since the empirical variance was higher than the empirical mean, the 

data exhibited an over dispersion. Figure 4 illustrates the frequency of each pediatric 

mortality case caused by virus type “B” using a bar chart. According to the bar chart, there 

are 128 zeros, which comprises 61.2% of total of the time points. This suggested that the 

pediatric mortality data were zero inflated.

The time series plot, ACF and PACF plots are given in Figure 5. Based on time 

series plot, we can see that there is an annual seasonality exhibited in this data set. 

Moreover, it shows that there were periods with clusters of zeros. Therefore, as discussed 

in Section 5.1, we suggested TVZIP-INGARCH (p, q) model the count data series.

https://www.cdc.gov/flu/weekly/index.htm
https://www.wpc.ncep.noaa.gov/
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Figure 4: Bar chart of the pediatric deaths caused by virus type “A”

Figure 5: Pediatric mortality time series plot, sample auto covariance plot and sample
partial auto covariance plot
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Figure 6: Time series plots of pediatric mortality cases (upper panel) and weekly average
of nationwide low temperature

In this example, the time varying zero inflation was modeled by considering an 

exogenous time series. We assumed that the excess zeros were driven by another 

independent time series. We used the weekly average of nationwide low temperature. 

Comparison between two time series plots is given in Figure 6.

Figure 6 shows that periods with higher values of low temperature coincide with 

periods of zero pediatric mortality caused by Influenza B. Hence, it was established that 

periods with high zero counts (low pediatric mortality) are notably related to periods with 

higher values of low temperature. Thus, we used averaged low temperature data to model 

the time varying zero inflated component in the pediatric mortality data set. In this
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example, time varying zero inflation process was modeled using the formulation from 

Equation (2.5).

We fitted three different time series models TVZIP-INARCH(1) (M l), TVZIP- 

INARCH (2) (M2) and TVZIP-INGARCH (1,1) (M3) for two different senarios ( S1 and 

S2 ) . In senario S l, we considered that there was a constant zero inflated value throughout 

the time period, as assumed by Zhu (2012a). For the models listed under S2, we assumed 

there was a time varying zero inflation,and we modeled it by using a logistic regression 

model with low temperature as the independent variable. The EM algorithm was used to 

estimate the model parameters,and the results arerecorded in Table 18. We used AIC and 

BIC model selection criterion to identify the best fit for the data.

Table 18: Estimated parameters, AIC and BIC for the pediatric death counts cause by
virus B

Model O £ 0 £1 «0 a \ a2 P1 AIC BIC

S1M1 0.2183 0.4517 0.6746 488.2955 498.3225

S1M2 0.0575 0.1737 0.4095 0.4454 442.2950 455.6644

S1M3 0.1478 0.0001 0.3766 0.7631 441.4626 454.8319

S2M1
1.7436

0.1115 0.7258 0.5789 453.1119 466.4812

S2M2
2.5485

0.1190 0.3478 0.4027 0.4101 427.7886 444.5003

S2M3
1.6346

0.1048 0.2385 0.3591 0.8305 428.6728 445.3844

Table 18 shows the models that fall under the S2 exhibited low AIC and BIC values

compared to the models under S l. Our novel approach of modeling time varying zero
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inflation improved on the AIC and BIC values when compared to the constant zero 

inflation method. Based on the AIC and BIC values, TVZIP-INARCH (2) with time 

varying zero inflation function provided a better fit to the pediatric mortality data when 

compared to a model that assumes constant zero inflation probability.

6. CONCLUSIONS

We proposed a time varying zero inflated Poisson integer GARCH Model (TVZIP- 

INGARCH) with two distinct formulations to model the time varying zero inflation 

component. Based on the Monte-Carlo simulation study results, the Expected 

Maximization (EM) and Maximum Likelihood Estimation (MLE) methods produce similar 

results with respect to parameter estimates. It is seen that both EM and MLE techniques 

estimate the parameters of the predefined time varying zero inflated function with good 

accuracy. In cases where the zero inflation function is cyclically varying with minimal to 

large or minimal to moderate zero inflations, the zero inflation parameters were estimated 

with lower Mean Absolute Deviation Error (MADE) when compared to the scenarios of 

minimal zero inflation. Further, in cases where zero inflation was low and it is influenced 

by an exogenous process, MLE method produces far better estimates for the parameters, 

especially for those associated with zero inflation process. In contrast, the EM method 

produces slightly better estimates for the zero inflated parameters based on the MADE 

values, than the MLE method when the zero inflation is high and driven by the exogenous 

process. Furthermore, the level of accuracy in correctly identifying the data generating 

process was found to be high for both types of zero inflation cases, given that the data is
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simulated via a TVZIP-INGARCH process. When tested on two real-life data sets, the 

TVZIP-INGARCH models performed better than those proposed by Zhu (2012a), 

illustrating the utility of the proposed models. In addition, the flexibility of the zero 

inflation component of the formulation that allowed modeling through deterministic 

cyclical functions, or through exogenous time series, provided the proposed model for 

added versatility.
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Let {X t be a discrete time series of count data and conditional distribution of

X t |FW ~ Z IP (X ,q )as described in (2.1). As explained ZIP process has two types of zeros 

namely, zeroes coming from the Poisson distribution with the rate parameter Xt and the 

zeros that are generated. Let us define {Zt} to be a Bernoulli random variable with two 

values such that Zt = 1 if X t is a generated zero and Zt = 0 if  it is coming from ordinary 

Poisson distribution. Therefore Zt |F,_j ~ Bernoulli (q ) such that,

P  (z, = z !Ft-1K
a , : z = 1.
- a : z = 0.

Let define the conditional probability mass function of X  Zt,FM ~ Poisson((1 - Zt) X )  

Hence the conditional distribution of X t |f m  ~ Z IP (X ,a )  can be expressed as:

1
P ( Xt = k |Ft-1) = X P ( Xt = k | Zt, Ft-1) P (Zt = z | Ft-1),

z= 0

The Conditional expectation of X t |F,_j is:

E  (Xt |F,-1) = E  [ E  (X ,|Z ,, Ft-1) ] ,

= E  [(1 -  Z, )X, |Ft-1

= X,E [(1 -  Z, )| F,-1 

= X, (1 - a , ).

The Conditional variance of X, Ft-1 is:



183

Var ( X, |F, - )  = Var [ E (X, \Z,, F, _i)] + E [Var (X, \Z,, F, _i)],

Var[ E (X, \Z,, F_ ,)] = Var [(1 -  Z , ) X | F , ] = Xf (1 - ® > „

E[Var (X ,\Z ,, F,-,)]  = E [(1 -  Z,) X |F,-, ] = X  (1 -  ®,),

Var ( X , lF,-1) = X  (1 - a , ) a , + X (1 - wl) = X (1 - a ,)(1 + X ®,).



APPENDIX B.

THE CONDITIONAL LO G  LIK ELIHO O D  FUNCTION



185

The conditional probability mass function of Zt |F_j ~ Bernoulli (at) is,

P (Zt = Zt) = ©* (1 - ^ ) 1-Zt.

The conditional probability mass function of X t Zt,FM ~ Poisson((1 - Zt) l )

P (X t = xt |Zt = zt, Ft-1 ) = zt + (1 -  zt)
l e ^  ( l e ^  ^(1-Z

X ! V X ! J

Therefore, conditional log likelihood function of P (Zt jF^ ) P (X  \Zt, F ^  ) is L (O ) ,

n  p  (Zt |f t - 1 ) p  (x t % , ft -1  ) = n < ( 1 1 1(1- z )

V V  t
=n®z (1 z )

v t V
Z e 1 1

xt ! yv t v t
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Let define sinusoidal zero inflation function 0 t = g  (Vt, r)e (0,1) as given bellow

0 , = g(V, r) = A sin —tl + B cosl S J
C 2k 1 ^
T'J+C,

Case 1: If A  = 0, B  = 0 and C e (0,1) then,

0= g(V,r) = C, is a constant over the time span,

Case 2: If A  ̂0,B  ̂0and C e (0,1) then,

0  = A sin 2 k

S
t 1 + B cos 2 k

S t 1 + C,

= V  A 2 + B 2 

= 4a 2Fb 2 

= 4a 2+B2 

= 4a 2+b 2

4 aT F b :
sin 2 k B

i S  J  4 aF + b
cos

2

2 k C
i  s  J aT F b 2

cos (̂ ) sin
i
(  f

2 k

S
t 1 + sin (p) cos 2 k

~S
t + C

J aF + b 2

sin
i  1 
z

2 k  1 C
S ' + T 7 7 7 B

h ( t, S , A , B , )  +
C A

F aF F b 2

Here cos(̂ ) = —p and h (t, S, A, B ,)e[-1,1]. For a fixed A, B and CVA 2 + B 2

m a x  (® ,)  =  V A 2 + B 2 +  C < 1, 

m in  (® ,)  =  - V A 2 +  B 2 +  C  >  0,

F a T F b 2 < c  < 1 - F a T F b 2.

If c =4A r + BF ,

01 = t  (h (t, S , A , B , ) + 1) , 0 , e [ 0,1) t A t  < t  A| < t , | A| < 1 .
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If C > V A2 + B2 = + B2 + 8 , any 8>  0 , choose A, B such that:

< , ,  < \

e (  0 , 1 ) .



APPENDIX D.

INITIAL VALUE ESTIM ATION



190

Let consider the case ZIP-INGARCH (1,1) where ̂ =1 and q=1.

Let ut be the martingale difference, which is defined as,

ut = X t -  E (X t | Ft-1) = X t -A t (1 -  G)t) where the Xt is expressed as INGARCH (1, 1) 

process and therefore we can write,

^t = C0 + a 1 X t-1 + P\^t-1,

ut = X t -  ( a 0 + X t-1 + M -1 )(1 -  ®tX
X t -  (1 -  mt)a X ^ j -  R  (1 -  mt)ZM = (1 -  mt ) a 0 + ut,

X t -  (1 -  a t ) c  X t-1 -  R  X t-1 = (1 - a t K  + U -  PU-x >
X t ~ ARMA(1,1) ^  X t -  0tX t-  = yt + ut + 0iit-1.

Case 1: If G>t = a  y t , then,

a
— +  0  

( 1  - a )
A 0 and a 0 ———  j , where j  is the mean of the ARMA (1,

(1 - a )

1) model.

Case 2: If {X t be a discrete time series and it has m subseries with each subseries have

M  counts. Within each subseries let assume cot = C0j  where l = 1,2,..., m. Then for a given

subseries l , a u = — + 0 , Ru = - 0  , a ol = ———— j . Here j l is the mean of the
, (1 -®.,i) , , (1 -®.,i)

m a  1 m R
subseries l . Therefore, a  = V  — , i = 0,1and R  = V  —^ .

i=1 m 1=1 m

Simillarly we can derive equations to estimate parameters of the ZIP-INARCH(1) 

and ZIP-INARCH (2) models by fitting ARMA(1,0) and ARMA(2,0) process respectively.



191

SECTION 

2. CONCLUSIONS

My doctoral dissertation extended the CARR and the Feedback Asymmetric CARR 

(FACARR) models using three papers. In addition, another paper presented a generalized 

zero-inflated Poisson model whose formulation is similar to that of the GARCH model. 

First three papers mainly focused on modeling and forecasting financial volatilities using 

conditional heteroscedastic time series models defined in the ranged based setting. The 

final paper proposed a conditional heteroscedastic time series process which is derived 

from the Autoregressive Conditional Poisson (ACP) to model the time series of count data.

Paper I proposed the Composite CARR (CCARR), which is a composite range, 

based component model used to analyze the long-term and short-term volatility 

components in the daily price range data. The long-term volatility component is modeled 

using a stochastic volatility component, which itself exhibits the conditional volatility. 

Both the long-term and short-term components are driven by past values of price range 

data. The MLE technique was used to estimate the model parameters and the CCARR 

model performance was gauged by using the S&P 500 and the FTSE 100 stock indices.

Paper II generalized the Feedback Asymmetric CARR (FACARR) model of Xi 

(2018) and introduced the Generalized FACARR (GFACARR) model. The Weak 

stationarity conditions for the GFACARR model were derived. Furthermore, two version 

of the GFACARR models were discussed namely, Bivariate Exponential GFACARR type 

a (BEGFACARR-a) model which is useful when the upward and downward disturbance
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term behave independently and the Bivariate Exponential GFACARR type b 

(BEGFACARR-b) process which is suitable when there is a correlation between upward 

and downward terms. The parameters of the proposed BEGFACARR-a and 

BEGFACARR-b were estimated using the MLE procedure and a simulation study was 

conducted to evaluate the finite sample performance. The performance of the 

BEGFACARR-b model was compared to FACARR using the S&P500, FTSE 100 and 

CAC 40 stock indices and found that the BEGFACARR-b model fitted better than the 

FACARR model to both in-sample and out-of-sample price range data.

In paper III, a new class of non-linear asymmetric range-based conditional 

heteroscedastic model was proposed, and this model is called as Threshold Asymmetric 

CARR (TACARR) model. The disturbance term of the TACARR process is assumed to 

follow a threshold distribution with positive support. The study assumed that the 

conditional expected range process switches between two market regimes namely upward 

market and downward market. Since the proposed model using past upward and downward 

price range data to adjust the threshold and having a nonlinear conditional heteroscedastic 

structure, the TACARR model is a good alternative to the CARR, Asymmetric CARR 

(ACARR), Feedback ACARR (FACARR), and Threshold Autoregressive Range (TARR) 

models. The performance of the TACARR model was assessed using IBM index data. 

Empirical results showed that the proposed TACARR model was useful in-sample 

prediction and out-of-sample forecasting volatility.

The final paper proposed a time varying zero-inflated Poisson process to model the 

time series of count data with serial dependence. The proposed Time Varying Zero- 

Inflated Poisson Integer GARCH (TVZIP-INGARCH) model was a generalization of the
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Zero-Inflated Poisson Integer GARCH (ZIP-INGARCH) model of Fukang Zhu in 2012, 

which, itself was a generalization of the Integer GARCH (INGARCH) model proposed by 

Ferland, Latour, and Oraichi in 2006. In this relaxed the Zhu’s fixed zero inflation 

parameter and allowed it to vary over time according to a deterministic function or be 

driven by an exogenous variable. Two applications based on the real world data were 

discussed and the proposed time varying ZIP-INGARCH (TVZIP-INGARCH) model 

fitted better with the data compared to Zhu’s constant ZIP-INGARCH model.
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