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ABSTRACT

iii

Optimizing water use is a growing concern, especially in agricultural 

communities where water use is high. An important challenge in agricultural water 

optimization is knowing when and where crop water stress is occurring, particularly on 

large scales where in-situ measurements are no longer practical to obtain. In an effort to 

combat this challenge, this study utilizes remotely sensed evapotranspiration (ET) and 

Normalized Difference Water Index (NDWI) to evaluate the responses of integrated 

satellite datasets to water-stressed conditions over fields of irrigated corn, irrigated winter 

wheat, and rainfed winter wheat from 2007 to 2017 in southwestern Kansas. Using two 

different ET algorithms at various spatial resolutions, MOD16 and SSEBop, this research 

found that ET responses in water-stressed fields are lower in all three crop types with 

measurements of NDWI indicating lower crop water contents. Spatial resolution was 

found to be a critical factor in accurately separating the temporal signals of corn and 

winter wheat, as most MOD16 and SSEBop pixels contained a combination of various 

crops. After implementing additional filters that reduced the sample size only to fields 

with >90% pixel coverage over a single field of interest, the temporal trends better 

reflected trends found in previous studies and in Kansas crop growth manuals. Temporal 

trends of all three datasets suggest water stress can be quantified as an ET and NDWI 

deficit based on what is expected for each product. This study is a beginning step in 

determining quantitative criteria for “water stress” and how it appears in irrigated and 

rainfed crops through ET and NDWI datasets.
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1. INTRODUCTION

Water resource management is becoming an increasingly important and complex 

area of study, especially in areas where optimizing water use is a growing concern. Water 

management plays a role in many broader issues such as food scarcity, groundwater 

scarcity, and climate change. These challenges are particularly important to address in 

agricultural areas—it is estimated that agriculture accounts for 90 percent of the world's 

total water consumption, two-thirds of the world's groundwater withdrawals, and one- 

third of total terrestrial evapotranspiration (Oki & Kanae, 2006). In the United States, 

irrigation accounted for 69% of total groundwater withdrawals in 2015. This equated to 

57.2 billion gallons per day (compared to water pumped for domestic use— 18.4 billion 

gallons per day). Despite the large volume of groundwater withdrawn from rapidly 

depleting aquifers in the United States, groundwater regulation is largely left to the states, 

leaving many groundwater withdrawals unmonitored altogether (Folger et al., 2020). 

However, advancements in remote sensing, data mining, machine learning, and cloud- 

based computing have made more frequent crop monitoring—and therefore, more 

frequent water management—a possibility on a global scale at a variety of spatial and 

temporal resolutions.

This study is part of a larger effort to integrate and evaluate remotely sensed 

datasets on the field, regional, national, and global scales in agricultural regions to 

investigate problems in monitoring crop water stress. Previously, studies have developed 

stress indices (such as the Crop Water Stress Index) or sought to use known indices (such 

as NDVI) to monitor crop health. The CWSI, primarily used for irrigation scheduling,



utilizes a relationship between canopy temperature, air temperature, and vapor pressure 

deficit to quantify crop water stress (Alderfasi & Nielson, 2001). The CWSI depends on 

two baseline values: a non-stressed threshold at which the crop is fully watered and a 

non-transpiring crop threshold in which the stomata are completely closed. Various 

implementations of this model have grown in complexity to include more environmental 

variables such as the crop minimum surface resistance at potential evapotranspiration or 

radiometric surface temperature (Yuan et al., 2004). The primary critique of the CWSI is 

its applicability across geographic locations, phenological stages, and even crop species 

and variety. Gardner and Shock (1989) proposed a range of vapor pressure deficits to 

accommodate changes in geographic location, but the stressed and non-water stressed 

baseline information is still not available in all locations (Alderfasi & Nielson, 2001). 

Alternatively, Normalized Difference Vegetation Index (NDVI) and Enhanced 

Vegetation Index (EVI) were developed to monitor plant chlorophyll content (vegetation 

growth) and canopy structural variations, respectively, using reflectances from near

infrared and red bands. When used in conjunction, they can monitor greenness while 

being able to distinguish between canopy and the background in high biomass regions 

(Huete et al., 2002). While plant growth and chlorophyll content can be used as a proxy 

for crop health, it cannot directly quantify crop water stress. NDVI is also prone to 

saturation in high biomass regions (such as agricultural regions) and has shown to 

produce a one month lag time between the onset of crop water stress and the appearance 

of the stress in the index (Huete et al., 2002; Ji & Peters, 2003).

This study mitigates issues posed by the CWSI and the use of NDVI and EVI by 

utilizing two remotely sensed global evapotranspiration (ET) algorithms and the

2



Normalized Difference Water Index (NDWI) to quantify crop water stress in winter 

wheat (Triticum aestivum) and corn (Zea mays) in Kansas from 2007 to 2017 (Figure 

1.1). The two ET algorithms use many of the same inputs as the CWSI while accounting 

for other variables such as nighttime and daytime fluctuations in ET and lateral 

dispersion of heat across a landscape. NDWI uses two near-infrared wavelengths to 

monitor plant water content and has proven to be effective in high biomass regions like 

agricultural fields (Gao, 1996). Additionally, these datasets have a wide spatiotemporal 

range with global extents and temporal availability from 2001 to 2020. By integrating 

multiple remotely sensed datasets, this study can extend existing in-situ measurements 

and assist farmers with water management in regions where groundwater is increasingly 

scarce.

With this goal there are two major challenges: determining the amount of 

influence irrigation has on mitigating water stress and evaluating water stress in fields 

where irrigation may be occurring but is not monitored. To shed light on these issues, this 

study utilized a unique groundwater pumping dataset from the Kansas Geological Survey 

that contains annual withdrawal totals in irrigation wells from 1990 to 2017 (Wilson, 

2019). Since most water uses in agricultural areas in Kansas are from groundwater, this 

dataset is a reasonable approximation for consumptive water use. It has provided insight 

into a major component of the hydrologic cycle that impacts water resource 

management—groundwater withdrawals specifically used for irrigation. This dataset 

addresses the first issue because it allows for distinction between rainfed and irrigated 

fields and the influence of water stress in each as it appears in ET and NDWI responses. 

Temporal trends of all three datasets over the decade suggest water stress can be

3



quantified as an ET and NDWI deficit based on what is expected for each product. The 

magnitude of the ET and NDWI deficit can also be an indicator of irrigation in winter 

wheat since deficits in rainfed winter wheat were greater than in irrigated winter wheat.

This study is a beginning step towards quantifying water stress and how it appears 

in irrigated and rainfed crops through ET and NDWI measurements. Having established a 

difference between irrigated and rainfed responses, this methodology could be applied in 

climatically similar regions where groundwater withdrawals are unmonitored.

4
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Figure 1.1 Kansas (light blue) and the study area of southwestern Kansas (red). Map 
credits: ESRI, National Geographic, Garmin, HERE, UNEP-WCMC, USGS, 

NASA, ESA, METI, NRCAN, GEBCO, NOAA, Increment P Corp.
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2. BACKGROUND

This background discussion begins with a fundamental concept that plays key 

roles in hydrologic cycle, water balance, and energy balance models: evapotranspiration. 

ET is defined as the sum of the return of vapor to the atmosphere from plant transpiration 

(evaporation within plant cells through the stomata) and evaporation or sublimation off 

land or water surfaces (Jensen & Allen, 2016). ET plays a major role in the hydrologic 

cycle. In the United States, it is responsible for 67 percent of the dispersion of 

precipitation whereas 29 percent is accounted for in surface water outflow, 2 percent is 

groundwater discharge, and 2 percent is used for human consumption. Of this proportion, 

transpiration accounts for more moisture returned to the atmosphere than evaporation 

from the soil and plant canopies. As factors such as cloud cover, vegetation density, 

surface reflectance properties, and the availability of solar energy change throughout the 

year, so does ET. Times of drought decrease overall ET because available soil moisture 

decreases and plants experience stomatal closure when water stressed (Hanson, 1991; 

Osakabe et al., 2014). Therefore, it is a vital component of the hydrologic cycle to 

account for when estimating past, present, and future water requirements for agricultural 

areas and municipalities. Estimating the largest transporter of moisture in the water cycle 

can help determine how much water is available and how much is still needed. This can 

be done using the water budget equation, shown in Equation 1:

P + G W i - Q  - E T -  GW0 = AS (1)
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where:

P = precipitation

GWt = inward groundwater flow

Q = streamflow

ET = evapotranspiration

GW0 = outward groundwater flow

AS = change in water storage

The water budget equation is useful when there are few unknowns (areas where 

groundwater storage has been measured and groundwater use has been monitored, for 

example). However, this is commonly not the case. In large areas, field methods for 

estimating ET (such as lysimeters and eddy flux towers) become impractical.

Remote sensing technology has changed the way ET is estimated with sensors 

that measure many of the environmental variables included in the ET computation on a 

global scale with a reduced need for ground-based validation. The latest ET approaches 

rely heavier on the energy balance than the water balance because of this. Both ET 

algorithms discussed here begin with the conservation of energy. At the earth’s surface, 

energy is partitioned into sensible heat flux (H), latent heat flux (AE), and available 

energy (A') by the energy balance equation (Equation 2) (Mu et al., 2017). Sensible heat 

flux is the conductive heat flux between the Earth’s surface and the atmosphere, latent 

heat flux is the energy lost to the evaporation of water from the surface or transpiration 

from plants, and available energy is the sum of the sensible and latent heat fluxes (Mu et 

at., 2017; Stull, 2011; Tang & Li, 2014). The components that make up available energy 

(and therefore the sensible and latent heat fluxes) are net radiation (Rn), soil heat flux



(G), and heat storage flux (AS). Net radiation is the total radiation available after the 

differences between incoming and outgoing shortwave solar radiation and emitted and 

reflected longwave radiation are accounted for, soil heat flux is the amount of thermal 

energy moving through the soil per unit time, and heat storage flux is the amount of heat 

that flows into the ground during the day and is stored until it is conducted into the 

atmosphere at nighttime (Abtew & Melesse, 2013; Sauer & Horton, 2005; Kato & 

Yamaguchi, 2007).

A' = H + XE = Rnet — ASh — G (2)
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2.1. ACTUAL, POTENTIAL, REFERENCE, AND CROP ET

There are several key terms that must be discussed before algorithms for 

computing ET can be described in detail: actual ET, potential ET, reference ET, and crop 

ET.

2.1.1. Actual ET. Actual ET is the instantaneous ET at any point in time on a 

vegetated surface. There are several field methods for estimating ET such as weighing 

lysimeters and eddy covariance flux towers (though impractical for studying ET over 

large areas, these methods have been used to validate and ground-truth new ET 

algorithms). Many remotely sensed ET models use the Penman-Monteith equation as a 

basis for computing reference ET (which will be defined in Section 2.1.3) and ET 

fractions (which will be defined in Section 2.2.2 and shown in Equation 8). The challenge 

with using the Penman-Monteith equation is that it outputs an instantaneous actual ET for
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one point on the surface. Empirically, latent heat flux can be computed with the Penman- 

Monteith equation as shown below in Equation 3:

where:

rc = canopy resistance

ra = aerodynamic resistance

A = slope of the vapor pressure curve

Rn = net radiation

Y = psychrometric constant

G = soil heat flux

p = atmospheric density

cp = specific heat of moist air

ea — ed = vapor pressure deficit (saturation vapor pressure -  actual vapor pressure) 

AE = latent heat flux

The aerodynamic resistance term ra can be computed as follows in Equation 4:

AE =
A(Rn G)+pCp(ea e d )(ra)

(3)A + y (1 + ^ )

k2u. (4)
Z

where:

ra = aerodynamic resistance (s * m-1)
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zm = height of wind measurements (m)

zh = height of humidity measurements (m)

d = zero plane displacement heigh (m)

zom = roughness length governing momentum transfer (m)

zoh = roughness length governing transfer of heat and vapor (m)

k = von Karman’s constant, -0.41

uz = wind speed at height (m*s-1)

The bulk resistance term rs can be computed as follows in Equation 5:

r irs = ---------
LAIactive

(5)

where:

rs = bulk surface resistance (s * m-1)

ri = bulk stomatal resistance of the well-illuminated leaf (s * m-1)

LAIactive = active (sunlit) leaf area index (m2 * (leaf area) * m-2 (soil surface))

(Allen, 1998).

The psychrometric constant, y, is a function of the specific heat of moist air, atmospheric 

pressure, the molecular masses of moist air and dry air, and the latent heat of vaporization 

(Mu et al., 2013).

Latent heat flux can then be converted to instantaneous actual ET by dividing AE 

by the latent heat of vaporization for water and the density of water and multiplying by 

the desired time unit (the time unit will depend on the algorithm and the sensor from 

which the latent heat flux is collected) (Irmak et al., 2012).



2.1.2. Potential ET. Potential ET is the ET that occurs on a vegetated surface 

with an unlimited water supply. It is the maximum possible ET for that surface. In an 

energy balance context, potential ET is where all available energy is consumed by the 

process of evaporating water and there is no energy left for sensible heat flux to the air 

(Irmak et al, 2012). One method for estimating potential ET is the Penman equation for 

evaporation over an open water surface (the results are then corrected for soil moisture).

2.1.3. Reference ET. Reference ET is a hypothetical ET value with respect to a 

well-watered certain type of vegetation such as grass or alfalfa at a known height (Tang 

& Li, 2014). While the reference ET value represents the potential ET with respect to a 

certain crop, the term is not interchangeable with potential ET. There are several 

equations for computing reference ET, but two of the most important are from the FAO- 

56 Irrigation and Drainage Paper Penman-Monteith equation and the ASCE Penman- 

Monteith equation (Allen, 1998; Allen et al., 2005). The FAO-56 Penman-Monteith 

Method involves inserting specific constants directly into the Penman-Monteith equation 

to compute ET for extensive green grass at a height of 0.12m, a constant latent heat of 

vaporization of X=2.45 MJ kg-1 , albedo of 0.23, and a bulk surface resistance at 70 s m-1 

for monthly, daily, and hourly time steps (Allen, 1998). The ASCE Standardized 

Reference ET equation was first introduced in 2005 in an effort to better account for ET 

differences between short and tall crops and to reduce confusion surrounding multiple 

equations for reference ET. Based on the concept of the FAO-56 method, the ASCE 

Standardized Reference ET equation combines the original Penman-Monteith, 

aerodynamic resistance, and bulk surface resistance equations and assumes crop height, 

latent heat of vaporization, and albedo to be constant. It also assumes that measurement

10
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heights for air temperature and vapor saturation are 1.5 to 2.5m above ground, the wind 

speed is measured or adjusted to 2m height, and the weather measurements were 

collected over a grassy area with a vegetation height between 0.1 and 0.2 m. The equation 

is accompanied by a table, allowing one to adjust the constants to reflect both desired 

time step (hourly or daily) and approximate crop height. Short crops similar to grass 

measuring 0.12m will use the “short” reference (ET0) constants and tall crops similar to 

alfalfa measuring at 0.50 m will use the “tall” reference (ETr) constants. Constants for 

hourly time steps will also need to be adjusted for daytime or nighttime measurements 

(Allen et al., 2005).

2.1.4 Crop ET. Crop ET is defined as the ET from a “disease-free, well-fertilized 

crops, grown in large fields, under optimum soil water conditions, and achieving full 

production under the given climatic conditions” (Allen, 1998). It is computed by 

multiplying reference ET by the tabulated crop coefficient, K c, for a specific time in the 

growing season under dry or sufficiently moist conditions (Allen, 1998). Dry conditions 

require multiplying by a water stress constant, Ks. It is important to know which 

reference ET equation one's desired ET model uses because different versions may 

require the use of a crop coefficient to compute crop ET while others may not.

2.2. ET ALGORITHMS

The two ET algorithms discussed here, MOD16 (MODerate Resolution Imaging 

Spectroradiometer (MODIS) Global Evapotranspiration Project) and SSEBop 

(Operational Simplified Surface Energy Balance), are the ones that were utilized in the 

investigative portion of this study. There are several other algorithms available for use



such as DisALEXI (Disaggregated Atmospheric-Land Exchange Inverse) and METRIC 

(Mapping EvapoTranspiration at high Resolution with Internalized Calibration), but 

because their temporal availability did not overlap with the temporal scope of the study, 

so they will not be discussed.

2.2.1. MOD16. The MOD16 ET model is the only Penman-Monteith-derived 

model that will be discussed in depth in this paper, but others include Priestly-Taylor and 

Blaney-Criddle. The common link between these models is their reliance on 

meteorological inputs to compute a reference ET. The appeal of MOD16 is its lack of 

assumptions about relationships between ET, moisture, and land surface temperature. 

Such independent measurements keep the model from relying too heavily on one input, 

but they can also be difficult to estimate (particularly surface resistance and aerodynamic 

resistance (the rs and ra terms defined in Section 2.1.1).

The fundamental concept of MOD16 is combining the drivers of 

evapotranspiration in a theoretically sound way that reduces bias and constrains the 

maximum ET rate with available energy. These drivers include land cover type, leaf area 

index, the fraction of absorbed photosynthetically active radiation (the ratio of incoming 

radiation to the radiation absorbed by plants), albedo (the fraction of solar radiation 

reflected by a surface), minimum temperature, vapor pressure deficit (the difference 

between saturation vapor pressure and actual vapor pressure), wind speed, and more 

mostly obtained from MODIS sensors (Mu et al., 2013; Wossenu & Melesse, 2013). In 

theory, over a moist surface where surface resistance is zero or significantly less than 

aerodynamic resistance, the equilibrium ET rate can be modeled as a function of the 

slope of the relationship curve between saturated water vapor pressure and temperature,

12



available energy, and the psychrometric constant. It is only limited by available energy. 

The equation for the equilibrium ET rate is the theoretical representation of potential ET 

(Equation 6).

M eq = f  (6)

13

where:

AEeq = equilibrium ET rate

s = the slope of the relationship curve between saturated water vapor pressure and 

temperature 

A' = available energy 

Y = the psychrometric constant

When surface resistance is much greater than aerodynamic resistance, ET is controlled by 

surface resistance. It takes much more effort to return the moisture to the atmosphere. In 

this instance, ET is a function of the density of water, the specific heat capacity of water, 

vapor pressure deficit, the psychrometric constant, and surface resistance (Equation 7):

AF =/LL,r 5
P*cp *(ea- e d)

y*rs (7)

where:

AErs = ET that is controlled by surface resistance 

p = atmospheric density 

cp = specific heat capacity of air 

ea — ed = vapor pressure deficit
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Y = psychrometric constant 

rs = surface resistance

The previous version of the MOD16 algorithm (2007) held several assumptions that were 

changed in the Mu et al., 2011 update. The old algorithm assumed nighttime ET to be 

negligible and soil heat flux to be negligible on daily time steps in grassland and forest 

biomes. The 2011 update included a new nighttime ET component and a computation for 

soil heat flux as well as improved estimations of stomatal conductance, aerodynamic 

resistance, and boundary layer resistance, and separating the ET contributions between 

wet and dry canopy and wet and moist soil. The last improvement was made because 

there are differences in how evaporation and transpiration occur on wet and dry versions 

of the same surface (i.e. evaporation off a wet canopy as opposed to transpiration off a 

dry canopy). The difference between wet soil and moist soil is the accelerated rate of ET 

towards potential ET when soil saturation has been reached (wet) and the actual 

evaporation from the soil when there is a limited (but not negligible) water supply (moist) 

(Mu et al., 2013).

2.2.2. SSEBop. ET derived from combined surface energy balance methods and 

remotely sensed thermal data is a residual of solving, balancing, and partitioning the 

energy balance equation between sensible and latent heat fluxes. With these models, the 

Penman-Monteith equation is merely the first step in computing actual ET on a pixel-by

pixel basis. The advantage to these models over mass transfer models (which depend on 

Dalton’s Law of partial pressures to estimate the net transfer of water vapor) and surface 

energy balance models that depend heavily on meteorological data (like MOD16) is their 

heavier reliance on remotely sensed data sources rather than ground measurements
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(Abtew & Melesse, 2014). Additionally, models that combine the surface energy balance 

and thermal data contain fewer components and therefore, fewer sources of measurement 

error (Tang & Li, 2014).

The goal of the SSEBop approach to modeling actual evapotranspiration was to 

provide a 10-year average actual ET on regional and national scales for the conterminous 

United States. SSEBop ETa is available at a 1km resolution over a variety of land cover 

types, performing best over urban areas, shrub land, and cropland. However, SSEBop is 

not able to distinguish the water sources of ET. For example, it cannot partition the 

amounts of ET that result from rainfall, irrigation, or soil moisture. Like many of its 

precursor models, SSEBop begins with computing the surface energy balance equation, 

reference ET, and an ET fraction (ETf) on a pixel-by-pixel basis where the components 

are computed using meteorological data and thermal imagery. It is computed as follows 

in Equation 8:

ETf  = (7h-Ts)
(Th-Tc)

(8)

where:

Ts = the observed land surface temperature of the observed pixel of interest (8-day 

average of a MODIS pixel)

Th = is the land surface temperature value of the “hot” reference pixel for the same 8-day 

time frame and the same scene

Tc = is the land surface temperature value of the “cold” reference pixel for the same 8 

day time frame and the same scene



Unlike ET algorithms that are derived from similar theory such as METRIC, SSEBop 

uses the ASCE Standardized Reference ET for a short crop at a height of 0.12m (i.e. 

grass). METRIC uses the tall crop version of the equation (i.e. alfalfa). SSEBop does not 

contain the internal calibration component that METRIC does, but it eliminates the need 

for the user to choose the upper and lower ET limits in a scene because it assumes a "hot" 

pixel has little or no ET occurring and a "cold" pixel represents potential (maximum) ET. 

The hot and cold limits are determined by a location's air temperature and energy balance 

computation at a given time. To account for spatial variability between hot and cold 

pixels, the algorithm utilizes a relationship between ET and land surface temperature 

(LST) to proportionally scale the values with respect to reference ET. The LST used in 

this process is an 8-day average of 1km MODIS pixels. The 8-day average lowers the 

influence of cloud cover. However, if clouds are prominent throughout the entire 8-day 

period, ET fraction values from one period previous or ahead is used to estimate ET 

fraction values for the missing period. Lastly, the 8-day 1km ETa grids were computed 

by multiplying the ET fraction by the cumulative reference ET (Equation 9):

ETa = ETf  X ET0 (9)

where:

ETa = actual ET 

ETf = ET fraction

ET0 = cumulative grass reference ET over the 8-day time frame and scene of interest 

SSEBop products are now available at daily, monthly, and annual time steps (Savoca et 

al., 2013; Senay et al., 2013). The algorithm proves quite useful in estimating water use 

for agriculture in arid regions where groundwater withdrawals for irrigation is the

16



dominant source of water. In these regions it is assumed that ET is representative of 

consumptive use--all the water applied is used in ET processes and none is returned to the 

system. However, this is a greater challenge in humid regions where groundwater 

withdrawals are supplemental to surface water, precipitation, and soil moisture (Savoca et 

al., 2013).

2.3. NDWI

The Normalized Difference Water Index (NDWI) is commonly used to estimate 

plant water content and has been used to supplement the Normalized Difference 

Vegetation Index (NDVI) to evaluate overall vegetation health. NDWI uses two near

infrared wavelengths at 0.86 micrometers and 1.24 micrometers and has been shown to 

penetrate high leaf area index zones (approximately eight leaf layers). These wavelengths 

are sensitive to plant water content because the absorption of liquid water at 0.86 

micrometers is inconsequential and the absorption at 1.24 micrometers increases 

proportionally with the thickness of liquid water, so changes in the reflectance values in 

the 1.24 micrometer channel due to changes in plant water content are measurable. 

Additionally, these wavelengths sense similar depths within the canopy (for context, the 

red and near-infrared channels used in the NDVI calculation sense different depths, so the 

reflectance values represent those of different canopy thicknesses). Compared to the 1.5

2.5 micrometer range, liquid water absorption is significantly less in the 0.9 -  1.3 

micrometer range and tends to saturate less even with higher leaf area indices, allowing 

for measurement of a wide range of liquid water content. Compared to NDVI, NDWI 

show a faster and greater response to drought conditions (Gao, 1996; Gu et al., 2007).
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Additionally, NDWI experiences only minor effects from atmospheric water vapor. A 

limitation of NDWI is the influence of soil reflectance effects, especially in partially 

vegetated areas (Gao, 1996). The equation for the calculation of NDWI is given below:

N D W I  =  P(0 86^m ) - P(124^m) n Q t
p(0.86pm ) + p (1.24pm ) (
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where:

p = reflectance value at each specified wavelength

2.4. CROP WATER REQUIREMENTS

Discussed here are the crop water requirements for winter wheat and corn as 

documented within the literature.

2.4.1. Winter Wheat. Since the 1980s, irrigated wheat acreage has held steady 

between 700,000 and 800,000 acres throughout Kansas, most of which is concentrated in 

the southwest portion of the state (Shroyer et al., 1997) Winter wheat is the second most 

irrigated crop behind corn, and it makes up one quarter of all irrigated Kansas crops. It 

has been shown that irrigation increases yield by 50 percent compared to rainfed yield, so 

irrigation is essential to the success of the crop in a region with relatively little 

precipitation. Winter wheat requires between 16 and 24 inches of water per year as it can 

consume 80 percent of available soil water before the soil moisture deficit starts 

impacting yield (Shroyer et al., 1997, Rogers, 1997).

Winter wheat has several growing stages beginning with planting in September 

and October. After tillering in the winter months, winter wheat begins "greening up" and 

growing again after having begun growing in the fall and surviving overwintering. The



cold is necessary for jointing and flowering in the spring as it initiates the change from 

vegetative growth (leaves) to reproductive growth (kernels). The next stages of boot, 

heading, and flowering involve extended growth of the plant's reproductive parts and 

pollination. The grain is produced during maturation two to four weeks after flowering 

(this can last up to twelve weeks if the weather is cool) (Shroyer et al., 1997).

Drought and excessive heat can seriously damage winter wheat by inhibiting 

starch production in the grains during maturation, causing the grains to shrivel and ripen 

prematurely. Wheat is harvested in June and July to avoid the worst temperature 

extremes, but hot and dry springs and early summers can still cause moisture stress. 

Winter wheat is relatively tolerant to moisture stress throughout its life cycle, but water 

during boot to heading (mid-May to mid-June) is most critical, requiring up to 0.5in 

(12.7mm) of water per day. Water application is next most critical during flowering, 

grain development in maturation (mid-June to mid-July), accounting for 38% of the total 

water applied for the season (Shroyer et al., 1997, Rogers, 1997).

2.4.2. Corn. Corn accounts for approximately half of the 3 million irrigated acres 

in Kansas and requires 22 to 30 inches (~560mm to 760mm) of water for full-season 

varieties (Rogers, 2007). Planting date is a critical factor to consider with different corn 

varieties. For southwest Kansas, the planting date occurs between April and May.

Delayed planting may not allow the corn to fully mature and early planting may result in 

maturation during extreme heat as corn roots struggle to keep up moisture needs in 

temperatures greater than 86 degrees Fahrenheit. In a good year with plenty of spring 

rainfall and warm (but not extreme) weather in the summer, corn can produce 10 to 15
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bushels per inch of total water applied (Roozeboom et al., 2007; Rogers, 2007; Duncan, 

2007).

Corn's water needs depend greatly on growth stage, temperature, and soil 

moisture. During the germination and seedling stage, rainfall is often sufficient for 

providing soil moisture in finer-grained soils like those found in western Kansas. Areas 

with sandier soils may require earlier irrigation as they can have difficulty retaining 

water. The rapid growth stage results in leaves and roots growing quickly. As 

temperatures rise in western Kansas in June and mid-July, irrigation becomes necessary 

in the middle to late half of this stage. Corn is most sensitive to water stress during its 

reproductive stage, tasseling, and silking until pollination occurs in July. Once the corn 

reaches maturity and kernels have formed, water is still necessary to complete kernel 

development, but the most critical stage of water use is over (Rogers, 2007).
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3. METHODS

3.1. DATA DESCRIPTION AND DOWNLOADS

The data acquired for this study were obtained through publicly available cloud- 

based platforms such as Google Earth Engine (GEE) (MOD16 ET, NDWI, PRISM 

precipitation), the USDA NASS CropScape download site (crop cover type), the USGS 

Early Warning System Monthly Actual ET download site (SSEBop), and the Kansas 

Geological Survey (groundwater pumping) (Earthdata Search, 2019; Gao, 1996; Daly et 

al., 2008, USDA, 2013, Senay et al., 2013; Wilson, 2019).

The cropland data layer (CDL) is a 30-m resolution raster derived from the 

Landsat 8 OLI/TIRS sensor, the Disaster Monitoring Constellation (DMC) DEIMOS-1 

and UK2, the ISRO ResourceSat-2 LISS-3, and the ESA SENTINEL-2 sensors during 

the growing season of each year (2013 and later) (USDA, 2013). Datasets collected 

before 2013 were collected using the Landsat 5 TM sensor, Landsat 7 ETM+ sensor, and 

the Indian Remote Sensing RESOURCESAT-1 (IRS-P6) Advanced Wide Field Sensor 

(AWiFS) (USDA, 2010). We chose to exclude double cropped fields (wheat and corn, for 

example) so observations would be more representative of individual crops and to 

mitigate potential influence from larger resolution remotely sensed datasets. The SSEBop 

data was acquired as monthly actual ET estimates at a 1km resolution. The monthly total 

precipitation summations were acquired from 4km PRISM climate data via GEE (Daly et 

al., 2008). All the other datasets obtained with GEE were reduced to a monthly time step 

by taking the median value for each month at a 1km resolution. For example, if there



were two satellite passes for a particular month, the value that was acquired was the 

median of the two values. Below, Table 3.1 contains the details of each dataset.
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Table 3.1 Datasets and their resolutions used in this study

D ataset P ro d u ct nam e Spatial

resolution

Tem p o ral

resolution

A cq u isitio n

M ethod

U n it C o n versio n /  

Sca le  Fa cto r

M O D 16 ET M O D 1 6 A 2 .0 0 6  T e r r a 5 0 0 m 8 - d a y G E E k g / m A2 / 8 d a y .1  s c a le

N e t s u m m a t io n f a c t o r

E v a p o t r a n s p i r a t io n

8 - D a y  G lo b a l  5 0 0 m

NDW I M O D IS  A q u a  D a i ly 5 0 0 m D a i ly G E E U n it le s s ,  r a n g e s n / a

N D W I -1  t o  1

Precip itation P R IS M  M o n t h ly 2 .5  a r c M o n t h ly G E E m m n / a

S p a t ia l  C l im a t e m in u t e s s u m m a t io n

D a t a s e t  A N 8 1 m ( ~ 4 k m )

SSE B o p  ET U S G S  E a r ly  W a r n in g 1 k m M o n t h ly D ir e c t m m 0 .0 0 1  s c a le

S y s t e m  A c t u a l  E T d o w n lo a d f a c t o r

C ro p  Data U S D A  N A S S 3 0 m A n n u a l D ir e c t U n it le s s n / a

Layer C r o p S c a p e d o w n lo a d ( c la s s i f ic a t io n )

D o w n lo a d e r

G ro u n d w ater K a n s a s  G e o lo g ic a l P o in t A n n u a l P r o v id e d  in A c r e  f e e t C o n v e r t e d

w ith d raw als S u r v e y v a lu e s t a b le f r o m  a c r e - f t

f o r m a t t o  m m / a r e a

in  e a c h  p ix e l

The groundwater pumping dataset provided by the Kansas Geological survey 

contained annual total groundwater withdrawals (1990 to 2017) for municipal, irrigation, 

and stock water use as well as irrigated acreage. These were converted to points based on
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locations of water diversions where a groundwater right permit was active or where water 

use was reported from (Wilson, 2019).

3.2. DATA REPRESENTATION

Differing spatial resolutions is a persistent challenge with gridded remote sensing 

data. Our resolution differences between cropland data layers, ET, and the groundwater 

pumping dataset posed questions of spatial accuracy within each field. For example, how 

is a point groundwater pumping dataset best represented over relevant fields? Also, there 

was the question of how to approach representation of ET values when there is overlap 

between the field extent and multiple pixel values. To combat the issue of different 

resolutions between data sources (particularly between the 30m CDL, 500m MOD16 ET, 

1km SSEBop ET, and point dataset of groundwater pumping), the following approach 

was developed to best represent each dataset in the area covered by a particular crop.

Each gridded dataset was converted to polygons at its native resolution and an area 

weighted average was computed over relevant fields.

3.2.1. Irrigated Crops. The groundwater pumping dataset was provided to us 

with geographic coordinates, total water pumped in acre-ft, acreage, and total water 

pumped for irrigation in acre-ft. To determine the groundwater pumping value at each 

point, the assumption of maximum potential coverage from each well was determined to 

be the irrigated acreage provided in the dataset. Wells with no pumping for a particular 

year were removed from the pumping dataset. We converted the pumping to a linear unit 

(millimeters) by dividing the amount of water pumped for irrigation by the area irrigated 

for the corresponding well and spatially assigned these points to the nearest CDL-derived



crop polygons within 250 meters (Figure 3.1). If there were several wells within the 

250m boundary, all points were assigned to the polygon and averaged as they were 

aggregated.
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Figure 3.1 A visual representation of fields that are inferred to be irrigated, with wells 
within the 250m distance (yellow), and the fields that were presumed to not be irrigated or 

wells irrigating fields other than the ones of interest (purple)

From here individual parameter pixels were clipped to the field boundaries. Most 

pixels partially overlapped a single field, so an area weighted average was required to 

best represent the ET over each field. This was done by finding the area of each pixel 

fragment that covered a single field and dividing the fragment area by the area of the 

field. After multiplying the individual pixel values by this weight, the fragments were 

then merged to the shape of the field they covered and the sum of the weighted pixel



values was taken to represent the value of the entire field (this tool is called Dissolve in 

ArcGIS environments).

Lastly, data were classified into “sufficient” and “insufficient” watering. To 

establish these criteria, we developed a data-driven approach using the 10-year area 

weighted averages of total water applied (TWA) in irrigated fields. TWA is defined as 

the cumulative sum of precipitation and irrigation in irrigated fields and the cumulative 

sum of precipitation in rainfed fields. Any TWA pixels that fell in the bottom 10 percent 

of the 10-year TWA average was considered “insufficiently watered” and therefore 

“water-stressed” whereas anything above the 10th percentile was considered “sufficiently 

watered” and “not water-stressed.” This threshold was determined to be approximately 

the minimum recommended TWA amounts (550mm/year for irrigated corn and 

515mm/year for irrigated winter wheat) (Rogers, 2007; Shroyer at al., 1997).

3.2.2. Rainfed Crops. For rainfed crops, we utilized the original CDL and 

applied the weighted average technique like that of irrigated crops. However, 

precipitation was the only water input for these fields and the fields determined "rainfed" 

were those that fell outside of a 250m radius of each well point. These data were also 

extracted into sufficient and insufficient TWA with TWA being derived from the area- 

weighted average of precipitation. Insufficient TWA corresponds to “water stressed” 

conditions that were found to be at or below the 10th percentile total rainfall amount over 

the decade in the rainfed fields of interest. Sufficient TWA corresponds to “not water 

stressed” conditions and consists of PRISM area-weighted PRISM pixels that are above 

the same 10th percentile cutoff. The 10th percentile rainfed wheat cutoff was 400mm per
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year, which is approximately 150mm lower than the recommended cumulative water 

application for winter wheat (Shroyer et al., 1997).

3.3. GEOSPATIAL ANALYSIS TOOLS

To conduct this study, we utilized geospatial analysis tools available in ArcMap 

and the R programming language. The statistical techniques, plots, and interpretations 

were conducted using the ggplot2 package in R.
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4. RESULTS AND DISCUSSION

4.1. OBSERVATIONS OF TEMPORAL TRENDS

The observations from this section are derived from analyzing the changes in ET 

and NDWI under TWA conditions. The purpose of this analysis and the subsequent 

interpretations was to establish the difference between the algorithms in the context of 

water stress, namely determining how estimates from each ET algorithm were distributed 

throughout the growing season under various TWA conditions, how estimates from the 

ET algorithms compare across TWA conditions, what possible fundamental differences 

in the ET algorithms could cause differences that occur, and how the answers to these 

previous questions change when viewed in context with NDWI.

The first observation in addressing these questions was that the time series for 

each dataset were not always consistent with known growth patterns for the crops they 

represent (Figure 4.1). MOD16 and NDWI showed multiple peaks during each season for 

all crop types, which is inconsistent with the growth phenology of corn or wheat.

SSEBop showed one peak, but the peak time does not change significantly between corn 

and winter wheat, although these crops are known to have different peak growth stages. 

Additionally, the NDWI signatures between irrigated wheat and rainfed wheat are 

inconsistent despite representing the same crop type. NDWI in rainfed wheat resembles 

that of irrigated corn more than irrigated wheat. The cause of this unusual trend in the 

timing and magnitude of ET and NDWI values could be the influence of irrigation. 

Overall, it makes sense that irrigation would produce higher ET and NDWI values, but



the increasing MOD16 and NDWI outside of the growing season is uncharacteristic of 

these crops.
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Double-cropping can cause multiple growth peaks within a season. According to a 

study conducted by the United States Department of Agriculture, over the first half of this 

study’s time frame (2007 to 2012), soybeans most commonly followed winter wheat in 

double-cropped fields. In the study region that included southwestern Kansas, 34 percent

50 50

100 00

L e g e n dro°
S u ffic ie n t W a te rin g
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Figure 4.1 The resulting responses of MOD16, SSEBop, and NDWI in all three crop 
types under sufficient and insufficient watering conditions, corresponding to not water- 

stressed and water-stressed responses, respectively

of double-cropped acres included soybeans (Borchers et al., 2014). This is one common 

practice of crop rotation and double cropping practiced with Kansas winter wheat. Others
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include the wheat-fallow system (producing a wheat crop every two years) and wheat- 

summer crop-fallow system (produces two crops every three years) with summer crops 

including corn, sorghum, sunflower, and millet (Shroyer et al., 1997). One challenge in 

using MODIS data to visualize time series is that several fields fall within one pixel. To 

explore this issue using the magnitudes of NDWI data with different crops, 2017 

Sentinel-2 NDWI, which has a 20 m, sub-field resolution, was derived over individual 

soybeans, sorghum, and double-cropped winter wheat/sorghum fields (Figure 4.2).

There were very few winter wheat/soy fields available, making it unlikely that
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Figure 4.2 Sentinel-2 NDWI in 2017 over soybeans, sorghum, and double cropped winter
wheat

this double cropping practice was the cause of such prominent double peaks. The time 

series shown in Figure 4.2 shows a double-peak in the double-cropped field that 

somewhat resembles that seen in Figure 4.1. However, without knowing the specific crop



rotations of each field, it is difficult to conclude crop rotations and undetected double 

cropping are the cause of the double peaks. In order for undetected double cropping to 

make such an influence on ET and NDWI responses, it would have to be a significant 

portion of fields. According to the 2017 CDL, approximately 1% of fields were classified 

as either double cropped winter wheat/soybeans or winter wheat/sorghum. This very 

small percentage, even with a compounded presence over the decade average if the 

wheat-summer crop-fallow crop rotation system was implemented, is an unlikely culprit 

of such influence on ET and NDWI responses.

It is more likely that spatial resolution differences between ET and NDWI 

products and field sizes cause the second out-of-season peak. With an average field size 

of 750m and not all pixels aligning directly with field boundaries, there is a high 

probability of influence from surrounding fields in the pixel on the final ET or NDWI 

value within each pixel. This can be seen well in Figure 4.3 where the Sentinel-2 NDWI
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Figure 4.3 Sentinel-2 NDWI in 2017 showing winter wheat peaks in May and corn 
and fallow peaks in July -  August in individual fields
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peaks overlap in July. The peaks are distinct at a 20-m resolution, but this could easily be 

blurred at 500m and 1km spatial resolutions like those used by MOD16 and SSEBop.

This investigation into potential resolution issues was expanded to evaluate the 

spatial extent of influence from surrounding vegetation and its impact on the ET and 

NDWI readings for the entire study area. For each crop type, polygons of corn and winter 

wheat fields were derived from the 2014 CDL (2014 is a representative year for the 

decade of interest in terms of both temperature and precipitation). This investigation used 

fields classified in 2014 that overlapped with MOD16 and SSEBop pixels to maximize 

the interpretability of the results and to evaluate the effects at a 500m and 1km spatial 

resolutions. Fields were classified by watering technique (irrigated and rainfed) and then 

the fraction of the pixel covered by each crop of interest was computed by adding the 

total crop area from the polygons within the pixel and dividing it by the individual pixel 

area (0.25km2 for MOD16 and 1km2 for SSEBop) (Figures 4.5 and 4.6).

These figures demonstrate that pixels that are entirely covered by a single crop 

type or even mostly covered by a single crop are quite uncommon. Because of its coarser 

spatial resolution, SSEBop has even fewer pixels with a high coverage fraction. 

Interestingly, the highest concentrations of high pixel coverage fractions in winter wheat 

appear in the northwesternmost and southeasternmost corners of the study area (also 

appearing consistently between MOD16 and SSEBop). This means that most pixels used 

in this study have multiple land use types contributing to their signal and explains why 

there are double-peaks in our time series—many pixels have both corn and wheat fields 

in them (Figure 4.4).
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Figure 4.4 Field-scale influence from surrounding crops is present in both A) 
1km SSEBop pixels and B) 500m MOD16 pixels with corn (yellow) and wheat

(green)

This resolution issue was particularly prominent with winter wheat, which had an 

average fraction of pixel coverage of ~0.348 and ~0.273 for irrigated wheat and rainfed 

wheat, respectively. Corn had the highest fraction of pixel coverage of ~0.387. In 

summary, the resolution issue is extensive enough that over half of the ET and NDWI 

responses in each scene analyzed here are likely influenced by surrounding vegetation. 

To combat this issue, both MOD16 and NDWI were evaluated again in 2014 fields with 

over 90% pixel coverage by one crop of interest and SSEBop was evaluated again with 

over 75% pixel coverage, resulting in Figure 4.7. Figure 4.7 shows temporal trends that 

are closer to those suggested by Deines et al. (2017). Most notable are the higher overall 

peaks in irrigated corn and lowered double peaks in MOD16 and NDWI. While the first 

MOD16 and NDWI peaks in winter wheat better follow the expected temporal trends for 

the growing season, the continued presence of double peaks in general suggest that 

spatial resolution may still be an issue even with 90% or more of each pixel covering

winter wheat.
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Figure 4.5 The spatial distribution of lead-over summarized as the 
fraction of each 2014 MOD16 pixel covered by A) Irrigated corn; B) 

Irrigated wheat; and C) Rainfed wheat
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Figure 4.6 The spatial distribution of lead-over summarized as the 
fraction of each 2014 SSEBop pixel covered by A) Irrigated corn; B) 

Irrigated wheat; and C) Rainfed wheat
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According to the MOD16 User’s Guide, the input datasets used by the MOD16 algorithm 

have inconsistent spatial resolutions, ranging from half-degree (~50 km) GMAO/NASA 

meteorological data, 1 km albedo and the 0.5km MODIS pixel (Running et al., 2019; 

Strahler et al., 1999). The combination of inputs with varying resolutions could lead to a 

coarser ‘true resolution’ of MOD16 ET estimates. This may be the cause of double peaks 

still being present even after additional filtering. Persistent double peaks are less 

pronounced of an issue in corn, but that is likely because the water demand for corn in 

midsummer is high and corn produces strong ET and NDWI signals. SSEBop did not
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Figure 4.7 ET and NDWI evaluated again over fields with over 90% pixel coverage by one 
crop of interest in MOD16 and NDWI and 75% pixel coverage in SSEBop



improve as much as MOD16 and NDWI, likely because of the 1km spatial resolution. 

With an average field size of 750m, resolution issues were more prominent in SSEBop 

and the investigation resulted in significantly fewer available pixels from which to draw a 

trend. The original threshold of 90% lead to insufficient sample sizes when further 

filtering data into sufficiently watered and insufficiently watered categories over the 

decade. 75% pixel coverage was determined to be the next logical step. This threshold 

resulted in a larger sample size but potentially at the cost of clarity in the resolution 

investigation.

It can be seen that most insufficiently watered curves mirror the sufficiently 

watered curves, but at lower ET and NDWI values. This is not unexpected from a 

theoretical standpoint because water stress results in lower ET and plant water content. 

Furthermore, these results quantitatively determine the ET and NDWI deficits that occur 

due to water stress. Table 4.1 shows the average difference in ET and NDWI taken as the 

difference between the points of the average and low TWA points for each month and 

then averaged to a single value to represent the entire curve. As it can be seen from Table 

4.1 and Figure 4.8, the rainfed wheat ET deficit is much larger in SSEBop and MOD16 

ET (as compared to irrigated wheat and corn) and is comparable to the irrigated wheat 

deficit in NDWI. It appears that the rainfed wheat begins the growing season with an ET 

and NDWI deficit whereas irrigated wheat only develops deficits towards the growing 

season. This could be due to more water being applied to irrigated fields in the fall before 

winter dormancy. Application of water in the fall is important for ensuring well 

established crops and for maintaining soil moisture over the winter (Rogers, 1997). If 

there is already more of an abundance of moisture in irrigated wheat fields than rainfed
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fields, then there is a larger supply of soil moisture for the crops to draw from at the most 

critical points in the season and that would appear as higher ET and NDWI with smaller 

deficits.
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Figure 4.8 A visual representation of the results from Table 4.1

Table 4.1 Deficits in ET (mm) and NDWI due to water stress in fields with >90%
pixel coverage with each crop

MODI 6 ET (mm) SSEBop ET (mm) NDWI (unitless)

Irrigated Corn 12.01 3.36 0.005

Irrigated Wheat 11.48 9.19 0.011

Rainfed Wheat 22.47 22.48 0.021

To summarize the results of this investigation, filtering pixels of MOD16 ET and

NDWI with >90% coverage of one crop at a time yields trends that more accurately 

follow the expected trends of each crop over the growing season. Additionally, the effects 

of water stress are still apparent in all three parameters. In irrigated wheat and irrigated



corn, MOD16 and NDWI peaks are lower than anticipated. In rainfed wheat, the effects 

are even more dramatic with lower and earlier MOD16 peaks, possibly suggesting 

stunted growth or permanent damage to the crops caused by water stress. Although 

SSEBop results may be more heavily influenced by surrounding vegetation, Figure 4.7 

still shows that water stress can result in lower than expected ET values.

4.2. UNEXPECTED DECLINES IN 2010

Additional plots show 2010 MOD16 with lower ET values than the severe 

drought years of 2011 and 2012. Figure 4.9 demonstrates this issue in MOD16 ET over 

corn fields (although the winter wheat fields show similar trends). The decline appears in

38

Figure 4.9 The decline in MOD16 ET over corn fields in 2010

both the unprocessed ET data (in which only a cloud mask is applied upon acquisition) 

and the processed data produced in this study (upscaled to a monthly time step), so the



issue could be attributed to cloud cover, an issue within the MOD16 algorithm in 2010, 

or factors undetectable by remote sensing such as disease and pests. Cloud cover 

influence was quickly ruled out as the QA statistics for the unmodified MOD16 ET 

products showed 2010 to be one of the best years for clear skies and good quality pixels 

in the study’s time frame.

Investigating possible algorithm errors began with evaluating the performance of 

the land classification algorithm and potential influence of cloud cover. Running et al. 

(2017) suggested the importance of the MODIS land cover classification in the MOD16 

ET computation cannot be overstated, but it is difficult to accurately classify land cover 

when many fields are smaller than the 500m MODIS resolution. This is a documented 

issue in the land classification User's Guide in which Sulla-Menashe and Friedl (2018) 

concluded that agricultural classifications are underrepresented. However, in viewing the 

differences in the MOD16 between grassland and cropland, it was found that the only 

difference is the closing vapor pressure deficits of 4200 and 4500 Pa, respectively--the 

vapor pressure deficit threshold at which plant transpiration stops due to stress from 

extreme temperatures or water availability (Running et al., 2017). The issue was 

investigated further by analyzing the proportion of "misclassified" fields in the region 

where "misclassified" is defined as a winter wheat field that is classified as something 

other than cropland (most commonly grassland). The results showed that winter wheat 

was more frequently classified as grassland than cropland, but this was not the case in 

2010 more so than other years.

This leaves influence of factors beyond the scope of remote sensing. The evidence 

for disease influence is evident in NDWI, which does not depend on the MODIS land
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cover classification. Despite good yields, a prominent disease in 2010 was stripe rust. The 

disease rate was significantly above the 20-year average and represented 76% percent of 

the year’s disease loss with west central and northwest Kansas experiencing losses of 

16% and southwest Kansas seeing a 6-8% loss. Strip rust is a fungus that thrives in cool 

and moist conditions like Kansas saw in early 2010 (Appel et al., 2010). At first it 

prevents the stomata from closing (which would result in an increase in transpiration) but 

then the leaves begin to die about 10 days afterwards (Rabbinge & Rijsdijk, 1981). This 

is the leading hypothesis for the decline in ET in 2010.

4.3. STUDY SOURCES OF ERROR

Potential sources of error for this study in general include contamination from 

surrounding fields in MODIS pixels, reporting bias in the groundwater dataset, our 

selected criteria for “water stress”, and errors in the individual remotely sensed products. 

As it was found in the SSEBop ET dataset, influence from vegetation in surrounding 

fields can have an impact on the accuracy of the ET computation, especially later in the 

growing season when ET values from cropland are not as distinct from surrounding 

vegetation and crop fields. However, cataloguing these issues will help raise awareness of 

the issue for other long-term studies. Finer resolution products would be better spatial 

alternatives (especially when used with the 30m CDL), but they lack the temporal 

resolution necessary to view decade-long trends that extend before the 2010s, and they 

would require manual computation of ET. Trends in water stress can be analyzed at 

coarser resolutions if the potential issues are identified and accounted for.



Secondly, the groundwater pumping dataset is composed of self-reported values 

from farmers that were often rounded to the nearest whole number. This could result in 

an overall underestimation of groundwater pumping in the region, which could 

significantly compound when viewed on a regional scale. Additionally, although the 

criteria for “water stress” was data and literature driven, it is merely a starting point for 

determining what bounds of water stress might be. It was the goal of this study to view 

the extremes of water conditions, but plant stress is complex and might be influenced by 

other factors such as pests and disease.

Lastly, each remotely sensed product has its own potential sources of error. For 

example, the exact wavelengths of MODIS NDWI acquired from Google Earth Engine 

vary slightly based on which wavelengths are available at the time the image was 

produced. MOD16 and SSEBop have their own errors in the MODIS land classification 

algorithm, assumptions of linearity between NDVI and land surface temperature, and 

linear interpolation of ET values between pixels. The coarse resolution of PRISM and its 

interpolated production bring to question the field-scale accuracy of the product, but the 

spatial resolution works well enough for regional-scale analysis over the long term.
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5. CONCLUSION

With evapotranspiration accounting for the return of more than 60 percent of 

precipitation over land and over 655,000 kmA3/yr back to the atmosphere, its role in 

agriculture should be studied more in depth (Mu et al., 2013; Oki & Tanae, 2006). By 

gaining a thorough understanding of how ET behaves as the second largest component of 

the hydrologic cycle, we can use our observations to predict how it will behave in more 

extreme climatic conditions, saving time and money for all concerned (Oki & Tanae, 

2006). With assistance from a unique dataset of groundwater withdrawals, this study 

established differences in MOD16 and SSEBop ET in irrigated corn, irrigated wheat, and 

rainfed wheat and found that there are quantifiable differences in ET and NDWI 

throughout all three crop types and watering conditions despite relatively coarse spatial 

resolutions, making them valuable tools for studying crop stress on a regional scale. 

MOD16 ET and NDWI were instrumental in distinguishing between rainfed and irrigated 

winter wheat with the rainfed wheat in water-stressed conditions.

To resolve issues of varying spatial resolutions and influence from surrounding 

vegetation, we implemented an additional data filter that reduced the sample size only to 

fields with >90% pixel coverage over a single field of interest. After implementing the 

filter, the temporal trends better reflected trends found in previous studies and in Kansas 

crop growth manuals. Both before and after the filter, however, the temporal trends 

suggested water stressed is a quantifiable variable, especially in winter wheat. The water 

stress is evident when we compare the ET difference between fields with greater than the 

10th percentile of water required by the crop and ET in fields with less than the 10th



percentile of water required. NDWI can be used as a supplemental tool to evaluate the 

magnitude of water stress.

This study is a beginning step narrowing down quantitative criteria for “water 

stress” and how it appears through remotely sensed ET and NDWI datasets. Furthermore, 

quantifying the impact of spatial resolution issues and developing workarounds is another 

step forward in the remote sensing data mining effort that impacts the assessment of 

remotely sensed products in agricultural areas.
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