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ABSTRACT 

This research covers the topic of developing a systematic methodology of 

studying electrostatic discharge (ESD)-induced soft failures. ESD-induced soft failures 

(SF) are non-destructive disruptions of the functionality of an electronic system. The soft 

failure robustness of a USB3 Gen 1 interface is investigated, modeled, and improved. The 

injection is performed directly using transmission line pulser (TLP) with varying: pulse 

width, amplitude, polarity. Characterization provides data for failure thresholds and a 

SPICE circuit model that describes the transient voltage and current at the victim. Using 

the injected current, the likelihood of a SF is predicted. ESD protection by transient 

voltage suppressor (TVS) diodes is numerically simulated in several configurations. The 

results strongly suggest the viability of using well-established hard failure mitigation 

techniques for improving SF robustness, and the possibility of using numerical simulation 

for optimization purposes. A concept of soft failure system efficient ESD design (SF-

SEED) is proposed and shown to be effective. 
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1. INTRODUCTION 

In paper I, a system-efficient ESD design methodology is developed for soft 

failures (SF) and applied to USB3 Gen 1 interface. The aim is to create a systematic 

approach of interface characterization, modeling and evaluating effectiveness of 

protection schemes. SF is studied extensively [1]-[10], but most of the studies are either 

purically empirical, or performed on extremely simplified devices (such as D flip-flop, 

etc.) in order to establish the root cause. Often, the root cause of a soft failure lies in noise 

and glitches on power rails as a result of direct or indirect ESD. In practice, the device 

under test (DUT) is very complex and it is either impractical or too expensive to study 

and model each interface at a high level of detail (i.e. individual registers and voltages) 

before being able to propose, test and release a design version robust to soft failures. 

The process of system efficient ESD design (SEED) consists of two major parts. 

First, the desired interface is stressed with a transmission line pulser (TLP), its behavior 

observed and a measurement-based victim pin model is created. Then the pin model is 

combined with models of other parts that are relevant to ESD robustness: transmission 

lines, discrete components, interconnects, etc. Design changes are tested within the model 

in terms of stress at the victim pin, then compared to the damage thresholds. Common 

protection schemes include adding discrete components that are placed at different 

locations within the net under test. The damage thresholds of the victim are evaluated 

earlier experimentally or provided by device vendor. The process continues until the 

maximized robustness levels are achieved in simulation, then implemented in practice. 
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There are many discussions of SEED concept for soft failures [4] [6], but no 

implementation or validation could be presented. This work aims to demonstrate that 

such concept is viable and to validate it by testing and modeling a range of commonly 

used hard failure mitigation techniques. 

Paper II shows the development of the systematic testing methodology of a 

complex DUT, which is the first step in the SEED process. Dependency of soft failure 

modes on pulse length and system state is established and 8 different failure modes are 

identified. An automated algorithm is developed and presented in detail. 

Paper III shows a novel method for detecting of latch-ups in power domain by 

using on-die power sensors, without additional measuring instruments. Persistent power 

drain is one of the more pernicious threats to a mobile, battery-powered systems. This 

kind of failure is often not visually or audibly detectable, except in cases of obvious 

heating of the system. This means, it is likely to go undetected by the operator, until the 

battery is drained. The method of detection is shown to be effective and practical. One of 

the appeals is that these power sensors are often implemented as a part of CPU cooling 

and thermal control system, so little additional design effort is required.  

First part of paper I is devoted to using results of papers II and III and proposing 

an empirical circuit model of the victim pin. The latter parts show the implementation of 

the SEED methodology as applied to the soft failure modes, correlation of the circuit 

model to the measurements, and comparison of commonly used ESD mitigation 

techniques. The results provide evidence for viability of the proposed methodology and 

for effectiveness of conventional ESD mitigation techniques against soft failures. 
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PAPER 

I. IC PIN MODELING AND MITIGATION OF ESD-INDUCED SOFT 

FAILURES 

Giorgi Maghlakelidze 

Deparment of Eletrical and Computer Engineering, Missouri University of Science and 

Technology, Rolla, MO 65409 

ABSTRACT 

ESD-induced soft failures (SF) of a USB3 Gen1 device are investigated by direct 

TLP injection with varying pulse width, amplitude, and polarity. This allows to 

characterize the failure behavior of the interface and to create a SPICE model of the 

voltage and current waveform dependent failure thresholds. ESD protection by TVS 

diodes is numerically simulated in several configurations. The results show viability of 

using well-established hard failure mitigation techniques for improving SF robustness. A 

good agreement between numerical simulation for optimized board design and 

measurements are achieved. A novel concept of Soft Failure System Efficient ESD 

Design (SF-SEED) is proposed and demonstrated to be effective for making decisions for 

early product development, in board design and prototyping phase. 
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1. INTRODUCTION AND OVERVIEW 

 

Electrostatic discharge-induced soft failures (SF) have been a subject of extensive 

investigations [1]-[10]. Many studies concentrate on empirically characterizing complex 

systems [1], some on studying simpler devices such as 16-bit microcontroller [2] units or 

simpler flip-flop structures and modeling them in detail with full-wave and circuit solvers 

[3] in order to understand the root cause of specific failures. Sophisticated 

characterization techniques are required in order to study each interface of a complex 

interface, such as USB3 SuperSpeed [4][6][7][8]. Often, the root cause of such a failure 

lies in noise and glitches on power rails as a result of direct or indirect ESD [3][4][5]. In 

most practical situations, however, the system is very complex and it is either impractical 

or too expensive to study and model each interface at a high level of detail (i.e. individual 

registers and voltages) before being able to propose, test and release a more robust 

solution.  

System-efficient ESD Design (SEED) is a well-established concept in the industry 

[9][10]. It stands for the design optimization methodology that maximizes robustness of 

signal lines to ESD-induced hard failures (damage) by simulating the high current 

behavior of PCB components. Typically, a measurement-based victim pin model is 

created, then combined with other parts that affect ESD robustness: transmission lines, 

discrete components, interconnects, etc. Design changes are made in the model and 

evaluated in terms of stress at the victim pin, compared to the damage thresholds. 

Common protection schemes include adding discrete components (e.g. TVS diodes, CM 

chokes, etc.) that are placed at different locations within the interface under test. The 
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damage thresholds of the victim are evaluated earlier experimentally or provided by 

device vendor. The process continues until the maximized robustness levels are achieved 

in simulation, then implemented in practice. 

To date, there has been discussion of SEED concept for soft failures [4] [6], but 

no implementation or validation could be presented. This work aims to demonstrate that 

such concept is viable and to validate it by testing and modeling a range of commonly 

used hard failure mitigation techniques.  

The methodology is applied to SuperSpeed lanes of a USB3 Gen 1 interface. A 

directional injection concept is developed for the high-speed interface and used to 

characterize the RX pins of the device under test. An automated test system is used to 

characterize the victim pin and classify the failure modes related to the interface. The 

characterization results are presented as soft failure likelihood as a function of injected 

stress levels, polarity, and rise time. This is an extension of a characterization 

methodology developed previously [7][8]. Eight failure modes across four severity levels 

are identified for the DUT. This information is then used to create a circuit model that 

outputs failure likelihood for the applied stress.  

Section 2 of the paper contains DUT pin characterization setup, procedure, and 

the results. Section 3 describes pin modeling methodology and SF modeling 

methodology. Section 4 proposes a SEED-like simulation procedure for soft failures. 

Section 5 provides evidence for viability of the proposed procedure and discusses the 

results. 
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2. CHARACTERIZATION METHODOLOGY AND RESULTS 

2.1. AUTOMATED SETUP DESCRIPTION 

 The goal of this setup is to characterize an I/O pin of an active device in terms of 

soft failure modes and thresholds under direct stress injection. This is achieved by 

running a series of automated stress tests, varying stress parameters and then statistically 

processing the resulting data. 

 

 

Figure 1. System diagram of the chracterization setup. The control PC interfaces with the 

TLP measurement system over GPIB and COM, controls a MCU via serial, and 

interfaces with DUT by SSH over LAN. 

 

Most devices of the setup are controlled by a computer via several common 

interfaces (GPIB, COM, LAN, SSH). The system diagram is given in Figure 1. A 



 

 

7 

standard TLP measurement system [16] is used to apply repeatable stress to the DUT pin 

and measure voltage and current transient waveforms. 

A detailed description of the process algorithm and the system is given in [7]. For 

cohesion, a summary is provided below. The DUT is an Intel Joule system. It consists of 

two parts: a “compute module” (SoC, WiFi, eMMC) and an “expansion board” (interface 

fanout, PDN, ESD protection, filtering, etc.). The two boards plug in through a 100-pin 

HRS surface-mount SF40 interconnect.  

The TLP pulses are injected into the active (i.e. “hot”) USB3 Gen1 interface 

SuperSpeed data lines of the DUT, without significant loading of the USB3 Gen 1 signal. 

This is achieved by using a low-capacitance TVS diode soldered at the point where TLP 

output connects to the data pin [11].  

The injection point is located on the directional current injection (DCI) board. The 

structure allows to direct the bulk of the current into the host (DUT in this case), while 

protecting the other end – the client. 

2.2. DIRECTIONAL CURRENT INJECTION BOARD 

For purposes of soft failure characterization, it is important to achieve two things: 

1) clarity of which side of the high-speed link fails, and 2) activity on the interface.  

Normally, when a stress pulse is injected into a DUT, the current spreads in both 

directions from the entry point. Due to the complexity of a typical system, it is difficult to 

establish whether the host failed, or the client. Moreover, if the host is the DUT, different 

clients may introduce unwanted vendor-to-vendor variation. Thus, directional current 

injection structures are developed. The passive circuit [12] is effective and provides 60:1 
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directionality of the DUT current, but requires careful design and works for links with < 1 

GHz bandwidth. For USB3 Gen 1 and higher or HDMI links or any other simplex high-

speed data protocols, a new concept is proposed.  

The concept as applied to USB3 Gen 1 Type A is illustrated in Figure 2. An 

isolation structure placed in series with the signal path. The directionality is facilitated by 

a flat-gain amplifier MMIC. Before and after the amplifier, resistive attenuators are 

placed. The system is designed so that total gain is ~0 dB in the relevant frequency range 

for the target technology. In case the channel loss is not sufficiently flat for high-speed 

links, an equalizer can be added to the structure. This complicates the design, but may be 

necessary for data rates above 5 GBPS.  

In terms of the signal propagating along the differential pair, the structure is 

almost transparent. The stress injected at the output side of the isolation structure is split: 

most of the current propagates towards the victim pin, while a small part is absorbed by 

the attenuator and the amplifier output terminal.  

Figure 3 contains the measurements performed on the test structure with a 100 ns 

TLP, in order to establish the effectiveness of the proposed concept. The results show that 

DUT is subjected to 90% of the total current from the TLP. 10% is absorbed by the 

isolation structure, while only several mA are seen at the protected (ADUT) side. 

Typically, the soft failure tests are only performed up to a few amperes to avoid 

hard fails. The amplifier must be selected appropriately and stress pulse bounds should be 

well-controlled to avoid damage. 
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Figure 2. Isolation concept for directional current injection (DCI). The reverse direction 

of the structure absorbs the stress and prevents it from propagating towards the USB3 

client. 

 

 

Figure 3. Current directionality when injecting at the DCI board. 90% of the current 

propagates towards the DUT. The protected side is isolated by the reverse direction of the 

amplifier, so milliamps of currents are detected at the ADUT side of the link path. 

 



 

 

10 

2.3. CHARACTERIZATION PROCESS AND OUTCOME 

Typical characterization process starts by powering the system, calibrating TLP 

test system and establishing an active link. Then, a characterization loop proceeds to 

sweep injected stress levels and polarity. For each injection, the following major steps are 

taken:  

1. Reset the DUT to nominal state; 

2. Inject stress into the target pin; 

3. Measure transient current and voltage waveforms; 

4. Diagnose the SF mode based on the kernel logs; 

5. Log the data and proceed to the next stress level; 

More intricate details of the process are described in [7], [8]. 

After pulse length and polarity sweep concludes, the data is processed and 

grouped. The soft failures are grouped and categorized by two traits: visibility and 

whether any action is needed in order to resolve the error.  

Table 1 contains the summary and examples of soft failures and categories 

observed in the process of USB3 host characterization. 

The failure probability depending on the injection level is illustrated in Figure 4 

for an USB3 SuperSpeed RX positive pin. The characterization results show that both for 

positive and negative stress injections, there is a sharp threshold after which failure rate is 

total of 100%, as shown by the dashed green curve. The victim is more prone to failure 

for negative polarity stress, as compared to positive. Failure modes for positive are split 

between three main ones: 1) USB3 client re-enumerates within the host operating system 

and continues functioning, failure cat. B; 2) USB3 client disappears from the host 
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operating system, the failure is fixed by re-plugging the client, cat. C; and 3) latch-up at 

one of the power domains that presents as persistent power drain, requires total power 

cycle to fix, failure cat. D. The latch-up is detected by using an on-die power monitor [8].  

Negative polarity pulses cause similar soft failures, but with higher severity. 

These include: 1) USB3 re-enumerations; 2) USB3 client disappears from the host, but 

requires a system software reboot to fix (bringing power down not required); 3) USB 

interface falls back to USB2 mode, requires software reboot; 4) USB3 client disappears 

from the host and requires at least a full power cycle in order to fix the soft failure. The 

latter failure mode is one of the more severe ones, as it requires bringing the power of the 

whole system down. In embedded systems that means taking out the battery, or flipping a 

hardware switch which is often either inconvenient or inaccessible in consumer 

electronics. 

After device characterization and establishing SF modes and thresholds, this data 

is used to create a circuit model and optimize the design to improve device robustness to 

soft failure. The robustness improvement is quantified as increase in threshold values. 

 

Table 1. Soft failure categories. 

Cat. Visible Action Example for USB 

A ✘ ✘ Bit errors; packets getting resent 

B ✔ ✘ Drop in data throughput; re-enumerated by the host 

C ✔ ✔ 
Stop of data transfer; re-plugging of the cable or power 

cycling required 

D ✘ ✔ 
Device re-enumerates, but latch-up is unnoticed and 

power cycling is required 
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Figure 4. SF characterization results for SSRX_P pinfor 100 ns. The interface is more 

susceptible to negative stress, as indicated by the low 100% failure threshold, as 

compared to the positive half of the plot. 

 

3. MODELING METHODOLOGY 

3.1. VICTIM PIN QUASI-STATIC IV MODEL 

The model of the victim pin is a standard 3-parameter diode to VDD and a diode 

to VSS that is based on measured quasi-static IV curve. The measurement consists of 

sweeping magnitude of 100 ns TLP pulse with trise=0.6 ns, then averaging 70-90% 

window of transient voltage and current waveforms. This model describes pin behavior 

for long stress pulses. Figure 5 shows good agreement between the model and the 

measurement above 0.3 A of the injected current. This is acceptable, because no failures 

occur at low levels of stress. When testing the DUT pin in order to create a diode model 

for soft failure analysis, one should limit the injection range to well below the levels of 

current and voltage that cause permanent damage (hard failure). A reasonably safe upper 

bound would be 70% of the hard fail threshold. Anything higher can either introduce 
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damage immediately, or cause latent damage of the DUT due to the stress repetition for 

hundreds of times. 

 

 

Figure 5. Model of the victim pin SSRX_P compared to the measured quasi-static IV 

curve. The characteristic remains the same whether the DUT is powered or not. 

3.2. PIN SOFT FAILURE MODEL 

The SF characterization determines the stress current threshold of different soft 

failures. To use this information in a SEED simulation two paths are possible. The SEED 

simulation can calculate and output the victim current, then in a post processing step it 

can be determined whether a soft failure occurs. A circuit-based alternative allows to 

obtain instant results, thereby removing the requirement of additional data post 

processing. For instant results during the SEED simulation, a circuit is designed that 

describes the victim’s reaction to the injected current. 
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The concept of soft failure model lies in essentially measuring the average current 

Iavg injected into the victim, then comparing it against the thresholds obtained in the 

process of pin characterization. Average current is obtained as follows: 

  𝐼𝑎𝑣𝑔 =
𝑄𝑡𝑜𝑡𝑎𝑙

𝑇𝑇𝐿𝑃
=

1

𝑇𝑇𝐿𝑃
∫ 𝑖𝑣𝑖𝑐𝑡𝑖𝑚(𝑡)𝑑𝑡
𝑡1

𝑡0
    (1) 

 Figure 6 describes the SF pin symbol and the circuit that combines the I-V diode 

model and the SF model for the USB3 re-enumeration soft failure mode.  

Part 1) of the SF detector has the Current Controlled Current Source as an ideal 

current probe. The two ideal diodes determine the stress current path for different stress 

polarities.  

Part 2) of the circuit is a charge detector that measures total charge Qtotal injected 

into the victim pin.  

Part 3) contains the circuit that detects whether the Iavg current threshold 

(specified by the pin symbol parameter) has been exceeded and the value probability of 

the SF. The DC voltage source outputs signal proportional to the failure likelihood as 

observed during the characterization process. The voltage-controlled switch isolates the 

output pin from the DC source. 

The potential at the terminal of the charge detector’s capacitor is used as control 

voltage Vctrl of the switch. Figure 7 illustrates how the potential tracks the integral of 

injected stress current. As the Vctrl reaches the threshold value, the switch shorts, thus 

bringing the output pin potential to the value of SF likelihood. The detector circuit and 

the SF output circuits are duplicated for each soft failure mode. All SF output pin fail 

levels are summed to provide the total probability that any failure would occur. Ptotal is 

output as voltage at a pin of the symbol. 
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Figure 6. Circuit model of the SF detector and output. 

 

 

Figure 7. Charge detector of the SF Pin model output. The current is integrated and then 

the obtained charge is compared to the threshold value established during the 

measurement phase. 
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This SF model provides the failure probability directly during the simulation run 

and a post-processing is not required. This accelerated the process of design optimization 

as described in Section 4. 

 

4. SOFT FAILURE SEED CONCEPT AND IMPLEMENTATION 

 

System-Efficient ESD Design has been discussed [4] [6], but it has not yet been 

applied to soft failures. The methodology consists in essence of the following steps: 

1. Pin characterization with TLP 

2. Pin-specific modeling 

3. Simulation of stress waveforms 

First, the target interface is experimentally characterized on reference hardware, 

then a corresponding measurement-based physical and SF-pin models are developed. The 

viability of SEED methodology is explored in relation to soft failures of USB3 Gen 1 

SSRX_P pin. Several mitigation schemes are tested experimentally to evaluate their 

effectiveness. 

Figure 8 provides schematic overview of the interface model. TLP is modeled as 

pulse voltage source. The interconnect discontinuity and PCB traces are modeled based 

on TDR measurements. The victim pin is represented as a diode, as described in 

Section 3. Several external mitigation techniques are applied to the pin and the SF 

robustness is evaluated in terms of the SF threshold shift. 
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Figure 8. System model for the SSRX_P pin including several elements of the PCB, the 

USB connector and protection devices. 

 

5. MITIGATION TECHNIQUES: RESISTORS AND TVS DIODES 

 

Several external mitigation techniques are tested in this work, experimentally and 

within numerical models: 

• An external current-limiting series resistor 

• A current-diverting TVS diode to signal reference 

• A combination of a series resistor and a TVS diode 

Several values of series resistors are tested and compared, but standalone resistors 

are never used as a mitigation technique. Often, they are combined with a TVS diode 

placed between the protection diode and the victim. In terms of the stress, this means that 

there is a higher higher impedance towards the victim and the current is diverted to the 

TVS diode instead. In terms of voltage, it helps to raise the node potential at the diode 

terminal, which turns on the diode at lower current stress levels. 

As a part of this investigation, several TVS diodes were first evaluated in terms of 

their quasi-static I-V characteristics. In the next step dynamic models were built to 

describe the turn on behavior. For this, a previously established modeling framework was 
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used [13] [15]. The main idea is to divert the stress current away from the victim. The 

diode static characteristics are compared to the victim pin in Figure 9. Here, several I-V 

curves are compared against each other in terms of turn on voltage and dynamic 

resistance. The external diode that turns on at lower voltage than the victim’s on-chip 

protection diodes (red curve) will provide stronger protection. In current situation, TVS1 

turns on faster than the victim’s on-chip protection and has much lower dynamic 

resistance. This is expected to improve the robustness of the pin. TVS2 turns on at a 

much higher voltage and therefore is not a viable protection option if used standalone. 

Two additional configurations are explored with TVS2 diode, where series resistors of 

R=5 Ω and R=10 Ω are placed between the victim and the diode. Experimental results 

and a qualitative model are presented in the following section. 

 

 

Figure 9. TVS diode IV curve compared to the victim pin SSRX_P. 
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6. RESULTS AND DISCUSSION 

6.1. EXPERIMENTAL RESULTS 

For each of the evaluated mitigation techniques, the DUT “expansion board” is 

modified, then tested for soft failure likelihood. The shift in the threshold is the criterium 

that quantifies an improvement of the interface pin robustness. “No protection” case is 

taken as a reference. All other configurations are tested with 100 ns and 2 ns TLP. The 

former is commonly used to represent a whole IEC discharge pulse directly into the pin. 

The short 1-2 ns pulses represent the stress coupled indirectly. 

Figure 10 shows 100 ns TLP results and the improvement of SF robustness of 

USB3 interface SSRX_P pin. For the long pulses, adding a series resistor shows about 

+20 V improvement in SF threshold. Placing one TVS2 diode has no significant effect, 

while TVS1 diode improves the robustness by about +50 V. In order to achieve more 

effective results, TVS2 is combined with a series resistor (cases “TVS2 + 5 Ω” and 

“TVS2 + 10 Ω”). Both these cases show at least 150 V shift in SF threshold of Ptotal. 

There is a background rate of ~20% SF rate at lower stress levels. This can be explained 

if the DUT has multiple failure modes that manifest the same way, but have different root 

causes. Thus, only a part of the SF (~80%) have reduced, while ~20% have not been 

mitigated by the protection scheme. 

Figure 11 is for 2 ns TLP and shows results for the protection schemes. Placing a 

series 5 Ω resistor gives only a marginal difference of +10-20 V. Placing one TVS2 diode 

improves the result for 2 ns pulses by +200 V. TVS2 + 5 Ω scheme also improves the 

robustness, but the levels are tested only till +160 V, to avoid interface damage. The best 
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improvement is observed for TVS1 device, it snaps back at much lower voltage 

(Vt1 = 5 V) and has low dynamic resistance. No soft failures were observed for this case 

until 430 V stress pulse (~ 4 A). Higher cases were not tested to avoid damage to the 

interface.  

It is shown that soft failures can be mitigated to some degree with the same 

devices typically used in hard failure prevention. The next step lies in creating a 

numerical circuit model that would allow design optimization procedure similar to well-

established hard failure SEED. 

 

Table 2. Summary of 100% soft failure thresholds in model vs measurement in terms of 

TLP charge voltage. 

Configuration 

100 ns TLP  

Threshold 

2 ns TLP 

Threshold 

Model Meas. Model Meas. 

No Protection 90 V 90 V 230 V 230 V 

5Ω in series +10 V +20 V +20 V +10 V 

TVS1 snapback +320 V +50 V +420 V >+160 V* 

TVS2 9v turn-on +0 V +0 V +160 V >+160 V* 

TVS2 + 5 Ω +130 V >+150 V* +170 V >+160 V* 

TVS2 + 10 Ω +500 V >+150 V* +800 V >+160 V* 
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Figure 10. Measured overall SF threshold shift due to external protection placement, 

results for positive 100 ns TLP. 

 

 

Figure 11. Measured overall SF threshold shift due to external protection placement, 

results for positive 2 ns TLP. 

6.2. QUANTITATIVE CIRCUIT MODEL RESULTS 

Simulations are performed for protection schemes tested in the experiment. The 

model includes the victim diode, SF pin model and the PCB. The outcomes are compared 
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in Table 2,  which shows that the proposed model generally predicts the change in SF 

threshold in cases of a standalone resistor or TVS2 diode for 100 ns pulses. In case of 

TVS1 snapback diode, the model overestimates the improvement, while for cases of 

TVS2 + 5 Ω and TVS2 + 10 Ω the observed threshold improvement was at least +150 V, 

but the tests were not pushed higher, for the risk of DUT damage. For 2 ns pulses the 

model also either predicts the change, or shows qualitative improvement. 

The model provides results for two pulse lengths: 100 ns and 2 ns. The values of 

Iavg (100 ns) and Iavg (2 ns) were measured during the characterization and are used as the 

threshold value in the simulation. The model outputs change in threshold of overall 

failure likelihood Ptotal. 

 

 

Figure 12. Left: shift in SF threshold as the series resistor limits current into the victim 

pin. Resistor value swept 0-15 Ω, simulation result. Right: current entering the victim 

pin, reduced as the resistance increases. 

 

Adding a series resistor in order to limit the current flowing into the victim pin 

yields marginal improvements. Figure 12 shows the voltage output of P_total output 

terminal of the SF pin model (left) and the current flowing into the pin vs TLP charge 
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voltage (right). This result closely correlates to the observations: SF threshold shift is 

proportional to the resistor value.  

The case with TVS diodes varies from device to device and requires careful 

consideration of diode characteristics. The main purpose of the TVS devices is to clamp 

voltage on the pin and divert current. The outcome depends on both the diode choice and 

the victim characteristics. 

In the case of TVS1, a diode with low trigger voltage Vt1, +320 V improvement 

is predicted by the model, as illustrated in Figure 13. The left side shows the shift in the 

SF threshold, the right side – current split between the victim DUT and the TVS diode. 

At ~50 V, it is observed that the snapback occurs and TVS1 goes into low-impedance 

mode, thus diverting vast majority of current away from the victim. This qualitatively 

matches the measurement, but overestimates the observed +50V shift in the 

measurement. This can be explained, in part, if some failure modes are caused by the 

peak stress current, instead of the average current.  

TVS2 has higher turn-on voltage Vbr = 9 V, while the victim turns on @ Vbr = 

1.5 V. This means that the diode will not have much effect on the current until much 

higher stress levels. Figure 14 (right) shows comparison between total current injected by 

TLP and victim pin current. The effect of the TVS2 diode, as expected, is small. Thus, 

the SF threshold is not affected by this device, as shown in Figure 14 (left) and confirmed 

by the measurement.  

However, a possible way to improve the performance of a diode such as TVS2 is 

to combine it with 5Ω resistor series with the signal path. When combined – the victim 

and the resistor impedances combine into higher impedance path than TVS2. In this case, 
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the diode turns on at lower stress levels and efficiently diverts the current away from the 

victim, improving robustness by at least +130 V.  

 

 

Figure 13. Simulation result using TVS1 as external protection. Left: the shift of SF 

threshold vs TLP voltage. Right: currents vs TLP voltage. The snapback is evident by the 

knee and sharp drop in the victim current. 

 

 

Figure 14. Simulation result using TVS2 as external protection. Left: no shift of SF 

threshold vs TLP voltage. Right: currents vs TLP voltage. This TVS diode turns on at 

higher voltage, thus no current is diverted away from the victim until much higher TLP 

levels. 
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Figure 15. Simulation result using TVS2 and a resistor as external protection shows shifts 

of SF threshold vs TLP voltage. 

 

 

Figure 16. Simulation result using TVS2 and a resistor as external protection shows 

currents vs TLP voltage. With added resistance, the victim’s impedance rises, thus, TVS2 

turns on at lower TLP voltage and diverts current more effectively. Left: shows DUT 

current reduction because of adding the resistor; right: shows TVS current increase. The 

total injected current is given as a reference. 

 

The shift in threshold is shown Figure 15 for R = 5 Ω and R =10 Ω values. The 

configuration of R = 10 Ω predicts +500 V improvement, however the result is confirmed 
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only until +150V, to avoid damage to the DUT interface. The resulting DUT current 

reduction and TVS current increase are shown in the Figure 16. The impedance 

combination effect is illustrated in Figure 17. The intersections of the TVS2 diode with 

the other curves is where the diode becomes the dominant sink for the stress current. 

 

 

Figure 17. IV characteristic of combined victim and a series resistor. The intersection 

points with TVS2 chracteristic is where the diode becomes dominant and diverts the 

current away from the victim. 

 

7. OUTLOOK 

 

Based on this example that a soft fail SEED concept can be applied in a 

meaningful way to pre hardware design optimization, multiple directions of methodology 

enhancement are considered: 
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• A full system-level simulation can be performed for an IEC test to the system to 

extract the actual energy coupling into the victim pin indirectly. 

• As the power delivery network can have a strong influence on certain soft 

failure types [3], the methodology can be expanded to account for the PDN. 

• The method isn’t limited to diodes and resistors. Common mode chokes (CMC) 

are also known to improve ESD robustness against hard fails, especially when used 

together with a TVS device [17]-[20]. SF SEED can help to investigate whether CMC 

can be used to improve SF robustness as well. 

 

8. CONLCUSIONS 

 

For the first time, it has been demonstrated that conventional ESD hard failure 

protection techniques can also be used to improve the system level ESD soft failure 

robustness for direct pin injection This is achieved by diverting most of the ESD-induced 

current away from the victim pin. This does not avoid bit-errors, but it prevents current 

injection into VSS, VDD or the substrate of the victim IC which can lead to errors that 

cannot be corrected by the protocol of the I/O. A well selected TVS clamps the voltage at 

the IC close to the signal levels, such that only a small amount of current will be forced 

by the ESD into the IC.  

The reduction of the SF likelihood is investigated in a SEED-like simulation. This 

requires SEED models that include the soft failure behavior. 2 ns and 100 ns TLP are 

used to represent direct and indirect pulse injection. 



 

 

28 

The simulation of a large signal circuit model of the victim pin, comprising a 

virtual detector circuit and the SF threshold dependency, show a good match to the 

physical system. The proposed version of the system model is circuit-based; however, the 

same methodology can be applied in co-simulation with 3D full-wave solvers. 
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ABSTRACT 

A fully automated system is developed for the systematic characterization of soft 

failure robustness for a DUT. The methodology is founded on software-based detection 

methods and applied to a USB3 interface. The approach is extendable to other interfaces 

and measurement-based failure detection methods. 

 

1. INTRODUCTION 

 

In order to mitigate ESD-induced soft failures (SF) of a system, its robustness 

must first be evaluated. In light of the various parameters that influence the response of 

the system, it is best to use an automated characterization process. The outcome helps 

system-level and IC designers, and firmware developers.  

The world of soft failures is diverse and has been studied in [1]-[8]. In this work, 

the device under test (DUT) is an Intel Joule 570x Internet of Things (IoT) platform. The 

USB3.0 interface was selected for characterization. USB3 related SFs were studied in [7]. 

Several disturbance methods were evaluated: system-level IEC, magnetic loop probe, 

conductive TLP injection, and directional injection. Soft failures were correlated to the 
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stress parameters: the pulse rise time didn’t seem to affect the failure threshold, while 

pulse width was found to be inverse proportional to it. The authors found no correlation 

between CPU stress and failure modes, but no other DUT load was explored. 

Furthermore, the root-cause analysis of more severe modes were performed and a 

strategy for SF-SEED was proposed.  This work confirms some of the earlier findings 

and extends others. The main idea is to develop a software-based method for an 

automated and systematic pin-specific characterization, and to explore methods for such 

data processing that can extract useful information.  

The automated system is able to provide quantitative information on the 

dependence of different failure thresholds on the injected pulse level, polarity, rise time, 

system load and state, pin-to-pin variation, etc. Eight failure types across four severity 

levels were identified for the given system and failure dependence on various system 

loads was established. 

 

2. CHARACTERIZATION PROCESS 

 

The TLP injection system by ESDEMC [9] was used to deliver repeatable pulses 

to the DUT. The TLP system combined with an oscilloscope allowed the injected 

currents and consequential voltages to be measured. The TLP was controlled through 

GPIB and COM interfaces to the “Control PC”, as shown in Figure 1. 

Additional in-house software on the “Control PC” handled: 

• The detection and recognition of failure modes, 

• Sweeping of injected stress levels and polarities, 
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• Controlling the DUT over secure shell (SSH) protocol through the 

network (either through cable - LAN, or  WiFi - WLAN), and 

• Controlling other peripheral hardware (MCU). 

A microcontroller unit (MCU), controlled over a serial interface, was used to 

switch two power relays: one for power cycling the DUT, another for tripping the power 

of the USB3 client device plugged into the host DUT port (interface under test). 

 

 

Figure 1. Overall system diagram. 

2.1. SET-UP DESCRIPTION 

2.1.1. Measurement Set-up. The Intel Joule system consists of two separate parts 

– an expansion board and a compute module, as shown in Figure 2. The compute module 

contains all the key ICs (CPU, RAM, eMMC, Bluetooth, WiFi, etc.), while the expansion 

board provides power and fan-out to various interfaces (HDMI, microSD, USB3, USB-C, 

GPIO) with respective ESD protection devices. The compute module plugs into the 
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expansion board through a 100-pin HiRose (HRS) surface-mount SF40 interconnect. In 

order to isolate the effects of the IC itself, rather than the effect of external ESD 

protection, an interposer board was developed. It was placed between the expansion 

board and the compute module, allowing injection of TLP pulses into the running (i.e., 

“hot”) USB3 interface data lines of the DUT, without significant loading of the USB3 

signals. This was achieved by using low-capacitance TVS diodes, an injection technique 

developed in [8]. The circuit is shown in Figure 3 and the board is shown in Figure 4. 

In the current work, three pulse lengths were used in the robustness evaluation: 

100 ns, 6 ns, and 2 ns. The injection and measurement setup for the 100 ns pulse is 

presented in Figure 5. Figure 6 shows the setup for the 6 ns and 2 ns injections. 

The DUT and the peripheral hardware layout are depicted in Figure 7. The USB3 

client device was a USB3.0 SanDisk memory stick. It is reasonable to expect that client-

to-client variation will be minimal if TLP injection directionality is sufficiently high (i.e. 

the largest portion of the stress is injected towards the DUT, while the plugged in client 

experiences minimal stress). 

 

 

Figure 2. Left – expansion board with nothing pugged in; Right – compute module 

plugged into interposer, plugged into expansion board. 
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Figure 3. Injection and measurement circuit on the interposer board. 

 

 

Figure 4. Populated interposer board photo, top view. 

 

For the 100 ns injected pulse width, a current probe and deconvolution code was 

used to capture the injected current; for short pulses, a pick-off T combined with a delay 

line were used to separate the incident and reflected pulses (vf-TLP method). 
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Figure 5. Injection and measurement setup diagram for 100 ns pulses (current 

deconvolution). 

 

 

Figure 6. Injection and measurement setup diagram for 6 ns and 2 ns pulses (vf-TLP 

method). 

 

2.1.2. Test Procedure for One Pulse. After calibrating the TLP injection and 

measurement system, the characterization procedure starts. For each injection level the 

following steps are taken: 



 

 

37 

1. Set the desired TLP voltage level; 

2. Confirm that the DUT is in the “nominal” state (i.e. idle running and reporting); 

3. Confirm that the interface under test is in the “nominal” state; 

4. Inject a TLP pulse into the target pin; 

5. Measure the waveforms and extract quasi-static voltage and current points; 

6. Acquire kernel logs from the DUT; 

7. Check if logs contain error messages; 

8. Check if the interface under test is still in the “nominal” state; 

9. If any abnormality is detected, classify and log the signature; 

10. Detect soft failure mode; 

11. Reset the interface to the nominal state (re-plug and check interface state); 

12. If needed, reset the system to the nominal state; 

13. Repeat for the next pulse level. 

 

 

Figure 7. Photo of the DUT layout. 
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Each of the listed steps contains several sub-steps which complicate the process. 

The full algorithm is discussed in the subsequent sections. 

2.2. AUTOMATION ALGORITHM 

The algorithm flow is almost fully depicted in Figure 8. The whole automated 

characterization process is run mostly from the “Control PC” by two separate software 

programs, along with an additional software program running on the DUT. One is the 

TLP software, and another is an in-house Python script. Voltage level, polarity, number 

of pulses, and number of injections for each level are set in the TLP graphical user 

interface. The TLP GUI also controls each injection and measurement, calibration, and 

current deconvolution. Upon a successful TLP injection, the GUI reports measured data 

to the Python script via an interface ASCII file, and proceeds to wait until the next 

injection is initiated. A “successful TLP injection” means that the current and voltage 

waveforms were measured without oscilloscope clipping and triggering problems. If 

clipping occurs, the TLP has to fire again in order for the scope to retrigger. This may 

cause system upsets without a proper V-I measurement. However, this happens only 

when the system transitions to a new stress injection level. Since each pulse is repeated 

~100 times, sufficient information is collected to measure enough points for a quasi-static 

IV curve. 

Upon receiving the data from the TLP software, the Python script pulls the kernel 

logs from the DUT via the SSH interface. The DUT runs Ubuntu GNU/Linux operating 

system, so by running the dmesg command [15] and filtering for USB-related events with 

grep command, the algorithm can establish whether a USB-related SF has occurred. 



 

 

39 

 

Figure 8. DUT SF characterization algorithm flow. 

 

Some difficulty in the algorthm arises in three areas: 

1. Bringing the DUT and the interface under test into the “nominal” state at every 

pulse; 

2. Making sure that connections to the DUT and peripheral hardware are correctly 

opened and closed. 

3. Differentiating between certain failure types based on the recovery method 

when the log message is unclear (e.g., failures that have similar signatures, but one 

requires a reboot, while the other – a power cycle). 
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These complications are caused by the SF and often manifest in the following 

ways: 

• a disrupted connection to the DUT;  

• causing a lost connection to the DUT due to a reboot;  

• a need to reboot or power cycle the DUT to overcome the failure; 

• a SF occurs, but no kernel message appears in the logs; the USB client 

device must be replugged to re-establish connection and re-evaluate the state of the DUT 

USB interface.  

Obscurity of kernel messages can cause the algorithm to branch out and spend 

time “Detecting Soft Failure Type”, as depicted in Figure 9. The detection is rather 

simple: for each failure mode, there is a condition that needs to be satisfied. In the overall 

structure, there is a hierarchy of conditions that stack up from less severe to most severe. 

The left brach detects USB2 fallback-related failures, the right one detects USB3-related 

ones. 

Because SF behavior varies somewhat randomly, each test is performed up to 100 

times. The data points (TLP voltage, injected current, voltage, polarity, state of the 

system, SF type) from each test are recorded in a *.csv file and later processed by a 

Python script using Pandas (code library used for big data analysis) [13]. The multi-

dimensional data analysis is aided by constructing pivot charts grouped by the desired 

characteristic (e.g., injected current, pulse width, rise time, etc.) and calculating how 

often an SF type has occurred for each variation. 
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Figure 9. SF type detection algorithm. 

 

3. RESULTS 

3.1. ESD GUN TESTING 

The Intel Joule development system was mounted inside an enclosure and a series 

of ESD gun tests were carried out. The purpose of the tests is to establish the range of 

soft failures when system-level stress is applied to different parts of the DUT: a) shield of 
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USB3 port, and b) DUT chassis. An ESD Gun, Noiseken ESS-2000 TC-815R, was used 

to inject impulses in the range between 1 kV and 9kV, in contact discharge mode. The 

DUT and the injection points are shown in Figure 10. Each injection was repeated 100 

times, while the operator monitored and logged occurring soft failures. Discharging into 

the DUT chassis (point 1 in Figure 10) was relatively robust, causing the HDMI screen to 

flicker several times at higher discharge voltages, but having no reported USB failures. 

Screen flicker is a kind of SF within the system, but unrelated to the USB3 interface, so it 

is not discussed in detail. 

The results of the ESD gun testing for system-level stress injected into the USB3 

shield are shown in the Figure 11.  Most of the soft failures are  related to the HDMI 

screen (flickering, tinting with colors, screen turning off until HDMI cable replug). USB3 

soft failures occur after 6kV, with a likelihood of <5% and varied severity: from re-

enumeration of the device, to losing the connection and having to reboot the system. The 

logged failures correspond to the ones detected as a result of the automated 

characterization system, as discussed in detail in the subsequent sections. 

 

 

Figure 10. Left – injection points at the DUT chassis; Right – inside the chassis. 
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Figure 11. Results from ESD gun injection into the shield of USB3 interface of Joule 

expansion board. 

3.2. SOFT FAILURE CLASSIFICATION 

Observed soft failures can be categorized sufficiently well by Table 1 from [7], 

repeated here as Table 1.  Category “A” is the least severe – the user does not notice the 

effect of failure and no intervention is required on their side. Category “B” is noticeable, 

but the system recovers without intervention (data transfer speed drops, the system 

reconnects to the client device, etc.). Category “C” is most severe and encompasses a 

varied family of failures, which may require as little as re-plugging the client device and 

as much as completely power cycling the DUT. 

The failure modes observed for the DUT mostly fall in the most severe category 

C. The full list and corresponding descriptions are in Table 2. 
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Table 1. Categories of soft failures as per [7]. 

Cat. Definition Example for USB 

A 
Operator does not notice, no 

operator intervention 

Bit errors; 

packets getting resent 

B 
Operator notices, no operator 

intervention 

Drop in data throughput; 

connection re-established by the host 

C 
Operator notices, intervention 

required 

Stop of data transfer; 

re-plugging of the cable or 

power cycling required 

 

 

Table 2. Observed failure modes. 

Mode Observation Cat. 

1 Drop in the data rate; no operator action required B 

2.1 
Client device re-enumerated in USB3 mode; 

functionality restored by the system 
B 

2.2 

Client device re-enumerated in USB3 mode, a GUI pop-

up message occurs 

functionality restored by the system, but user has to click 

the message 

C 

3 

Client device falls back to USB2 mode; 

3.1 functionality restored by re-plugging the device 

3.2 functionality restored by rebooting the DUT 

3.3 functionality restored by power cycling 

C 

4 

Client device disappears; 

4.1 Functionality restored by re-plugging the device  

4.2 Functionality restored by rebooting the DUT  

4.3 Functionality restored by power cycling  

C 

5 
Wi-Fi functionality is lost; 

functionality restored by power cycling the DUT 
C 
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The most common SF is “USB3 re-enumeration” (Mode 2), which means that the 

DUT has re-established the connection with the client device without user intervention; in 

this case, USB3 functionality is preserved and no further action is required. Sometimes 

this failure mode is accompanied by a GUI error message which requires user interaction, 

making this variation a Category C failure. The next failure mode variation is “fallback to 

USB2” (Mode 3). It occurs as a result of negative current injection and requires user 

intervention. The milder case requires a mere re-plugging of the client device; a more 

serious case requires system reboot or power cycling. These take much longer than a re-

plug: 60-90 seconds to reboot vs 5 seconds to re-plug, which may be a major 

inconvenience to the operator. In case of positive high-current injections, a rare failure 

occurs that disables the USB interface and requires re-plugging, rebooting or power 

cycling (Mode 4). Occasionally, Wi-Fi functionality is lost (Mode 5), but no correlation 

between injection level and its occurrence has been established. 

The worst case for modern hand-held and wearable devices is the soft failure that 

requires physically disconnecting the power. For portable devices that would mean taking 

out and re-placing the battery or flipping a physical switch. Neither of these are an option 

for different design and policy reasons (waterproofing, warranty, security, etc.). This 

makes the requirements for such failures to be more stringent than less severe failure 

modes. 

3.3. VARIATION OF PULSE LENGTH 

The results for the Sandisk USB client for 2, 6, and 100 ns pulse width stresses 

are  shown in Figures 12-14 respectively. The pulse levels are swept from -70 V to 
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+170 V. The assymetry is explained by the high risk of hard failure if the negative stress 

is pushed to higher levels (at least for long-pulse case). The vertical axis is the likelihood 

of soft failure occurrence in percent; i.e., how often a particular SF has occurred out of all 

injected pulses for each particular pulse level and width. The horizontal axis is the TLP 

charge voltage. As expected, at lower injection levels, no failures occur. For all cases, 

there seems to be a threshold, beyond which SF probability jumps from 0% to a 

substantial amount (between 50% and 80%). For lower duration pulses, this threshold is 

higher due to lower amount of energy delivered into the system. 

There seems to be little to no occurrence of serious soft failures for positive 

injections across the board. For positive current injections, only USB3 re-enumeration 

errors were observed. This is consistent across DUTs and other configurations.  Only one 

case for the 100 ns injection had a somewhat severe fail – fallback to USB2, requiring the 

client to be re-plugged. 

 

 

Figure 12. SF probability occurrence for 2 ns, against the TLP charge voltage. 
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Figure 13. SF probability occurrence for 6 ns, against the TLP charge voltage. 

 

 

Figure 14. SF probability occurrence for 100 ns, against the TLP charge voltage. 

 

Negative current injections have a lower threshold and a richer variety of severe 

failure modes. USB enumeration failure rates are very small for short pulses, but increase 
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to 53% from 0% at -50V TLP injection for 100 ns disturbance. However, the most 

interesting observation is that enumeration errors fall in frequency (to <10%) as other 

failure modes become prevalent – such as USB2 fallback requiring a reboot (~60%) or 

USB2 fallback  requiring a power cycle (<5%), or USB3 connection loss, requiring a 

replug (also <5%). 

This may indicate that some other sub-system is failing more severely than the 

one which leads to the USB enumeration failure. These tests were completed within 

several days and consist of over 15,000 data points. The results seem consistent with [8], 

in so far as exhibiting the inversely proportional relationship between the pulse width and 

the failure threshold. In this case, the novel information is that negative current injections 

cause far more severe failures and that shorter pulses seem to cause less varied and less 

severe failures for the same injection levels. The rise time dependence is not explored, as 

there is firm evidence [7] that the correlation is weak. 

3.4. VARIATION OF DUT SYSTEM STATE 

One of the parameters of interest is soft failure occurrence under different system 

load conditions. There is prior evidence that the CPU load doesn’t have a significant 

influence on the likelihood of failure [7]. In this work, additional load conditions are 

explored by using a package stress-ng [14]. The package fully loads a 4-core CPU by 

using FFT function, reading and writing to RAM and eMMC. This load increases noise 

within the system, causing it to draw ~2x higher current and increasing overall system 

temperature. Hence, there is reasonable expectation that soft failures become more 

frequent, or more severe overall.  
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Ideally, one would repeat the full parametric sweep for each load condition. That 

increases characterization time many fold and is largely unnecessary, as baseline tests 

already show that no failures occur at lower injection levels. Therefore, in the interest of 

time conservation, only the threshold region for the positive injection sweep is selected 

for characterization under various load conditions. The results are shown in Figure 15.  

The failure threshold stress current is the same for all cases and the occurrence 

levels vary between approximately 50% and 80%. Marginal variation from load to load is 

observed (within 10%). This confirms that the CPU load has only a weak influence on 

soft failure occurrence. RAM and eMMC loading shows similar results. 

 

 

Figure 15. SF occurrence threshold due to positive injections under various system load 

states; 6 ns injected stress. 

 

It must be noted that the DUT load condition sweep was not automated in this 

case, but automation is possible with reasonably small effort. For this, during the stage 
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“Set DUT State” in Figure 8, the operator defines several Linux command-line interface 

commands to be swept (one for each test condition) and one overarching loop is added 

that re-runs the algorithm for different load conditions. 

 

4. DISCUSSION 

 

The scope of this work is in automating the characterization flow and in 

expanding the knowledge about soft failure occurrence in complex systems. The root 

cause of specific soft failures is still being actively researched [3-6]. Specifically, with 

USB3 [7] [8] it has been found that more severe failures (fallback to USB2, etc.) occur 

due to power domain disturbances, while errors in data transmission are overwhelmingly 

consistent with lower-level pulses, where stress waveforms increase the signal peak-to-

peak voltage.  

One can draw practical conclusions from the obtained characterization data. From 

the expected ESD levels and the coupling paths, the designer can estimate the safe 

current waveforms and levels. These can be compared to the failure probability data from 

the IC characterization. 

The system developer may establish a probability threshold for each failure mode 

and use the method for a “pass/fail” evaluation. Depending on the product purpose, 20% 

failure rate may be acceptable for SF not requiring operator intervention, while <1% may 

be acceptable for a SF that requires major actions like physical re-plugging or power 

cycling. 
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If soft failures are grouped, an envelope may be used to check the satisfaction of 

the passing criteria, e.g. “Max Envelope” on Figures 12-14. 

A drawback of continuous, extensive TLP testing (especially with longer pulses) 

is the risk of “wearing out” the interface under test. This means introducing latent 

hardware failures by applying numerous pulses that under normal circumstances would 

not cause physical harm to the DUT. 

Once the DUT is well characterized, the system designer can use that information 

to “get it right the first time” and/or reduce the number of product development iterations: 

1. Make system design changes to mitigate some SF (system-, circuit-, and IC-

level). This is especially beneficial in the early design stages of a product, when a 

designer is able to introduce additional protection, filtering, shielding, etc. 

2. Make firmware or software improvements that would reduce severity or 

frequency of specific failure modes.  

In cases that require inclusion of a measurement-based method (e.g. spike in 

current consumption of the interface) [4] [11] [12], at first it should be tested 

independently to establish the reliability and efficacy of the measurement method. Once 

the clear detection criteria are established, a function within “Detect SF Type” in Figure 9 

can check if the criterion for detecting the SF has been satisfied. 

In order to adapt this characterization method to a different interface, at first 

exploratory work must be done to establish the variety of soft failure modes. Then 

hardware and software efforts are carried out. In terms of hardware – auxiliary boards 

may need to be designed to facilitate re-plugging, power cycling the interface of interest, 

etc. In terms of software – a function set within “Detect SF Type” must be written. These 
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functions inquire and establish whether the criteria for SF detection have been met. In 

addition, interface initialization functions may require change. The rest of the algorithm 

largely remains the same. 

 

5. CONCLUSION 

 

An automated system for SF robustness characterization was developed and 

applied to a USB3 interface of an existing development platform for a number of stress 

pulse lengths and system load conditions. Test results were processed and soft failure 

occurrence likelihood statistics were obtained for various levels of TLP injections, and 

both polarities. In the scope of this work, software-based detection methods were utilized, 

but the methodology is extendable to other interfaces and measurement-based failure 

detection methods as well.  

The methodology has a wide application range, but is possibly most useful for 

high-reliability systems that could not tolerate soft failures. One of the directions for 

further research is a deeper investigation into SF occurrence depending on system states 

(CPU load, GPU load, etc.) and a wider range of disturbances. Characterization and data 

processing methods are well established and may be extended for further study. 
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III. LATCH-UP DETECTION DURING ESD SOFT 

FAILURE CHARACTERIZATION USING AN ON-DIE POWER SENSOR 

Giorgi Maghlakelidze 

Deparment of Eletrical and Computer Engineering, Missouri University of Science and 

Technology, Rolla, MO 65409 

ABSTRACT 

ESD-induced latch up is detected with an on-die energy counter circuit. Raw 

values are accessed through a Linux operating system kernel call, then the power 

consumption is calculated. Persistent power consumption increase indicates the latch-up 

occurrence, thus avoiding the need of external equipment for its detection. The failure 

mode is not visually noticeable and requires full power cycling to fully recover. 

Keywords: soft failure, electrostatic discharge, latch-up, USB3, kernel logs, Linux, on-

die sensor, ESD, SEED. 

 

1. INTRODUCTION 

 

ESD-induced soft failures (SF) are temporary upsets in a functional system [1][2]. 

These upsets vary in severity between a minor inconvenience to more impactful problems 

like data loss, loss of functionality, or battery drain. Thus, in order to ensure system 

reliability, maximized soft failure robustness should be one of the goals during product 

development. The phenomenon is characterized on system [3] and pin-level [4] using 

various methods.  
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The current work extends previously developed software-based automated system 

to include latch-up detection via on-die sensors. This failure mode has been investigated 

in [2][5] and requires external equipment, such as a thermocouple or a thermal imaging 

camera. These methods rely on detecting heat dissipated by the latch-up current, which is 

an external manifestation of the phenomenon and takes time to manifest. In addition, this 

effect may not be detectable by heat if the DUT is equipped with an active cooling 

system (e.g. a fan). The proposed method solves the requirement of external equipment 

needed to detect a latch-up.  

 Soft failure robustness thresholds are investigated for USB3 Gen 1 interface of 

Intel Joule Internet of Things platform. Pulse-length and polarity dependence, pulse rise 

time, CPU loading effects, temperature, and other parameters are studied in [7][3]-[9]. 

The results are quantitative, statistics that show the probability of SF occurrence based on 

injected pulse characteristics. Twelve failure signatures are observed and categorized into 

6 failure modes. A deep root-cause analysis is not performed, as the goal in the current 

work is to characterize a pin of a DUT as a “black box”.  

 

Table 1. Take-home messages. 

 

1) Many ESD-induced soft failures can be detected within software (driver level, 

operating system level); 

2) Some sub-systems (e.g. thermal & power control) can be co-opted for ESD 

characterization purposes 

3) Latch-ups of can be detected by using on-die power consumption sensors during 

system operation; 

4) Some latch-up failures cannot be resolved without full power cycle, which is a 

significant problem in embedded systems with a non-removable battery (e.g. 

smartphones) 
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2. CHARACTERIZATION PROCESS DESCRIPTION 

 

Characterization setup consists of several active parts that are controlled by the 

Control PC. The setup is depicted as system diagram in Figure 1. The PC controls the 

HPPI Transmission Line Pulse (TLP) system [10] to inject 50ns pulses of various levels 

and polarity. Oscilloscope, 1 kΩ sense resistor and a current probe CT-2 facilitate voltage 

and current measurements at the stress injection point. The pulses are forced through an 

interposer designed to fit inside the DUT and provide access to USB3 nets – between the 

IC pin and the receptacle. The rest of the setup comprises an MCU that controls power 

relays for: a) system main 12 V supply – facilitates power cycling, and b) USB3 5V 

supply – to emulate re-plugging of the USB client device. 

 

 

Figure 1. System diagram for the characterization setup. 
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The Control PC interfaces with the TLP and OSC through GPIB, communicates 

with MCU using COM and controls the DUT using SSH over WLAN. The latter can also 

be implemented through wired LAN (if the DUT has one available), or through using an 

USB-to-LAN adapter connected to an available USB port (independent of the USB3 

controller under test). The PC runs custom software that controls the whole automated 

process that comprises: pulse parameter sweeping, measurement, SF detection and 

rectification, producing a report. A more detailed description of the systematic 

characterization methodology for one pin is given in [4]. 

2.1. STRESS INJECTION WITH INTERPOSER 

Intel Joule IoT platform consists of two parts – an expansion board and a compute 

module, as illustrated in Figure 2. The latter contains ICs for the core functionality (CPU, 

RAM, GPIO, Wi-Fi, USB3, HDMI, eMMC, Bluetooth, etc.), while the expansion board 

provides power distribution network and fans out the interfaces (HDMI, microSD, USB3, 

USB-C, GPIO) and contains the external ESD protection devices. The part in the middle, 

the interposer, plugs in between the expansion board and the compute module. Using 

low-capacitance TVS diodes, TLP stress is injected directly into USB3 interface data nets 

[11].  

Part of the stress propagates towards the DUT and causes SF, the other part - 

towards the USB3 client (“ADUT”), as shown in Figure 3. It is assumed that SF are 

caused only on the DUT side, as there are two mechanisms that limit the stress seen by 

ADUT: 
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1. Low-value series resistor that limits the current injected towards ADUT; 

2. On-board ESD protection device placed at the USB3 receptacle by the Joule 

system designers. 

 

 

Figure 2. Joule System and the interposer board. 

 

 

Figure 3. Force and measurement circuit, Joule interposer board. 

2.2. AUTOMATION ALGORITHM 

The characterization algorithm flow is depicted in Figure 4. It is based on [4] and 

has a new class of SF failure types implemented: latch-up. 
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Figure 4. DUT SF characterization algorithm flow. 

 

The “Control PC” software controls the TLP, its calibration, current 

deconvolution, checks the state of the DUT and the USB3 interface. If the USB3 

interface and the DUT are in nominal condition, TLP firing is allowed. After a pulse is 

injected, information is gathered from the kernel logs by querying the DUT operating 

system, GNU/Linux, command dmesg [12]. Command grep filters out all the USB3-

relevant results. If any failure signatures are detected, the state of the USB interface is 

reset. When needed, in order to achieve nominal state, the USB3 client is re-plugged, OS 

rebooted or DUT is power cycled.  
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Test information such as: TLP voltage, injected current, voltage, polarity, state of 

the system, SF type, are recorded in a *.csv file and processed using Pandas (function 

library for big data analysis) [13]. The multi-dimensional data is analyzed by making 

pivot charts, where data are grouped by the desired characteristic (e.g., injected current, 

pulse width, etc.) and calculating how often an SF type has occurred for each variation. 

Worst case failure rate is tracked over the whole parameter sweep, as well as a 

cumulative failure rate per 100 injections. 

2.3. LATCH-UP DETECTION  

In order to execute thermal control in the system, multiple on-die sensors are 

typically used in high-performance CPUs. In-built functionality of Joule CPU allows to 

measure energy for thermal management purposes. Run-time Average Power Limit 

(RAPL) automatically adjusts the processor power to maintain temperature targets. 

RAPL has “energy counter” that is accessed by the kernel and reports “energy spent by 

the processor in micro Joules” [14]. 

To measure time-average dissipated power, a first-order derivative approximation 

of energy is calculated: 

𝑃𝑎𝑣𝑔 =
𝐸(𝑡1)−𝐸(𝑡2)

𝑡2−𝑡1
     (1) 

Energy spent at each moment in time can be found by accessing the counter 

register within the kernel. Within the Linux kernel, RAPL driver’s energy counter can be 

accessed every 1 second at: 

/sys/class/powercap/intel-rapl/intel-rapl:0/energy_uj        (2) 
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The specifics of the implementation and address will vary on other DUTs and the 

operating systems. 

The latch-up presents itself as a sharp increase in power consumption, which 

persists over time, even if there is no load on the system. This is observed by monitoring 

the power profile over time and comparing the ongoing consumption to an idle one. An 

example of power profile over time during normal operation is presented in Figure 5.  

When the system is idle and USB3 device plugged in, the consumption is about 

0.5 W, while during file transfer it goes up to 1 W and can spike to 2 or 2.5 W for a short 

time. During maximum CPU or RAM operational stress test, power consumption peaks at 

just below 5 W and 2.7 W respectively, as illustrated in Figure 6.  

 

 

Figure 5. Power consumption profile for normal operating conditions. 

 

Power profile shows constant drain after latch-up is triggered. Figure 7 shows 

baseline power consumption increase by 1 W because a latch-up was triggered 

somewhere in silicon of the power domain. Unplugging the USB3 device only reduces 
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power consumption by 0.2 W, indicating that the soft failure occurred not on the USB 

client, but on the DUT – USB host. It is found that the soft failure cannot be resolved 

without full power cycle of the system. 

 

Figure 6. Power consumption profile for CPU stress and RAM stress test. 

 

 

Figure 7. Power profile after latch-up occurs shows baseline power consumption increase 

by ~1 W. 
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3. RESULTS AND DISCUSSION 

3.1. SOFT FAILURE CATEGORIZATION 

The SF observed in the DUT are varied and can be differentiated into 6 failure 

modes, see Table 1. Mode 1 is relatively harmless from the failure perspective. Mode 2 is 

“USB3 re-enumeration” and is the most common. Here, the DUT re-initializes the client 

device without user intervention; i.e. USB3 is functional and no other intervention is 

required. Mode 3 is “fallback to USB2”, which occurs most often when negative current 

is injected. It may require different levels of user involvement. The simplest case requires 

a re-plugging of the USB device. The more demanding SF require system reboot or 

power cycling and can take up to 90 seconds. Mode 4 happens rarely, at positive 

injections - the USB interface goes down and requires re-plugging, rebooting or power 

cycling (similar to Mode 3). Mode 5 is rare and it exhibits itself by loss of Wi-Fi 

functionality. Mode 6 can entail less severe SF being observed, but they are accompanied 

by a latch-up, which is not visually obvious to the system operator. USB interface is still 

functional, but significant power drain is persistent. 

The observations have been categorized in [4], repeated here as Table 2 and 

improved to include the latch-up types of the SF.  Category “A” is mostly harmless as the 

user does not notice the failure and no action is required. “B” is noticeable, but the 

system recovers by itself. “C” and “D” are most severe and include a wide family of 

failures. These require as little as re-plugging the client device, but could possibly require 

completely power cycling the DUT (physically disconnecting the power supply). This 
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can be the worst for modern phones and wearable devices that have non-replaceable 

batteries and are sealed for waterproofing or other reasons. 

 

Table 2. Failure modes observed on the DUT. 

Mode Observation Cat. 

1 Drop in the data rate; no operator action required B 

2.1 
Client device re-enumerated in USB3 mode; 

functionality restored by the system 
B 

2.2 

Client device re-enumerated in USB3 mode, a GUI pop-up 

message occurs 

functionality restored by the system, but user has to click the 

message 

C 

3 

Client device falls back to USB2 mode; 

3.1 functionality restored by re-plugging the device 

3.2 functionality restored by rebooting the DUT 

3.3 functionality restored by power cycling 

C 

4 

Client device disappears; 

4.1 Functionality restored by re-plugging the device  

4.2 Functionality restored by rebooting the DUT  

4.3 Functionality restored by power cycling  

C 

5 
Wi-Fi functionality is lost; 

functionality restored by power cycling the DUT 
C 

6 

Latch-up occurs; 

6.1 Device re-enumerates in USB3 mode 

6.2 Device disappears  

Latch-up resolved only by power cycling 

D 

 

“D” is the category for the latch-up type failures. They are unnoticed without 

special measurement equipment, so the user may be unaware of the additional power 

drain in their system. In case of battery-powered devices, this maybe of utmost 

importance, as any waste of energy significantly reduces system life and may degrade the 

battery itself.  
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Such complications would require the system design to have a higher degree of 

immunity to SF. This systematic characterization process is important to reliably test the 

system robustness. 

 

Table 3. Soft failure categories. 

Cat. Noticeable 
Interaction 

Needed 
Example for USB 

A ✘ ✘ 
Bit errors; 

packets getting resent 

B ✔ ✘ 
Drop in data throughput; 

connection re-established by the host 

C ✔ ✔ 

Stop of data transfer; 

re-plugging of the cable or 

power cycling required 

D ✘ ✔ 
Device re-enumerates, but latch up is 

unnoticed 

 

3.2. INTERPRETATION OF CHARACTERIZATION RESULTS 

Two USB3 Gen 1 client devices were tested to establish client-to-client variation: 

1. Sandisk Ultra 16GB 

2. Transcend JetFlash 16GB 

The results seem to be similar between the two DUTs. The test conditions were as 

close to identical as possible: only the memory sticks were swapped between tests. Figure 

8 for a Transcend memory stick. On the horizontal axis is the TLP charge voltage. At 

lower injection levels, little to no failures occur. At 100V charge voltage SF rate is 
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increasing, to reach 100% cumulative failure rate at 110V. This is a sharp threshold, 

which corresponds to ~2A injected current. 

 

 

Figure 8. SF likelihood with Transcend JetFlash client for 50 ns TLP. 

 

For positive stress current the following SF are common: a) USB3 re-

enumeration, b) USB3 losing connection and requiring only a re-plug, and c) latch-up 

(consistently under 10% after 100 V). For negative injections, there is also a threshold for 

100% failure rate, but it corresponds to about -1 A. The SF modes include USB3 

enumeration, but are quickly dominated by USB3 losing connection and requiring a full 

power cycle (>90% failure rate). Negative stress seems to correlate to a richer variety and 

more serious SF modes: USB2 fall back, requiring restart and reboot, USB3 disappearing 

from the system, latch-up, etc. Further negative stress levels were not investigated, as 

there was a high chance of inducing hard failures (the DUT is far more susceptible to 

negative current, USB3 interface damaged at -2 A injection). 

Similar results are observed for Sandisk Ultra, the characterization outcome is 

shown in Figure 9. 
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Figure 9. SF likelihood with Sandisk Ultra client for 50 ns TLP. 

 

4. CONCLUSION 

 

An automated characterization provides useful information to a system designer 

in terms of SF failure thresholds, despite the DUT being considered as a “black box”. 

Cumulative failure rate curve can be effectively used against a pass-fail threshold. 

Several less severe failures modes can be excluded from the analysis, because they are 

auto-resolved by the interface protocol. A designer may try different methods (software 

or hardware) to mitigate the soft failure, e.g. as diverting stress current away from the 

victim, then characterize the pin again. System robustness is considered “improved” if the 

failure thresholds shift to higher stress levels. 

Addition of latch-up detection gives the possibility to detect 100% of failure rate 

without external equipment. This can be used not only during design and test phases, but 

after deployment of the product. One of the disadvantages of the proposed method is that 

the energy counter sensor must be implemented on the die and in software (drivers and 

operating system). Depending on the vendor and the specific product, the thermal and 
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power management system may not have an energy counter. In this case, one could 

attempt to use a temperature sensor as a slower and less accurate alternative. The main 

advantage is that the functionality is included with the thermal control subsystem and no 

additional measurement equipment is required. 
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SECTION 

2. CONCLUSIONS AND RECOMMENDATIONS 

 

In the first paper of this dissertation, it has been demonstrated for the first time, that 

conventional ESD hard failure protection techniques are effective against soft failures due 

to the direct pin injection. The improvement is achieved by diverting most of the ESD-

induced current away from the victim. Simple bit-errors cannot be avoided, but this 

technique prevents current injection into VSS, VDD or the substrate of the victim IC which 

can lead to failures that cannot be corrected by the protocol of the I/O. A well-selected TVS 

diode clamps the voltage at the pin close to the signal. As a result, the current forced by the 

ESD into the IC is strongly reduced.  

The reduction of the SF likelihood is investigated in a SEED-like simulation. This 

requires SEED models that include the soft failure behavior. 2 ns and 100 ns TLP are 

used to represent direct and indirect pulse injection. The simulation of a large signal 

circuit model of the victim pin, comprising a virtual detector circuit and the SF threshold 

dependency, show a good match to the physical system. The proposed version of the 

system model is circuit-based; however, the same methodology can be applied in co-

simulation with 3D full-wave solvers.  

The second paper provides a systematic approach for DUT characterization and 

data collection, which is used in the SF-SEED as basis of the empirical victim pin model. 

An automated setup and algorithm are presented and shown to be effective. Collected 

characterization data is organized into plots of SF likelihood vs. TLP charge voltage, then 
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soft failure thresholds are extracted and used in the pin model. The results show that 

longer pulse lengths are associated with lower thresholds and more serious failure modes.  

The third paper has shown that there is an effective way to use system thermal 

control sensors in order to detect latch-ups without external equipment. This is done 

throught an on-die energy counter that measured energy spent by the CPU at discrete 

time intervals. This technique contributes to the characterization methodology by helping 

to detect non-visible, but persistent failures that require operator intervention.  

Combined, these publications show that soft failure SEED methodology is a 

viable way to characterize a system and strategize on improving soft failure robustness, 

quickly iterate on design changes and optimize for the highest ESD robustness. 

Additionally, it was shown for the first time, that several conventional hard failure ESD 

protection schemes can be very effective at mitigating soft failures. 
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