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ABSTRACT

Conflicting observations have been found in the literature regarding the effect of 

operating conditions on ESD (electrostatic discharge) susceptibility. While some studies 

have suggested a strong correlation between the two, others observed little to no 

correlation. In this work, a systematic study has been carried out suggesting the existence 

of a strong correlation between the ESD susceptibility and operating conditions. It is 

found that the root cause of this conflict is random ESD noise injection. A measurement 

approach is proposed to synchronize the noise injection with the system activity such as 

high/low CPU load. In this approach, the current consumption or the EMI 

(electromagnetic interference) of the device under test is monitored and used to 

synchronize the injections.

To improve the poor repeatability of the ESD tests, the proposed approach is 

incorporated into a robotic scanner to create an automated ESD tester. Soft failure 

detection algorithms are added to the tester, giving it the ability to detect (and 

characterize) a soft failure in a similar way as a human -  through sight and hearing. This 

is the first time that image processing algorithms are used for characterizing soft failures. 

Using the tester, a 2-D color-coded susceptibility map is obtained for each soft failure. 

These failure-specific maps can be used to identify/pinpoint the sensitive locations of the 

device knowing the soft failure type, reducing the tedious and time-consuming process of 

soft failure investigations.
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SECTION

1. INTRODUCTION

1.1. BACKGROUND

An electrostatic discharge (ESD) can disturb the sensitive circuitry of an 

electronic device. Such an event can upset electronic components and lead to a hard 

failure, a soft failure, or a latch up. Hard failures are irreversible damages. Simply, the 

damaged component stops working. Soft failures on the other hand can be recovered 

from. A power-cycle, reboot, or even simple time-lapse can clear the soft failure. Latch 

ups can lead to increased current consumption, excessive heat, faster battery discharge, 

and even permanent damage through overheating.

1.2. RELEVANT STANDARDS AND THEIR SCOPE

ESD susceptibility testing can be done at the component level or the system level. 

The former scenario is called component-level testing and is covered by the JEDEC and 

the ESDA. These standards only focus on hard failures. System-level testing on the other 

hand is established by IEC and focuses on both hard and soft failures. Table 1.1 compares 

important aspects of these standards with each other. An important aspect of system-level 

testing as shown in the table is that it is application-specific, as opposed to the JEDEC, 

and ESDA standards that are standardized. Also, as shown in Figure 1.1, the IEC current 

waveform (system-level testing) has higher energy. In other words, the system design has 

to meet more stringent requirements than component-level design. Another important 

difference observed in Table 1.1 is that the system is tested under both powered and



unpowered conditions in system-level testing, as opposed to only unpowered testing in 

component-level testing. Due to these differences, even if robust components were used 

in a system, there would be no guarantee that the system would pass system-level testing 

criteria (a common misconception). Therefore, it is important to perform system-level 

testing and meet the requirements.

2

Figure 1.1. Current levels of Human Body Model (HBM) at 1 kV, Charged Device 
Model (CDM) at 250 V, and System level IEC 61000-4-2 at 8 kV. Adopted from [1].

1.3. OBJECTIVE AND CONTRIBUTION

This dissertation is focused on ESD-induced soft failures, which is part of the 

system-level testing and is covered by the IEC 61000-4-2, “Testing and measurement 

techniques -  Electrostatic discharge immunity test.” This standard only represents a 

scenario where a charged human body discharges to a point on a system through a metal 

object. No information is given on what the system operating conditions should be, or 

whether there is a correlation between the system ESD susceptibility and the operating 

conditions. Searching the literature for an answer, we found conflicting studies. While 

references [2, 3] reported a correlation between the ESD susceptibility and operating



conditions, other studies such as [4] did not observe any correlation as shown in 

Figure 1.2.

3

Table 1.1. System-Level vs. Component Level ESD. Adopted from [1].
Component level ESD System-level ESD

Standard JEDEC, ESDA IEC

Environment Factory assembly End used normal operation

Test setup Standardized Application dependent

EUT applications IC System (PC, cell phone, etc.)

EUT operation Unpowered Powered and unpowered

Discharge R-C network 100 pF/ 1500 Q 150 pF/ 330 Q

Typical test voltage 1-2 kV 2-8 kV

Peak current 0.7 A/kV 3.75 A/kV

Rise time 2 to 10 ns 0.6 to 1 ns

Pulse width 150 ns 50 ns

Test application IC pins Enclosure, pins

Testing pin groups
Different pin 

combinations
Few special pins

Tested properties
IC protection circuits 

and concept
System design

Failure Hard Hard and soft
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Figure 1.2. No correlation was reported. Adopted from [4].

The goal of this dissertation is to determine the root cause of the confliction in the 

literature and find out whether there is a correlation between the ESD-induced soft 

failures and the operating conditions. Further goals of this dissertation are to develop 

proper measurement techniques and setups to enable the observation and investigation of 

this (potential) correlation.

This dissertation is composed of four papers. Paper I systematically analyzes soft 

failures as a function of various operating conditions. Paper II proposes the required 

measurement setups and techniques to observe the “operating condition-ESD 

susceptibility” correlation. Paper III, for the first time, introduces image and audio 

processing algorithms for soft failure detection and characterization. Paper IV performs 

automated soft failure investigations by equipping a humanoid robotic arm with the 

algorithms developed in Paper III.
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PAPER

I. SYSTEMATIC ANALYSIS OF ESD-INDUCED SOFT-FAILURES AS A 
FUNCTION OF OPERATING CONDITIONS

Omid Hoseini Izadi 
Department of Electrical Engineering 

Missouri University of Science and Technology, Rolla, MO, 65409 
E-mail: ohp63@mst.edu

ABSTRACT

Electrostatic discharges (ESD) to parts of a system can lead to system-level soft- 

failures. These failures can depend on the activity of the system at the moment of 

discharge. This paper investigates ESD susceptibility as a function of different operating 

conditions such as software loading, clock frequency, and VDD voltage. Due to the large 

number of possible conditions, a commercial automated ESD scanner is modified and 

used to obtain ESD susceptibility maps for each operating condition. The core processor 

of a single-board computer is selected as the device under test. It is observed that the 

processor becomes more sensitive to ESD events as its software loading increases. The 

effect of VDD voltage and clock frequency on the sensitivity of the processor is also 

discussed. Moreover, the effect of increasing the power distribution network impedance 

and noise is investigated, partially leading to counterintuitive results.

mailto:ohp63@mst.edu
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1. INTRODUCTION

Electrostatic discharges (ESD) can couple into an integrated circuit (IC) via its 

pins and cause different types of system-level failures. ESD energy can also directly 

couple to the bond wires and cause a failure. Typical examples are loss of data, data 

corruption, program termination, system hang, system reset, latch-up, etc. These type of 

failures are known as soft-failures as the system recovers by power-cycling. Soft-failures 

can be grouped into two categories with respect to software loading conditions: those that 

are not affected by the core processor loading and those that have an increased likelihood 

to occur if the processor is highly active [1]. For instance, coupling to the reset circuitry 

or system clock will most likely lead to a system reset or hang up, independent of the 

loading condition. However, memory access disturbance will only lead to visible effects 

if the memory was active at the moment of the disturbance.

In [2, 3], via many measurements on single-board computers, it has been shown 

that occurrence of a specific soft-failure might depend on the program, running on the 

system. The authors have shown the core processing IC of a smartphone became more 

sensitive to ESD events when a computationally intensive application was running 

compared to the case where the device was in standby mode [4]. These studies focused 

on the relationship between the system loadings and susceptibility, but no work was done 

on systematic analysis of the susceptibility concerning operating conditions of the 

system.

The susceptibility of a device under test (DUT) as a function of different 

operating conditions such as software loading, clock frequency, power distribution



network (PDN) noise and impedance, and VDD voltage is investigated for 5 different 

platforms. However, only one DUT is thoroughly analyzed in this paper. To better 

understand the effect of each condition on the susceptibility, the conditions are analyzed 

by obtaining ESD susceptibility maps for each condition. A susceptibility map shows the 

TLP voltage required to cause a soft-failure at various locations on the DUT. Such maps 

can be obtained by coupling noise to the DUT (through a magnetic field probe) while 

monitoring the system behavior. Magnetic probe is preferred to reduce chances of 

permanent damages to the DUT. If a soft-failure occurs, the TLP voltage and location are 

recorded for plotting. Figure 1 shows a typical susceptibility map. The small red dots 

indicate the probe position, and the color bar shows the voltage required to cause failure 

at each location. Due to the large number of positions required to obtain each map and 

the large number of possible conditions, manually obtaining the complete set of 

susceptibility maps could be very time-consuming and cumbersome.

7
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Figure 1. A typical susceptibility map.
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For instance, obtaining one susceptibility map for a 15^15 mm IC can take up to 

14 hours. In [5], an automated scanner is developed and used for obtaining ESD 

susceptibility maps. In [6], a commercial version of the robot scanner is used for 

analyzing root causes of system-level immunity sensitivities. This product is modified 

accordingly and then used to obtain the ESD susceptibility maps as a function of different 

operating conditions as discussed in Section 2 and 3, respectively.

Figure 2. Block diagram of the automated scanner built around an API robot scanner, 
MATLAB, TLP, Arduino UNO and a couple of interfaces.
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2. MODIFICATION OF THE ROBOT SCANNER

A fully automated ESD scanner requires many features such as automatization, 

failure detection, power-cycling and rebooting the DUT, verifying a successful reboot, 

detecting the DUT operating phases by monitoring its current consumption, software- 

activity-based injection of ESD noise, performing synchronous or asynchronous 

injections, changing TLP source voltage, changing injection location, and recording the 

injection voltage and robot arm coordinate. These requirements can be satisfied by the 

proposed block diagram and flowchart.

2.1. BLOCK DIAGRAM

Figure 2 shows the block diagram of an automated ESD scanner built around an 

API robot scanner [7], a transmission line pulse generator (TLP) with a rise time of about 

300 ps, and an oscilloscope. The injecting probe is a Hz probe consisting of a small loop 

with a diameter of 2 mm. The probe can produce both Hx and Hy fields at the same time. 

Hence, there is no need to scan the IC using probes of Hx and Hy orientation. Full-wave 

simulations showed the maximum generated magnetic field at 1 mm distance under the 

Hz probe when the probe loop is driven by 1 A of current, is about 114 A/m. This field 

strength can induce about 10 mA of current in a 1^0.5 mm loop placed at 1 mm below 

the probe and 1 mm to the side as shown in Figure 3. These two loops are placed 

orthogonally to mimic the orientation of the probe relative to possible coupling structures 

inside an IC (DUT). The exact dimensions and the induced current will depend on the 

details of the IC structures and the package. The current going to the probe loop and the



resulting field strength is set by the TLP source voltage. For instance, 1000 V charge 

voltage will lead to 20 A of current inside the probe loop as the loop forms a short. The 

selected DUT for our investigation is the CPU of a BeagleBone Black (BBB). This 

single-board computer has a Linux-based operating system with root access allowing us 

to control the CPU parameters from within the code.

10

Figure 3. The orientation of the Hz probe loop relative to possible coupling structures
inside the IC at two different views.

As shown in Figure 2, the BBB current consumption is monitored using a current 

sensor and an oscilloscope. The oscilloscope is configured to generate a trigger pulse 

when it detects a certain current level. The number of generated pulses per second 

depends on the running application on the BBB. About 3 to 8 pulses can be generated 

every second. The generated pulses are too narrow for the Arduino to detect (~10 gs); 

thus, Interface 1 is placed between the oscilloscope and the Arduino to increase the pulse 

width. Upon detection of the pulse, the Arduino sends an injection command to the TLP. 

The TLP source voltage also is controlled by the Arduino by using a digital to analog 

converter (Interface 2). As the main controller of the automated scanner, the Arduino
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continuously reports the scanner status to MATLAB. This information helps MATLAB 

to control the robot arm accordingly. The functionality of the system is explained in more 

details in the next section using the system flowchart.

All locations 
scanned?

Soft failure 
detected?

Successful
reboot?

<100
injection:

TLP: Start injections

Record voltage value and go 
to next location Yes

Yes

TLP: Next voltage 
stepPower cycle DUT

YesReset TLP voltage to
minimum value

Startfind

Robot: Go to start position

TLP: Set source voltage

Figure 4. Automated ESD scanner functionality flowchart.
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2.2. SYSTEM FLOWCHART

Figure 4 shows the flowchart of the automated ESD scanner. Turning on the 

system causes the robot arm to move to the start position and power up the BBB. The 

voltage of the TLP source is set to a preset value (defined by the user). Once a successful 

boot is confirmed, the system starts injecting ESD noise on the BBB via the Hz probe.

The Arduino increases the TLP voltage to the next step if no failure detected and more 

than 100 injections performed. The voltage steps are logarithmically spaced to minimize 

the total number of voltage steps for covering the whole voltage range of the TLP source 

(0 V to 5 kV). In this paper, 15 voltage steps were used. Once the final voltage step is 

reached, the robot arm moves to the next location, the source voltage goes to the default 

value, and injection starts again. If the BBB fails during any of the mentioned stages, the 

source voltage, which caused the failure, and the probe coordinates are recorded. The 

system then power-cycles the BBB. On the other hand, if no failure is detected and the 

maximum TLP voltage (5 kV) is reached, the Arduino power-cycles the BBB and 

requests MATLAB to move the probe to the next location. These processes continue until 

the entire IC (i.e., all 120 locations) is scanned.

For the BBB, the most common failures are CPU hang, and reduction of the clock 

frequency to 300 MHz or 500 MHz. The CPU hang is detected by comparing the blinking 

rate of the onboard LED against a timer (in Arduino). When the LED stops blinking (i.e., 

a failure occurred), the timer overflows, and a failure flag is set. The other common 

failure, (i.e., reduction in the clock frequency) can be detected by monitoring the current 

consumption waveform of the BBB. Once the clock frequency reduces, the current



consumption decreases resulting in no more trigger generation and; hence, raising a 

failure flag.

3. EFFECT OF CPU CONDITIONS ON ESD SUSCEPTIBILITY

3.1. CPU LOADING

Three different CPU loadings are <5%, ~50%, and ~100%. The lowest load 

(<5%) is created by putting the system in standby mode; i.e., no additional code is 

running. The 50% load is generated by using a freely available code named “CPU-load- 

generator” This code can generate an arbitrary CPU load from 1% to 99% using a pulse 

width modulation (PWM) technique. The highest load (100%) is created using a code 

developed by the authors. The code fully loads the CPU by running intensive 

mathematical calculations (multiplication, division, and addition) in a loop. The effect of 

CPU loads on the susceptibility of the IC is then investigated using the automated ESD 

scanner.

Figure 5 shows the ESD susceptibility map of the BBB CPU for various software 

loadings at 1 GHz clock frequency. The ESD susceptibility maps depict the sensitive 

regions of the IC to ESD noise and the corresponding TLP source voltage at each 

location. For this study, knowing the TLP source voltage is sufficient as the maps are 

compared together. The blue regions in the maps indicate the locations where the IC did 

not fail at all while the dark red regions show the most sensitive locations of the IC. The 

largeness of the orange/red regions (i.e., area), and/or the redness of the regions (i.e.,

13



color) indicate the increased sensitivity. In some cases, only one of the two factors can 

indicate the increased sensitivity as will be shown later.

14

Figure 5. ESD susceptibility map of the BeagleBone Black CPU for various software
loadings at 1 GHz.

3.2. CLOCK FREQUENCY AND VDD VOLTAGE

Besides the CPU loading, CPU clock frequency may also affect the sensitivity of 

the CPU. The underlying thought is that the upper limit of the clock frequency is often 

given by signal integrity inside the IC. As the signal integrity of the IC diminishes with 

increasing the clock frequency, it is plausible to expect increased sensitivity for the IC. 

Investigation of the effect of the clock frequency requires full control over the CPU 

frequency. In other words, the operating system must be unable to control the clock 

frequency once it is set by the user. Such level of control, over the system, calls for 

administrative control (or root access) which may not be granted by default. Once this 

access is acquired, the automated scanner can be used to obtain ESD sensitivity maps as a 

function of CPU clock frequency. Figure 6 shows the ESD susceptibility map of the BBB 

CPU obtained for various clock frequencies at 50% loading. Contrary to one’s



expectation, the CPU became more robust as the clock frequency increased. This 

observation can be explained as follows:

On the BBB board, there is a power management IC (PMIC) which provides and 

manages different VDD voltages for different parts of the board. Once a higher CPU 

clock speed is requested, the CPU communicates with the PMIC through an I2C bus 

requesting a higher voltage on CPU VDD_Core pin. According to the CPU datasheet [8], 

the VDD_Core voltage can vary between 1.056 V and 1.144 V. A higher VDD_Core 

voltage makes the IC more robust because a larger ESD event is required to cause a 

failure. As a measure for quantifying and comparing the IC robustness, the number of 

locations in Figure 6 with a TLP voltage of less than 700 V and less than 3 kV is counted 

and shown in Table 1. As indicated by this figure and Table 1, the IC becomes less 

susceptible, as the VDD_Core increases.
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Figure 6. ESD susceptibility map of the BeagleBone Black CPU for various clock 
frequencies (/VDD_Core voltages) at 50% load.

Another measure for quantifying the IC robustness could be the minimum TLP

voltage needed to upset the IC at each clock frequency. As shown in Figure 7, the
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minimum TLP voltage increases by 275%; i.e., from ~400 V to ~1500 V as the 

VDD_Core voltage increases by ~8%; i.e., from 1.056 V to 1.144 V. One may argue that 

the IC robustness should increase accordingly (~8%); however, it increased by 275%. 

Due to lack of deep understanding of this IC and its failure mechanisms, this argument 

could not be addressed fully. A plausible explanation, however, could be given by 

considering the available voltage margins for the ESD event at each VDD_Core (/clock 

frequency) voltage.

Figure 7. Minimum TLP voltage at each clock frequency (/VDD_Core voltage).

As shown in Figure 8, the VDD_Core voltage can swing between 1.056 V to

1.144 V. Assuming the lowest VDD_Core voltage at which the IC can function properly 

is 1 V, there is a 56 mV margin for the ESD event to cause a failure when the VDD_Core 

voltage is at 1.056 V, whereas the margin is 144 mV when the VDD_Core voltage is at

1.144 V. Therefore, the available margin for the ESD noise increases by 256% which is



close to the observed increase of 275%. This point of view can explain the observed 

increase of the TLP voltage in Figure 7.
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Table 1. Number of locations (out of 120) with a TLP voltage less than 700 V and 3 kV 
at various VDD_Core voltages (/clock frequencies).

1.056 V 1.1 V 1.144 V

<700 V 3 1 0

<3 kV 25 18 14

1.144V 
1.1 V 
1.056V 
1.0 V T

“  ~ 144 mV margin 

-56  mV margin

Figure 8. Available voltage margin for the ESD noise.

3.3. PDN NOISE AND IMPEDANCE

Increasing the PDN impedance, and consequently, the PDN noise of the BBB 

may cause the CPU to become more susceptible to ESD events. This investigation 

requires removal of all decoupling capacitors (decaps) connected to the VDD_Core 

voltage rail. Since the capacitor in the LC filter of the PMIC DC-DC converter can also 

act as a decoupling capacitor, it must be removed too. However, removal of this capacitor 

prevents the DC-DC converter from operating. A workaround is to add a low pass filter 

consisting of a ferrite bead paralleled with a low value (2 Q) resistor between the 

capacitor and the rest of the circuit. Therefore, the capacitor cannot act as a decap and the 

DC-DC converter is not disturbed anymore.
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Figure 9 compares the PDN impedance for the case where all decaps are removed 

(green trace) to the case where no decaps are removed (blue trace). The bump at ~2 MHz 

in the green trace is caused by the 2 Q resistor. At higher frequencies, the 2 Q resistor is 

dominated by the impedance of the PDN inductance (~3 nH). For the case where no 

decaps are removed, 12 dB/dec slope of the blue trace at higher frequencies suggests that 

the impedance is not purely inductive. Figure 9 clearly shows that the PDN impedance 

increases when all the decaps are removed.

Removing the decaps also affects the PDN noise. Figure 10 and Figure 11 show 

the PDN noise as a function of removed decaps at 50% and 100% loading, respectively. 

The peak to peak noise voltage increased from ~6 mV to ~80 mV for both load 

conditions. In Figure 11, the voltage spikes are present regardless of the presence of the 

decaps; removing the decaps only increased the magnitude of the spikes. Figure 12 and 

Figure 13 illustrate the effect of removing decaps in the frequency domain for 50% and 

100% loading, respectively. As observed, the broadband noise level increased by ~10 dB 

whereas the magnitude of the harmonics increased by ~10 to 35 dB. Moreover, 

comparing Figure 12 (a) with Figure 13 (a), and Figure 12 (b) with Figure 13 (b) suggest 

no additional harmonic is generated when the CPU load increases from 50% to 100%. 

Only the amplitude of the spikes increases.

By intuition, one may expect the CPU sensitivity to increase when the decaps are 

removed. This hypothesis is tested by obtaining the susceptibility map for various CPU 

loadings, and clock frequencies before and after the decaps are removed. Figure 14 shows 

the ESD susceptibility map of the CPU for 50% and 100% loading when the CPU clock
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frequency is set at 1 GHz. For both loadings, the CPU becomes more sensitive when the 

decaps are removed. However, this is not the case at all clock frequencies.

Time (ms)

■5----------‘----------‘----------‘-----------
-0.5 0 0.5 1

Time (ms)

a b

Figure 10. PDN noise as a function of removed decaps at 50% CPU load. a) Noise before 
and after removing decaps. b) Close up view of the noise before removing decaps.
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b

Figure 11. PDN noise as a function of removed decaps at 100% CPU load. a) Noise 
before and after removing decaps. b) Close up view of the noise before removing decaps.

a

a b

Figure 12. PDN noise in frequency domain for the 50% CPU load. a) No decap removed.
b) All decaps removed.

Figure 15 illustrates the effect of removing the decaps at various clock 

frequencies. As shown, the IC becomes more sensitive after removing the decaps when 

the clock frequency is 500 MHz and 1 GHz. Due to the visual similarity of the plots, the 

sensitivity is quantified by counting the number of locations with a TLP voltage of less 

than 700 V and less than 3 kV. Table 2 and Table 3 show the number of locations that



require <3 kV to fail increased by 32% and 107% at 500 MHz and 1000 MHz, 

respectively when the decaps are removed. Despite Figure 15 (a) and (c) which suggest 

the IC becomes more sensitive after removing decaps, Figure 15 (b) suggests the IC 

becomes more robust when the decaps are removed. The core reason for this behavior is 

not clear to the authors; however, this discrepancy can be diminished by taking into 

account the minimum TLP voltage, before and after removing the decaps as follows.

In Figure 15 (b), the minimum TLP voltage for the with-decaps case is 650 V; 

whereas, it is 340 V for the decaps removed case. This reduction in the TLP voltage 

indicates the IC becomes more sensitive after removing the decaps. However, the 

increased sensitivity is only reflected in the form of reduced minimum TLP voltage and 

not enlarged (non-blue) area as was the case in Figure 15 (a) and (b). Although the root 

cause of these observations is not clear to the authors, this result suggests that the 

behavior of complicated ICs can be deeply investigated using high-resolution 

susceptibility maps obtained by the ESD scanner.
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a b

Figure 13. PDN noise in frequency domain for the 100% CPU load. a) No decap
removed. b) All decaps removed.
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a

b

Figure 14. Effect removing decaps on CPU susceptibility. a) 50% CPU load. b) 100%
CPU load.

Table 2. Number of locations (out of 120) with a TLP voltage less than 700 V and or less 
than 3 kV at the clock frequency of 500 MHz.

With decaps Decaps removed

<700 V 3 4

<3 kV 25 33

Table 3. Number of locations (out of 120) with a TLP voltage less than 700 V and or less 
than 3 kV at the clock frequency of 1000 MHz.

With decaps Decaps removed

<700 V 0 1

<3 kV 14 29
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a

b

c

Figure 15. Effect of removing decaps on CPU susceptibility for various clock 
frequencies. a) 500 MHz. b) 800 MHz. c) 1000 MHz.
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4. SUMMARY AND CONCLUSION

The effect of several operating conditions on the susceptibility of the BeagleBone 

Black CPU was systematically explored. Due to the large number of required tests for 

this investigation, an automated scanner was developed. Our investigations showed the 

IC became more sensitive as its load increased. However, contrary to our expectations, 

increasing the clock frequency caused the IC to become more robust. The reason for this 

observation was attributed to an increase of the VDD core voltage of the CPU. 

Furthermore, the effect of removing decaps on the sensitivity of the CPU was 

investigated. Although the PDN noise and PDN impedance increased when the decaps 

were removed, the CPU sensitivity did not always increase.

If the goal is to make a system sensitive to ESD without any modifications to the 

hardware, one should select a high load for the core processor and a low VDD voltage. 

Removing decaps will further increase the sensitivity. Motivated by the results obtained 

from this work, more DUTs will be tested to acquire a broader picture of the behavior of 

the core processors as a function of different operating conditions.
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ABSTRACT

Two complementary approaches are presented to help to understand how CPU 

loading affects the sensitivity of an electronic device to ESD (electrostatic discharge) 

stress. Both approaches rely on synchronized noise injection while the software is 

running at the desired load. One of the approaches monitors the device’s current 

consumption while the other monitors the device's electromagnetic field to synchronize 

noise injections. These approaches revealed that as the CPU loading increases, the device 

becomes more active and hence more susceptible to ESD stress. Moreover, it was 

observed that, in each loading condition, the device randomly became susceptible. These 

complementary approaches enable the capturing of high/low active intervals as well as 

the injection of noise voltage to the desired activity, thus, allowing for the analysis of the 

effect of CPU loading on ESD susceptibility.

1. INTRODUCTION

Soft failure investigations are necessary for evaluating the ESD (electrostatic 

discharge) susceptibility of an electronic device. Soft failure is a temporary upset,

mailto:ohp63@mst.edu


disturbing the normal operation of the devices. Soft failures are resolved either 

automatically after a short time (a few seconds) or by power-cycling the device [1, 2]. 

Latch-ups and permanent damages (hard failures) could also happen as a result of ESD 

events [3]; however, they are out of the scope of this paper.

For soft failure investigation, the operating condition of the device under test 

(DUT) should be considered, as the DUT’s susceptibility can change when the operating 

condition changes [4]. Reference [5] has shown that the DUT became more sensitive to 

ESD when the system loading increased. It also reported that increasing or decreasing the 

CPU frequency can affect sensitivity. In [6], the authors observed that, while a file 

compression program was running, other soft failure types occurred other than those 

related to the display. These studies suggest that higher system loading leads to higher 

sensitivity.

On the contrary, other studies did not observe a similar trend. Reference [7] 

reported no correlation between DUT sensitivity and system loading.

In the mentioned works, the ESD noise voltage was injected randomly; i.e., the 

injections were not associated with any particular activity of the DUT. As will be 

discussed in the following sections, random injection is not a suitable approach for 

evaluating the effect of system loading on device susceptibility. A better approach is to 

correlate ESD injections with the DUT activity; in other words, the injections should be 

synchronized to a particular activity, to understand the effect of system loading on the 

device susceptibility.

In this paper, two complementary approaches are presented for synchronizing the 

noise injection to the device activity. The first approach performs injections synchronous
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to the current consumption waveform, whereas, the second approach uses 

electromagnetic interference (EMI). Finally, using a smartphone as our DUT, the 

approaches are put to the test and compared.

2. CURRENT CONSUMPTION-BASED SYNCHRONIZATION METHOD

2.1. MEASUREMENT SETUP

Figure 1 shows the block diagram and the measurement setup. The current sensor 

is a resistor placed in series with the entire PCB of the device and is used to monitor the 

instantaneous current consumption of the device. The voltage drop across this resistor is 

monitored by an oscilloscope. The oscilloscope is set to generate a trigger signal to the 

TLP (transmission line pulse) generator whenever the current waveform exceeds a user- 

defined level, which will be henceforth referred to as the trigger level. Because the trigger 

level depends on the CPU loading and CPU frequency of the DUT, it should be set at the 

peak of the current waveform in order to trigger on high activity intervals, as shown by 

the horizontal dashed lines in Figure 2. Similarly, the trigger level is set at the valley 

points for targeting low activity intervals. With these settings, the oscilloscope is 

triggered whenever the current consumption crosses the trigger level (dashed line). The 

generated trigger passes through the delay-control block, gets delayed, and then is fed to 

the TLP. The delay block compensates for the delay added by the other blocks.

An 8-mm magnetic field probe is used to inject noise into the DUT. When driven 

by 1 A of current, this probe can couple about 10 mA of current into a 1*0.5 mm loop

28



placed 1 mm below the probe. A detailed explanation is provided about the injection 

probe in [5].
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a

Current
-----K

sensor ---V

b

Figure 1. Current consumption-based synchronization measurement setup. a) Injection 
probe and DUT. b) Block diagram of entire setup. The delay control circuitry has ~5 ps 

delay, which is negligible compared to the 3.4 ms delay of the TLP generator.
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2.2. SYNCHRONIZATION REQUIREMENTS

For a successful synchronization, the following requirements should be satisfied.

• Steady clock frequency: If the DUT clock frequency can be controlled 

through software, the user should fix the clock frequency. This can reduce 

the variations of the current consumption waveform caused by CPU 

frequency hops. We set the CPU frequency of our DUT at 1 GHz.

• Known delay: The delay between the moment that the oscilloscope is 

triggered and when the actual pulse appears at the TLP output should be 

known with sub-millisecond uncertainty. Most of this delay comes from 

the TLP relay. A mercury relay can reduce the uncertainty to less than

1 ms. The delay caused by the TLP is 3.4 ms ± 1 ms. The delay caused by 

the other blocks is in the range of a few micro-seconds and thus is 

neglected.

• An additional delay should often be added to the total delay such that the 

injection occurs at the next active interval. For instance, in Figure 2c, the 

valley point repeats every ~6 ms, thus, an additional delay of 6-3.4 =

2.6 ms should be added so that the injection happens at the next active 

interval. Although the current consumption waveform is not periodic in 

general, especially at low CPU loadings and low clock frequencies, the 

waveform starts to show a semi-periodic behavior as the CPU loading and 

the clock frequency increase, as observed in Figure 2a, 2b, and 2c.

To generate different CPU loadings, it is recommended to employ a software 

designed for this purpose. A simple infinite loop with arithmetic calculation can intensely



load the CPU; however, other parts of the system (RAM, graphic IC, etc.) may not be 

involved as much as the CPU. Moreover, in case of the loop, the CPU loading intensity 

cannot be changed -  The load would always be close to 100%. In this study, a low load 

condition (below 10%) was created by leaving the DUT in standby without running any 

additional software except for the already running system-related tasks. For creating 

medium load (~50%), a video recording app was used, which could load the graphic IC, 

RAM, and CPU to some extent. Since this app had not been designed for generating a 

well-defined load, the activity of the CPU does not have a specific pattern (see Figure 

2b). This lack of pattern adds uncertainty to the trigger timing. For high load (above 

90%), an app called StressCPU ([8]) was used. This app could create a steady load for the 

CPU and RAM, as shown in Figure 2c.

2.3. PERFORMING SYNCHRONIZED INJECTION AND ANALYSIS

A smartphone is used as our device under test (DUT). Its CPU frequency can hop 

between 300, 500, 800, 1000, and 1200 MHz, which can be controlled by software. Due 

to the lack of proper heat transfer between the CPU and the environment, we limited the 

frequency to 1000 MHz. This limitation is imposed because the injection probe directly 

lands on top of the CPU, which reduces the heat transfer rate. For frequencies below 500 

MHz, the current consumption waveform changes irregularly and smoothly, therefore, it 

was difficult to achieve synchronization, hence the 1000 MHz frequency. To prevent the 

overheat protection circuitry from kicking in and reducing the CPU frequency by 

hardware (forcefully), an external fan cools down the CPU.
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Figure 2. Current consumption of the device under test under different CPU loading. a) 
Low load (<10%). b) Medium load (~50%). c) High load (>90%). The CPU frequency 

was fixed at 1 GHz. The noise was injected during the marked low and high activity
periods.
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Figure 3. TLP voltage causing a soft failure vs. CPU load. a) Synchronized to low 
activity. b) Synchronized to high activity. c) Random injection.
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The TLP source voltage is increased from 0 to 5 kV until a soft failure was 

observed. The voltage that caused this soft failure is recorded, and the DUT is power 

cycled to return the DUT to its condition before the soft failure occurrence. Repeating 

these steps for low load, medium load, and high load conditions gives us the TLP voltage 

at which the DUT soft-failed vs. CPU load, as shown in Figure 3. Figure 3a, 3b, and 3c 

are obtained by synchronizing the injections to the low activity period of the CPU



(corresponding to Figure 2a), synchronizing to high activity period (corresponding to 

Figure 2c), and injecting randomly (asynchronously), respectively. The red asterisk 

illustrates the average value (of the five repetitions). The following observation can be 

made from Figure 3:

For synchronized injection (Figure 3a and 3b), as the CPU load increases the CPU 

becomes more sensitive, i.e., lower TLP voltages cause a soft failure. Ideally, the CPU 

sensitivity should not be affected, as the CPU was stressed during a particular activity 

period (in low or high corresponding to Figure 3a and 3b). However, this ideal case is not 

achievable because: (1) The CPU loading momentarily fluctuates due to system-related 

apps, housekeeping, or other system activities that are not under the user control; (2) 

during high load condition (see Figure 2c), the valley point of the current consumption 

waveform does not revert to the low value of low load condition (see Figure 2a); in other 

words, the CPU loading baseline value increases as the load increases.

Figure 3b is obtained by synchronizing the injections to high activity periods. As 

expected, the CPU becomes more susceptible when it is highly active. One may also 

expect that the CPU sensitivity should remain steady and high, regardless of the loading 

condition, since the injections are synchronized to high activity periods. This 

contradiction can be explained using the irregular behavior of the system mentioned 

above.

Moreover, it is observed that the average value (red asterisk) in each loading 

condition in Figure 3a is higher than the corresponding loading condition in the 

asynchronous scenario (Figure 3c). This observation suggests the CPU is more robust 

when it is stressed during its low activity intervals.
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Finally, Figure 3 c shows the results for asynchronous injection. Since the 

injections are performed randomly for this plot, it is expected to have a poor repeatability 

or in other words a large distribution, especially at lower loads. As the load increases, the 

idle intervals reduce and become less frequent, drastically reducing the chance of hitting 

a valley point. This trend can be observed in the current consumption waveforms shown 

in Figure 2.

Although the current-based synchronization approach can improve repeatability 

and reduce the uncertainty of the results, its major downside is its requirement for 

monitoring the current consumption of the target IC. For a device with one CPU IC, this 

requirement can be met; however, if more than one CPU IC exists on the device, this 

approach may fail because the total current consumption of the entire device is not a good 

indicator of the target IC activity. An alternative approach is to employ the EMI-based 

synchronization method.

3. EMI-BASED SYNCHRONIZATION METHOD

3.1. MEASUREMENT SETUP

The electromagnetic (EM) field of an IC usually has a broad frequency range. It 

can consist of both broad and narrow band spectral components. Some of these 

components may vary as the activity level of the IC changes. These components can be 

filtered out and used to trigger the TLP.

Figure 4 shows the measurement block diagram. The detection loop picks up the 

field generated by the IC of interest. The acquired signal is then amplified and fed to a
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super-heterodyne bandpass filter, which includes a fixed bandpass filter with 1.575 GHz 

center frequency and 5 MHz bandwidth, two mixers, and one synthesized source. The 

target frequency is mixed up to fall in the filter bandwidth and then mixed down to the 

baseband (0-90 MHz). This process allows sweeping through many frequencies without 

changing the setup. The outputted signal triggers the oscilloscope, and then the TLP after 

being adjusted by the delay-control block.

The selected frequency to pass through the filter and trigger the TLP should be 

unique for each loading condition. A frequency that is used for, namely, low load 

condition should not appear in the spectrum of high load or medium load. Moreover, in 

each loading condition, the magnitude of the selected frequency should significantly 

fluctuate with activity -  at least 10 dB is suggested. The biggest challenge of this method 

is finding a frequency that satisfies these requirements. As shown in Figure 5, there are 

many frequencies to be examined. The selected frequencies in this study are 1.138 GHz, 

1.600 GHz, and 1.200 GHz for low load, medium load, and high load conditions, 

respectively.

Figure 6 compares the current consumption of the device (same smartphone used 

in the other approach) with the signal picked-up by the loop after the super-heterodyne 

filter in each loading condition. As clearly observed in Figure 6b and 6c, the current 

consumption waveform resembles that of the selected frequency, validating the frequency 

selection for these loads. In low load conditions, the DUT is in standby; thus, the signal 

picked up by the loop has a relatively constant amplitude, as there is not much change in 

the DUT’s activity in standby; however, as encircled in Figure 6a, a pattern with small
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magnitude fluctuation can be observed in the filtered signal. The TLP is triggered based 

on this pattern.

As for the medium load shown in Figure 6b, as discussed before, a media 

recording app was employed to generate this load; thus, the CPU activity has an irregular 

pattern, adding uncertainty to the trigger timing. This lack of pattern can be observed 

both in the current waveform and the behavior of the selected frequency component.

Figure 4. Measurement block diagram for EMI-based synchronization method.
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Figure 5. Amplified spectrum of the IC under test picked up by the detection loop.
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Figure 6. Current consumption waveform compared to the picked-up signal by the 
detection loop after the super-heterodyne filter. a) Low load. b) Medium load. c) High

load.
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As observed in Figure 6c, the filtered signal not only has a semi-periodic feature, 

but it also has large amplitude variation. Therefore, it is expected that the failure voltages 

be relatively less spread out, and the IC be more sensitive in high load. This is discussed 

in the following section.

3.2. PERFORMING SYNCHRONIZED INJECTION AND ANALYSIS

Figure 7 shows the TLP voltage at which the DUT soft-failed vs. CPU load when 

injections are synchronized to the high activity periods. The decreasing mean value for an 

increasing CPU load, suggests that the susceptibility of the device increases when the 

CPU loading increases, i.e., a lower TLP voltage is needed to cause a failure. This 

behavior is consistent between both synchronization methods. Comparing Figure 7 with 

Figure 3c (asynchronous injection), one can observe that a much better uncertainly is 

achieved at low load (<10%). Comparing Figure 7 with its counterpart, Figure 3b, one 

can observe that (1) the data has a large distribution especially at medium load, and (2) 

the failure voltages are usually higher.

Figure 7. TLP voltage causing a soft failure vs. CPU load.



These observations suggest that the EMI-based method should be used as a 

complementary approach for the current consumption approach, or where current 

monitoring is not possible.
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4. DISCUSSION

4.1. RELATIONSHIP BETWEEN LEVEL OF CPU ACTIVITY AND ESD 
SUSCEPTIBILITY

The proposed test methods enable us to analyze the level of CPU activity with 

respect to ESD susceptibility. Some possible physical explanation behind the 

proportional relationship between the level of CPU activity and ESD susceptibility are:

• When the system is highly active, the system draws more power from the 

power distribution network (PDN), leading to increased PDN noise. As 

pointed out in [5], higher PDN noise can lead to higher ESD sensitivity. 

Higher CPU frequencies exacerbate the situation, as expressed by 

Equation (1):

V( f )  = I ( f ) . Z( f ) ,  (1)

where V is the voltage drop across the impedance of the power distribution network (Z), 

and I is the current drawn by the CPU.

• During high CPU activity intervals, more subsystems are turned on, 

compared to those of the low CPU activity intervals. If one or more 

subsystems that are only ON during high CPU activity intervals are more 

sensitive to ESD than others and get disturbed by ESD, the resulting soft
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failure can propagate throughout the system and be observed by the user. 

However, if the subsystem is OFF its failure may remain hidden.

4.2. MULTI-CORE CPU

The CPU of the smartphone under test shown in Figure 1 is a Quad-core CPU, 

which consists of four ARM Cortex A7 CPUs as well as embedded peripherals such as 

USB, Bluetooth and Wi-Fi, Cellular Modem, GPU and Display modules. It is assumed 

that most of the current is consumed by the processors, not the peripherals; therefore, the 

active low and high intervals in the current waveform are caused by the processor 

activity.

Due to the multi-core architecture of such CPUs, in general, it is not clear how, 

namely, a 50% load is distributed between the cores. However, for the CPU tested here, a 

100% load completely loads all 4 cores of the CPU. This was verified using a system 

monitoring app. For a 50% load, since the camera app is being used to generate this load, 

the load distribution is not uniform between the cores. Which is to say that the loading of 

the cores fluctuates. These fluctuations can be limited by preventing the CPU frequency 

to hop (which was done here) and/or use an app to generate a 50% load. The latter could 

not be achieved because of the lack of the needed skills for Android programming. In a 

similar study, however, a code was written in Python to generate the desired load. The 

DUT was BeagleBone Black with a Linux-based operating system called Debian.
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4.3. LEVEL OF SENSITIVITY FOR CPU AND RAM

In a different study, where a BeagleBone Black is used as the DUT, the EMI- 

based synchronization method was performed on the RAM IC. It is observed that the 

RAM is not as susceptible as the CPU. This observation may be different for different 

DUTs.

4.4. ABSOLUTE TLP VOLTAGE LEVEL VS. TREND

The average TLP voltage obtained from the current-based approach is slightly 

lower than the EMI-based approach under the same loading condition. This difference is 

rooted in different test setups. The authors have observed that a 0.2-mm change in the 

injection probe height can change failure TLP voltage. Therefore, absolute TLP voltage 

levels can vary (and should not be compared), while the trend is comparable.

5. SUMMARY AND CONCLUSION

Motivated by the observed contradiction between different studies regarding the 

effect of CPU loading on ESD susceptibility, we presented two approaches to 

synchronize noise injection with CPU activity and take into account the effect of CPU 

loading. Using the current consumption-based synchronization method, we observed that 

the IC became more sensitive as its load increased. Also, we noticed that regardless of the 

loading condition, the IC susceptibility increased during high activity intervals. While the 

former shows how the IC behaves as a function of loading condition, the latter shows 

how the IC behaves in millisecond windows during each loading condition. Due to these



millisecond active intervals, the asynchronized (random) injection approach could not 

show how sensitive the IC became under ESD stress. The main drawback of the current- 

based approach was the need to access and monitor the current consumed by the target 

IC, which could be impractical in certain devices, such as multi-layered PCBs, or if only 

one of the many CPU ICs is to be tested. Alternatively, the EMI-based synchronization 

approach was presented, which monitored the near field of the target IC, instead of its 

current consumption. Using the EMI-based method, we observed that the target IC 

became more sensitive as its load increased, a trend consistent with that of the current- 

based method. The most prominent advantage of the EMI-based method was at low loads 

(<10%) because there was less variability in the results (compare Figure 7 with Figure 

3b). Therefore, the two methods should not be used interchangeably, but 

complementarily. If the load cannot generate a pattern in the current consumption 

waveform, the EMI-based method should be used instead.
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ABSTRACT

Audio- and image-based soft failure detection methods are developed, which can 

detect both severe failures (such as system hang) and subtle ones (such as glitch or a 

momentary disturbance on display). Incorporating the developed detection methods with 

a robotic ESD (electrostatic discharge) tester, we developed a fully automated soft failure 

investigation tool. Using this fully automated tool, we obtained failure-specific 

susceptibility maps for a camera (our target device). These susceptibility maps not only 

illustrated the sensitive locations of the device, they also showed what type of soft failure 

is correlated with which locations.

1. INTRODUCTION

When an electrostatic discharge (ESD) occurs, the victim device may experience 

a latch-up event, permanent hardware damage (hard failure), or a temporary upset (soft 

failure). Soft failures are temporary and can be solved by power-cycling the device. For 

soft failure immunity testing, one can manually perform a few tests to quickly and 

approximately locate the sensitive locations of the target device; however, for a

mailto:ohp63@mst.edu


systematic investigation, manual testing is not the correct approach. For a systematic 

investigation, it is strongly advised to employ automatization, as manual testing has poor 

repeatability and is time-consuming. Additionally, the likelihood of soft failure 

occurrence can depend on the operating conditions, as investigated in [1], which means 

even more tests might be required. Under these conditions, automatization is the best 

approach.

Automatization can improve repeatability, reduce human mistakes, and in general, 

can produce reliable results; however, it calls for (1) an automated tester for moving the 

injection probe, injecting ESD noise, controlling noise source voltage, etc., and (2) soft 

failure detection and decision making. The focus of this paper is the second requirement 

-  soft failure detection and decision making -  as the first requirement is rather well 

established in the literature. For instance, [2] used a planar scanner to move an injection 

probe on the target device and obtain susceptibility maps for the CPU (central processing 

unit) of the device under test (DUT). Reference [1] used a planar scanner to 

systematically investigate the relationship between soft failures and operating conditions 

by studying the susceptibility maps of the DUT. Both these studies monitored the DUT’s 

DC current consumption in order to detect a soft failure; whenever the current 

consumption exceeded a defined value, a failure flag was raised.

Soft failures can be detected by other methods besides DC current consumption. 

[3-5] investigated several other methods and elaborated on their effectiveness in detecting 

a failure. These methods are listed in Table 1. Among these methods, Down-mixing,

Short Term Fourier Transform (STFT), Kernel calls, and Wavelet Transformation require 

adaptive post-processing; i.e., an operator must adaptively tweak the methods’
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parameters in order to find the irregularity caused by the soft failure(s) in the recorded 

data. Thermal imaging works best for failures that lead to a temperature change (usually a 

temperature rise), which is commonly associated with latch-ups. DC current consumption 

method is simple and effective, however, cannot detect failures that do not cause an 

abnormal change in the current consumption, such as multi-colored stripes on the display 

or a glitch on the display. These are considered failures to the human eye and should not 

be missed. For the Spectral method to detect a failure, the spectral variations caused by 

the failure should be abnormally larger than what it is in normal operation. According to

[4], this method is effective only 31% of the time. Table 1 compares these methods in 

terms of their requirements.

Many of the presented methods lack the ability to detect soft failure independent 

of an operator; they also have lengthy post-processing times [1, 2]. On the other hand, 

simple methods such as DC current consumption and Spectral method are not reliable for 

soft failure detection as they miss failures that do not cause abnormal current 

consumption or abnormal spectral content.

This paper is an extension to our previous paper ([6]); it presents a new, different 

approach that allows for the detection of soft failures in a similar manner that humans do 

-  through hearing and sight. Thus, it is effective for the class of devices with a display or 

a speaker. A few examples of this class are phones, professional and cinematic cameras, 

amateur cameras, sound systems, music players, smart speakers, etc. Any failure that can 

be detected by the user can also be detected by this approach. The biggest challenge is the 

detection of both severe failures such as a system hang or restart, as well as the subtle 

ones such as a momentary display malfunction, defocus, etc.
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Table 1. Soft failure detection methods.
Method Post-processing? Specific requirement?

Short Term Fourier 

Transform (STFT)

Yes Parameter tweak by a human

DC current consumption No No

Thermal imaging No - Infra-red camera 

- line-of-sight between the DUT 

components and the camera

Wavelet Transformation Yes Parameter tweak by a human

Down-mixing 

(to audio band)

Yes Parameter tweak by a human

Spectral method No No

Kernel calls Yes - Parameter tweak by a human

- Dedicated serial port on DUT

In the following sections, we will elaborate on our soft failure detection approach. 

Using a camera and a music player as our target DUT, we develop image-based and 

audio-based detection and characterization methods; then we combine these methods 

with a 6-axis robot to achieve automatization. Finally, the combined system is used to 

demonstrate automated soft failure testing for a different DUT.

2. AUTOMATED ESD TESTING

2.1. SYSTEM BLOCK DIAGRAM

Figure 1 shows the system block diagram of the automated ESD tester. An 

industrial Mitsubishi 6-axis robot is used to move the injection probe on the DUT. The 6-
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axis robot can approach the DUT from any direction and at any angle allowing us to test 

complex 3-D objects [6].

Figure 1. Block diagram of the automated ESD tester when a camera is used as the DUT.
For the case of a music player as the DUT, the webcam is replaced with a mic, and the

monitor is removed.

The DUT (camera) is set to look at the monitor while the monitor is playing a 

video. A webcam, which is connected to MATLAB, is focused on the DUT display. The 

webcam image resolution is set to 400*300 pixels -  higher resolution is not necessary. 

With this image size, about five images can be processed per second. The procedure is 

simple: once the captured image is processed, another image is taken by the webcam, 

transferred to MATLAB to be processed. A higher rate was not needed because the DUT 

reaction to a failure was relatively slow (in the range of couple of seconds).
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Figure 2 shows the system flowchart of the automated ESD tester. The flowchart 

is self-explanatory and is already explained in detail in [1] and [6]; however, the 

necessary blocks are explained here. The algorithms used to decide if the DUT failed 

(“DUT failed?” block in Figure 2) are the core part of this paper and will be discussed in 

detail in the following sections.

2.2. IMAGE-BASED SOFT FAILURE DETECTION

Figure 3 shows the soft failure types observed during more than 50 susceptibility 

tests performed on the DUT (camera). For these tests, an 8 mm magnetic field probe and 

a transmission line pulse generator with ~7 ns pulse width was used to inject a noise 

voltage into the DUT. (See [1] for more detail about the probe structure). All flex cables, 

processors, integrated circuits (IC), etc. were subject to noise injection.

Figure 3a shows the defocus failure. It was observed that the injected noise 

disturbed the control circuitry of the lens, resulting in a defocused image. This failure has 

an occurrence rate of ~15% (out of 50 preliminary tests) and is considered a severe 

failure. It can be solved by either re-focusing or power cycling the camera.

Figure 3b illustrates the vertical strips failure. It has an occurrence rate of more 

than 55% and can only be solved by power cycling. Figure 3c illustrates the vertical gray 

regions failure. This failure requires power cycling to be solved and has a small 

occurrence rate of 5%. Figure 3e is the frozen-image failure. With less than 5% 

occurrence rate, this failure is considered severe too. It needs a power cycle to be solved, 

as it causes a system hang. Figure 3f shows the horizontal colored regions failure. This 

failure cannot be considered as a severe one, as the colored regions appear and disappear
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momentarily, without negative impacts on the normal operation of the DUT. With 5% 

occurrence rate, it might not be of great concern for a consumer camera but could be of 

great importance for a professional cinematic camera. Therefore, it is important to detect 

this failure too. The last failure type is a direct restart and is shown in Figure 3d. It has an 

occurrence rate of more than 15%. In summary, the vertical strips failure, vertical gray 

regions failure, restart failure, and frozen-image failure are considered severe, as they all 

lead to system hang and/or require a power cycle to be solved. The horizontal colored 

regions failure, however, is considered a subtle failure as it shortly appears and then 

disappears.

2.2.1. Feature Extraction of Failures. Figure 3a shows the defocus failure.

Using focus evaluation algorithms, one can evaluate the focus quality of the image. For 

this evaluation, it is important that both the camera (DUT) and the webcam are focused. 

Focus quality can be assessed using algorithms such as Absolute Central Moment 

(ACM), Image Curvature, Brenner's, Thresholded gradient, Helmli's mean method, 

Histogram entropy, Gaussian derivative, Gray level variance, Energy of gradient, and 

many more [7]. In this study, the absolute central moment is used as it can distinguish a 

defocused image from a low contrast one [8]. Equation (1) can be used to calculate the 

focus measure (FM) using absolute central moment. Figure 4 illustrates how much a low 

contrast and a defocused image can look alike.

f =  If=_o1 |i -MlP (0 ,  (1)

where p is the image histogram, p is the image mean value, and f is the calculated focus

measure.
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Figure 2. Flowchart of automated ESD tester. The corresponding block diagram is shown
in Figure 1.

By comparing the focus measure value of one image calculated by the absolute 

central moment algorithm with preceding images, one can keep track of changes in the 

focus measure values and detect a defocus failure. The image content does not affect the



focus measure value; thus, failures such as vertical strips, frozen-image, horizontal 

colored regions, and vertical gray regions do not change the focus measure value, 

drastically; whereas, a restart significantly affects this value. Therefore, the focus 

measure is used for both detecting a restart and defocus failure. A large change in the 

focus measure value (more than 75%) is considered as a result of a restart failure, while 

smaller changes (less than 75%) are considered to be caused by the defocus failure.
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Figure 3. Observed soft failures for the camera under test. a) Defocus. b) Vertical strips. 
c) Vertical gray regions. d) Restart. e) Frozen image. f) Horizontal colored regions. After 
each failure occurrence, the camera was power cycled to revert it to a known state for the

next test.

The most obvious features of the vertical strips (Figure 3b) failure is the presence 

of vertical lines in the image. The Canny operator [9, 10] can be used to accentuate the 

edges in the image. This operator uses two thresholds to keep track of the edges, which
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makes it a robust algorithm for edge detection purposes. To quantify the detected edges, a 

Hough transformation [11, 12] is used after the Canny operator to convert all the edges 

into line segments. This transformation assigns a value to each line segment, quantifying 

the line length and population. By comparing the total segment length and count of the 

current image with previous images, one can keep track of the changes in subsequent 

images and determine whether a failure occurred or not. Figure 5 illustrates the images 

resulted after edge detection step and Hough transformation. The total number of lines 

detected by this approach (Figure 5c) is 228, which is significantly larger than the total 

lines detected in the image before the failure happened (24 count). In this study, a 

threshold of 100 lines is used. If the stripes appeared horizontally (or in other directions), 

the Canny operator and the Hough transformation still can be applied without further 

changes.

a b c

Figure 4. Comparison between low contrast and defocused image. The similarity can be 
confusing for an algorithm. a) low contrast image. b) defocused image. c) high contrast

image.

The effectiveness of the Canny operator can be improved by applying a line filter 

such as a Sobel (or Prewitt) operator before applying the Canny operator. The Sobel (or



Prewitt) operator convolves the image with a 3*3 matrix in the vertical and horizontal 

direction to roughly calculate the gradient of the image intensity in a computationally 

inexpensive way [13, 14]. The Sobel operator is used in this study, since the lines were 

vertical. This operator should not be used for tilted lines.
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a b c

Figure 5. Steps to detect vertical lines in an image. a) Original image. b) Image after edge 
detection filter. c) Image after Hough transformation. After Hough transformation, the 

segments’ length and count are compared with those of the previous images.

The most prominent feature of the restart failure (Figure 3d) is the sudden change 

of the screen color from mostly white to almost complete black. This sudden change is 

used for detection of the restart failure (in parallel with the focus measure approach).

One can simply add up the pixels color data and compare the sum value with that of the 

baseline image and/or the preceding images. Because of the plain white background in 

the baseline image, the sum of the pixel color data does not change more than a few 

percent, even with the movement of the black ball. If the entire display was completely 

white, a restart failure could turn the display black, creating nearly 100% color change; 

however, because of the presence of the black ball in the image, the restarts change will 

be less than 100%. In this study, a change more than 95% relative to the baseline image is 

considered to be due to the restart failure. This approach (which is named Area



Difference (AD) by the authors) is not computationally expensive and is easy to 

implement.

The Frozen image failure (Figure 3e) can also be detected by the Area Difference 

detector. When this failure occurs, the image on the DUT display will not change; 

therefore, the Area Difference detector would calculate the same value for two back-to- 

back images. In this study, a difference less than 5% between two consecutive images 

indicates a frozen image failure occurred.

Figure 3f shows the colored regions failure. For the camera used in this study, the 

region appears horizontally and in purple, but it can be of any color and shape. To detect 

colored regions failure, the data of all the pixels in each row is added together, which 

results in one value for each row. By comparing these values with other rows in the same 

image, one can determine the occurrence of the colored regions failure, as shown in 

Figure 6. Using Figure 6b, we set the threshold at 0.5e4; a value more than 0.5e4 

indicates the colored regions failure occurred.
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Figure 6. Detection of the colored regions failure. a) Snapshot of the failure. b) Identified
rows with a large change in the color data.
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Figure 7. Image-based detection and characterization algorithm flowchart.



This same procedure is performed in vertical direction (for each column), 

evaluating the presence of a vertical color change in the image. In this way, the vertical 

gray regions (Figure 3c) can also be detected. As for the computational cost, this 

approach is not expensive as the main mathematical operation is a simple summation. 

Figure 7 shows the complete flowchart of the image-based soft failure detection 

algorithm.
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Figure 8. Snapshot of the test video clip, shown on the monitor to the DUT (camera)
during the ESD tests.

2.2.1. Test Video. For easier failure detection, a test video has been created to be 

displayed to the DUT (camera). This test video consists of a white background and a 

moving black ball. Figure 8 illustrates a snapshot of this test video. Its notable features 

are plain, white background, black ball, and movement. The white background helps to 

detect a failure that disturbs color data in the image (such as vertical strips, vertical gray 

regions, horizontal colored regions, and restart failures shown in Figure 3), the black ball 

helps to detect defocus failure, and its movement helps to detect the frozen image failure.
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2.3. AUDIO-BASED SOFT FAILURE DETECTION

In this section, audio-based soft failure detection algorithm is presented. This 

algorithm can detect soft failures that cause a change in the audio signal played by the 

DUT (music player). Similar to the previous section, first we identify the soft failures 

through a preliminary study, then the distinctive features of the soft failures are 

determined, and finally suitable algorithms to extract these features are developed.

Figure 9. Spectral contents of the test audio in normal operation (no failure). This serves 
as the baseline audio. The frequency contents below 700 Hz and above 4 kHz are ignored 

to remove any artifacts around DC, and limit the bandwidth to 4 kHz, respectively.

2.3.1. Test Audio. The test audio track is composed of two single tones at 1 and 

3 kHz. This selection allows the detection algorithm to look for certain properties: 

absolute frequency (two single tones at 1 and 3 kHz), relative frequency distance (2 kHz), 

and relative magnitude with respect to the noise floor. Figure 9 shows the measured 

spectral content of the test audio track in normal operation (without any ESD stress). The
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second tone was selected to be the 3rd harmonic of the first tone to avoid the appearance 

of other harmonics as a result of calculating the Fourier Transform in a short period of 

time (1 second).

a b

c d

Figure 10. Different variations in spectral contents of the test audio. a) Increased noise 
floor. b) Absence of expected tones (1 and 3 kHz) plus increased noise floor. c) Multiple 

tones. d) Difference between the magnitudes of expected tones.

2.3.2. Feature Extraction of Failures. Figure 10 shows how the spectral content 

of the test audio can change due to a soft failure in this DUT. A different DUT may react
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differently under ESD stress. However, it may generate either a complete silence (i.e., no 

tones), or a combination of humming sound (i.e., increased noise floor), buzzing sound 

(i.e., addition of other tones), or reduced magnitude of one or both tones. The reduced 

magnitude failure may not be easily detected by a human and may not be critical for 

consumer products, but it is important for professional sound systems.

The most prominent feature of Figure 10a is the increased noise floor (by more 

than 30 dB) relative to the baseline sound (compare to Figure 9). This failure produces a 

humming sound as if the tones were recorded in a noisy environment. By comparing the 

average noise floor of the recorded sample with that of the baseline audio, one can 

determine if this failure has occurred. In this study, an increase more than 10 dB is 

considered as a failure. The only time-consuming part of this process is the FFT 

calculation, which considering the sampling rate of the audio file (8 kSa/sec) and the 

short record length (1 sec), it does not take more than a few milliseconds on a laptop. 

After FFT calculation, the frequency contents below 700 Hz and above 4 kHz are ignored 

to remove any artifacts around DC, and limit the bandwidth to 4 kHz, respectively. This 

choice leaves the frequency range of 700 Hz to 4 kHz intact, where the human hearing is 

most sensitive [15, 16].

In Figure 10b, there are two distinct features: increased noise floor, and lack of 

the 1 and 3 kHz tones. This failure can be identified by comparing the magnitude of the 

tones against the average noise floor, or by comparing the average noise floor with the 

average noise floor of the baseline audio. The latter approach was used to detect this 

failure, since the code was already developed; in other words, this failure type is not 

considered different from Figure 10a.
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Figure 11. Audio-based detection and characterization algorithm flowchart.
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The most obvious feature of Figure 10c is the presence of other tones. In general, 

these tones might be close to the expected tones (1 and 3 kHz), which makes the 

detection of this failure more difficult. The algorithm calculates the distance between any 

two random tones; if this distance is more than 1.9 kHz and less than 2.1 kHz, the two 

tones are kept for further processing, and the rest are discarded. If more than two tones 

satisfy the distance criterion, a soft failure has occurred.

The hardest failure to detect is the one shown in Figure 10d because the only 

difference between this one and the baseline audio is reduced magnitudes of the tones, 

one tone more than the other. This failure may not be easy to detect for the human ear, as 

the user might think the volume is low, or the sound was recorded at a low volume. To 

detect this failure, we used two thresholds. Threshold 1, which is set to 20 dB, enforces 

that the tones must be at least 20 dB stronger than the average noise floor. Threshold 2, 

which is set to 5 dB, imposes that the tones must have a magnitude difference of less than 

5 dB. The tones are supposed to have the same magnitude. If any of these criteria are met, 

a failure flag is raised. Figure 11 illustrates the developed audio-based detection 

algorithm.

3. FAILURE-SPECIFIC SUSCEPTIBILITY MAP

Using the developed image-based soft failure detection algorithm in conjunction 

with the automated ESD tester shown in Figure 1, we performed automated soft failure 

testing on a (different) camera. For this test, an 8 mm magnetic field probe was used to 

inject noise voltage to the camera circuitry. The probe was moved by the robot while
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injecting a noise voltage into the DUT. Once a soft failure is detected, the robot position 

and the TLP voltage that caused this failure are recorded by MATLAB. With this 

information, a color-coded 2D susceptibility map can be generated for each soft failure. 

These maps not only show the sensitive locations of the device, but they also show which 

location(s) are associated with what failure type(s). Figure 12 shows the susceptibility 

maps obtained from the backside of the camera under test. The camera is replaced with a 

drawing to preserve confidentiality. The warm colors in the map show the more sensitive 

regions where a lower noise voltage (see color bar values) was needed to cause a failure. 

The colder colors show more robust areas.

For this camera, only two types of soft failures occurred: vertical strips failure, 

and restart failure. The restart failure occurred when the locations shown in Figure 12b 

were disturbed, while the vertical strips failure occurred when the center of the main IC 

and the middle region of the flex cable were stressed (Figure 12a). This flex cable 

connects the main IC to the display IC located on the backside of the display (not shown 

here). One can conclude the main IC is more sensitive than the display IC because 

disturbing the flex cable resulted in the same failure type as it did when the main IC was 

stressed (vertical strips failure). In other words, this observation suggests the same 

circuitry was disturbed in both scenarios.

On the left and top side of the DUT, there exists other circuitry for changing 

focus, controlling the lens, and other settings. Disturbing these circuitries or the flex cable 

connected to them leads to the restart failure. Figure 12b shows the sensitive regions

associated with this failure.
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a

b

Figure 12. Susceptibility maps separated by failure type. a) Vertical strips failure. b) 
Direct restart failure. A drawing is used instead of a photo to preserve confidentiality.

4. DISCUSSION

If the camera under test is changed to a different one, new soft failures might be 

observed. It is likely that the algorithm cannot characterize the new failures; however, the 

algorithm can still determine the occurrence of the failures, as explained below.

In general, a soft failure can distort the image by adding extra lines to the image, 

changing the color of the pixels, warping the image, etc. As a result of this distortion, the



lowest block in Figure 7, which looks for circles in the image using a Circular Hough 

Transform-based algorithm [17, 18], does not detect exactly one circle in the image. If 

more or less than one circle is found, provided that the algorithm has not characterized 

the type of the failure yet, a failure flag is raised, and the image is saved for manual 

processing. As such, a new soft failure can be detected without a priori knowledge of the 

failure’s feature(s). In order to characterize a new soft failure automatically, a new 

characterization algorithm must be developed. In the service of this aim, the authors have 

attempted to elaborate on both the development process and logic that went into the 

presented algorithms so that the reader can develop their own as needed when called for 

by the situation.

While thresholds are employed for decision making in the algorithms presented, 

in order to ensure their accuracy for making correct decisions they should be adjusted to 

every DUT. One image (or audio track) that includes the failure of interest is sufficient to 

adjust the threshold(s) associated with that failure. While this is not time-consuming, 

creating the failure of interest might be difficult and time-consuming as soft failures 

could be difficult to reproduce.

Finally, the presented algorithms can be considered a platform for automatized 

soft failure testing, as there is room for improvement. For instance, the algorithms can be 

enhanced by incorporating supervised or unsupervised machine learning algorithms. 

Instead of having a human inspect the new soft failures, extract their features, and set 

thresholds, an algorithm can “learn” to perform these tasks. One of the biggest potential 

downsides of this approach could be the time needed to train the supervised algorithm, 

which could be more than the time required to perform the investigations normally,
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especially considering that thousands of soft failure types might be needed to train the 

algorithm. Unsupervised learning algorithms, on the other hand, do not have a training 

phase. These algorithms try to classify the new soft failures based on the similarities and 

differences between the features of the new failures and those in the dataset. The use of 

machine learning algorithms is only one of many possibilities to improve the presented 

platform.
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5. SUMMARY AND CONCLUSION

Automatized soft failure testing can improve the repeatability of the tests and 

allows for systematic, automated investigations. Automatization requires (1) an 

automated tester, and (2) soft failure detection and characterization algorithms. The 

challenge is to detect and characterize both severe and subtle soft failures. In this paper, 

we developed audio- and image-based algorithms to detect both severe and subtle failures 

and determine their types. This approach differs from previous approaches (shown in 

Table 1) in that it detects soft failures in a similar manner the user does -  through sight 

and hearing. These algorithms were then incorporated with a 6-axis industrial Mitsubishi 

robotic arm to perform automated ESD immunity testing on the target device (camera). 

Failure-specific susceptibility maps were obtained for this device; only two types of soft 

failure were observed for this DUT -  vertical strips failure and restart failure. It was 

found that the main IC was more sensitive than the display IC. Moreover, thanks to the 

failure-specific susceptibility maps, we found which sensitive location corresponds to 

what soft failure type.
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Having a failure-specific susceptibility map can help to address an ESD immunity 

issue easier and more efficiently. For instance, a dataset for soft failures and their 

corresponding regions can be generated. In the case of a reoccurring soft failure, the 

sensitive parts/circuitry of the product that is responsible for that particular failure can be 

efficiently identified using the dataset.
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ABSTRACT

A robotic ESD scanning system is presented for scanning complex 3D objects. It 

provides pseudo-2D plots that illustrate the sensitive locations of the device under test on 

a relative scale. Using this system, we could determine the susceptible regions of the 

device. It was observed that disturbing different sensitive regions lead to different soft- 

failure types. Determining the sensitive locations of a complex-shaped DUT helps to 

identify the disturbed circuitry and verify the effect of countermeasures in a repeatable 

way.

1. INTRODUCTION

The energy coupled to sensitive circuitry of an electronic device as a result of 

electro-static discharge (ESD) can cause hard-failure, soft-failure (temporary disturbance) 

[1, 2], or latch-up [3, 4]. Hard-failures are associated with permanent damage, while soft- 

failures can be cured by simply power cycling the system. Latch-ups, on the other hand, 

can lead to a hard-failure, a soft-failure, or an increased current consumption, which can 

drain the battery quickly.

mailto:ohp63@mst.edu
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The root cause of soft-failure can be identified by susceptibility scanning [5]. 

During a susceptibility scan, noise voltages or currents are induced via electric or 

magnetic field probes to the device under test (DUT). These probes are moved over the 

DUT (printed circuit board (PCB), integrated circuit (IC), etc.) while the behavior of the 

object is monitored. The level of injected noise is varied, starting at a low value and 

increasing until a soft-failure is observed, or the user-defined maximum level is reached. 

This is repeated at each test point (location) to obtain a susceptibility map of the DUT. In 

many cases, transmission line pulsers (TLP) serve as the noise source to inject noise in 

the form of nano-second pulses. The induced noise at a given probe location is 

proportional to the TLP charge voltage; thus, the relative sensitivity is often expressed in 

TLP charge voltage [5].

While hand-held probing often guides the engineer during debugging, it is not 

reliable for soft-failure characterization because the probe position is not well-defined. A 

robot can help to increase the chance of obtaining repeatable results and avoid human 

mistakes.

In [6], the authors incorporated a robot to assist them in obtaining a 2D ESD map 

for various operating conditions of a device under test. In [7], a robot was used to 

determine the ESD current propagation throughout a PCB. The authors of [8] employed a 

robot to identify resonances on a PCB. In [9], a robot was used to scan a flat plane to 

localize the radiating sources located on a PCB. These robots can only scan a planar DUT 

with small height variations (a few millimeters). However, geometrically complex DUTs 

have multiple facets that need to be scanned. The robots mentioned above cannot satisfy

this need.
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To address this need, we have used a Mitsubishi industrial 6-axis robot to develop 

an ESD scanning system. 6-axis robots are commonly used for near-field scanning ([10

12]), due to their ability to reach the object from any direction and at any angle. In the 

following sections, the ESD scanning system block diagram and the corresponding 

flowchart are presented. This system is then used for investigating the sensitivity of a 

camera (DUT). As a result, a sensitivity map is obtained for each facet of the DUT. The 

sensitive regions of the device are identified using these maps.

2. SCANNING SYSTEM TEST SETUP

2.1. BLOCK DIAGRAM AND SYSTEM FLOWCHART

Figure 1 shows the block diagram of the ESD scanning system. The device under 

test is a camera focused on the monitor. The monitor plays a pre-defined moving image 

to the camera during the measurements. A webcam connected to MATLAB continuously 

monitors the DUT’s screen. Any distortion in the image is an indication of a soft-failure; 

therefore, it is essential that the camera and the webcam both be focused. This approach 

was selected because the operator can see the video being played both on the monitor and 

the DUT screen. The operator can validate the system functionality and the image quality 

by comparing the captured image (by the webcam) with the image shown on the monitor.

The Arduino in this diagram acts as the interface between MATLAB, the TLP, 

and the DUT. Upon MATLAB’s command, the Arduino power cycles the DUT, restarts, 

or changes the zoom settings of the camera (to avoid blurry image). The Arduino can also 

change the TLP source voltage via the interface block using a pulse width modulation



(PWM) technique. The interface block acts as a low-pass filter by converting the PWM 

waveform to an analog voltage and hence changing the TLP source voltage. The internal 

circuitry of the interface block and the Arduino code logic are out of the scope of this 

paper.
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Figure 1. Block diagram of the proposed ESD scanning system.

A 6-axis robot allows us to reach the DUT from many angles and to perform a 3D 

scan of the object. This robot has a motion uncertainty of less than 100 pm. However, 

accuracy is only important in case of using a smaller injection probe or a direct injection 

probe, as the probe must touch a pin or a thin trace on the DUT. Figure 2 and Figure 3 

show the measurement setup and the corresponding flowchart, respectively.
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a b

Figure 2. a) Measurement setup. b) Close-up view of the device under test and the 
injection probe. The probe is located on the top of the DUT in this figure. The TLP and 

the interface blocks are not shown here. A drawing is used instead of a photo to preserve
confidentiality.

The injection is done with a magnetic field probe, comprised of a circular loop 

with 8 mm diameter. More details about the probe geometry are given in [5]. When the 

probe is driven with 1 A of current, it can produce a magnetic field strength of 114 A/m 

and induce ~10 mA of current to a 1^0.5 mm loop located ~1 mm beneath the probe 

loop. The rise time of the pulse is about 350 ps.

As shown in Figure 3, when the test starts the robot is moved to the initial 

position, MATLAB then sets the TLP voltage to the minimum value set by the user and



initializes the DUT. The initialization process includes power cycling, zooming to the 

target monitor, and verifying a focused image. A vivid image is critical for correct 

detection of soft-failures. Once the image quality is verified by using the absolute central 

moment algorithm, the test starts. Unlike other commonly used algorithms, absolute 

central moment algorithm does not confuse an out-of-focus image with a low contrast 

image [13]. This capability helps to avoid false failure detection. After every injection, 

the MATLAB code evaluates the image obtained by the webcam for a disturbance. If no 

failure is detected after ten injections, the TLP voltage is increased, and a new image is 

taken for evaluation. If the TLP voltage reaches 3 kV, the robot is moved to the next 

location, the DUT is power cycled, and the TLP voltage is reduced to the minimum 

value. However, if a disturbance is found, the disturbed image and the TLP voltage that 

caused the failure are recorded. Then the DUT is power cycled and initialized again, 

prepared for the next round of tests.

2.2. COMMON SOFT-FAILURE TYPES

The MATLAB code is designed to not only detect the occurrence of failure but 

also to determine the type of failure. The type of soft-failure depends on the DUT 

(firmware and hardware). For the camera under test, the most common failure types are 

black screen, direct restart, hang, and vertical stripes. A black screen error simply turns 

the camera screen black. It may or may not lead to a restart or a hang afterward. A hang 

failure makes the camera freeze; a power cycle is needed to recover the camera from this 

failure. The DUT may also directly restart due to the injections, hence the name direct 

restart failure. A vertical stripes error is the last commonly observed failure for this
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DUT. Given enough time (tens of seconds), this failure will eventually elevate to a 

restart. When a failure is detected by the code, the code power cycles the DUT within a 

few seconds after the failure occurrence to prevent possible hardware damage due to 

latch-up.

> 10 x
injections?.

Go to initial
position

Set TLP voltage
to minimum value

Yes

Save the disturbed 
image and TLP 

voltage which caused 
the DUT to fail

Increase TLP 
voltage

Power-cycle and
initiate the DUT

Go to the next
position

Figure 3. Flowchart of ESD scanning logic.
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Besides the MATLAB and Arduino codes, the Smartzap software is also needed 

to communicate with the robot and control the robot actions. More information on this 

software is available in [14].

3. SCANNING RESULTS

3.1. SUSCEPTIBILITY MAPS

A susceptibility map shows the sensitive locations of the DUT and the 

corresponding TLP source voltage that caused a failure. The blue color indicates the DUT 

has not failed even at the maximum TLP source voltage (3 kV).

Three sides of the DUT have been scanned: left, top, and back. The front side 

(where the lens is located) and the right side (where the webcam is located) could not be 

scanned (see Figure 2b), because the robot arm should not cover the webcam-to-screen or 

the lens-to-monitor line-of-sight. The bottom side could not be scanned either, because 

the camera is mounted on a stand.

Figure 4 shows the obtained susceptibility maps for the back, the top, and the left 

side of the camera. Analyzing the data shown in Figure 4a reveals that the area near the 

IC and the flex cables are the most sensitive regions. This observation is expected, as the 

flex cables often do not confine the fields well, leading to susceptibility problems. Figure 

4b suggests there are some sensitive regions on the top side of the camera, which lead to 

failure at TLP source voltages as low as 400 V. Opening the camera at this region reveals 

the presence of some circuitry that is directly connected to the IC through flex cables. A 

similar observation holds for Figure 4c.



Each colored rectangular in Figure 4 is about 5*5 mm. With this step size, the 

back side scan takes about 1 hour. A finer resolution is also possible with a smaller probe 

and step size.

3.2. FAILURE-SPECIFIC SUSCEPTIBILITY MAP

During the susceptibility scan, if the device fails, the failure type will also be 

recorded. This information allows us to display a susceptibility map for each failure type, 

as shown in Figure 5. Figure 5a shows three locations on the back side of the camera 

which led the vertical stripes failure when disturbed. Other sensitive locations on the 

back caused a direct restart failure under stress. As observed, a vertical stripes failure is 

triggered at lower TLP source voltages (~400-600 V), than the direct restart failure.
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Figure 4. Relative susceptibility maps for back side, top side, and left side of the camera. 
The color bar represents the TLP source voltage and is the same for all three maps.
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a

b

Figure 5. Susceptibility maps separated by failure type. a) Vertical strips failure. b) 
Direct restart failure. A drawing is used instead of a photo to preserve confidentiality.

For the top and left side of the camera, only one type of failure was observed: 

black screen failure followed by a system hang. This failure was never observed while 

scanning the back side.

A failure specific susceptibility map can simplify the root cause analysis of soft- 

failure as it can help identify which IC (or which part of the device) is disturbed. For 

instance, if a device fails, one could create a failure specific susceptibility map, narrow 

down or pinpoint the responsible ICs (or parts), and apply relevant ESD countermeasures.
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4. SUMMARY AND CONCLUSION

While hand-held scanning can aid in root cause analysis of ESD-induced soft- 

failure in DUTs with complex geometry, it does not allow for repeatable testing due to 

the difficulty for a human to reproduce (and keep track of) the location under stress. The 

robots used previously for ESD susceptibility scanning could only scan in a 2D plane and 

were limited to flat surfaces or relatively flat PCBs. In this paper, a 6-axis robot was 

employed to scan complex 3D surfaces. A block diagram was presented, depicting 

different parts of the scanner. Three facets of a camera have been scanned, which resulted 

in three susceptibility maps. Furthermore, for each failure type, an individual 

susceptibility map was obtained showing the utility of the 6-axis ESD scanning system.
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SECTION

2. CONCLUSIONS AND RECOMMENDATIONS

2.1. SUMMARY AND CONCLUSION

The poor repeatability of ESD (electrostatic discharge) immunity tests combined 

with a lack of standardized measurement setup/technique for soft failure investigations 

has led to conflicting observations in the literature regarding the effect of operating 

conditions on ESD susceptibility. In this dissertation, a synchronized injection approach 

was proposed to address this conflict, which was rooted in asynchronous injection. In this 

approach, the system’s current consumption and the DUT’s EMI were monitored to 

synchronize injection and detect soft failures. The repeatability of the tests was improved 

by using a robot scanner. An automated ESD tester was developed by incorporating the 

synchronized injection setups with a robot scanner, which helped us conclude that:

• The operating conditions did affect the ESD susceptibility of an electronic 

device.

• The system load instantaneously increases (decreases) even in a 

manipulated constant load condition.

• The ESD susceptibility of the system is tied to its loading condition and 

instantaneously increases (decreases) with the system load.

Finally, the capabilities of the automated ESD tester were improved by replacing 

the XYZ robot with a 6-axis robot and equipping the tester with soft failure 

characterization algorithms. For the latter, image and audio processing algorithms were
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developed and used to detect a soft failure in the same way a human would do -  through 

sight and hearing. This was the first time that signal-processing algorithms were 

developed and used for soft failure detection and characterization.

Using this upgraded tester, both subtle and severe soft failures were detected and 

characterized -  subtle being a glitch on the display or an audible noise from the speaker; 

and severe being a restart or a system hang. Soft failure-specific susceptibility maps were 

obtained, thanks to this approach; i.e., those locations on the device that lead to this 

specific failure when stressed are found. Such a map facilitates soft failure investigations.

2.2. RECOMMENDATIONS

The detection algorithms developed in this dissertation rely on thresholds to 

detect, determine, and characterize a soft failure. As already mentioned, these thresholds 

need to be set beforehand by the operator, which means a newly occurring soft failure 

cannot be characterized; it can only be detected.

One remedy to this problem is to create a large data set indexing all the possible 

soft failures associated with the device under test (DUT). This is approach is time

consuming and given that a DUT might get damaged during the data collection process, it 

is impractical. A better approach would be gathering only part of these data and instead 

use machine learning to characterize the newly occurred soft failures.
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