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ABSTRACT

Corrosion of steel reinforcement and carbon dioxide emissions are two major 

global problems. Different methods, techniques, and materials have been implemented to 

mitigate these problems. Glass fiber-reinforced polymer (GFRP) bar presents itself as a 

solid alternative to replace conventional steel reinforcement owing to its fantastic features 

in resisting corrosion. Its demand is progressively increasing. Cement-based concrete, on 

the other hand, is not eco-friendly due to the excessive amount of carbon dioxide (CO2) 

emissions yielded from its cement production. One of the alternatives used to mitigate the 

use of cement in concrete is fly ash. Fly ash is considered a supplementary cementitious 

material (SCM) and has been only implemented partially to replace cement as a binding 

material in concrete, however its application has been limited to only limited doses 

(lower than 30%). In this study, durability and bond-slip investigations were carried out. 

The durability study was done on GFRP bars extracted from eleven bridges across the 

United States after being in service from 12 to 20 years. Several tests were conducted on 

the bar and the surrounding concrete to make the assessment. The tests results showed 

that there were slight sings for environmental attack but did not show any obvious signs 

for microstructural deteriorations. In addition, a bond-slip investigation was carried out to 

evaluate the bond performance of GFRP bars embedded in fly ash-based sustainable 

concrete. A high-volume fly ash (HVFA) concrete was implemented; 50% and 70% 

cement replaced with fly ash were used. The results showed that GFRP bars had less 

bond strength than that resulted from mild steel bars.
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1. INTRODUCTION

1.1. BACKGROUND

Corrosion and carbon dioxide emissions are two global and major problems. Steel 

reinforcement used in concrete corrodes and when it does, it requires a considerable 

amount of monitoring as well as it is considered costly to repair (add ref). Failing to 

repair corroded reinforcement can compromise the integrity of a structure. Corrosion 

problems have been treated/prevented using several methods such as cathodic protection, 

anodic protection, epoxy-coated bars, and galvanized bars, however these methods have 

not been completely successful in avoiding corrosion (ref 2 ACI paper Ali). Corrosion- 

related repairs consume more than $8 billion per year in the United States only (NACE 

2013 JCLP paper Ali). Therefore, the search for alternatives has been of main interest for 

many industries and scientists. One of these alternatives is called glass fiber-reinforced 

polymer (GFRP) and it is a corrosion-resistant material. In addition, it has magnificent 

characteristics including high strength to weight ratio, non-conductivity, and price 

competitiveness in compared with steel (ASCE-JCC part 2 Ali). Glass fiber-reinforced 

polymer has many applications including bridges (ASCE-JCC part 2 Ali, and part 1), 

barriers (El-Salakawy et al. 2005 from Benmokrane 2018), parking garages (Ahmed et al. 

2017 from Benmokrane 2018), and storage structures (Mohamed and Benmokrane 2014 

from Benmokrane 2018).

Even though, considerable amount of research has been carried out to evaluate the 

instant (i.e. freshly produced GFRP bars) chemical and mechanical properties of the
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GFRP bars, very few studies were conducted to evaluate their field-based performance 

after being in service for several years (add ref). In addition, most of the field-based data 

were for bars extracted after being in service for less than one decade (add ref). The lack 

of long-term durability database of GFRP bars in standards and design documents could 

be the main reason behind the shy application of GFRP bars in the civil engineering 

industry. In order to encourage implementing these bars, surely more field-based and 

long-term data is needed. Therefore, to enrich our understating about the long-term and 

field-based performance of GFRP bars, a major study was carried out to investigate the 

durability performance of GFRP bars installed in two bridges firstly and followed by nine 

bridges across the United States after being in service for about two decades. Several 

institutional and industrial laboratories collaborated to carry out the investigation. 

Multiple GFRP tests were conducted to examine the microstructural, chemical, and 

mechanical performances of the extracted bars. Scanning electron microscopy (SEM) 

examination was used to evaluate the microstructural performance; energy dispersive 

spectroscopy (EDS), glass transition temperature (Tg), Fourier transform infrared 

spectroscopy (FTIR), fiber content, water absorption, and moisture contents were used to 

evaluate the chemical performance; while short bar shear and tensile tests were used to 

assess the mechanical performance. In addition to the GFRP bar tests, three main tests 

were performed on the concrete surrounding these bars to see what environment 

surrounded the bars and how that affected the overall performance of the bars. The 

concrete tests performed were: pH, carbonation depth, and chlorides content.
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Besides the importance of durability investigations and since the desire for green 

structures has never been as high as now a day, the author also wanted to investigate the 

bond performance of GFRP bars in green concrete (i.e. eco-friendly). GFRP bars have 

been investigated in conventional concrete, but very limited research has been done on 

GFRP bars installed in green concrete. Production of Portland cement generates 

significant amount of carbon dioxide (CO2) where the construction industry is 

responsible for about 8% of the total CO2 emissions. Therefore, many research centers 

have dedicated a big chunk of their research to study and investigate effective concrete 

alternative to fully or partially avoid cement-based concrete (also called conventional 

concrete).

Fly ash is a supplementary cementitious material and has been used moderately in 

concrete, but its dose of use has been limited to around 25% (add ref). Fly ash is a 

byproduct resulted from burning coal (add ref). There are two main types of fly ash as per 

ASTM xxx (add ref); class-C and class-F. Besides the other chemical differences 

between these two classes, the major difference between class-C and F is the Ca level, 

where class-F has a Ca level of no more than 15%, while, in class-C, Ca levels could 

surpass 50% (add ref). Besides fly ash is considered waste and it is abundant, adding fly 

ash to the concrete has many advantages including: enhancing workability, lowering 

hydration heat, lowering early ages concrete thermal cracking, and enhancing concrete 

mechanical and durability performances (add ref fly ash review -  Sahmaran and Li 

2009). Based on the environmental protection agency (add ref -  EPA 2008), the fly ash 

implementation in concrete lowers the CO2 emissions equivalent to emission from 2.5
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million vehicles on road every year. In addition, multiple research mentioned the 

effectiveness of fly ash in lowering the concrete expansion through lowering the alkalis 

levels in the pore water solution of concrete (add ref -  fly ash review). This advantage 

works greatly when GFRP bars used as reinforcement in fly ash-based concrete, because 

resin of GFRP bars (especially ester-based resins) are susceptible to alkalis (add ref -  Ali 

ACI material). Hydroxyl group (OH) reacts with alkalis of the glass fiber and thus 

leaching issues will be introduced. In addition, OH group can react with alkalis in the 

concrete pore water solution and generates what is known by alkali hydrolysis attack (add 

ref -  Ali - ACI Durability). Alkali hydrolysis attacks the resin of GFRP bar and thus 

compromises the integrity of the resin. Therefore, having fly ash in concrete can reduce 

the amount of alkalis and as a result the existence of fly ash will reduce the chances of 

leaching and alkali hydrolysis issues when GFRP bars used.

Owing to the many advantages of using fly ash in concrete, the author attempted 

to investigate concrete made with high-volume fly ash and reinforced with GFRP bar. 

Two levels of fly ash were used, 50% and 70% cement replaced with fly ash. This was 

the first time to investigate high-volume fly ash (HVFA) concrete with such 

reinforcement. This combination was selected for two reasons: first, fly ash reduces CO2 

emissions, and second, fly ash reduces alkalis. To assess the performance of the HVFA 

concrete with GFRP bars, the author chose the bond as a topic of investigation owing to 

its structural importance. Two sizes of GFRP bar were used, 0.50 in. (13 mm) and 0.75 

in. (19 mm) as well as two length of embedment were used, 2.5 in. (64 mm) and 3.5 in. 

(89 mm). Pullout test was carried out to assess the bond-slip performance. Additionally,
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besides the mechanical tests, microstructural and chemical tests were conducted to see if 

the addition of fly ash affected the GFRP bar even though the period was only limited to 

the curing time. The tests were SEM, Tg, and EDS to make the assessment. Furthermore, 

statistical-based models were made to predict the bond strength of the bar.

1.2. OBJECTIVES AND SCOPE OF WORK

This research addressed two important aspects of GFRP bars. The first aspect was 

the on-site long-term durability after being in-service for around two decades. This aspect 

will not only enrich our design standards but also will encourage the civil engineering 

industry to implement GFRP bars in their constructions. The majority of the available 

data are based on bars with five-to-ten years of service, so this study is very important 

and adds a lot information to the database.

The second aspect is the bond performance of the GFRP bars when installed in 

fly-ash based concrete. Replacing cement with fly ash can significantly reduce the 

amount of the CO2 emissions. Fly ash-based concrete is considered green (e.g. eco­

friendly) concrete. In addition, fly ash reduces the alkalinity level in concrete and that 

works great when GFRP bars used as reinforcement because the latter is sensitive to 

alkalis. Having a perfect bond between concrete and its reinforcement is essential for a 

structure integrity, therefore the topic of bond between GFRP bars and fly ash-based 

concrete was investigated in this study. Since fly ash has been only used in low dosage 

(around 25% maximum) and has many benefits, high-volume fly ash (HVFA) concrete 

was selected as the concrete of investigation.
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1.3. LAYOUT OF THE DISSERTATION

Section 1 includes the background information, studies objectives and scopes, and 

layout of the dissertation.

Paper I includes: introduction; research significance; sample extraction, 

preparation, and conditioning; concrete examinations; GFRP bar examinations; 

conclusions and recommendations.

Paper II includes: introduction; experimental work; materials, mixture 

proportions, fresh and hard properties; GFRP rebar tests; test setup and procedure; test 

results and discussion; GFRP rebar test results and evaluation; statistical analyses and 

discussions; comparison with previous studies; and conclusions.

Paper III includes: introduction; bar testing program; GFRP test results and 

discussion; and conclusions and recommendations.

Appendix describes paper IV and V. Paper IV includes: introduction; selected 

bridges; sample extraction; sample inventory and distribution; challenges and solutions; 

concrete tests procedure; concrete tests results; and conclusions. Paper V includes: 

introduction; pullout bond experiment; mixtures and materials; setup and procedure of 

pullout test; test results and discussions; and conclusions.
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PAPER

I. ASSESSMENT STUDY OF GFRP REINFORCEMENT USED IN TWO 
CONCRETE BRIDGES AFTER MORE THAN FIFTEEN YEARS OF SERVICE

Ali F. Al-Khafaji 1; John J. Myers 1; and Antonio Nanni 2 

1 Missouri University of Science and Technology, Rolla, MO 65409, USA 

2 University of Miami, Coral Gables, FL 33124, USA

ABSTRACT

Corrosion in reinforced concrete (RC) represents a serious issue in steel 

reinforced concrete structures, therefore finding an alternative to replace steel 

reinforcement with a non-corrosive material is necessary. One of these alternatives is 

glass fiber-reinforced polymer (GFRP) that arises as not only a feasible solution but is 

also economical. The objective of this study is to assess the durability of GFRP bars in 

concrete bridges exposed to a real-time weather environment. The first bridge is 

Southview Bridge (in Missouri State) and its GFRP bars have been in service for more 

than 11 years; the second bridge is Sierrita de la Cruz Creek Bridge (in Texas State) and 

its GFRP bars have been in service for more than 15 years. In order to observe any 

possible mechanical and chemical changes in the GFRP bars and concrete, several tests 

were conducted on the GFRP bars and surrounding concrete of the extracted cores. 

Carbonation depth, pH, and chlorides content were performed on the extracted concrete
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cores to evaluate the GFRP-surrounding environment and see how they influenced 

certain behaviors of GFRP bars. Scanning electron microscopy (SEM) was performed to 

observe any microstructural degradations within the GFRP bar and on the interfacial 

transition zone (ITZ). Energy dispersive spectroscopy (EDS) was applied to check for 

any chemical elemental changes. In addition, glass transition temperature (TA) and fiber 

content tests were carried out to assess the temperature state of the resin and check any 

loss in fiber content of the bar after these years of service. The results showed that there 

were no microstructural degradations in both bridges. EDS results were positive for one 

of the bridges, and they were negative with signs for leaching and alkali-hydrolysis attack 

on the other. Fiber content results for both bridges were within the permissible limits of 

ACI440 standard. Carbonation depth was found only in one of the bridges. In addition, 

there were no signs for chlorides attack in concrete. This study adds new evidence to the 

validation of the long-term durability of GFRP bars as concrete reinforcing used in field 

applications.

1. INTRODUCTION

Corrosion of steel reinforcement represents a major issue within the civil 

engineering industry, as the cost of repairs in the United States, Canada, and several 

European countries makes up a substantial percentage of the infrastructure-allocated 

expenditures of these countries 1. Several methods such as cathodic protection, epoxy 

coated bars, and galvanized steel were implemented, yet these methods have not been
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entirely successful to stop corrosion 2 Thus, considering the difficulties and costs of 

corrosion repairs, the direction to find non-corrosive alternative materials are of primary 

importance to replace steel reinforcement. One of these alternatives is glass fiber 

reinforced polymer (GFRP). GFRP bars have been applied successfully as a main 

reinforcement in quite a few concrete structures. As they have high strength to weight 

ratio and are non-corrosive, in addition to being economically feasible 3. Some of these 

GFRP-reinforced concrete structures include barriers 4, parking garages 5, storage 

structures for wastewater treatment 6, and marine structures 7 However, the use of GFRP 

as a main reinforcement requires additional field validation 8. Despite the fact that there 

has been significant research on laboratory-based chemical and mechanical testings, 

creep, and natural weathering of composites, limited research closely related to real-time 

field exposure scenarios has been performed. Thus, field-related durability data needs to 

be proactively gathered and made available for standard writing organizations 9.

Using accelerated laboratory tests to assess the GFRP durability performance by 

exposing GFRP-reinforced concrete to an alkaline environment does not resemble the 

conditions of those exposed to a real-time field exposure 2 Accelerated tests are 

significantly harsher on GFRP bars than real-time filed exposure. In 1998, Porter and 

Barnes 10 conducted accelerated experiments on GFRP bars to determine their long-term 

tensile strength. Alkaline solution was used on the bars with a temperature of 60o C (140o 

F) for three months. The test results showed that after alkaline exposure, the residual 

strengths of bars were between 34 and 71%. In 2004, Nkurunziza et al. 11 implemented 

the combined effect of sustained loadings (up to 40%), chemical solution (de-ionized
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water or alkaline solution), and high temperature (between 55o C (131o F) to 75o C (167o 

F)) on 9.5-mm diameter GFRP bars. The test results showed that de-ionized water- 

exposed and alkaline-exposed specimens lost 4% and 11% of their original strength 

respectively.

On the other hand, a more reliable indication of the durability of GFRP bars can 

be taken from monitoring the performance of existing GFRP-reinforced concrete 

structures. Therefore, durability studies on GFRP bars extracted from bridges have 

become the preferred process of evaluation. In 2007, Mufti et al. conducted a durability 

study on GFRP bars extracted from five bridges across Canada after being in service for 

over 8 years 12 Several tests were performed on the specimens to investigate their 

microstructural, chemical, and mechanical performance. The results showed that, from 

the SEM examination, a decent bond observed between the GFRP and concrete, while 

from Fourier transformed infrared spectroscopy and differential scanning calorimetry 

tests, neither hydrolysis nor significant changes in glass transition temperature took place. 

Gooranorimi et al. 2016 assessed the durability of GFRP bars in an existing bridge in the 

State of Texas, USA. After 15 years of service, tests were conducted on these bars 

including scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy 

(EDS), short bar shear (SBS), fiber content, and glass transition temperature (TA). The 

test results showed no microstructural deteriorations in the bars, and no change in their 

chemical compositions. The TA and the fiber content results were close to the control 

bars values, while the short bar shear results were inconclusive 8.
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In this study, another durability study was carried out on GFRP specimens 

extracted from the same bridge that Goornorimi et al. 8 used to conduct their study, but 

this time the specimens were taken from another location of the bridge. In addition, 

another bridge in a different state (Missouri State) was added to the list of durability 

investigation to enrich and validate the current durability documents. Several GFRP bars 

extracted from the two bridges, that have been in-service over eleven and fifteen years, 

were investigated. The tests were conducted on the GFRP bars, including: SEM, EDS, 

Fourier-Transform Infrared spectroscopy (FTIR), TA, and fiber content. The test results 

were compared to control bars available from one bridge and to test results conducted on 

the same bridges but on different cores. Control bars are similar to those installed in the 

bridge, but they were tested at the same year of GFRP bars installation. Besides the 

GFRP tests, concrete surrounding the GFRP bars were also evaluated to observe the 

environment surrounding the GFRP bars and thus to see how they influenced a certain 

behavior/failure of the bar. The concrete tests involved carbonation depth, pH, and 

chlorides content and were performed on portions of the cores that contained the GFRP 

bars.

2. RESEARCH SIGNIFICANCE

The significance of this research is to provide more technical information about 

the durability of GFRP bars. Durability data of GFRP bars embedded in concrete 

structures and have been in service for a decade or more is very limited. To encourage the
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construction industry to implement GFRP bars, a more-detailed and updated durability 

information needs to be present in the design standards and guidelines. Therefore, this 

study attempts to add more information to the durability performance of GFRP bars used 

as a reinforcement material for structural applications.

3. SOUTHVIEW AND SIERRITA DE LA CRUZ CREEK BRIDGES

Southview Bridge is located on Carter Creek in Rolla, Missouri, shown in Figure 

1.A. The original bridge was one-lane and consisted of four box culverts and topped with 

steel reinforced concrete deck of a 254 mm (10 in.) thickness. An expansion occurred in 

2004 by replacing the existing sidewalk with a new one and adding another lane that 

consisted of four-box culverts and topped with glass fiber reinforced concrete deck. The 

expansion phase involved removing the curb from the existing deck to allow extending 

the bridge total width from 3.9 m (12.8 ft) to 11.9 m (39 ft). The new resulting width of 

the bridge is 9.1 m (30 ft) 13. GFRP reinforcement with 19 mm (3/4 in.) diameter was 

used as a main reinforcement and 13 mm (1/2 in.) diameter was implemented for 

shrinkage and temperature reinforcement in the deck 2 Also, 10-mm (3/8 in.) diameter 

GFRP bars were used as prestressing tendons. Figure 2 shows the cores locations. The 

bridge is exposed to a range of temperature between -5o to 35o C (22o to 95o F) during the 

year. Also, it experiences regular wetting, drying, freezing, and thawing cycles. In 

addition, deicing salt is sprayed in winter months.
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The temperature range and precipitation (from 1981 to 2015) are shown in Figure.

3. The second investigated bridge was Sierrita de la Cruz Creek Bridge and is located 

north-west of Amarillo, Texas. Figure.1. B. shows the Sierrita de la Cruz Bridge. The 

bridge was severely corroded, so it was considered structurally deficient, therefore a 

bridge replacement was necessary.

Figure 1. (A) Southview Bridge, Rolla, MO. (B) Sierrita de la Cruz Creek Bridge,
Amarillo, TX

Figure 2. Cores locations of Southview Bridge



14

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 3. Temperature range and precipitation of Rolla, MO. from 1980 to 201536,37

This bridge was the first bridge in the State of Texas that implemented GFRP 

bars. The GFRP reinforcement was used in the deck of the bridge and the construction 

work took place in 2000. The Bridge is 24 m (79 ft) long and 14 m (46 ft) wide. GFRP 

bars with 16 mm (5/8 in.) and 19.0 mm (3/4 in.) diameter were used in only two spans 

out of the seven spans total. To assess and monitor the behavior of GFRP bars, witness 

GFRP bars were implanted during construction at the overhang, midspan, and control 

joints where they were planned to be extracted at different times of their service life 

without compromising the structural integrity of the bridge deck 8. Figure. 4 shows the 

location of the cores. It should also be noted that these locations were seated where de­

icing salts tend to concentrate along the guard rail from roadway salt spray. The 

temperature in Amarillo ranges from -3o to 39o C (26o to 102o F). In addition, the bridge
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is exposed to frequent wetting, drying, freezing, and thawing cycles. Figure. 5 shows the 

temperature range and precipitation (from 1981 to 2015) of Amarillo, Texas.

Sand coating was used in all GFRP bars installed in these bridges to provide a 

proper bond to surrounding concrete. In addition, the GFRP bars were made of E-glass 

fibers and vinyl-ester resin.

Figure 4. Cores locations of Sierrita de la Cruz Creek Bridge

4. SAMPLE EXTRACTION, PREPARATION, AND CONDITIONING

Concrete cores of 102 mm (4 in.) diameter with encapsulated GFRP bars were

extracted from the bridges in 2015. A total of ten cores were taken from the deck of 

Southview Bridge in the following manner: two cores from each of span one, two, and 

three, and four cores from span four.
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On the other hand, five cores were extracted from the overhang of Sierrita de la 

Cruz Bridge. In both bridges, the core holes filled immediately after the core extraction 

with a fast-curing durable cementitious grout.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Year

Figure 5. Temperature range and precipitation of Amarillo, TX. from 1980 to 201536,37

The extracted cores were then sent to the laboratories of the collaborated universities. Two 

cores, CM1 and CM2, from Southview Bridge and one core, CT, from Sierrita de la Cruz Bridge 

were sent to the laboratory of Missouri S&T for examinations. In both bridges, all the extracted 

GFRP bars were 19 mm (3/4 in.) diameter. Figure. 6 shows one core from each bridge and Table 1 

shows the GFRP bars information. The preparation of a specimen varies from one test to another. 

Since some of the tests required only a tiny piece of material to study, each core was cut into
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several slices parallel to bar-length orientation. Next, each slice that contained GFRP bar was cut 

into several slices until what was left is a GFRP bar with a little concrete surrounding it. Some of 

these little pieces were kept whole with no concrete removed and some had the concrete stripped 

from the GFRP bar.

Figure 6. Cores from (A) Southview Bridge, Rolla, MO. (B) Sierrita de la Cruz Creek Bridge,
Amarillo, TX

Table 1. Properties of GFRP bars used in the bridges
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It completely depends on the test that was being conducted on that piece. Figure 7 

depicts some of the samples preparations. In SEM and EDS, after cutting the GFRP 

specimens to a 13-mm (1/2 in.) thick piece, the surface of GFRP specimens was 

smoothed using different levels of sandpaper (e.g. NO: 180, 300, 600, 800, and 1200 

Grit) and was then polished for an extra surface smoothness. After that, an oven at 50o C 

(122o F) was used to keep the specimens dry. Also, since GFRP is nonconductive 

material, a gold coating was used on the specimens to make it conducive and sensitive to 

electrons that will be exerted from the SEM apparatus. For FTIR test, very tiny chunks, 

around 5 mg (0.0002 oz.), were cut from the GFRP specimens and were then grinded 

with KBr to enhance the level of spectrum detection 12 The mix was then compressed in 

order to make a thin film to be used later in the FTIR device. In TA test, small chunks, 

about 15 mg (0.0005 oz.), were taken from the GFRP specimens and were then placed 

inside an aluminum pan that was later on sealed mechanically and situated inside the 

DSC device for TA testing. Preparations for the fiber content test is mentioned in its 

section. Specimens were conditioned first by keeping them in a hermetically sealed 

environment and second, for two days before testing, by exposing them to 40o C (104o F) 

temperature to maintain a controlled (i.e. standardized) environment.
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5. CONCRETE EXAMINATION

In order to have a complete assessment of the GFRP bars, the surrounding 

concrete had been examined too. The tests used for concrete in this study were, pH, 

chlorides content, and carbonation depth.

Figure 7. Preparations of Specimens: (A) air drying, (B) oven drying, (C) sonic bath,
(D) drilling to get concrete powder
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pH Test: The test of pH quantifies alkalinity level in concrete. In Portland 

cement-based concrete, pH of concrete ranges between 11-12 14 The value of pH on 

concrete surface falls as a result of the reaction of the carbon dioxide from the 

atmosphere and alkalis in the concrete. To measure pH level, there are two methods; 

Grubb procedure and ASTM F710 15. The Grubb procedure was applied in this study 

where powder, about 2 grams, were taken from the surface of concrete core and then 

mixed with distilled water in a 1:1 mass ratio. After mixing the distilled water with the 

concrete powder, a 60-sec set-time was given to mixture to let it become a thick muddy- 

like solution. Next, pH strips were used to determine the alkalinity of the solution. The 

test was conducted three times per core. For Southview Bridge, pH test results were 13,

12.9, and 13.2 which were considered high for such concrete. It could be due to the 

ingress of hydroxide ion from exposing the concrete to an alkaline-based environment. In 

Sierrita de la Cruz Creek Bridge, the pH results were 11, 11.1, and 11.1 which satisfied 

the expectation for that type of concrete and age. Figure.8 shows concrete pH 

measurements of one of the specimens. Table 2 shows the pH test results.

Table 2. Concrete test results

Bridge Cores ID pH Carbonation 
Depth mm (in)

Chloride 
Content (%)

Southview
CM1 13 0 (0) 0.0033
CM2 13 0 (0) 0.0094

Sierrita de la 
Cruz Creek CT 11-12 13 (0.5) 0.0031
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Figure 8. pH test measurements: (A) Southview Bridge (B) Sierrita 
de la Cruz Creek Bridge

Carbonation Depth: Concrete cover provides a protective layer to steel 

reinforcement against corrosion, but the cover is normally exposed to the atmosphere. 

Carbonation takes place when carbon dioxide in the atmosphere reacts with alkalis of 

concrete 2 It lowers concrete pH from about 12 to 9 or less, which makes the concrete 

layer relatively acidic. It has been proposed that corrosion happens when the carbonation 

depth is equal to the concrete depth 16. There are several factors that influence the 

carbonation rate including: the mix design, cement composition, concrete porosity, 

ambient temperature, CO2 concentration, relative humidity, and existing cracks 17 In 

order to conduct the test, RILEM 1988 18 was used where the depth of carbonation was 

determined by spraying a 1% of phenolphthalein-70% ethyl alcohol solution to a fresh 

cut of the concrete surface. The solution is colorless as long as the ambient atmosphere is 

acidic. However, once it hits an alkaline environment where the pH is around 9 or over, it 

will turn purple. The results of the carbonation depth indicated that, in Southview Bridge, 

there was no carbonation depth found, but in Sierrita de la Cruz Creek Bridge, a 

carbonation depth of 13 mm (1/2 in.) was observed. Even though, the pH results of 

Sierrita de la Cruz Creek Bridge were not low enough to induce carbonation attack,
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carbonation was detected. It is most likely because the collected powder was from 

unaffected area, therefore its pH came out relatively high. Figure.9 and Table 2 show the 

carbonation depth results.

B
13 mm (0.5 in.)

Figure 9. Carbonation depth test (A) Southview Bridge, (B) Sierrita de la Cruz Creek
Bridge

Chloride Content: Chloride testing is crucial for concrete as chloride is 

considered one of the main causes of reinforcement corrosion 17 Chlorides attack the 

light oxide film that forms over the reinforcement due to the alkaline-based environment 

of concrete and therefore result in corrosion of reinforcement. There are two techniques 

to determine chlorides content, namely acid-soluble and water-soluble techniques. Acid-
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soluble analysis is used to determine the total content of chlorides including both 

chlorides trapped inside the concrete voids and the ones that damage the oxide film of 

reinforcement 19 The water-soluble method provides only the chlorides content that 

deteriorated the oxide film. In this study, the acid-soluble approach was used to 

determine chlorides content. In order to implement this approach, rapid chlorides testing 

(RCT) equipment was implemented. A 1.5-grams (0.05 oz.) of concrete powder was 

taken from the cores at three different locations. They were then put into small coned- 

shaped containers and pressed in using a short plastic wire. After that, the powder was 

emptied in chloride-agent vails and left out to react with the agent. After 24 hours, the 

calibration step took place where different concentrations of chlorides were used. A 

voltage reading in mV was measured from each concentration and then used to draw a 

chlorides content curve. After that, an mV reading was taken from each vail tested and 

then compared to the curve to find the chlorides content concentrations. The degree of 

significance of these resulted concentrations was then compared to an associated chart to 

see if the content is high, low, or negligible. Per Broomfield, the chlorides content can be 

neglected as long as the content is less than 0.03%, content is considered low when it is 

between 0.03-0.06%, is considered moderate if it is between 0.06-0.14%, and is high if 

it’s over 0.14% 20. In both bridges, it was found that the chlorides content was within the 

negligible rates, as every vial had less than 0.03%. Table 2. Shows the chlorides content

results.
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6. GFRP EXAMINATION

Five tests were conducted on the GFRP bars to assess their durability 

performance.

The tests were as follows: scanning electron microscopy (SEM), Fourier 

transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS), glass 

transition temperature (TA), and fiber content.

Scanning Electron Microscopy (SEM): In order to observe any existence of 

microstructural degradations, SEM test was carried out. Two 25.4 x 25.4 x 6.35 mm (1 x 

1 x 0.25 in.) slices were taken from Southview Bridge core and one 25.4 x 25.4 x 6.35 

mm (1 x 1 x 0.25 in.) slice was taken from Sierrita de la Cruz Creek Bridge core. Before 

using the SEM test, the samples were prepared following the procedure mentioned in 

section three of this article. Different magnification grades were employed to examine 

not only the GFRP bars but also the interfacial transition zone (ITZ) between the concrete 

and GFRP bar. The main reason for the scanning was to see if there was any 

microstructural degradation in the GFRP bars and areas in the vicinity of concrete in 

terms of fiber and resin morphological changes and/or cracks. Images were taken from 

different locations in each specimen to give a comprehensive view of the specimen. The 

SEM images depicted that there were no microstructural degradations in fibers, resin, and 

the neighboring areas of the GFRP bars. Fibers were not damaged and no loss in the 

cross-sectional area of fiber took place. Furthermore, there was no bond loss between the 

fibers and resin, and there were no gaps at GFRP-concrete interface (Interfacial
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Transition Zone). Figure.10 shows representation of the scanned images. It is important 

to note that, in SEM analysis, sample preparation is very crucial and has a significant 

impact on the results, as lack of proper preparation may give false results. For example, 

exposing a specimen to high temperatures (over 55o C (130o F)) at the conditioning stage 

may result in gaps at the interfacial transition zone of GFRP and concrete. Furthermore, 

uncontrolled pressure at sand papering stage may damage cross section of fiber and leave 

dents in the matrix. Figure. 11 shows an example of a damaged specimen. One good 

indication that the damage was due to preparation was that there were cracks all over the 

specimens and they were distributed evenly.

Figure 10. SEM images of the undamaged specimens (A) Sierrita de la Cruz 
at 250x magnification, (B) Sierrita de la Cruz at 3500x magnification, (C) 
Southview at 250x magnification, (D) Southview at 3500x magnification
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A B
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Figure 11. SEM images of some of the cracked specimens- (A) Southview at 
250x magnification, (B) Southview at 3500x magnification, (C) Sierrita de la 

Cruz at 250x magnification, (D) Southview at 3500x magnification

Energy Dispersive X-Ray Spectroscopy (EDS): This test was used to determine 

site specific elemental concentrations. Concrete pore solution is highly alkaline, as it has 

Na+, K+, and OH-. It is known that Si of fiber dissolves in high alkaline 12 In addition to 

alkalis coming from concrete pore water solution, there are alkalis that are a constituent 

of the fiber itself. When there is an abundant of OH-, the pH rises, and leaching process 

might occur. Leaching is the process of extracting alkalis out of fiber resulting in 

affecting Si network of fiber and thus forming SiOH product. The produced SiOH is a gel 

type product that is less dense than the original Si network and has the ability to 

transform water and alkalis 21 22 In addition to the investigation of main elements of fiber 

and resin matrix, EDS was implemented to check for alkalis attack. EDS cannot detect
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elements with atomic number lower than Na, therefore OH cannot be detected, but they 

might defuse together for neutrality 12 That said, appearance of Na, Ca, and/or K in the 

resin matrix can be a sign of alkalis migration from concrete pore solution to the glass 

fibers. A 10 to 20 KeV electron beam was applied on the same specimens used for SEM 

analyses. In EDS test, the results were shown as plot where its y-axis shows the number 

of X-rays sent by the apparatus and its x-axis shows the level of energy of those counts.

In both bridges, the fibers chemical composition showed no signs of zirconium 

(Zr), therefore it confirms that the GFRP bars were not alkaline-resistant (AR)22 

Additionally, the main elements of fiber including Al, Ca, Si, Na, O were found. Besides 

these elements, Mg was found too in both bridges and that indicates the GFRP bars were 

not ECR-glass 8. Elements such as Au and Pd were also detected in the resin and fiber, 

which is an indication for coating (gold sputtering) to make the surface of GFRP bar from 

non-conductive to semi-conductive, so the SEM and EDS apparatus can work. For the 

resin matrix, the main element, C, was found in both bridges. In Sierrita de la Cruz Creek 

Bridge, alkaline elements such as Na, Mg, Al, and Ca were found in the resin. In 

addition, Si was found too. The appearance of alkaline and Si in resin are not welcomed, 

as their existence can be an indication for alkali-hydrolysis attack and a leaching problem 

22 However, in Sierrita de la Cruz Bridge, these elements were found in the control bars 

too, therefore there is a significant chance that these observed elements were part of filler. 

Figure. 12 shows the EDS results of the fiber and resin of Sierrita de la Cruz Creek 

Bridge. Additionally, and to support this claim, the pH of the bridge was not even high 

enough to induce alkali-hydrolysis attack. Furthermore, carbonation depth was observed,
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and thus, these signs moderately confirm that these elements were part of the filler of 

GFRP bar. In Southview bridge, alkaline elements and Si were found in the resin as well.
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Figure 12. EDS analysis of Sierrita de la Cruz Creek Bridge (A) fiber (B) resin
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The difference this time from Sierrita de la Cruz Bridge is that the tested pH of 

Southview Bridge was high and carbonation was not observed. Additionally, Na was 

observed only in the resin. Thus, the appearance of Na and Si in the resin can clearly 

indicate to an alkaline-hydrolysis attack and leaching problem. To contrast, Si sometimes 

is used as part of a filler in resin. Bank et al [1998] 23 stated that the existence of Al, Si, 

and PO43" in the resin matrix is a sign of a filler. These two elements, Al and Si, and one 

compound, PO43", form a filler called alumino-silicate phosphate (ASP). Each of Al, and 

Si were seen in the resin, but there were no signs for the PO43". Therefore, to make sure 

these alkalis and Si from alkalis attack, FTIR test was carried out to observe the level of 

OH in the resin matrix. EDS results of Southview Bridge are shown in Figure. 13.

Fourier Transform Infrared Spectroscopy (FTIR): Glass fiber is weak against 

alkaline and acid environment. In fact, glass fibers do not do well if the alkaline 

concentration is 2 mol/l or more. Hydroxyl group (OH) is very active in alkaline 

environment and can induce alkali-hydrolysis attack on resin. Cross-links in thermoset 

resins, such as vinyl-ester, are the weakest connection in the resin structure and are the 

ones susceptible to damage if alkali- hydrolysis attack takes place 12 When attack occurs, 

resin degrades and loses its ability to transfer stress properly to the fibers and thus GFRP 

system fail. FTIR test was applied to monitor the changes in the amount of OH. If alkali- 

hydrolysis occurs, new OH are generated and as a result infrared band of OH increases 

and becomes higher than the normal infrared band of OH 24
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Figure 13. EDS analysis of Southview Bridge (A) fiber (B) resin

Additionally, since EDS only works with elements having an atomic number 

equal or higher than Na, and OH has an atomic number smaller than that of Na, FTIR 

was used to check for OH level. The normal range of the Hydroxyl group (OH) is 

between 3000 and 3600 cm-1 25. To conduct the test, little fractures about 2 grams from
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the GFRP bar were taken and were then ground with the bromide potassium (KBr), 

because it does not have bands that fall in the mid-IR region of the spectrum. Hence, 

preparation as halide disks misses significantly less information. Then the ground powder 

was compressed to form a light transparent sheet that was placed later in the FTIR device 

to obtain the measurement. The output reading was in terms of plot between the intensity 

and wavenumber that presents the inverse of the wavelength.

In the Southview Bridge, OH was found to be a little over 3700 cm-1, which now 

clearly indicates that alkali-hydrolysis and leaching were taking place. Regarding Sierrita 

de la Cruz Creek Bridge, OH was found to be about 3600 cm-1, which met the normal 

range of OH group. It was anticipated to be on the high side, because even though 

carbonation was found when its concrete was tested, the pH test was not lower than 11. 

Representative results are shown in Figure 14.

Glass Transition Temperature (TA): Glass transition temperature can be 

defined as the temperature region where the resin physical characteristics change from 

hard to soft material 26. The importance of TA comes from its indication for material 

thermal stability, polymer structure, and mechanical properties. In composites, there are 

two glass transition temperatures, one for fiber and the other for resin. Since the TA of 

the fiber is substantially higher than that of the resin matrix, only the resin is of main 

concern during the investigation of TA. Surrounding environment of composites has 

significant impact on TA, as it can substantially reduce it 27. To contrast, wet 

environment where OH is abundant, can be very deleterious on TA due to plastification.
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Figure 14. FTIR analysis of (A) Southview Bridge (B) Sierrita de la Cruz Creek
Bridge

The OH group is the reason for plastification, as it can induce alkali-hydrolysis 

attack on resin. This attack destroys the Van der Waals bonds of resin, and thus 

plastification takes place 12 In addition, Micelli and Nanni 9 stated that there are solid 

signs that the deterioration rate of polymer composites subjected to fluid environment is 

highly related to the rate of fluid sorption, which is strongly affected by elevated 

temperatures.

Frequent exposure of composite to high temperature can lead to what is called 

thermal softening (Reduction in TA) 27 Thermal softening results in reduction of not only
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elastic modulus, but also fiber strength. The matrix properties of polymeric composites 

are considerably affected by temperature increase rather than fiber properties. It was 

found that the axial mechanical properties (strength and modulus) of fibers, situated on 0o 

C (32o F) degree to the applied load, were not affected by the increase in temperature. 

However, those situated perpendicular to the other fibers had mechanical properties that 

were significantly affected by the temperature increase. In addition, it was found that 

resin (vinyl-ester) of composites can resist high temperature up to 40o C, however the 

exposure should not be for a long term 27

Another important aspect in TA is level of curing. In 2015, Kumar et al. 28 

discussed in their work the effect of curing ratio on TA, as it was found that composites 

with optimum cure ratio were expected to have a higher TA than those with lower cure 

ratio. Kumar et al. also defined the optimum curing ratio as the level of curing required in 

a material to achieve its mechanical, thermal, and durability properties for a certain 

application 25. In addition, ACI-2008 permitted any composite product as long as it is 

100% cured 29 In contrast, CSA-2010 permitted only GFRP bars with curing ratio of at 

least 95% 30. Glass transition temperature tests can be performed using either dynamic 

mechanical analysis (DMA) or differential scanning calorimetry (DSC). In this study, 

DSC was used to evaluate the TA temperature of both bridges. ASTM-E1640 was used 

as a standard 31. The specimens were cut into very little chunks containing about 10 mg 

(0.0004 oz.) each of the GFRP bars. Next, they were placed inside a TA instrument for 

TA measurement where the temperature ramp was 5o C (41o F) per minute. The 

temperature was elevated up to 200o C (392o F) from room temperature and then cooled
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back down using the same ramp of 5o C (41o F) per minute. All the results showed a 

significant reduction in TA temperature of about 25o C (77o F) from the original TA for 

vinyl-ester resin which is about 100o C. This reduction could be due to the increase in 

OH. Regarding the Sierrita de la Cruz Creek Bridge, vinyl-ester was also used for the 

resin matrix of the bar. TA results for this bridge were about 70o C (176o F) which is 10o 

C (212o F) less than the TA conducted on control bars. However, the FTIR results 

exhibited that OH levels were within normal range 32 (3000-3600 cm-1), and the EDS test 

did not show any change in the chemical properties of either the fiber or the resin. The 

hygrothermal environment that surrounded the GFRP bars could be the reason behind this 

reduction of the TA magnitude. Results are shown in Table 3.

Table 3. Test Results of Glass Transition Temperature (TA)
Number of samples 3

CM1 Average Temp. oC (oF) 72
(162)

Southview Bridge
Coefficient of variation % 6.94
Number of samples 3

CM2 Average Temp. oC (oF) 75
(167)

Coefficient of variation % 3.32
Number of samples 3

TA-Control Bars Average Temp. oC (oF) 81
(178)

Sierrita de la Cruz Creek Coefficient of variation % 16.9
Bridge Number of samples 3

CT Average Temp. oC (oF) 74
(165)

Coefficient of variation % 9.19
CM1 and 2: Cores from Sout iview Bridge testec in for this study at Missouri S&T

TA-Control Bars: Control cores from Sierrita de la Cruz Creek Bridge 
CT: Cores from Sierrita de la Cruz Creek Bridge tested at Missouri S&T
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Fiber Content Test: fiber content is directly related to the mechanical 

performance of GFRP bars 25. This test can be utilized only with polymer-matrices and 

with fibers where a high-temperature exposure does not affect them 33. The fiber content 

test, also called the Burn-off, is designed to determine the ignition loss of cured resin. 

ASTM D2584 was applied to conduct the experiment 34 The specimens were cut into 

little pieces of about 5 grams (0.18 oz) each and then weighed. The specimens were then 

burnt in a muffle furnace at 575o C (1010° F) until the resin was disappeared. After that, 

the burnt specimens were then weighed again. The percentage weight difference yields 

the fiber content. The results are shown in Table 4.

Table 4. Test Results of Fiber Content Test

Southview Bridge

CM1

Number of samples 3
Fiber Content % 69.9
Resin Content % 30.1
Coefficient of variation % 4.32

CM2

Number of samples 3
Fiber Content % 71.8
Resin Content % 28.2
Coefficient of variation % 3.34

Sierrita de la Cruz 
Creek Bridge

a -  Control 
Bars

Number of samples 2
Fiber Content % 80.5
Resin Content % 19.5
Coefficient of variation % 2.2

CT

Number of samples 3
Fiber Content % 81.6
Resin Content % 18.4
Coefficient of variation % 3.07

CM 1 and 2: Cores from Southview Bridge tested in for this study 
a -  Control Bars Control cores from Sierrita de la Cruz Creek Bridge 

CT: Cores from Sierrita de la Cruz Creek Bridge tested at Missouri S&T
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The results of Southview Bridge showed a fiber content percentage of 70% and 

72% for the CM1 and CM2 specimens, respectively. Even though, there were no control 

bars, but the results were in match with fiber content limit stated in ASTM D7957 

standard for GFRP bars in concrete 35. Despite the fact that there were signs for leaching 

in Southview Bridge specimens, there were no signs for a loss in the fiber content. It is 

most likely because the leaching process was at its early stage, as the Si levels in resin, 

from the EDS test, were not high. For Sierrita de la Cruz Creek Bridge, the results 

showed a fiber content of 82% which was close to tests conducted on control bars.

This result was expected in that bridge, as there were no signs for any chemical 

changes. Therefore, it can be concluded that there was no loss in the fiber content of both 

bridges.

7. CONCLUSIONS AND RECOMMENDATIONS

Glass fiber reinforcement is a promising solution to replace steel reinforcement 

and hence avoid corrosion problems. However, GFRP has not been studied thoroughly 

especially when it comes to durability performance under field conditions. Thus, in this 

study, durability of GFRP bars taken from two bridges in the United States after over 11 

and15 years of service were evaluated. The experiments were performed on two bridges: 

Southview Bridge in the state of Missouri and Sierrita de la Cruz Creek Bridge in the 

state of Texas. The following observations and recommendations can be drawn from

these tests:
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1. pH of concrete: For Southview Bridge, the pH level was 13 which is high 

for such a concrete (i.e. for most bridge decks in USA, a-6000 psi cement-based 

reinforced concrete). High pH indicates high OH and increases the chance for resin and 

fiber attacks. For Sierrita de la Cruz Creek Bridge, it was about 11 to 12 which is within 

the normal range for such concrete.

2. Carbonation Depth: Carbonation is something undesirable in RC 

structures, as they can lead to corrosion issues. For Southview Bridge, the tests were 

conducted on different parts of the core and showed no significant depth of carbonation. 

For the Sierrita de la Cruz Creek Bridge, carbonation was present with depth of 13 mm 

(0.5 in.) from the weather-exposed surface. It is believed that it took place due to the 

alkaline environment surrounding the concrete.

3. Chlorides Content: For both bridges, the test results showed that chlorides 

were within the negligible limits (less than 0.03%).

4. Scanning Electron Microscopy (SEM): For both bridges, no 

microstructural degradation was found in the GFRP bars where the scanning was 

conducted. All fibers were complete and the resin was properly and fully bonded to the 

fibers. Also, there was no loss in the cross-sectional area of fibers. In addition, the 

interfacial transition zone (ITZ) between the concrete and the glass fiber matrix was fully 

intact. However, cracks did appear in one specimen, but are believed to be due to the 

improper preparation of the sample.

5. Energy Dispersive X-Ray Spectroscopy (EDS): This test was conducted to 

observe the chemical elemental changes in the bar. In both bridges, the main elements of
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fibers were found including: Al, Ca, and Si. In addition, the main element of resin, C, was 

found too. No Zr was found in both bridges which confirms those bars were not alkali- 

resistant. Also, it indicates that the bars tested were vinyl ester-based bars as per their 

manufacturer claim. In both bridges, Mg was found and that confirms that there were not 

ECR-glass fibers. No signs for chemical attack was found in Sierrita de la Cruz Creek 

Bridge, even though alkaline was found not only in fibers but also in resin. It was 

believed those alkalis in resin were due to filler of the GFRP. On the other hand, the EDS 

results of Southview Bridge showed significant signs for alkali-hydrolysis attack as Na 

was found only in the resin. Also, Si was detected in the tested resin as well which it can 

be taken as a clear sign for leaching.

6. Fourier Transform Infrared Spectroscopy (FTIR): In Southview Bridge, 

the results showed that the spectra of the OH group was high (a little over 3700 cm-1) 

which confirms that the alkalis elements found in EDS test of resin were from alkali- 

hydrolysis attack. For Sierrita de la Cruz Creek Bridge, the results were within the normal 

range at around 3600 cm-1. Also, it was expected to be normal as the pH test was not 

high.

7. Glass Transition Temperature (TA): Glass transition temperature of both 

bridges were less than control bars and the ASTM standard of GFRP bars in concrete. For 

Sierrita de la Cruz Creek Bridge, TA results were about 70o C (158o F) and were less than 

the controlled ones that scored 80o C (176o F). This reduction is possibly due to the 

hygrothermal environment that surrounds the bridge. For the Southview Bridge, there 

were no control bars, but since vinyl-ester was used as a resin in this bridge, the results
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were instead compared to the ASTM-E1640 standard that states a TA of 100o C (212o F) 

for such a resin. The TA for the tested specimens was found to be around 75o C (167o F), 

much lower than the ASTM standard. This significant reduction is due to alkali- 

hydrolysis attack and the moderately high temperatures that the bridge has been exposed 

to.

8. Fiber Content: For both bridges, the results were in agreement with the 

fiber mass content limit mentioned in ASTM D7957 for quality control and certification. 

It was expected to not see any fiber content issues with Sierrita de la Cruz Creek Bridge, 

as no indications for chemical changes were detected. However, for Southview Bridge, it 

was expected to see fiber content changes, but apparently there were no changes due to 

the early stage of the leaching attack.

Sample size presented itself as a critical limitation in this study. Even though all 

the required tests were properly conducted, the number of specimens needed to affirm 

certain behavior could not be achieved. The conclusions determined in this study cannot 

be generalized due to the limited sample size of some of the tests but lays the foundation 

and framework to collect and develop durability data sets. To increase the current 

durability data reliability, definitely more bridges should be considered for this kind of 

research in the future in order to improve durability-related requirements in the design

codes and standards.
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ABSTRACT

This paper presents experimental and statistical investigations of the bond 

performance of sand-coated glass fiber rebars (GFRP) embedded in three types of 

concrete. The need for corrosion-free materials has become more wanted to avoid the 

high-cost of corrosion repairs. Glass fiber is a strong candidate to replace steel 

reinforcement in concrete structures due to its cost-effectiveness and great corrosion 

resistance. On the other hand, the production of cement generates substantial amount of 

carbon dioxide, therefore other alternatives are in high demand. Fly ash is considered one 

of these alternatives used to fully or partially replace cement in concrete to avoid the 

problem of carbon dioxide emission. In this study, other than conventional concrete (CC), 

50% and 70% replacement of cement with fly ash were implemented as two types of 

high-volume fly ash concrete (HVFAC). Twenty-four cylindrical specimens were 

pullout-tested following the Reunion Internationale des Laboratoires et Experts des 

Materiaux, systemes de construction et ouvrages (RILEM) recommendations. The 

parameters evaluated in this study were: rebar type, rebar diameter, and concrete type. In
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addition to the experimental work, statistical analyses were conducted including 

predictions of GFRP’s bond strength, peak toughness, and post-peak toughness. Test 

results showed that, despite the type of concrete used, peak bond strengths of GFRP 

rebars were lower than those of mild steel, but the post-peak strength were higher in 

GFRP bars. In addition, GFRP rebars were microstructurally and chemically examined, 

and there were no visual signs of any microstructural and chemical attack resulted from 

the fly ash-based concrete.

1. INTRODUCTION

Corrosion and carbon dioxide emission are the main problems with conventional 

concrete reinforced with mild steel. Corrosion is a serious problem, if it is neglected long 

enough, it can cause structural deficiency. In addition, corrosion cost of remedy is very 

high and requires continuous monitoring [1]. There are approximately 600, 000 bridges in 

the Unites States where 235,000 were made from steel reinforced conventional concrete. 

About 15% of them are considered structurally deficit due to reinforcement corrosion [1]. 

Per National Association of Corrosion Engineers (NACE), annual direct cost estimates a 

total of $8.3 billion [2]. To avoid corrosion issues of mild steel reinforcement, glass fiber 

(GFRP) rebars have been used as an excellent alternative. Over the course of the past 25 

years, GFRP rebars have gained foothold within the construction industry owing to its 

high corrosion resistivity and economic feasibility [1][3][4][5]. Economically speaking, 

steel price per one meter is $0.20 while for GFRP bars, it is $0.25 per one meter, so even
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though steel is cheaper but GFRP bars are three times lighter than steel, therefore, 

delivery and labor costs are cheaper in GFRP bars [6][7][8].

The other problem comes from conventional concrete when cement represents its 

only binding material. Globally, cement production has grown very fast in recent years 

and has been considered the third-largest source of anthropogenic emissions of carbon 

dioxide [9]. Cement has been used as a building material since ancient times, but it was 

following World War II that the production of cement accelerated quickly worldwide, 

with present levels of global production equivalent to more than half a ton per person per 

year [9]. There have been several alternatives put forward to replace Portland cement 

with eco-friendly binding material in concrete. One that has been widely accepted is fly 

ash which is a by-product of coal-burning thermal power stations [10]. Fly ash is defined 

in ASTM C618-08 [11] as “the finely divided residue that results from the combustion of 

ground or powdered coal and that is transported by flue gases”. There are mainly three 

types of fly ash products: class N, F, and C. The difference between one and another is 

the chemical compositions [12]. The usage of fly ash in concrete structures has been 

limited to only 15-30% cement replacement [13]. Recent studies showed that 

implementing a high dose (up to 75%) of cement replacement with fly ash can produce 

an excellent concrete in terms of both strength and durability. High-volume fly ash 

concrete (HVFA concrete) offers a feasible alternative to Portland cement-based concrete 

and is considerably more sustainable. As for the costs, Portland cement cost ranges from 

$50 to $70 per ton while the fly ash cost ranges from $15 to $40 per ton [14]. ACI 

232.2R defines HVFAC as the concrete that has at least 50% fly ash [12][15]. A
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significant amount of research was performed on both fresh and hardened properties of 

HVFAC, but very limited research has been done on structural behavior [16]. Naik et al. 

[17] conducted a pullout test using 10, 20, and 30% fly ash replacement of cement and 

concluded that the bond strength increased with increasing the fly ash percentage up to 

20% maximum. Gopalakrishnan et al. [18] studied a pullout test of a concrete with only 

50% fly ash replacement and they concluded that the bond strengths of the 50% fly ash 

were in agreement with those conducted on conventional concrete. Another study on 

HVFA concrete was performed in 2014 by Arezoumandi et al. to assess the bond strength 

of mild steel reinforcement in HVFA concrete. They applied three levels of fly ash in 

their concrete: 0.0%, 50%, and 70% replacement of Portland cement with class C fly ash 

and used pullout test to perform the bond assessment [19]. The results indicated that the 

bond strength increased by increasing the level of fly ash. In 2018, Al-Azzawi et al. 

conducted a study about the factors affecting the bond strength between the fly ash-based 

geopolymer concrete (FBGC) and steel reinforcement [20]. The investigators used five 

different sources of fly ash type F, three fly ash contents: 300, 400, and 500 kg/m3 (18, 

25, and 31 lb/ft3), and three proportions of alkaline activators. The pullout test was 

implemented to assess FBGC bond performance with steel reinforcement. The study 

concluded that the increase in the fly ash content in the FBGC highly increased the bond 

strength between the FBGC and steel reinforcement.

The GFRP bond with CC has been investigated by several researchers. Zenon 

Achillides and Kypros Pilakoutas conducted pullout tests on cube specimens using 

different kinds of fiber reinforced polymers including GFRP rebars [3]. They found that
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bond strength of GFRP appeared to be close to those resulted from mild steel. Another 

pullout study was made by Ginghis Maranan [21] on GFRP rebars with geopolymer 

concrete. They studied the bond performance using sand-coated GFRP rebars implanted 

in geopolymer concrete with compressive strength of 33 MPa (4786 psi). The effect of 

several parameters such as the rebar diameter and embedment length were investigated. It 

was found that the bond strength of GFRP rebars in geopolymer concrete was fairly close 

to those resulted from using ordinary steel reinforcement in geopolymer concrete. 

Additional study was done by El-Refai et al. to assess the bond durability of basalt fiber- 

reinforced polymer rebars using the pullout test [22][23]. They investigated the effect of 

five different accelerated environments on the bond strength of two types of basalt rebars 

and one type glass fiber rebars. The study concluded that bond-slip responses of all 

specimens were controlled by the rebar surface treatment and its manufacturing quality. 

Also, glass fiber rebars exhibited less bond strength than that of basalt fiber rebars. 

Besides the experimental analyses, Garcia-Taengua et al. conducted both experimental 

and statistical analyses on bond of reinforcing rebars embedded in steel fiber reinforced 

concrete. Pullout test was carried out to make the bond assessment; three parameters were 

selected in their study: compressive strength, rebar size, and concrete cover. Their 

statistical analyses involved developing predictive models of bond strength and 

toughness. They concluded that compressive strength had a major impact on bond 

strength, and increasing in rebar size resulted in a higher bond strength [24].

In this investigation, the study novelty was represented by evaluating the bond 

performance of GFRP rebars embedded in sustainable concrete (HVFA concrete). The
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bond performance was analyzed mechanically and chemically in addition to being 

analyzed statistically. In this study, 50% and 70% fly ash replacement of Portland cement 

were investigated using mild steel reinforcement and glass fiber rebars (GFRP). Two 

rebar diameters were utilized for both GFRP and mild steel; 13 mm (1/2 in.) and 19 mm 

(3/4 in.). Twenty-four specimens were tested where twelve of them were used as control 

specimens and the others (involved GFRP rebars) were considered for comparison 

purposes. In addition, statistical investigation was made to assess the bond performance 

including making bond strength predictive models, toughness and post-peak toughness 

models.

2. EXPERIMENTAL WORK

Bond behavior between reinforcement and concrete can be investigated via 

different tests including pull out test, beam-end specimen, beam anchorage, and beam 

splice specimens. In this study, pullout specimen test was considered to study the bond 

strength of cylindrical concrete specimens. The only drawback with this test is that in 

concrete members, the steel and concrete are exposed to the same type of stress, either 

both in compression, or both in tension, while in this test, concrete is in compression and 

steel is in tension. Therefore, the pullout test is not recommended by the ACI 408R-03 

[25] to find the development length of reinforcement. On the other hand, when it comes 

to determining relative performance between different types of concrete or different types 

of reinforcing rebar coating, the pullout test is valid [26][27]. In this study, pullout test
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was conducted to evaluate the bond strength of GFRP rebars embedded in conventional 

(CC) and high-volume fly ash (HVFAC) concrete. The results were then compared to 

those resulted from using ordinary steel reinforcement in conventional concrete and 

HVFAC.

RILEM 7-11-128 [28] was used to design the pullout specimens. The embedment 

length of the reinforcement was ten times the rebar diameter. Half of the embedment 

length was debonded using a section of polyvinyl chloride pipe (PVC) to ensure the slip 

failure is the controlling mode of failure among other types of failures (e.g. splitting). To 

maintain a proper cover, RILEM recommends a distance of no less than 4.5 times the 

rebar diameter measured from the center of the reinforcing rebar to the outer edge of the 

specimen. In this study, the RILEM 7-11-128 cover requirements was exceeded with a 

distance of 305 mm (12 in.) to avoid any potential failure by splitting and ensure that 

only slip failure controls. Figure 1 shows a sketch of the test specimen with the applied 

forces.

3. MATERIALS, MIXTURE PROPORTIONS, AND FRESH AND HARDENED
PROPERTIES

ASTM Type I/II Portland cement and ASTM Class C fly ash were used. Table 1 

shows the chemical and physical properties of the cement and fly ash. Natural sand was 

used as a source of fine aggregate and crushed dolomite, 19 mm (3/4 in.) size-diameter, 

was used as a coarse aggregate. The steel rebars used were 13 mm (1/2 in.) and 19 mm 

(3/4 in.). They met the requirements of ASTM A615-09 [29] and were 414 MPa (Grade
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60) material. Each of the rebar’s rib spacing, height, and relative area was in agreement 

with ACI 408R-03 [25] and ASTM A615-09 [29]. On the other hand, all the GFRP rebars 

were 100 Aslan from Owens Corning [30] where they were made based on the ASTM 

D7205 [31] standards FRP rebars were also 13 mm (1/2 in.) and 19 mm (3/4 in.) 

diameters. Their mechanical and physical properties are shown in Table 2.

Table 1. Chemical and physical properties o f cementitious materials
Properties Unit Cement Fly Ash

SiO2

%

19.4 35.17
AhO3 4.58 21.07
Fe2O3 3.20 6.58
CaO 62.7 26.46
MgO 3.27 6.22
SO3 3.19 1.43

Na2O - 1.91
K2O - 0.44

Na2O eq. 0.50 1.31
Loss in ignition 2.31 0.12
Fineness (+325 

Mesh) 98.4 15.2

C3S 58.0 -
C2S - -
C3A 7.00 -

C4AF - -
Vicat set time, 

initial Minutes
90.0 -

Vicat set time, 
final 195 -

Specific gravity - 3.15 2.68
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Table 2. Manufacturer’s, Owens Corning, mechanical and physical properties of GFRP
rebars

Rebar
size
mm
(in.)

Nominal 
Area mm2 

(in2)

Guaranteed 
Tensile 

Strength MPa 
(ksi)

Ultimate 
Tensile Load 

kN (kips)

Modulus of 
Elasticity 
GPa (ksi)

Ultimate
Strain
(%)

13 (1/2) 127 (0.20) 758(110) 95.90 (21.55) 46(6672) 1.64%
19 (3 /4 ) 285 (0.44) 690 (1 0 0 ) 196.60 (44.20) 46 (6672) 1.49%

A 35 MPa (5 ksi) was the design compressive strength of the concrete. To achieve 

that strength, a water-cement ratio of 0.40 was implemented as well as air-entraining 

additive of 161 gm/m3 (0.27 lb/yd3) was applied [32]. Table 3 shows mixture of concrete.
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Table 3. ixture proportions of concrete

Concrete
Type

Water
kg/m3

(lb/yd3)

Cement
kg/m3

(lb/yd3)

Fly Ash 
kg/m3 

(lb/yd3)

Fine
Aggregate

kg/m3
(lb/yd3)

Coarse
Aggregate

kg/m3
(lb/yd3)

Air-
Entraining
Additive

g/m3
(lb/yd3)

CC 176
(297)

449
(756) 0 (0) 657 (1107) 993 (1674) 161 (0.27)

50%
HVFAC

176
(297)

222
(378)

224
(378) 641 (1080) 993 (1643) 161 (0.27)

70%
HVFAC

176
(297)

128
(216)

320
(540) 657(1107) 993(1674) 161 (0.27)

Figure 2. Specimens at the pouring day: (A) Specimens’ Molds (B) Specimens after
pouring

After casting, the specimens were covered with a plywood center-hole cover to 

not only protect the specimen’s top surface from dirt but also to make sure the rebar was 

centered while the concrete was gaining strength. Also, the quality control assurance 

companion cylinders (ASTM C39-12 and C496-11) [33][34] were taken and stored in
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secure environment. Table 4 shows fresh and hardened concrete properties. Figure 2 

shows the specimens. Specimens and cylinders demolding were conducted after 24 hours 

from casting. After that, all the specimens were labeled and moved inside the curing 

room. Figure 3 shows specimens inside the curing room.

Figure 3. Specimens in curing room

The specimens were tested at age of 56 days, while the companion cylinders were 

tested for compressive strength at 3, 7, 28, and 56 days and for tensile strength at only 28 

and 56 days. GFRP’s specimens were sleeved with steel tubes in order to avoid grip 

slippage and/or rebar crushing when the test was conducted. A sleeved GFRP specimen is 

shown in Figure 4. The sleeve was made from steel tube where, for 13 mm (1/2 in.) rebar,
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a 19 mm (3/4 in.) tube was used with a thickness of 2.87 mm (0.113 in.) and, for 19 mm 

(3/4 in.) GFRP rebar, a 25.4 mm (1.0 in.) tube was used with the same thickness as the 

one used for the 13 mm GFRP bar. Skia-Dur 30 epoxy was used to attach steel tube to the 

GFRP rebar to prevent crushing of the GFRP rebar during pullout testing.

Figure 4. GFRP’s specimen steel grip
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Ta ble 4. Fresh ant hardened concrete properties

Property Specification Age of 
Test, Days CC 50%

HVFAC
70%

HVFAC
Slump, mm 

(in)
ASTM C143 - 114

(4.5)
120

(4.7) 127 (5.0)

Air Content, % ASTM C231 - 4 5 4.5
Unit Weight, 
kg/m3 (lb/ft3) ASTM C138 - 2390

(149)
2360
(147)

2340
(146)

Splitting
Tensile ASTM C496

28 1.59
(231)

1.63
(236)

1.41
(205)

Strength, Mpa 
(psi)

56 1.72
(249)

1.66
(241)

1.42
(206)

Compressive 
Strength, MPa 

(psi)
ASTM C39 28 36.5

(5290)
30.4

(4411)
29.6

(4300)

4. GFRP REBAR TESTS

To fully assess the performance of bond between the GFRP rebars and concrete, 

the rebars were subjected to several tests before and after the pullout tests were carried 

out. These GFRP tests included: scanning electron microscopy (SEM), energy dispersive 

spectroscopy (EDS), and glass transition temperature (Tg). Although these tests 

conducted when the time factor is significantly involved, they were chosen in this 

investigation to observe any minimal chemical and microstructural changes of the rebar 

properties after being in contact with fly ash for almost two months. In addition, the bond 

between conventional concrete and GFRP rebars have been moderately studied, but the 

fly ash with GFRP rebar has not yet, therefore this study carried out those tests to

evaluate the rebars.
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The results of these tests do not necessarily reflect the time factor as much they 

give an idea about what changes can be expected when the GFRP rebar is surrounded 

with fly ash-based concrete. The tests are as follows:

Scanning Electron Microscopy (SEM): This test was performed to observe any 

microstructural degradation that may have taken place from fly ash-based concrete and 

GFRP rebar [35]. Four specimens were cut from the rebars and were then prepared for 

SEM. Sample preparation included cutting rebar to 6.4 mm (0.25 in.) thick and then 

sandpapering it using several grades up to 1200 (US system). Sonic bath was employed 

between the sandpapering stages to remove any dirt stuck on the sample. Additionally, 

the sample was polished to a 0.2 pm and was then coated with gold to make it conductive 

and ready to receive the SEM device’s electrons. Before entering the sample in SEM, the 

sample was preconditioned in an oven for 48 hours at 40o C (104o F).

Energy Dispersive Spectroscopy (EDS): This test was performed to check for 

any changes in the chemical elemental concentration of rebar. The pore water solution of 

conventional concrete is highly alkaline and the latter is one of the GFRP’s enemies as it 

induces with hydroxyl group (OH) what is known as alkali-hydrolysis attack. This attack 

destroys the ester bonds of resin and resulted in deteriorating the integrity of the 

composite system [35][36]. On the other hand, several investigations stated the 

effectiveness of fly ash in reducing the amounts of alkalis available in the pore solution 

and that should help minimizing the chance to subject GFRP rebar to alkali hydrolysis 

attack [37]. Since the fly ash-based concrete to GFRP rebar contact time was too short, 

the EDS test was focused only on the exterior sides of the rebar to see if there is any signs
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of chemical elemental changes of rebar and/or chemical elemental intruders arriving from 

concrete to the rebar. In addition to alkali-hydrolysis attack, having an environment 

where OH heavily thrives increases the chances for leaching problem [38]. Leaching is 

the process of extracting alkalis that are constituents of fibers leaving the fibers of rebar 

generating a gel-type product (SiOH) that works as a medium to transfer more OH and 

alkalis to the rebar [38][39]. In this study, the same specimens used in SEM analyses 

were implemented in EDS tests. A 10-20 KeV electron beam was applied on the 

specimens. The specimens before and after pullout tests was tested in EDS. The outside 

edges of the rebar was of the main interest (locations of concrete-to-rebar contact).

Glass transition temperature (Tg): This temperature represents the range of 

temperature in which the state of the rebar changes from solid to more-like plastic stage 

[40]. Glass transition temperature can be considered not only an indicator for thermal 

stability, but also polymer structure [35][41]. Environment surrounding GFRP rebar has 

substantial effect on Tg, as it can decrease it. Furthermore, high OH environment can 

decrease Tg due to plastification [42][43]. In addition, in 2004, Micelli and Nanni 

reported that there are strong signs of increase deterioration rate of composite polymer 

exposed to fluid environment (high OH) [42]. Generally, there are two techniques to 

check for Tg, one is called DMA which stands for Dynamic Mechanical Analysis, and 

the second is DSC which stands for Differential Scanning Calorimetry. In this study,

DSC was employed to investigate Tg following ASTM E1356 standards [44]. The 

samples were cut into little bites containing about 10 mg (0.0004 oz.) each of the GFRP 

rebar. After that, they were installed inside a Tg apparatus where a ramp of temperature
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of 5o C (41o F) per minute was employed. The temperature was elevated up to 200o C 

(393o F) and then cooked back down using the same temperature ramp. The tests of were 

carried out before and after the pullout tests were conducted to see if there were any 

effects from fly ash-based concrete the rebar.

5. TEST SETUP AND PROCEDURE

A-890 kN (200 kips) universal machine was used to conduct the pull-out tests.

The specimens were flipped upside down in which the rebar side was facing down. A thin 

piece of rubber was used beneath the specimen to ensure the specimen was rested evenly. 

The free end of the rebar was clamped into grips of the universal machine. On top of the 

specimen, a liner variable differential transformer (LVDT) was placed directly on the 

exposed piece of the rebar to record the slippage. To make sure enough data points were 

stored and to avoid any dynamic effects, a loading rate paced at 2.5 mm/min (0.01 

in./min) was employed. The data acquisition system was linked to a computer and used to 

record rebar slippage as a function of load. The specimens were loaded in tension to its 

maximum capacity and were then left under loading until complete slippage occurred in 

order to gain enough data to draw the bond-slip curve. Figure 5 depicts the test specimen 

and the setup used respectively in this study.
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6. TEST RESULTS AND DISCUSSIONS

Glass fiber rebars with 13 mm (1/2 in.) diameter produced less peak bond strength 

than that of mild steel, however glass fiber rebars yielded higher post-peak bond strength 

than that of mild steel. Glass fiber rebars with 19 mm (3/4 in.) diameter produced less 

peak and post-peak bond strength than steel rebars. All the specimens experienced a 

pullout mode of failure. Splitting mode of failure did not occur, as it was intentionally 

avoided when the specimens were made by significantly increasing the cover dimension.

Figure 5. Test setup
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Figure 6 shows a GFRP rebar from a failed specimen. The results were 

normalized to compensate for the differences between the field and design compressive 

strengths. ACI 318-14 [45] and AASHTO (American Association of State Highway and 

Transportation Officials) [46] recommend using the inverse square root of the 

compressive strengths to perform the normalization while, ACI 408R-03 [25] endorses 

the forth root. The results are shown in Table 5.

Figure 6. Failed specimen’s rebar
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The design compressive strength of all concrete was 35 MPa (5 ksi), but there was 

a slight difference in the tested concrete compressive strengths and that was reflected on 

the results of pullout test. Conventional concrete (CC) yielded the highest bond strength 

and the 70% HVFAC yielded the lowest, as the bond strength is significantly affected by 

and directly proportional to compressive strength, and since CC had the highest 

compressive strength, the highest bond strength was found in that concrete.

The bond strength of GFRP rebars were less than that of mild steel because GFRP 

rebars relied only on the friction resistance (chemical and mechanical) to resist the 

pullout force, while mild steel rebars, in addition to these forces, relied on the bearing 

forces generated on the surface deformations of rebar. These surface deformations act as 

anchor in concrete and therefore a substantial resistance can be generated. Once the 

cracks occur along the rebar deformations’ surface, they will drive the failure mode to a 

shear failure (also called: slippage or pullout) ACI 408R-03 [25]. In this study, it was 

noticed that the larger the rebar size was, the bigger the gap between the bond strength of 

GFRP and mild steel of that rebar size. In addition, the bigger the rebar size was, the 

bigger the size its surface deformations (higher bearing forces), and thus a higher 

anchorage is developed. That was the reason behind having a significant gap in bond 

strength curve when 19 mm (3/4 in.) rebars were used and having a not as significant gap 

as that of 19 mm (3/4 in.) rebars when 13 mm (1/2 in.) rebars were implemented. The 

smaller rebar deformations were, and the smaller the bearing resistance and the more 

friction-based resistance. A steady linear elastic trend of load-slip curve was noticed for 

both types of rebars before the peak load was reached. The post-peak load-slip curve
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behavior was nonlinear, and each type of rebar acted a little differently from the other. 

GFRP rebars exhibited a steady loss of strength, while mild steel exhibited a sharp loss 

(significant drop in the curve). It was believed that the steady loss in strength was merely 

due to the chemical and mechanical friction between the rebar’s surface and the concrete, 

while the sharp loss of strength exhibited by the steel rebars was due to the principle 

cracks generated from the shear forces resulting from the action of bearing and friction 

forces on rebar’s deformations. That said, having principle cracks along the length of the 

rebar’s surface reduced the effect of the frictional resistance and as a result a sharp loss in 

strength took place. Figure 7 shows the pullout failure mechanism in steel and GFRP 

rebar. In addition to the bond strength, peak and post-peak toughness were measured. 

Figure 8, 9, and 10 illustrate the experiment results in each type of concrete used. 

Toughness is presented by the area under load-slip (or stress-strain) diagram [47]. 

Toughness can be used as an indication for material ductility. It is inversely proportional 

to ductility; the higher the toughness is, the more ductile the material. In this study, three 

levels of toughness were measured; peak and post-peak toughness (at 50% and 80% of 

the peak). Toughness results were based off of only pullout mode of failure. In addition, 

toughness calculations were only done to glass fiber rebars, as mild steel rebars have 

already been extensively studied [24]. The results are shown in Table 6. Peak toughness 

is presented by the area under load-slip diagram up to the peak load only, and since the 

bond strength’s peak load is highly affected by the compressive strength of concrete, the 

higher the compressive strength of concrete is, the higher the peak toughness. Also, it 

was noticed that the slope of the load-slip curve, before reaching the peak point, did not
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change significantly in all types of concrete used. Thus, peak toughness behavior is 

directly proportional to the compressive strength of concrete. Consistently with the 

findings in relation to peak toughness, it was found that compressive strength had the 

most significant impact on result of post-peak toughness. Increasing compressive strength 

from 21 MPa to 41 MPa (3000 psi to 6000 psi) increased the Ap80 by 102% and Ap50 by 

248%. Even though there was only 30% difference between the post-peak at 80% and 

that at 50%, the percentage difference in toughness between them was almost 150%. 

When the rebar size increased from 9.5 mm (3/8 in.) to 25.4 mm (1.0 in.), the Ap80 

increased by 228%, while the Ap50 increased by 249%, so there was only an increment 

of 25%. That clearly states the impact of the compressive strength on post-peak 

toughness result.

7. GFRP REBAR TEST RESULTS AND EVALUATION

To fully assess the performance of GFRP bars, a microstructural and chemical 

investigations were performed via conducting SEM, EDS, and Tg tests. The following 

was observed:

In SEM analysis, it was found that all fibers were intact with no cracks, the resin 

was not cracked and fully surrounded fibers with no gaps. Some voids were noticed but 

this is normal and comes from rebar manufacturing. The circumference parts of rebar 

were of the main focus due to its contact with fly ash and did not have any significant 

cracks neither in fibers nor in resin. It is important to note that some specimens did have
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some cracks, however those were believed due to inappropriate preparation of sample, as 

they were observed in the middle section of the rebar and the time of exposure to 

concrete was too short to make such damage if it were from pore water solution of 

concrete, therefore, it was believed they were due to inappropriate preparation. Figure 11 

shows a sample specimen. In EDS, the search for chemical intruders or changes was of 

main interest. This test was conducted control rebar and pullout rebar. In all tests, the 

main elements of fibers were detected including Al, Ca, and Si. Additionally, the main 

element of resin, carbon (C), was seen too. Sodium (Na), however, was detected in both 

fiber and resin, but that does mean there was an alkali-hydrolysis attack as Na was 

detected in control bars too. When EDS test was conducted, the main focus was intended 

to be at the circumference parts of the rebar as in SEM tests so as to see if there were any 

chemical changes and/or migrants from concrete into the rebar. No abnormal chemical 

elemental changes were noticed, thus it appears either the time (56 days) is too short for a 

chemical change to happen, or HVFA concrete was good enough to prevent alkalis 

migration to the rebar. Figure 12 shows a sample EDS specimen for control and after­

pullout-test specimens. In Tg test, the experiment was performed on control rebar and 

pullout rebar. All the results were in agreement with ASTM standard and those results 

confirm that there was no chemical attack resulted from the surrounded concrete. Table 7

shows Tg results for control and after-pullout-tests specimens.
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C

Figure 7. Pullout failure mechanism (A) forces and cracks generation -  steel (B) rebar 
pullout -  steel (C) rebar forces and pullout failure - GFRP



Table 5. Pullout test results

Concrete
Type

Bar
Size
mm

Bar
Type

P
(kN)

fc test 
(MPa)

P

P avg. 
(kN)

Coefficient
of

Variation
(%)

P

P avg. 
(kN)

Coefficient
of

Variation
(%)

f c ' ( d e s i g n ) (MPa) 
^ f c '  ( t e s t )

f c ' ( d e s i g n )  (MPa) 
^ f c '  ( t e s t )

CC

13
Steel 66 35.38 67 63 8 66 63 859 59 59

GFRP 54 35.38 54 49 14 54 49 1444 44 44

19
Steel

171 35.38 172 160 11 172 160 11148 148 148

GFRP 110 35.38 110 115 6 110 115 6119 120 119

50%
HVFAC

13
Steel 70 35.11 70 71 3 70 71 372 73 73

GFRP 45 35.11 45 40 16 45 40 1636 36 36

19
Steel 160 35.11 160 162 2 160 162 2164 164 164

GFRP 112 35.11 112 108 6 112 108 6103 103 103

70%
HVFAC

13
Steel

71 34.05 70 73 5 71 73 576 75 76

GFRP 34 34.05 33 35 8 34 36 838 37 38

19
Steel 158 34.05 156 156 0 157 157 0159 157 158

GFRP 79 34.05 78 83 8 79 83 889 88 88
1 m m  = 0.04 in., 1 N  = 0.22 b., 1 Ml = 145 psi
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Figure 8. Pullout results of steel and GFRP rebars in conventional concrete (CC)
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Figure 9. Pullout results of steel and GFRP rebars in 50% high volume fly ash
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13 mm Steel -  • -  • 19 mm S tee l--------13 mm G F R P ------- -19 mm GFRP
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Figure 10. Pullout results of steel and GFRP rebars in 70% high volume fly ash

Table 6. Toughness results of GFRP rebars

Concrete
Type

Rebar 
Size mm 

(in.)

Specimen
Number

Apeak kN.m 
(in.lb)

A80% kN.m 
(in.lb)

A50% kN.m 
(in.lb)

CC
13 (1/2) 1 0.010 (92) 0.14 (1232) 0.30 (2654)

2 0.012 (104) 0.22 (1967) 0.28 (2515)

19 (3/4) 1 0.030 (261) 0.54 (4828) 0.82 (7257)
2 0.025 (219) 0.48 (4233) 0.74 (6566)

50%
HVFAC

13 (1/2) 1 0.010 (89) 0.13 (1184) 0.26 (2187)
2 0.007 (65) 0.18 (1594) 0.25 (2205)

19 (3/4) 1 0.022 (194) 0.37 (3270) 0.69 (6192)
2 0.020 (179) 0.25 (2175) 0.52 (4628)

70%
HVFAC

13 (1/2) 1 0.005 (45) 0.15 (1291) 0.21 (1863)
2 0.006 (5 3 ) 0.16 (1445) 0.22 (1967)

19 (3/4) 1 0.013 (115) 0.35 (3113) 0.47 (4132)
2 0.014 (127) 0.30 (2633) 0.43 (3797)
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Figure 11. Sample specimen subjected to SEM analysis after pullout test
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Figure 12. A sample EDS specimen for (A) control and (B) after-pullout-test
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Table 7. Glass transition temperature (Tg) for control and after-pullout-test specimens
Specim en N et W eigh t (mg) o o

C ontrol Specim en
CB-1 13.3 110

CB-2 16.6 105

CB-3 15.6 108

A fter-P u llou t-T  est
AP-1 14.2 100

A P-2 11.2 110

AP-3 19.1 110

8. STATISTICAL ANALYSES AND DISCUSSIONS

To fully assess the performance of GFRP bars, a microstructural and chemical 

investigations were performed. Besides the experimental analyses performed on the 

collected data, statistical analyses were used to assess the performance of GFRP rebars. 

Only GFRP rebars were used in this section, as mild steel rebars have been extensively 

investigated [24]. There are extremely limited number of data about the bond-slip 

between GFRP rebars and HVFA concrete. Therefore, there is only the current pool of 

data to conduct statistical work, but the authors still think that they can still be used for 

comparisons purposes with the current experimental data and also be used in the future as 

a basis for other researchers to build their work on. Multiple linear regression was used to 

predict the GFRP’s bond strength considering the effects of compressive strength and 

rebar diameter to embedment length ratio. Rebar diameter and embedment length factors 

were involved as a ratio for two reasons; first, most of the ACI 408R-03 [25] equations 

(the previous work) involved that ratio, and second, in this study, that ratio was fixed; 

meaning every time 13 mm (1/2 in.) rebars were used, an embedment length of 77 mm (3
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in.) was used (the same took place with 19 mm (3/4 in.) rebars). In addition, concrete 

cover was not considered in the predictive model, as its effect was purposely eliminated 

as mentioned earlier in Section 5. After removing the terms that were statistically 

insignificant, the following bond strength model was obtained for the data collected in 

this study:

. 1.8
(  C  , db .2.5u=------ (—)

25 ' 1 / (1)

Where u is the bond strength in psi units (conversion: 1 MPa = 145 psi), f ’c is the 

concrete compressive strength (psi), db is the rebar diameter (in.) (conversion: 1 mm = 

0.04 in.), and ld is the embedment length (in.). The goodness-of-fit plot of the model was 

good, as there were fair data scattering and no clustering. This plot was used to show the 

relationship between the predictive and experimental model where the solid line presents 

the predictive model and the dots presents the experiment results of bond strength. The 

coefficient of determination, R-squared, of the model was 0.83 which is considered fairly 

well (above 0.70). The model was based off of a 95% level of confidence. The effect of 

each factor in the model was assessed relying on the p-values, which resembles the 

chance that variation was as a result of random variation obtained from the model. The 

statistical findings of this study were consistent with the experimental findings. It was 

found that compressive strength had the most significant impact. Other factors such as 

rebar diameter and embedment length by themselves were not significant, however the 

ratio of rebar diameter to embedment length was fairly significant after the compressive 

strength significance.
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The goodness-of-fit plot of the bond strength is shown in Figure 13 (A). In 

addition to the bond strength prediction, peak and post-peak toughness were modeled in 

this study. Figure 14 shows the measured toughness levels. The following model was 

obtained for peak toughness (Ap) with an R-squared = 0.92:

2.86 du
Ap =2857(fJ  (d L) 15-6 2 -----------------(2)

21

19
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Figure 13. Goodness-of-fit: (A) bond strength, (B) peak toughness, (C) post-peak 
toughness at 80%, (D) post-peak toughness at 50%
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For the post-peak toughness at 50% of the peak (Ap5o), the following was obtained 

with an R-squared = 0.96:

Ap 5 0 =458*106t f f 8(dbf 1 7 ---------------- (3)
'd

For the post-peak toughness at 80% of the peak (Apso), the following was obtained 

with an R-squared = 0.80:

*r ' 1.02 db 1 /t /t
Ap 8 0 =40049* 106(fJ  ( y ) 1 4 4 -----------------(4)

'd

All the equations above are in psi-in. units. Therefore, for conversion, 1 MPa =

145 psi, and 1 mm = 0.04 in. The goodness-of-fitness plots for the peak and post-peak 

toughness exhibited good data scatter. In addition, R-squared of the both models were 

high. Toughness models were also built based off of 95% level of confidence. The good- 

of-fitness plots of the both types of toughness are shown in Figure. 13 (B), (C), and (D) 

show the goodness-of-fit plot of toughness. Besides the two models above, there were 

other models built to investigate toughness involving other factors such as rebar diameter 

and embedment length (terms by themselves and not ratio). However, they were found to 

be statistically insignificant, so they were eliminated; also, their R-squared were 

substantially low. Compressive strength was found to be the most significant factor on 

both peak and post-peak toughness and then followed by the rebar diameter to 

embedment length ratio. Decreasing compressive strength or using smaller rebar diameter 

lead to lower toughness and vice versa.
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Figure 14. Measured toughness levels

9. COMPARISON WITH PREVIOUS STUDIES

To assess the effectiveness of the statistically-based bond strength model, other 

statistical predictions were made from other related studies and then were compared to 

the one made for this study. In 2004, Achillides and Pilakoutas conducted a bond-slip 

study on FRP bars (including glass fiber) in conventional concrete [3]. The parameters of 

their study were type of rebar, length of embedment, and compressive strength. A 

multiple variable regression was implemented to gain a model of their work. The 

following model was found:

V a c u u m  =  2 5  ( f  'c)°-55 A ”-3 3 ---------------- (5)
Ld

where UAchiiiides is the bond strength based on Achillides and Pilakoutas data (psi). In 2012, 

Volz et al. conducted a thorough investigation about the HVFA concrete including its
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bond-slip performance [32]. They investigated the effect of: 50% and 70% cement 

replacement with fly ash, size of rebar, and compressive strength on bond performance. 

The following was predicted from their data:

u  Volz = 1.5 X105( /  c)01^ ) 3 ---------------- (6)
Ld

where uvoiz is the bond strength based on Volz et al. data (psi). Besides comparing with 

Achillides and Volz models, the current models was also compared to the ACI318 model. 

For comparison purposes, concrete compressive strength, embedment length, and rebar 

diameter were selected to check their influences on bond strength. The ACI318 bond 

strength equation [29][30] is as follows:

c dh i
uACI = (1.2 + 3— + 50- ^ )V7% ---------------- (7)

ab Ld

where uaci is the bond strength (psi), and c is the concrete cover (in.). Since the cover was 

not taken as a parameter in any of ours, Achillides, and Volz studies, it was taken as a 

constant in this analysis to minimize its effect on the outcome of the bond strength model. 

The first parameter considered was the effect of concrete compressive strength and is 

shown in Figure. 15 (A). It can be seen from this Figure that the compressive strength 

effect had the most influence in our equation (Ali), and the least influence in Volz’s 

equation. ACI and Achillides exhibited the same behavior where both equations had 

similar trend and small slopes. The reason for that is, in both equations, the powers of the 

compressive strengths were close to each other, a power of 0.5 in ACI and 0.55 in 

Achillides. In addition, Ali’s equation had the highest influence from the compressive 

strength; because it had the highest power of compressive strength. Also, it was noticed
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from the equations and the Figure that compressive strength was directly proportional to 

the bond strength despite the difference in its rate of influence on bond strength results. 

Furthermore, Anderson-Darling test was carried out for the four models to assess their 

distribution trend. The results showed that all models were normally distributed with p- 

values ranging from 0.054 to 0.184 (the data is normal as long as P-Value > 0.05)[48].A 

divergence in the distribution curve of all four models was noticed when the compressive 

strength value is below or beyond their design range (20 - 40 MPa (3000 - 6000 psi)).

The reason for divergence is that these models were based off of that range of 

compressive strength that imitates what used commonly in the construction industry. The 

second parameter in this investigation was the rebar diameter and is shown in Figure. 15 

(B). Ali, Volz, and Achillides models showed that the higher the rebar diameter was, the 

higher the bond strength. Particularly, Ali and Volz equations had sort of similar curves 

where their slopes are close to each other, because the power of rebar diameters were 

close to each other. On the other hand, ACI equation exhibited a different behavior where 

it showed that rebar diameter is indirectly proportional to the bond strength. Even though 

the rebar diameter in the ACI’s equation was presented in the nominator one time and in 

the denominator at another, the rebar diameter acted as if it was only placed in the 

denominator as it reduced the bond strength. The reason of that was due to the higher 

ratio of cover to rebar diameter than the rebar diameter to embedment length ratio. 

Therefore, the rebar diameter the higher it went, the lower the bond strength was. If a 

smaller cover was used, a smaller ratio of cover to rebar diameter would have been 

resulted, and thus a higher rebar diameter to embedment length ratio achieved and
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therefore the influence of rebar diameter on bond strength results could have been 

positive. The normality test for the bar diameter showed that all models exhibited a 

normal distribution, however since there are only few rebar sizes available and used 

commercially, having a normal distribution does not truly reflect the effect of rebar 

diameter (db) on bond strength. The third factor investigated was the length of 

embedment where again Ali and Volz equation exhibited the same trend due to the close 

power of development length. In all equations, the embedment length was indirectly 

proportional to the bond strength, because it was in the denominator in all equations. The 

embedment length effect is shown in Figure. 15 (C). In addition, the normality test was 

carried out and it was found that all four models had a normal distribution. The p-values 

ranged from 0.15 to 0.78 which is considerably higher than the normalization limit of 

0.05. Table 8 Normally dist. shows the Anderson-Darling test results of all models.

In addition to these statistical analyses, two sample t-tests were carried out to 

check for significance of the developed models. Each model was tested for significance 

with ours where the null hypothesis presumed that there is no significant difference and 

the alternative called for the otherwise. In addition, a 95% confidence interval was 

implemented in the analysis of t-tests. The t-test was carried out three times and was 

based on the most influential factor of bond strength which was compressive strength. 

The assessment of significance of bond strength was made by comparing our bond 

strength model (Ali) to ACI, Mehdi, and Zenon models. The analysis results showed that 

all models were statistically insignificant when compared to ours. In all models the p- 

value was less than 0.05 which calls for abandoning the null hypothesis and accepting the
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alternative one. Furthermore, despite that all models exhibited insignificance, Mahdi’s 

model was statistically the closest in terms of behavior to ours, probably owing to the 

similarities represented by concrete type (partially similar), specimen geometry, rebar 

dimeter, and embedment length. Figure. 16 shows the t-test results resembled by box 

plots.

To summarize, all the equations were made using multiple variable regression. 

Three factors were investigated from the previous studies. The factors were compressive 

strength, rebar diameter, and embedment length. It was found the higher the compressive 

strength and rebar diameter were, the higher the bond strength, and the lower the 

embedment length was, the higher the bond strength.

10. CONCLUSIONS

Corrosion is a serious matter in civil engineering industry, thus GFRP rebars have 

come out as an alternative to avoid corrosion issues related to mild steel reinforcement. 

Portland cement, on the other hand, is not eco-friendly material due to its high level of 

CO2 emissions, therefore other alternatives such as fly ash has been increasingly more 

considered as an effective substitution to reduce cement consumption. Two HVFA

concrete levels were considered: 50% and 70%.
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Pullout tests were conducted to enrich our understanding of the bond performance 

of GFRP rebars in different types of concrete. The following were concluded from this 

study:

a) GFRP rebars exhibited less peak bond strength, but higher post-peak bond 

strength.

b) All the specimens experienced a pullout mode of failure.

c) The higher the rebar diameter was, the higher the bond strength.

d) The higher the compressive strength was, the higher the bond strength.

e) Rebar deformation of mild steel was the main reason for the higher peak bond 

strength; because of the anchorage effect from the surface deformations of rebar.

f) Mild steel rebars exhibited sharp loss of bond strength after peak load was 

reached due to the principle cracks generated from the rebar deformations.

g) GFRP rebar exhibited steady loss of strength after peak load was reached due to 

the frictional resistance generated between the sand-coated surface of the rebar 

and concrete.

h) CC had the highest bond strength and 70% HVFAC had the lowest, as the highest 

compressive strength was found in CC and the lowest in 70% HVFAC.

i) Microstructural and chemical examinations of GFRP rebars did not show any 

obvious signs for microstructural degradations or chemical changes.

j) Toughness and post-peak toughness were measured; they were found to be highly 

affected by the compressive strength and rebar diameter used.
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k) Multiple regression analysis was utilized to build predictive models of bond 

strength, peak toughness, and post-peak toughness.

l) The predictive models of bond strength, toughness, and peak-toughness were 

consistent with what were found in the experiments.

m) Compressive strength and rebar diameter to embedment length ratio were the 

most influential factors in bond strength and toughness.

n) Comparison with previous studies showed that compressive strength and rebar 

diameter increase the bond strength while the embedment length decreased it.

o) The hypothesis test results between the current bond strength equation and the 

previous work-based bond equations showed non-significance.

The current and the future trend of research are leaning toward investigating and 

implementing more green and sustainable materials. The construction industry is still shy 

when it comes to applying new materials, therefore, to encourage them, more research- 

based data (implemented in codes and design standard) needs to be available. That said, 

more comprehensive studies about such materials are required. Regarding this study, the 

authors definitely see lots of areas where improvement and thorough investigations are 

needed such as involving different types of fly ash (in terms of types, change in chemical 

concentrations within a certain type). In addition, the type of reinforcement (materials 

and geometry) can be investigated. To improve our understanding to the bond behavior 

and increase the current database for such topic, the same study conducted herein can be 

investigated using the same and different variables.
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ABSTRACT

A multi-laboratory investigation of the durability of glass fiber-reinforced 

polymer (GFRP) bars extracted from 11 15-20 years old bridges in the United States was 

performed. Part 1 (Benzecry et al. 2020) of this two-paper series describes the bridges 

and presents data on the condition of their concrete, while Part 2 focuses on the 

condition of the bars. Constituent content, maximum water absorption, as-received 

moisture content, glass transition temperature, short bar shear strength and tensile 

strength were evaluated. Scanning electron microscopy and energy dispersive 

spectroscopy were also performed. The fiber mass content of all bars was close to or 

greater than that specified in the current ASTM E1309 (ASTM 2010) GFRP bar standard. 

Scanning electron microscopy and energy dispersive spectroscopy showed only slight 

signs of degradation, predominantly near the outer radius of the bars. The loss of short
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beam shear strength was slight to moderate in bars with control data for comparison. 

Tensile strength, which could only be evaluated in one bridge, showed a reduction of 

only 4.2% after 17 years of service. Overall, it is concluded that GFRP bars can be 

considered a promising replacement for steel reinforcement in bridge decks subjected to 

real-time field exposure.

1. INTRODUCTION

Corrosion-related damage in steel-reinforced concrete structures is expensive to 

repair and often demands expensive continuous monitoring (Nanni et al. 2014). There are 

more than 600,000 bridges in the United States built with steel-reinforced concrete (RC) 

and the estimated direct cost of repairs of these bridges is US$8.3 billion (Koch et al. 

2016). Glass fiber-reinforced polymer (GFRP) composite reinforcement bars have 

emerged as a potentially more durable replacement for steel in RC structures (ACI 2015). 

GFRP bars have many benefits such as low cost-to-performance ratio, noncorrosive 

behavior, and high strength-to-weight ratio (ACI 2015).

The pore water solution of concrete is highly alkaline with a pH between 10.5 and 

13.5 (Diamond 1981) (Taylor 1987). Exposure to alkalis can deteriorate the tensile and 

longitudinal shear strength of GFRP bars (Nkurunziza et al. 2005). There are two major 

mechanisms for an alkali environment to damage fibers: (1) chemical attack on the glass 

fibers by alkalis, and (2) concentration of hydration products at the interface between 

fiber and matrix (Mufti et al. 2007b) (Murphy et al. 1999). Although the resin matrix of
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composites gives a certain level of protection to the fibers from alkalis and moisture, 

migration of chemicals through resin, void, or cracks to the fiber surface is still possible 

(Nkurunziza et al. 2005). While numerous aspects of GFRP structural behavior are still 

examined, confirming long-term durability is perhaps the most substantial barrier to 

increase its acceptance in the industry (Gooranorimi et al. 2017). Other barriers include 

concerns regarding brittleness, and its initial cost compared to mild steel (Gooranorimi et 

al. 2017).

The performance of GFRP bars under laboratory-controlled aggressive 

environmental conditions (sometimes called “accelerated testing”) has been investigated 

by evaluating the tensile strength, tensile elastic modulus, short bar shear strength, and 

bar/concrete bond strength following conditioning (Al-salloum et al. 2013; Khatibmasjedi 

et al. 2020; Wang et al. 2017). The strength loss of GFRP bars has also been shown to be 

higher in alkaline solutions than in water (Al-salloum et al. 2013). Kamal and Boulfiza 

(2011) investigated the effect of simulated pore water solution of concrete on GFRP bars. 

Because the diffusion of moisture into the fiber-matrix interphase in a composite could 

cause fiber-matrix debonding and the presence of alkalis at the locations of the glass 

surface would lead to fiber degradation, attention was devoted to investigating whether 

GFRP bars allow both species to penetrate or allow only water while blocking the alkalis. 

Their GFRP bars were immersed in five types of simulated concrete pore solutions, 

including NaOH, KOH, Ca(OH)2, NaOH+KOH, NaOH+Ca(OH)2, at elevated 

temperature. X-ray mapping was used to assess the alkalis penetration. The results 

showed that fiber-matrix debonding occurs in some specimens. However, the glass fibers
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and matrix remained intact and there was no penetration of alkalis into the matrix. The 

debonding, which occurred only in specimens subjected to 75° C (167° F), was believed 

to due to hydrolysis of fiber sizing at high temperature.

Research also has been performed to create accelerated aging procedures and 

predictive models for the long-term strength of GFRP bars in concrete. Different models 

have been developed for accelerated aging tests of GFRP bars such as the diffusion 

model (Tannous and Saadatmanesh 1999) and the Arrhenius model (Porter and Barnes 

1998; Chen et al. 2006). In general, these models suggest that higher temperatures, higher 

alkaline ion concentrations, and longer times are more detrimental to strength. Material 

constants used in these models necessarily depend on the exact constituents of the bar, 

such as type of glass in the fiber, type of coupling agent on the fiber, type of resin, and 

type of filler in the resin (Khatibmasjedi et al. 2020)(; Gremel et al. 2005). Additionally, 

the degree of access of the aggressive agents to the bar, for example through concrete 

cracks, has a notable influence on the rate of bar degradation as well (Yang et al. 2016).

There has been very little research conducted on-field exposure cases. Bakis et al. 

(2005) showed that strength loss in GFRP bars extracted from loaded concrete beams 

stored in natural (non-accelerated) indoor and outdoor environments for up to three years 

was negligible. Trejo et al. (2011) observed 12-26% strength loss in GFRP bars extracted 

from unloaded concrete specimen stored in an outdoor environment for 7 years. 

Benmokrane et al. (2018) investigated the physico-chemical attributes of GFRP bars 

extracted from bridge barrier walls after 11 years of service and found no changes. 

Additional information on the durability of GFRP bars following field service needs to be
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collected to improve our understanding of the long-term service potential of GFRP bars 

in realistic situations and to assist the development of appropriate strength retention 

factors for design purposes (Micelli and Nanni 2004).

In the investigation described in this paper, mechanical and physico-chemical 

tests were carried out on GFRP bars extracted from 11 existing bridges located in various 

US states to assess the condition and strength of the bars after 15 to 20 years of service. 

The types of tests performed include fiber content, water absorption, moisture content, 

scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), glass 

transition temperature (Tg), short bar shear (SBS) strength, tensile strength, and 

constituent volume contents by image analysis. These tests were performed to enrich the 

durability database for GFRP bars subjected to long-term service conditions. 

Investigations of this type have been identified as high priority in a recent workshop 

sponsored by the US Department of Transportation (Gangarao et al. 2014) and address a 

critical need to document and disseminate information that overcomes barriers for the 

wider adoption of FRP composites in infrastructure (Sheridan et al. 2017).

2. BAR TESTING PROGRAM

In the first part of this two-paper series (Benzecry et al. 2020), information on the 

bridges from which the bars were extracted, bars extraction methods, and the specimen 

labeling scheme are detailed. Figure 1 shows photographs of bars from all the bridges 

investigated in this project. The list of states in which the bridges are located is shown in
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the first column of Table 1. Prior to testing, the bars were brushed and gently scraped to 

remove obvious contaminants such as residual cementitious paste.

Table 1. Average fiber mass content for each bridge

Bridge (State) No. of 
Specimens

Fiber Mass 
Content (%)

Standard 
Deviation (%)

Gills Creek* (Virginia) 6 72.1 1.78

O'Fallon Park (Colorado) 6 72.9 1.93

Salem Ave. (Ohio) 3 72.5 0.06

Bettendorf (Iowa) 3 73.3 1.29

Cuyahoga County* (Ohio) 15 76.4 2.41

McKinleyville (West Virginia) 6 73.5 2.82

Thayer Road (Indiana) 3 76.5 0.078

Roger’s Creek (Kentucky) 5 69.2 1.08

Sierrita de la Cruz Creek (Texas) 9 76.4 N/A

Walker Box Culvert (Missouri) 4 82.8 N/A

Southview (Missouri) 4 73.4 N/A

2.1. FIBER MASS CONTENT

A burn-off procedure based on ASTM D2584 (ASTM 2011) was implemented to 

evaluate fiber mass content. Bar specimens weighed approximately 5 g (0.011 lb). The 

burn-off temperature of 575°C (1067°F) eliminated the matrix material but not the sand 

particles and helical fiber wrap on some of the bars, the filler particles in the matrix, and 

the fibers. The sand particles and helical wrap were excluded from the mass of the 

longitudinal fibers and residual filler remaining after burn-off.
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Figure 1. Bars from each of the 11 bridges
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X

Figure 1. Bars from each of the 11 bridges (Cont.)

Following the fiber mass fraction calculation method in the ASTM D7957 

(ASTM 2017) GFRP bar specification, the mass fraction of fiber was determined by 

dividing the mass of the fibers and residual filler divided by the mass of these same 

materials plus the mass of the burned off resin.

2.2. WATER ABSORPTION

Water absorption to equilibrium in 50° C (122° F) distilled water was measured 

using ASTM D570 (ASTM 2014). Specimens of approximately 25-mm (1.0 in.) length 

were preconditioned in an oven at 40°C (104°F) for 48 hours to minimize variances in 

near-surface moisture that might have accrued due to storage in different laboratory 

environments prior to absorption testing. Using the preconditioned weight as the 

reference weight, the weight gain and time to equilibrium weight were then obtained by
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repeated measurements until the increase in weight per two-week period, as shown by 

three consecutive weighings, averaged less than 1% of the total increase in weight or 5 

mg (US units) whichever is greater. The 5 mg (US units) criterion controlled in these 

experiments.

2.3. MOISTURE CONTENT

The moisture content of the as-received (without preconditioning) bars was 

measured by drying 13-mm-long (0.5 in.) specimens to equilibrium in a forced-air oven 

set to 80°C (176°F), as described in Procedure D of ASTM D5229 (ASTM 2014). Once 

the test was underway, specimens were weighted every day for 10 days and every week 

thereafter. The dry-out test was terminated when the weight changes of all of the 

specimens were less than 0.02% for two consecutive 7-day periods and examination of 

the moisture content versus square root of time plot supports the percent change criteria 

that effective equilibrium is reached. No preconditioning was conducted on the moisture 

content specimens. Data from the moisture content tests reflect field exposure as well as 

laboratory exposure after extraction.

2.4. SCANNING ELECTRON MICROSCOPY

Scanning electron microscopy (SEM) of polished cross-sections of bars was 

performed to visually identify signs of microstructural degradation, such as cracks in the 

fibers and matrix, voids, and fiber/matrix debonding.
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The inspected surfaces were sanded with 1200 grit abrasive paper, polished with a 

0.2 pm (US units) abrasive paste, and then plated with gold.

2.5. ENERGY DISPERSIVE SPECTROSCOPY

Energy dispersive spectroscopy (EDS) was used to evaluate the chemical 

composition of the surface of the SEM specimens. As wet concrete is highly alkaline, the 

possibility of degradation of the fibers and matrix due to excessive amounts of Na, K, and 

Ca penetrating into the bar must be investigated (Mufti et al. 2007a). Moreover, if the 

fibers are shown to contain Zr, then it can be concluded that the bars are alkali-resistant 

glass rather than traditional E-glass (Nkurunziza et al. 2005). EDS can detect elements 

Na, K, and Ca. A 10-20 kV electron beam was used for the EDS testing. The size of the 

region of evaluation is approximately 1 pm (US units) or less, which allows for the 

separate evaluation of fibers and matrix (but not necessarily resin and filler).

2.6. GLASS TRANSITION TEMPERATURE

The glass transition temperature, Tg, can be defined as the temperature range 

where the polymer substrate changes from a solid glassy material to a rubbery material 

(Becker and Locascio 2002). In this investigation, differential scanning calorimetry 

(DSC) according to ASTM E1356 (ASTM 2014) was used to characterize the glass 

transition temperature of bars from 10 of the 11 bridges and dynamic mechanical analysis 

according to ASTM E1640 (ASTM 2018) was used for one bridge. For DSC testing, 

small pieces of material weighing 10-15 mg were cut from a bar and preconditioned in
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an oven for 48 hours at 48oC (118°F) to remove surface moisture. During the DSC test, 

the temperature was ramped upward only one time at 5-10oC/min (41-50oF/min). The 

mid-point method was used to determine the Tg.

2.7. SHORT BAR SHEAR

Short bar shear (SBS) tests for evaluating the longitudinal shear strength of bars 

were carried out following ASTM D4475 (ASTM 2016). The span to depth ratio ranged 

from 3 to 6 based on the specimen length. The loading rate was 1.27 mm/min (0.05 

in./min). Due to the limited number of bars of suitable length taken from the 102-mm-dia. 

(4 in.) concrete cores, a minimum of three test repetitions per bridge could not be achieved 

for all the bridges and only eight bridges could be tested for shear strength.

2.8. TENSILE TEST

Although even the longest witness bars from the Sierrita de la Cruz Creek Bridge 

were too short to test according to ASTM D7205 (ASTM 2016), they were of sufficient 

length to evaluate using a modified tensile test method developed in this investigation. 

The modified tensile strength test method entailed slicing a bar longitudinally into flat 

coupons that could be tested with short lengths using ASTM D3039 (ASTM 2014). The 

three 16-mm-dia (0.63 in.). witness bars extracted from the Sierrita de la Cruz Creek 

Bridge were cut into nine thin rectangular coupons utilizing a computer numerical control 

(CNC) wet saw with a diamond abrasive blade, as shown in Figure 2(a). The 3 x 11 x 

254 mm (0.11 x0.43x10 in.) (thickness x width x length) coupons were fitted with 57-
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mm-long (2.24 in.) composite tabs, resulting in a gauge length of approximately 140 mm 

(5.5 in.). Pristine current-production bars similar in shape, size (16 mm dia.), and 

manufacturer to the bars extracted from the Sierrita de la Cruz Creek Bridge were 

obtained and tested as-is (ASTM D7205, 2016) and as flat coupons. The specific fiber 

and matrix materials in the current-production bars differ from those used in the bars 

installed in the bridge in year 2000. The tests from current-production bars enabled 

calculation of a ratio of full bar strength to flat coupon strength. This ratio, assumed to 

apply to environmentally exposed bars from year 2000 as well, was then used to estimate 

the full-bar strength of extracted bars based on their measured coupon strength.

Finally, the estimated full-bar strength of the extracted bars is compared to 

published strength data for pristine 16-mm (0.63 in.) bars installed in the bridge in year 

2000. Photographs of the extracted and current-production coupons with tabs are shown 

in Figures 2(b) and 2(c).

All coupons were tested using a 100 kN (22.5 kips) servo-hydraulic load frame 

and a 50-mm (2.0 in.) extensometer for measuring strain. The full-size bars were tested in 

the 890 kN (200 kips) Baldwin screw-driven universal test frame and a 100-mm (4.0 in.) 

extensometer was used to record strain. Both tests were performed at a rate of 2 mm/min 

(0.08 in./min.). Young’s modulus of the coupons and bars was measured by the chord 

method between strains of 1,000 and 3,000 ps.
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a

Figure 2. (a) Method of cutting flat coupons for tensile testing; (b) Current-production 
tensile coupons; (c) Extracted tensile coupons

2.9. CONSTITUENT VOLUME CONTENTS BY IMAGE ANALYSIS

Fiber, matrix, and void volume contents were measured by analyzing area 

fractions in polished transverse cross-sections of bars. The test is based on the assumption 

that all features observed on a transverse cross-section extend through the entire length of 

the bar (Little et al. 2012). To minimize section bias in computing void volume fractions 

(Ghiorse 1991; Little et al. 2012), statistics on the constituent volume contents were
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obtained based on the analysis of 30 individual micrographs for each bar. The 

micrographs were attained at evenly spaced intervals along a radial path emanating from 

the center of the bar in the case of fiber content and along the full diameter in the case of 

void content. Due to the similarity in brightness of the glass fibers and the polymer part 

of the matrix, a MATLAB script was employed to collect manually-selected fiber/matrix 

boundaries and to use these boundaries to automatically calculate fiber area in a given 

micrograph. The fibers were assumed to be circular in the cross-section, and the user 

selected three observable points on the circumference of the fiber-matrix boundary, 

which defines each fiber in the micrograph. While initial attempts involving thresholding 

and shape-detection techniques were unsuccessful, the boundary between the fiber and 

matrix was readily identifiable as a thin, relatively dark circle for the vast majority of 

fibers. The relatively low brightness of voids allowed void area to be calculated simply 

based on the proportion of image pixels darker than a judiciously selected threshold. The 

matrix volume content, consisting of polymer and filler, was found by subtraction of the 

fiber and void volume percentages from 100%. Due to the time-intensive nature of this 

image analysis approach, only three bars from the O’Fallon Bridge were analyzed for

constituent volume content.
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3. GFRP TEST RESULTS AND DISCUSSION

3.1. FIBER MASS CONTENT

Table 1 shows the fiber mass contents for bars from each bridge. In all bridges 

except one, the fiber mass content, including resin filler particles but excluding larger 

sand particles and helical fiber wraps added to some bars for bond enhancement, 

exceeded 70%—the current requirement for GFRP bars satisfying ASTM D7957 (ASTM 

2017). Bars from Roger’s Creek Bridge had fiber mass content only fractionally less than 

the current standard—69.2%.

3.2. WATER ABSORPTION

Water absorption at 50°C (US units) was evaluated on bars from eight of the 11 

bridges. Several observations were noted that can affect the weight of bar specimens. A 

loss in helical wrap was noticed when Cuyahoga Bridge specimens were soaked in water, 

as shown in Figure 4. For continuity in the data, the weights of such large pieces of 

material were recorded along with the remainder of the specimens. Smaller particles on 

the surface of the bars, such as sand and residual cementitious material, were also 

observed to fall off during conditioning, but the mass of such particles could not be 

tracked.

Figure 3 shows the weight change at equilibrium versus time to reach equilibrium 

for each specimen. The current ASTM GFRP bar specification, ASTM D7957 (ASTM 

2017), stipulates a qualification limit of 1% water absorption in pristine bars as an
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indication of bar durability. Bars from five of the eight bridges had equilibrium water 

absorption values of less than 1%, with the exceptions being those from Gills Creek 

Bridge (1.5%), Bettendorf Bridge (2.1%), and Cuyahoga Bridge (1.5%). The times to 

equilibrium in the latter three bridges were considerably over 150 days, while the others 

were around 80 days.

Table 2 shows the average weight change measured at 24 hours and at 

equilibrium as well as the average time required to reach equilibrium for each bridge. It is 

emphasized that the water uptake measurements are relative to the existing water content 

of the bars following the superficial 48 hr., 40°C (104°F) preconditioning regimen. In the 

cases of O’Fallon and Cuyahoga bars, the water content at the beginning of the uptake 

test (i.e., after preconditioning) was found to be approximately 0.36%, according to dry­

out tests performed at 80°C using ASTM D5229 (ASTM, 2014). Thus, actual moisture 

contents in the bars at equilibrium can be expected to be approximately 0.36% more than 

the values listed in Table 2. While some of the extracted bars clearly have the capacity to 

exceed the 1% absorption limit of ASTM D7957, it should be noted that the bars 

evaluated in this investigation were manufactured before the existence of contemporary 

standards. Also, as shown in the following section, the water content of the bars after 15­

20 years of service was well below 1%.
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□ Cuyahoga AMcKinleyville O Thayer Road O Roger’s Creek

Figure 3. Equilibrium weight change and time to reach equilibrium for bars immersed in
50°C water

3.3. MOISTURE CONTENT

As-received (without preconditioning) moisture content was evaluated by drying 

out bars from two bridges, O’Fallon Park and Cuyahoga, at 80°C (176°F) (Table 3). 

Figure 5 shows the weight change at equilibrium versus the time required for individual 

specimens to reach equilibrium. All of the specimens reached equilibrium after 49 days. 

Weight loss was observed to be non-monotonic, possibly due to the variations in the 

humidity level in the laboratory. The O’Fallon Bridge bars had less as-received 

moisture (0.32% on average) than the Cuyahoga Bridge bars (0.44% on average).
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Figure 4. Part of the helical wrap fell off of a bar 
from the Cuyahoga Bridge during 50° C (122° F) 

water absorption testing

Table 2. Results of the 50° C (122° F) water uptake tests

Bridge Number of 
Specimens

Avg. 24-hr 
Weight Change

(%)

Avg. Weight 
Change at 

Equilibrium (%)

Avg. Days 
until

Equilibrium
Gills Creek 3 0.58 1.57 179
O’Fallon Park 3 0.01 0.30 110
Salem Ave. 5 0.10 0.30 85
Bettendorf 3 0.54 2.16 179
Cuyahoga 7 0. 28* 1.52 228
McKinleyville 6 0.10 0.23 56
Thayer Road 5 0.02 0.02 56
Roger’s Creek 3 0.05 0.16 77

*This average reflects only five specimens because two of the specimens showed erroneous results for this 
measurement.

For reference, both of these values are well less than 1% equilibrium value

allowed by ASTM D7957 for 50°C (176°F) water immersion, although the bars were not 

necessarily expected to be saturated to such a high degree by field conditioning.
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Figure 5. As-received moisture content of bars as determined by drying at 80° C (176° 
F), along with time required to reach equilibrium

Table 3. Results of 80° C (176° F) dry-out tests

Bridge Number of 
Specimens

Avg. 24-hr 
Weight Change

(%)

Weight Change 
at Equilibrium 

(%)

Avg. Days 
until

Equilibrium
O’Fallon Park 3 -0.150 -0.320 40
Cuyahoga 5 -0.218 -0.436 34

3.4. SCANNING ELECTRON MICROSCOPY

SEM was performed on bars from all 11 bridges. In general, minimal evidence of 

environmental damage to the fibers, matrix, or fiber/matrix interface was seen. For 

example, in the Gill’s Creek Bridge, a few matrix and interfacial cracks were seen near 

voids which were located near the outer radius of the bar. Moreover, the number of fibers 

showing signs of environmental degradation was about 192 out of 352,000 fibers
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(0.05%), estimated by counting fibers with and without signs of environmental damage in 

one quadrant and then multiplying by four. Figure 6 shows an SEM image of a bar from 

the Gill’s Creek Bridge. The Cuyahoga Bridge bars also displayed a small percentage of 

environmentally damaged fibers (Figure 7). In these quantitative analyses of 

environmental damage in the fibers, damage attributed to specimen preparation, such as 

chipped or cracked fibers having weak matrix support (e.g., located near a void), was 

omitted from consideration.

In bars from Roger’s Creek and McKinleyville Bridges, the incidence of 

environmentally damaged fibers, matrix and interfaces was similar to or less than that 

seen in the Cuyahoga and Gills Creek bars. Figure 8 illustrates representative SEM 

images from Roger’s Creek Bridge. Damage attributed to environmental effects was 

confined to regions near the outer radius of the bar.

Figure 6. SEM image of a bar from Gill’s Creek Bridge (Reference dimension
20 pm)
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Cracks in Fibers

Figure 7. SEM images of a bar from the Cuyahoga Bridge: (a) *100 
magnification; (b) *750 magnification; (c) *1000 magnification (Reference

dimension = 200 gm for all)
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In the Thayer Road Bridge, fiber damage was found in some bars, but it is 

believed to be caused by the particular manufacturing procedure used to make the bars. 

While the interior region of the bar showed negligible fiber damage, numerous fibers at 

the outside radius appeared to be partially removed, as if they were abraded during 

manufacture (Figure 9).

3.5. ENERGY DISPERSIVE SPECTROSCOPY

Bars from all bridges were evaluated by EDS. The EDS results are presented as 

histograms of counts detected versus the energy level of the X-rays emitted by the 

surface, where the energy level depends on the element emitting the X-rays. In all bars, 

there were no signs of zirconium (Zr), which confirms that the fibers used to make the 

bars were not alkaline-resistant (AR) fibers (Kamal and Boulfiza 2011). Magnesium 

(Mg) was found in some bars, which indicates conventional E-glass, while those without 

Mg indicate acid- resistant (ECR) E-glass. In the fiber regions of all bars, the main 

elements were Si, Al, and Ca. Some of the bars showed Na in their analysis. Reference 

bars without environmental exposure would be required to discern changes in Na over 

time. The presence of Au in the EDS results is simply an artifact of the gold coating used 

to make the specimens electrically conductive for SEM. Regarding the resin, the main 

element, C, was found in abundance.

Representative EDS results for the Bettendorf and O’Fallon bars (Figure 10) do 

not show evidence of environmental attack, which would be manifested as Na, K, and Ca 

present in the resin. On the other hand, for the Southview Bridge (Figure 11), Na was
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found in the resin but not in the fiber. Na in the resin indicates that the GFRP bar was 

under environmental attack, especially considering that the concrete tests showed a high 

pH and no signs of carbonation (Benzecry et al. 2020). Additionally, the lack of Na in the 

fiber confirms that the Na in the resin came from the environment rather than the fiber.

In the bar extracted from the Sierrita de la Cruz Creek Bridge, Na was found in 

the resin as well as the fiber (Figure 12a). EDS was also done on pristine new-generation 

bars similar to the bars extracted from the Sierrita de la Cruz Creek Bridge (Figure 12b). 

The Na emittances were similar in both tests, providing no evidence of chemical attack 

(leaching and/or alkali-hydrolysis) of the fibers in the bars of the Sierrita de la Cruz 

Creek Bridge.

3.6. GLASS TRANSITION TEMPERATURE

Extracted bars from all bridges had Tg values between 80°C (176°F) and 115°C 

(239°F), as shown in Table 4. For reference, ASTM D7957 (ASTM 2017) requires a Tg 

of no less than 100°C.

Thus, bars from several of the bridges showed Tg values less than the ASTM 

D7957 lower limit. Without Tg data from bars as produced about two decades ago, the 

cause for low Tg values in some bars can only be conjectured in the current investigation. 

For example, certain types of bar could have been made with a low-Tg resin system, 

before contemporary standards were developed. Incomplete cure would also be 

manifested by a Tg less than the potential that is inherent in the polymer chemistry.
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Figure 8. SEM images of a bar from the Roger’s Creek Bridge: (a) *50 
magnification; (b) *100 magnification; (c) *800 magnification
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Figure 9. SEM images of a bar with manufacturing issues from the Thayer Road Bridge: 
(a) x100 magnification; (b) x800 magnification

3.7. SHORT BAR SHEAR

Table 5 lists the apparent shear strengths and nominal diameters of the bars tested, 

along with the strengths of control bars and dowel bars. The control bars refer to pristine 

bars tested when the bridges were built (Gooranorimi et al. 2006). Only the Cuyahoga
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and Sierrita de la Cruz Creek Bridges have control bars. Dowel bars refer to smooth, 

round E-glass/vinyl ester rods currently manufactured by the same manufacturer that 

made the bars in the bridges listed in Table 5 (Owens Corning, 2018). The dowel bars 

also have the same diameter as the bars in the bridges. Dowel bar strengths are provided 

as a rough measure of comparison with SBS strengths, particularly for bridges lacking 

control bars.

The SBS strength of extracted bars ranged from 30 MPa (4316 psi) to 47 MPa 

(6809 psi). For the three bridges with control bars, it can be seen that the extracted bars 

retained between 72 and 92% of their initial strength. The Cuyahoga and Sierrita de la 

Cruz Creek (19 mm) bars, which were at the lower end of the strength retention spectrum 

(72 and 76%, respectively), were noted to also have uniquely low span-to-diameter ratios 

in relation to the 3-6 range recommended in ASTM D4475 (ASTM 2016), which may 

have contributed to their relatively low strengths. Multiple specimens, ideally of greater 

span-to-diameter ratio, would be needed to confirm this hypothesis.

In relation to the dowel bar strengths, three of the extracted bars (O’Fallon Park, 

Cuyahoga, and Sierrita de la Cruz Creek 19 mm) were markedly (20-40%) weaker and 

the remainder were within roughly ±10%. It is noteworthy that the O’Fallon Park and 

Cuyahoga bars also had the two lowest Tg values, which together with low shear 

strengths could be consistent with improper curing or chemical degradation of the resin 

that could not be detected by the other test methods.
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3.8. TENSILE TEST

The tensile test results for flat coupons cut from Sierrita de la Cruz Creek Bridge 

16-mm witness bars indicate an ultimate strength of 622 MPa (90.2 ksi) and an elastic 

modulus of 47.1 GPa (6,931 ksi), as shown in Table 6. The stress strain curves for the 

extracted coupons were nearly linear (Figure 13), as is commonly seen in a test of a 

typical full-size GFRP bar. Tables 7, and 8 show the strength and moduli of current- 

production 16-mm bars tested as flat coupons and full bars, respectively. To calculate the 

correlation factor between flat coupons and full-size bars, the strength of the current- 

production full bars (823 MPa (119.3 ksi)) was divided by the strength of the current- 

production flat coupons (670 MPa (97.2 ksi)), which resulted in a conversion rate of 1.23. 

The 23% difference in strength of the full bars versus flat coupons can be attributed to 

factors including fiber damage caused by the machining. Applying the 1.23 strength 

conversion ratio to the extracted flat coupons provides a 765 MPa (111 ksi) estimated 

strength for full extracted bars. The strength and modulus of full bars manufactured and 

tested in year 2000 are 785 MPa (113.8 ksi) and 40.8 GPa (5,920 ksi), shown in Table 9. 

Therefore, the estimated strength reduction of the full bars extracted from the bridge after 

17 years of service, found by comparing the 765 MPa (111 ksi) estimated extracted bar 

strength to the 785 MPa (113.8 ksi) published strength of bars used to construct the 

bridge, is 2.5%.
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Figure 10. EDS test results for bars from (a) Bettendorf Bridge and (b) O’Fallon Bridge
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Figure 11. EDS test results for a bar from the Southview Bridge: (a) fiber and (b) resin
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Table 4. Average Tg results for all bars

Bridge Average Tg ,  °F (°C)
Bettendorf 228 (109)
Cuyahoga 198 (92)

Gills Creek 202 (95)
O'Fallon Park 176 (80)
Salem Ave. 226 (108)

Roger’s Creek 203 (95)
Sierrita de la Cruz Creek* 239 (115)

Walker Box Culvert* 233 (112)
Southview* 213 (101)

McKinleyville** 202 (95)
Thayer Road** 189 (87)

Notes:
*Tg obtained with dynamic mechanical analysis rather than DSC. 
**The lower of two transition temperature is reported.
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Figure 13. Tensile stress-strain curve of flat coupon 2C taken from a 16-mm bar 
extracted from the Sierrita de la Cruz Creek Bridge
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Table 5. Average apparent shear strength from short beam shear tests

Bridge
Nominal 

Diameter, mm 
(in.)

Extracted Bar 
Strength, MPa 

(psi)

Control Bar 
Strength, 
MPa (psi)

Dowel
Strength, MPa 

(psi)*

O'Fallon Park 22 (0.88) 42 (6115) - 53 (7687)
Salem Ave. 19 (0.75) 45 (6459) - 47 (6800)

Cuyahoga 19 (0.75) 30 (4316) 41t (5956) 47 (6800)

McKinleyville 10 (0.38) 36 (5214) - 36 (5220)

Thayer Road 16 (0.63) 47 (6809) - 42 (6092)

Sierrita de la Cruz 
Creek 16 (0.63) 42 (6047) 45* (6540) 42 (6092)

Sierrita de la Cruz 
Creek 19 (0.75) 37 (5361) 49* (7040) 47 (6800)

Southview 19 (0.75) 44 (6340) - 47 (6800)

Southview 13 (0.50) 38 (5558) - 38 (5511)

Walker 6.4 (0.25) 33 (4828) - 35 (5000)

^Measured by bar manufacturer in year 2000.
*Measured by bar manufacturer in year 2000, as reported in Gooranorimi et al. (2006)
*Dowel bars currently produced by same manufacturer that made the bars installed in the bridges (Owens 
Corning, 2018).

It is noted that the elastic modulus of the extracted bars was around 20% higher 

than the original ones. This apparent increase over time is due to the unjustified low 

elastic modulus obtained in the year 2000 test. First, only one value is provided and 

second, and most important, this value is significantly lower than the average value (48.6 

GPa) obtained by the manufacturer in those years during the routine Quality Control tests 

(D. Gremel - Private Communications 2017). If the degradation rate of the bars is 

hypothesized to be linear with time, tensile strength would be reduced 15% over a period 

of 100 years. On the other hand, considering the evidence that creep rupture strength of
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GFRP varies with log-time rather than time itself (Green wood 2002); (Bakis et al. 2005), 

the 100-year strength reduction would be 3.6%. In any case, it should be kept in mind 

that the rate of change strength over time can be expected to vary depending on the 

sustained stress carried by the bars, the diameter of the bars, the materials used to 

manufacture the bars, and local environmental details such as temperature, chemical 

exposure, and condition of the concrete (Nkurunziza et al. 2002). In the case of the 

Sierrita de la Cruz Creek Bridge, the bars were made of E-glass fiber and vinyl-ester resin 

and had 15.9 mm of concrete cover. In addition, the concrete near the bars had a high pH 

of 11.5, although carbonation was suspected to have reached the level of the bars 

(Benzecry et al. 2020).

3.9. CONSTITUENT VOLUME CONTENTS BY IMAGE ANALYSIS

Table 10 shows the fiber, matrix, and void volume contents of O’Fallon bars 

based on image analysis. The fiber volume contents range between 52.3 and 53.5% while 

the void volume contents range from 0.5to 0.7%. Void contents less than 1% are 

generally considered to represent well-consolidated composites.
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Table 6. Tensile test results for flat coupons extracted from the 16-mm bars in the Sierrita 
________________ de la Cruz Creek Bridge.________________

Specimen ID Ult. Strength, MPa (ksi) Elastic Modulus, GPa (ksi)

1L N/A N/A
2L 625 (90.7) 47.8 (6926)
3L 513 (74.4) N/A
1R 660 (95.7) N/A
2R 601 (87.1) 49.7 (7214)
3R 560 (81.2) 44.7 (6489)
1C 642 (93.1) 44.8 (6498)
2C 691(100.2) 48.5 (7036)
3C 686 (99.4) N/A

average 622 (90.2) 47.1 (6831)
std. deviation 62 (9.0) 2.2 (319)

Table 7. Tensile test results for flat coupons from pristine current-production 16-mm. 
bars similar to those extracted from the Sierrita de la Cruz Creek Bridge (same

manufacturer)

Specimen ID Ult. Strength, MPa (ksi) Elastic Modulus, GPa (ksi)

1F 656 (95.2) 45.3 (6575)
2F 635 (92.1) N/A
3F 608 (88.1) 43.3 (6287)
4F 709 (102.7) 44.5 (6456)
5F 787 (114.1) 43.9 (6363)
6F 618 (89.6) 45.8 (6637)
7F 646 (93.7) 43.3 (6287)
8F 675 (97.9) 44.8 (6493)
9F 689 (99.9) 45.3 (6577)
10F 678 (98.3) 43.3 (6278)

average 670 (97.2) 44.4 (6439)
std. deviation 52 (7.5) 1.0 (140)
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Table 8. Tensile test results for pristine current-production 16-mm bars similar to bars 
extracted from the Sierrita de la Cruz Creek Bridge (same manufacturer). The nominal 

bar area used in the calculations is 0.31 in2 (200 mm2).

Specimen ID Ult. Strength, MPa (ksi) Elastic Modulus, GPa (ksi)
1 830 (120.4) 49.7 (7215)
2 845 (122.6) 51.7 (7490)
3 792 (114.9) 51.6 (7476)
4 829 (120.2) 50.8 (7367)
5 849 (123.2) 51.4 (7451)
6 784 (113.8) 51.6 (7488)
7 834 (120.9) N/A
8 828 (120.0) 50.4 (7302)
9 813 (118.0) 52.5 (7614)
10 822 (119.3) 52.8 (7658)

Average 823 (119.3) 51.4 (7451)
Std. Deviation 21 (3.0) 1.0 (140)

Table 9. Tensile test results for pristine 16-mm bars identical to those in the Sierrita de la 
Cruz Creek Bridge, tested in year 2000. The nominal bar area used in the calculations is 

____________________ 0.31 in2 (200 mm2).____________________
Specimen ID Ult. Strength, MPa (ksi) Elastic Modulus, GPa (ksi)*

1 801 (116.2)
2 843 (122.3)
3 735 (106.6)
4 760 (110.3)

Average 785 (113.8) 40.8 (5920)
Std. Deviation 48 (6.9)

*Data from Phelan et al. (2003).
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Table 10. Bar constituent contents, in percent by volume, according to image analysis
(mean +/- standard deviation)

Specimen ID Fiber Volume 
Content (%)

Matrix Volume 
Content (%)

Void Volume 
Content (%)

CO_C2B_B2 53.3+6.6 46.1+6.8 0.5+0.8
CO_C3_B2 52.3+5.3 47.0+5.1 0.7+0.6
CO_C5_B2 53.5+9.6 45.9+9.7 0.6+0.9

4. CONCLUSIONS AND RECOMMENDATIONS

To help overcome barriers to the deployment of GFRP bars in the construction 

industry, an extensive investigation of the durability of GFRP reinforcement bars 

extracted from bridges built 15-20 years ago was undertaken. Several mechanical and 

physical tests were conducted on these bars. In addition to the bar tests, concrete tests 

were performed to evaluate the surrounding environment of those bars (Benzecry et al. 

2020). Overall, the test results suggest that GFRP bars can be considered a promising 

replacement for steel reinforcement in bridge decks subjected to de-icing salts. The 

following list summarizes the outcomes of the individual tests on the bars and provides 

recommendations for future investigations.

1. Fiber mass content: Burn off tests of bars from all 11 bridges determined that the 

fiber mass content of the bars, which includes filler particles as allowed in ASTM 

D7957 (ASTM 2017), met or exceeded the 70% requirement of ASTM D7957 

(ASTM 2017) with only one exception. The single exception was 69.2%. It is 

recommended that improved experimental procedures be developed for 

accounting for residual filler stuck to the fibers.
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2. Water absorption: Water uptake to equilibrium at 50°C (122°F), relative to a 

superficially dried initial condition, was less than 1% in bars from five of the 

eight tested bridges and between 1.5 and 2.1% for the other three. While some 

bars exceeded the contemporary 1% limit for bar qualification in ASTM D7957 

(ASTM 2017), it should be kept in mind that these bars were manufactured before 

any bar material standards existed. Additionally, it is recommended that methods 

for quantifying moisture uptake be developed to overcome difficulties caused by 

the water-induced loss of surface materials applied to the bars for bond 

enhancement, such as sand particles.

3. Moisture content: Based on dry-out tests, moisture content in as-received bars 

from two bridges ranged between 0.32 and 0.44%. While the as-received moisture 

content of the bars was not expected to be saturated due to field exposure, the 

measured moisture contents are noted to be well below the 1% equilibrium value 

stipulated in ASTM D7957 (ASTM 2017) as a limit for durable GFRP bars.

4. Scanning electron microscopy: A minimal amount of micro-cracking was 

observed in the matrix and fibers of the bars from all 11 bridges. Some of the 

observed damage was attributed to specimen polishing, while other damage was 

attributed to environmental degradation due to its concentration near the outer 

radius of the bars.

5. Energy dispersive spectroscopy: Zirconium (Zr) was not seen in the fibers of 

bars in any of the 11 bridges, which indicates that the bars were not alkali- 

resistant. No chemical evidence of leaching of fiber material into the matrix was
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seen. In one bridge, sodium found in the matrix of the bar was attributed to 

ingress from the environment because it was not found in the fibers of the same 

bar. The availability of EDS results on similar bars tested at the time of 

installation would have enabled more certain evaluations in changes of atomic 

species over the service life.

6. Glass transition temperature: Extracted bars from all bridges had Tg values 

between 80 and 115°C (US units), with roughly half above the 100°C limit 

stipulated in ASTM D7957 and half below that limit. Data on Tg at the time of 

installation of the bars would be required to determine if the Tg decreased due to 

service conditions or if it was low from the outset due to resin choice or 

incomplete cure.

7. Short bar shear: The SBS strength of bars extracted from eight bridges ranged 

from 30 to 47 MPa (4,316 to 6,809 psi), which implies a strength retention of 72­

92% in the three cases where identical bars were tested at the time of bridge 

construction. Bars at the weaker end of the spectrum were noted to be at the 

shorter end of the standardized span-to-diameter ratio limit.

8. Tensile test: Based on a special method developed for evaluating the strength of 

flat tensile coupons extracted from bars and relating the flat coupon strength to 

the strength of full-size bars, it is concluded that extracted bars from one bridge 

had a reduction in tensile strength of 2.5% after 17 years of service. Extrapolating 

this result to 100 years, the predicted tensile strength would be reduced by 15% if 

the extrapolation was linear in time and 3.6% if it was linear in log-time. In the
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future, additional tensile test data from extracted bars should be obtained to 

improve our confidence in these conclusions.

9. Constituent volume contents by image analysis: Image analysis has certain

advantages over burn-off testing in that it provides a measure of void volume content 

as well as fiber volume content uncontaminated by filler material. Bar specimens 

from one bridge had void volume contents between 0.5 and 0.7% and fiber volume 

contents between 52.3 and 53.5%.
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SECTION

2. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

2.1. SUMMARY
The first purpose of this research was to evaluate the durability performance of 

GFRP bars extracted from several bridges in the United States after being in service for 

almost two decades. Several tests were conducted on the extracted GFRP bars and the 

surrounding concrete to make the assessment.

The second purpose of this research was to assess the bond performance of GFRP 

bar installed in high-volume fly ash concrete. In this investigation, two levels of fly ash 

class- C were used, 50% and 70%. In addition, two bar diameters and two embedment 

length were implemented to make the bond-slip assessment. The GFRP bars used in the 

test were also examined microstructurally and chemically before and after pullout tests 

were carried out to see if the fly ash affected the bars, even though the time was limited 

solely to the curing time of specimens.

This section contains conclusions from the studies.

2.2. CONCLUSIONS
The following section summarizes the conclusions from both the durability and 

bond studies of GFRP bars.

2.2.1. Durability of GFRP Bars from Two Bridges. Glass fiber-reinforced 

polymer (GFRP) bar is an effective alternative to replace conventional steel
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reinforcement in concrete and hence avoid corrosions issues. However, the on-site long­

term performance has not been investigated enough. Therefore, a thorough durability 

study was carried out on bars extracted from bridges across the United States. Several 

tests were conducted on the bars and surrounding concrete to make the evaluation.

• The chlorides content tests yielded insignificant level of chlorides in concrete. 

Carbonation was found in one bridge and pH levels in that bridge was within the 

normal 11 to 12 (normal range for such concrete). While on the other bridge, pH 

was found a little high for such concrete (around 13).

• SEM test did not show any obvious sings of microstructural degradations. FTIR 

test showed that OH group in one of the two bridges was higher than the normal 

range (the same bridge with high pH of concrete). In EDS test, signs for alkalis 

hydrolysis attack was found only in one bridges of the two bridges examined.

• Glass transition temperature (Tg) of both bridges was less than those resulted 

from control bars. The reduction in Tg could be due to the hygrothermal 

environment that surrounded the bridges. Fiber content tests of both bridges 

showed that the fiber percentages were above the standard limits (ASTM D7957) 

for both bridges (more than 70%).

2.2.2. Bond-Slip of GFRP Bar Embedded in High-Volume Fly Ash 

Concrete. A pullout test was conducted to assess the bond performance between high- 

volume fly ash concrete and GFRP bars. GFRP bar is a solid candidate to replace 

conventional steel reinforcement owing to its noncorrosive and high-strength-to-weight 

ratio features. High-volume fly ash is considered a type of eco-friendly concrete as it
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lowers the use of Portland cement and thus lowers the emissions of CO2. In addition, fly 

ash reduces the alkalis of concrete and that can be considered a great advantage when 

GFRP bars are used as reinforcement because they are sensitive (easily affected) to 

alkalis. The following was found form the study:

• GFRP bars showed less peak bond strength. All the specimens failed in slippage 

with no splitting failure cases. It was found that the higher the bar diameter was, 

the higher the bond strength. In addition, the higher the compressive strength, the 

higher the bond was found to be. Steel bar’s deformation was the reason behind 

the higher bond strength, because GFRP bars were sand-coated only with no 

deformations. However, the bar deformations were the reason behind the sharp 

post-peak bond strength drop. While, in GFRP bars, a steady loss of bond strength 

was noticed after peak bond strength was reached. The sand-coating of the GFRP 

bar was the main reason behind the steady loss of the bond strength. Conventional 

concrete (CC) had a higher bond strength than 50% and 70% HVFA concrete 

owing to the higher compressive strength of CC.

• The microstructural and chemical tests conducted on the GFRP bar after pullout 

tests were carried out showed that there were no obvious sings of microstructural 

or chemical deteriorations.

• Statistical-based models were built using multiple regression analysis to predict 

the bond strength, peak toughness, and post-peak toughness. The predictive 

models of bond strength, toughness, and peak-toughness were in match with the 

experimental results. In addition, compressive strength of concrete and bar
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diameter to embedment length ratio were the most influential factors on bond and 

toughness.

• Comparisons with former studies yielded that compressive strength and 

bar diameter increase the bond strength while the embedment length lowers it. In 

addition, the hypothesis test results conducted between current and former bond 

equations exhibited non-significance.

2.2.3. Durability of GFRP Bars from Eleven Bridges. In order to increase the 

acceptability of GFRP bars as an effective construction material in the industry, a 

massive durability study was carried on GFRP bars extracted from 11 bridges across the 

United States with on-site service life of around two decades. The following is the 

conclusion:

• Fiber content tests results (also called burn-off) showed that the bars met or 

exceeded the 70% requirement of ASTM D7957. Only one bridge yielded a result 

less than 70% (specifically 69.2%). In water absorption examination, the water 

absorption to equilibrium was less than 1% in bars from 8 bridges, and it was 

between 1.5% to 2.1% for the other 3 bridges. In moisture content test, the results 

were between 0.32% and 0.44%. The as-received moisture content of the bars was 

not expected to be saturated owing to on-site exposure. However, the measured 

moisture contents were seen to be below the 1% equilibrium value.

• In SEM test, a minimal amount of micro-cracking was observed in the matrix and 

fibers of the bars from all 11 bridges. Some of he observed deteriorations were 

attributed to the improper sample preparations. In EDS test, Zr was not seen in the
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fibers of all bridges and that indicates that the bars were not alkali-resistant. Also, 

no chemical sings of leaching of fiber material into the matrix was seen. In one 

bridge, Na was found in the resin of the bar and was attributed to the ingress from 

the environment because it was not found in the fiber. In Tg test, Tg was found to 

be between 80o C and 115o C. The short bar shear (SBS) test results were between 

30 to 47 MPa (4316 to 6809 psi), which implied strength retention of 72% to 92% 

in the 3 cases where identical bars were tested at the time of bridge construction. 

In tensile test, based on a special way developed to assess the strength of flat 

tensile coupons taken out from bars and relating the flat coupon strength to the 

strength of full-size bars, it was concluded that extracted bars from one bridge had 

a tensile strength reduction of 2.5% after 17 years of service. Lastly, in the 

constituent volume contents by image analysis, image analyses had some 

advantages over fiber content test (burn-off), as it gives a measure of void volume

content as well fiber volume content undistorted.
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ABSTRACT

Glass fiber-reinforced polymer (GFRP) bars have been used in concrete structures 

as an alternative to steel bars due to their non-corrosive behavior. However, due to the 

lack of full understanding of long-term performance, their use as internal reinforcement is 

still limited. To evaluate the durability of in-service GFRP bars under natural exposure, a 

collaborative project including four organizations investigated the conditions of GFRP 

bars and their surrounding concrete from bridges with 15 to 20 years of service. The aim 

of Part I of a two-paper series is to describe the bridge structures, methods of extraction 

and the results of concrete testing, while Part II focuses on GFRP bar performance.

The extracted bars were tested for physical, mechanical and chemical properties 

and the surrounding concrete was evaluated for chloride penetration, pH, and carbonation 

depth at the level of reinforcement. Results showed that carbonation and chloride may 

have reached the depth of the GFRP bars. This paper discusses the process of extraction 

of the bars, including the location and type of the selected bridges, and the concrete tests 

performed in terms of procedure, results, and observations.

1. INTRODUCTION

The use of fiber-reinforced polymer (FRP) bars in civil infrastructure has emerged 

due to their high strength, corrosion resistance, and low density of the material (Van Den 

Einde et al., 2003). The first use of FRP bars in a vehicular bridge in the United States
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occurred in 1996, where glass FRP (GFRP) bars were used in the concrete deck of 

McKinleyville Bridge in West Virginia (Kumar et al. 1996). In the early 2000s, 

influenced by infrastructure degradation, research and government agencies implemented 

GFRP bars in the deck of several bridges with the objective to eliminate corrosion and 

increase durability.

In addition to traffic loads, bridge decks are commonly exposed to thermal effects 

(e.g., high temperatures, freeze-thaw cycles), which are known to influence the durability 

of concrete and steel reinforcement. The main cause of deterioration in reinforced 

concrete (RC) bridges is corrosion of steel reinforcement (Zhou et al. 2014) induced by 

carbonation and chlorides that are derived from the application of deicing salts (Cady and 

Weyers 1983). Carbonation reduces the pH of concrete and as a result it weakens the 

passivity of embedded steel bars (Chen et al. 2018). Chloride penetration can cause 

chemical reactions with components of the cement paste and trigger corrosion of steel 

reinforcement when ions reach the bars level (Xi et al. 2018). Consequently, due to their 

non-corrosive properties, GFRP bars have emerged as an alternative to steel 

reinforcement.

Although proven to be non-corrosive, GFRP bars may be susceptible to 

degradation by a variety of factors, including high temperature, moisture absorption and 

alkaline environments (Al-Salloum et al. 2013). A variety of studies in the literature 

focuses on the durability of GFRP bars, and some studies suggest that GFRP bars are 

negatively affected by concrete due to the high alkalinity of its pore solution (Dejke and 

Tepfers 2001, Chen et al. 2006). The alkaline solution can chemically attack the glass
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fibers and damage the fiber-resin interface due to the growth of hydration products 

(Micelli et al. 2001, Robert et al. 2009). To determine the durability conditions of the 

GFRP bars, laboratory tests to evaluate the physical, chemical and mechanical properties 

of the bars are generally performed. These tests are discussed in detail in Part II of this 

two-paper series.

Many researchers have recorded a loss in the properties of the bars when exposed 

to alkaline environment. For instance, Davalos et al. (2012) recorded tensile strength 

reduction of 40% for GFRP bars embedded into concrete after 120 days exposure to 

water at 60°C and Benmokrane et al. (2017) recorded between 13 and 21% of reduction 

in interlaminar shear strength for GFRP bars after 5,000 hours exposed to a simulated 

concrete alkaline solution at 60°C. Most of the available literature on the durability of 

GFRP bars, however, is based on accelerated laboratory tests and analytical models that 

may present conditions hasher than field exposure (Benmokrane et al. 2002, Chen et al. 

2007, Robert et al. 2009). As an exception, Mufti et al. (2007) analyzed the chemical 

composition of GFRP bars removed from bridges in Canada using laboratory techniques 

such scanning electron microscopy and energy dispersive x-ray, optical microscopy, 

differential scanning calorimetry, and infrared spectroscopy. It was concluded that the 

GFRP bars suffered no chemical changes during 5-8 years of field exposure. 

Consequently, additional field investigation of the long-term durability of GFRP bars is 

needed for the widespread use of this material.

To provide new information on the durability of in-service GFRP bars with field 

exposures, a collaborative project including the University of Miami (UM), Penn State
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University (PSU), Missouri University of Science &Technology (M S&T), and Owens 

Corning Composites (OC) investigated in 2017-18 the conditions of concrete and GFRP 

bars extracted from eleven bridges with 15 to 20 years of service in several regions of the 

United States. The bridges were exposed to aggressive environmental conditions 

including deicing salts, wet and dry cycles and freeze-thaw cycles. Concrete cores of 

102-mm diameter, most containing pieces of GFRP bar, were extracted from the bridges.

As the long-term durability of the GFRP bars is related to the bar environment 

(Nkurunziza et al. 2005), evaluating the condition of the concrete is essential. Thus, in the 

current investigation, chloride penetration, pH, and carbonation depth were evaluated to 

describe and further detail the environment surrounding the bars. The GFRP bars were 

evaluated for fiber content, moisture content, water absorption, scanning electron 

microscopy (SEM), energy dispersive spectroscopy (EDS), glass transition temperature 

(TA), short bar shear (SBS), modified tensile test, and constituent volume contents by 

image analysis (CVC). Part I of this two-part series describes the 11 bridges selected for 

evaluation, the core locations, the procedure for acquiring specimens for testing, and the 

results from the concrete tests. Part II contains the test procedures and results from the 

bar tests.

2. SELECTED BRIDGES

Eleven bridges with 15 to 20 years of service are included in the investigation 

from geographically dispersed and environmentally varying locations across the United
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States. Nine of the investigated bridges contain GFRP bars in the deck, while two bridges 

contain GFRP at other locations. Descriptions of the bridges and locations of the 

extracted cores are given in this section. Table 1 presents a summary of the most relevant 

information from the bridges to assist in the interpretation of the test results.

Table 1. Information from the bridges

Bridge
Rain,
mm
(in.)

Snow,
mm
(in.)

Sunny
days

Estimated
Freeze-

thaw
cycle

duration
(days)

Year
built Bar type Bar

location

Concrete 
Cover, 

mm (in.)

Bettendorf 940
(37)

711
(28) 205 90 2003 N/A top 63.5

(2.5)

Cuyahoga 991
(39)

1473
(58) 163 90 2003

E-glass fiber 
and vinyl- 
ester resin

Top and 
bottom

63.5
(2.5)

Gills Creek 1143
(45)

279
(11)

214 75 2003 E-glass and 
vinyl-ester top 57 (2.2)

Mckinleyville 991(39) 584
(23) 162 75 1996

E-glass and 
polyester. 

Type 1: sand 
coated. Type 
2: non-sand 

coated

Top and 
bottom

44.5
(1.8)

O'Fallon 432
(17)

1524
(60) 245 200 2003 N/A Top and 

bottom 38 (1.5)

Roger's
Creek

1168
(46)

203
(8) 190 80 1997 N/A Top 63.5

(2.5)

Salem Ave. 1016
(40)

432
(17)

176 90 1999 N/A Top 70 (2.8)

Sierrita de la 
Cruz Creek

533
(21)

381
(15)

259 110 2000 E-glass and 
vinyl-ester Top N/A

Southview 1168
(46)

330
(13)

193 90 2004 N/A Top and 
bottom N/A

Thayer Road 991
(39)

584
(23) 184 95 2004 E-glass and 

vinyl-ester Top 38 (1.5)

Walker Box 1168
(46)

330
(13)

193 90 1999 E-glass and 
polyester N/A N/A
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2.1. BETTENDORF BRIDGE (IA)

Bettendorf Bridge was completed in May 2003. It was built using funds provided 

through the Federal Highway Administration’s (FHWA) Innovative Bridge Research and 

Construction (IBRC) program. The bridge extends 53rd Avenue over Crow Creek in 

Bettendorf, Iowa and is exposed to approximately 90 freeze-thaw cycles per year (Haley 

2011). It is a 52.9-m (173.6 ft) three-span bridge as shown in Figure 1 (Wipf 2006).

Figure 1. Bettendorf Bridge

The bridge was the widest FRP reinforced concrete deck at the time of 

construction, measuring 30 m (98.7 ft) wide. It was also the first FRP bridge deck in the 

US to use composite action with prestressed concrete girders (Lee 2009).

The concrete deck system is made of three different material combinations. The west
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span deck is constructed with cast-in-place (CIP) concrete reinforced with epoxy coated 

steel, the middle span deck is made of cast-in-place concrete reinforced with GFRP bars, 

and the east deck is made of pultruded FRP panels (Wipf 2006). The GFRP bars used in 

the middle span deck were placed on the top mat (Nanni and Faza 2002). Six concrete 

cores were extracted from the middle span bridge deck, as shown in Figure 2.

West! Abutment East Abutirient

GFRP Reinforced Deck 1 Transverse FRP PeckSteel Reinforced Deck

Traffic Direction

O Cores

Steel Pedestrian Handrails

Traffic Concrete Barrier

Concrete Median

14 Prestressed Girders ( a  7-1

Traffic Direction  c r )

4 spaces ig 862-4- 6 - S

Figure 2. Bettendorf extracted core locations

2.2. CUYAHOGA COUNTY BRIDGE (OH2)

Miles Road Bridge No. 178, also known as Cuyahoga County Bridge, was a 

rehabilitation project completed in October 2003. This project was funded by the 

FHWA’s Transportation Equity Act for the 21st Century - IBRC grant, administered
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through the Ohio Department of Transportation. This rehabilitation project consisted of 

rebuilding the bridge deck with GFRP reinforced concrete and also implemented a 

monitoring system to collect strain, temperature and deflection data (Eitel 2005).

Cuyahoga County Bridge is located in the Southeastern Lake Erie snow belt in 

Ohio and is exposed to approximately 90 freeze-thaw cycles per year and heavy 

application of deicing salts. The bridge consists of two spans of 13.7 m (45 ft) long and 

an 11.6-m-wide (38-ft) deck. The original bridge was built in 1956 and consisted of five 

steel girders with a 229-mm-thick (9-in.) steel reinforced concrete deck with a 76-mm (3­

in.) asphalt overlay. This bridge has the first deck on a multi-span vehicular bridge to be 

entirely reinforced with GFRP bars. The GFRP bars used in this bridge were made of E- 

glass fibers and vinyl-ester resin (Eitel 2005).

The Cuyahoga County Bridge is shown in Figure 3. The plan and section view are 

shown in Figure 4. Eight concrete cores were extracted from the Cuyahoga County 

Bridge deck, as shown in Figure 5.

Figure 3. Cuyahoga County Bridge
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Figure 4. Cuyahoga County Bridge plan and section view

Figure 5. Cuyahoga Bridge location of extracted cores
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2.3. GILLS CREEK BRIDGE (VA)

Gills Creek Route 668 Bridge was completed in July of 2003. This bridge was 

part of a project to investigate the durability and effectiveness of GFRP bar reinforcement 

in concrete decks. It was a project between the Virginia Department of Transportation, 

the Virginia Transportation Research Council and the Virginia Polytechnic Institute and 

State University, funded by the FHWA IBRC program (Phillips et al. 2005).

The bridge is located in Franklin County, Virginia and is exposed to 

approximately 75 freeze-thaw cycles per year (Haley 2011). It is a 52-m (170-ft) three- 

span steel girder bridge that cross over Gills Creek, as shown in Figure 6. The bridge 

has a width of 9.2 m (30.3 ft) and its spans A, B, and C measure 13.7 m (45 ft), 24.4 m 

(80 ft), and 13.7 m (45 ft), respectively.

Figure 6. Gills Creek Bridge



148

The reinforced concrete bridge deck has a minimum thickness of 20.3 cm (8 in.) 

between the girders and 22.9 cm (9 in.) at the overhang, as shown in Figure 7 (Phillips et 

al. 2005).

Figure 7. Gills Creek span A reinforcement cross section

The bridge deck span A was reinforced with M19 (#6) GFRP bars on the top mat 

and epoxy coated M13 and M19 (#4 and #6) steel bars on the bottom mat, as shown in 

Figure 7. The remaining two spans were reinforced with epoxy-coated steel bars (Phillips 

et al. 2005). The GFRP bars were made of E-glass fibers and vinyl-ester resin. Ten 

concrete cores were extracted from the Gills Creek Bridge deck span A, as shown in 

Figure 8.

2.4. MCKINLEYVILLE BRIDGE (WV)

McKinleyville Bridge was built in 1996. It was the first FRP reinforced concrete 

vehicular bridge in the U.S. (Kumar et al. 1996). The project was developed through the 

Constructed Facilities Center-West Virginia University in cooperation with FHWA and 

the West Virginia Department of Transportation-Division of Highways (Shekar et 2003).



149

Figure 8. Gills Creek Bridge extracted core locations

The bridge crosses Buffalo Creek in Brooke County (District 6), West Virginia 

and is exposed to approximately 75 freeze-thaw cycles per year. It consists of three spans 

with a maximum span length of 22.3 m (73 ft), as shown in Figure 9, having a total 

length of 54.9 m (180 ft) and a deck width of 9 m (29.5 ft). The bridge was designed for 

HS-25 loading and it is estimated that 150 vehicles cross the bridge per day over the two 

lanes. The bridge deck is 229-mm (9-in.) cast-in-place concrete with two types of GFRP 

bars, one type was made of E-glass fibers with polyester resin and the other type was 

sand-coated made of E-glass fibers with isophthalic unsaturated polyester resin (Shekar et
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al. 2003). The GFRP bars were used as top and bottom reinforcement. Six concrete cores 

were extracted from the McKinleyville Bridge deck as shown in Figure 10, however, 

only five concrete cores were received.

Figure 9. McKinleyville Bridge

Figure 10. McKinleyville Bridge extracted core locations
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2.5. O’FALLON PARK BRIDGE (CO)

O’Fallon Park Bridge, shown in Figure 11, was completed in 2003. This bridge 

was part of a project to investigate the feasibility of the use of FRP in highway bridge 

decks. The construction was developed through a collaboration between the City and 

County of Denver, the Colorado Department of Transportation (CDOT), and FHWA, and 

it was funded by the FHWA IBRC program (Camata and Shing 2005). This bridge is 

located west of the city of Denver and is exposed to approximately 200 freeze-thaw 

cycles per year (Haley 2011).

Figure 11. O'Fallon Park Bridge

O’Fallon Park Bridge has a total length of 13.34 m (43.75 ft) and a width of 4.95 

m (16.25 ft). The bridge deck is a GFRP deck supported by five reinforced concrete risers 

built over an arch. The arch is made of concrete reinforced with GFRP bars, with M19
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(#6) GFRP bars at the top mat and M22 (#7) GFRP bars at the bottom mat. The bridge is 

mainly used for pedestrian traffic and occasional small vehicles, but it was designed for 

H-25-44 loading for maintenance and/or emergency vehicles (Camata and Shing 2005). 

Six concrete cores were extracted from the bottom of the bridge arch, near the waterline, 

as shown in Figure 12. Some cores were broken and resulted in multiple pieces, and, 

therefore, ten cores were recorded in the inventory.

Figure 12. O'Fallon Bridge extracted core location
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2.6. ROGER’S CREEK (US-460) (KY)

Roger’s Creek Bridge was built in 1997. This bridge is the US-460 Bridge over 

Roger’s Creek in Bourbon County, Kentucky and is exposed to approximately 80 freeze- 

thaw cycles per year. Its superstructure consists of a deck over simply supported 

prestressed concrete girders for a length of 11.1 m (36.5 ft) and a width of 11 m (36 ft), as 

shown in Figure 13. The bridge deck is partially reinforced with GFRP and steel bars.

The GFRP reinforcing bars are placed as the top mat over an area that measures 2.7 m x 

4.7 m (9 ft x 15.5 ft) and runs over three supporting girders (Harik et al. 2004). Six 

concrete cores were extracted from the Roger’s Creek Bridge deck, as shown in Figure 

14.

Figure 13. Roger's Creek Bridge
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Figure 14. Roger's Creek Bridge extracted core locations

2.7. SALEM AVE. BRIDGE (OH1)

Salem Ave. Bridge was a retrofit project completed in 1999. This project was part 

of a study to understand the effectiveness of replacing concrete decks with FRP deck 

panels through the IBRC program (project OH-98-05) and the Ohio Department of 

Transportation (Mertz 2003). Salem Ave. Bridge consists of a pair of parallel bridges 

located on State Route 49 in Dayton, Ohio and exposed to approximately 90 freeze-thaw 

cycles per year (Haley 2011). The bridges are 207.3 m (680 ft) long and cross the Great 

Miami River, as shown in Figure 15. The bridges consist of built-up steel stringers with 

five spans of 39.6 m (130 ft), 41.8 m (137 ft), 44.2 m (145 ft), 41.8 m (137 ft), and 39.6 

m (130 ft.). The deck of the original bridge, built in 1952, was retrofitted with four 

different FRP deck systems for one of the twin bridges, while the second bridge was 

retrofitted with only one deck system (FRP-4). (Reising et al. 2001).
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Figure 15. Salem Ave. Bridge aerial view

The investigated bridge was retrofitted with FRP-4 deck system, which is a hybrid 

system that consists of a concrete deck poured over pultruded GFRP panels reinforced 

with GFRP tubular sections and additional GFRP reinforcing bars (Reising et al. 2001). 

The GFRP bars were placed at the top longitudinally and transversally. Six concrete cores 

were extracted from the bridge deck as shown in Figure 16; however, only five concrete 

cores were received.

Figure 16. Salem Bridge extracted core locations
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2.8. SIERRITA DE LA CRUZ CREEK BRIDGE (TX)

Sierrita de la Cruz Creek Bridge was a replacement project completed in 2000. 

The bridge, shown in Figure 17, is located on State Highway 1061, approximately 50 km 

(30 mi) northwest of Amarillo, Texas (Gooranorimi & Nanni 2017) and is exposed to 

approximately 110 freeze-thaw cycles per year (Haley 2011). The replacement was 

performed due to the bridge being structurally deteriorated and obsolete. The new design 

consists of seven spans, 24.1 m (79 ft) long and 14.3 m (45-ft) wide, supported by six 

prestressed concrete Texas type “C” I-beams (Phelan et al. 2003). The replacement 

project included M16 (#5) and M19 (#6) GFRP reinforcing bars made of E-glass fibers 

and vinyl-ester resin. The GFRP bars were placed in the top mat of the deck of the two 

southern-most spans (Spans 6 and 7). The other five spans used epoxy-coated steel bars, 

including Spans 1 and 2, which are symmetric with Spans 6 and 7, as shown in Figure 18. 

Witness bars were also embedded in the bridge overhang during construction, these were 

M16 (#5) GFRP bars with 15.9 mm of cover (0.63 in.) (Gooranorimi et al. 2016). Five 

concrete cores and three witness bars were extracted from the overhang of Sierrita de la 

Cruz Creek Bridge deck. The cores were extracted from locations near the bridge 

guardrail, as shown in Figure 19. Figure 20 shows the location of the extracted witness

bars.
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Figure 17. Sierrita de la Cruz Creek Bridge
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Figure 18. Sierrita de la Cruz Creek Bridge plan view



158

Figure 19. Sierrita de la Cruz Creek Bridge extracted core approximate location
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Figure 20. Sierrita de la Cruz Creek Bridge extracted witness bar locations
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2.9 SOUTHVIEW BRIDGE (MO2)

Southview Bridge was an expansion project completed in 2004. The bridge is 

located in Rolla, Missouri over Carter Creek and is exposed to approximately 90 freeze- 

thaw cycles per year. The bridge has an overall length of 12 m (40 ft), as shown in Figure 

21. It was originally a one-lane bridge using conventional four-cell steel RC box culverts. 

It went through a widening in 2004 which included the construction of an additional lane 

and a sidewalk (Holdener et al. 2008). As a demonstration project to apply the use of FRP 

bars and tendons, the new deck was made of FRP prestressed/reinforced concrete, 

including M19 (#6) GFRP bars at the top and bottom mat, M13 (#4) GFRP bars for 

temperature and shrinkage, and M10 (#3) CFRP bars as the prestressing tendons, as 

shown in Figure 22. The 254-mm-thick (10-in.) concrete deck is continuous on three 

conventional RC walls as for the existing structure (Fico et al. 2006). The extension of 

the deck plus a 2-m-wide (6.6-ft) conventional RC sidewalk on the opposite side 

extended the overall width of the bridge from 3.9 m (12.8 ft) to 11.9 m (39.0 ft). Ten 

concrete cores were extracted from the Southview Bridge deck but only two cores were 

available for this specific study. Figure 23 shows the location of the extracted cores.
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Figure 21. Southview Bridge before extension
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Figure 22. Southview Bridge reinforcement detail
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Figure 23. Southview Bridge extracted core locations

2.10. THAYER ROAD BRIDGE (IN)

The Thayer Road Bridge replacement project was completed in 2004. The bridge 

is located on Thayer Road crossing I-65 Newton County, Indiana and is exposed to 

approximately 95 freeze-thaw cycles per year (Haley 2011). The bridge, shown in Figure 

24, was designed for 60-km/h (40-mph) traffic of cars and trucks and consists of five 

spans of 12.1 m (39.8 ft), 19.4 m (63.5 ft), 23.7 m (77.8 ft), 19.4 m (63.5 ft), and 12.2 m 

(40 ft), respectively, summing up to a total length of 86.6 m (284 ft) with a 10.5-m-wide 

(34.5-ft) deck. The project was a collaboration of the Indiana Department of 

Transportation and Purdue University and involved the replacement of a concrete deck. 

The deck is supported by seven wide-flange steel girders and is reinforced with GFRP 

bars on the top mat and epoxy-coated steel on the bottom mat, as shown in Figure 25
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(Frosch and Pay 2006). The GFRP bars were made of E-glass fibers and vinyl-ester resin. 

Six concrete cores were extracted from the Thayer Road Bridge deck, as shown in Figure 

26.

Figure 24 Thayer Road Bridge

Figure 25. Thayer Road Bridge Reinforcement Detail
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Figure 26. Thayer Road Bridge extracted core locations

Figure 27. Thayer Road Bridge extracted core locations
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2.11. WALKER BOX CULVERT BRIDGE (MO1)

The Walker Box Culvert Bridge replacement project was completed in 1999. The 

bridge is located on Walker Avenue in Rolla, Missouri (Gooranorimi et al. 2017) and is 

exposed to approximately 90 freeze-thaw cycles per year (Haley 2011). The original 

bridge became unsafe to operate due to excessive corrosion of the steel pipes (Nanni 

2001). To replace the original bridge, GFRP bars made of E-glass fibers and polyester 

resin were used to reinforce the concrete box culvert. The new bridge, shown in Figure 

27, is 11 m (36 ft) wide, consisting of 18 box culverts that are 1.50 x 1.50 m (4.92 x 4.92 

ft) with a thickness of 150 mm (5.9 in.) (Wang et al. 2018). The RC boxes were entirely 

reinforced with M6 (#2) GFRP bars pre-bent and cut to size by the manufacturer 

(Alkhrdaji and Nanni 2001). Six concrete cores were extracted from Walker Box Culvert 

Bridge. The extracted cores were taken from the bottom of the two culverts, as shown in 

Figure 28.

Figure 28.Walker Box Culvert Bridge
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3. SAMPLE EXTRACTION

To extract the concrete cores from the bridges, a barrel of 102 mm (4 in.) in 

diameter was used. The targeted locations for core extraction were, when possible, areas 

with cracks or signs of environmental deterioration. No non-destructive method for 

identifying bar location is yet available. As a result, some concrete cores had no GFRP 

bars and others had GFRP bars shorter than 51 mm (2 in.). An extracted core with a short 

bar is shown in Figure 29.

Figure 29. A core sample

4. SAMPLE INVENTORY AND DISTRIBUTION

Upon receipt of the concrete cores at UM, an inventory of all specimens was 

compiled. Concrete cores were measured and approximate GFRP bar lengths and 

concrete cover were determined. The core specimens are identified using a two-part
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identification scheme NN_Cx, where NN is the state abbreviation of the bridge’s 

location, and Cx indicates the x-th core number. For the GFRP bars, a three-part 

identification scheme is used, NN_Cx_Bx, where NN is the state abbreviation of the 

bridge’s location, Cx indicates the x-th core number, and Bx indicates the x-th bar 

number. In cases where more than one specimen from a certain bar was tested, an extra (­

x) suffix is used to identify the specimen number.

Once the inventory was compiled at UM, the cores were placed in sealed plastic 

bags for storage until testing or distribution to other laboratories. Consequently, a plan for 

carrying out the concrete and GFRP tests among the project partners was developed.

Most concrete tests were performed at UM, while the GFRP tests were divided based on 

the testing capabilities of each laboratory.

5. CHALLENGES AND SOLUTIONS

One challenge in testing was the relatively small number of specimens that could 

be tested due to the limited number of cores that could be extracted, the small length of 

bars embedded in the cores, and the difficulty of locating GFRP bars prior to drilling the 

cores. The extracted bars, with the exception of witness bars extracted from the Sierrita 

de la Cruz Creek Bridge, had a maximum length of 95 mm (3.75 in.). An aim of the 

investigation was to run three repetitions for each material property. For GFRP tests that 

required bar lengths of 25 mm (1 in.) or less, the bars were cut to the required dimension 

so that a minimum of three test replicates could be achieved with one bar. For other tests,
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however, in order to achieve a minimum of three replicates per test type, multiple bars of 

the same size extracted from the same bridge were assumed to have had identical 

exposure conditions.

Another challenge during this study was the lack of data on most of the materials 

at the time of installation. No information on the original concrete mix designs could be 

obtained. Thus, no comparison was made between the concrete quality before and after 

in-service exposure. In addition to the lack of information on concrete mixtures, the cores 

were not sealed hermetically upon extraction from the bridges, which may have affected 

some concrete properties such as moisture content.

6. CONCRETE TESTS PROCEDURE

6.1. CHLORIDE PENETRATION DEPTH

Chloride penetration is a major concern in concrete structures with steel 

reinforcement as it can accelerate corrosion. GFRP bars, on the other hand, have been 

reported to be highly resistant to chloride ions (Zhou et al. 2018). To evaluate the 

chloride penetration depth of the extracted concrete cores and understand how chloride 

presence may have influenced the durability of reinforcement, the calorimetric method 

using silver nitrate (AgNO3) was employed. According to Meck and Sirivivatnanon 

(2003), this method was popularized by Otsuki et al. (1992) and Collepardi (1995). In 

this method, a 0.1 N AgNO3 solution is sprayed on a freshly broken concrete surface, 

where chloride ions are present. The silver ions react with the chloride ions and form a
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white precipitate, and in areas containing few or entirely free of chloride ions, a brown 

precipitate forms (Yuan et al. 2008). Additionally, there is a distinguished boundary 

between the white and brown regions.

Although this method can be influenced by many factors such as the sprayed 

volume and concentration of AgNO3 solution, which can result in high variability (Meck 

and Sirivivatnanon 2003, He et al. 2012), chloride penetration resistance varies 

significantly with concrete mixture. For instance, increasing fly ash and fly ash fineness, 

and reducing water-to-binder ratio can increase chloride penetration resistance 

(Chindaprasirt et al. 2007).

To determine the presence of chlorides in the concrete cores and to observe if 

chlorides reached the depth of the GFRP bars, the concrete cores were split to expose a 

fresh surface and compressed air was used to remove dust particles from this surface. The 

silver nitrate solution was sprayed onto the surface and allowed to dry. The chloride 

penetration depth was measured with a ruler, as the lighter color indicates areas of 

chloride penetration, and a darker color indicates areas not affected by chlorides. At least 

three exposed surfaces were tested for samples from each bridge.

6.2. CARBONATION DEPTH

Carbon dioxide that penetrates the surface of concrete can react with alkaline 

components in the cement paste. The chemical reaction of Ca(OH)2 and calcium-silicate- 

hydrate (C-S-H) with CO2 forms CaCO3 and water (Chang et al. 2006). As a result, the 

pH value of the pore solution decreases, destroying the passivity of embedded steel
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reinforcement bars (Chang et al. 2006). For GFRP bars, on the other hand, carbonated 

concrete was found to be less aggressive than non-carbonated concrete (Rajput and 

Sharma 2017). The most common method to determine the depth of carbonation is by 

using a phenolphthalein indicator solution. This method was carried out by spraying the 

solution over a fresh-cut concrete surface and then monitoring the change in surface 

color. The solution mixture has 1% phenolphthalein, 70% ethyl-alcohol, and 29% 

distilled water per volume ratio. The concrete turns shades of purple when pH is above 9 

and remains colorless when pH is below 9 (Chang et al. 2006).

6.3. pH

The pH of ordinary Portland cement concrete is generally between 12.5 and 13, 

but deterioration mechanisms such as chloride ingress and carbonation can decrease the 

pH of concrete (Behnood et al. 2016). Behnood et al. (2016) show that even with nearly 

zero concentration of chloride ions near the bars, a concrete pH level of less than 11 in 

the area of the steel bars can initiate corrosion. Although a low pH is detrimental for 

steel, some researchers suggest that the high pH of concrete can reduce the durability of 

GFRP bars (Chen et al. 2006).

To measure the pH of the concrete from the selected bridges, cores from each 

bridge were tested at three or more different locations. Two different procedures were 

used: one according to Grubb et al. (2007) and the other one by using a rainbow 

indicator. The Grubbet al. (2007) procedure was used in cores from eight bridges to 

determine the pH at various depths. Cores were split and then drilled to collect 5 g (77
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grains) of concrete dust for each test. Split cores were drilled at three varying depths from 

13 mm (0.5 in.) below the surface of the concrete to 13 mm (0.5 in.) above where the 

GFRP bar had been located. The concrete dust was then mixed with 10 ml (0.34 oz.) of 

fresh distilled water at a temperature of 23 °C (73.4 °F). The mixture was stirred for 30- 

second intervals three times over seven minutes and then filtered through No. 40 filter 

paper. A calibrated pH probe was then used to read the pH of the mixture.

The rainbow indicator procedure was used in the evaluation of specimens from 

three bridges: Roger’s Creek, Thayer Road, and McKinleyville Bridges. This procedure 

is very simple and consists of spraying a rainbow indicator (Germann Instruments, Inc.) 

on a fresh concrete surface. The concrete cores were cut to expose a fresh surface, dust 

was removed with compressed air, and the indicator was sprayed on the concrete surface. 

Once the indicator dried, changes in color could be observed on the concrete surface.

This color indicated the pH value according to the color pallet.

7. CONCRETE TESTS RESULTS

7.1. CHLORIDE PENETRATION DEPTH

Chloride penetration testing was performed in 10 of the 11 bridges (excluding 

Sierrita de la Cruz Creek). The difference in the color of the concrete due to the silver 

nitrate was difficult to identify in some of the specimens. For instance, for the 

McKinleyville, Roger’s Creek, Thayer Road, Southview, and Walker Box Bridges, no 

chloride penetration was observed. All other bridges presented chloride penetration,
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varying from approximately 6 mm (0.25 in.) to 64 mm (2.5 in.). The worst case of 

chloride penetration, approximately 64 mm (2.5 in.), was observed in concrete specimens 

from the Cuyahoga and Salem Ave. Bridges. Table 2 shows the average and highest 

chloride penetrations for each bridge.

Table 2. Average chloride penetration for each bridge

Bridge Average Chloride 
penetration, mm (in.)

Highest Chloride Penetration 
Observed, mm (in.)

Bettendorf 19 (0.8) 25 (1.0)

Cuyahoga 38 (1.5) 64 (2.5)

Gills Creek 8 (0.3) 13 (0.5)

McKinleyville N/A N/A

O'Fallon Park 13 (0.5) 13 (0.5)

Roger's Creek N/A N/A

Salem Ave. 38 (1.5) 64 (2.5)

Southview N/A N/A

Thayer Road N/A N/A

Walker Box Culver N/A N/A

The chloride penetration observed in the extracted cores appeared to be due to 

deicing salt applications, as four out of the five bridges that showed chloride presence 

had the highest amount of snow per year. In terms of its effect on the extracted GFRP 

bars, Cuyahoga Bridge that presented chloride penetration reaching the level of 

reinforcement, also showed a significant reduction in shear strength and a glass transition 

temperature (Tg) lower than required by the latest ASTM standard (ASTM 7957) (Al-
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Khafaji 2020). A reduction in shear strength would be indicative of fiber/matrix interface 

degradation (Benmokrane et al. 2015), and a reduction in Tg would be indicative of resin 

degradation. However, these results could also be due to other factors such as the high 

moisture absorption rate (1.52%) observed for Cuyahoga Bridge (Al-Khafaji 2020).

In this study, the lack of information on the concrete mixes does not allow a 

comparison between results. To understand the obtained results, values from other studies 

in the literature can be considered. In the study of Xi et al. (2018), for example, bridge 

decks exposed to deicing salts presented chloride ingress at a depth of 50 mm (2 in.). 

However, the percentage of chloride by concrete weight can be minor and possibly not 

detected when using silver nitrate solution. The chloride content at 50 mm appears to 

increase with concrete age. For example, for a bridge deck with 14 years of service, 

chloride concentrations of 0.061% at a depth of 50 mm (2 in.) was observed, while for a 

bridge deck of 21 years of service, 0.065% chloride penetration was observed at the same 

depth (Xi et al. 2018).

The observed chloride penetration using silver nitrate may indicate a high enough 

level of chloride content to break the passive layer of the steel reinforcement. The 

observed chloride penetration at 64 mm (2.5 in) would have reached the reinforcement 

and cause corrosion initiation for steel reinforcement.

7.2. CARBONATION DEPTH

Concrete cores from all 11 bridges were tested for carbonation depth. Most 

specimens presented some carbonation near the surface, but others such as
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McKinleyville, Roger’s Creek, Southview, Thayer Road and Walker Culvert presented 

no carbonation at all. This could be due to the degree of relative humidity of the 

specimens. According to the study of Chang et al. (2006), phenolphthalein indicator 

changes color (to white) when the area is fully carbonated (the level of carbonation is 

above 50%), which happens when the relative humidity is above 50%. Carbonation above 

50% presents an opportunity for corrosion of steel reinforcement. Steel reinforcement 

would be unlikely to corrode in the bridges with less than 50% carbonation.

Some bridges presented significant depth of carbonation reaching into the central 

volume of the concrete core and possibly reaching the reinforcement. These results were 

consistent with the results from Sagues et al. (1997), where 18 bridges with 16 to 59 

years of service were investigated for carbonation. Sixteen of the eighteen bridges studied 

by Sagues et al. (1997) presented carbonation. The average carbonation depth was 

approximately 10 mm (0.4 in.) and some bridges presented carbonation depth as high as 

50 mm (2 in.). Table 3 shows the highest carbonation depth observed for each bridge. All 

bridges that presented chloride penetration also presented carbonation. The bridges that 

presented from the highest to the lowest carbonation depth are Salem Ave., Gills Creek, 

O’Fallon Park, Sierrita de la Cruz Creek, Cuyahoga and Bettendorf. Half of these bridges 

also presented GFRP bars with high volume of water retention. For some bridges, 

O’Fallon Park, Salem Ave. and Sierrita de la Cruz Creek, the depth of carbonation may 

have reached the reinforcement. Although carbonated concrete is considered a less 

aggressive environment than non-carbonated concrete, these bridges still presented a 

reduction in GFRP bar shear strength. Bar physical and chemical composition, on the
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other hand, presented no signs of deterioration from SEM and EDS tests (Al-Khafaji 

2020). If these bridges had been reinforced with steel bars, the observed carbonation 

depth could have resulted in corrosion initiation.

Table 3. Carbonation depth for each bridge

Bridge Highest Observed Carbonation 
Depth, mm (in.)

Bettendorf 19 (0.8)
Cuyahoga 25 (1.0)

Gills Creek 51 (2.0)
McKinleyville N/A
O'Fallon Park 38 (1.5)
Roger's Creek N/A

Salem Ave. 76 (3.0)
Sierrita de la Cruz Creek 38 (1.5)

Southview N/A
Thayer Road N/A

Walker Box Culver N/A

7.3. pH

All eleven bridges were tested for pH. Out of the eleven bridges, eight were tested 

according to the procedure from Grubb and co-workers (Grubb et al. 2007), and three 

bridges were tested using the rainbow indicator. The bridges presented pH extreme 

values as low as 7 and as high as 13 with an average between 10 and 12. The lowest 

average pH value observed was 10 for the Roger’s Creek and McKinleyville Bridges, the 

two oldest bridges in the investigation. While the highest average pH was 12.2 for 

Cuyahoga and Gills Creek Bridges. The pH values observed during this test were
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consistent with the values obtained by Grubb and co-workers (2007), who recorded a pH 

value of approximately 10.5 for a 20-year old specimen and a 12-pH value for a 2-month- 

old specimen.

The average results for each bridge can be observed in Table 2. Most bridges 

presented high pH, above 11.5, which according to some authors would be detrimental to 

FRP bars (Ceroni et al. 2006, Demis et al. 2007). However, based on the results obtained 

in Al-Khafaji et al. (2020), no direct correlation between GFRP bar degradation and pH 

was identified. The condition of the GFRP bars from McKinleyville and Roger’s Creek 

Bridges that presented an average pH of 10 was comparable to the bars from the other 

bridges with higher pH. On the other hand, a pH lower than 11 would be representative of 

corrosion initiation of steel reinforcement even with low presence of chloride ions near 

the bars (Behnood et al. 2016).

Table 4. Average pH for each brie ge
Bridge Average pH Bridge Average pH

Bettendorf 12.1 Salem Ave 11.6

Cuyahoga 12.2 Sierrita de la 
Cruz Creek 11.5

Gills Creek 12.2 Southview 11.5

McKinleyville* 10 Thayer
Road* 12

O'Fallon Park 12.1 Walker 11.5
Roger's Creek* 10
*Bridges tested with the rainbow indicator



176

8. CONCLUSIONS

Concrete cores with embedded GFRP bars were extracted from eleven bridges 

with 15 to 20 years of service to investigate their performance and durability. The 

investigated bridges are located across the United States and exposed to varying 

environmental conditions (e.g., deicing salts, wet and dry cycles, and freeze-thaw cycles) 

that influence the durability of reinforced concrete structures. Experiments were 

performed on the concrete to evaluate its condition and its influence on the durability of 

in-service GFRP bars. The concrete tests included chloride penetration depth, carbonation 

depth, and pH tests. The results were compared with the information given from the 

bridges and to the results obtained in part II of this two-part series of paper. The 

following observations were made:

• Carbonation was observed in most concrete cores. Some bridges presented 

carbonation depth larger than 38 mm (1.5 in), which may indicate that carbonation 

reached the GFRP bars.

• Chloride penetration tests were performed on specimens from ten bridges. In some 

bridges, no chloride penetration was observed; in the worst case, chloride may 

have reached the reinforcement at about 64 mm (2.5 in.) depth. The chloride 

penetration observed in the bridges suggests it was due to the application of 

deicing salts.

• Concrete pH values were recorded on specimens from all bridges. Most bridges 

presented relatively high pH, above 11, which according to literature (Ceroni et al.
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2006, Demis et al. 2007) are conditions detrimental to GFRP bars. The two oldest 

bridges in the investigation presented an average pH of 10, an indicator of 

corrosion initiation for steel reinforcement. No correlation between pH and 

degradation of GFRP bars could be concluded.

The work presented in this paper is relevant to the interpretation of the test results on 

GFRP samples extracted from the cores and discussed in Part II of this two-paper series.
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ABSTRACT

Steel corrosion is a major problem in the civil engineering industry, thus finding 

an effective alternative has been of main interest. One of these alternatives is glass fiber- 

reinforced polymer (GFRP) bar, as it has multiple advantages including: corrosion-free, 

nonconductive, and high strength-to-weight ratio. On the other hand, conventional 

concrete (CC) is not environment-friendly concrete due to its high CO2 emission. 

Therefore, other replacements of Portland cement have been on the lookout. Some of the 

alternatives include fly ash and silica fume that can be added either partially or fully to 

make the concrete. In addition, adding fibers to the concrete has been of main interest, as 

it offers several advantages including crack control, and tensile capacity increase. In this 

study, a bond investigation was carried out to assess the bond-slip behavior between 

GFRP bars and fiber-reinforced eco-concrete (High-volume fly ash (HVFA) concrete) 

following the RILEM recommendations. The parameters of the study involved: concrete 

type (CC and HVFA), fiber type (steel and synthetic), bar type (GFRP and steel), bar size 

(13 and 19 mm), and embedment length (6.4 mm, and 12.7 mm). To make the 

assessment, the bond results of the GFRP-reinforced specimens were compared to those 

resulted from steel-reinforced specimens. The test results showed that the bond strength 

of GFRP bar was less than that of steel bar. Also, the addition of fibers to the concrete

decreased the bond strength.
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1. INTRODUCTION

One of the major issues in the bridge industry is corrosion of reinforcement, as it 

is considered costly and requires continuous monitoring. Therefore, other alternative to 

replace steel reinforcement is of main need, one of these valid options is glass-fiber 

reinforced polymer (GFRP) bars (Nanni, De Luca, & Zadeh, 2014). GFRP bars present 

itself as a solid solution to replace steel reinforcement owing to its fantastic 

characteristics including corrosion resistivity, electrical non-conductivity, and high- 

strength-to-weight ratio (Ali F Al-Khafaji et al., 2020)(Benmokrane et al. 2018). On the 

other hand, conventional concrete (CC), which is a cement-based concrete, is not 

considered as environment friendly concrete owing to the high carbon dioxide (CO2) 

emissions (Al-Khafaji et al. 2019)(Volz et al. 2012). Therefore, other types of materials 

such as fly ash and silica fume have been put in focus to fully or partially replace 

Portland cement. Fly ash is a by-product obtained from the coal combustion in electric 

power generating plants. Fly ash is categorized into three main classes which are class C, 

F, and N (ASTM 618, 2010). A concrete can be considered as a high-volume fly ash 

(HVFA) concrete only when the fly ash percentage covers 50% or more of the 

cementitious material (Alghazali & Myers, 2019). Several studies have been carried out 

to assess the fly-ash based concrete, but most of them have addressed the low-volume fly 

ash concrete (around 20% or 30%) rather than the high-volume content (Jalal et al. 2013; 

Siddique et al. 2012). Naik et al. (1989) conducted a bond assessment investigation using 

a 10%, 20%, and 30% fly ash-based concrete where they found that the bond strength
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reached its highest value with 20% fly ash and then exhibited a decrease when the 30% 

fly ash concrete was used. In addition to the use of fly ash, the use of fibers in concrete 

have been seeing an increasing demand (Garcia-Taengua et al. 2016). ASTM C1116 

(2010) categorizes the fibers implemented in concrete into majorly four kinds including: 

Type 1 steel-fiber, Type 2 glass fibers, Type 3 synthetic fibers, and Type 4 natural fibers. 

Song et al. (2006) carried out a study to assess the mechanical properties of high-strength 

steel fiber reinforced concrete using different volume fractions including 0.5, 1.0, 1.5, 

and 2.0%. Their study concluded that the compressive strength increased by 15%, the 

tensile strength and rupture modulus increased up to 98% and 126% respectively. Kwak 

et al. (2002) investigated the shear strength of steel fiber-reinforced concrete beams 

without stirrups by involving three levels of volume fractions of fibers including 0.0%, 

0.50%, and 0.75%. Their research showed that the nominal stress at shear cracking and 

the ultimate shear strength increased with increasing fiber volume, decreasing shear span- 

to-depth ratio, and increasing concrete compressive strength. Joshi et al. (2018) studied 

the efficiency of steel and synthetic fibers on the performance of prestressed concrete 

beams under shear and flexure. The test results showed that, in compared to synthetic 

fibers, the post cracking response was stiffened more efficiently when steel fibers were 

used.

In this study, pullout tests were carried out to assess the bond performance of 

HVFA and fiber-reinforced HVFA concrete reinforced with GFRP bars and compared 

with specimens of the same kind of concrete but reinforced with steel bars. Two types of 

fibers were implemented including steel and synthetic fibers, as well as two types of
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concrete were used including 70% HVFA concrete and conventional concrete (CC). Two 

bar sizes were used, 13 mm (0.5 in.) and 19 mm (0.75 in.).

2. PULLOUT BOND EXPERIMENT

Bond between reinforcement and concrete can be accessed via several techniques 

including pullout, beam-end specimens, and beam splice. In this investigation, pullout 

test was conducted to make the bond assessment owing to its feasibility and the ability to 

provide reliable results. The pullout test was performed on thirty-two full-size cylinder 

specimens weighing between 20 to 35 kg (50 to 70 lb). To carry out the test, RILEM7- 

11-128, Reunion Internationale des Laboratoires et Experts des Materiaux, (1994) was 

implemented. In this setup, the selected embedment length was ten times the rebar 

diameter in order to avoid splitting of concrete failure. In addition, Polyvinyl chloride 

pipe (PVC) was used to cover the needed debonded section of the rebar. In order to meet 

the RILEM’s cover requirements, a specimen diameter of 300 mm (12 in.) was used. The 

test setup is shown in Figure 1.
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Figure 1. Pullout test setup

3. MIXTURES AND MATERIALS

In this investigation, the type of cement used was ASTM Type I/II Portland 

cement and the fly ash implemented was an ASTM Class C. The physical and chemical 

characteristics of cement and fly ash are shown in Table 1. The sources of fine and coarse 

aggregates were natural sand and crushed dolomite, which had a 19 mm (0.75 in.) 

approximate diameter, respectively. Two types of reinforcements were used, steel and 

glass fiber-reinforced polymer (GFRP) bars respectively, and, for each type, two sizes 

were used, 13 mm (0.5 in.) and 19 mm (0.75 in.). Steel reinforcement had a yield strength 

of 414 MPa (60 ksi) while GFRP bars were 100 Aslan from Owens Corning and had an 

ultimate tensile strength of about 725 MPa (105 ksi). The steel bar’s deformation spacing,
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height, and relative area were in agreement with ACI 408R-03 (2003) and ASTM A615- 

09 (2018). On the other hand, GFRP bars’ specifications were in agreement with the 

ASTM D7205 standards (2011). The mechanical and physical properties of the GFRP 

bars are shown in Table 2.

Table 1. Chemical and physical properties of cementitious materials

Properties Unit Cement Fly Ash
SiO2 % 19.4 35.17

AhO3 4.58 21.07
Fe2O3 3.20 6.58
CaO 62.7 26.46
MgO 3.27 6.22
SO3 3.19 1.43

Na2O - 1.91
K2O - 0.44

Na2O eq. 0.50 1.31
Loss in ignition 2.31 0.12
Fineness (+325 98.4 15.2

Mesh)
C3S 58.0 -
C2S - -
C3A 7.00 -

C4AF - -
Vicat set time, initial Minute 90.0 -
Vicat set time, final s 195 -

Specific gravity - 3.15 2.68

In concrete, the selected compressive strength was 35 MPa (5 ksi) which is 

representative for most concrete used in 3 to 6 story-buildings (Mahzuz et al. 2020). In 

addition to the Portland cement-based concrete (also called conventional concrete (CC)), 

Fly ash-based concrete contained 70% fly ash and 30% Portland cement was made. Also,
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two types of fibers were used to reinforce the concrete including steel fibers used only 

with specimens contained steel bars, and synthetic fibers used only with specimens 

contained GFRP bars. Table 3 depicts the fresh and hardened concrete properties. Besides 

the pullout specimens, companion cylinders were collected and tested for compressive 

and tensile strength. For compressive strength measurements, cylinders were tested at 

ages of 3, 7, 28, and 56 days, while, for tensile strengths, cylinders were tested at 28 and 

56 days. In GFRP-reinforced specimens, a steel tube was used to protect the gripped 

region of the bar from the crushing forces resulted from the testing machine’s grips. Sika- 

Dur 30 epoxy was utilized to attach the steel tube to the GFRP bar. Figure 2 shows the 

materials used in this study.

Table 2. Manufacturer’s, Owens Corning, mechanical and physical properties of GFRP
rebars

Rebar 
size mm

(in.)

Nominal 
Area mm2 

(in2)

Guaranteed 
Tensile 

Strength MPa 
(ksi)

Ultimate 
Tensile 
Load 

kN (kips)

Modulus
of

Elasticity 
GPa (ksi)

Ultimate
Strain
(%)

13 (1/2) 127 (0.20) 758 (110) 95.90
(21.55)

46(6672) 1.64%

19 (3/4) 285 (0.44) 690 (100) 196.60
(44.20)

46 (6672) 1.49%

4. SETUP AND PROCEDURE OF PULLOUT TEST

The test was carried out using a universal machine. The pullout specimens were 

rotated in a way where the bar side faced down. To make sure the specimen rested evenly
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with no eccentrics, a thin rubber mat was used beneath the specimen. Universal 

machine’s grips embraced the free end of the bar. A linear variable differential 

transformer (LVDT) was positioned on the exposed piece of the bar and utilized to record 

the slippage. A loading rate of 2.5 mm/min (0.01 in./min) was used to make sure enough 

data stored to draw the force-slip diagram and to avoid any appearance of dynamic- 

related forces that could influence the interpretation of the overall bond performance. The 

specimens were loaded in tension until a complete slippage took place.

Table 3. Fresh and hardened concrete properties

Property Specification
Age of 
Test, 
Days

CC 70%
HVFAC FRCC FR-70%

HVFAC

Slump, mm 
(in)

ASTM C143 - 114
(4.5)

127
(5.0)

127
(5.0) 152 (6.0)

Air Content, % ASTM C231 - 3 4 4.5 5.5
Splitting 
Tensile 

Strength, MPa 
(psi)

ASTM C496
28 2.60

(377)
1.72

(249)
2.9

(428) 2.1 (310)

56 2.66
(387)

1.73
(251)

3.0
(432) 2.2 (314)

Compressive 
Strength, MPa 

(psi)
ASTM C39

28 34
(4890)

30
(4300)

33
(4795) 31 (4495)

56 35
(5131)

34
(4938)

35
(5058) 33 (4811)
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Figure 2. Fibers used, steel fiber (gold color) and synthetic fiber (white color)

5. TEST RESULTS AND DISCUSSIONS

The pullout tests results showed that regardless the type of concrete or addition of fibers, 

GFRP bars exhibited less bond strength than that of mild steel bars. All the specimens 

failed in pure pullout as planned. Figure 3 depicts a failed specimen. The compressive 

strengths used were normalized to mitigate the differences in compressive strength 

between the laboratory and filed ones. The inverse square root for normalization was 

endorsed by the ACI 318 (2014) while the fourth root was recommended by the ACI 

408R-03 (2003). The results are depicted in Table 4. The design compressive strength of 

all concrete was 35 MPa (5000 psi), but the laboratory tests yielded some slight shifts in
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their results from the design one and that was reflected on the bond strength results.

When conventional concrete (CC) was used, a higher bond strength was observed than 

that resulted from using the 70% HVFA concrete owing to the higher bond strength 

noticed in CC.

Adding fibers to the concrete regardless of their type (steel or synthetic) or 

concrete type had led to reduce the bond strength. The addition of fibers was 

accompanied with an increase in the level of entrapped air in concrete and that behavior 

was also reported in other studies (Kobayashi et al. 2010; Naaman et al. 1993). It is 

believed that adding fibers disturbs the concrete and introduces more voids (Soylev, 

2011). Voids surrounding the bar tend to create spacing between the bar and surrounding 

concrete and thus reduce the contact area between the concrete and bar. As a result of that 

reduction in contact area, a decrease in bond strength is resulted.

Steel fibers were used only with steel bars, while synthetic fibers were used with 

GFRP bars. The reason for this combination is to present/investigate a more sustainable 

concrete including all sustainable/green elements represented by noncorrosive bar 

(GFRP), synthetic noncorrosive fibers, and HVFA concrete. The results showed that the 

more fly ash added, the less the bond strength reduction resulted regardless the fibers and 

reinforcement types. In addition, CC had the highest reduction with 18%, while 70% 

HVFAC had 12% reduction only. Fly ash particles are smaller than Portland cement 

particles, as the earlier has an average size of around 75 gm while Portland cement has an 

average size of around 10 gm (Bentz et al. 2011). The finer the particle size was, the 

better the concrete-to-sand coated bar engagement was noticed.
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In CC, when mild steel bars used, the reduction rates were 24% for 13 mm (0.5 

in.) bar size and only 4% for 19 mm (0.75 in.) bar size. On the other hand, when GFRP 

bars used, the reduction rates of the 13 mm (0.5 in.) and 19 mm (0.75 in.) bars were 22% 

and 23% respectively. The reason that 19 mm steel bars had the lowest bond strength 

reduction rate is that 19 mm (0.75 in.) bar is the least susceptible to voids generated by 

the fiber addition among all bars used in this investigation.

Figure 3. GFRP bar after pullout test
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Table 4. Test results of pullout

Concrete
Type

Rebar
Size
mm

Fiber
Type

Rebar
Type

P
(kN)

Norm. 
P (kN)

P
avg.
(kN)

Coefficient 
of Variation 

(%)

CC

#13
- Steel 66 66 63 859 59

- GFRP 54 54 49 1444 44

#19
- Steel 171 172 160 11148 148

- GFRP 110 110 115 6119 119

70%
HVFAC

#13
- Steel 71 71 73 576 76

- GFRP 34 34 36 838 38

#19
- Steel 158 157 157 0159 158

- GFRP 79 79 83 889 88

CC + 
Fiber

13
Steel Steel 43 43 47 1452 52

Synthetic GFRP 41 41 38 936 36

19
Steel Steel 158 158 153 5148 147

Synthetic GFRP 89 89 87 286 86

70% 
HVFAC 
+ Fiber

13
Steel Steel 57 56 59 763 62

Synthetic GFRP 30 29 32 1336 35

19
Steel Steel 138 136 136 0137 136

Synthetic GFRP 70 69 76 1283 82
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6. CONCLUSIONS

Corrosion is a major issue in the civil engineering industry, therefore other non­

corrosive materials, such as GFRP bars, have been used as an effective solution to replace 

steel bars. Portland cement is also not an environment-friendly material owing to its high 

level of carbon dioxide emissions, thus alternative such as fly ash has been of main 

interest to replace Portland cement fully or partially. In this investigation, a bond strength 

assessment was carried out on specimens made from HVFA concrete and Fiber- 

Reinforced HVFA concrete and reinforced with GFRP bars. Fly ash Type-C has been 

used to partially replace Portland cement where the fly ash replaced 70% of the overall 

cementitious material and the rest was Portland cement. In addition, two types of 

reinforcement and two bar sizes were used, namely steel and GFRP bars, and 13 mm (o.5 

in.) and 19 mm (0.75 in.) respectively. Furthermore, the addition of fibers in concrete was 

assessed too, where two types of fibers were implemented, namely steel and synthetic 

fibers. The following was concluded from the study:

□ All specimens showed a clear slippage mode of failure.

□ GFRP bars showed less bond strength than that of steel bars.

□ The bigger the bar size was, the more bond strength yielded.

□ The higher the compressive strength (even if it is slightly high or low) 

was, the bigger the bond strength.
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□ The ribs of steel bars were the reason for the higher bond strength owing 

to bearing forces generated from the existence of ribs in addition to the friction forces. 

Sand-coated GFRP bars had only friction resistance.

□ CC with or without fibers had a higher bond strength than HVFA.

□ The addition of fibers reduced the bond strength, regardless the concrete 

or bar type, due to the increase in the level of air entrapped in concrete that disrupts the 

concrete and create more voids.

□ The bond reduction after adding fibers was the highest in CC with 18% 

reduction and the lowest in HVFA with 12%.

□ In fiber-reinforced CC, 19 mm (0.75 in.) steel bars had the lowest 

reduction of bond among the other types and sizes of bars owing to the low voids 

susceptibility of the steel bar’s ribs. The larger the bar rib was, the less voids 

susceptibility was noticed and thus less bond reduction.

□ In fiber-reinforced HVFA, GFRP bars, regardless of their size, showed

less bond reduction than steel bars owing to the better engagement of the fine particles of 

HVFAC with sand coating of the GFRP bars.
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