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ABSTRACT 

Generation of hydrogen and oxygen through catalyst-aided water splitting which 

has immense applications in metal air batteries, PEM fuel cells and solar to fuel energy 

production, has been one of the critical topics in recent times. The state of art oxygen 

evolution reaction (OER), oxygen reduction reaction (ORR), hydrogen evolution reaction 

(HER) catalysts are mostly comprised of precious metals. The current challenge lies in 

replacing these precious metal-based catalysts with non-precious earth-abundant materials 

without compromising catalytic efficiency. 

This research explores mixed metal selenides containing Fe-Ni, Fe-Co and RhSe 

which were hydrothermally synthesized and/or electrodeposited and tested for OER and 

ORR catalytic activity in alkaline medium. This spinel class of compounds generically 

referred to as AB2Se4 where A and B are divalent and trivalent cations respectively. 

Interestingly, FeCo2Se4 and FeNi2Se4, both showed highly efficient catalytic activity with 

low overpotential. Increase in performance was observed when these two spinel 

compositions were mixed with conducting carbon matrix, which decreased the 

overpotential significantly and increased the stability.  

Finally, the metal selenides were also applied towards electrochemical bio sensing 

of dopamine and glucose. Electrodeposited and hydrothermally synthesized CuSe was 

studied towards detection of ultralow concentrations of dopamine in neutral phosphate 

buffer solution. The electrodeposited CuSe was also active towards detection of glucose in 

alkaline electrolyte. CuSe showed low detection limit, high sensitivity and selectivity 

towards these biomolecules.  
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1. INTRODUCTION 

1.1. SYNOPSIS 

Water splitting is considered to be one of the most promising ways to generate 

hydrogen, which has been projected as one of the cleanest fuels for the foreseeable 

sustainable energy future since hydrogen on combustion does not lead to production of any 

greenhouse gases (GHG). Electrocatalytic water splitting involves two half-cell reactions: 

hydrogen evolution reaction (HER) occurring at the cathode and oxygen evolution reaction 

(OER) at the anode. Although conventional ways using natural gas and coal can produce 

H2 in large quantities, electrocatalytic water splitting, on the  other hand, can be truly fossil-

fuel-free technique to produce copious quantities of hydrogen. However, the bottleneck for 

water splitting is oxygen evolution reaction, which is a sluggish process requiring high 

energy to overcome the activation barrier for the reaction to go forward. Typically, 

electrocatalysts are used to reduce the activation barrier which is reflected in the lowering 

of applied potential to initiate the catalytic reaction. Although traditionally, precious metals 

and precious metal oxides such as those of Ru, Ir and Pt were the most commonly used 

OER electrocatalysts, recently transition metal-based compounds have shown very 

promising catalytic activity outperforming the state of the art catalysts. In this dissertation 

we have attempted to replace precious oxides with transition metal selenides as facile OER 

electrocatalyst based on the hypothesis that increasing lattice covalency will lead to better 

OER catalytic activity. The first step of oxygen evolution reaction in alkaline medium is 

the attachment of hydroxyl ions on the active transition metal surface site. Hence, the 

coordination and ligand environment around the catalytically active metal site plays a 
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crucial role in determining the chemical potential and OER catalytic activity. In the case 

of metal selenides, the degree of covalency in the metal-selenium bond increases according 

to Fajans’ rule and by increasing nucleophilicity of the surface sites, it facilitates efficient 

attachment of OH- ions thereby promoting initiation of OER. This favorable property has 

been exploited for application of transition metal selenides as electrocatalysts for OER and 

oxygen reduction reaction (ORR) in this work. This catalytic performance could further be 

improved by introducing conductive carbon based materials into the catalyst making them 

as hybrid composites, which facilitates better electron transfer between catalytic grains, 

within the composite, and the electrode. Carbon based materials such as reduced graphene 

oxide, and functionalized onion like carbon has been combined with transition metal 

chalcogenides to improve catalytic performance through synergistic effect. Furthermore, 

the synergistic effect has also been utilized for emhancing the efficicncy of oxygen 

reduction reaction (ORR) which is the primary reaction happening in fuel cell. Thereby, 

these transition metal chalcogenide hybrid systems has been designed to be bifunctional 

catalyst active towards OER and ORR in alkaline medium.  

Additionally, the transition metal chalcogenide systems have been also utilized for 

electrochemical oxidation of biomolecules such as glucose and dopamine. Similar to OER, 

the adsorption of OH- on the catalytically active metal site is the first step in electrocatalytic 

oxidation of these biomolecules occuring directly on the catalyst surface. Transition metal 

selenides has thus been used as non-enzymatic biosensors that can be potentially integrated 

into flexible, wearable technology. Efficiency of these sensors has been optimized by 

applying design principles to tune redox potential of the catalytic site, which can lead to 

selective oxidation of different clinically relevant biomolecules at low applied potentials.  
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1.2. BACKGROUND 

Hydrogen is an important component in the renewable energy sector. It is 

considered one of the most important precursor for the production of hydrocarbon fuels 

and industrial chemicals, but also an ideal energy carrier for the renewable energy storage 

due to its high energy density and environmental friendliness 1, 2. However, hydrogen does 

not exist in its pure state in nature, like other elemental gases, and has to be produced from 

hydrogen-containing resources such as natural gas, coal, biomass and water by various 

methods such as reforming, gasification, thermal decomposition or electrolysis. Presently, 

about 96% hydrogen is produced from fossil fuels. 3, 4 Excessive use of crude oil based 

products has led to global warming which is a major concern, where significant amounts 

of CO2 is pumped into the environment. Hydrogen production from water splitting or 

electrolysis derived from renewable energy, such as solar energy also known as 

photovoltaic conversion and wind energy, is an environmentally-friendly pathway to 

contribute towards meeting the constantly growing demand for energy supply and storage. 

For example, conversion of intermittent or excess solar (photovoltaic, PV) electrical energy 

into chemical energy by water electrolysis into hydrogen fuels can be used to stores excess 

solar energy during peak generation periods. During low generation periods, these H2 fuels 

can then be used to efficiently re-generate electricity via fuel cells. Fuel cells where oxygen 

reduction reaction (ORR) occurs is energy conversion devices that electrochemically 

convert fuels such as hydrogen into electricity with high power density, high efficiency, 

and low greenhouse gas emissions as shown in Figure 1.1.5 Hence, this technology 

complements solar energy conversion by providing a source of useable energy in absence 
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of direct sunlight, and is becoming increasingly important in grid-based energy generation 

technology. 

 

 

 

Figure 1.1. Process of photocatalytic water splitting and application in fuel cell. 

 

1.3. WATER ELECTROLYSIS 

Electrolysis of water is the decomposition of water into oxygen and hydrogen 

gas due to the passage of an electric current. This technique can be used to make hydrogen 

which is a key component for hydrogen fuel production and oxygen gas. This technique is 

also called water splitting which requires an applied potential of 1.23 V vs RHE. 

1.3.1. Oxygen Evolution Reaction (OER).  The overall reaction of water 

splitting is can be described as follows,  

2H2O → 2H2 + O2 
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Hydrogen is evolved at the cathode, (hydrogen evolution reaction, (HER)) while 

oxygen is evolved at the anode (oxygen evolution reaction, (OER)).  

In the alkaline solution the corresponding cathodic and anodic reaction can be 

written as:6 

4H2O + 4e- → 2H2 + 4OH- ; Ec = -0.826 V 

4OH- → 2O2 + 4e- + 2H2O; Ea = 0.404 V 

The thermodynamic water splitting voltage is at 1.23V commensurate with the 

energy required for OER to take place. However, in practicality this reaction requires 

energy higher than 1.23 V to overcome the activation barrier for OER making the whole 

process kinetically slow. This is because OER is an energy intensive process, requiring a 

4 e transfer pathway forming a double bond between two oxygen atoms in the dioxygen 

molecule (O2).
8 While the entire process in a multi-step electron transfer process, the rate 

of reaction is typically determined by the slowest electron transfer step, also referred to as 

the rate determining step (rds). Typically energy in the form of higher potential is applied 

to enhance rate of OER and potential that is applied in excess of 1.23 V (thermodynamic 

water splitting voltage) is called overpotential denoted by ‘η’. 

η = Eappl – 1.23 V    

where Eappl = applied potential. Extensive amount of research is going on to bring the 

overpotential as close as possible to 1.23 V by designing water splitting systems that can 

lower the overpotential. Bringing the overpotential close to thermodynamic value for OER 

during water splitting is crucial for large volume production of hydrogen which can be used 

in commercialization of alkaline fuel cells.9 Typically catalysts are utilized to reduce the 

(1) 
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overpotentials and such catalysts are categorized either as electrocatalysts (activated by 

application of electric potential) or photocatalysts (activated by shining UV/visible light). 

The other materials which complement electrocatalytic energy conversion are 

photoelectrochemical (PEC) catalysts. While both photococatalysts and 

photoelectrochemical catalysts can utilize solar energy for water splitting reaction, the 

photoelectrochemical systems decouple the solar absorption and electrocatalyst 

functionalities into separate photoabsorber and electrocatalyst layers. Such PEC systems 

has been projected as the most efficient solar-to-fuel energy conversion system since the 

performance of the device can be boosted by optimizing efficiency of each component. 

These systems mimic photosynthesis occurring in plants which has led to another branch 

in solar energy conversion research, generically referred to as artificial photosynthesis. 

Typically, current produced during OER process as a function of applied potential is 

normalized with respect to geometric electrode area and is reported as current density. 10, 

11 In both electrocatalysis and photoelectrocatalysis, a common denomination is used as a 

metric to benchmark the different catalysts, which is overpotential, η, measured at 10 

mAcm-2.  Hence all the results presented in this dissertation has been reported as 

overpotential at 10 mAcm-2 and compared with other reported catalysts as presented in 

respective publications. 

Further, to quantitatively compare the activity of various catalysts and correlate 

structure/composition/activity relationships, other metrics such as turn-over frequency 

(TOF) at steady state (i.e. after stabilization of the potential in response to an applied 

current) has been also used.12 The TOF is defined as the number of times per second a 

single active site evolves an O2 molecule (by accepting four electrons from solution). 
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Because TOFs are typically potential dependent, the overpotential at which the TOF is 

measured must be reported. TOF can be calculated using the following equation (2): 

           𝑇𝑂𝐹 =
𝐼

4𝐹𝑚
       

where I is the current in Amperes, F is the Faraday constant and m is the number of moles 

of the active catalyst. 

The kinetic activity of the electrocatalyst can be estimated using the Tafel’s 

equation (3):  

ƞ = 𝑎 + 2.3
𝑅𝑇

𝛼𝑛𝐹
log(𝑗) 

where ƞ is the overpotential, j is the current density and the other symbols have their usual 

meanings. The Tafel equation as shown in eqn (3) is a fundamental equation which is 

acquired from the kinetically controlled region of OER, and relates the overpotential ƞ with 

the log of current density, j, where the Tafel slope is given by 2.3RT/ 𝛼𝑛𝐹. 

Electrochemically active surface area (ECSA) was measured by varying from lower 

to higher scan rates. ECSA can be calculated using the equation 4: 

                                                          ECSA = CDL/ CS  

where CDL is the double layer capacitance and CS is the specific capacitance. In this 

dissertation the value of CS used was 0.04 mFcm-2.  

The roughness factor (RF) can be calculated using the formula  

               𝜌 =
𝐴𝑚

𝐴𝑔
            

where Am – actually accessible microscopic area and Ag- geometric area.  

(2) 

(3) 

(4) 

(5) 
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1.3.2. Oxygen Reduction Reaction. The standard reduction potential of O2 to 

OH- for a four electron reduction pathway is:13  

O2 + 2H2O + 4e−⇌ 4OH−; E = 0.401 V vs SHE 

On the other hand, if it is two electron pathway, O2 is reduced to peroxide ion,  

O2 + H2O + 2e–⇌ HOO– + OH−; E = -0.076 V vs SHE 

which can be further reduced to OH- 

HOO–+ H2O + 2e– → 3OH–; E 0.878 V vs SHE 

The schematic representation of fuel cell where oxygen reduction reaction occurs 

on the metal surface is shown in Figure 1.2. The powerful technique to evalute the oxygen 

reduction at the electrodes is the rotating disk electrode (RDE), which is based on the 

convection/forced transport of the reactant molecules in the solution to enable the 

evaluation of ORR activity. Figure 1.3 gives the typical oxygen reduction reaction RDE 

polarization curve from which information such as the onset potential (Eonset), half wave 

potential (E1/2), overpotential under a specific current density (ɳ) and limiting current 

density (jL) can be obtained.   

To obtain information on the number of electrons transferred (n) and the rate 

constant (k), the electrochemical properties from RDE can be co-related to Koutecky – 

Levich (K-L) equation 6:   

              
1

𝑗
=

1

j𝒌
+

1

n𝜔1/2
  (6) 
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Figure 1.2. Schematic representation of a fuel cell.   

 

where jK is the kinetic-limiting current density, ω is the angular velocity in unit of rad/s, n 

is the number of transferred electrons, and k is the electron-transfer rate constant. n can be 

obtained from the slope and intercept of K-L equation. 

 

 

 

Figure 1.3. Typical LSV obtained during oxygen reduction reaction. 
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The extension of RDE is the rotating ring disk electrode (RRDE). In this method, 

ORR occurs on the disk and any unreacted species can be further reduced at the ring 

electrode. For example, Pt/C of different particle size can undergo a 2 or 4 electron ORR 

on the disk electrode and on the ring electrode any H2O2 produced during the reaction is 

further reduced to H2O. This helps in deducing the reaction mechanism of the ORR as well 

as estimate amount of H2O2 produced.  

The 2 electron reduction current is given by: 

     I2e
- = IR / N                  

where I2e- is the 2-electron reduction current during ORR on the disk electrode and N is the 

collection effieciency.   The ORR current (ID) on disk electrode can be expressed as: 

  ID = I2e
- + I4e

-                            

where I4e- is the 4-electron ORR current. 

Using the following equation (equation 9) we can calculate the percentage of H2O2  

produced (XH2O2) and number of electrons (n) utilized (equation 10) in ORR.  

ΧH2O2 =

200𝑰R

𝑵

𝑰D +
𝑰R

𝑵

  

           n =
4𝑰D

𝑰D +
𝑰R

𝑵

     

where IR is the ring current, ID is the disk current, and N is the collection efficiency.14 

1.3.3. Mechanism of OER at the Catalytic Site and the Effect of Surface Atom. 

OER in alkaline medium is a multi-step 4 electron transfer process with each elementary 

step generating one electron. Each step comprises an unfaborable energy barrier leading to 

the sluggish kinetics of OER and large overpotential. A typical OER reaction on the 

(7) 

(8) 

(9) 

(10) 
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catalyst surface can be explained from the modified Krasilshchikov mechanism originally 

proposed for metallic anode OER catalysis which has been later adapted by several other 

researchers for metal oxidic and non-oxidic electrocatalyzed OER 15-18 and the mechanism 

is as follows, 

[S]n + OH- → [Sn+1-OH] + e- 

[Sn+1-OH] + OH- → [Sn+1-O]- + H2O 

[Sn+1-O]- → [Sn-O] + e- 

2[Sn-O] → 2[S]n + O2 

 where [S] is the catalytically active site in the anodic catalyst and n is average oxidation 

state of the active site. The first step in the attachment of the hydroxyl group to the active 

site of the catalyst [S] which initiates the OER process. Catalytic activity of metals is 

different to that of the same metal oxides, hydroxides, oxyhydroxides or chalcogenides. 

Therefore, the oxidation state of the metal and its coordination with anions along with local 

geometries has a profound influence on the catalytic site which inturn the activity towards 

OER. It can be perceived from the above mechanism that the catalytic activity can be 

affected by any factor that can regulate the oxidation state, chemical potential and other 

factors of the catalytically active surface site. 

1.3.4. Mechanism of ORR at the Metal Chalcogenide Surface. ORR mechanism 

pathway of metal chalcogenides/oxide follow a different rationale to those of the precious 

metal surfaces.  The surface cations of transition metal oxides coordinate with the oxygen 

of H2O in order to fulfill their full oxygen coordination. The hydrogen atoms of H2O 

become distributed over the catalyst surface. To create OH- species, the protonation of 

surface oxygen ligand is charge-compensated by the reduction of a surface cation M such 
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as Mn4+, Co3+, Fe3+, and so forth. The M-OH- species further interact with O2 which adsorb 

on oxide surfaces. In 2011, the Shao- Horn group observed a volcano plot of the catalytic 

activities of perovskite oxides versus the eg electrons om the transition metal site that 

peaked at eg electrons ca. 0.8-1.0. A moderate eg filling around 0.8-1.0 conferred the M-O2 

bonding that was neither too strong nor too weak. Hence, the presence of an eg electron 

was proposed to destabilize the transition metal oxide bond and together with O2, and to 

facilitate the displacement of OH- of M-O- with M-O2
2-,19, 20 

 

2Mm+ - O2- + 2H2O + 2e- → 2M(m-1)+  -OH- + 2OH- 

O2 + e- → O-
 2, ads 

2M(m-1)+ - OH- + O-
 2, ads + e- → 2Mm+ - O2- + 2OH- 

1.4. METAL OXIDE BASED CATALYSTS FOR OER AND ORR  

Electrocatalytic OER and ORR have attracted widespread attention because of the 

important role in various energy storage and conversion devices such as metal air batteries 

and water splitting devices. Metal oxides electrocatalysts has exhibited good catalytic 

activity and hold promise as materials for sustainable future. Presently RuO2 and IrO2 are 

considered as state of the art catalyst for OER while Pt is the best-performing catalyst for 

ORR. However, the expensive and acarcity of resources makes these catalysts non-feasible 

for practical usage, while Ir and Ru-oxides are also unstable for long-term OER. Pt, on the 

other hand gets poisoned in presence of methanol which causes its ORR catalytic activity 

to markedly reduce with time. Hence replacement of precious metal oxides with transition 

metal-based compositions has attracted significant attention in the energy research 
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community over the last several years. The following section gives an overview of the 

transition metal oxides for energy conversion.  

1.4.1. Ni-Fe/Co Based Catalysts for OER. Transition metal oxides are known to 

possess wide bandgap and classify as insulators to wide-gap semiconductors, whereas 

transition metal chalcogenides with narrower bandgap could be considered as a semi-

metals while few of them with zero bandgap are metallic.12, 21-29 First-row transition-metal 

oxides (or hydroxides), especially Co- and Ni-based metal oxides 30, 31,32-37 have been 

researched for developing efficient water splitting catalysts in alkaline medium due to their 

unique electronic properties and variety of chemical compositions.38-43 Most of these 

transition metal oxide base catalysts exhibited compared OER activity to the precious metal 

oxides.  

To understand the superior activity of Ni-based electrocatalysts several theoretical 

and experimental studies were carried out and the results of these investigations showed 

that this high activity can be attributed to the valence band edge- alignment and occupancy 

of the d-levels of the transition metal.44-46 It has been predicted that the transition metals 

having an eg occupancy of 1e- improves the catalytic activity manifolds.11 The above 

discussed theories have been experimentally proven and it has been observed that the most 

influential factor to predict and optimize catalyst efficiency was the above molecular 

orbital descriptor.23  

Several published reports from various researchers have shown that Ni-based 

oxides and hydroxides which have a t2g
6eg

2 electronic configuration for octahedral Ni2+, 

outperforms other metal-based oxides/hydroxides in terms of the overpotential required for 

oxygen evolution. It was observed after several experimental studies that NiOOH species 
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was the actual catalyst in the Ni-oxide-based systems, which is formed in situ by oxidation 

of Ni2+ to Ni3+ preceding the water oxidation reaction. In the linear sweep votammograms 

(LSV), Ni oxidation from Ni2+ to Ni3+ shows up as a pre-oxidation peak before the actual 

water oxidation process. Ni3+ which is believed to be the catalytic site of OER achieves eg
1 

electronic configuration retaining the octahedral coordination, which explains the high 

catalytic activity of the NiOOH.  

Dopants such as Fe has positive effects on Ni-based catalysts. Corrigan 47 et al. 

studied the OER behavior upon systematic doping of Fe impurities to nickel oxide. The 

decrease in OER overpotential and decrease in discharge capacity was reported even at an 

ultralow Fe concentration (0.01%), demonstrating the high sensitivity nature of OER on 

Ni-based electrodes to Fe impurities. By adjusting the Fe content, a composite NiFe 

hydrous oxide with >10% Fe showed intriguing activities toward OER electrocatalysis at 

low overpotential and smaller Tafel plot. However, some of the recently discovered non-

oxidic electrocatalysts have outperformed oxide based catalysts opening up new directions 

of research.48 

Further nickel iron oxide, NiFe2O4 with spinel structure often has oxidation states 

of +2 and +3 for Ni and Fe respectively. The spinel structure type comprises cubic closed-

packed oxide anions with Ni2+ occupying one-eighth of the tetrahedral holes and Fe3+ 

occupying half of the octahedral holes. This catalyst showed an overpotential of 362 mV 

with a low Tafel slope of less than 40 mV/dec as shown in Figure 1.4 outperforming the 

state of the art IrO2. Additionally, due to the crystalline nature of the nickel iron oxide, an 

impressive durability of over 7,000 hours was observed.49   
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Figure 1.4. The OER polarization curves of pristine and 2-cycle NiFeOx/CFP in 1M      

KOH. (Reproduced with permission 45). 

 

 

Apart from the above, nickel iron layered double hydroxides (LDH’s) and NiFe 

alloys have been studied towards OER.38 In these type of LDH structures exfoliation of 

few layers was observed due to large interlayer spacing between the LDH structures. The 

authors proposed that there was increase in the active sites after exfoliation and observed 

dramatic improvement in OER activity with catalysts have similar ECSA as shown in 

Figure 1.5.  

The other way of improving performance of metal oxides is by increasing the 

roughness factor of the catalyst surface. For example dissolution of the catalyst surface 
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Figure 1.5. Polarization curves of bulk and exfoliated LDH. (Reproduced with 

permission50). 

 

 

which creates a highly textured porous catalyst surface has been show to have a very large 

impact on the performance of the catalyst.51 Recently Yi Cui reported improvement of 

catalytic activity when transition metal oxide (iron, cobalt, nickel oxides and their mixed 

oxides) nanoparticles (20 nm) are electrochemically transformed into ultra-small diameter 

(2-5 nm) nanoparticles through lithium-induced conversion reactions.51 

 According to the studies corresponding to the molecular orbital descriptor, Co(II) 

based systems with a low spin octahedral coordination for Co should produce the best water 

oxidation catalyst. Cobalt oxides are highly active electrocatalysts for OER in alkaline 

solution.52, 53 Cobalt based catalysts with similar size and shape, regardless of their 

preparation methods and the nature of the supports, give approximately the same Tafel 

slope of around 60 mV dec-1. Actually, organometallic complexes of Co does show high 

catalytic performance which has been researched extensively by many groups. Further 
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doping cobalt based electrocatalyts with iron and nickel has shown similar improvements 

as nickel based catalysts. 54-56  

1.4.2. Ni-Fe Reduced Graphene Oxide as a Hybrid Catalyst for Full Water 

Splitting. The low electronic conductivity of transition metal oxides is one reason for their 

depressed OER catalytic activity. The electronic conductivity of transition metal oxides 

can be improved by cation substitution or by integration with a conductive substrate. Spinel 

or perovskite-structured oxides are most amenable to modifications via cation substitution. 

For example, it has been shown that the resistivity of Mn3xFexO4 spinel decreases with 

increasing x.57, 58 Transition metal oxides with good ORR activity may also be integrated 

with transition metal oxides with good OER activity to support bifunctionality in oxygen 

electrocatalysis. In comparison with perovskites, the spinel structure can be formed at 

lower temperatures and such materials are usually nanostructured. Metal oxides should 

additionally be integrated with a conductive substrate to decrease the contact resistance at 

the catalyst-electrode interface and film resistance within the catalyst composite. Graphene 

is a conductive material with high surface area and good stability under a wide range of 

environmental conditions and can be used as a conductive filler in such catalyst 

composites.59 

Graphene is more commonly synthesized as reduced graphene oxide (rGO) at some 

expense of electron transport properties. rGO can be nitrogenated to nitrogen-doped 

reduced graphene oxide (N-rGO) which recovers some of the lost electronic conductivity. 

The advantage of N-rGO nanosheets is ease of integration with many metal nanomaterials 

to improve the performance of the latter in catalysis.60              
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NiFe-LDH on GO, Ni form, LDH and GO are all active towards OER. It is 

noteworthy that NiFe-LDH/rGO far outperforms the other catalysts in current density over 

the full potential window with lower overpotential value. The OER onset overpotential was 

achieved as low as 240 mV (∼1.470 V vs. RHE), which is far smaller than the previous 

value for IrO2 in 1.0 M KOH (290 mV, ∼1.52 V vs. RHE).61   

The group of Grätzel reported NiFe layered double hydroxide (LDH) as 

bifunctional electrocatalyst for overall water to approach a step closer to practical 

application.27 This bifunctional catalyst delivers a 10 mA cm-2 current density at a cell 

voltage of 1.7 V in alkaline medium. Indeed hybrid Ni- and Co-based oxides have shown 

great promise for water electrolysis in alkaline medium but the overpotential to reach 10 

mAcm-2 still remains a challenge.62-64 

1.4.3. Noble Metal Based Catalysts for ORR. Pt is the best catalyst till date 

towards ORR both in acidic and alkaline medium. Research works on Pt/C in alkaline 

media attracts more and more attention because of the increasing interests on alkaline fuel 

cells and batteries. To reduce the use of high-cost Pt, core−shell structures with Pt as shell 

and less costly metal as core were developed, such as  Pt@Au nanorods dispersed on 

pyridine cycloaddition of graphene (Pt@Au-PyNG) and Pt@Pd nanocubes enclosed with 

(100) planes.65, 66 Another approach is to use nonprecious metal oxides as the catalyst 

support for Pt. A novel Pt cluster loaded on CaMnO3 as a noncarbon support was 

developed. It exhibited essentially competitive ORR kinetics of commercial Pt/Vulcan and 

outperforms Pt/C with better operating durability.67 The catalytic activity and efficiency of 

ORR on the Pt surface in alkaline media is lower than in the acidic one, mainly due to the 

excessive HO2
− species generated on the Pt surface in alkaline solutions.68  
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Pd is also active for ORR in alkaline media. A combined electrochemical and 

topological analysis indicated that polycrystalline Pd surfaces underwent pronounced 

surface oxidation/reduction and morphology evolution due to the interaction of Pd with 

surface species. 69 A RDE study on the relationship between ORR activity and d-band 

center of noble metals (i.e., Au, Ag, Pd, Rh, Ir, Ru and Pt) indicated close d-band center 

value between Pd(111) and Pd/C with Pt(111) and Pt/C.70 The specific activity of (100)-

oriented Pd nanocubes with particle size of 27 nm was ∼4 times of that of spherical Pd 

nanoparticles with particle size of 3 nm, highlighting the high activity of Pd(100) in 

alkaline media.71 Recently, 14 nm Pd nanocubes with (100) facets and with (111) facets at 

corners were synthesized. The adsorption of OH- on the truncated Pd nanocubes in 1 M 

NaOH was more significant than in 0.1 M NaOH. 

However, the future of Pt/C and Pd as feasible ORR catalysts is shadowed with 

high cost, scarcity, and the insufficient durability of Pt. Recent works have recognized 

some non-Pt metals and alloys for ORR. 

1.4.4. Transition Metal Oxides Based Catalyst for ORR. In 2011, the Dai group 

revealed that Co3O4 nanoparticles grown on N-doped reduced and mildly oxidized 

graphene oxide (N-rmGO) exhibited superb activity for ORR, besides OER, in alkaline 

medium.72 After that seminal work, extensive studies for spinel/nanocarbon hybrid were 

carried out, where the transition metal spinel oxides includes Co3O4,
73, 74 MnCo2O4,

75 

NiCo2O4 ,
76 FeCo2O4,

77 CuCo2O4,
78 CoFe2O4,

79 Fe3O4,
80 CoMn2O4,

81 Mn3O4,
82 and various 

heterogeneous nanostructures based on these spinel oxides. Co3O4 is of normal spinel 

structure and is a p-type semiconductor with the fundamental band gap of 0.74 eV. The 
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small band gap of Co3O4 is due to a direct dipole forbidden d-d transition between 

tetrahedral-site Co2+ cations.83  

In Dai’s seminal work, Eonset and E1/2 of Co3O4/N-rmGO was reported to be 0.93 

and 0.82 V, respectively.84 The measured HO2
− of Co3O4/N-rmGO was below 6%, and a 

gas-diffusion layer loaded with Co3O4/N-rmGO exhibited negligible degradation in 0.1 M 

KOH solution. Slightly inferior performance was evident when the N-rmGO was replaced 

by CNT,85 rGO,86 mesoporous carbon,87 and N-doped carbon.74 The good ORR activity of 

Co3O4/N-rmGO was attributed to the synergistic covalent coupling between Co3O4 and N-

rmGO, as well as the unique property of N-rmGO. NiCo2O4 is a semiconductor with 

electronic transport based on the variable-range hopping and nearest-neighbor hopping 

mechanisms.88 Su and Chen et al. reported a hydrothermal synthesis of urchin-like 

NiCo2O4 spheres.89 Cao et al. prepared a 3D macro porous cubic spinel NiCo2O4, 

consisting of numerous NiCo2O4 nanoparticles in size of 20−40 nm that further aggregated 

into slabs with thickness of 150 nm. The macroporous structure, with pore volumes of 0.23 

cm3g−1, enabled facile mass transport of reactants to the active surface sites. The 

macroporous NiCo2O4 catalysts exhibited good ORR activity with Eonset of 0.89 and E1/2 of 

0.75 V.90 Lou et al. developed a polyol synthesis of NiCo2O4- rGO hybrid by refluxing 

metal acetates with ethylene glycol and subsequent annealing at a temperature as low as 

300°C.76 NiCo2O4/ NrGO and CuCo2O4/NrGO synthesized by hydrothermal methods 

using NH4OH as the precipitating and N-doping agent were also reported.91 

1.4.5. Non-Metal Doped Carbon as ORR Catalyst. Carbon, including carbon 

black, graphene, and carbon nanotube (CNT), is conventionally used as catalyst support 
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because of its high electronic conductivity and large surface area. Recently, it was noticed 

that carbon doped with nonmetal heteroatoms exhibits good ORR activity, where the  

 

 

 

 

Figure 1.6. Possible nitrogen positions in the structure of graphitic sheet; (i) top-N, (ii) 

center-N, (iii) valley-N, and (iv) oxide-N. (b) different nitrogen functionalities in a 

graphitic sheet: pyridinic-N (N1), pyrrolic-N (N2), graphitic-N in center (N3, N-Qcenter), 

and graphitic-N in valley (N4, N-Qvalley) (Reproduced with permission 92). 

 

 

nonmetal elements include N, B, S, P, F, and so forth of which N is the one of the attractive 

nonmetal studied extensively. N-sites of NC include pyridinic N, pyrrolic N, and 

quaternary N. Pyridinic N refers to N atoms at the edges of graphene planes, where each N 

is bonded to two carbon atoms and donates one p-electron to the aromatic π system. 

Pyrrolic N atoms are integrated into five membered heterocyclic rings, which are bonded 

to two carbon atoms and contribute two p-electrons to the π system. Quaternary N atoms 

are those substituting carbon atoms within the graphene layer.93 As shown in Figure 1.6. 

the pyridinic and pyrrolic N are located at the graphitic edge, where quaternary N can be 

both “edge-N” and “bulk-like-N”. Quaternary N is further classified into quaternary N 

valley sites (N-Qvalley) and quaternary N center cites (N-Qcenter).
94 The activity towards 

a b 
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ORR of N doped catalysts increases in the sequence of pyridinic N < pyrrolic N < 

quaternary N. 

1.4.6. Motivation to Use Transition Metal Chalcogenides for OER and ORR. 

Going forward, further reduction of overpotential is key in energy conversion through 

water splitting, and hence OER and ORR catalytic performance of the proposed catalysts 

needs to be improved either through compositional design or through forming hybrid 

materials modified with other foreign functional materials. We targeted transition metals 

selenides doped with different conductive carbons to synthesize hybrid catalyst prepared 

by electrodeposition and hydrothermal methods. This strategy shows that the combination 

of the over layers yields a cathodic shift in OER onset potential as compared to that 

observed for a pure metal selenides. The hybrid catalysts showed intriguing activities 

toward OER electrocatalysis with low overpotential at a current density of 10 mA cm-2. 

This gives a new direction to design superior OER electrocatalysts with unprecendented 

catalytic efficiency surpassing other OER electrocatalysts reported till date including 

precious metal oxides. 

Typically, it has been observed that while the transition metal oxides are wide 

bandgap and mostly insulating, transition metal chalcogenides have narrower bandgap, a 

semiconducting nature and some of them are even semimetal or metals with zero bandgap 

(Figure 1.7). For example, while NiO has a bandgap of 3.5 eV, NiS2 and NiSe2 have much 

smaller bandgaps of 0.35 eV and 0.0 eV, respectively.21 Typically in these transition metal 

oxides/chalcogenides in the simplest bonding scheme, the valence band edge is composed 

of the σ-bonding interaction with chalcogen s and p orbitals with the metal d-orbitals (eg 

symmetric dx2-y2 and dz2) while the bottom of the conduction band has more contribution 
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from the anti-bonding σ* orbitals centered preferentially on the metal. The d-orbitals of the 

transition metal (forming the t2g and eg* sets) lie in the inter-band region where the splitting 

between them is determined by simple consideration of ligand field theory.95 

 

 

 

Figure 1.7. A qualitative band diagram showing the comparative valence band and 

conduction alignment between few transition metal oxides, selenides and 

sulfides.(Reproduced with permission 21).  

 

As the anions are changed from O to Te, i.e. down the chalcogen series, the valence 

band edge is expected to rise higher in energy due to decreasing electronegativity of the 

chalcogen atom and higher covalency shown in Figure 1.7. Additionally the crystal field 

splitting of the d-orbitals is also affected by changing the chalcogen atoms which changes 

the ligand field strength.96 These changes in the orbital energy levels will directly influence 

their alignment with respect to the water oxidation and reduction levels, which in turn will 

affect the charge transfer between the catalyst and water. For the water splitting catalysts, 

one of the most influential factors in light of the electronic band structure is that water 
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oxidation-reduction levels are bracketed within the valence and conduction band edges of 

the catalyst. In these electrocatalytic systems charge transfer occurs at the semiconductor 

(catalyst)-electrolyte interface which will be influenced by the relative energy levels of the 

semiconductor and aqueous electrolyte. Efficient charge transfer will occur when these two 

levels are closer in energy. 

 

 

 

Figure 1.8. Comparison of nickel oxidation peak in Ni3Te2, Ni3Se2, Ni3S2, 

Ni(OH)2 (Reproduced with permission 97). 

 

 

To prove this hypothesis that chalcogenides are better electrocatalyst than oxides 

towards OER, our group has measured the Ni(II)/Ni(III) oxidation peak in Ni3E2 (E = S, 

Se, Te) by collecting the CV in the range of 1.1 to 1.45 V and compared with that of 

Ni(OH)2. Indeed, it was observed that the Ni2+ oxidation peak showed a cathodic shift in 
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Ni3R2 indicating that the catalytically active Ni3+ was generated at a lower potential in Ni-

chalcogenides compared to the oxide and hydroxides as shown in Figure 1.8. 

In case of ORR, the drawbacks with Pt as ORR catalysts has led researchers to 

spend huge efforts towards developing low cost electrocatalysts with high ORR activity as 

an alternative to Pt.98 In particular non-precious transition metal chalcogenides have gained 

signification reputation as ORR catalysts due to their high fuel tolerance, high catalytic 

activity, high stability and earth abundance. Among these, the chalcogenides of Fe and Co 

have gained special attention since their electrochemical redox potential is close to the 

potential required for reduction of oxygen to water. Thus, several chalcogenides of Ni, Co 

and Fe including Co7Se8,
99 Se-doped CoSe,100 iron and nickel doped CoS2,

101 W doped 

CoSe2,
102 (Co,Ni)S2, (Co,Fe)S2

103 has shown promising ORR activities. Nanoparticles of 

mixed metal chalcogenides like the Cheverel phase, Ru2Mo4Se8 also exhibited high ORR 

activity.104 

1.5. ELECTROCHEMICAL BIOSENSORS 

The development of the first electrochemical biosensor in 1962 by Leland Clark 

with the first glucose oxidase enzyme electrode. The first commercial glucose meters were 

available by the 1970s and have become the gold standard of the biosensor field. The main 

advantages of electrochemical biosensors are ease of miniaturization, low cost 

instrumentation, robustness, good detection limits, small sample volumes, and ability to 

work in turbid optically absorbing samples. The potential low cost of electrochemical 

biosensors combined with ease of miniaturization is the definitive advantage when used 

for point of care biosensors. The main drawbacks are that direct visual observation of 
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detection is usually not possible and multiplexing is less viable compared to optical 

methods.105 Electrochemical biosensors are invaluable medical diagnostic tools and 

projects a capable method for detection of medically relevant analytes. Many 

electrochemical biosensor techniques have been developed to detect nucleic acids, 

proteins, and small molecules.106 Studies have shown that electrochemical methods are 

robust and can accurately detect biomarkers in complex unpurified heterogeneous 

biological samples. Electrochemical biosensors have been applied to many cancer and 

infectious disease biomarkers which have illustrated the utility of electrochemical 

biosensors for future medical diagnostic applications. Electrochemical techniques are the 

foundation of electrochemical biosensors.107 

1.6. ELECTROCHEMICAL OXIDATION OF DOPAMINE 

Dopamine (DA) is an important neurotransmitter in humans and any abnormal 

fluctuations in dopamine concentrations is associated with neurodegenerative diseases like 

Parkinson’s, schizophrenia and Huntington’s disease.108, 109 Therefore, continuous 

monitoring of neurotransmitter such as DA level is critical in patients with the above 

mentioned conditions. 

1.6.1. Dopamine Sensing and Challenges. DA is electrochemically active and can 

be detected at low concentrations using electrochemical techniques. However, the 

following points briefly describes the challenges related to detection of DA. 

1. Interference from compounds in biological samples such as ascorbic acid (AA) and 

uric acid (UA) is a challenge. For example UA is product of metabolism of urine 

and AA is a reducing agent and plays a vital role in maintaining a good health.  
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2. All three chemicals AA, UA and DA have very close oxidative potentials, thus 

makeing the detection of one compound very challenging at low concentrations.  

3. UA and AA concentrations in body is several hundred times higher than DA 

4. Oxidized products of these compounds absorb on the surface of electrode and 

reduce their reproducibility and reuse. 110-113 

The most widely used technique to detection of DA, UA and AA is electrochemical 

method. The major advantages include low cost associated with this technique, however, 

the low sensitivity and selectivity of this technique with real sample analysis is justifiable. 

Recently new materials have been developed with chemically modified surface for 

detecting DA in the presence of significant amounts of UA and AA. Reports of very low 

detection limits have been achieved with modified electrodes, while reaching such low 

limits was not possible with bare metal electrodes. Modified electrodes coated with carbon 

nanotubes,114-116 nanoparticles and nanocomposites117-123 and polymeric composites124-127 

have been used to fabricate novel sensors to detect DA.  

Recent developments in dopamine sensors focus on the improvements in 

selectivity, sensitivity and compatibility. The other attempt is in the field of miniaturization 

with the objective of better spatial and resolution with multi analyte detection.  

Dopamine is formed by decarboxylation of DOPA and is a precursor of two other 

neurotransmitters—adrenaline and noradrenalin as shown in Figure 1.9. The basis of 

electrochemical detection of dopamine is the 2e-/2H+ redox reaction under physiological 

conditions. The current response in these reactions is linearly dependent on the 

concentration of the electroactive molecules in the extracellular medium, which enables to 

quantity dopamine. Apart from developing electrodes, new techniques have also been 
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attempted to solve the aforementioned problems, such as fast scan cyclic voltammetry 

(FSCV), square wave voltammetry (SWV), Differential pulse voltammetry (DPV) and 

relevant data treatments. 

 

 

Figure 1.9. Structures of DOPA, dopamine, noradrenaline and adrenaline. 

 

 

1.6.2. Theory of Square Wave Voltammetry. Square Wave Voltammetry (SWV) 

is a form of pulse voltammetry. Added to the staircase waveform is a square wave, so that 

as the voltage suddenly jumps with each step, the square wave is coincident with the jump. 

Halfway through the step, the square wave reverses polarity. This repeated series of 

staircase-plus-square-wave creates a characteristic voltage sequence applied to the sample 

as shown in Figure 1.10. 

Cell current is measured over time between the counter and working electrodes. 

Cell voltage is measured between the working and reference electrodes.128 Both square-

wave cycle and length of a single step in the voltage series take a time τ. The inverse of the 

cycle length is the frequency, 1/τ. The scan rate for such an experiment is inversely 

dependent upon the time per step, τ. 
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Figure 1.10. Schematic of the flow of voltage varies with time in SWV. 

 

During the scan, the current is recorded at the end of the forward pulse and at the 

end of the reverse pulse, meaning it is sampled twice per cycle. Waiting till the end of the 

pulse to sample the current avoids involving the charging current. 

The frequency, f, used in square-wave voltammetric experiments is generally from 

about 1 to 125 Hz. Such a high f means that square-wave voltammetry is usually much 

faster than other pulsed experiments. 

1.6.3. Graphene Based Dopamine Sensors. Graphene is a considered as a 

promising material in electrochemical sensing because of the large surface area, large 

electrical conductivity and 2D surface. Electrodes can also be modified on graphene 

surfaces starting with graphene suspension, powder and graphene composites.129-131  Using 

reduced graphene oxide (rGO) has been used for DA detection has been recently studied. 

It is been observed that oxygen containing groups increases the response to DA 

dectection.132 The DA sensors with best detection limit (1-10 nmolL-1) and good linear 

range was obtained using electrodes modified with graphene synthesized by modified 
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Hummers method.133 The stability and reproducibility of electrodes modified with 

quercetin and polypyrole134, 135 have been investigated and it showed a relative standard 

deviation to be lower than 2%. 

1.6.4. Metal and Semiconductor Nanoparticles Based Dopamine Sensors. 

Recently there has been an ample growth of research activities regarding applications of 

metal and semiconductor nanoparticles for electroanalysis.136, 137 These nanoparticles 

perform several important functions, which includes an increase of the sensing surface and 

facilitation of quick electron transfer. They also can be modified with different functional 

groups further to improve the performance. Conducting polymer [poly(3,4-

ethylenedioxythiophene) polystyrene sulfonate- PEDOT] and inorganic Cu crystals are 

given here as an example towards DA sensing.138 It was demonstrated sensing properties 

increase as the thickness of PEDOT, surface coverage by Cu in nano molar concentration 

range. This is because of Cu(II) – o- quinolate complex and its promotion of DA oxidation. 

There are numerous examples where metal nanoparticles are used in combination with 

some other metal nanoparticles (e.g. NPs of other metals or metal oxides) or other materials 

for modification of electrode surfaces. In such hybrid materials, metal nanoparticles are 

used to perform a certain function.139 All the materials in combination are expected to 

contribute added or enhanced effects. For example, Au/Pt/Pd/TiO2 NT electrodes showed 

synergistic effects of Au, Pt, and Pd NPs through enhanced conductivity and 

electrocatalytic activity. TiO2 nanotubes are a better substrate for electrochemical 

deposition of metal NPs. Pd gives uniform modification on the surface of TiO2 NTs, and 

AuNPs enhance sensitivity.140 Pd-loaded amino group-functionalized mesoporous 
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Fe3O4 NPs (Pd@Fe3O4) have been reported to enhance electrochemical catalysis based on 

the synergistic effects.141 

1.6.5. Challenges in Real Sample Analysis. Electrochemical detection of DA in 

urine or blood samples is difficult due to matrix effect of real samples. Along from major 

interferences such as uric and ascorbic acid there are other factors which could significantly 

increase or decrease the response of DA. The reported amounts of DA in real samples do 

not always represent the actual amount. Some of the ways to overcome the matrix effect in 

real samples are by using 

1. Selective electrode surfaces by modifying the novel catalyst material  

2. Dilution of the real sample to an optimal level 

3. Extraction of DA or interferents by separation methods before analysis. 

For example blood samples can be centrifuged followed by dilution while for urine 

samples it has to be diluted by several folds. The quantification of these samples is done 

by spiking with standard DA and applying standard addition method. 

An electrochemical sensor was developed using amino- functionalized Fe3O4 on 

graphene to determine DA in urine samples. The sample was diluted with PBS to overcome 

the matrix effect. The results of this were comparable with existing techniques, and the 

linear range was also within the normal DA levels. Similarly graphitic carbon nitride 

nanosheets are also reported to have good response to DA levels in presence of AA and 

UA. 

Further surface sensing analysis of real samples can be tried by the following merits  

1. Using inexpensive electrodes for surface modifications 

2. Simple to use and ready to modify with less number of steps 
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3. Stability of the modified electrode in harsh conditions 

4. Reproducibility and reliability of modification 

5. High sensitivity and low detection limit 

6. Capacity to analyze the real sample directly 

1.6.6. Future of Dopamine Sensors Based on Non-Enzymatic Electrodes. The 

sensitivity of electrochemical non enzymatic DA detection can be enhanced by accelerating 

the electron transfer at the surface of the electrode. Accumulation of the product at the 

catalyst surface decreases the sensitivity considerably. Preconcentration of the analyte at 

the electrode surface can be achieved through interaction between the functional groups 

and the sample. The other option to increase the sensitivity is physical adsorption of the 

analyte at the surface. Modification of the electrode surface is important factor as it helps 

the adsorption of analyte during preconcentration step and further it also aids in increase 

of the surface area with more functional moieties can be attached to increase the sensitivity 

of the DA detection.  

In terms of selectivity of detection of DA in presence of other interfering bio 

molecules at physiological condition, two approaches can be employed. First, using the 

chemical moiety which at the electrode surface which can selectively bind the analyte 

which in this case DA. Secondly, selectively modify the electrode surface with functional 

groups or ions which can repel all the interference. In both the cases detection limit and 

sensitivity will be improved and the quantification of DA will be closer with actual value.  

Electroanalytical methods involving modifications in electrodes shows a good 

improvement in real sample analysis and applications. However, these modified electrodes 

are still limited to proof of concept the question needs to be addressed. In this context, the 
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possibilities of such systems are still need to be further explored because of limited studies 

describing toxicity and biocompatibility of these modified materials. The other concern is 

the stability of these electrodes. For successful commercialization of these non-enzymatic 

sensors, technology that ensures production of large number of sensors with good 

reproducibility and at affordable cost for the consumer has to be developed. Special 

attentions should be given for facile synthesis of the electrodes, thorough characterization 

of the surface before and after the DA detection, electron kinetics, long term stabilities and 

application for real sample analysis are the challenges ahead.  

1.7. ELECTROCHEMICAL NON-ENZYMATIC GLUCOSE SENSOR 

1.7.1. History of Glucose Sensors. The historical advancement in electrochemical 

sensors can be summarized into three generations. The first generation glucose sensors is 

showed in Figure 1.11. Here oxygen plays an important role and acts as an electron 

mediator between glucose oxidase and surface of the electrode.142 Glucose oxidase reduces 

O2 to H2O2 in presence of glucose. The oxygen reduction kinetics depends on the glucose 

concentration which can be determined by measuring the H2O2 concentration. The type of 

electrodes suffer from dependency of oxygen or interference by active redox species.  

Figure 1.12 shows the second generation glucose sensor that uses artificial 

mediators to overcome the disadvantages related to first generation sensors. This mediator 

helps the electron transfer between enzyme and electrode surface.144 Design of the redox 

systems is the important from high efficiency. Commonly used electron mediators are 

ferro/ferricyanide, ferrocene and other organic dyes.145 The disadvantage with this 

generation sensor is oxygen competing with mediators that may lead to error.  
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Figure 1.11. First generation enzyme glucose sensor (Reproduced with permission 143). 

 

 

 

The third generation glucose sensors are based on direct electron transfer where the 

electron is directly transferred from the enzyme to the surface of electrode as shown in 

Figure 1.13. If electrode and enzyme are electrically wired146 the direct electron transfer 

transforms the events to an electric signal which is free of concentration of oxygen or redox 

mediators.147 The advantage of these sensors are the elimination of possible interfering 

species.  

 

 

 

Figure 1.12. Second generation enzyme glucose sensor (Reproduced with permission 143). 
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1.7.2. Advantages of Non-Enzymatic Glucose Sensors. Stability: Thermal and 

chemical instability of glucose oxidase prohibits enzymatic glucose sensors from using it 

continuously in human bodies. Additionally, humidity, temperature, pH and toxic 

chemicals affect the response of glucose sensors.148 Optimal humidity is a significant 

criteria for these enzymatic glucose sensors to be store. Hence it is advantageous to use 

non enzymatic sensors, which is low cost, stable in highly alkaline and acidic 

environments. Further, they are not affected by drastic change in temperature and 

humidity.149  

 

 

Figure 1.13. Schematic of third generation enzyme electrode glucose sensor. 

(Reproduced with permission 143). 

 

 

 

 

Free from oxygen and mediator limitations: The response of most enzyme 

electrodes depends on the oxygen concentration. Although some refined designs of quick 

electron transfer system can overcome the oxygen dependence effectively. However, even 

the best design is not completely free from oxygen. The other option to overcome the 
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oxygen mediation is the direct chemical oxidation of glucose on the surface of the electrode 

which occurs in non-enzymatic sensors. It should be noted that the reductive potential of 

oxygen is more positive than the glucose is oxidized. Hence such interference can be easily 

minimized in non-enzymatic sensors by finding an optimal potential for maximum current 

sensing region for glucose and sluggish reduction kinetics for oxygen molecule.150, 151  

1.7.3. Redox Mechanism of Glucose on Metal Surfaces. The two types of 

glucose (α- and β- glucose) are converted to glucono lactone through acid hydrolysis via γ 

– glucose (aldehyde glucose). Figure 1.14 shows the general reaction mechanism for 

glucose oxidation. For both α- and β- glucose, the hydrogen atom attached to C1 carbon is 

activated because hemiacetalic OH (pKa = 12.3) group is stronger than alcoholic OH (pKa 

= 16). The resultant product of this electrochemical oxidation of glucose is glucono-δ-

lactone, which further oxidizes to gluconic acid which has a half-life of 10 mins and a rate 

constant of 10-3 s-1 at pH 7.2. In case of γ- glucose it oxidizes directly to gluconic acid. In 

all three cases (α-, β- and γ-glucose) the final stable product is gluconic acid which is a two 

electron process, regardless of the intermediate step of glucono- δ-lactone.152 The rate of 

mutarotation is acid base catalysed however, with alkaline solution shown to favor β-

glucose in a 20:80 ratio of the anomers. As such, the pH of a solution is highly important 

when conducting glucose tests that are to reflect the whole blood glucose concentration, as 

the physiological ratio of α to β glucose can shift significantly. Furthermore, an anomeric 

effect has been observed for glucose in which β-glucose is oxidized at a faster rate than α-

glucose, suggesting a preferred orientation for glucose adsorption on platinum electrodes. 

Similar mechanism is also proposed for Ni and Cu based catalysts. It was established, that 
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the catalytic component in these metals are the higher oxidation state (e.g.+3) and the 

oxidized partner which is the oxyhydroxide redox couple.152  

 

 

 

Figure 1.14. The general mechanism of glucose oxidation in aqueous solution and the 

possible mechanism of electron transfer and coupled reactions. (Reproduced with 

permission 153). 

 

 

A schematic illustration of Incipient Hydrous Oxide/ Adatom Mediator (IHOAM) 

model is depicted in Figure 1.15 where the metal is the adsorption site for –OH attachment 

which forms M[OH]ads which is the oxidative hydroxide radial adsorbed on the metal. This 

scheme shows the redox process occurring at the catalyst surface. This was based on the 

observation that active surface metal atoms undergo a pre-monolayer oxidation step that 
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forms an incipient hydrous oxide layer of reactive OHads mediating oxidation and inhibiting 

reduction of kinetically slow electrode reactions. Considering this effect, both the activated 

chemisorption model and the IHOAM model will be important in explaining the reaction 

mechanism in non- enzymatic glucose sensors. 

 

 

 

 Figure 1.15. Redox process at the catalyst surface. 

 

1.7.4. Metal/ Metal Oxide Based Nano Composites as Glucose Sensors. Metallic 

nanoparticles has been significantly incorporated as non-enzymatic biosensor fabrication. 

They show high surface area, good conductivity, compatibility, high chemical resistance 

and are nontoxic. Different metal nanoparticles such as Cu, Zn, Au, Ag, Pt, Zn and their 

alloys have been used for this purpose. They provide enhanced surface area and quick 

charge transfer from the analyte to the electrodes, which eventually improves the digital 

signal.154 Moreover, by associating two or more metals in nano-hybrid, several favorable 

properties will be combined which leads to improved performance which cannot be 

attained by just one component. For example, the low catalytic activity of gold could be 

compensated by Pt alloys to enhance the catalytic properties by synergistic effect.155 
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Additionally, incorporation of polymer films (nafion, chitosan or mesoporous silica) in 

metal nanoparticles have the effect to increase in structural stability, enzyme leakage and 

it retains the chiral confirmation if any.156  

The assembly of gold with silver nanoparticles has been reported as glucose sensor. 

The synergistic effect between Ag which has good catalytic properties and Au which is a 

good conductor has a major advantage to biosensing. The Ag-Au assemble has been 

synthesized using reverse micellar method where enzymes exhibits higher activity than in 

aqueous systems. Electrochemical studies has shown that Au-Ag nanoparticles is having 

enhanced electron transfer, stability, and sensitivity of glucose sensing.157  

Recently, nanohybrids based on one dimensional materials and nanoparticles of 

noble metals, with a synergistic effect have found many applications in biosensing. In 

comparison with spherical nanoparticles, nanowires possess a number of unique electronic 

and physical properties due to their anisotropic nature for electrochemical reactions at the 

surface of the electrode. Synergistic effect of lead nanowires and gold nanoparticles has 

improved electrochemical biosensing of glucose through excellent electrocatalytic activity. 

This is due to high loading efficiency and a compatible environment for biosensing.158 

Further 2D nanomaterials have also been explored for glucose sensing. For example MoS2 

nanosheets modified on glassy carbon electrode decorated with Au nanoparticles has a 

good catalytic behavior for sensing. This electrode showed excelled electrocatalytic 

activity and stability.  

Finally, polymer nanocomposite films such as chitosan polypyrrole onto carbon 

electrode showed superior activity for glucose detection. The nanocomposites combined 

the electroconductive properties of polypyrrole, the film forming and the biocompatibility 
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with chitosan has surface area related advantage over monodispersed nanoparticles. 

Therefore this fabricated electrode shows faster amperometric response time (>5 s) a low 

LOD (15.5 uM) and wider linear range. Indeed higher biocompatibility and improved 

stability and reproducibility are key for biosensors.159 

1.7.5. Carbonaceous Materials for Glucose Sensors. It is clear that using carbon 

materials as a support to disperse metal nanoparticles (oxides or chalcogenides) improves 

the catalytic properties of the hybrid through the increase of surface area and relative 

conductivity. Apart from these improvement the physical properties of carbonaceous 

nanomaterials can also improve on their own as in the case of hybrids between graphene 

and the metal oxide/ chalcogenide nanoparticles. For example, when graphene-oxide 

hybrids are used as photocatalysts, there is extended absorption and fast electron transfer 

in graphene based hybrid when compared to oxide nanoparticles alone. Additionally, due 

to its 2D structure graphene is an excellent electron accepting and transporting material. 

When graphene is incorporated into semiconductor materials, it promotes photo-generated 

electron through pi-pi interactions and helps the material to overcome charge 

recombination. Similar effects of graphene addition is seen in electrocatalytic water 

splitting, where the overpotential is significantly reduced and closer to 1.23 V vs RHE. 

Without the addition of any conductive carbon these catalyst are active towards water 

splitting, but the overall performance is low.  

Therefore use of these carbonaceous materials in sensing field is in use to improve 

the sensing properties. Cu nanoparticles on graphene sheets are reported as non-enzymatic 

glucose sensor by electrodeposition method. The Cu-graphene sheets shows much better 

activity for glucose detection compared to unmodified graphene sheets are Cu electrode as 
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such. The linear range u tot 4.5 mM was achieved with a detection limit of 0.5 µM at an 

applied potential of 500 mV.160 Similarly, a novel nanocomposite of reduced graphene 

oxide and gold-palladium bimetallic nanoparticles is reported as a non-enzymatic glucose 

sensor. The hybrid catalyst showed excelled biocompatibility, enhanced electron transfer 

because of large surface area, having high sensitivity and stable towards mediating species 

like oxygen. The resulting electrode had a sensitivity of 266.6 µA/mM/cm2 with a linear 

range up to 3.5 mM.161  

1.7.6. Future Prospect in Glucose Sensing. As researchers are trying to improve 

the sensor performance parameters, the future of bio sensing is to focus on improving the 

selectivity at practical levels. Stability is another important parameter in evaluating a 

sensor. The drift of sensors should also be considered which can be solved by calibration 

of equipment and data processing. New trends in sensor technology are beginning to 

emerge and new methodology is needed to garner more information from a single sensor. 

This goal can be achieved through developing an optimal electrode material combined with 

statistical tools. The development of best catalyst with high sensitivity, low energy 

consumption, low detection limit could facilitate precise measurements and has an 

enormous demand in chemistry, pharmaceuticals and materials science. With 

miniaturization using microelectronic technology and increase in the number of users the 

cost of device production is expected to lower and help the people in need for regular 

monitoring of blood glucose levels in the body.  

Continuous glucose monitors allow a patient and clinician to more closely monitor 

glucose control by evaluating time in target range, time in hypoglycemia, and time in 

hyperglycemia. A continuous glucose monitor has a subcutaneous sensor that measures the 
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interstitial fluid glucose at a minimum of every five minutes, and the sensor’s transmitter 

continuously sends data to its receiver (Figure 1.16). 

 

 

 

Figure 1.16. Prototype of continuous glucose monitoring system. 

 

1.7.7. Motivation to Use Transition Metal Chalcogenides as Biosensors. Since 

the first step of glucose oxidation is the adsorption of hydroxyl group on C1 atom, the 

principle of changing O to Se which increases the conductivity and also reduces the 

potential applied for charge transfer still applies in glucose sensing. 

The objective of the two papers regarding biosensing, is about designing high-

efficiency direct dopamine and glucose electrochemical sensors from transition metal 

chalcogenides using principles of materials chemistry described above, specifically, tuning 

the redox potential of the transition metal site. This thesis present CuSe as example of high-

efficiency chalcogenide based dopamine and glucose sensors. 
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These chalcogenide based electrocatalysts show high activity for glucose oxidation 

at very low potential (~0.15 V vs Ag|AgCl) with high sensitivity (exceeding 19.41 mA/mM 

cm2) and low limit of detection (LOD). Further metal chalcogenides can offer direct 

electron transfer pathways over a wide potential range leading to much higher sensor 

efficiency. Moreover, the sensing performance of these electrocatalysts were tested in 

presence of common interferents present in physiological samples such as uric acid, 

ascorbic acid, and lactose. 

1.8. SUMMARY 

This research focuses on synthesizing transition metal chalcogenide materials by 

hydrothermal and electrodeposition methods and their applications in energy conversion 

like oxygen evolution reaction, oxygen reduction reaction and electrochemical oxidation 

of biomolecules such as glucose and dopamine.  

The first part describes designing electrocatalysts for oxygen evolution reaction and 

oxygen reduction reaction and controlling thie composition for achieving bifunctional 

activity. These metal selenide based catalyst performance can be further improved by 

introducing carbon matrix such as reduced graphene oxide and functionalized onion like 

carbon where synergistic effect places a critical role. This research shows that activity of 

the catalyst can be altered by changing the environment around the metal, from oxide to 

selenide which raises the valance band edge close to water oxidation potentials. The 

catalysts reported in this work are also having good stability for long hours without any 

observable degradation. Further the catalyst retain there performance after the stability 

study which is confirmed by post catalytic characterization.   
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The second part describes the use of transition metal chalcogenides for 

electrooxidation of biomolecules such as glucose and dopamine which can be used as non-

enzymatic biosensors. The catalyst reported in this research performs oxidation at low 

applied potentials with high sensitivity and low detection limit which makes these catalyst 

potential candidates for wearable devices. These chalcogenides can offer direct electron 

transfer pathways over a wide potential range leading to much higher sensor efficiency. 

Further, the sensing performance of these electrocatalysts were tested in presence of 

common interferents present in physiological samples such as uric acid, ascorbic acid, 

lactose, sucrose and common salt, where it showed that glucose/dopamine sensing was 

unaffected by interferents, which shows high selectivity of these metal chalcogenides. 
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ABSTRACT 

 

Ultrasmall iron phosphide nanoparticles has been reported as efficient 

electrocatalyst for oxygen evolution reaction in alkaline condition with low overpotential 

and Tafel slope. Mixing the FeP nanoparticles with reduced graphene oxide further reduces 

the overpotential to 260 mV at 10mA/cm2, which is one of the lowest reported for OER 

electrocatalyst.  
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1. INTRODUCTION 

 

The development of renewable and clean energy technologies,1-3 such as water 

splitting for hydrogen production, artificial photosynthesis and metal-air batteries, is 

hindered because of very sluggish oxygen evolution reaction (OER) kinetics. Several 

catalysts, generically referred to as OER catalysts, has been employed to facilitate the 

oxygen evolution reaction. Among these the catalysts based on noble metals including Pt, 

Ru, and Ir, show some of the best catalytic efficiency for OER.4-5 However, the prohibitive 

cost and scarcity of the noble metals have significantly impacted their large-scale 

application. Consequently, great efforts have been devoted to developing new OER 

electrocatalysts with both excellent activity and low cost.   

Recently, transition metal oxides6-7 comprising earth-abundant elements have 

shown immense promise as OER electrocatalysts. In addition to oxides, transition metal 

chalcogenides8-9 have shown even better potential as OER electrocatalysts possibly due to 

their more compatible electronic structure.10 More recently, transition-metal phosphides 

(TMPs)11-19 which are intrinsically metallic have been intensively studied as a 

electrocatalysts for OER as well as HER. For instance, FeP11-12, Ni2P13, and CoP14, have 

already shown great potentials as HER catalysis at high current densities at low 

overpotentials. On the other hand, there has been some reports on CoP, NiP and recently 

MnCoP as OER catalyst in alkaline medium.16-17, 20-21 Although FeP has been shown to be 

active for HER, oxygen evolution with pure FeP has not been reported till date. Recently, 

Yan et. al19 has reported iron phosphide nanotubes coated with an iron oxide/phosphate 

layer grown on carbon cloth as full water splitting catalyst. 
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Herein, we report high catalytic efficiency for ultrasmall pure FeP nanoparticles 

synthesized from solution-based hot injection methods (see supporting information). These 

FeP nanoparticles can achieve a current density of 10 mA cm−2 at overpotentials as low as 

290 mV for OER in strongly alkaline solution along with small Tafel slope (50.8 mV/dec). 

A hybrid electrode formed from these FeP nanoparticles mixed with reduced graphene 

oxide (rGO) lowers the overpotential at 10 mA.cm-2 even further to 260 mV making this 

the lowest reported in the family of transition metal phosphides.  Electrodes prepared from 

FeP catalyst also show excellent stability with retention of full activity even after 4 h of 

constant current electrolysis.   

 

2. RESULTS AND DISCUSSION 

 

Figure 1a shows a typical TEM image and corresponding histogram analysis (inset 

of Figure. 1a) of the as synthesized catalyst. From extensive TEM analysis it was observed 

that the FeP nanoparticles had a narrow size distribution (3 – 7 nm), with an average size 

of ~ 5 nm based on counting about 200 randomly chosen particles from different regions 

of the TEM specimen grid. The high-resolution TEM (HRTEM) image, as shown in Figure. 

1b, reveals the lattice fringes with interplanar spacings of 1.54, 2.42 and 2.73 Å, 

corresponding to <020>, <111> and <011> planes of the FeP, respectively. The 

crystallinity of film was further confirmed by selected area electron diffraction (SAED) 

pattern shown as inset of Figure. 1b, where the diffraction spots can be indexed to the 

<111> and <211> planes of FeP, respectively. The energy dispersive spectra (EDS) of FeP 

collected in the TEM mode also showed the presence of Fe and P elements with the atomic  
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Figure 1. (a) TEM images of FeP and particle size histogram (b) HRTEM image and 

corresponding selected-area electron diffraction pattern (c) Pxrd of FeP and d. XPS 

spectra of Fe 2p and P 2p (inset). 

 

 

ratio close to 1:1 (Figure. S1). Powder X-ray diffraction (pxrd) of the as synthesized 

nanostructures was collected to further characterize the chemical composition and 

crystallinity of the catalyst. As shown in Figure 1c, all the diffraction peaks could be well 

indexed to FeP (JCPDS Card No.01-078-1443), with almost no detectable impurities. The 

average particle size was estimated to be 8.0 nm by using Scherrer equation (see supporting 

documents) which is in accordance with TEM observation.  The X-ray photoelectron 
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spectroscopy (XPS) analysis of the as-prepared FeP shown in Figure. 1d also confirmed 

the composition of the catalyst. The doublet peaks for the binding energy (BE) of Fe 2p3/2 

appear at 707.1 and 711.8 eV and P 2p peaks at 129.3 and 133.8 eV. The peak at 707.1 eV 

is associated with Fe in FeP,22 whereas that of 711.8 eV due to oxidized Fe,23 resulting 

from the surface oxidation of FeP when exposed to air.23 The P 2p XPS spectrum revealed 

two peaks at 133.6 and 129.4 eV, respectively. The lower energy peak is consistent with 

the binding energy for FeP (129.4 eV),22-23 and peak at 133.6 might due to the presence of 

oxidized phosphorus on the surface.   

The FeP nanoparticles were coated on different electrodes following standard 

procedures as described in the supplementary information. In addition to standard 

electrodes, the FeP nanoparticles were also mixed with reduced graphene oxide (rGO) 

powder to increase the conductivity of the catalyst coating eventually enhancing catalytic 

performance. The rGO was synthesized separately following a protocol as described in 

supplementary information, and has been characterized by Raman spectroscopy and TEM 

imaging (Figure S1). In the following sections, the OER catalytic activity of Fe on Au-

coated glass (FeP@Au), FeP-rGO on Au-coated glass (FeP-rGO@Au) and FeP-rGO on 

carbon fiber paper (CFP), [FeP-rGO@CFP] has been presented.   

All the catalytic activities have been measured in alkaline solution in presence of 

1M KOH and the results were compared with RuO2 which is known as state-of-the-art 

OER catalyst. The RuO2 was prepared in our laboratory by electrodepositing directly on 

the Au-coated glass electrodes (see supporting information). Figure 2a shows the 

polarization curves of FeP@Au, FeP-rGO@Au, FeP-rGO@CFP, rGO@Au, and bare Au-

coated glass in N2 saturated 1 M KOH at a scan rate of 10 mV s–1. As expected, no obvious 
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current responses were obtained for the bare Au-coated glass substrate while very poor 

activity was observed at the rGO modified Au-glass electrodes. The FeP loaded Au-glass 

on the other hand, showed very efficient oxygen evolution activity. Specifically, the onset 

potential of FeP@Au was 1.48 V (vs. RHE) and yielded a current density of 10 mA cm–2 

at an overpotential of 320 mV. The hybrid electrode containing mechanically mixed rGO  

 

 

 

 

with FeP nanoparticles showed even better OER catalytic activity. The onset potential for 

FeP-rGO@Au and FeP@CFP were 1.44 and 1.40 V vs. RHE, respectively. To achieve the 

OER current density at 10 mA cm-2 FeP-rGO@Au requires 290 mV and for FeP-

rGO@CFP only 260 mV, which is better than RuO2@Au (320 mV), IrOx (320 mV)24  and 

other transition metal phosphide based catalysts.  Figure 2b shows the Tafel plot, η vs. 

log(j), for FeP based catalysts. The Tafel slopes were obtained as 56.8, 85.2 and 174.9 mV 

dec-1 for FeP@Au, FeP-rGO@Au and FeP-rGO@CFP, respectively which are comparable 

Figure 2. (a) LSVs of the various FeP nanostructured based catalyst coated electrodes 

measured in N2 saturated 1.0 M KOH solution at a scan rate of 10 mV s-1 and (b) the 

Tafel plot of catalysts. 
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with other phosphide based OER electrocatalysts.16-18 Based on the above observations it 

can be concluded that hybrid composite of FeP-rGO yields the best OER catalytic activity 

both in terms of overpotential @ 10 mA.cm-2, exchange current density and low Tafel 

slope. Such enhancement of the catalytic activities in the rGO mixed hybrid composites 

can be explained by the possible synergistic effects of rGO with FeP which increases the 

conductivity of the matrix and facilitates charge transfer within the catalyst composite, 

thereby increasing the current density. The high electrical conductivity of FeP may also 

favor fast electron transport which enhances the catalytic activity. 

 

 

 

 

 

Stability of the FeP electrocatalyst was investigated through chronoamperometry 

studies where the voltage required to produce a constant current of 10 mA cm-2 (i.e. 
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Figure 3. Stability study of catalyst under continuous O2 evolution (at 10 mA/cm2) for 

4 h studied through chronopotentiometry. Inset shows the LSVs of catalyst measured 

in N2 saturated 1 M KOH before and after chronopotentiometry for 4h. 

 



 

 

52 

overpotential @ 10 mA.cm-2) was recorded for 4h and shown in Figure 3. Initially high 

overpotential was required to achieve 10 mA cm-2. However, the overpotential was 

significantly reduced after 4 h of chronoamperometry (only 290 mV overpotential requires 

to get 10 mA cm-2) indicating that the catalyst became more active on aging. The inset of 

Figure. 3 shows the comparison of LSVs before and after 4 h of chronopotentiometry 

indicating superior stability of catalyst as well as improving catalyst performance under 

conditions of continuous O2 evolution. The SEM image collected after 4 h of 

chronoamperometry (Supplementary Figure S3) showed that the electrode surface 

remained unchanged while EDX line scan showed uniform distribution of Fe and P in the 

catalyst film. The FeP-rGO@Au hybrid electrode also shows very high stability under 

conditions of continuous O2 evolution (Supplementary Figure. S4). 

The turnover frequency (TOF) of the FeP catalyst was calculated at an overpotential 

of 330 mV in 1 M KOH, assuming all of the active metals in the catalyst are catalytically 

active for OER. The TOF value of FeP@Au, FeP-rGO@Au, and FeP-rGO@CFP were 

calculated as 0.004, 0.019 and 0.031 s−1, respectively which are comparable with the 

previously reported TOF values of metal phosphide based catalyst18 , and higher than well-

known IrOx (0.0089 s-1)25 OER catalyst, also indicating a better OER activity for FeP. 

The enhanced catalytic activity of the FeP nanoparticles can be possibly explained 

by the very small size of the nanoparticles which increases the active functional surface 

area of the catalyst. Dispersing these ultrasmall particles in the rGO matrix further 

increases the functional surface area of the catalyst by de-coagulating the catalytically 

active particles. On the other hand, coating the planar Au-coated glass substrate with the 
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catalyst ink leads to possible aggregation of the catalyst particle, leading to lesser 

accessibility of the electrolyte to all the catalytically active sites.  

 

3. CONCULUSION 

 

In conclusion, we have reported a FeP nanoparticle-based efficient OER 

electrocatalyst containing earth-abundant elements. This catalyst requires comparatively 

lower overpotential to achieve 10 mA cm-2 which is significantly lower than the state-of-

the-art IrOx catalysts and is one of the lowest for phosphide based electrocatalyst. 

Importantly, the FeP nanoparticles can be combined with reduced graphene oxide sheets 

which results in significantly improved catalytic activity owing to the synergistic effect. 

High catalytic activity along with the ease of synthesis of the nanoparticles, makes this 

system have high technological importance.   

 

 

 

 

 

 

 

 

 

 

Table 1. Parameters describing the catalytic activity of the FeP-

nanoparticle based catalysts reported in this study. 

Catalysts Onset 

potential/  

V vs. RHE 

η to achieve 

10 mA cm-2/ 

mV vs. RHE 

Tafel 

slope / 

mV 

dec-1 

TOF at 

η=330 mV 

/ s-1 

FeP @ Au 1.48 320 56.8 0.004 

FeP-rGO 

@ Au 

1.44 290 85.2 0.019 

FeP-rGO 

@ CFP 

1.40 260 174.9 0.031 

RuO2 @ 

Au 

1.49 320 117.1 - 
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SUPPORTING INFORMATION 

 

Synthesis of Reduced Graphene Oxide (rGO) 

Graphene oxide was synthesized by modified Hummers method. Typically, 1 g of 

graphite and 0.5 g of sodium nitrate were mixed together followed by the addition of 23 

ml of conc. sulfuric acid under constant stirring. After 1 h, 3 g of KMnO4 was added 

gradually to the above solution while keeping the temperature less than 20°C to prevent 

overheating and explosion. The mixture was stirred at 35 °C for 12 h and the resulting 

Table 2. Comparison of OER activity of different phosphide based electrocatalysts. 

 

Catalyst Electrolyte Onset 

potential  

η at 10 

mA cm-

2 / mV 

Tafel / 

mV dec-

1 

TOF at 

330 

mV/s-1 

References 

(Co0.54Fe0.46)2P 0.1 M 

KOH 

1.46 370 - - 14 

Ni-P 1.0 M 

KOH 

1.54 344 49 - 15 

CoP 1.0 M 

KOH 

1.56 345 47 - 16 

CoP NPs 0.1 M 

NaOH 

1.52 330 50 0.0287 

at 370 

mV 

17 

CoMnP 1.0 M 

KOH 

1.52 330 61 - 20 

FeP @ Au 1.0 M 

KOH 

1.48 320 56.8 0.004 This work 

FeP-rGO @ Au 1.0 M 

KOH 

1.44 290 85.2 0.019 This work 
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solution was diluted by adding 500 ml of water under vigorous stirring. To ensure the 

completion of reaction with KMnO4, the suspension was further treated with 30% H2O2 

solution (5 ml). The resulting mixture was washed with HCl and H2O respectively and 

allowed to stand for 48 hrs, followed by centrifugation and drying. 

To convert GO to reduced Graphene Oxide (rGO), 0.1 ml of hydrazine was added 

to 10 mg of GO in water. For further reduction of GO to rGO, this solution was transferred 

to Teflon lined autoclave, which was sealed and maintained at 145°C for 24 hrs. 

Synthesis of FeP 

All reagents used in this sysnthesis were purchased from Sigma Aldrich. In a 

Typical experiment, 1.00 g of Trioctylphospine oxide (TOPO) and 1.2 ml of 

Trioctylphosphine (TOP) were mixed and heated at 300˚C for 30 mins in a three neck 

round bottom flask under vigorous stirring in N2 medium. Subsequently, 0.3 ml of solution 

1 (made from 0.2 ml of Fe(CO)5 and 0.8 ml TOP) was added into TOP/TOPO solution. 

Instantly, the solution changes to black and the temperature was constantly maintained at 

300˚C for 30 mins. The black solution is washed and centrifuged several times with hexane 

using ultrasonification to remove the reaction mixture. The black product is dried and 

characterized. 

Preparation of FeP-rGO 

FeP was mechanically mixed with reduced graphene oxide (rGO) in different ratio 

(1:1 and 7:3 w/w for FeP:rGO) by using agate pestle and mortar for 30 mins. A 

homogeneous black powder was obtained after such mixing. 
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Electrodeposition of RuO2 on Au 

Electrodeposition of RuO2 on GC substrate was carried out from a mixture of RuCl3 

(0.452 g) and KCl (2.952 g) in 40 ml of 0.01M HCl by using cyclic voltammetry from 

0.015 to 0.915 V (vs. Ag|AgCl) for 100 cycles at a scan rate of 50 mV s-1. Finally heated 

at 200 oC for 3 h in presence of air. 

Electrode Preparation 

Au-coated glass used as substrates was purchased from Deposition Research Lab 

Incorporated (DRLI), Lebanon Missouri. . All solutions were prepared using deionized 

(DI) water with a resistivity of 18 MΩ·cm. Prior to electrodeposition, the substrates were 

cleaned by ultrasonic treatment in micro-90 followed by isopropanol rinse for three times 

and eventually rinsed with deionized water (15 min each step) to ensure the clean 

surface.  FeP catalyst ink was prepared by ultrasonically dispersing 1.0 mg catalysts in 1.0 

mL isopropyl alcohol (IPA) and ultrasonicated for 30 min. Au-coated glass  plates 

was covered with a Teflon tape, leaving an exposed geometric area of 0.283 cm2, served 

as an underlying conductive substrate of the working electrode. A quantity of 20 μL of the 

ink was pipetted out on the top of the Au. The catalyst layer was dried at room temperature. 

Then, an aliquot of Nafion solution (10 μl of 1 mg/mL solution in 50% IPA in water) was 

applied onto catalyst layer. The Nafion-coated working electrode was dried at room 

temperature and finally heated at 130 oC for 30 min. in air in an oven. 

Characterizations 

Transmission Electron Microscopy (TEM).  FEI Tecnai F20 was used to obtain 

TEM, high resolution TEM images (HRTEM) and selected area electron diffraction 

(SAED) patterns of the catalyst.  
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Powder X-ray Diffraction. The electrodeposited substrates were studied as such 

without any further treatment. The product was characterized through powder X-ray 

diffraction (pxrd) with Philips X-Pert using CuKα (1.5418Ǻ) radiation. Pxrd pattern was 

collected from the as-synthesized product spread on the growth substrate. Because the 

product formed a very thin layer on the substrate, the pxrd was collected at grazing angles 

in thin film geometry (GI mode with Göbel mirrors). 

X-ray Photoelectron Spectroscopy (XPS). XPS measurements of the catalysts 

were performed by KRATOS AXIS 165 X-ray Photoelectron Spectrometer 

using monochromatic Al X-ray source. The spectra were collected as is and after 

sputtering with Ar for 2 min which removes approximately 2 nm from the surface. 

Electrochemical Characterization and Catalytic Studies. The OER catalytic performance 

was estimated from linear scan voltammetry (LSV) plots while the stability of the catalyst 

was studied by chronoamperometry. Electrochemical measurements were performed in a 

three-electrode system with an IvumStat potentiostat using Ag/AgCl and Pt mesh as 

reference and counter electrodes, respectively. All measured potentials vs the 

Ag/AgCl were converted to the reversible hydrogen electrode (RHE) scale via Nernst 

equation (eq. 1):   

                            ERHE = EAg/AgCl + 0.059 pH + Eo
Ag/AgCl   

where RHE is the converted potential vs. RHE, EAg/AgCl is the experimentally  measured 

potential against Ag/AgCl reference electrode, and EoAg/AgCl is the standard potential of 

Ag/AgCl at 25 oC (0.197 V). For most of the electrochemical characterizations, the 

electrode area of the film surface was kept constant at 0.283 cm2. 

(1) 
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Turnover Frequency (TOF). The turnover frequency (TOF) was calculated from the 

following equation 

TOF =   
𝐼

4 × 𝐹 ×𝑚
 

where I is the current in Amperes, F is the Faraday constant and m is number of moles of 

the active catalyst. 

Tafel plots. The Tafel slope was calculated from the following equation 

𝜂 = 𝑎 +
2.3 𝑅𝑇

𝛼𝑛𝐹
𝑙𝑜𝑔(𝑗) 

where η is the overpotential, j is the current density and the other symbols have their usual 

meanings.  

The Tafel equation as shown Eq. (3) is a fundamental equation which acquires from 

the kinetically control region of OER / HER, and relates the overpotential η with the current 

density j where the Tafel slope is given by 2.3RT/αnF. To calculate Tafel slopes, LSV plots 

were obtained with slow scan speed (2 mV s-1) in non-stirred solution 

 

 

 

Figure S1. TEM EDS of FeP. 

 

(2) 

(3) 
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Figure S2. SEM images of electrodes (top two images) and EDS line scans of electrode 

(bottom). 
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ABSTRACT 

 

 

 

Water splitting reaction using earth abundant and environmentally benign catalysts 

is critical for renewable energy technologies. Herein we report a hybrid composite, 

FeNi2Se4 nanoparticles supported on nitrogen doped reduced graphene oxide (FeNi2Se4-

NrGO) as an efficient and dependable bifunctional electrocatalyst for oxygen evolution 

and oxygen reduction reactions (OER and ORR, respectively) under alkaline conditions. 

While FeNi2Se4 nanoparticles themselves showed good catalytic activity for water 

oxidation, the constructed hybrid nanocomposite with NrGO as the supporting matrix, 

showed enhanced catalytic activity with a small overpotential of 170 mV @ 10 mAcm-2, 

small Tafel slope of 62.1 mV/decade, and high current density. The ORR catalytic activity 

of the nanocomposite was exceptionally good with an onset potential of 0.93 V, 

comparable to that of Pt. This is possibly due to the synergistic chemical coupling effects 

mailto:nathm@mst.edu
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between the FeNi2Se4 and NrGO matrix. Chronoamperometric studies showed that the 

catalyst is stable under conditions of continuous O2 evolution and reduction with very less 

degradation. Apart from reporting highly efficient OER-ORR bifunctional catalyst, this 

study also provides more proof for the effect of anion coordination on the catalyst 

performance, as well as the synergistic role of nanoscale interactions between the catalyst 

particles and graphene matrix to enhance catalytic activity.  

 

Keywords: Water splitting, Oxygen evolution reaction, Nitrogen doped reduced graphene 

oxide, synergistic chemical coupling, overpotential 

 

1. INTRODUCTION 

 

 

 

As the global energy consumption is expected to increase by mid-century, intense 

research is being carried out to discover environmentally benign, earth abundant and low 

cost materials for energy related applications.1,2 Production of oxygen and hydrogen 

through water splitting reaction is one such process which generates clean fuel as well as 

renewable energy and has been the central theme of several technologies including metal-

air batteries, fuel cells, and solar-to-fuel energy generation.
3,4  Electrolytic water splitting 

is composed of two half-cell reactions, oxygen evolution reaction (OER) and hydrogen 

evolution reaction (HER). Among these, OER being a four electron process has sluggish 

kinetics, and is considered to be the bottleneck for the entire process. For effective OER 

process, it is thus essential to reduce the overpotentials and increase the conversion rates.5-

12 Till recent times, precious metal oxides such as RuO2 and IrO2 were known to be the 
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best OER electrocatalysts. However, since these precious metals are scarce, researchers 

continued to look for low cost alternatives for OER and HER electrocatalysts.13, 14  

Among the non-precious metal based catalysts, transition metal oxides including 

perovskites and layered double hydroxides,15,16 and more recently sulfides and selenides 

haven shown tremendous promise for OER electrocatalysts over the last few years.17-23 

Among these the transition metal selenides deserves a special attention since they have 

outperformed most of the previously known OER electrocatalysts in alkaline medium 

including the transition metal and precious metal oxides.18-23Additionally, Ni3S2 nanorods 

synthesized by hydrothermal method on Ni form exhibited excellent OER activity in 

alkaline solutions with a low overpotential of  ̴157 mV.17  In a separate study NiSe 

nanofiber assemblies showed good catalytic activities for the HER process.21 Recently our 

group reported Ni3Se2 electrodeposited on Au-coated glass substrate, which showed a low 

overpotential of 290 mV to achieve 10 mA cm-2.22 Another nickel selenide, NiSe2, showed 

even lower overpotential at 10 mA cm-2 achieved in films grown with a preferred 

orientation.23 Ni-based OER electrocatalysts have shown the best performance till 

date,24,25,26 and it has been attributed to the presence of a single electron in the eg orbital of 

the octahedral metal center.27 Typically, Ni(II) undergoes a pre-oxidation to Ni(III) in 

alkaline medium, and it is the Ni(III) center which initiates the OER reaction. Most of the 

Ni-based electrocatalysts reported till date contain Ni(II) and other lower oxidation states 

of Ni in the pristine state, and the Ni(II) → Ni(III) conversion precedes the catalytic 

activity. Oxidation of Ni(II) to Ni(III) in alkaline medium is followed by oxidative-

attachment of OH– to the metal site which is believed to be the initiation of the OER 

catalytic process and the Ni(II) → Ni(III) conversion is visible as a pre-oxidation peak in 
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the linear sweep voltammograms (LSVs) of the OER reaction before the onset of increasing 

current density signifying the OER process. However, the oxidation potential of a metal 

center depends on the ligand environment around the central metal atom it and varies from 

solid to solid.28,29 The effect of ligand substitution on the redox potential of the metal center 

has been observed more prominently in organometallic and coordination complexes. In 

fact, recently we have also observed that changing the ligand environment from oxide to 

selenide shifted the Ni(II) to Ni(III) oxidation peak to more cathodic potentials.30 Such a 

shift can be explained by the decreasing electronegativity from oxide (3.5) to selenide (2.4) 

which leads to increased covalency of the metal-chalcogen bond.31 However, since Ni(III) 

has been proven to be the actual catalytically active site, it would be more optimal to start 

with a Ni(III)-based catalyst such that OER can proceed directly without the pre-oxidation 

step. Ni(III) species is less common and has been found in some organometallic complexes 

and some other mixed metal ferrites.32 In this article, we have intentionally synthesized 

nanoparticles of a Ni(III)-based mixed metal selenide, FeNi2Se4 with a vacancy-ordered 

spinel structure-type, and have investigated its catalytic activity towards OER in alkaline 

medium. The importance of mixed metal selenides, especially with Ni-Fe combination has 

been an attractive venture in the OER community attributed to the high OER 

electrocatalytic performance observed in the Fe-doped Ni-oxide and hydroxide class of 

compounds. As per our hypothesis, the selenides should show better catalytic performance 

than the oxides, and hence we have attempted to prepare a ternary iron-nickel selenide. 

Additionally, lesser anion electronegativity and higher degree of covalency makes the 

Ni(III) more stable in the selenide coordination compared to the oxide, thereby facilitating 

the catalytic activities. In this article we have reported efficient OER catalytic activity of 
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FeNi2Se4 nanoparticles for the first time, and have optimized the catalytic efficiency by 

forming a hybrid nanocomposite, FeNi2Se4 – NrGO [NrGO = N-doped reduced graphene 

oxide], which shows even better catalytic performance.  

There are two approaches of enhancing the catalytic efficiencies of these 

electrocatalysts. While the first one deals with reducing the overpotential, the second one 

deals with increasing the current density. The latter one can be achieved by nanostructuring 

and increasing conductivity of the catalyst composite which also leads to synergistic effect, 

thereby enhancing its performance. In recent times, graphene sheets, has been identified 

for its outstanding electrical conductivity, high surface area,33-36 and as supporting matrix 

for foreign materials which leads to improvement in the electrocatalytic applications.37,38 

Recently it has been observed by several researchers that mixing reduced graphene oxide 

(rGO) with the catalyst powder increases the catalyst’s efficiency by facilitating charge 

transfer within the catalyst composite as well as through synergistic effect. For example, 

Su-Hong Yu et al reported Mn3O4/ CoSe2 hybrid and CoSe2 nanobelts anchored on 

nitrogen-doped reduced graphene oxides as electrocatalysts which showed optimized 

performance in oxygen electrocatalysis.39,40 The groups of Bell41 and Dai42 reported the 

greatly enhanced OER activity of Co3O4 nanocrystals by anchoring them on Au and 

graphene support, respectively. Such an enhancement in activity for the above mentioned 

hybrid catalyst was believed to be due to the synergistic chemical coupling effects between 

the metals and the support matrix. Furthermore, there has been reports where metal free 

graphene oxide doped with N,O and P functioned as OER electrocatalysts and showed an 

overpotential of 430 mV to achieve 10 mA cm-2.43 Hence, in our research, we have applied 

both of the above-mentioned approaches (i.e. lowering the overpotential through transition 
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metal doping, and increasing current density through facilitating charge transfer within the 

matrix) to design a high efficiency OER electrocatalyst from a ternary Ni-based selenide. 

Accordingly, in this article we have reported the synthesis of FeNi2Se4-NrGO 

nanocomposite and have shown their exceptionally good catalytic performance for OER in 

alkaline medium. This catalyst shows excellent activity for OER in alkaline medium 

reaching a current density of 10 mA cm-2 at an overpotential of 170 mV, which is one of 

the lowest overpotentials that has been reported till date. Interestingly, this catalyst 

composite also shows high activity of ORR in alkaline medium with an onset potential 

close to that of Pt.42 It must be noted that this is one of the first examples of a Ni-Fe-based 

OER electrocatalyst which contains Ni(III) in the starting composition. Notably, the Ni 

pre-oxidation peak is absent in all the LSV plots for OER supporting the claim that this 

catalyst indeed contains Ni(III), which has also been confirmed through detailed XPS 

analysis. We have also shown the positive effect of NrGO on the catalyst’s performance, 

whereby it reduces the overpotential significantly possibly due to synergistic effects 

between the catalyst and NrGO. Apart from reporting highly efficient OER-ORR 

bifunctional catalyst, this study also provides more proof for the effect of anion 

coordination on the catalyst performance, as well as the synergistic role of nanoscale 

interactions between the catalyst particles and graphene matrix to enhance catalytic 

activity. The findings reported here presents a new direction for the selenide based hybrid 

catalysts, which may be extended to investigate other ternary selenide based hybrid 

nanocomposites for a broad range of energy-related applications. 
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2. RESULT AND DISCUSSION 

 

 

 

2.1. COMPOSITION AND MORPHOLOGY CHARACTERIZATION 

The FeNi2Se4 catalysts were synthesized by hydrothermal technique (Experimental 

details provided in supporting information). Pure FeNi2Se4 nanoparticles (hereafter 

referred to as nanoparticles) and FeNi2Se4–NrGO nanocomposite containing FeNi2Se4 

nanoparticles intermixed with in situ generated NrGO (characterization details have been 

provided in Methods and Supporting information) were recovered as blackish powder from 

the autoclave. The NrGO was synthesized and characterized following standard procedure 

as described in the Supporting information (Figure S1). Figure 1 shows the powder X-ray 

diffraction (pxrd) pattern of as-synthesized blackish products. As can be seen from the 

Figure, the pxrd pattern matched very well with FeNi2Se4 standard pattern (PDF # 04-006-

5240) indicating high degree of crystallinity and purity of the product. Interestingly, the 

crystallinity of the product was preserved in the FeNi2Se4-NrGO nanocomposite, which 

showed nearly identical pxrd pattern.  

Several ternary iron nickel selenides has been reported till date and a notable feature 

of this class of compounds lies in their structure and magneto-optic properties.44 Mixed 

metal selenides, FeNi2Se4 (or NiFe2Se4) belong to a specific structure type, AB2X4, 

containing a hexagonal close packing of the chalcogenide anion (X), while the metal atoms 

(A and B) occupy octahedral holes above and below the chalcogen layers. The structure is 

derived from the stoichiometric end-member NiSe (NiAs structure type)45 by replacing 

every alternate metal layer with half-filled metal layer such that 50% of the metal sites in 

every alternate layer are vacant and the formulation leads to Ni3Se4. If every alternate metal 
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layer is removed completely, it results in the NiSe2 structure. Among the metals A and B, 

A is a divalent cation occupying the partially occupied metal layer, while B is a trivalent 

cation occupying the fully occupied metal layers. A series of ternary metal selenides with 

the generic formula AB2Se4 has been reported in the literature where A and B can be Ti, Cr, 

Mn, Fe, Co, Ni, and so on.46 Hence, in this structure type it might be possible to achieve 

+3 oxidation state of Ni in a formulation such as MNi2Se4. Interestingly, it has been 

observed that in the Cr3Se4 structure type, Fe has a preference for occupying the A sub- 

 

 

Figure 1. PXRD pattern of FeNi2Se4-NrGO nanocomposite and FeNi2Se4 nanoparticles 

along with reference FeNi2Se4 (PDF # 04-006-5240). Inset shows the crystal structure of 

FeNi2Se4 created from structure files corresponding to PDF # 04-006-5240. Color coded: 

black – Fe, red – Ni, grey – Se. 
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lattice thereby, suggesting that FeNi2Se4 should contain Ni3+. In the current context it is 

also important to understand the difference between NiFe2Se4 and FeNi2Se4. Although 

NiFe2Se4 and FeNi2Se4 are both generically referred to as AB2Se4, and both of them.  

 

 

Figure 2. Deconvoluted XPS spectra of the as prepared FeNi2Se4-NrGO nanocomposite 

showing the (a) Fe 2p, (b) Ni 2p and c) Se 3d signals. (d, e) TEM images of FeNi2Se4-

NrGO and FeNi2Se4, respectively. White circular mark is a visual guide to notice the 

nanoparticle in the NrGO matrix. (f, g) HRTEM images of FeNi2Se4-NrGO 

nanocomposite and FeNi2Se4 nanoparticles. (h, i) SAED patterns collected from 

FeNi2Se4-NrGO nanocomposite and FeNi2Se4 nanoparticle ensemble. 
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crystallize in the spinel structure-type, there are subtle differences between these two 

compositions. Specifically, the occupancy of the A and B sites, interchange between these 

two compositions. In FeNi2Se4, Ni is in +3 oxidation state while Fe occupies the divalent 

cation site.      

A good indication of the oxidation states can be obtained from X-ray photoelectron 

spectroscopy (XPS).  Accordingly, the surface composition of as-prepared FeNi2Se4-NrGO 

was investigated through XPS. The electronic states of Ni, Fe and Se in as prepared 

FeNi2Se4 nanoparticles were estimated from the deconvoluted XPS spectra as presented in 

Figure 2 (a, b, c). The deconvoluted Fe 2p and Ni 2p peaks reveal the presence of variable 

oxidation states of Fe2+/Fe3+ and Ni2+/Ni3+, respectively.  The Fe 2p XPS spectrum in 

Figure 2a shows peaks at 711.4 and 724.4 eV corresponding to Fe2+ 2p3/2 & Fe2+ 2p1/2; 

while peaks at 714.5 and 727.4 eV correspond to Fe3+ 2p3/2 & Fe3+ 2p1/2, respectively. The 

obvious satellite peaks of Fe 2p can be found at 717.4 and 730.4 eV.47 Similarly, the 

deconvoluted Ni 2p spectra is shown in Figure 2b, where the binding energies at 853.1 and 

872.0 eV belong to Ni2+ 2p3/2 & Ni2+ 2p1/2   and peaks at 855.6 and 873.4 eV are for Ni3+ 

2p3/2 & Ni3+ 2p1/2, respectively. The shakeup satellite peak of Ni 2p was observed at 861.3 

and 879.7 eV.48 Figure 2c, shows the Se 3d spectra where the peaks of 3d5/2 and 3d3/2 at the 

binding energies of 54.1 and 55.3 eV confirm the presence of Se2- and the peak at ~ 59 eV 

indicates the existence of SeOx species which might due to the surface oxidation of 

selenide. It should be noted that there was no evidence of metal oxides on the surface from 

XPS analysis. Since the catalyst is composed of variable oxidation states of metals we have 

calculated approximate percentage of Fe2+/3+ and Ni2+/3+, based on the area under the peaks 

in the deconvoluted XPS spectra. The as-synthesized catalyst contained 23% Fe2+, 6% Fe3+ 
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and 3% Ni2+, 68% Ni3+. From the XPS fitting analysis, composition of the catalyst can be 

written as Fe1-xNix(Ni2-yFey)Se4, where x = 0.1 and y = 0.15 leading to the ratio between 

the metals to be Fe:Ni = 1.05:1.95 which is in close agreement with the value obtained 

from EDS (Table S1). It should be noted that the trivalent cationic site in the fully occupied 

layer (B-site) was predominantly occupied by Ni3+ with some Fe3+ substitution, while the 

divalent cationic site (A- site) was majorly Fe2+.  A similar XPS spectra was observed for 

FeNi2Se4 nanoparticles. High resolution N 1s XPS spectrum collected from the the 

FeNi2Se4-NrGO composite revealed pyridinic and pyrrolic N peaks at 398.7 and 400.2 eV, 

respectively as shown in Figure S2a. The high-resolution XPS spectrum of C 1s (Figure 

S2b) showed a broad peak at 280-288 eV49 which can be attributed to different organic 

functional groups such as hydroxyl (-C-OH) and carboxyl (-COOH), C-C, C=O and 

nitrogen containing groups like C-N, and C=N on the rGO sheets. These functional groups 

might interact with FeNi2Se4 and enable the direct growth of FeNi2Se4 on NrGO sheets.  It 

should be noted that the XPS spectra from FeNi2Se4 and FeNi2Se4-NrGO did not show 

evidence of any oxidic phase corresponding to either of the metal oxides indicating high 

purity of the sample.  

Detailed transmission electron microscopy (TEM) confirmed the formation of 

FeNi2Se4- NrGO nanocomposite (Figure 2d) as well as formation of the FeNi2Se4 

nanoparticles (Figure 2e). The average particle size for the bare nanoparticles was 

estimated to be 10 – 15 nm. HRTEM seen in Figure 2f and 2g confirmed the crystalline 

nature of the hybrid nanocomposite and the lattice fringes can be assigned to <002> spacing 

of FeNi2Se4. Selected area electron diffraction (SAED) patterns shown in the Figures 2h 

and 2i, further confirms the crystallinity of the as prepared nanocomposite and 
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nanoparticles, and the diffraction spots could be indexed to <002> and <112> lattice planes 

of FeNi2Se4 crystal structure. The FeNi2Se4 nanoparticles were agglomerated because of 

high surface energy which leads to irregular morphology. SEM images (Figure S3) show 

the randomly distributed catalyst particles with high surface roughness for FeNi2Se4-NrGO 

and FeNi2Se4. The presence of NrGO was observed as a hazy layer around the particles as 

seen in Figure S3a. Elemental composition analysis was done from energy dispersive X-

ray spectroscopy (EDS) confirmed the presence of C, N (from reduced graphene oxide) 

along with Fe, Ni and Se with a relative ratio 1: 2: 4 (Fe:Ni:Se) for the nanocomposite as 

shown in Figure S4a. The Fe:Ni:Se relative ratio remained same for bare nanoparticles as 

seen in Figure S4b.     

 

2.2. ELECTROCHEMICAL CHARACTERIZATION AND CATALYTIC 

ACTIVITIES 

 

To assess the OER catalytic activity, our catalysts were drop casted onto 

commercially available carbon fiber paper (CFP) substrates with a typical loading of 0.55 

mg cm-2. Details of the electrode preparation has been provided in the supporting 

information. Electrochemically active surface area (ECSA) was measured in N2 saturated 

1 M KOH, making use of the double layer charging concept,50 by varying scan rates from 

20 to 160 mVs-1 as shown in Figure S5a and (b). By using equation S1, the ECSA was 

calculated to be 8.3 cm2 for the nanocomposite while the bare nanoparticles showed an 

ECSA of 5.3 cm2. Correspondingly, a roughness factor (RF) of the composite and 

nanoparticle film was estimated to be 17.53 and 11.27, respectively, which indicates that 

the NrGO composite has a more textured morphology. Typically larger RF induces better 

catalytic activity due to larger exposure of the active sites on the catalyst surface.    
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Linear sweep voltammetry (LSV) measurements were conducted in N2 saturated 1 

M KOH solution (pH 13.6), at a scan rate of 10 mV s-1. Calibrated Ag|AgCl and Pt mesh 

were used as reference electrode and counter electrode, respectively. The measured 

potentials using Ag|AgCl are converted to reversible hydrogen electrode (RHE) using the 

Nernst equation (according to equation S2). For comparison, a RuO2 film was also 

electrodeposited following standard procedures (see Supporting Information) and the LSV 

was measured under identical conditions as mentioned above. The nanocomposite 

FeNi2Se4-NrGO catalyst showed a low onset potential of 1.38 V vs RHE for OER and a  

 

 

Figure 3. (a) LSVs measured for different catalysts coated on CFP substrate in N2 

saturated 1.0 M KOH solution at a scan rate of 10 mV s-1. (b) Tafel plots of FeNi2Se4-

NrGO. 

 

 

small overpotential of 170 mV to achieve the current density of 10 mA cm-2 as shown in  

Figure 3a. The onset and overpotential for FeNi2Se4-NrGO nanocomposite was also 

confirmed from the cyclic voltammogram (CV) plot (as shown in Figure S6) which 
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provides a more accurate way of determining these potentials from the reverse cycle of the 

CV, which is unaffected by the oxidation peak corresponding to Ni2+ oxidation (if any). 

The CV plot also shows that the FeNi2Se4-NrGO nanocomposite had a very a high current 

density at low applied potential surpassing most of the conventional electrocatalysts. 

FeNi2Se4 nanoparticles without NrGO also was catalytically active showing an onset of 

1.38V and required 210 mV to achieve the current density of 10 mA cm-2. Similar onset 

potential for catalytic activity but more sluggish rise of current density in absence of NrGO 

in the catalytic film is another indication of the synergistic effect in the catalyst-NrGO 

composite. On the other hand, NrGO by itself showed very less OER activity, while RuO2 

required 360mV to achieve 10 mA cm-2 current density. It was observed that the 

overpotential at 10 mA cm-2 for this selenide based hybrid catalyst is lower than most of 

the previously reported OER catalysts based on nickel-oxides, nickel iron hydroxides, 

layered double hydroxides and nickel selenides on nickel foam (Table 1).51-53 In fact, as 

per our knowledge, this overpotential is the second lowest[23] amongst all the reported 

overpotential for OER electrocatalysts active in alkaline medium. It should be noted that 

our catalyst is supported on CFP, which in contrast to Ni foam has very less or no catalytic 

activity by itself and does not have extensive porous network as the foam. This implies that 

the high catalytic activity observed from the FeNi2Se4 nanoparticles and FeNi2Se4-NrGO 

composite is from the catalyst alone. The OER kinetics of the above catalysts was probed 

further by analyzing their Tafel plots as given by the equation S4, and shown in Figure 3b. 

The resulting Tafel slopes were found to be 62.1 mV dec-1, 87.8 mV dec-1 and 113.5 mV 

dec-1 for FeNi2Se4-NrGO composite, FeNi2Se4 and RuO2, respectively. It should be noted 

here that the FeNi2Se4-NrGO composite exhibits the smaller Tafel slope among the 



 

 

76 

catalysts reported in this study, confirming faster charge transfer and synergistic effect 

between FeNi2Se4 nanoparticles and NrGO.  The turnover frequency (TOF) was calculated 

at an overpotential of 250 mV, assuming that all the metal sites of the catalyst are 

catalytically active. The TOF value was found to be 0.050 s-1 for FeNi2Se4-NrGO, which 

is higher than IrOx (0.0089 s-1)54 indicating better OER activity of the hybrid catalyst. 

 

2.3. EFFECT OF NANOSCOPIC INTERACTION BETWEEN GRAPHENE AND 

FeNi2Se4 NANOPARTICLES ON OER CATALYTIC ACTIVITY 

 

The improved OER activity with low overpotential and higher current density of 

FeNi2Se4-NrGO composite possibly originated from the synergistic effect between highly 

conducting NrGO matrix and electrocatalytic FeNi2Se4. Such synergistic effects has been 

observed previously by other groups, where activity of CoSe2 and Co3O4 was enhanced by 

doping with NrGO.40, 42 The synergistic effect of NrGO on the catalytic activity was further 

confirmed by the observed dependence of catalytic activity on the relative ratio of FeNi2Se4 

and NrGO. It was observed that lowering the FeNi2Se4 loading to 1:1 ratio with NrGO led 

to systematic reduction in OER activity (Figure S7). This suggests that the active reaction 

sites in our hybrid materials are the transition metal ions, Ni3+ species at the interface with 

NrGO.  It is believed that N groups on the reduced GO can also serve as favorable 

nucleation and anchor sites for the mixed metal nanoparticles, which leads to a strong 

coupling between Fe/Ni and rGO.  

 

 

 



 

 

77 

2.4. EFFECT OF STRUCTURE AND COVALENCY ON OER CATALYTIC 

ACTIVITY 

 

While the FeNi2Se4 and FeNi2Se4-NrGO showed high catalytic activity, 

interestingly it was observed that there was no pre-oxidation peak visible in the LSV, that 

has been typically observed with Ni-based OER electrocatalysts.55 Such pre-oxidation 

peaks have been attributed to the conversion of Ni2+ → Ni3+, whereby Ni3+ is the actual 

catalytically active species. The absence of such pre-oxidation peaks further confirms the 

proposition that Ni is majorly present as Ni3+ in this reported catalytic composite. We have 

analyzed this further by studying the oxidation-reduction process for several cycles through 

cyclic voltammetry (CV). As shown in Figure S8, initial anodic cycle was marked by stark 

absence of the pre-oxidation peak before the onset of OER. On the contrary, during the 

reverse cathodic sweep, reduction peak corresponding to Ni3+ → Ni2+ was observed. 

During subsequent anodic potential sweep, the electrochemically generated Ni2+ was seen 

to be oxidized to Ni3+ exhibiting the characteristic Ni2+ → Ni3+ oxidation peak, which 

gradually intensified with subsequent cycling. This further confirms that the as-prepared 

catalyst indeed contained Ni3+. However this Ni3+ could be electrochemically reduced to 

Ni2+ during the electrochemical catalytic process, and the generated Ni2+ could 

subsequently be oxidized to Ni3+ in the anodic sweep. This is one of the first examples of 

OER catalyst which has Ni3+ in the as-prepared catalyst composition, which might be one 

of the reasons for the very low onset potential and overpotential at 10 mA cm-2 for OER. 

Fe plays a critical role in enhancing the activity of Ni based oxygen evolution 

electrocatalysts, and the synergistic effect between Fe and Ni in mixed metal based OER 

electrocatalyst has been previously studied by several researchers. Boettcher et al, has 

extensively studied the effect of Fe incorporation in Ni(OH)2 and Ni(OOH)2 on the OER 
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activity.56 The functional role of the Fe dopant was also investigated, and Stahl et al. 

suggested formation of Fe4+ in NiFe-hydroxides by performing Mossbauer spectroscopic 

studies in operando.[57] On the contrary no such Fe4+ species was detected in only Fe oxide 

based catalysts. According to these researchers, the presence of Fe4+ is induced by the 

neighboring Ni ions, which in turn will influence the electron density around the Ni-center 

thereby affecting the activity of NiFe hydroxide.  However, the active site for catalytic 

activity is still Ni3+ and Fe4+ is not kinetically competent as the active site. On the other 

hand, Corrigan et al58 proposed that partial-charge transfer between the metal sites (Fe and 

Ni3+/4+), can also enhance the catalytic activity. We believe that in the present case, the 

presence of Fe2+ in the neighboring vacancy-ordered layer enhances charge transfer from 

Ni3+ thereby facilitating the catalytic activity by redistributing and reducing the electron 

density near Ni-site. The absence of pre-oxidation peaks as observed in the LSV curves of 

FeNi2Se4 and FeNi2Se4-NrGO indicates that Ni3+ available in the pristine state is still the 

active site for catalyzing OER.   

As has been explained earlier changing the anion composition from highly 

electronegative oxide to less electronegative selenide, increases covalency in the lattice. 

Effect of covalency on the OER catalytic activity has been explained for transition metal 

oxides very clearly by Shao-Horn et al. on the basis of the molecular orbital model.59 

According to that model, the interaction between oxygen and metal d states is responsible 

for the OER activity, whereby, the eg orbital of surface transition metal ions participates in 

σ-bonding interaction with the anion adsorbate. The d-electron filling in eg orbitals can thus 

influence bond strength of oxygen-related intermediate species on catalytic surface thereby 

optimizing catalyst performance. The model also predicts that increasing covalency in the 
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metal-oxygen bond results in the higher OER activity.  Hence to highlight the direct effect 

of increased covalency on the OER catalytic performance of these ternary chalcogenides, 

we have compared the catalytic activity between the pure oxide (FeNi2O4) and the selenide 

(FeNi2Se4) phases. Such comparison also clarifies the doubts regarding presence and/or 

influence of surface oxidic phases on the catalytic activity. Accordingly, we have 

synthesized FeNi2O4-NrGO by hydrothermal methods (experimental details in supporting 

information) and the phase identification was confirmed by pxrd (Figure 4a). 

Electrochemical studies of this catalyst was performed in 1 M KOH by preparing the 

electrode with similar loading as the selenide phase. The onset potential for OER catalytic 

activity with FeNi2O4-NrGO was 1.41 V while overpotential at 10 mA cm-2 was obtained 

at 260 mV as seen in Figure 4b. While this overpotential by itself was better than the 

previously reported Ni-Fe double hydroxides, highlighting the importance of crystal 

structure and packing on catalytic activities, it was still significantly higher than the 

corresponding selenide. The overpotential measured for FeNi2Se4-NrGO under similar 

conditions was only 170 mV. This ~90 mV difference between the overpotentials of the 

selenide and oxide based hybrid OER catalysts indicate that the selenide coordination 

indeed enhances catalytic activity of the Ni3+ center due to increased covalency of Ni-Se 

bonds compared to Ni-O bonds, which effectively changes the chemical environment 

around Ni3+ and lowers the oxidation potential.  Hence the higher catalytic activity in 

FeNi2Se4 and FeNi2Se4-NrGO hybrid nanocomposite can be attributed to increased 

covalency of the lattice, exchange interaction with Fe and synergistic effect of NrGO.  
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Figure 4. (a) Pxrd of as-synthesized FeNi2O4 and FeNi2O4-NrGO compared with standard 

FeNi2O4 (PDF# 54-0964). (b) Comparison of LSV of FeNi2Se4-NrGO, FeNi2O4-NrGO 

and FeNi2O4 showing the enhanced OER catalytic activity of the ternary selenide. 

 

 

2.5. ANALYZING THE EVOLVED GAS AND ESTIMATION OF FARADAIC 

EFFICIENCY 

 

In order to confirm the composition of the evolved gas and to calculate the Faradaic 

efficiency, we have designed a OER-ORR combined experiment in a bipotentiostat mode 

with rotating ring disk electrode, wherein, OER takes place at GC disk electrode coated 

with FeNi2Se4-NrGO composite, while simultaneous oxygen reduction reaction (ORR) 

was performed at the Pt ring electrode maintained at a constant voltage of 0.2 V vs RHE. 

Before the experiment, electrolyte solution (1 M KOH) was degassed with N2 for 30 mins 

and the whole experiment was performed under a blanket of N2 gas. The concept was that 

the Pt ring electrode will show a ring current corresponding to ORR if and only if the gas 

evolved in the disk electrode is oxygen. The electrode was rotated at 1600 rpm and OER 

activityat the anode (maintained at 1.38 V) was characterized by increasing disk current 

density. As shown in the Figure S9a, the cathodic current at the Pt ring electrode showed a 
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simultaneous increase as soon as the disk voltage passed the onset potential indicating that 

the gas evolved indeed was O2.  

The Faradaic efficiency was determined according to equation S6 using similar 

bipotentiostat experiment involving GC disk electrode and Pt ring electrode. Details of the 

experimental procedure has been reported previously.[24] The disk electrode was 

maintained for 1 min at a constant potential from 1.41 V to 1.45 V vs RHE, while being 

rotated at 1600 rpm under continuous N2 bubbling. At 1.41 V the highest Faradaic 

efficiency was obtained which was 99.8% and the lowest Faradaic efficiency was at 1.45 

V (vs RHE) to be 51.9%. This decrease in the Faradaic efficiency can be attributed to the 

limitation of the Pt ring’s collection efficiency, which cannot reduce the large amounts of 

O2 produced by the disk electrode. 

 

2.6. INVESTIGATING STABILITY OF THE CATALYSTS AND POST-

CATALYTIC CHARACTERIZATION 

 

The stability of the hybrid nanocomposite for continuous oxygen evolution was 

carried out through chronoamperometric measurements (j vs. t) for 12 hours as shown in 

Figure 5a, at an applied potential of 1.40 V vs RHE, where the catalyst achieved current 

density of 10 mA cm-2 in 1 M KOH solution. The catalyst composite was prepared with 

2% Nafion, which showed excellent durability without any decrease in the current density.  

As can be seen from Figure 5a, there was no degradation of current density even 

after 12 h. The stability of the catalyst was further confirmed through LSV (inset Figure 

5a) studies which showed that the catalyst has similar onset potential and overpotential at 

10 mA cm-2 even after 12 hours of chronoamperometry. 
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Figure 5. (a) Chronoamperometric stability study for FeNi2Se4-NrGO nanocomposite 

under continuous O2 evolution for 12 h. Inset shows comparison of LSVs of the catalyst 

before and after chronoamperometry for 12 h. (b) 100 CV cycles of FeNi2Se4-NrGO in 

N2 saturated 1.0 M KOH. 

 

 

The surface chemistry of the catalyst composite was also probed electrochemically 

based on the idea that a change of anion coordination around the transition metal center 

(Ni) will be accompanied by a shift in the oxidation-reduction peak potential of the 

Ni2+/Ni3+ species, as has been shown earlier. Specifically, if the surface is coated with 

layers of the mixed metal oxide (FeNi2O4, NiOx or Ni(Fe)OOH), then it is expected that 

the oxidation-reduction peak of Ni2+/Ni3+ couple will shift towards more anodic potentials. 

Through CV cycling studies for 100 cycles (Figure 5b), it was observed that the CV plots 

of FeNi2Se4 catalyst composite were almost superimposable, with the reduction peak and 

gradually intensifying oxidation peak lying at 1.30 and 1.36 V respectively. In FeNi2O4 

however, the corresponding oxidation-reduction peaks were observed at 1.28 and 1.38 V 

respectively (Figure S10). It should also be mentioned here that surface 
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corrosion/degradation happens during the initial cycles itself, therefore, a scan for over 100 

cycles can be considered as a proper reflection of the surface changes. While the oxidation-

reduction peak potentials did not show a shift, there was a slight decrease in the current 

density may be due to loss of material from the electrode due to evolution of O2 from the 

surface. The electrochemical cycling test thus confirmed that the surface coordination was 

still majorly selenide even after 100 cycles. The surface composition was further 

characterized through XPS and pxrd collected after 12 h of chronoamperometric 

measurements. For such studies, the hybrid catalyst was drop-casted onto Au substrate 

which was subjected to 12 h of continuous O2 evolution in 1 M KOH. Pxrd of the catalyst 

composites on Au-glass after chronoamperometry showed that the structural integrity was 

maintained as shown in Figure 6a. XPS spectra collected after chronoamperometry showed 

the Ni 2p and Fe 2p peaks were unchanged as shown in Figure 6b & c), and Se 3d peaks 

are shown in Figure 6d. More importantly, there was no evidence of formation of metal 

oxides such as Ni-oxide and Fe-oxide (confirmed by the absence of characteristic XPS 

peaks) after extensive periods of continuous oxygen evolution.  

A comparison of FeNi2Se4 and FeNi2Se4-NrGO composite with other Ni-

chalcogenide based OER electrocatalysts, revealed that FeNi2Se4-NrGO actually showed 

the second lowest overpotential in the series (Tables 1 and Table S2). The higher activity 

can be attributed to the combination of several favorable factors: (i) increased covalency 

in the lattice that lowers the oxidation potential of the transition metal at the catalytically 

active site thereby facilitating anion adsorption and onset of catalytic activity; (ii) 

nanostructuring which leads to higher surface roughness and better exposure of active sites 

to the electrolyte; 
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Figure 6. (a) Pxrd spectra of FeNi2Se4 before and after 12 h of chronoamperometry on 

Au-glass. (b) Ni and (c) Fe XPS signal after chronoamperometry for 12 h. (d) XPS 

spectra of Se before and after chronoamperometry study. 

 

 

(iii) the preferable charge transfer between Fe and Ni centers reducing the local electron 

density around Ni which further enhances the catalytic activity; (iv) the synergistic effect 

between N-center of NrGO and the anchored metal (Ni/Fe) atoms in the NrGO hybrid 

composite which leads to favorable nanoscale interactions and facilitated charge transport 
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within the catalyst composite. The remarkably high catalytic activity, favorable kinetics, 

and strong durability suggests that FeNi2Se4-NrGO can be one of the most promising 

candidate for OER in alkaline electrolyte. 

 

2.7. FeNi2Se4- NrGO AS AN ORR CATALYST 

 

Recently carbon nanostructures and transition metal chalcogenides have been 

shown to exhibit catalytic activity for ORR in alkaline medium.60-62 Accordingly, the ORR 

catalytic activity of FeNi2Se4-NrGO nanocomposite was investigated using a RRDE setup 

in O2 saturated 1 M KOH at a scan rate of 10 mV s-1. The nanocomposite catalyst was 

dropcasted onto glassy carbon disk electrode and the ring current was monitored with Pt 

ring electrode. All the measurements were performed with mass loading of 0.45 mg/cm2. 

The ORR hydrodynamic voltammograms of the FeNi2Se4-NrGO hybrid catalyst at 

different rotation rates was shown in Figure 7a. It was observed that the hybrid catalyst 

was indeed active for ORR and showed an onset potential of 0.93 V, comparable to that of 

Pt in alkaline medium. 63 High conductivity of the NrGO matrix has an important influence 

in increasing current density of the hybrid catalytic composite and the half-wave potential 

(E1/2) was observed at 0.61 V vs RHE, which is comparable with the best chalcogenide-

based ORR catalysts that has been reported.64 The kinetics of the ORR catalytic activity 

along with the number of electrons involved in the process were determined from Koutecky 

- Levich plots (K-L plots, equation S9) as shown in Figure 7b.  
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Figure 7. ORR catalytic activity of FeNi2Se4-NrGO nanocomposite. (a) Linear sweep 

voltammograms of FeNi2Se4-NrGO nanocomposite at different rotation rates. (b) K-L 

plots at different potentials. (c) LSVs of nanocomposite before and after 500 cycles of 

ORR activity. Inset shows stability of the ORR onset potential for 500 cycles. 

 

 

The linear and parallel behavior of the K-L plots at various potentials suggest 

idential electron transfer involved thourghout the ORR process and first order reduction 

kinetic with respect to dissove oxygen.42 The slopes of the K-L plots of (jl
-1 versus ω-1/2) at 

various potentials were similar to that expected for four-electron ORR, and the value of n 

was calculated to be 3.94 for the FeNi2Se4-NrGO surface similar to that observed for 

commercially available Pt/C catalyst. The exclusive 4e- reduction process was also 

confirmed from the ratio of ring and disk currents using equation S7. Additionally RRDE 

experiments were also used to estimate the percentage of H2O2 produced (equation S8). It 

was obsereved that less than 10 % H2O2 was generated during the ORR process (Figure 

S11). The enhanced ORR catalytic activity for the nanocomposite suggests synergistic 

coupling between FeNi2Se4 and NrGO, similar to that observed in case of OER.  

The stability of the ORR activity was investigated through cycling studies, wherein 

the catalyst was cycled for 500 cycles in O2 saturated 1 M KOH solution at 1200 rpm. As 
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can be seen from the the LSV plots measured before and after 500 cycles (Figure 7c), there 

was no change in the ORR onset potential, current density, and half-wave potential. 

Monitoring the onset potential also showed that it was pretty much constant throughout 

500 cycles as shown in the inset of Figure 7c. Such cycling study ascertained that the 

catalyst has high stability and durability for ORR during an extended period of time.  

 

3. CONCLUSION 

 

In summary, we have successfully grown FeNi2Se4 nanoparticles and FeNi2Se4-

NrGO nanocomposite by using a simple hydrothermal technique. This inexpensive and 

easily reproducible electrocatalyst shows highly efficient bifunctional OER-ORR catalytic 

activity in alkaline medium. The exceptional OER activity is characterized by a small η of 

170 mV at the current density of 10 mV cm-2 and a Tafel slope down to 62.1 mV dec-1. 

The low onset potential required for O2 evolution as well as overpotential required to reach 

10 mA cm-2, is one of the lowest that has been reported so far, making this hybrid composite 

a very promising OER electrocatalyst. The ORR activity is also better than the other 

chalcogenide based electrocatalysts and is comparable to Pt. Hence, this novel hybrid 

composite has exhibited significantly enhanced OER-ORR catalytic performances with 

high catalytic activity, favorable kinetics, and extended stability. The synergistic coupling 

between the N-doped reduced graphene oxide and FeNi2Se4 nanoparticles is believed to 

boost the excellent OER performance. The simple synthetic method, earth abundancy of 

the constituent elements, and low overpotential makes this bifucntional catalyst a front 

runner for various energy related applications. 
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SUPPORTING INFORMATION 

 

 

Materials and Methods 

Materials. Nickel chloride hexahydrate [NiCl2. 6H2O] from J T Baker Chemical 

Co, Iron sulfate heptahydrate [FeSO4. 7H2O] from Fisher Scientific, Selenium dioxide 

[SeO2] form Acros chemicals, Hydrazine monohydrate from Acros chemicals and KOH 

from Fisher chemicals.  All chemicals were of analytical grade and were used as received 

without further purification.  

Synthesis of Graphene Oxide (GO) 

Graphene oxide was synthesized by modified Hummers method.1 Typically, 1 g of 

graphite and 0.5 g of sodium nitrate were mixed together followed by the addition of 23 

ml of conc. sulfuric acid under constant stirring. After 1 h, 3 g of KMnO4 was added 

gradually to the above solution while keeping the temperature less than 20°C to prevent 

overheating. The mixture was stirred at 35 °C for 12 h and the resulting solution was diluted 

by adding 500 ml of water under vigorous stirring. To ensure the completion of reaction 

with KMnO4, the suspension was further treated with 30% H2O2 solution (5 ml). The 

resulting mixture was washed with HCl and H2O respectively and allowed to stand for 48 

hrs, followed by centrifugation and drying. 

Synthesis of NrGO 

 0.5 g of GO was stirred in 5 ml water followed by addition of 0.1 ml hydrazine 

monohydrate and 0.1 ml of ammonium hydroxide. The solution was stirred for 10 mins 

before transferring to 23 ml Teflon lined hydrothermal bomb. The reaction was carried out 
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at 145oC for 12 hrs.  The solid was washed with DI water and ethanol several time and 

dried in vacuum oven at 40°C overnight.   

Synthesis of FeNi2Se4 

 FeNi2Se4 nanoparticles was synthesized by hydrothermal method. In a typical 

procedure, 5 mmol of FeSO4.7H2O, 10 mmols of NiCl2.6H2O and 20 mmols of SeO2 were 

mixed in 10 ml of deionized water. The solution was stirred on a magnetic stirrer. About 5 

mins later 0.25 ml of hydrazine monohydrate was added. The solution of stirred for another 

5 mins and then transferred to 23 ml Teflon - lined autoclave, which was sealed and 

maintained at 145°C for 24 h and then naturally cooled to room temperature. The resulting 

black solid was then washed several times with DI water and ethanol. The solid was dried 

in an oven maintained at 40°C overnight. 

Synthesis of FeNi2Se4 -Nitrogen Doped Reduced Graphene Oxide Nanocomposite  

Firstly, Graphene oxide is taken 30% by weight in 5 ml DI water. This mixture was 

sonicated for 15 mins. GO-water mixture is added to FeNi2Se4 nanoparticles (from the 

above procedure) while stirring. 0.25 ml hydrazine monohydride is added and this solution 

is sonicated for 30 mins. 0.5ml NH4OH in 0.7 ml water is added. This solution is transferred 

to 23 ml Teflon - lined autoclave, which was sealed and maintained at 145°C for 24 h and 

then naturally cooled to room temperature. The cleaning procedure remains same as above. 

FeNi2Se4 – NrGO was synthesized similar to the procedures reported to synthesize other 

graphene oxide based materials.2 Hydrazine monohydrate was used as reducing agent, 

which reduces the Se4+ to Se2- and chemically reduces graphene oxide to reduced graphene 

oxide (rGO) to a certain extent. An additional step of sonicating the above solution for 30 

mins was introduced. Sonication of a FeNi2Se4 - NrGO dispersion in the presence of 
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reducing agent like hydrazine monohydrate results in high-coverage of metal nanoparticle 

on rGO sheets. An additional benefit of sonication includes the induced reduction in the 

exfoliation of individual rGO sheets. This increases the likelihood of metal nanoparticle 

deposition on single-layer rGO sheets. Hydrothermal treatment at 145°C for 24 h gave 

FeNi2Se4-NrGO powder. During the hydrothermal treatment, crystallization of FeNi2Se4 

and further reduction of GO to rGO were achieved simultaneously. We also added NH4OH 

in our synthesis steps to obtain an N-doped hybrid catalyst denoted as FeNi2Se4-NrGO. 

Synthesis of FeNi2O4-NrGO by Hydrothermal Method 

FeNi2O4 –NrGO was synthesized by hydrothermal method. In a typical procedure, 

1 mmol of Fe(NO3)3.9H2O, 2 mmols of Ni(NO3)3.6H2O and 40 mmols of urea were mixed 

in 5 ml of deionized water. The solution was stirred on a magnetic stirrer. Graphene oxide 

which was synthesized by modified Hummers method was taken 30% by weight in 5 ml 

DI water. This mixture was sonicated for 15 mins. About 5 mins later this 5ml of graphene 

oxide was added to the metal precursor solution. 0.5ml NH4OH in 0.7 ml water is added.  

The solution of stirred for another 5 mins and then transferred to 20 ml Teflon - lined 

autoclave, which was sealed and maintained at 185°C for 12 h and then naturally cooled to 

room temperature.3,4 The resulting black solid was then washed several times with DI water 

and ethanol. The solid was dried in a vacuum oven maintained at 40°C overnight. 

Electrodeposition of RuO2 on GC  

Electrodeposition of RuO2 on GC substrate was carried out from a mixture of RuCl3 

(0.452 g) and KCl (2.952 g) in 40 ml of 0.01M HCl by using cyclic voltammetry from 

0.015 to 0.915 V (vs. Ag|AgCl) for 100 cycles at a scan rate of 50 mV s-1. Finally heated 

at 200°C for 3 h in presence of Air. 
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Electrode Preparation 

The preparation method of the working electrodes is as follows. 2.5 mg of catalyst 

powder was dispersed in 300 μL of ethanol mixed with 0.8 μL of Nafion (5wt %). This 

mixture was ultra-sonicated for about 30 mins to generate a homogeneous ink. 20 μL of 

the ink was drop casted onto carbon fiber paper, leading to the catalyst loading ∼0.55 mg 

cm-2. The as prepared catalyst was dried at room temperature for 12 h. For comparison, 

bare carbon fiber paper which was cleaned and dried for electrochemical measurement was 

also measured. 

Characterizations 

Powder X-ray Diffraction. The electrodeposited substrates were studied as such 

without any further treatment. The product was characterized through powder X-ray 

diffraction (PXRD) using Philips X-Pert using CuKa (1.5418 Å) radiation. The PXRD 

pattern was collected from 5° to 90°.  

The average catalyst particle size was calculated from the XRD diffraction peak width 

using the Scherrer equation 

 

where L is the particle size, λ is the X-ray wavelength in nanometer (0.15418 nm), β is the 

peak width of the diffraction peak profile at half maximum height in radians and K is a 

constant, normally taken as 0.9. The value of β in 2θ axis of diffraction profile must be in 

radians. The FeNi2Se4-NrGO composite showed an average size of 22. In comparison, 

FeNi2O4-NrGO showed an average size of 20 nm. 

 

(1) 
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Transmission Electron Microscopy (TEM). High resolution TEM images and 

selected area electron diffraction (SEAD) was obtained using FEI Tecnai F20. The probe 

current is 1.2 nA with a spot size of less than 2 nm. STEM mode in the TEM was also used 

for dark field imaging where the convergence angle was 13 mrad and the camera length 

was 30 mm. This scope is equipped using an Oxford ultra-thin (UTW) window EDS 

detector, which allows detection of the elements. 

X-ray Photoelectron Spectroscopy (XPS). XPS measurements of the catalysts 

were performed using a Kratos Axis 165 X-ray Photoelectron Spectrometer using the 

monochromatic Al X-ray source. The spectra were collected as is and after sputtering with 

Ar for 30 sec which removes approximately >1 nm from the surface. 

Electrochemical Measurements. Electrochemically active surface area (ECSA) 

for FeNi2Se4-NrGO and FeNi2Se4 was determined by double layer capacitance in the non-

faradaic region according to the equation  

ECSA = CDL/ CS 

where CDL is the double layer capacitance and CS is the specific capacitance. For this work 

the CS = 0.04 mFcm-2. By plotting the capacitive current (iDL) versus the scan rate (ν) 

according to the equation iDL = CDL ν, we obtain a straight line where the slope of this line 

will give the CDL value. Cyclic voltammograms were recorded in N2 saturated 1M KOH 

solution from -0.3 V to 0.08 V vs Ag|AgCl, with varying scan rates from 20 to 160 mVs-1. 

FeNi2Se4-NrGO has a higher value of ECSA compared to FeNi2Se4 which suggest that the 

hybrid nanocomposite has a catalytically active sites.  

Electrochemical measurements were performed at room temperature in a standard 

three-electrode glass cell using IviumStat potentiostat. Note that the current density was 

(2) 
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normalized to the geometrical area and the measured potentials vs Ag/AgCl were converted 

to a reversible hydrogen electrode (RHE) scale according to the Nernst equation  

ERHE = EAg/AgCl + 0.059 pH + Eo
Ag/AgCl 

The overpotential (η) was calculated according to the following formula 

η (V) = ERHE -1.23 V 

The electrolyte was prepared using DI water and KOH pellets (99.99% weight). All 

measurements were conducted under N2 saturation. Linear sweep voltammograms (LSV) 

and cyclic voltammetry (CV) were conducted with scan rates in the range of 10 mV s-1.  

Tafel Plots. The catalytic performance of the hybrid catalyst for OER is carried 

out by measuring the Tafel slopes according to the equation given below.  

ƞ = 𝑎 + 2.3
𝑅𝑇

𝛼𝑛𝐹
log (𝑗) 

where ƞ is the overpotential, j is the current density and the other symbols have their usual 

meanings. 

TOF. The turnover frequency (TOF) was calculated from the following equation 

𝑇𝑂𝐹 =
𝐼

4𝐹𝑚
 

where I is the current in Amperes, F is the Faraday constant and m is the number of moles 

of the active catalyst. 

Faradaic efficiency was calculated using the following equation 

𝐹𝑎𝑟𝑎𝑑𝑎𝑖𝑐 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
2ir

 id𝑵
 

where, id and ir are the disk and ring currents, respectively and N is the collection efficiency 

(0.24). 

(3) 

(4) 

(5) 

(6) 

(7) 
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The percentage of the electrogenerated hydrogen peroxide (XH2O2) and the number 

of electron transferred (n) during the ORR were also calculated using Eqs. (S8) and (9):  

ΧH2O2 =

200𝑰R

𝑵

𝑰D +
𝑰R

𝑵

 

n =
4𝑰D

𝑰D +
𝑰R

𝑵

 

where ID and IR are the disk and ring currents, respectively and N is the collection 

efficiency (0.24). 

K-L Plots. The number of electrons transferred per oxygen molecule involved in 

the ORR at the FeNi2Se4-NrGO@GC electrode was determined by the Koutecky-Levich 

equation. 

1

𝑗
=

1

j𝒌
+

1

B𝜔1/2
 

where jk is the kinetic current density B is the so-called B-factor and equal to 

0.62nFCbDo
2/3ʋ-1/6 k is the rate constant, n is number of electrons transferred for per oxygen 

molecule, F is the Faraday constant (96 485 C mol-1), A is geometric area of electrode 

(0.196 cm2), DO2 is the diffusion coefficient of O2 (1.9 × 10-5 cm2 s-1), v is the kinetic 

viscosity of the solution (1.009 × 10-2 cm2 s-1), and CO2 is the concentration of dissolved 

O2 in solution (1.2 × 10-6 mol cm-1). A plot of vs. should yield a straight line having a slope 

equal to B. The values of B allow us to assess the number of electrons involved in the ORR. 

From an experimental data set where the current is measured at different rotation rates, it 

is possible to extract the kinetic current from a so-called K-L plot. In a K-L plot the inverse 

measured current is plotted versus the inverse square root of the rotation rate.  

(8) 

(9) 

(10) 
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Characterization of GO & NrGO 

Formation of NrGO was confirmed by Raman, XRD (1) and TEM studies. Figure 

S1(a) gives the TEM image of the as prepared NrGO film. Raman spectroscopy is an 

important tool to understand the defects and disorders in the NrGO sample. The Raman 

spectra shows to significant peaks at 1319 cm-1 and 1591 cm-1 for NrGO as shown in Figure 

S1(c). NrGO has been reported to have higher ID/IG ratio which leads to the defective nature 

of material which will have a direct impact on the porosity and the activation sites for the 

metal atoms to reside. 

 

 

Figure S1. (a) TEM image of nitrogen doped reduced graphene oxide (b) PXRD spectra 

of graphene oxide and reduced graphene oxide. (c) Raman spectra recorded for GO and 

NrGO. 

 

 

 

 



 

 

96 

 

 

Figure S2. (a) Deconvoluted XPS spectrum of N1s (b) C1s. 
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Figure S3. SEM image of the as-synthesized (a) powder of FeNi2Se4-NrGO (b) FeNi2Se4 

(c) TEM image of FeNi2O4 – NrGO. 
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Figure S4. EDS pattern of (a) FeNi2Se4-NrGO (b) FeNi2Se4. 
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Table S1. Table for atomic % collected by EDS from Techni F20 (TEM). 

 

 

 

 

 

 

 

Figure S5. Cyclic voltammograms measured for the (a) FeNi2Se4-NrGO nanocomposite, 

and (b) FeNi2Se4 in N2 saturated 1.0 M KOH solution at different scan rates from 20 to 

160 mV s-1. Insets show plots of anodic current measured at -0.14 V for FeNi2Se4-NrGO 

and -0.30 V for FeNi2Se4 as a function of scan rate. 

Element Atomic % 

C(K) 23.92 

O(K) 8.08 

Fe(K) 4.02 

Ni(K) 10.85 

Cu(K) 35.48 

Se(K) 17.65 

Element Atomic % 

C(K) 44.52 

O(K) 7.89 

Fe(K) 4.34 

Ni(K) 8.73 

Cu(K) 16.99 

Se(K) 17.51 

(a) 20 mVs-1 

160 mVs-1 

20 mVs-1 
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Figure S6. CV to calculate onset potential and overpotential to achieve 10 mA cm-2 from 

FeNi2Se4-NrGO composite. 

 

 

 

 

 

Figure S7. LSV comparison of different ratios of FeNi2Se4:NrGO. 
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Figure S8. Ni oxidation peak experiment. (a) cycle 1- no Ni2+ → Ni3+ oxidation observed; 

(b) Cycle 2 – very small Ni2+ oxidation peak; Cycle 3 (c) and cylce 10 (d) shows growing 

intensity of the Ni2+ oxidation peak. 
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Figure S9. a) OER-ORR combined LSV plots showing OER at the FeNi2Se4-NrGO/GC 

disk electrode in N2-saturated 1.0 M KOH and ORR ring current at the Pt ring electrode 

which was held at 0.2 V vs. RHE in the same electrolyte. The black dash line shows the 

onset of OER at the disk electrode which coincides with the onset of increasing ring 

current indicating onset of ORR at the Pt ring electrode. b) Faradaic efficiency of 

FeNi2Se4-NrGO nanocomposite. 

 

Figure S10. CV comparison of 1st cycle of FeNi2Se4-NrGO and FeNi2O4-NrGO. 
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Figure S11. ORR catalytic activity of FeNi2Se4-NrGO nanocomposite. Linear sweep 

voltammograms of FeNi2Se4-NrGO nanocomposite at different rotation rates, and 5% 

Pt/C as standards at a rotation of 2000 RPM. (inset) shows the onset of the FeNi2Se4-

NrGO nanocomposite compared with Pt standard. 

 

 

Figure S12. Percentage of peroxide (solid line) and the electron transfer number (n) of 

nanocomposite at various potentials, based on the corresponding RRDE data in Figure 7a.  
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Table S2. Comparison of overpotential for different transition metal chalcogenides based 

OER electrocatalysts. 

 

Electrocatalyst 

composition 

Catalyst 

Loadin

g 

Electrolyt

e 

Overpotential 

(mV 

vs. RHE) @ 

10a, 20b or 50c 

mA cm-2 

Reference 

FeNi2Se4 - 

NrGO@CFP 

0.55 mg 

cm-2 

1 M KOH 170a  This work 

FeNi2O4- NrGO 

@CFP 

0.55 mg 

cm-2 

1 M KOH 260a  This work 

NiCo2S4 NA/CC 4.0 mg 

cm-2 

1 M KOH 340 mV (100 

mA cm-2) 

Nanoscale 2015,7, 

15122–15126 

NiCo2S4 NW/NF - 1 M KOH 260a Adv. Funct. Mater. 2016, 

26, 4661–4672 

NiCo2O4 hollow 

microcuboids 

~1 mg 

cm-2 

1 M 

NaOH 

290a Angew.Chem.Int. Ed. 

2016, 55,6290–6294 

Ni-Co-O@Ni-Co-

S NA 

- 1 M KOH 300b Phys. Chem. Chem. Phys. 

2014, 16, 20402–20405 

NiCo2O4 - 1 M KOH 391b Adv. Energy Mater. 

2015, 5, 1402031-

1402038 

(a-CoSe/Ti) 3.8 mg 

cm-2 

1 M KOH 292a Chem. Commun. 2015, 

51, 16683 

Co0.85Se - 1 M KOH 324a Adv. Mater. 2016, 28, 

77–85 

(Ni,CO)0.85Se - 1 M KOH 255a Adv. Mater. 2016, 28, 

77–85 

Co0.13Ni0.87Se2/Ti 1.67 mg 

cm-2 

1 M KOH 320 mV (100 

mA cm-2) 

Nanoscale 2016, 8, 

3911- 3915 

NiSe2 /Ti - 1 M KOH 350 mV (100 

mA cm-2) 

Nanoscale 2016, 8, 

3911- 3915 

NiSe2 1 mg 

cm-2 

1 M KOH 250a ACS Appl. Mater. 

Interfaces. 2016, 8, 

5327−5334 

CoSe2 1 mg 

cm-2 

1 M KOH 430a ACS Appl. Mater. 

Interfaces. 2016, 8, 

5327−5334 
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ABSTRACT 

 

Dopamine sensing has gained considerable attention in recent years due to its 

relation to neurological health and possible link to progression and development of 

neurodegenerative diseases including depression and PTSD. A continuous monitoring of 

dopamine levels in the brain fluid can lead to significant advancement in understanding the 

role of these biomarkers in signaling progression and development of the 

neurodegenerative diseases. In this article we have reported a dopamine biosensor 

comprising simple binary copper selenide, showing high sensitivity for dopamine detection 

with low limit of detection. A sensitivity of 26 μA/μM.cm2 was obtained with this 

biosensor which typically indicates that this will be ideal to detect even small fluctuations 

in the transient dopamine concentration. Apart from high sensitivity and low LOD, the 

dopamine oxidation on the catalyst surface also occurred at a low applied potential (<0.18 

V vs Ag|AgCl), thereby significantly increasing selectivity of the process specifically with 
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respect to ascorbic and uric acids, which are considered to be the most prominent 

interferents for dopamine detection. This is the first report of dopamine sensing with a 

simple binary selenide comprising earth-abundant elements and can have large significance 

in designing efficient biosensors that can be transformative for understanding 

neurodegenerative diseases further.     

 

Keywords: Dopamine Sensor, CuSe, Transitions metal chalcogenides, DA 

electrooxidation, Square Wave Voltammetry      

 

 

 

1. INTRODUCTION 

 

In recent years there has been an increasing demand for understanding the function 

and activity of the neurochemicals and its influence on various neurodegenerative diseases. 

Among the various neurochemicals, catecholamines such as dopamine (DA) and 

norepinephrine (NE) have received special attention since these are considered to be 

important neurobiomarkers and their levels are indicative of presence and extent of stress-



 

 

112 

related disorders such as post-traumatic stress disorder (PTSD), sleep deprivation, and 

depression. The abnormal levels of DA in the brain are also associated with other 

neurological and psychiatric disorders including Parkinson’s disease, schizophrenia, and 

the use of substance abuse 1, 2. Recent research also suggests that characteristic dormant 

levels of DA and NE in an individual might influence response towards trauma and trigger 

subsequent development of PTSD.  Hence there is an urgent need not only to detect the 

levels of DA in an individual, but also to monitor the fluctuation in DA level over a 

considerable period of time, which can lead to early detection of neurodegenerative stress-

related disorders. However, detection of DA in physiological fluids is not straightforward 

as its concentration in central nervous system as well as peripheral fluids such as blood and 

the renal system is very low (0.01–1 µM for healthy people) 3, 4 which limits their detection 

by standard analytical methods. The conventional way to determine DA in clinical setup 

has been carried out by using analytical techniques including fluorescence 5, surface-

enhanced Raman scattering 6, 7, colorimetric sensor 8, self-powered triboelectric nanosensor 

9, NMR relaxation method 10, capillary electrophoresis 11, spectrophotometry 12, and 

electrochemical methods 13-15. Moreover, the detection of DA needs to be carried out 

reliably at the point of sample collection to reduce patient anxiety and discomfort, 

especially for the aging population and those with social stress. Hence electrochemical 

detection of dopamine seems to be more attractive for developing portable dopamine 

sensor and continuous monitoring system and has been employed in the clinical analysis 

to determine the concentration of DA owing to ease of operation and cost effectiveness. It 

also provides enough sensitivity, unlike other biological molecules, such as glucose 16-18. 

However, electrochemical detection of dopamine under physiological conditions is 
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challenging, as its presence in the biological fluids is extremely low compared to other 

interferents such as ascorbic acid, uric acid and glucose which significantly affects 

selectivity of the biosensors 19-23. The elimination of interference caused by these 

biomolecules is very critical and numerous efforts have been devoted to nullify the fouling 

effects and improve sensor’s selectivity. To address this issue, it is highly recommended to 

develop quick, reliable and selective techniques to determine dopamine concentration. The 

electrochemical oxidation of dopamine has been explored on carbon based electrodes 24-29. 

However, the large overpotential required for electrochemical oxidation at carbon 

electrode, typically around 0.3 V vs Ag|AgCl 30, makes the quantitative estimation of 

dopamine difficult, since other analytes present in the physiological system also undergoes 

electrochemical oxidation a major interferent for dopamine estimation is ascorbic acid 

owing to its presence of similar functional groups. One promising approach for reducing 

the applied voltage is to use chemically modified electrodes, which uses redox mediator on 

the surface which can enhance electron-transfer kinetics between the electrode and analyte 

(DA) and thus decrease the operating potential. Several of such modifier materials such as 

polymers 31, 32 metal nanoparticles 33, 34, carbon materials 35, 36, and metal oxides 37, 38 have 

been used to overcome the problem of interference. For instance, Oshaka et al. reported 

dopamine oxidation in the presence of ascorbic acid at an electropolymerized film of N,N-

dimethylaniline, coated on a glassy carbon electrode 39. This electrode showed a significant 

stability without being poisoned by the adsorption of the oxidized product of ascorbic acid 

on the electrode surface. Another study showed the oxidation peak separation of dopamine 

and ascorbic acid occurred when a graphite electrode was modified with ultrafine TiO2 

nanoparticles 40. Dopamine can undergo electrochemical oxidation by following either a 1-
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electron or 2-electron pathway yielding a semiquinone or quinone form, respectively as 

shown in Fig. 1. Based on the molecular structure, dopamine electrooxidation essentially 

can be viewed as oxidation of the hydroxyl functionality to a ketonic group. Recently, 

transition metal chalcogenides (TMCs) have shown good electrocatalytic activity for 

oxidizing hydroxyl functional groups. High lattice conductivity and better electrochemical 

activity of the transition metal center makes these materials perform as efficient 

electrocatalysts with lower input energy requirement 41-45. Although TMCs have been used 

extensively as water oxidation electrocatalysts (Masud et al. 2018; Swesi et al. 2017; 

Umapathi et al. 2017), and some for biosensors 46-50, however, there has been limited report 

on using transition metal chalcogenides for non-enzymatic dopamine sensing 51-53.  

In this article, we have reported a simple binary transition metal selenide, viz. CuSe 

nanostructures for efficient dopamine sensing at extremely low applied potential for the 

first time.  The CuSe nanostructures has been synthesized by hydrothermal and 

electrodeposition techniques and characterized by diffraction, spectroscopic methods and 

electron microscopy. The as-synthesized CuSe catalyst exhibits an exceptional 

performance for dopamine oxidation at low applied potential of 0.18 V vs. Ag|AgCl with 

superior sensitivity of 26.80 and 8.80 µA mM-1 cm-2 for electrodeposited CuSe and 

hydrothermally synthesized CuSe respectively. This electrocatalyst also exhibits high 

selectivity for dopamine oxidation in the presence of interfering species, and excellent 

long-term stability and repeatability. 
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Figure 1. Schematic of dopamine electrooxidation at CuSe electrode surface. 

 

 

2. MATERIALS AND METHODS 

 

2.1. REAGENTS AND CHEMICALS 

All reagents were of analytical grade and were purchased from Fischer Scientific 

(CuSO4·6H2O, CuCl2. 6H2O, KH2PO4, and K2HPO4) Acros Organics (SeO2, Dopamine, 

Ascorbic Acid, Glucose and Uric acid), and Alfa Aesar (Hydrazine monohydrate). All 

chemicals were used as received without further purification. All solutions were prepared 

by appropriate dilution with deionized water. 

 

2.2. CHARACTERIZATION 

Structural analysis was performed using Philip X Pert powder X-Ray 

diffractometer (pxrd), having a CuKα (1.5418 Å) radiation source. The average particle 

size of copper selenide was calculated from the pxrd diffraction peak using the Scherrer 

equation:   

                                       L=Kλ / βCosθ                (1)                              
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where L is the particle size, λ is the X-ray wavelength in nanometer (0.15418 nm), β is 

the peak full width at half maxima of the diffraction peak in radians and K is a constant, 

normally taken as 0.9.  

Morphology of the product was analyzed using FEI Helios Nanolab 600 electron 

microscope with an accelerating voltage of 10kV and working distance of 5 mm. To obtain 

high resolution TEM images (HRTEM) and selected area electron diffraction (SAED) the 

sample was electrodeposited directly on the Cu grid and characterized with Tecnai F20. 

Energy dispersive spectroscopy was performed to characterize the elemental composition. 

Additionally, to analyze the surface chemical composition, X- ray Photoelectron 

spectroscopy (XPS) was performed using KRATOS AXIS 165 spectrometer with an Al X-

ray source. All electrochemical measurements were carried out with the Iviumstat 

workstation. All electrochemical characterizations were performed with a conventional 

three-electrode electrochemical cell where catalyst on carbon cloth, a graphite rod and Ag| 

AgCl(KCl saturated) were used as the working, counter, and reference electrode, respectively. 

 

2.3. SYNTHESIS OF CuSe BY HYDROTHERMAL METHOD 

The CuSe nanostructures were synthesized by hydrothermal techniques following 

a typical procedure as outlined below. CuSO4.5H2O (10 mmol), and SeO2 (5 mmol) were 

mixed in DI water (10 ml) and the solution was stirred on a magnetic stirrer. About 5 mins 

later hydrazine monohydrate (0.25 ml) was added. The solution of stirred for another 5 

mins and then transferred to 23 ml Teflon – lined steel autoclave, which was sealed and 

maintained at 145°C for 43 h and then naturally cooled to room temperature. The resulting 
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black solid was then filtered and washed several times with DI water and ethanol. The solid 

was dried in an oven maintained at 60°C overnight. 

 

2.4. SYNTHESIS OF CuSe BY ELECTRODEPOSITION 

For electrodeposition of CuSe film, the electrolyte was prepared by dissolving 

CuCl2.2H2O (2 mM), SeO2 (4.5 mM) and KCl (99%)(0.1 M) in deionized water. The pH 

of the solution was adjusted to 2.5 by using 0.2M HCl solution and the electrolyte was 

stirred at 300 rpm during deposition. The electrodeposition was carried out in a 

conventional three-electrode electrochemical cell as mentioned in the apparatus section. 

To obtain high quality thin film, deposition was carried out at -0.16V vs Ag|AgCl for 10 

mins at 60°C. The as-obtained thin film was thoroughly washed with DI water and allowed 

to dry at room temperature.  

 

2.5. ELECTROCHEMICAL MEASUREMENTS 

The effective electrode surface area is critical factor for analyte, i.e. DA adsorption, 

which in turn shows the electrochemical response. To assess the electrochemical active 

surface area (ECSA) of CuSe, a double layer capacitance measurement was performed in 

N2 saturated 1 M KOH as electrolyte. As shown in Figure. S1, the potential region was 

selected in non-Faradaic region, where the current corresponds only to the double layer 

capacitance. A series of current-voltage plots was performed by varying the scan rates from 

2.5 – 20 mVs-1. Double layer capacitance, Cdl was calculated using the equation (2) and 

ECSA was obtained from equation (3) 

     Idl = Cdl × ν                                    (2)                                  
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            ECSA= Cdl/ Cs        

where Cs is the specific capacitance of the catalyst or the capacitance of the smooth surface 

of the material per unit area under identical electrolyte conditions. For our studies we have 

considered the value of Cs to be 0.04 mF cm-2 in 1 M KOH solution. Thus the ECSA of the 

ED-CuSe was estimated to be 1059.74 cm-2 and for HT-CuSe it was 890.45 cm-2.  

Square wave voltammetry and chronoamperometric measurements were done in 

0.1 M phosphate buffer solution at pH 7.0, under continuous stirring in a three electrode 

setup to measure the oxidation current corresponding to dopamine electro-oxidation. The 

analytical calculations such as limit of detection (LOD) of the CuSe based DA sensor was 

calculated according to previously reported equation, 54, 55 

                            LOD = S/N x Sb/m          

where S/N is the signal to noise ratio, Sb refers to the blank standard deviation and m is the 

slope of the calibration curve. For this study S/N value was selected as 3.  

The CuSe nanostructures were also used for analyzing dopamine content in  urine 

samples collected from voluntary healthy individuals using standard addition methods 56. 

Typically, the urine sample was diluted 10 times with 0.1 M PBS to overcome the 

unnecessary interference of waste materials. To do the recovery study, the urine solution 

was spiked with a known concentration of DA. In order to ascertain the reproducibility, 

two batches of urine samples with same concentration of DA were prepared. Control 

solution of different concentrations of DA ranging from 10 µM to 50 µM was prepared and 

the current-voltage response of the known concentrations of DA along with the urine 

samples was recorded. This procedure was repeated twice to check the robustness and 

reliability of the catalyst.   

(3) 

(4) 
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3. RESULT AND DISCUSSION 

 

To confirm the structure and composition of the product, pxrd analysis for both 

electrodeposited and hydrothermally synthesized CuSe was carried out as shown in the Fig. 

2A. The hydrothermally synthesized CuSe shows higher degree of crystallinity and, all the 

diffraction peaks can be assigned to CuSe phase, which is consistent with standard pattern 

(PDF: 00-006-0427). The average crystallite size of the as-synthesized CuSe was 

calculated to be 10-20 nm by Scherrer’s equation (1). On the other hand, pxrd pattern for 

electrodeposited CuSe on Au-glass (Figure. S2) indicated lesser degree of crystallinity. It 

has been reported previously that electrodeposition often yield poorly crystalline or even 

amorphous products. Other researchers have reported that electrodeposited CuSe shows 

amorphous nature, where the crystallinity was greatly affected by the deposition potential 

and time in the same electrolyte composition 57.  

The crystal structure for CuSe is analogous to a mineral named Klockmannite 

showing a lattice structure as shown in the inset of Figure. 2A. It crystallizes in a hexagonal 

P63/mmc space group where Cu atoms (brown spheres in Figure. 2A inset) are present in 

two different coordinations, trigonal planar forming CuSe3 moieties and tetrahderal CuSe4 

species. The trigonal planar CuSe3 layers are sandwiched between the CuSe4 tetrahedral 

layers, while the tetrahedral layers are connected through formation of Se-Se bonds along 

the c-axis. The Cu(1)-Se has a bond length of  2. 275 Å in the trigonal planar coordination, 

while Cu(2)-Se has a bond length of 2.408 Å in the tetrahedral coordination. As expected 

from the coordination geometry, the Cu(1)-Se are shorter compared to Cu(2)-Se suggesting 

that Cu(1)-Se might have higher bond strength. The availability of different coordination 
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geometry around the Cu center and more importantly presence of lower coordination 

geometry can enhance the availability of additional coordination sites and formation of 

reaction intermediates through oxidative insertion of hydroxyl (OH-) anion along with 

coordination expansion. Such factors will be very critical for the adsorption of dopamine 

through its OH- functional group and subsequent oxidation to dopamine quinone on the 

catalyst surface.   

The surface elemental composition of the CuSe catalyst was studied through X-ray 

photoelectron spectroscopy (XPS) as presented in Figure. 2B and C. Deconvoluted high 

resolution Cu 2p spectrum of ED-CuSe can be fitted to peaks at 932.2 and 952.3 eV 

corresponding to Cu+ 2p3/2 and 2p1/2 and 934.4 and 954.6 eV for Cu2+ 2p3/2 and 2p1/2, 

respectively, which also confirmed the presence of mixed oxidation states for Cu. The 

satellite peaks were observed at 942.4 and 962.6 eV possibly due to overlapping between 

the Cu and Se. Similarly, oxidation states of Cu in HT-CuSe could be assigned at 932.3 

and 952.2 for Cu+ 2p3/2 and 2p1/2 and 934.0 and 954.4 for Cu2+ 2p3/2 and 2p1/2 respectively. 

The shakeup satellite peaks of Cu 2p was observed at 943 and 963.4 eV.  From the XPS 

spectra it was evident that Cu was present in mixed oxidation states of +1 and +2 in both 

sample preparations. Presence of such mixed oxidation states for Cu has been reported 

previously in electrodeposited and CVD synthesis of copper selenide 41. The percentage of 

Cu+1/Cu2+ ratio was calculated by integrating the area under the peaks of the deconvoluted 

XPS spectra. The as synthesized catalyst consisted of 75:25 of Cu+ and Cu2+, respectively. 

The deconvoluted Se 3d XPS spectra for ED-CuSe and HT-CuSe has been shown in the 

inset of Figure. 2B and C. Both samples showed peaks at 54. 1 and 55.0 eV for Se 3d3/2 

and 3d5/2 respectively.  A weak shoulder was also visible at 56.8 eV for ED-CuSe due to 
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the surface oxidation of Se to SeO2. These values are in accordance to the previously 

reported XPS of CuSe 41.   

 

 

 

 

Figure 2. (a) PXRD pattern and deconvoluted XPS spectra of Cu 2p from (b) 

electrodeposited and (c) hydrothermally synthesized CuSe. 
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The morphology of ED-CuSe and HT-CuSe samples were studied by scanning 

electron microscopy (SEM) as shown in Figure. 3A and 3C. It is clearly seen that ED-CuSe 

exhibits a nanoflake like morphology where the surface of the flakes are wrinkled and 

crumpled. On closer inspection it was observed that most of the nanoflakes had a hexagonal 

cross-section. Such polygonal shape of the nanoflakes can be related to the crystallographic 

structure by considering possibilities of oriented growth along a preferred lattice direction. 

The inset of Figure. S3A shows an illustration of the evolving cross-section for a crystallite 

growing along the c-direction. As can be seen from the inset, if CuSe nanocrystallite grows 

along the c-direction, the resulting nanoflakes can have a hexagonal cross-section. 

However, to properly identify the preferred direction of growth, one needs to do a texturing 

study on a thin film deposited on a single crystalline substrate. To support our claim for 

high efficiency of this catalyst, we have also calculated the roughness factor using ECSA 

and the geometric area. The ED-CuSe samples have high roughness factor of 1630.36, 

which is essential for a better exposure of the catalytically active sites to the electrolyte. 

The HT-CuSe powder on the other hand also showed nanostructured morphology with a 

variable size ranging from 8 nm to 40 nm and a mean particle size of 22 nm. These granular 

shaped nanoparticles have a roughness factor of 1369.94, which is very close in value to 

that obtained for ED-CuSe. The elemental composition of the nanostructures was also 

confirmed through energy dispersive x- ray spectra (EDS) taken at several regions of the 

sample to confirm uniformity of the composition.  EDS data reveals that the atomic ratio 

between Cu:Se to be close to 0.48:0.52 and 0.47:0.53 for ED and HT-CuSe, respectively, 

confirming the composition to be CuSe. The elemental mapping of ED-CuSe also revealed 

uniform distribution of Cu and Se throughout the film, further confirming that the CuSe 
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Figure 3. SEM images of (a) ED-CuSe and (c) HT-CuSe. TEM images of (b) ED-CuSe 

and (d) HT-CuSe. HR-TEM images of (e) ED-CuSe and (f) HT-CuSe. 

 

 

confirming the composition to be CuSe. The elemental mapping of ED-CuSe also revealed 

uniform distribution of Cu and Se throughout the film, further confirming that the 

composition was indeed CuSe which was critical characterization given the amorphous 

nature of the deposit (Figure. S3B).  

Transmission electron microscopy (TEM) was also performed to investigate the 

microstructural details as shown in Figure. 3B and D. It can be seen from Figure. 3B, that 

A 

B 

C 

D 

E F 
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ED- CuSe nanoparticles had a smooth surface with nearly circular shapes with a particle 

size ranging from 10-20 nm. Alternatively, HT-CuSe (Figure. 3D) showed agglomeration 

of nanostructures due to high surface energy. These nanoparticles have well defined 

morphology with a particle size varying from 25-50 nm. High resolution TEM (HRTEM) 

of ED-CuSe (Figure. 3E) showed clear lattice fringes with a d-spacing of 3.31 Å which 

corresponds to (101) lattice spacing of CuSe. The crystalline nature of HT-CuSe was also 

confirmed with HRTEM which showed lattice fringes with a d-spacing of 3.41 Å 

corresponding to (101) lattice planes as shown in Figure. 3F. The crystallinity of these 

nanostructures was further confirmed through selected area electron diffraction (SAED) 

patterns as shown in insets of Figure. 3E and F. The SAED patterns revealed 

polycrystalline nature of both ED-CuSe and HT-CuSe where the diffraction spots could be 

indexed to (101), (112), and (108) lattice planes for ED-CuSe and HT- CuSe, respectively.  

 

3.1. ELECTROCHEMICAL OXIDATION OF DOPAMINE  

As illustrated in Figure. 1 above, dopamine can undergo partial or full oxidation 

following one electron or two electron oxidation pathway to form semi-quinone or quinone, 

respectively. The CuSe samples synthesized above was tested for electrocatalytic 

dopamine oxidation in 0.1M phosphate buffer solution (PBS). The modified electrode 

containing ED-CuSe or HT-CuSe was used as electrode and cyclic voltammograms (CVs) 

were measured in N2 saturated PBS in presence of 0.1 mM dopamine (DA). Figure. S4 

shows the electrocatalytic response under various scan rates. When the scan rate was 

increased from 5 mV. s-1 to 75 mV . s-1, the oxidation peak currents for ED-CuSe and HT-

CuSe showed a gradual increase as expected, which can be observed as a positive shift in 
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the anodic region and an equivalent negative shift in the cathodic region. The 

corresponding calibration plots derived from the peak currents vs the scan rate showed a 

linear correlation (R2= 0.9954 and 0.9986 for ED-CuSe and HT-CuSe respectively) which 

confirms that the electrooxidation/reduction of DA is indeed a diffusion controlled process 

for both ED-CuSe (Figure. S4A) and HT-CuSe (Figure. S4B). Interestingly, ED-CuSe 

showed a higher oxidation peak current compared to HT-CuSe which may be attributed to 

the growth of the active catalyst directly on the electrode surface, larger surface area with 

porous network, high surface energy and enhanced electron transfer between ED-CuSe 

surface and the electrolyte. 

Square ware voltammetry (SWV) is one of the best techniques for testing sensing 

efficiencies and can provide better sensitivity and peak resolution. Figure. 4A and 4B 

shows the SWV curves measured for different concentrations of DA ranging from 1 µM – 

640 µM of DA on ED-CuSe and HT-CuSe respectively. From the CV and SWV plots it 

can be observed that the oxidation of DA occurs at 0.18 V vs Ag|AgCl which is 200 mV 

less than earlier reports 58, 59.  The corresponding anodic peak potential vs DA concentration 

plots show two linear regions, 0.25 µM – 10 µM  and 20 µM to 320 µM with the linear 

regression equations of Ipa (µA) = 6.06 + 254.74 CDA (µM) and Ipa (µA) = 0.507 + 361.59 

CDA (µM) [where, Ipa = anodic peak current, CDA = concentration of DA added to the 

electrolyte] for ED-CuSe (Figure. S5A), respectively. Similarly the linear regression 

equations of Ipa (µA) = 5.629 + 152.67 CDA (µM) and Ipa (µA) = 0.415 + 193.34 CDA (µM), 

was observed for HT-CuSe (Figure. S5C) for the two linear regions. 
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Figure 4. SWV plots of (a) ED-CuSe and (b) HT-CuSe in 0.1 M PBS solution in the 

presence of increasing concentrations of DA. 

 



 

 

127 

The higher slopes illustrates faster increase of oxidation current and the high 

sensitivity of these electrocatalyst towards dopamine oxidation. While both ED-CuSe and 

HT-CuSe shows strong response to wide range of concentrations of DA, the ED-CuSe 

however, exhibits a more well-defined oxidation peak even at lowest concentration of DA. 

This difference between the HT-CuSe and ED-CuSe modified electrodes might be 

attributed to the electrode preparation. In HT-CuSe, the hydrothermally synthesized 

powder is assembled on the electrode with the help of Nafion solution. Such treatment 

reduces the exposure of active sites of the material as well as introduces contact resistance 

between the physically adhered catalytic powder and electrode 60.   

To further confirm and quantify the sensitivity of our catalyst, chronoamperometric 

detection of DA was performed by adding different concentration of DA to the electrolyte 

at a constant applied potential of 0.18 V vs Ag|AgCl. Figure. 5A and B shows the 

representative chronoamperometric i vs t curve showing response of CuSe to successive 

addition of various concentrations of DA. Figure. 5C and D shows the calibration plot 

obtained from the linear fit of the extracted peak current vs concentration of DA in the 

range 50 pM to 20 µM with a regression equation of Ipa (µA) = 26.80 + 84.05 CDA (µM) 

with a correlation coefficient of 0.9987 for ED-CuSe and 50 nM to 20 µM Ipa (µA) = 8.80 

+ 21.71 CDA (µM) with a correlation coefficient of 0.99767 for HT-CuSe (Figure. S6 shows 

the linear range of 40- 320 µM ED-CuSe and 40- 640 µM HT-CuSe). The sensitivity (S) 

could be estimated from the linear fit in the low concentration region, and it was calculated 

to be 26.80 µAµM-1cm-2 and 8.80 µAµM-1cm-2 for electrodeposited and hydrothermally 

synthesized CuSe, respectively. 
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Figure 5. Chronoamperometric responses of the (a) ED-CuSe and (b) HT-CuSe to 

successive additions of DA into stirring 0.1M PBS electrolyte. The working potential was 

set at 0.18 V vs Ag|AgCl, and the DA concentrations ranged from 50 pM to 320 μM for 

ED-CuSe and 50 nM to 1 mM for HT-CuSe for sequential additio n. Inset shows 

magnified portion of the amperometric response for lower concentrations. (c) and (d) 

shows the peak current vs concertation of dopamine for ED and HT-CuSe respectively, 

leading to estimation of sensitivity of the device. 

 

 

The limit of detection (LOD) could be estimated by considering a signal to noise 

ratio (S/N) of 3, and a LOD of 98 nM and 68 nM was obtained for ED-CuSe and HT-CuSe, 

respectively. It must be noted here that these are the lowest LOD reported for DA sensors 

making these the most efficient. The detection and quantification of dopamine in 
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pathological samples suffer from the challenge that the level of dopamine vary within a 

wide range and from person to person. Specifically, in patients suffering from mental health 

disorder can have excessively low amounts of dopamine or fluctuating dopamine levels 

making it harder to detect with standard analytical techniques. Hence a low LOD for 

dopamine sensor is critical for rapid diagnosis of mental health condition in susceptible 

individuals. Furthermore, on comparing the performance of the two catalysts, it was 

observed that ED-CuSe has higher sensitivity while HT-CuSe has lower LOD. Again this 

may be due the presence of Nafion binder in HT-CuSe modified electrode which can 

interfere and lower the sensing capability of nanoparticle composite.60 However, 

electrodeposited CuSe is free of any binder and surface is more sensitive towards DA 

adsorption and subsequent oxidation. Table 1 compares the LOD values for the most 

sensitive catalyst reported towards electrochemical oxidation of DA with the performance 

of CuSe reported in this article. It can be clearly seen that the CuSe reported here is one of 

the most efficient dopamine sensors irrespective of the method of synthesis.  As shown in 

the amperometric increase of current upon successive addition of various concentrations 

of DA, a significant and fast current response is observed at low applied potential of 0.18 

V vs Ag|AgCl. The current reached 98% of steady state current density in 1 sec for both 

ED and HT CuSe (Figure. S7) showing that the response time is very fast with these 

sensors. Such fast response time and high sensitivity with low LOD makes these sensors 

highly applicable for onsite detection and real-time monitoring of dopamine levels.    

It should be noted that the sensitivity and LOD of the CuSe based sensor reported 

here is superior to other non-enzymatic based catalytic sensors reported previously. 61, 62   
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Figure 6. Scheme illustrating catalytic conversion of dopamine to dopamine quinone on 

CuSe substrate. 
 

 

The highly efficient dopamine sensing on the surface of CuSe can be possibly 

understood by following the mechanism of dopamine oxidation on the catalyst surface. As 

shown in Figure. 1, the dopamine oxidation involves conversion of the hydroxyl (-OH) 

functional group to ketonic (=O) group. It can be expected that such conversion is initiated 

by the adsorption of the analyte (DA) on the catalyst surface through the coordination of -

OH functional group of the molecule (Figure. 6) to the catalytically active transition metal 

site, i.e. Cu. The transition metal site can undergo local site oxidation to accommodate 

attachment of such electron rich Lewis base, and hence it can be envisioned that the redox 

potential of the transition metal site will have a large influence on the ease of -OH group 
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attachment on the surface, which is also reflected in the applied potential needed for 

dopamine oxidation. Typically, the -OH group attachment on the active site will occur at 

lower applied potential if the local site oxidation can occur at low potential. Previously it 

has been shown that the local site oxidation and adsorption of -OH groups to the transition 

metal sites can be altered by changing the ligand coordination around the active site. 63 

Typically reducing the electronegativity and increasing covalency around the active site 

leads to reduction of the local site oxidation potential, and more facile attachment of the -

OH group on the surface at low applied potential.43, 64 Hence it can be expected that the 

reduced electronegativity and increased covalency of Se compared to O can make the 

analyte absorption on the selenide-based catalyst surface occur at a lower anodic potential 

compared to the oxides, thereby lowering the operating potential of the sensor. Electron 

transfer between the electrode (catalyst)-electrolyte occurs following the analyte 

adsorption on the surface leading to oxidation of dopamine to the dopamine quinone form 

as shown in Scheme 2. Such electron transfer will be facilitated by the higher conductivity 

of the catalyst composite. The increased covalency of the anionic ligand also helps in 

increasing the conductivity by reducing the bandgap in the selenides. The oxidized 

molecule can readily desorb from the catalyst surface while the active site is regenerated. 

Furthermore, the coordination geometry around the catalytically active site (Cu) can also 

facilitate analyte adsorption. As described above, the crystal structure of CuSe contains 

two coordination environments for Cu, namely a trigonal and tetrahedral coordination. 

Such lower coordination numbers along with a layered geometry can lead to facile 

attachment of molecules such as dopamine. Lastly, higher surface area of the CuSe 

nanostructure-based films revealing thin edges of nanoflakes enhances exposure of the 
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active sites to the analyte leading to higher efficiency of analyte sensing through direct 

oxidation of dopamine to dopamine-quinone. Therefore, the combined effect of 

morphology, porosity, coordination geometry and higher conductivity of the catalyst 

composite along with increased anion covalency leads to oxidation of dopamine on the 

catalyst surface occur at lower applied potential producing higher current density which 

increases the sensitivity of the catalyst, while lowering the detection limit. It must also be 

noted that ED-CuSe shows significantly higher sensitivity which can be explained by the 

fact that the electrodeposited sample is directly grown on the catalyst surface which reduces 

the contact resistance, as has been observed previously. 65 

One of challenges in detection of DA is the interference from other chemical 

compounds commonly found in bodily fluids such as ascorbic acid (AA), uric acid (UA), 

glucose (GC) and sodium chloride (NaCl). All of these compounds can oxidize near the 

oxidation potential of DA. Hence to evaluate the selectivity of CuSe towards dopamine 

oxidation at low applied potential, an amperometric experiment was conducted at a 

constant applied potential of +0.18 V vs Ag|AgCl in 0.1 M PBS solution, where the DA 

and other interfering compounds were added successively to the same electrolyte. As 

shown if Figure. 7A and B, ED-CuSe and HT-CuSe modified electrodes shows a higher 

current response upon addition of 0.05 mM DA while successive additions of 0.5 mM UA, 

GC and NaCl did not show any change in current output. However, addition of 0.5 mM 

ascorbic acid showed a small current response. It should be noted the concentration of AA 

was 10 times higher than the DA concentration. 
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Figure 7. Amperometric responses of the (a) ED-CuSe and (b) HT-CuSe in           

various interferents. 

 

 

Further addition of DA continues to emulate a response, indicating the robustness 

of the catalyst towards selectivity at a lower applied potential and in the presence of higher 

concentrations of interfering chemicals. In order to investigate the selectivity of this sensor 
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towards dopamine oxidation further, we attempted to understand the oxidation profile of 

dopamine in presence of ascorbic acid and uric acid. Since ascorbic acid and dopamine has 

similar -OH functionalities, the selectivity of a catalyst is also reflected by its ability to 

spatially separate the oxidation peaks of DA and AA in the SWV plot. Hence, the oxidation 

potentials of DA, AA and UA in a mixture was determined with ED-CuSe on carbon cloth 

where the concentrations was 40 µM for DA, and 300 µM for AA and UA each (Figure. 

S8). Three anodic peaks at 0.032, 0.185 and 0.405 V vs Ag|AgCl were observed for the 

oxidation of AA, DA and UA, respectively. It was observed  that the oxidation potential of 

ascorbic acid was lower than the oxidation potential of DA as has been previously reported 

59. A separation of the oxidation peak potentials of DA and AA by 0.153 V as observed on 

CuSe surface is significant for selective detection of these biomolecules. This observation 

of DA and AA oxidation was similar to other reports 66-68. The potential difference between 

DA and UA oxidation is even larger (0.220 V) signifying that the CuSe surface indeed 

offers higher selectivity for dopamine sensing even in the presence of higher concentrations 

of other biomolecules with similar structure. Moreover, it also shows that CuSe can be also 

used to detect ascorbic acid and uric acid, albeit at different applied potential, thus 

increasing the versatility of this sensor.  

The reproducibility and consistency tests were performed for four different batches 

of electrodes synthesized under similar conditions. All these electrodes exhibited high 

sensitivity of 26.70, 26.72, 26.87 and 26.85 µA µM-1 cm-2 for electrodeposited CuSe and 

8.78, 8.75, 8.89 and 8.79 µA µM-1 cm-2 for the hydrothermally synthesized CuSe. The 

calculated standard deviation for the sensitivity is 0.08% and 0.06% for ED-CuSe and HT-

CuSe, which proves the high reliability and reproducibility of these sensors toward DA 
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detection (Figure. S9). The long term stability was evaluated by CV plots measured for 100 

cycles at a scan rate of 50 mVs-1 in presence of 0.1 mM DA in 0.1 M PBS electrolyte. As 

shown in Figure. S10, the DA oxidation showed similar current density for 100 cycles, 

where 89% of the peak current intensity was retained, however upon addition of freshly 

prepared DA of the same concentration the catalyst showed an almost identical CV (inset 

of Figure. S10) with identical current density compared to the pristine CuSe electrode. This 

CV test verified that there is no surface poisoning of the catalyst with repeated sensing 

events or decline in the activity for long term application. 

 

3.2. DOPAMINE DETECTION IN PHYSIOLOGICAL SAMPLE 

To check the practical application of CuSe towards dopamine sensing in real 

physiological samples, the DA levels were estimated using urine samples from healthy 

individuals following protocols reported earlier.69 Specifically, 10 ml of urine was 

collected and diluted 10 times with 0.1 M PBS to overcome the interference from unwanted 

organic molecules. SWV was measured in the potential range from -0.2 to 0.6 V vs 

Ag|AgCl with the CuSe-modified electrode setup as described above. Since no noticeable 

oxidation peaks were detected, to evaluate the accuracy of the method, a known 

concentration (35 µM) of standard DA solution was added to the electrolyte and was 

detected by calibrating the measured current density against the sensitivity of the sensor. 

The recovery percentages were calculated based on determined DA concentrations which 

is summarized in Table 2. The calculated results show good recovery (~ 100%) and 

respectable standard deviation which is less than 1%, confirming the promising potential 

for practical application of this CuSe-based sensor for DA detection.   
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4. CONCLUSION 

 

CuSe nanostructures has been identified as a highly efficient electrocatalyst for 

dopamine oxidation. CuSe nanostructures were synthesized by two methods, namely direct 

electrodeposition on carbon cloth and hydrothermal technique. Interestingly, the synthesis 

method does not affect the activity of CuSe to oxidize and sense dopamine. The high 

sensitivity (26.8 µA µM-1 cm-2 for ED and 8.80 µA µM-1 cm-2 for HT) at a low applied 

potential of +0.18 V vs Ag|AgCl, low detection limit (98 nM for ED and 68 nM of HT), 

short response time (1 s), makes these sensors lucrative for practical applications in real-

time continuous dopamine monitoring systems as well as point-of-care detection units. The 

CuSe based non-enzymatic dopamine sensor has impressive selectivity for dopamine 

sensing, long-term stability and repeatability. Since dopamine is being an important 

neurochemical, its detection and monitoring has become the center of attraction for 

diagnosis of mental health diseases this research can pave the path to designing portable 

dopamine sensing modules and will help to understand the correlation between dopamine 

as a biomarker and progression of neurodegenerative disorder.  
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Table 1.  Comparison of analytical performance of ED and HT CuSe with previously 

reported carbon and metal nanoparticles based dopamine electrochemical sensors. 

Electrode Limit of 

Detection 

(µM) 

Linear 

Range(µM

) 

Sensitivity   

(µA µM-1 

cm-2) 

Peak 

potential 

(V vs 

Ag|AgCl) 

Reference 

      

ED-CuSe 0.068 50 pM – 

20; 40-320 

26.80 0.18 This work 

HT-CuSe 0.098 0.050-20; 

40-640 

8.80 0.18 This work 

AuNS/GCE 0.28 2–298 - 0.22 70 

TC8A/Au 0.5 1–100 - 0.2 71 

F-CuInS2 QDs 0.2 0.5–40 - - 72 

AgNP/SiO2/GO/GC 0.26 2–80 - 0.2 73 

Fe3O4/Chit 0.006 0.02 – 75 - - 74 

TiO2/CeO2/ sol-

gel/CF 

     0.04      0.1-180       -      -     75 

Au/GO/ITO 1.28 0.1–30 0.53 0.24 76 

NiO-RGO/ITO 1 1–60 1.04 0.2 77 

N-rGO/MnO/GCE 3 10–180 0.09 0.51 78 

PABSA-rMoS2 1 1–50 0.22 0.15 79 

Graphene 2.64 4-100 - - 80 

Graphene-LDH 0.3 1-199 - 0.195 81 
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SUPPORTING INFORMATION 

 

 

 

Figure S1. Electrochemically active surface area analysis of (A) ED-CuSe and (B) HT-

CuSe at different scan rates. Inset in (A) and (B) linear fitting of capacitive currents vs. 

scan rate. 

 

 

Table 2. DA determination in urine samples with ED-CuSe. 

Sample Initial DA Added DA Detected 

DA 

Recovery  Std 

Deviation 

(3 runs) 

Individual 1   Not detected 35 34.85 99.44 0.64 

Individual 2 Not detected 35 35.22 100.23 0.86 
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Figure S2. PXRD pattern of electrodeposited, ED-CuSe along with the reference CuSe 

(PDF#00-006-0427). 
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Figure S3. (A) SEM image of ED-CuSe at 1 µM magnification. Inset shows possible 

layer stacking along c axis following preferred direction of growth [gray – Se, red - Cu]. 

(B) Elemental mapping of ED-CuSe with atomic percentage distribution. 

 

 

1 µm 
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Figure S4. (A). CV curves of ED-CuSe with scan rates ranging from 5 to 75 mV/s. Inset 

shows the calibration plots of the redox peak currents (Ipa & Ipc) from ED-CuSe with the 

square root of the scan rates. (B) CV curves of HT-CuSe with scan rates ranging from 5 

to 75 mV/s. Inset shows the calibration plots of the redox peak currents (Ipa & Ipc) from 

HT-CuSe with the square root of the scan rates. 
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Figure S5. (A) and (B) Low and high concentration of ED-CuSe peak current vs the 

concentration of dopamine and (C) and (D) HT-CuSe nanoparticles from the SWV 

technique. 
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Figure S6. Variation of peak current vs the concentration of dopamine at higher 

concentration range from (A) ED-CuSe and (B) HT- CuSe. 
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Figure S7. Response time to reach the steady-state current for (A) ED-CuSe and (B) HT-

CuSe. 

 

 

 

Figure S8. SWV of a mixed electrolyte containing 40 µM DA, 300 µM AA and UA at 

ED-CuSe in pH 7 PBS electrolyte. Inset shows SWV plot of 300 µM AA in 0.1 M PBS 

solution. 
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Figure S9. Sensitivity of different batches of ED-CuSe and HT-CuSe modified electrodes 

showing the error bars. 

 

 

 

Figure S10. CV plots of HT-CuSe in 0.1M PBS + 0.005 mM DA at scan rate of 50 mV/s 

for 100 cycles. 
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ABSTRACT 

 

Copper selenide (CuSe) nanostructures with highly porous surface topology was 

synthesized by one step electrodeposition method directly on carbon cloth electrode. The 

electrocatalytic performance of CuSe was estimated towards electro-oxidation of glucose 

which is the primary reaction for non-enzymatic detection of glucose. The electrocatalytic 

performance of this glucose biosensor was estimated using detailed electrochemical 

measurements in both added glucose solutions as well as physiological samples. The CuSe 

modified electrode showed a sensitivity of 19.419 mA mM-1 cm-2 for glucose detection at 

a very low applied potential of +0.15 V vs Ag|AgCl , low detection limit of 0.196 µM and 

a linear range of glucose detection from 100 nM - 40 µM. Furthermore, it was observed 

that CuSe was selective towards glucose oxidation and the other interfering species such 

as ascorbic acid, lactose and uric acid showed no significant response at the applied 

potential.  This simple and inexpensive way of detecting glucose at ultralow concentrations 

at low working potential using binder-free copper selenide film directly grown on the 

electrodes makes it a novel biosensor. The CuSe-modified electrodes also showed good 
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reproducibility and stability for electrochemical glucose detection over prolonged periods 

of time. 

 

1. INTRODUCTION 

 

Diabetes caused by the imbalance of glucose level in blood has been of severe 

concern lately, leading to 1.5 million deaths across the globe according to World Health 

organization reports. It has also been predicted that diabetes will become 7th leading cause 

of mortality by 2030.1-4 Diabetes is a silent killer where the symptoms may not be expressed 

until a very advanced stage leading to more fatality. Hence, continuous monitoring of blood 

glucose levels in susceptible as well as healthy individuals is very important to detect onset 

of diabetes at an early stage and minimize progression of the disease by taking preventive 

measures. While commercially available enzyme-based glucose sensing strips are widely 

used for measuring blood glucose levels, their limited shelf life, low sensitivity, non-

reusability, and high cost, makes it desirable to seek alternate solutions for glucose sensing. 

5-7 Moreover, non-enzymatic glucose sensors are also lucrative for long-term continuous 

blood glucose monitoring systems that can be implanted in peripheral tissue including sub-

dermis or tooth enamel. Electrochemical glucose sensors work on the principle of direct 

glucose oxidation on the electrocatalytic surface, and can be categorized into two types: 

the enzymatic and non-enzymatic glucose sensors.8-10 Among these the non-enzymatic 

glucose sensors have attracted considerable attention over the last few years attributed to 

their advantages such as high stability and sensitivity, low cost, and simple preparation.11-

13  
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Over the last several years various non-enzymatic glucose sensors based on 

different kinds of materials have been reported, such as metal nanoparticles and carbon 

materials, where polymer binders have been used to immobilize these nanoparticles. Such 

non-conductive polymeric binders add inactive component in the catalytic composite 

which may hinder the ability for quick electron transfer within the catalytic composite and 

reduce sensitivity.14-17 On the other hand, transition metals consisting of Ni, Co and Fe 

have been demonstrated as promising materials towards glucose oxidation which also have 

the advantage of being earth abundant, low cost and environmental friendly.18-22 Multi 

metal alloy and multi metallic compounds such as Co-Ni, Ni-Fe and Ni-Cu have also 

shown good electrochemical glucose sensing.23-26  

In recent years, transition metal chalcogenides has gained considerable attention in 

electrochemical devices such as water electrolyzer, fuel cells, and as supercapacitors, 

owing to their unprecedented high electrocatalytic activity. This improvement of 

electrochemical activity of TMC is primarily caused by reduced anion electronegativity 

and high degree of covalency in the lattice which leads to better electrochemical tunability 

and reduced bandgap in the materials. While the electrochemical tunability aids in 

adsorption of reactive intermediates on the catalyst surface through local 

oxidation/reduction of the transition metal active site, a reduced bandgap also enhances the 

charge transport at the catalyst-electrolyte interface as well as through the catalyst 

composite.27-29 The effect of decreasing anion electronegativity on the electrocatalytic 

activity has been recently observed in a series of Ni-chalcogenide water oxidation catalysts 

where it was observed that the catalytic efficiency progressively improves from Ni-oxide 

to Ni-telluride.30-32 Copper has been studied recently for its electrochemical activity in 
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various systems, and presents as attractive case for further expansion attributed to its 

abundancy on earth’s surface, and low-cost.33-35 These attributes has led to the usage of Cu 

in various catalytic processes.36 However, reports of copper chalcogenides in 

electrochemical devices are still limited. As explained above, decreasing anion 

electronegativity is expected to improve the electrochemical tunability of the catalytically 

active transition metal center leading to better electrocatalytic activity.     

In this communication, we have reported a high efficiency, non-enzymatic, direct 

glucose electrochemical sensor based on CuSe synthesized by one step electrodeposition 

directly on the electrode surface. Such direct growth on the electrode surface avoids the 

use of any adhesive or polymeric binder which can reduce sensing performance. The as-

prepared CuSe shows excellent sensitivity and low limit of detection for detection of 

glucose. The developed sensor was also applied successfully for the detection of glucose 

in human blood samples. 

 

2. RESULT AND DISCUSSION 

 

D-Glucose, copper chloride, selenium oxide and NaOH were purchased from Arcos 

chemicals. Uric acid (UA), l-ascorbic acid (AA), dopamine (DA), NaCl and KCl were 

obtained from Alfa Aesar. All chemicals were used as received without any further 

purification. Deionized water was used in all experiments. 

The CuSe thin film was prepared directly on a carbon cloth electrode through direct 

electrodeposition using a conventional three electrode set-up, where Ag|AgCl was used as 

the reference electrode, graphite rod as the counter electrode and commercial carbon cloth 
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as the working electrode. The deposition area of CuSe was pre-defined by using a masking 

tape exposing a 0.08 cm2 hole on the electrode surface. The electrolyte contained 2 mM of 

copper chloride, 4.5 mM SeO2 and 0.1 M of KCl in deionized water. The pH of the 

electrolyte was adjusted to 2 using dilute HCl. This solution was purged with N2 gas for 20 

minutes prior to electrodeposition to reduce amount of dissolved air. Electrodeposition was 

carried out at an applied voltage of -0.16 V vs Ag|AgCl for 300 seconds. Following 

electrodeposition, the substrate was mildly washed with DI water and dried naturally. 

The composition, phase, and morphology of the eletrodeposited film was identified 

through powder X-ray diffraction (pxrd), scanning electron microscopy (SEM) (FEI Helios 

Nanolab 600) using 10kV accelerated voltage, and Energy dispersive spectroscopy (EDS). 

Composition of the film was also analyzed through X-ray photoelectron spectroscopy 

(XPS) using KRATOS AXIS 165 spectrometer with Al source. Transmission electron 

microscopy (Tecnai F20 with an accelerating voltage of 200 kV) was also performed to 

investigate nanostructure details of the morphology. Electrochemical measurements were 

performed using Iviumstat electrochemical workstation using a three-electrode system 

with CuSe on carbon cloth as working electrode, saturated Ag|AgCl as reference electrode 

and a graphite rod served as counter electrode.  

The pxrd pattern was collected from a CuSe film deposited on Au substrate, which 

was used to obtain better background for the diffraction pattern. Figure 1a shows the pxrd 

pattern of as-deposited thin film on Au-substrate. It was observed that the film was weakly 

crystalline and the diffraction pattern could be matched with the standard diffraction 

pattern for CuSe (PDF# 00-006-0427). CuSe crystallizes in a hexagonal structure with Cu 

in two different coordination geometries, trigonal planar and tetrahedral. Such low 
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coordination geometries around the active sites are expected to enhance adsorption of 

oxygenated reactive intermediates on the surface through coordination expansion leading 

to improved electrocatalytic performance. The composition of the as-deposited film was 

confirmed through XPS, which also provides details of local bonding environment and 

oxidation states of the elements. As shown in Figure 1b the Cu 2p spectrum shows peaks 

centered at 932.2 and 952.3 eV for Cu+ 2p3/2 and 2p1/2 and 934.4 and 954.6 eV for Cu2+ 

2p3/2 and 2p1/2 respectively. This also suggested that Cu was present in mixed oxidation 

states, while the satellite peaks are observed at 942.4 and 962.6 eV. The deconvoluted Se 

3d spectra of electrodeposited CuSe (inset of Figure 1b) shows peaks at 54.4 and 55.4 for 

Se 3d5/2 and 3d3/2 respectively which is in accordance to previously reported copper 

selenide.37  

The SEM images of as-deposited CuSe thin film as depicted in Figure 1c showed 

that CuSe had a rough surface topology comprising nanoflake like morphology. The 

nanoflakes are randomly oriented leading to a porous film which provides high surface 

area for the glucose adsorption. The elemental mapping through EDS showed uniform 

distribution of Cu and Se throughout the composite, while quantification of the EDS data 

yielded an elemental ratio of 1: 1 for Cu: Se (Figure S1). TEM studies (Figure 1d) showed 

similar flake-like nanostructures while HRTEM images showed the lattice fringes 

corresponding to a d- spacing of 3.31 Å which could be matched to 101 lattice spacing of 

CuSe (Figure S2). 

The electrocatalytic performance of CuSe thin film towards oxidation of glucose 

was studied by cyclic voltammogram (CV). Figure 2a shows the CV of CuSe thin film on 

carbon cloth measured in presence and absence of 0.1 mM glucose in 0.1 M NaOH 
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electrolyte at 10 mV/s scan rate. While the current response was moderate in a blank 0.1 

M NaOH electrolyte, upon addition of 0.1 mM of glucose into the alkaline electrolyte, 

 

 

 

 

Figure 1. (a) PXRD pattern of electrodeposited CuSe, compared with the reference 

pattern (PDF#00-006-0427) star denotes Au peaks. (b) Deconvoluted XPS spectra of Cu 

2p CuSe. Inset in (b) shows the corresponding Se 3d signals (c) SEM images of CuSe and 

(d) TEM images of CuSe. 

 

 

 

there was a substantial increase in the anodic current, indicating oxidation of glucose on 

the CuSe-coated electrode. This oxidation was also observed in the reverse sweep of CV, 

which further confirmed the process to be analyte, i.e. glucose oxidation on the electrode 

surface. To further evaluate the electrocatalytic performance of CuSe towards glucose 

5µm 

200 nm 

(a) (b) 

(c) (d) 
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oxidation, the scan rates were varied from 5 mV/s to 75 mV/s as shown in Figure 2b. The 

glucose oxidation peaks shows obvious trend in the increase of current with respect to the 

scan rate in addition to a positive shift of the anodic potential. The redox peak current  

 

Figure 2. (a) CV curves of CuSe with 0.25 mM glucose and no glucose in 0.1 M 

NaOH solution (b) with scan rates ranging from 5 to 75 mV/s. (c) CV curves of CuSe 

with varying concentrations of glucose ranging from 0.25 mM to 4 mM. 

 

 

showed a linear correlation (R2 = 0.9965) with square root of the scan rate, which is typical 

for a diffusion controlled process for any electrochemical oxidation. On addition of 0.25, 

0.5, 1, 2 and 4 mM of glucose to 0.1 M NaOH solution, CuSe composite electrode showed 

an increase in the current density corresponding to the increase in glucose concentration 

(Figure 2c), indicating that the oxidation current is mainly due to the availability of 

increased glucose content in the electrolyte. 

In order to determine the optimal applied potential for glucose sensing, the 

oxidation current was measured by scanning the potential ranging from 0.05 V to 0.3 V vs 

Ag|AgCl using amperometric technique with successive addition of 0.1 mM glucose to the 
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0.1 M NaOH electrolyte under constant stirring. Figure S3 shows that the ratio of oxidation 

current vs the potential range from 0.05 V to 0.30 V, where the highest oxidation current 

was achieved at 0.15 V, after which it begins to decay. Hence, the ideal working potential 

for oxidation of glucose at electrodeposited CuSe thin film was selected to be +0.15 V vs 

Ag|AgCl for the rest of the study.         

 

 

Figure 3. (a) Chronoamperometric responses of the CuSe to successive additions of 

glucose into stirring 0.1M NaOH electrolyte. The working potential was set at +0.15 V vs 

Ag|AgCl, and the glucose concentrations ranged from 100 nM to 2 mM for sequential 

addition. Inset shows magnified portion of the amperometric response for lower 

concentrations. (b) Amperometric responses of CuSe 0.1M NaOH with successive 

addition of glucose (0.1 mM), AA (0.5 mM), DA (0.5 mM), UA (0.5 mM), Sucrose (0.1 

mM), Lactose (0.1 mM), NaCl (0.5 mM), KCl (0.5 mM) and glucose (0.1 mM) at an 

applied potential of +0.15 V vs Ag|AgCl. 

 

 

Chronoamperometric technique was used to measure the response of CuSe 

composite electrode upon successive injections of glucose in a homogenously stirred 

NaOH solution. The limit of detection and linear range were also determined using the 
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above method. As shown in Figure 3a, a constant potential of +0.15 V vs Ag|AgCl was 

applied, when CuSe-modifed electrodes showed a rapid and significant response of 

increasing anodic current upon addition of glucose ranging from 100 nM to 2 mM, which 

indicates the high sensitivity of CuSe towards glucose sensing. The calibration curve was 

obtained by plotting the peak anodic current vs concentration of glucose from the 

amperometric experiment described above. Figure S4 shows the calibration curve from 100 

nM to 2 mM where the corresponding regression equation can be described as I (mA) = 

19.419C (mM) + 0.0231 (R2 = 0.9998) having a high sensitivity of 19.419 mA mM-1 cm-

2. Further the linear detection range of CuSe towards glucose was 100 nM to 40 µM and a 

second linear region for higher concentrations from 80 µM to 2 mM, with a limit of 

detection of 196 nM. Figure S5 shows the response time of CuSe upon addition of glucose. 

The catalyst achieves steady state current within 2 sec of glucose addition, which shows 

that these CuSe-modified electrodes is capable of real time monitoring of glucose in the 

body.  

Several biomolecules with similar oxidation profiles are known to interfere in 

detection of glucose which makes the development of nonenzymatic glucose sensors very 

challenging. Species such as ascorbic acid (AA), dopamine (DA), lactose, NaCl and KCl 

commonly available in lower concentration in bodily fluids can exhibit interference by 

undergoing electro-oxidation. Therefore, the selectivity of CuSe towards glucose oxidation 

was confirmed by measuring amperometric response of CuSe composite electrode upon 

consecutive injection of glucose and other interferents as mentioned above. A constant 

potential of +0.15 v vs Ag|AgCl was applied to an evenly stirred 0.1 M NaOH solution 

wherein, addition of 0.1 mM of glucose showed rapid increase of anodic current. Addition 
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of sucrose and lactose (0.1 mM) and AA, DA, LC, NaCl, KCl (0.5 mM) did not show any 

appreciable oxidation current. However, the second addition of 0.1 mM glucose showed 

similar jump in anodic current density as observed from the 1st addition which validated 

the functionality and selectivity of the CuSe based composite electrode was (Figure 3b). 

Thus it was confirmed that CuSe exhibits high sensitivity and selectivity for non-enzymatic 

glucose sensing at an extremely low working potential.    

The practical applicability of the fabricated non-enzymatic glucose sensor was 

investigated by the determination of glucose in human blood samples using a known 

method38 and comparing it with the commercially available enzymatic glucometer kit 

(ReliOn). Specifically, the experiment comprised of first stabilizing current response of the 

electrode by adding 1mM of glucose two times. The blood sample was then injected 

directly to the NaOH electrolyte in the vicinity of the CuSe-modified electrode. 1mM of 

glucose was added again and the current response was recorded. The glucose level in the 

blood samples was measured from linear fit of the plot obtained by plotting the current 

density vs glucose concentration of standard glucose additions. Table 2 lists the glucose 

concentration as detected by a standard glucometer and the CuSe based sensor. Each 

sample was tested three times and the calculated relative standard deviation of less than 

3% suggests the robustness and reliability of CuSe towards glucose sensing in 

physiological samples.  

Owing to its high sensitivity, short response time and low detection limit 

electrodeposited CuSe is a potential candidate for continuous glucose monitoring system 

for commercial applications. Additionally, CuSe has a low working potential and 

selectivity to sense glucose and not the other biomolecules commonly present in bodily 

https://pubs.rsc.org/en/content/articlelanding/2019/tb/c9tb00104b#tab2
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fluids which is an advantage to use in wearable biosensors. Other than biosensing, CuSe 

has also been reported for electrochemical energy conversion.39 The superior 

electrochemical performance of CuSe especially towards glucose oxidation can be 

attributed to several factors. The initial step of glucose oxidation is the activation of the 

catalyst achieved by attachment of the molecule on the electrode surface through the 

coordination of the -OH functional group on the catalytically active transition metal site 

(Cu). Such -OH attachment proceeds through local site oxidation of the active site. 

Previously we have shown the -OH adsorption can be facilitated by controlling the ligand 

environment, typically by decreasing anion electronegativity,31 which reduces the required 

potential for catalyst activation, thereby increasing efficiency.40 Moreover, Cu in copper 

selenide has mixed oxidation states. In case of Cu+ and Se2- we can expect a certain degree 

of polarization due to charge imbalance. However in case of Cu2+ there is increase in the 

covalency between Cu-Se bonds. This mixed oxidation states leads to inductive effect and 

redistribution of electron density at metal sites through d-d interactions, which is favorable 

for –OH groups to adsorb. Additionally, replacing oxides with less electronegative 

selenides also leads to increased covalency in the lattice and enhances the redox activity at 

Cu site which consequently has an effect on the reversible electrochemical response. The 

low potential required for glucose oxidation is advantageous for making affordable and 

energy efficient non-enzymatic glucose sensors. 
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3. CONCLUSION 

 

In conclusion simple, binary copper selenide has been identified as a highly 

efficient, non-enzymatic, electrochemical glucose biosensor with low limit of detection and 

high sensitivity. The CuSe was synthesized directly on the electrodes by electrodeposition 

producing a porous morphology comprising flake-like nanostructures. The electrocatalytic 

activity for glucose oxidation was studied in alkaline conditions. Electrodeposited CuSe 

exhibited superior efficiency for glucose oxidation with a sensitivity of 19.419 mA mM-1 

cm-2 and a low detection limit of 0.196 µM, has a wide linear range 100 nM - 40 µM and  

fast response time of less than 2 s, long term stability and excellent selectivity. These 

attributes ensure that this system will be able to reliably detect very small fluctuation in 

glucose level in even bodily fluids such as urine, sweat, tears, tissue fluids etc., which has 

very low concentration of glucose.  Additionally, the glucose oxidation at CuSe-modified 

electrodes occurs at very low working potential of +0.15 V vs Ag|AgCl which increases 

the energy efficiency of the system. These results reveal a great potential of 

electrodeposited CuSe as a high-efficiency glucose sensor with practical applicability.   

 

 

Table 1. Results of glucose detection human blood. 

Sample Glucometer (mM) CuSe (mM) RSD (%, n=3) 

1st glucose 6.37 6.39 1.4 

2nd glucose 4.72 4.84 3.59 

3d glucose 5.7 5.55 2.4 

Blood 1 5.45 5.56 2.6 

Blood 2 5.48 5.5 2.1 
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Table 2. Comparison of performance of various copper based nonenzymatic glucose 

sensors. 

Electrode Applied 

potential (/V 

vs Ag|AgCl) 

Sensitivity 

(mA mM-1 

cm-2 ) 

Linear range LOD 

(µM) 

 Ref 

CuSe 0.15 19.41 100 nM-80µM; 

100µM-2mM 

0.196 This 

work 

CuO NWA/CF 0.50 32.33 0.10 mM–0.50 mM 0.02 41 

Cu2Se SPs/CF 0.50 18.66 0. 25 μM –0.237 

mM 

0.25 35 

CuNi/C 

Nanosheet  

0.54 17.12 0.2 µM –2.72 mM 0.066 42 

Cu@porous 

carbon  

0.55 10.1 1µM−6.0 mM 0.6 43 

CuS/RGO/CuS/

Cu  

0.65 22.67 0.001–0.655 mM 0.5 44 

CuO nanowires 0.55 0.648 - 2 12 

CuO NPs 0.50 1430 0.04–6.0 mM 5 45 

CuCo2O4 NWAs

/CC 

0.55 3930 0.001–0.93 mM 0.5 46 

CuO/rGO/CNT 0.60 9278 0.01–1 mM 1 47 

CuO/NiO/PANI/

GCE 

0.60 3402 20 μM –2.5 mM 2 48 

CuO–ZnO 

NRs/FTO 

0.62 2961.7 Up to 8.45 mM 0.4 49 

      

mailto:Cu@porous%20carbon
mailto:Cu@porous%20carbon
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SUPPORTING INFORMATION 

 

Figure S1. SEM image of CuSe at 1µM magnification, and elemental mapping of CuSe 

with atomic percentage distribution. 
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Figure S2. HR-TEM images ED- CuSe. 

 

 

 

Figure S3. i vs V curve to determine the ideal working potential for glucose oxidation. 

+0.15 V vs Ag|AgCl shows the highest current and this potential is used for the rest of 

amperometric experiments. 
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Figure S4. (a) Low and high concentration of CuSe peak current versus the concentration 

of glucose (b) linear range from 100 nM to 40 µM and (c) linear range from 100 µM to 2 

mM. 

(a) 

(b) (c) 
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Figure S5. Plot of the response time to reach the steady-state current for CuSe.  
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ABSTRACT 

 

Construction of highly efficient and stable catalyst for water splitting is of high 

importance for wide variety of application. In this communication we report a bifunctional 

hybrid electrocatalyst FeCo2Se4 with functionalized onion like carbon (OLC-PhNH2) for 

oxygen evolution reaction with a small overpotential of 270 mV to reach 10 mAcm-2 and 

oxygen reduction reaction with an onset potential of 0.85 V and E1/2 of 0.75 V proceeds 

through a 4 electron process.  

  

 

1. INTRODUCTION 

 

The demand for clean and sustainable energy is one of the top priorities across the 

globe. Generation of hydrogen and oxygen through catalyst-aided water splitting which 

mailto:nathm@mst.edu
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has immense applications in metal air batteries, PEM fuel cells and solar to fuel energy 

production.1, 2 IrOx and RuOx are known as the state-of-the- art oxygen evolution reaction 

(OER) and Pt /C is the best oxygen reduction reaction (ORR) catalysts which are mostly 

comprised of precious metals that hindered the commercialization of renewable energy 

technologies.3, 4 Designing efficient and cost-effective water splitting catalysts remains the 

Holy Grail for large scale, affordable energy production from sustainable energy inputs, 

such as solar and wind.5  

Several new catalysts  based on first row transition metals has been reported in the 

recent past.6, 7, 8 Among these, Co based electrocatalyst takes a special mention as it has 

been reported for both OER and ORR applications.9, 10 On the other hand transition metal 

selenides often generates O2 at low overpotentials and also having a stability outperforming 

the state of the art catalysts.11 Mixed metal selenides with ordered spinel structure having 

a general formula AB2X4 (A and B – metal; X - chalcogen) is proved to show better catalytic 

activity. Li et al. reported MFe2O4 (M = Co, Cu, Mn, Ni) nanofibers synthesized by 

electrospinning and thermal treatment. Among these compositions CoFe2O4 showed the 

best activity for OER.12 This may be possibly due to the incorporation of iron in cobalt 

based system which can be understood as (i) The electrical conductivity of the system is 

increased (ii) Due to the d-d overlap within the crystal lattice. However, changing from 

CoFe2X4 to FeCo2X4 will allow half of the low spin Fe3+ to occupy the B site increases the 

Lewis acidity which gives ample catalytic sites for the hydroxyl groups for further OER 

process.13 This effect is also observed in Fe doped CoOOH which has shown improvement 

in OER catalytic activity by many folds.14  
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Incorporating the conducting carbon matrix such as graphene,15 reduced graphene 

oxide16 and carbon nanotubes17 has shown to increase the current density, and efficiency 

of the catalyst. In here, we have used onion like carbon (OLC) as the conducting carbon 

matrix, which consists of several fullerene like carbon shell enclosed within one another 

which have certain degree of disorder. The advantages of OLC are its high conductivity ( 

 ̴4 Scm-1), high surface area and disordered nature which is makes it attractive for 

electrochemical applications.18 Further we have introduced a redox active surface species 

like phenylenediamine group on to OLC’s through diazotization reaction, to incorporate 

the nitrogen content in the catalyst where the edge pyridinic and pyrrolic N are believed to 

be the hot spots for the energy conversion reactions.19    

For the first time we report a P-Phenylenediamne (-PhNH2) functionalized onion 

like carbon (OLCPhNH2) combined with vacancy ordered spinel FeCo2Se4 to obtain a 

hybrid catalyst FeCo2Se4- OLCPhNH2 (FCS-OLC PhNH2) synthesized by simple insitu 

hydrothermal method, which is active for both oxygen evolution and oxygen reduction 

reactions. The OER catalytic activity shows a low overpotential of 270 mV to achieve 10 

mA cm-2 in alkaline solution with a small Tafel slope of 72 mV dec-1. In addition, the 

catalyst is also active for ORR with an onset potential of 0.87 V vs RHE and having a 3.98 

e- process and a low H2O2 content of ~10-12 %. Electrodes prepared from the FCS-

OLCPhNH2 catalyst also shows excellent stability with retention of activity even after 12 

h of constant current electrolysis for OER and 1000 cycles CV for ORR. 
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2. RESULT AND DISCUSSION 

 

The synthesis of FCS- OLCPhNH2 catalyst was carried out in a two-step strategy. 

First the nanoonions were functionalized with –PhNH2 group by a reported procedure. In 

the second step, stoichiometric quantities of Fe, Co and Se precursors were added along 

with the functionalized OLC in a Teflon lined hydrothermal bomb for 12 h at 185°C. The 

as obtained black product was washed several times using water and ethanol followed by 

drying overnight in an oven at 60°C. The as-synthesized catalyst was characterized by 

using powder X-ray diffraction (PXRD) patterns and compared with reference spectrum 

(PDF #04-006-5242). It was evident from PXRD that the as-synthesized hybrid catalyst 

was a good match with the reference diffraction pattern and all the peaks was indexed with 

almost no detectable impurities (Figure 1a). The average particle size was estimated to be  

 ̴50 nm calculated using the Scherrer equation.16 The morphological details of the hybrid 

catalyst was done using TEM, where the particles were nicely dispersed with OLC-PhNH2 

acting as a filling agent which increases the particle –particle contact and surrounds the 

FCS surface (Figure 1b). Due to the high surface energy the FCS particles are 

agglomerated, having a spherical morphology with  ̴100 nm particle size. The hybrid 

catalyst shows the FCS is monodispersed with OLCPhNH2 surrounding each FCS particles 

(Figure 1c). TEM shows the surface of the hybrid catalyst has rough surface where the 

particle size of OLCPhNH2 was approximately 5-8 nm. HRTEM patterns obtained from 

FCS- OLCPhNH2 showed diffuse diffraction rings corresponding to the 〈311〉 and 〈110〉 

lattice planes of FeCo2Se4, which also confirmed the presence of nanocrystalline FeCo2Se4 
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phase in the catalysts (Figure S1a). HRTEM images clearly shows the lattice fringes with 

a d spacing of 2.2 Å which corresponds to <311> facets of FeCo2Se4 (Figure S1b). 

 

 

Figure 1. (a) XRD of FeCo2Se4- OLCPhNH2 (b) TEM images of FeCo2Se4- OLCPhNH2 

(c) FeCo2Se4. Deconvoluted XPS spectra of (d) Co 2p (e) Fe 2p and (f) Se 3d. 

 

 

The FTIR spectra of pristine carbon nano-onions and functionalized carbon 

nanonions comparing with diazonium salt are shown in Figure S2. The spectrum of pristine 

nano-onions shows peaks relating to C-H stretching to aldehyde and alkane at 2656 and 

2957 cm-1 respectively along with the OH stretching at 3482cm-1 due to physisorbed water, 

(a) 
(b) (c) 

(f) (d) (e) 
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indicating presence of IR-active functional groups in the CNO sample. After the 

diazotization reaction, the spectra of functionalized carbon nanoonions peaks about 1603 

and 2876 cm-1 appear which is originates to N-H bending (amine group) and N-H stretching 

respectively.  

The chemical composition of the as synthesized hybrid catalyst was analyzed by 

X-ray photoelectron spectroscopy (XPS). All binding energies for Fe, Co and Se were 

calibrated with respect to C 1s (284.5 eV) as a reference binding energy. The chemical 

composition and the oxidation state of the catalyst were investigated from the deconvoluted 

XPS spectra, and the corresponding results are presented in (Figure 1d-1f). The 

deconvoluted Fe 2p and Co 2p confirmed the presence of mixed valence of metal ions 

which might play a significant role in their catalytic activity. As shown in Figure. 1d, the 

binding energies are 778.34 and 793.44 eV of Co 2p are assigned to Co3+ and of 780.66 

and 795.64 eV are attributed to Co2+ with its shake-up satellite peaks at 785.47 and 802.52 

eV.20 Similarly, in the Fe 2p spectra (Figure. 1d), the peaks at 708.82 and 721.76 eV 

correspond to Fe2+ while those at 710.59 and 724.48 eV corroborate with Fe3+.20 In the Se 

3d XPS spectrum in Figure. 1e, the peaks at 53.76 and 55.45 eV correspond to Se 3d5/2 and 

Se 3d3/2, respectively, which were comparable with the binding energies commonly 

observed in the transition metal selenides. SeOx peaks are observed at 58.5 and 59.43 eV 

due to the surface oxidation.21 

All the catalytic activities have been measured in 1 M KOH alkaline solution and 

the results were compared with state-of the- art OER catalyst RuO2, which was prepared 

in by electrodeposition. Calibrated silver-silver chloride (Ag|AgCl|KCl(sat.)) and GC plate 

were used as reference electrode and counter electrode respectively. The catalyst was drop 
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casted on commercially available carbon fiber paper (CFP). Loading of the FCS- 

OLCPhNH2was calculated to be 0.6 mg cm-2. Electrochemically active surface area 

(ECSA) was calculated by using the double layer capacitance current in the non-Faradaic 

region similar to the previous reports (SI Figure S3).272 The ECSA of the hybrid catalyst 

and FCS was found to be 61 cm2 and 42 cm2 respectively, which is 19 time higher than the 

FCS. Figure 2a shows the linear sweep voltammograms (LSV) of the catalysts in1 M KOH 

at a scan rate of 10 mV s-1. Interestingly, hybrid catalyst (FCS-OLCPhNH2) requires very 

low overpotential (270 mV) to achieve 10 mA cm-2 current density compare to catalyst 

(FCS) without adding any OLCPhNH2 (320 mV needs to get 10 mA cm-2). It is to be noted 

that the ratio between the FSC to OLCPhNH2was 80: 20, which gave the best OER activity. 

On the other hand, by increasing the OLCPhNH2content to catalyst, activity was decreased 

substantially. For instances, 50:50 ratio of FSC to OLCPhNH2 increased the overpotential 

to 310 mV and 30:70 ratio of FSC to OLCPhNH2  of addition further increased to 315 mV 

to get the current density of 10 mA cm-2. This trend of reduction in the OER activity 

suggests that the active center is the structurally ordered FeCo2Se4 and OLCPhNH2 acts as 

the conducting matrix surrounding the active center for better charge transfer and faster 

kinetics. With the increase in FCS content, the OER activity increases firstly and reaches 

the maximum value when the FCS content is 80 wt%. It declines sharply thereafter, 

indicating that the synergistic effect is dependent on the loading amount of OLCPhNH2 is 

neither too low nor too high. In order to know the OER kinetic of these catalysts, Tafel 

plots has been derived from the OER polarization curves and presented in Figure. S4. The 

hybrid catalyst exhibited the lower value (72 mV s-1) of Tafel slopes than that of the others. 

The low value in Tafel supports the faster OER kinetics of the catalysts. These values are 
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superior to the noble metal based state of art catalyst RuO2 and also noteworthy considering 

the facile synthetic approach. Table 1 provides the comparison of our synthesized the 

different catalysts and reported cobalt chalcogen-based OER catalysts where FCS- 

OLCPhNH2 showed the better OER catalytic activity. Chronoamperometric study was 

conducted to understand the stability of hybrid catalyst at a constant potential of 1.53 V for 

12 h as shown in Figure 2b. There was no degradation of current during the continuous 

oxygen evolution process suggesting that the catalyst is quite stable. The OER polarization 

curves exhibit the similar activity before and after stability for 12 h. This exceptional 

stability of the hybrid catalyst is achieved by the suitable combination of the FCS and the 

OLCPhNH2. The compositional stability of catalyst was further checked by XPS after 

stability for 12 h. The XPS binding energies of Fe 2p, Co 2p and Se 3d (Figure. S5) of the 

catalyst after stability showed the similar values that of as prepared catalyst.  

 

 

Figure 2. (a) OER comparison and (b) chronoamperometery at 1.53 V for 12 h, LSV 

before and after of 12 h stability (inset). 

 

 

(a) (b) 
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We extended our study of the hybrid catalyst to oxygen reduction reaction (ORR) 

which is the main reaction taking place in the fuel cell technology. ORR was performed 

using the RRDE setup with O2 saturated 1M KOH solution. The ORR hydrodynamic 

voltammograms of the FCS-OLCPHNH2 hybrid catalyst (mass loading of 0.55 mg cm-2) 

were carried out at a scan rate of 10 mVs-1 with different rotation rates as shown in Figure 

3a. It is evident that FCS- OLCPhNH2 has better ORR onset (0.87 V vs RHE) than the FCS 

(0.84 V vs RHE). The ORR activity of this hybrid catalyst was compared with the 

commercial Pt/C (5 wt % of Pt) that shows an onset potential of 0.96 V vs RHE. FCS-

OLCH has a positive onset potential and higher limiting current density than FCS and 

OLCPhNH2, suggesting that synergistic effect plays a pivotal role in the overall 

performance. The half wave potential (E1/2) of FCS- OLCPhNH2 0.7 V vs RHE which is 

less than compare to 5% Pt (0.82 V vs RHE), but better than FCS (E1/2=0.67 vs. RHE) and 

OLCPhNH2 (E1/2=0.68 V vs. RHE) A positive onset potential, E1/2 and a higher limiting 

current density makes FCS- OLCPhNH2 superior to FCS and OLCPhNH2.  To obtain 

further information about ORR kinetics, the Koutecky–Levich plots (j-1 vs. ω-1/2) of hybrid 

catalyst are obtained from LSVs at various potentials, which showed good linearity at 

various rotation speed (Figure 3c). Using the KL plot electron transfer number (n) of FCS- 

OLCPhNH2and Pt/C were calculated to be 4 at a wide potential range, which suggests a 

four-electron pathway for oxygen reduction. In addition the %H2O2 was calculated to 10-

12% using the formula in given SI. 

We evaluate the kinetic parameters Tafel plots of FCS- OLCPhNH2 and Pt/C 

derived from LSVs data are compared as shown in Figure. S6, the Tafel slope of FCS- 

OLCPhNH2 is 91.3 mV per decade, which is close to the 82.8mV per decade of the Pt/C, 
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indicating that the FCS- OLCPhNH2 has good kinetic current for ORR.  To better 

understanding the role of OLCPhNH2 in the enhancing the catalytic activity for the ORR 

of FCS, the loading of OLCPhNH2 was increased to 50% by weight and the catalytic 

performance of FCS: OLCPhNH2= 50:50 was examined using the RRDE (Figure. 3a). The 

different mass loading of OLCPhNH2 in the hybrid can be obtained by varying the 

concentration of the OLCPhNH2 solution in the hydrothermal process. It is found that only 

an appropriate ratio of OLCPhNH2 gives the best ORR activity. The highest ORR activity 

is obtained at FCS: OLCPhNH2 ratio of 70:30.  More theoretical analysis and experimental 

characterization are still necessary to unravel the detailed mechanism of the ORR process 

of the hybrid. 

To investigate the stability of the catalyst continues CV was performed for 1000 

cycles in 1M KOH solution under constant supply of oxygen at 1200 RPM.  Figure 3d 

shows the LSV of FCS- OLCPhNH2 before and after 1000 cycles where the catalyst 

retained the onset, half wave potential and current density proving the excellent stability in 

alkaline solution. We believe that it may be due to the unique properties of OLCPhNH2, 

which could act as an oxygen buffer and feed the adjacent FCS with additional oxygen.  

Therefore, the experimental results shows the hybrid FeCo2Se4-OLCPhNH2 

demonstrates best OER and ORR activity as compared to the activity of the spinel or the 

carbonaceous material alone. This can be attributed to cobalt in the low spin configuration 

with t2g
6eg1 electronic configuration where eg has one electron, which is high optimal for 

OER catalytic activity.22 Further the presence of iron increases the affinity for oxygen 

species and with cobalt in the system it significantly promotes the 4e- process in ORR 

process. This phenomenon also improves the OER process by reducing the overpotential 
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close to 1.23 V. Additionally as previously stated that replacing oxides with selenides can 

bring the band gap closer to water oxidation levels enhancing the redox activity at the metal 

site and consequently lowering the overpotential in OER and improved onset and E1/2 in 

case of ORR. The synergistic effect between iron and cobalt on highly conductive 

functionalized onion like carbons may contribute in enhancing intrinsic property of 

FeCo2Se4.     

 

 

 

 

Figure 3. (a) ORR comparison of FCS- OLCPhNH2 with different ratios, FCS, 

OLCPhNH2 and 5% Pt (b) ORR polarization curves of FCS- OLCPhNH2 at different 

rotations (c) K-L plots at different potential (d) LSV comparison of FSC- OLCPhNH2 for 

before and after 1000 cycles. 

 

(d) 

(b) (a) 

(c) 
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3. CONCLUSION 

 

In conclusion, we have reported an earth abundant and carbon based FeCO2Se4- 

OLCPhNH2 bifunctional hybrid catalyst for OER and ORR with high energy efficiency. 

For OER the catalyst requires a low overpotential of 270 mV to achieve 10 mA cm-2 with 

a Tafel slope of 72 mV   dec-1. The catalyst is also active for ORR with an onset potential 

of 0.87 V and undergoes a 4 electron process with a low H2O2 production of 10-12%. 

Additionally, the catalyst shows an excellent stability with for both of OER and ORR for 

extended period of time. Overall with high efficiency and catalytic activity combined with 

stability this system makes it an important member for sustainable future.   

 

 

SUPPORTING INFORMATION 

 

Materials and Methods 

Materials. Cobalt Sulfate heptahydrate (CoSO4. 7H2O) from Acros Chemicals, 

Iron sulfate heptahydrate (FeSO4. 7H2O) from Fisher Scientific, Selenium dioxide [SeO2] 

form Acros chemicals, Hydrazine monohydrate from Acros chemicals and KOH from 

Fisher chemicals. All chemicals were of analytical grade and were used as received without 

further purification. 

Synthesis of Functionalized Carbon Nanoonions (OLC-PhNH2). The carbon 

nanoonions (23.1 mg), p-Penylenediamine (23.1 mg, 0.2136 mmol), sodium nitrite (1.05 

equivalent mol of p-penylenediamine, 15.48 mg), and 5 mL of deionized water were added 

to a 20 mL glass vial and sonicated for 20 minutes at room temperature. After sonication 
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the vial was putted in ice-salt bath with stirring until temperature achieve 0-5ᵒC and add 

deionized water at 0ᵒC to a volume 10 mL. For initiation reaction the hydrochloric acid 

was added dropwise until pH of solution equals 2-3. The reaction was carried out for an 

hour controlling the temperature (0-5ᵒC). After the reaction, washing and centrifugation 

(8000 rpm, 15 minutes for each time) were performed until pH = 5-6 and the resulting 

sediment was dried in vacuum oven at 60ᵒC.  

Synthesis of FeCo2Se4. FeCo2Se4 nanoparticles was synthesized by hydrothermal 

method. In a typical procedure, FeSO4.7H2O (5 mmol), CoSO4. 7H2O (10 mmols) and 

SeO2 (20 mmols) were mixed in DI water (10 ml). The solution was stirred on a magnetic 

stirrer. About 5 mins later hydrazine monohydrate (0.25 ml) was added. The solution of 

stirred for another 5 mins and then transferred to 23 ml Teflon - lined autoclave, which was 

sealed and maintained at 185°C for 12 h and then naturally cooled to room temperature. 

The resulting black solid was then washed several times with DI water and ethanol. The 

solid was dried in an oven maintained at 40°C overnight. 

Synthesis of FeCo2Se4 – OLCPhNH2.  Firstly, OLC-PhNH2 is taken 20% by 

weight in DI water (5 ml). This mixture was sonicated for 15 mins. OLC-PhNH2-water 

mixture is added to FeCo2Se4 nanoparticles (from the above procedure) while stirring. 

Hydrazine monohydride (0.25 ml) is added and this solution is sonicated for 30 mins. This 

solution is transferred to 23 ml Teflon - lined autoclave, which was sealed and maintained 

at 185°C for 12 h and then naturally cooled to room temperature. The cleaning procedure 

remains same as above. Hydrazine monohydrate was used as reducing agent, which 

reduces the Se4+ to Se2-. An additional step of sonicating the above solution for 20 mins 

was introduced. Sonication of a FeCo2Se4 - OLC-PhNH2 dispersion in the presence of 
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reducing agent like hydrazine monohydrate results in high-coverage of OLC on the surface 

of metal nanoparticles. This increases the likelihood of metal nanoparticle fill on single-

layer rGO sheets. Hydrothermal treatment at 185°C for 12 h gave FeCo2Se4-NrGO powder. 

During the hydrothermal treatment, crystallization of FeCo2Se4 and further attachment of 

OLC-PhNH2 around the nanoparticles was achieved simultaneously.  

Tafel plots. The catalytic performance of the hybrid catalyst for OER is carried out 

by measuring the Tafel slopes according to the equation given below: 

𝜂 = 𝑎 +
2.3 𝑅𝑇

𝛼𝑛𝐹
𝑙𝑜𝑔(𝑗)  

where ƞ is the overpotential, j is the current density and the other symbols have their usual 

meanings.  

The percentage of the electrogenerated hydrogen peroxide (XH2O2) and the number of 

electron transferred (n) during the ORR were also calculated using Eqs. (2) and (3): 

ΧH2O2 =
200𝑰R

𝑵

𝑰D+
𝑰R
𝑵

      

 

n =
𝟒𝑰D

𝑰D +
𝑰R

𝑵

 

where ID and IR are the disk and ring currents, respectively and N is the collection 

efficiency (0.24). 

K-L Plots. The number of electrons transferred per oxygen molecule involved in 

the ORR at the FeNi2Se4-NrGO@GC electrode was determined by the Koutecky-Levich 

equation.  

             
1

𝑗
=

1

j𝒌
+

1

B𝜔1/2
 

(1) 

(2) 

(3) 

(4) 
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where jk is the kinetic current density B is the so-called B-factor and equal to 

0.62nFCbDo
2/3ʋ-1/6 k is the rate constant, n is number of electrons transferred for per oxygen 

molecule, F is the Faraday constant (96 485 C mol-1), A is geometric area of electrode 

(0.196 cm2), DO2 is the diffusion coefficient of O2 (1.9 × 10-5 cm2 s-1), v is the kinetic 

viscosity of the solution (1.009 × 10-2 cm2 s-1), and CO2 is the concentration of dissolved 

O2 in solution (1.2 × 10-6 mol cm-1). A plot of vs. should yield a straight line having a slope 

equal to B. The values of B allow us to assess the number of electrons involved in the ORR. 

 

 

Figure S1. HRTEM and SAED of FeCo2Se4. 
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Figure S2. Characterization of OLC-PhNH2 by IR spectroscopy I – Carbon nanoonions, 

II – Functionalized carbon nanoonions III – Diazonium salt. 

 

 

Figure S3. (a) ECSA for FCS-OLCPhNH2  (b) ECSA for FCS. 

 

 

 

(a) (b) 
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Figure S4. Tafel plot for OER. 

 

 

 

 

 

 

 

 

 

Figure S5. XPS after activity. 
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Figure S6. Tafel plot of FCS- OLCPhNH2 comparing with Pt/C for ORR. 
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    SECTION 

 

2. CONCLUSIONS 

Transition metal chalcogenides synthesized by hydrothermal and electrodeposition 

techniques were studied for electrochemical applications in this study. These transition 

metal chalcogenides have combined with various conductive carbon matrix such as 

reduced graphene oxide, onion like carbons and carbon nanotubes to improve the 

properties. Also these hybrid nanostructuring of the electrocatalyst increases the 

electrocatalytic efficiency manifold by increasing the functional surface area. The aim of 

this research is to synthesize high efficiency electrocatalysts from transition metal selenides 

using the priciples of materials chemistry to particularly tune the redox potential of the 

centre metal site by redistributing the electron density and therefore influencing the 

activity.  

Paper I introduces the solution based method of synthesizing FeP nanoparticles and 

further making a hybrid catalyst by introducing reduced graphene oxide as a conducting 

carbon matrix. This catalyst requires comparatively lower overpotential to achieve 10 mA 

cm-2 which is significantly lower than the state-of-the-art IrOx catalysts and is one of the 

lowest for phosphide based electrocatalyst. Importantly, the FeP nanoparticles can be 

combined with reduced graphene oxide sheets which results in significantly improved 

catalytic activity owing to the synergistic effect. High catalytic activity along with the ease 

of synthesis of the nanoparticles, makes this system have high technological importance. 
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Paper II introduces one pot hydrothermal method of synthesizing FeNi2Se4-rGO 

hybrid catalyst in nanometer range for energy conversion application. The exceptional 

OER activity is characterized by a small η of 170 mV at the current density of 10 mV cm-

2 and a Tafel slope down to 62.1 mV dec-1. The low onset potential required for O2 

evolution as well as overpotential required to reach 10 mA cm-2, is one of the lowest that 

has been reported so far, making this hybrid composite a very promising OER 

electrocatalyst. The ORR activity is also better than the other chalcogenide based 

electrocatalysts and is comparable to Pt. Hence, this novel hybrid composite has exhibited 

significantly enhanced OER-ORR catalytic performances with high catalytic activity, 

favorable kinetics, and extended stability. The synergistic coupling between the N-doped 

reduced graphene oxide and FeNi2Se4 nanoparticles is believed to boost the excellent OER 

performance. 

Paper III similarly shows the importance of carbon matrix to improve the 

performace of hybrid catalyst. FeCo2Se4 – OLCPhNH2 was synthesized by hydrothermal 

method and thoroughly characterized to know the structure and morphology. This hybrid 

catalyst similarly shows bifunctional capabilities towards OER and ORR. For OER the 

catalyst requires a low overpotential of 270 mV to achieve 10 mA cm-2 with a Tafel slope 

of 72 mV   dec-1. The catalyst is also active for ORR with an onset potential of 0.87 V and 

undergoes a 4 electron process with a low H2O2 production of 10-12%. Additionally, the 

catalyst shows an excellent stability with for both of OER and ORR for extended period of 

time. The simple synthetic method, earth abundancy of the constituent elements, and low 

overpotential makes this bifucntional catalyst a front runner for various energy related 

applications. 
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Paper IV explains the use of transition metal selenides as sensor material to detect 

dopamine for the first time. CuSe was synthesized by two methods namely hydrothermal 

and electrodeposition. Irrespective of the material synthesis CuSe sensed dopamine at 

nanomolar range. The high sensitivity (26.8 µA µM-1 cm-2 for ED and 8.80 µA µM-1 cm-2 

for HT) at a low applied potential of +0.18 V vs Ag|AgCl, low detection limit (98 nM for 

ED and 68 nM of HT), short response time (1 s), makes these sensors lucrative for practical 

applications in real-time continuous dopamine monitoring systems as well as point-of-care 

detection units. The CuSe based non-enzymatic dopamine sensor has impressive selectivity 

for dopamine sensing, long-term stability and repeatability. 

Paper V exhibits CuSe as a non enzymatic glucose sensor which was synthesized 

by simple electrodeposition producing a flake like nanostructures. The electrocatalytic 

activity for glucose oxidation was studied in alkaline conditions. Electrodeposited CuSe 

exhibited superior efficiency for glucose oxidation with a sensitivity of 19.419 mA mM-1 

cm-2 and a low detection limit of 0.196 µM, has a wide linear range 100 nM - 40 µM and  

fast response time of less than 2 s, long term stability and excellent selectivity at very low 

applied potential of +0.15 V vs Ag|AgCl. These results reveal a great potential of 

electrodeposited CuSe as a high-efficiency glucose sensor with practical applicability.   
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