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ABSTRACT 

Composite materials are gaining interest due to their high strength to weight ratio. 

This study deals with both experimental and numerical approaches to cover the aspects of 

the failure of composite materials in hydrokinetic turbine applications. In Part I, the 

location and magnitude of failure in the horizontal axis water turbine carbon fiber-

reinforced polymer (CFRP) composite blades with different laminate stacking sequences 

were investigated. Two lay-up orientations were adopted for this work ([0o]4 and 

[0o/90o]2S). A finite element analysis model was generated to examine the stresses along 

the blade. Five angles were introduced to study the effect of pitch angle on the CFRP 

blades.  The numerical results showed very good agreement with the experimental results. 

In Part II, an experimental setup was developed to test the delamination progression in 

CFRP blades under hydrodynamic loads in a water tunnel. Thermography analysis was 

employed to scrutinize the propagation of delamination. In addition, a computational fluid 

dynamics and one-way fluid-structure interaction were developed to predict the stresses 

along the blade. The unidirectional ([0o]4) blades showed the best performance while the 

cross-ply blades ([0o/90o]2S) are prone to delamination. In Part III, the effect of increasing 

the contact area between the core and facesheet was studied. Two tests (impact and flat-

wise tension) were carried out to examine the integrity of the structure. A finite element 

model was developed to study the damage due to localized load, such as impact load. The 

results obtained from both the tests (impact and flatwise tension) showed that increasing 

surface area had improved the structural integrity in regards to damage resistance due to 

impact, and delamination resistance between the facesheet and the core due to tension. 
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SECTION 

1. INTRODUCTION 

1.1. BACKGROUND ON COMPOSITE MATERIALS  

Composite materials can be defined as a combination of two or more materials 

joined together to form a new material. Typically, the produced material has different 

characteristics and, commonly, better properties than the original constituent materials 

individually.  In composite materials, the stronger constituent is commonly referred to as 

reinforcement, whereas the weaker constituent is normally referred to as the matrix. The 

reinforced material is providing the strength to the structure. The matrix is maintaining the 

orientation and position of the reinforced part. By holding the reinforcement in place, the 

matrix is forming the shape of the structure. Figure 1.1 gives a glance at some layup 

orientations. The orientation is commonly referred to as the laminate stacking sequence.  

 

 

Figure 1.1 Examples of laminate stacking sequences where (a) unidirectional laminate 
and (b) cross-ply laminate 
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The concept of using fiber-reinforcement is as old as ancient Egypt [1]. The shield 

of Achilles is an example of a composite laminate structure. However, the use of resin as 

a reinforcement member was introduced in the last century.  

Nowadays, composite materials can be found in almost every application. Some 

applications use composites more than others. For instance, in commercial aircraft, Airbus 

had a head start by using composite materials in the A300/A310 airplanes in 1983  [2, 3].  

1.2. CLASSIFICATION OF COMPOSITE MATERIALS  

Composite materials can be classified based on matrix or reinforcement type. There 

are three types of matrices: (a) polymer-matrix composites, (b) ceramic-matrix composites, 

and (c) metal-matrix composites. Polymer-matrix composites are classified into two 

groups: (a) thermoplastic polymer composites and (b) thermoset polymer composites. The 

primary difference between the two groups is that thermoplastic polymer composites can 

be recycled by going under heat to be melted down to become liquid and then reshaped. 

Thermosets, on the other hand, will always remain in a solid-state. Composite materials 

can be classified based on reinforcement. There are three main types of reinforcement: (a) 

fiber-reinforced composites, (b) particulate composites, and (c) structural composites. The 

latter is divided into two groups: (a) sandwich composite structures and (b) laminated 

composite structures.  

1.3. HYDROKINETIC TURBINES 

Hydrokinetic energy is gaining more popularity due to its advantages over other 

renewable resources. For instance, hydrokinetic turbines can operate at zero hydraulic 

head, which eliminates the necessity of building infrastructures to elevate water. Another 

advantage of the hydrokinetic energy is the power generated by a hydrokinetic turbine may 
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reach four times as much power per the swept area as that of a similar size wind turbine 

[4]. Turbines can be classified based on their axis of rotation relative to the flow direction. 

Vertical axis turbines, for example, have their axis perpendicular to the flow streamlines. 

Whereas, horizontal axis turbines are operating in the same direction as the flow. Turbines 

can also be classified based on the medium they work in. Accordingly, there are two types 

of turbines: (a) wind turbines and (b) water turbines. Both classifications mentioned earlier 

can be linked together to give a more specific classification of the turbines. In this study, 

all turbines were horizontal axis water turbines (HAWT). The number of blades is a very 

important detail to be mentioned as it plays a very important role in determining the 

performance of the turbine.  

Hydrokinetic turbines generate energy by converting the kinetic energy from the 

rivers, tides, streams, into mechanical energy in the form of rotations. Then, generators can 

be used to convert mechanical energy into electrical power. In fact, this working principle 

is similar for both wind and water turbines.  

1.4. COMPOSITE HYDROKINETIC TURBINE BLADES 

For hydrokinetic turbines, composite materials are still in the early phase as the 

majority of the turbines are made of metals. This shortage of composite material in this 

field can be attributed to the lack of comprehensive knowledge of the behavior of 

composite turbine blades under different hydrodynamic loads. However, with every 

published study, more knowledge is gained, and more adaptation of composite materials 

can be noticed due to the increased confidence. The factors that affect the performance of 

HAWT are numerous. For instance, the number of blades, solidity, angle of attack, pitch 

angle, blockage, and flow characteristics are considered essential in determining the 
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performance of the HAWT. In addition, there are factors that affect the performance of 

composite materials such as laminate stacking sequence, reinforcement material, 

manufacturing process, kind of load, and the number of layers. Thus, when implementing 

composite material in water turbines, all these factors should be taken into consideration 

to be able to predict the behavior of the composite turbine blades.  

1.5. SANDWICH STRUCTURES 

Composite structures have been extensively employed in diverse applications such as 

housing, automobile, and aerospace. This was due to their high strength-to-weight ratio and 

design flexibility. Sandwich structures can save materials by decreasing the amount used to 

manufacture any structure. Composite materials are relatively expensive. Therefore, composite 

laminates and sandwich structures are making a perfect combination where composite 

materials can be used to the minimum. One of the most common sandwich structures 

configurations is the structure with a honeycomb core. Two thin layers of composite materials 

can be attached to a honeycomb core using two adhesive layers at each face to create a 

composite honeycomb sandwich structure. Figure 1.2 illustrates a schematic of a honeycomb 

sandwich structure. This specific configuration is very popular and used in aerospace structures 

because they exhibit better resistance to bending and out-of-plane loading compared to 

traditional composite laminates. 
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Figure 1.2 Schematic illustration of a honeycomb sandwich structure  
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2. SCOPE AND OBJECTIVES 

This dissertation is comprised of three papers. The first paper is titled 

“Experimental and Numerical Failure Analysis of Horizontal Axis Water Turbine Carbon 

Fiber-Reinforced Composite Blade.” In this paper, Carbon fiber-reinforced composite 

blades were manufactured using out-of-autoclave (OOA). Two laminate stacking 

sequences were adopted in this study. The first fiber layup orientation was unidirectional 

laminate ([0o]4), and the second orientation was cross-ply laminate ([0o/90o]S). The purpose 

of this study was to study the behavior of both layup orientations under mechanical and 

hydrodynamic loads. All samples were tested to failure using a flexural bending test. In 

addition, a finite element model was created to study the fibers and matrix failure under 

each load. For the hydrodynamic loads, a modified blade element momentum theory model 

and an XFoil-MATLAB model were developed to accurately predict the lift coefficient and 

the drag coefficient along the span of the blade.  

The second paper is titled “Investigation of Laminate Debonding in Horizontal Axis 

Water Turbine Composite Blades.” In this study, a carbon fiber-reinforced polymer three-

blade HAWT was manufactured. Each blade had a different laminate stacking sequence. 

The first blade was built using unidirectional laminate ([0o]4). The second blade was 

manufactured using a cross-ply laminate stacking sequence ([0o/90o]S). The third blade was 

built using angle-ply layup orientation ([+45o/-45o]S). During the manufacturing phase, a 

separation between the plies was created in two locations along the blade in order to study 

the delamination growth for each laminate stacking sequence. All blades were attached to 

one hub to create a three-blade rotor. The rotor was placed in a water tunnel to simulate the 

flow of a river. The three-blade horizontal axis water turbine was tested for three million 
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revolutions while operating at the optimum operational characteristics. Additionally, a one-

way fluid-structure interaction model was created to calculate the hydrodynamic loads on 

the turbine blades. The thermography analysis approach was used to measure the 

interlaminar debonding inside the blades.  

The third paper is titled “Evaluating Properties of Increased Contact Area of 

Additively Manufactured Core for Sandwich Composites.” In this paper, an additively 

manufactured core was sandwiched between two CFRP facesheets. The core was 

manufactured with two different honeycomb configurations. The first configuration had a 

larger area at the two faces of the core. The second configuration had no modifications on 

either face of the core. The weight of both configurations was maintained constant by 

decreasing the thickness of the walls in the modified honeycomb core. The objective was 

to study the effect of increasing the contact area between the facesheet and the core on the 

mechanical performance of the sandwich structure. To that end, two ASTM standard tests 

were carried out: (a) ASTM D7766 for the impact test and (b) ASTM C297 for the flatwise 

tension test. The second objective of this study was to develop a finite element model that 

can predict the behavior of this kind of sandwich structures under impact loads. All the 

objectives of this study have been achieved, and the finite element model showed a 

remarkable agreement with the experimental results. 
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PAPER 

 EXPERIMENTAL AND NUMERICAL FAILURE ANALYSIS OF 
HORIZONTAL AXIS WATER TURBINE CARBON FIBER-REINFORCED 

COMPOSITE BLADE 

Mokhtar Fal, Abdulaziz Abutunis, Rafid Hussein, and K. Chandrashekhara 

Department of Mechanical and Aerospace Engineering 

Missouri University of Science and Technology, Rolla, MO 65409, USA 

ABSTRACT 

High-performance composites are used in many applications due to their design 

flexibility, corrosion resistance, high strength-to-weight ratio, and many other excellent 

mechanical properties. In this study, the location of failure initiation and magnitude in 

horizontal axis water turbine carbon fiber reinforced polymer (CFRP) blades with different 

lay-up orientations were investigated. Unidirectional [0o]4 and cross-ply  [0o/90o]S layups 

were selected to study the effect of the buildup direction on the failure of the composite 

water turbine blade. A finite element analysis (FEA) model was generated to examine the 

stresses along the blade for both mechanical and hydrodynamic loads. Flexural destructive 

tests were conducted to validate the results obtained from the numerical simulations. In 

addition, a blade element momentum theory model was created to calculate the 

hydrodynamic forces acting along the span to determine the maximum loading radial 

location, which was used for the fixture design and FEA simulation input. Both 

unidirectional and cross-ply composite blades were tested for failure. There was a general 

agreement between the experiments and the simulations, which validated the results. 

Moreover, FEA simulations were performed to apply the load to the samples with different 
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pitch angles (-10o, -5o, 0o, 5o, 10o). At a 0o pitch angle, the unidirectional CFRP 

composite blades showed higher strength compared to the cross-ply blades. However, 

when the load was applied with any pitch angle other than 0o, a significant drop in strength 

was noticed for the unidirectional blades while the cross-ply blades were less responsive 

to the change in the pitch angle. 

1. INTRODUCTION 

As non-renewable resources are damaging the environment, the economy, and 

causing harmful impact on human health as well as animals, the world will depend, 

eventually, on renewable energy to be the primary source of power [1]. There are many 

sources of renewable energy such as solar, wind, hydropower, and geothermal energy. The 

energy generated by water turbines through converting kinetic and potential energy into 

mechanical work is called hydropower energy [2]. Hydropower is one of the most 

promising renewable energies available. It can be harnessed from waves, tides, rivers, 

streams, and the open ocean. Due to the many similar operational principles between water 

and wind turbine technologies, a large amount of knowledge can be transferred from wind 

applications to water applications and vice-versa. However, there are a few substantial 

differences between the two technologies. These differences are important to consider 

when selecting material, designing the blades, and selecting the application. 

Worldwide, hydropower energy contributes to 20% of the total generated power 

and in some countries, it is the exclusive resource to generate power [3]. In the United 

States alone, hydropower energy generation represents about 75% of the total renewable 

energy harvesting and this hydropower generation is expected to go up to 23,000 MW by 
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2025 [4]. In the process of hydropower generation, the most vital part is the turbine, more 

specifically, the blades [5]. This is due to their high tendency to fail under high loads fatigue 

[6]. Therefore, it is extremely important to engineer a reliable blade that will lead to the 

maximum energy extraction and longer life expectancy for the specific application it 

served. Many factors play substantial roles in controlling the performance of the 

water/wind turbine [6, 7]. This work focuses on studying the performance of a CFRP 

composite blade that works in horizontal axis water turbine applications.  

There are some differences between water and wind turbines. For instance, the 

velocity of the water is relatively slow, compared to wind velocity. However, the harnessed 

energy per square unit of rotor swept area from HAWTs is higher than that from wind 

turbines [8]. In some cases, the power generated by a HAWT may reach four times the 

power generated by a similarly rated wind turbine [9]. This is because water is 

approximately 800 times denser than the air, which results in higher kinetic energy 

conversion per unit area. One essential factor that plays a major role in the performance of 

any turbine is material selection. Different materials with different properties will affect 

the rendering of the turbine significantly. Unlike wind energy, generating hydropower 

energy can only be achieved by submerging the turbine into water. This leads to known 

issues such as erosion, corrosion, fatigue, and water absorption. Due to its predominant 

mechanical properties, composite materials can overcome most of the common issues that 

occur when using other traditional materials. For instance, composite materials are known 

for their corrosion resistance, durability, design flexibility, chemical resistance, lighter 

weight, rigidity, high flexural modulus, low petrochemical ingredients, and exceptional 

electrical insulation [10]. These properties and many others make composite materials the 
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best option for water turbine blades. Water turbine blades operate in rivers and marine 

currents which result in an extremely harsh operational environment [11]. The thrust, 

tangential, and torsional loadings caused by the high kinetic energy flux are tremendous. 

Consequently, the intense bending moment at the root and large amount of deflection at 

the tip are serious design constraints [12]. A reliable turbine blade design will increase the 

cost-effectiveness of the turbine system. Creating this design requires a comprehensive 

understanding of the different loading behaviors of the blade and its structural response. 

The most commonly used composite materials are the glass- and carbon fiber reinforced 

polymer. In general, composite blades are superior to their traditional counterparts [13]. In 

this study, CFRP is used as the primary material to manufacture the composite blades. The 

failure location and magnitude of the composite blades with different lay-up orientations 

and different pitch angle were investigated.  

2. BLADE DESIGN AND MANUFACTURING 

2.1. BLADE PROFILE SELECTION 

The first step to design and fabricate any turbine blade is the airfoil/hydrofoil 

selection. The blade hydrofoil (profile) is one of the most important factors because it plays 

a significant role in controlling lift-drag ratio [14, 15]. Many blade profiles are available to 

choose from, but only a few can serve the purpose of this work. As the current research 

concerns mainly about the effect of both laminate stacking sequence and the angle of which 

the load is applied as well as the interaction between them, untwisted blade profiles with 

high lift-drag ratio will give a direct indication of the relevance of these two factors to the 

performance of the hydrokinetic water turbine. Adding more factors to the process of the 
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blade profile selection will increase the uncertainty of the results. Therefore, after a long 

investigation, while taking into consideration the static and dynamic loads, Eppler 395 was 

selected to be the blade profile for this study. This blade profile provides a high ratio of lift 

to drag (𝐶𝐶𝐿𝐿 𝐶𝐶𝐷𝐷⁄ ) as shown in Figure 1. This figure was generated in MATLAB using XFoil 

[16], for a range of operational Reynolds numbers (Re).  

 
Figure 1. Lift coefficient vs. drag coefficient for Eppler 395 airfoil at different Reynolds 

numbers 

2.2. MATERIALS AND PLY ORIENTATION 

Being submerged into water, hydrokinetic turbines, unlike wind turbines, will face 

more challenges such as rapid corrosion and biofouling. In addition, the hydrodynamic 

load oscillates based on the velocity of the water. This creates hard working environments 

that can cause failure due to fatigue. Turbine blades that are made of composite materials 

are known for their high strength to weight ratio. The high modulus of elasticity makes 
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them an excellent candidate for this study. IM7/Cycom 5320-1 carbon/epoxy prepreg was 

selected as the core material of the turbine blade. Two laminate stacking sequences of 

[0o/90o/90o/0o] and [0o/0o/0o/0o] were chosen to study the effect of the layup orientation on 

the blade performance 

2.3. MOLD FABRICATION 

Ultem 9085 molds were manufactured using fused deposition modeling (FDM) 

process in Fortus 400mc machine (Stratasys, USA) at Missouri University of Science and 

Technology. The FDM process has three stages: (1) Pre-processing stage where a three-

dimensional CAD models were created. The model was then exported to the Fortus 400mc 

machine as a Stereo Lithography (STL). (2) Manufacturing stage where Stratasys machine 

started to fabricate the FDM parts using Ultem 9085 filament. (3) Post-processing stage 

where all the support materials were detached from the FDM parts. The upper and lower 

halves of the mold are shown in Figure 2.  

  
Figure 2. The additively manufactured molds of the hydrofoil Eppler 395 using ULTEM 

9085 

After the molds were removed from the additive manufacturing machine, they went 

through a polishing process to make the surface as smooth as possible while maintaining 
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the Eppler 395 hydrofoil shape and size to eliminate additional factors that might affect the 

results. The polishing process was completed after reaching an ISO surface roughness 

grade of N10, which is equivalent to about 12.5µm. 

2.4. BLADE MANUFACTURING PROCESS 

The composite blades were built using an OOA technique. Due to its high 𝐶𝐶𝐿𝐿/𝐶𝐶𝐷𝐷 

ratio, an Eppler 395 hydrofoil was selected to be the primary profile for this study. The 

process of making the composite blades starts with placing the two halves of the mold on 

an aluminum plate. Then, four layers of carbon/epoxy prepreg were placed over each mold. 

As described previously, two laminate stacking sequences were utilized to further study 

the outcome from having different layup orientation on the general performance of the 

CFRP composite blades. To stack the plies in the desired orientation, the unidirectional 

layup blades were obtained by placing all four plies in the same direction (along the span). 

Whereas, the cross-ply blades were made by starting with placing a 0o ply then two 90o 

plies before finishing with a 0o ply. Next, a Teflon sheet was placed between the molds and 

the fiber to prevent the composite from sticking to the mold during the curing. After that, 

a breather was placed over the blades to allow air to be removed to achieve the desired 

vacuum while retaining an appropriate matching between the molds and the composite 

layers as shown in Figure 3. After sealing the aluminum plate with a transparent vacuum 

bag, all the trapped air was removed by applying a vacuum of 760 mm of Hg. The whole 

setup was then placed inside an oven for 8 hours. The IM7/Cycom 5320-1 carbon/epoxy 

prepreg manufacturer recommended curing, and post-curing cycles were followed. Next, 

the molds were separated from the composite blades. The two cured composite blade 

halves were mated and adhered together using a high impact resistant, water resistant, and 
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shrink free epoxy. Finally, the blade’s span length was cut down to 140 mm. The edges of 

the blades were trimmed and sanded down to the foil chord width of 16.76 mm. 

 

 

Figure 3. The blade manufacturing setup under vacuum 

3. EXPERIMENTAL METHODOLOGY 

The layup orientation can significantly control the strength of the composite 

materials. Many studies have shown the relationship between the applied load, the layup 

orientation, and the stress distribution [17-20]. However, due to the unique shape of 
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hydropower turbine blades, it is very important to further study the resultant stress due to 

the bending of the blade. In this case, the blades were manufactured with two different 

laminate stacking sequences and were tested for bending strength. The testing process is 

discussed in this section. 

3.1. EXPERIMENTAL SETUP 

An Instron 5985 Universal Testing System machine was used to carry out the 

flexural tests. In order to hold the blades firmly in the appropriate position while the load 

was applied, a special fixture was designed and manufactured. In the experiments, the load 

was applied to the samples with 0o degree pitch angle; while in simulation part, the effect 

of introducing the pitch angle was comprehensively investigated. The pitch angle is defined 

as the angle between the foil chord line and the load pin axis. The strain rate was selected 

to be 25.4 mm/min. Due to the shape of the hydrofoil, the leading edge will touch the 

loading cell before the trailing edge even with 0o pitch angle. Even though the focus of the 

testing is on bending strength, the moment and shear forces must also be considered. The 

gap between the blade and the loading cell is shown in Figure 4. 

3.2. DETERMINATION OF THE LOCATION FOR THE APPLIED LOAD 

In order to determine the proper location to apply the load, a blade element 

momentum theory (BEMT) model was created. Section 4.2 explains, in detail, the 

procedure of generating the BEMT model. When the turbine was operated at optimum 

efficiency, the BEMT results revealed that the highest thrust force was located at about 

r/R=0.71, where R is the rotor radius and r is the radial distance from the rotor center. 



17 
 

 
Figure 4. A gap between the trailing edge of the composite blade and the loading cell 

The BEMT results are shown in Figure 5. Therefore, the point of contact between 

the blade and the load cell was set to be at 71% of the blade span. 

 

 

Figure 5. Thrust force vs. normalized radial distance at optimum operational conditions 
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3.3. BENDING TEST 

The bending fixture holds the blade by placing the elongated root between the two 

clamps and uses bolts to tighten the root and prevent any movement. Next, a constant strain 

rate was applied by the means of the load cell. Figures 6a, 6b, and 6c show the intact root, 

the blade under the load, and the location of the failure, respectively. For this experiment, 

no pitch angle has been applied to the blades, i.e. all the blades were tested with 0o pitch 

angle.  

 
Figure 6. (a) The root of the blade pre applying the load, (b) the blade attached to the 

fixture and going under load, and (c) the location of the crack initiation at the blade root 

4. NUMERICAL SIMULATION 

4.1. FINITE ELEMENT ANALYSIS  

The finite element method (FEM) is a numerical technique for finding approximate 

solutions. It is also referred to as finite element analysis (FEA). It is the process of solving 

partial differential equations to find approximate solutions to boundary value problems. In 
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this work, a finite element model was created for the CFRP composite blades. The blades 

were designed via a 3D CAD software. Then, the designed CAD model was exported the 

commercial FEA software of ABAQUS CAE. The goal from creating the FEA model was 

to investigate the stresses and the prospective failure modes under both hydrodynamic 

forces and flexural loads. The load cell on the Instron 5985 Universal Testing System 

machine was represented by a pin. The load pin was a cylindrical rigid part having an equal 

length to the blade's chord, which was used only for bending test simulation, as shown in 

Figure 7. The composite blade was discretized with 4-node shell elements (S4R) using two 

mesh sizes to check for the mesh sensitivity. The two meshes were generated using an 

approximate global size of 0.002 m and 0.001 m. The layup orientation was assigned to the 

top and bottom surfaces of the blade where the 0o orientation is in the span-wise direction 

and 90° orientation is in the chord-wise direction. The load pin was meshed with 3D 

elements (C3D8R) and constrained as a rigid body. 

 
Figure 7. The mesh domain of the CFRP composite blade and the load cell 
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The boundary condition of the rigid pin was assigned a displacement of 80 mm in 

the y-direction. The step procedure was selected to be a static-general step. As for the root 

of the blade, a built-in boundary condition was assigned to it. The selected boundary 

condition is called “ENCASTRE” where U1=U2=U3=UR1=UR2=UR3= zero. The U1, 

U2, U3, UR1, UR2, and UR3 are the displacement on X-axis, displacement on Y-axis, 

displacement on Z-axis, moment in X-axis, moment in Y-axis, and moment in Z-axis, 

respectively. Damage initiation was modeled using Hashin’s criterion in ABAQUS CAE. 

The Hashin’s damage model is primarily intended for use with fiber-reinforced composite 

materials. In addition, it has the ability to consider four different failure modes: fiber 

tension, fiber compression, matrix tension, and matrix compression, which are governed 

by Equations 1, 2, 3, and 4, respectively [21, 22]. 

(𝜎𝜎�11 ≥ 0): 𝐹𝐹𝑓𝑓𝑡𝑡 = �𝜎𝜎�11
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�
2
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where 𝜎𝜎�11,𝜎𝜎�22, and �̂�𝜏12 are the components of the effective stress tensor that is used to 

evaluate the initiation criteria. 𝑋𝑋𝑇𝑇 ,𝑋𝑋𝐶𝐶 ,𝑌𝑌𝑇𝑇 ,𝑌𝑌𝐶𝐶 , 𝑆𝑆𝐿𝐿 , and  𝑆𝑆𝑇𝑇 are longitudinal tensile strength, 

longitudinal compressive strength, transverse tensile strength, transverse compressive 

strength, longitudinal shear strength, and transverse shear strength, respectively. β is a 
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coefficient that determines the contribution of the shear stress to the fiber tensile initiation 

criterion. 

The contact between the pin and the blade was assumed frictionless in the tangential 

behavior and rigid in the normal behavior. All cases were solved using the explicit solver 

with minimum and maximum time increments of 1×10-12 and 0.1 sec respectively. The 

elastic and strength properties are listed in Table 1 [23]. The transverse shear modulus (G23) 

was assumed equal to the G13. 

Table 1. Material properties of the IM7/Cycom 5320-1 carbon/epoxy prepreg   

Property Symbol Value 

Longitudinal tensile modulus E11 156𝑥𝑥109 Pa 

Transverse tensile modulus E22 9.3𝑥𝑥109 Pa 

Longitudinal Poisson’s ratio ν12 0.3 

In-plane shear modulus G12 5.5𝑥𝑥109 Pa 

Transverse shear moduli G13, G23 5.5𝑥𝑥109 Pa 

Longitudinal tensile strength XT 2.503𝑥𝑥109 Pa 

Longitudinal compressive strength XC 2.078𝑥𝑥109 Pa 

Transverse tensile strength YT 75.9𝑥𝑥107 Pa 

Transverse Compressive strength YC 165𝑥𝑥106 Pa 

Longitudinal shear strength SL 73𝑥𝑥106 Pa 

Transverse shear strength ST 73𝑥𝑥106 Pa 
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For accurate assessment of the damage initiation in fiber-reinforced materials, 

additional information regarding the fracture energy constants is needed. Damage 

evolution fracture energy constants for IM7/Cycom 5320-1 carbon/epoxy prepreg laminate 

were taken from literature and they are shown in Table 2 [24]. In addition, the damage 

stabilization as viscosity coefficients for longitudinal tensile strength, longitudinal 

compressive strength, transverse tensile strength, and transverse compressive strength were 

assumed to be 1 × 10−4 to improve the accuracy of the calculations [25, 26]. 

Table 2. Damage evolution fracture energy constants of the IM7/Cycom 5320-1 

Property Symbol Value 

Longitudinal tensile fracture energy FLT 81.5×103 J/m2 

Longitudinal compressive fracture energy FLC 106.5×103 J/m2 

Transverse tensile fracture energy FTT 0.277×103 J/m2 

Transverse compressive fracture energy FTC 5.62×103 J/m2 

 

If the sample is fixed at a 0o pitch angle with respect to the axial plane of the load 

cell (no rotation) as shown in Figure 4, the load cell will start touching the leading edge of 

the blade and push it down before touching the trailing edge. This action will cause a 

moment as well as shear on the CFRP composite blades. 

4.2. BLADE ELEMENT MOMENTUM THEORY 

The combination of blade element theory and momentum theory morph into the 

classical blade element momentum theory (BEMT) to solve for rotor plane flow properties. 
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BEMT balances the axial (linear) and angular momentums of an annular element of flow 

volume to hydrodynamic loads acting on a corresponding blade element (strip). The 

calculated hydrodynamic forces from BEMT at specific operational tip speed ratio (𝑇𝑇𝑆𝑆𝑇𝑇) 

were considered for the structural analysis.  

 𝑑𝑑𝑇𝑇 =  4𝜋𝜋𝜋𝜋𝜋𝜋𝑉𝑉2𝑎𝑎(1 − 𝑎𝑎)𝑑𝑑𝜋𝜋 
 

(5) 

 𝑑𝑑𝑑𝑑 =  4𝜋𝜋𝜋𝜋3𝜋𝜋𝑉𝑉𝜌𝜌(1 − 𝑎𝑎)𝑎𝑎′𝑑𝑑𝜋𝜋 
 

(6) 

where 𝜋𝜋,𝑉𝑉,𝜌𝜌, 𝜋𝜋, and 𝑑𝑑𝜋𝜋 are water density, upstream velocity, blade angular velocity, radial 

distance to the rotor center, and the span-wise width of the annular element, respectively. 

The variables 𝑎𝑎′ and 𝑎𝑎 are the tangential and axial induction factors, respectively. These 

induction factors account for the change in flow speed at the rotor plane and are the seeking 

solution of the BEMT.  

The blade element theory, on the other hand, proposes 𝑑𝑑𝑇𝑇 and 𝑑𝑑𝑑𝑑 based on the 

calculated normal force coefficient (𝐶𝐶𝑛𝑛) and tangential force coefficient (𝐶𝐶𝑡𝑡) acting on a 

blade element. 

 𝑑𝑑𝑇𝑇 =  𝜎𝜎𝜋𝜋𝜋𝜋𝜋𝜋
𝑉𝑉2(1 − 𝑎𝑎)2

𝑠𝑠𝑠𝑠𝑠𝑠2φ
𝐶𝐶𝑛𝑛𝑑𝑑𝜋𝜋 

 

(7) 

 𝑑𝑑𝑑𝑑 =  𝜎𝜎𝜋𝜋𝜋𝜋3𝜋𝜋
𝑉𝑉𝜌𝜌(1 − 𝑎𝑎)(1 + 𝑎𝑎′)

𝑠𝑠𝑠𝑠𝑠𝑠φ 𝑐𝑐𝑐𝑐𝑠𝑠φ
𝐶𝐶𝑡𝑡𝑑𝑑𝜋𝜋. 

 

(8) 

𝜎𝜎 is the sectional local solidity at radial distance  𝜋𝜋, which is given by  𝜎𝜎 = 𝑁𝑁𝑐𝑐
2𝜋𝜋𝜋𝜋

, here, 𝑁𝑁 is 

the number of blades, and 𝑐𝑐 is the chord length of hydrofoil at this radial location.  
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Figure 8. Illustration of (a) velocity diagram and (b) force diagram at a blade section 

The variable φ is the local inflow angle and calculated as  φ = arctan (1−𝑎𝑎)𝑉𝑉
(1+𝑎𝑎′)𝛺𝛺.𝜋𝜋

  . The 

normal and tangential force coefficients are obtained as follows: 

 𝐶𝐶𝑛𝑛 = CLcosφ + 𝐶𝐶𝐷𝐷 sin φ 

 

(9) 

 𝐶𝐶𝑡𝑡 = 𝐶𝐶𝐿𝐿sinφ− 𝐶𝐶𝐷𝐷 cos φ (10) 

𝐶𝐶𝐿𝐿 and 𝐶𝐶𝐷𝐷 are the lift and drag coefficients, respectively, and they are given by the 

following two equations 𝐶𝐶𝐿𝐿 = 𝐿𝐿
1
2𝜌𝜌𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟

2 𝑐𝑐𝑟𝑟
 and  𝐶𝐶𝐷𝐷 = 𝐷𝐷

1
2𝜌𝜌𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟

2 𝑐𝑐𝑟𝑟
, here, 𝐿𝐿 and 𝐷𝐷 are the lift and drag 

forces acting on the blade element.  
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The hydrodynamic foil characteristics (CL and CD) were originally generated at 

different operational condition, by the mean of a 2D panel code, XFoil. The XFoil can 

reasonably predict the pressure distribution and lift but underestimates the drag. Therefore, 

the drag coefficient was corrected during BEMT iteration. The rotational effect was 

accounted for through correcting the XFoil output lift by a model suggested by Du and 

Selig [27] and XFoil output drag by Eggers et al [28]. The corrected data was then saved 

to a look-up 3D data sheet which contained the lift and drag coefficients over a wide range 

of angles of attack (−180 𝑜𝑜 ≤ 𝛼𝛼 ≤ 180𝑜𝑜). extrapolation of the lift and drag over this wide 

range of angles of attack was achieved by the use Viterna model [29]. In addition, it also 

enables the extrapolation of a wide range of operational 𝑇𝑇𝑒𝑒 that is based on the local relative 

velocity 𝑉𝑉𝜋𝜋𝑒𝑒𝑟𝑟, which varies radially. The look-up sheet can then be used by BEMT. Figure 

9 and 10 show lift and drag coefficients at two different operational and geometrical 

conditions.  

 
Figure 9. CL and CD at a rotational speed of 100 RPM, velocity of 0.979 m/s and r/R of 

0.9565 
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Figure 10. CL and CD at a rotational speed of 500 RPM, velocity of 0.8996 m/s and r/R of 

0.177 

 
Equating the thrust from Equations 5 and 7, the torque from Equations 6 and 8, 

incorporating the tip and hub losses correction, and solving for the axial induction factor 

(𝑎𝑎) and the tangential induction factor (𝑎𝑎′) will yield: 

 𝑎𝑎 =
1

4𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠2φ
𝜎𝜎𝐶𝐶𝑛𝑛

+ 1
 (11) 

 𝑎𝑎′ =
1

4𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠φ cos φ
𝜎𝜎𝐶𝐶𝑡𝑡

− 1
 (12) 

𝐹𝐹 is the total loss factor that results from the product of tip and hub loss factors. The tested 

rotor that was used for validation has a diameter of 12 in. (304.8 mm) which created a 

blockage ratio (ratio of rotor to tunnel cross section) of 0.3968 in the water tunnel. The 

relatively high blockage further accelerated the flow and increased the generated power 

and hydrodynamic loads on the rotor compared to the unconfined rotor. Therefore, further 
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correction for the axial induction factor was required to account for this confinement effect. 

A blockage correction method was integrated into the BEMT. After the convergence of the 

induction factors was achieved, the flow velocity components and flow angles were 

obtained. Finally, the sectional normal force 𝐹𝐹𝑛𝑛 and tangential force 𝐹𝐹𝑡𝑡 were calculated as: 

𝐹𝐹𝑛𝑛 =
1
2
𝜋𝜋𝑉𝑉𝜋𝜋𝑒𝑒𝑟𝑟2 𝑐𝑐𝐶𝐶𝑛𝑛 (13) 

𝐹𝐹𝑡𝑡 =
1
2
𝜋𝜋𝑉𝑉𝜋𝜋𝑒𝑒𝑟𝑟2 𝑐𝑐𝐶𝐶𝑡𝑡 

(14) 

 
After the hydrodynamic forces per unit length were obtained at several blade radial 

locations (r), forces were integrated over their corresponding blade elements with an 

assumption of a linear variation between neighboring sections. The results of the 

integrations then were considered as concentrated forces that act at the center of the 

elements.  

 
Figure 11. The normal force distribution along the blade of 3-blade rotor at different tip 

speed ratios 
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To examine the BEMT accuracy, the rotor torque was calculated by integrating the 

sectional moments over the blade span and then the power was obtained as  

 𝑃𝑃 = 𝑑𝑑 × 𝜌𝜌 
 

(15) 

𝑑𝑑 is the applied torque magnitude (𝑁𝑁.𝑚𝑚) and 𝜌𝜌 is the rotational speed (𝜋𝜋𝑎𝑎𝑑𝑑/𝑠𝑠𝑠𝑠𝑐𝑐). 

The predicted power was validated against experimental measurement and presented in 

Figure 14 in Section 5.2. 

5. RESULTS AND DISCUSSION 

5.1. EXPERIMENTAL RESULTS 

A total number of 10 blades were manufactured for each lay-up orientation using 

CFRP composites via the OOA process. All samples were then tested for failure and the 

results are shown in Table 3. It was noticed that the highest load was carried out by the 

unidirectional blades.  

Table 3. The results summary of the bending tests for the unidirectional blades and the 
cross-ply blades 

Sample # Lay-up 
Direction Load at Failure (N) Avg. Load at Failure (N) 

1 

[0o]4  

84.2689 

85.37 ± 2.001 

2 91.285 

3 89.7628 

4 81.8328 

5 79.70244 

6 [0o/90o]S 45.6232 45.84 ± 0.456 
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Sample # Lay-up 
Direction Load at Failure (N) Avg. Load at Failure (N) 

7 

 

47.1028 

 
8 46.9243 

9 45.0715 

10 44.49635 

 

The average load vs. strain curves for the lay-ups [0o]4 and [0o/90o]S are shown in 

Figure 12 and Figure 13, respectively. In addition to the previous observation, it was also 

observed that the unidirectional samples failed sooner than the cross-ply samples, which 

indicates that a relatively larger amount of yielding was achieved by the latter. 

 
Figure 12. The load vs. displacement curve of the unidirectional blades ([0o]4) 
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Figure 13. The load vs. displacement curve of the cross-ply blades ([0o/90o]S) 

5.2. BEMT VALIDATION 

The power coefficient for the three- blade rotor against the TSR curves produced 

by the water tunnel test and BEMT is shown for validation in Figure 14. The results were 

reasonably consistent. As the rotational speed decreased, the thrust forces increased, 

leading to higher system friction losses, especially in the bevel gears even though the thrust 

bearings were mounted on the front and back ends of the horizontal shaft. The left side of 

the power curve was not completed due to the delay in the stall, which is a well-known 

phenomenon [27, 30, 31]. 
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Figure 14. Power coefficient vs TSR at flow speed of 0.8161 m/s for three-blade turbine 

5.3. FINITE ELEMENT MODEL 

5.3.1. Blade Under Mechanical Load.   The forces acting upon the blade during  

the experimental stage is required for the finite element model. In the experiments, the 

CFRP blades are subject to many forces. These forces have played a significant role in the 

performance of the blades. For instance, as the blade were slightly rotated to produce an 

angle between the surface of the blade and the loading cell during the bending tests, the 

performance of the unidirectional blades decreased significantly. On the other hand, the 

cross-ply blades ([0o/90o]S) showed a consistent performance. The explanation of this 

difference in reaction to the rotation factor between both lay-up orientations is very simple. 
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During the process of applying the load, the load cell will touch the leading edge first which 

will create a moment. This load will try to break the fibers along the axial and radial 

directions. If the blade shape were as simple as a cantilever beam, then the fibers along the 

span direction would do a good job holding the structure together against the bending force. 

The fibers across the direction of the span will only hold the structure against the radial 

loads and any other torsional loads. However, the blade profile does not have a flat 

cantilever shape and therefore the hydrofoil of the blade is playing a major role in 

determining the forces acting upon it as well as how the blade will react to these forces. 

There are three forces acting on the blade simultaneously. The first force is the 

moment caused by applying the load to one edge before the other, which will create a twist 

in the blade. The second force is the bending load, which is caused by pushing down the 

blade via the load cell. The third force is the shear force formed between the upper and the 

lower halves of the blade. All these forces were considered during the finite element 

modeling stage. The software used to study the failure analysis of the CFRP composite 

blades was ABAQUS CAE. For the sake of comparison and validation, the cross-ply blades 

were considered. The slope of the experimental curves for the cross-ply blades, which 

represents the bending modulus, was 1.09 N/mm calculated as the average slope of all 

samples. The slope of the simulation curve was 1.18 N/mm. Figure 15 shows the load vs. 

displacement curves of the simulation and experiments for the cross-ply blades. The 

average maximum load for experiments and simulation was 45.04 N and 47.10 N, 

respectively.  
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Figure 15. The load vs. displacement curve for the simulation results and the 

experimental results of the cross-ply CFRP composite blades 

There was a discrepancy of 2.14 N between the experimental and simulated 

maximum loads. This can be attributed to an assumption that was made during the 

simulation. It was assumed that the interaction between the two halves of the blade is a 

“Tie” which means the two halves are perfectly bonded. This assumption was made due to 

the lack of the comprehensive information about the mechanical proprieties of the 

commercial adhesive that was used to join the two halves together. For maximum accuracy, 

it is recommended to perform mechanical tests on the adhesive material to obtain the exact 

values. Then, instead of selecting a “Tie” for the interaction between the two halves of the 

blade, a “Cohesive Behavior” should be selected and all the mechanical properties of the 
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adhesive material should be entered. By doing so, the difference between the simulation 

and experiments can be overcome. 

In general, the maximum load, displacement, and slope were satisfactorily matched. 

The effect of introducing the pitch angle on the performance of CFRP blade with a different 

laminate stacking sequence was also investigated. The examined pitch angles that were 

selected to be tested are -10o, -5o, 0o, +5o, and +10o as shown in Figure 16. All of the angles 

are relative to the surface of the load cell.  

 
Figure 16. (a) CFRP blade with -10o pitch angle, (b) CFRP blade with -5o pitch angle, (c) 

CFRP blade with 0o pitch angle, (d) CFRP blade with +5o pitch angle, and (e) CFRP 
blade with +10o pitch angle 

A dramatic decrease in the performance of the unidirectional composite blades was 

noticed when these angles were introduced as shown in Figure 17. The maximum load 

dropped by approximately 33.5% as the pitch angle changed from 0o to ±10o. 
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Figure 17. The maximum load of the CFRP composite blade with [0o]4 and  [0o/90o]S  
laminate stacking sequences vs. the pitching angle 

The curve followed a Gaussian distribution where the rate of performance 

degradation decreased as pitch angle deviated from zero. The performance of the cross-ply 

blades was barely affected within the tested range of pitch angles. The maximum load only 

decreased by 3.57% as the pitch angel altered form 0o to ±10o. The small decrease in the 

maximum load in the cross-ply blades was attributed to the fact that these blades are 

comprised of fibers that are oriented both along and across the blade span. These fibers 

will hold the bending and torsional loads and made these blades less responsive to the 

loading angle. 
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In Hashin’s damage model, a value of more than unity represents a failure/damage 

initiation in the matrix that attains a complete damage at a value of unity. Figures 18 and 

19 show the damage state of the matrix due to tension (DAMAGEMT) and shear 

(DAMAGEMSHR) for cross-ply blades, respectively. The DAMAGEMT and 

DAMAGEMSHR were the critical damage mechanisms compared to fiber/matrix 

compression, which was insignificant. The critical location of failure was at the root of the 

blade where stresses were concentrated due to the geometric shape, the boundary 

conditions, and the applied loading. This also was verified with the failure location of the 

experimental outcomes. 

 
Figure 18. Damage state of the matrix due to tension (DAMAGEMT) for cross-ply blades 

([0o/90o]S) 
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Figure 19. Damage state of the matrix due to shear (DAMAGEMSHR) for cross-ply 

blades ([0o/90o]S) 

5.3.2. Blade Under Hydrodynamic Load. The hydrodynamic forces due to the  

operation of the blade in a water tunnel under the velocity of 0.816 m/s were calculated 

using the BEMT. The forces were integrated over the blade elements and an average of the 

elemental pressure was calculated along the blade. The pressure was decomposed into 

normal (Pn) and tangential (Pt) tractions and then applied to the bottom surface of the 

composite blade. A second-degree polynomial was used to build the pressure analytical 

fields in ABAQUS CAE by considering the variation of the pressure in x-direction and y-

direction of the blade. However, the applied pressure/traction was relatively small with the 

maximum values of normal pressure (Pn) = 1.3 kN/m2 and tangential pressure (Pt) = 0.504 
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kN/m2 which were located near the tip of the blade. The blade root was assigned a built-in 

boundary condition similar to the bending test simulation. Figure 20 and 21 show the 

maximum value of the matrix tensile initiation criterion experienced during the analysis 

for the unidirectional and the cross-ply blades respectively. 

 

 

Figure 20. Hashin’s failure criterion of the matrix due to tension (HSNMTCRT) for 
unidirectional blades 
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Figure 21. Hashin’s failure criterion of the matrix due to tension (HSNMTCRT) for 
cross-ply blades 

The critical location for all failure criteria was located at the root. However, the 

values of the criteria were in the order of 10-2, which means the failure was not significant. 

It is important to note that, the periodic application of the small load/traction may induce 

failure due to fatigue, which was beyond the scope of the current work. The maximum 

principal stress due to the hydrodynamic forces was around 0.060 GPa which, as mentioned 

earlier, was located at the root of the blade. 
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6. CONCLUSION 

Composite blades with different lay-ups were manufactured using the OOA 

process. The blades’ mechanical performance was analyzed using flexural bending tests to 

investigate the behavior of the samples with different laminate stacking sequence. A FEA 

study was conducted to investigate the critical failure modes and locations under the 

operational loads and flexural bending loads. In both composite lay-ups, [0o/90o]S and  

[0o]4, the critical location of the failure was found to be near the root. The effect of rotating 

the CFRP blades during the bending tests was studied. The cross-ply CFRP blades showed 

a steady performance while the unidirectional blades performance dropped significantly. 

However, the unidirectional blades were noticed to withstand higher loads than the cross-

ply even after being rotated 10o in both directions (positive and negative). A Hashin’s 

damage criterion was adopted to investigate the failure between the fibers and the matrix 

of the CFRP composite blades. Another finite element model was generated to further 

examine the interaction between the stress value/location and the layup orientation of the 

fibers in the blades. Under an operational condition of 0.816 m/s, a typical tidal current 

flow speed, the value of the failure was found to be insignificant for this blade size and 

configuration. However, hydrodynamic loads are periodic loads. Thus, a failure due to 

fatigue might accrue. This issue was beyond the scope of this study. In conclusion, 

unidirectional CFRP composite blades have proven they can withstand higher loads than 

conventional blade types, and therefore are able to have a longer service life compared to 

other layup orientations. 
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ABSTRACT 

Carbon fiber reinforced polymer (CFRP) composites are becoming popular due to 

their superior strength to weight ratio and stiffness properties. This study highlights the 

interlaminar debonding growth, which is considered one of the most frequent problems 

with composite materials. A three-blade horizontal axis water turbine (HAWT) was 

manufactured using IM7/Cycom5320-1 carbon/epoxy prepreg. During the process of 

manufacturing, a specific number of Teflon sheets were placed between the composite 

layers in two locations to create a separation between the layers and to investigate the 

delamination growth. Three different laminate stacking sequences were selected to be 

tested: [0o]4, [0o/90o]S, and [45o/-45o]S. The composite blades were placed in a water tunnel 

and run for 3 million revolutions. A thermography analysis was carried out to evaluate the 

propagation and growth of the delamination. A one-way fluid-structure interaction (FSI) 

model was created and implemented to obtain the stress values along the blade. The results 

showed the influence of the composite layup orientation on the growth of the delamination. 

The unidirectional blades ([0o]4) showed the lowest amount of propagation while the cross-
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ply ([0o/90o]S) showed the most delamination growth. The bottom location (near the root) 

showed the maximum delamination. Both sides of the blades showed significant 

delamination growth. However, the backside showed more interlaminar debonding growth 

than the front side. After three million revolutions, the percentage of debonding growth for 

the bottom/backside of the blades was 6.58%, 36.25%, and 27.63% for the [0o]4, [0o/90o]S, 

and [45o/-45o]S, respectively. 

1. INTRODUCTION 

Global warming caused by using non-renewable energy is forcing scientists to find 

alternative ways to generate power. One of the most promising sources of clean energy is 

hydrokinetic energy. Hydrokinetic energy can be generated when the natural movement of 

water (oceans, streams, currents, etc.) forces a submerged turbine to rotate, which is 

connected to a power generator. There are numerous advantages of adopting such a 

resource of renewable energy. First, it is renewable, meaning that it is harvested from a 

source that does not deplete within a human’s lifetime. In addition, about 33% of the human 

population does not have access to electricity but does have access to a source of 

continuous moving water [1]. Another advantage of using hydrokinetic energy over other 

sources of renewable energy is the consistency of power generation [2]. Solar energy 

generation, for example, is limited by the amount of direct sunlight. Cloudy, dusty, foggy, 

or rainy days are not the ideal days to extract energy via solar panels. In addition, there is 

a possible danger that comes from the excessive heat that might burn up the wires and 

causes a disaster such as the famous incident on December 4, 2017, of California forest 

fires [3, 4]. 
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Alternatively, the hydropower energy can be continuously generated via the 

unending movement of rivers, streams, and ocean waves [5]. However, there are challenges 

to generate power from hydrokinetic water turbines. The most obvious challenge to 

overcome is the harsh environment that the turbines operate in. To overcome this challenge, 

good design and strong components are needed. The water turbine blades undergo about 

800 times the amount of force that wind turbine blades go through [6]. Therefore, it is 

essential to study and improve the blade structure to attain the best performance.  

In recent years, composite materials have become extremely popular due to their 

superior specific strength, stiffness, and other mechanical properties [7-9]. Marine 

applications are no exception, as many marine structures are now made fully, or in part, 

from composite materials [10]. Structures that have direct contact with water must have 

high corrosion resistance, high specific, and low water/moisture absorption [11]. 

Composite materials are a combination of two or more materials that form a new material 

that has better properties than each constituent by itself [12]. Composite materials give the 

best qualities of each component, but in many cases, they give new qualities that neither of 

its components possesses. There are many classifications of composite materials[13]. 

Carbon fiber reinforced composites are very popular due to their superior mechanical 

performance [14, 15]; however, they are not invulnerable against failure.  

Unlike metals where the stresses on a crack can be defined analytically at the crack 

tip [16], composite materials have a damage zone that may include fiber pullout, fiber 

microbuckling, fiber fracture, matrix cracking, delamination, laminate debonding, or any 

combination of these failure mechanisms. Debonding growth is a common failure that 

tends to occur within composite materials. Debonding tends to propagate between the 
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laminates when load is applied [17-22]. In 1980, Zvi Hashin [23] proposed a finite element 

model that can predict the interlaminar failure in fiber-reinforced composite materials. 

However, due to the complexity of the calculations and the time it requires to include the 

plane orientation in the model, Hashin excluded it from the calculations [24]. Over a decade 

later, Hashine’s model was extended to account for three interlaminar failure modes: (I) a 

tensile matrix failure, (II) a compressive shear matrix failure, and (III) a complex failure 

mode in which the plane of the fracture rotates about an axis to form a tapered section 

which can cause a fiber failure in the adjacent layers. However, different applications will 

utilize composite structures differently. Thus, it is impossible to perform failure analysis 

for fiber-reinforced composite materials that are valid for predicting all kinds of failure. 

Therefore, further investigation is needed to extend the existing finite element models for 

each specific application. The focus of this study is to investigate the behavior of 

delamination growth in horizontal axis water turbine CFRP blades undergoing working 

conditions. Many forces are applied on the turbine blade during the process of generating 

power. The delamination might react differently under these forces and propagate 

differently. 

The phenomenon of interlaminar debonding in composite materials is influenced 

by many factors. However, the lack of perfect bonding between the laminates during the 

curing/post-curing process is considered the most common reason [25-27]. This 

interlaminar debonding creates poor in-plane properties and decreases the impact of 

resistance [28-30]. The reduction of the structural integrity of the laminates will negatively 

affect the mechanical performance and will rapidly increase the rate of deterioration of the 

composite structure [31]. Many studies have been done to investigate the delamination 
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behavior in various applications. However, no significant work has been done on 

composite hydrokinetic turbine systems in terms of blade structural design, failure analysis, 

experimental evaluation, and performance assessment. This work fills this gap and 

provides a comprehensive study on how the debonding between the laminates with 

different lay-up orientation will behave in marine applications where different loads 

(static/dynamic pressures, and axial/angular momentums) are applied. 

2. COMPOSITE TURBINE BLADE 

2.1. HYDROFOIL SELECTION 

The first step in manufacturing the carbon fiber reinforced polymer (CFRP) 

composite blade is the selection of the hydrofoil. The hydrofoil can be defined as the shape 

and curvature of the blade. This step is essential to the proper design of the turbine blade 

because different hydrofoils create different lift and drag forces. The lift and drag, along 

with other factors, are important to determine the amount of power generated by any 

horizontal axis water turbine (HAWT) [32]. As a rule of thumb, it is desirable to use a 

hydrofoil that will provide a high lift-to-drag ratio. All twisted hydrofoils have been 

eliminated from the selection process because they introduce an extra factor that will affect 

the delamination growth. Therefore, only untwisted hydrofoils were considered for this 

study. Eppler 395 was selected to be the hydrofoil and the molds needed to fabricate the 

blades were additively manufactured. Figure 1 presents the lift-to-drag ratio for Eppler 395 

at different Reynolds numbers. 
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Figure 1. The lift coefficient (Cl) vs. drag coefficient (Cd) for the hydrofoil Eppler 395 at 

different Reynolds numbers 

2.2. ADDITIVELY MANUFACTURED MOLDS 

Molds can be manufactured via many different techniques. Recently, additive 

manufacturing (AM), also known as rapid prototyping and three-dimensional (3-D) 

printing, has become very popular because it offers several advantages over traditional 

techniques. AM for non-mass production is fast, convenient, autonomous, cheap, and can 

produce high-quality complex shapes [33]. In this study, AM was used to manufacture the 

complex shape of the Eppler 395 mold for the turbine blades. ULTEM 9085 molds were 

manufactured using the fused deposition modeling (FDM) process using Fortus 400mc 
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(Stratasys, USA) machine at Missouri University of Science and Technology. There were 

four main stages during the manufacturing process. The first stage started with generating 

a three-dimensional CAD model for the mold before saving it as a Stereo Lithography 

(STL) file. After that, the model was exported to the Fortus 400mc machine. In the second 

stage, the machine began the fabrication process using ULTEM 9085 filament. Next, the 

FDM parts were detached from the support materials. This process was repeated twice to 

manufacture both the upper and the lower halves of the Eppler 395 molds. In the final stage, 

the molds went through a finishing process. The aim was to meet the ISO 1302 surface 

roughness grade of N10. This ISO number is equivalent to 12.5µm. 

3. EXPERIMENTAL PROCEDURE 

3.1. MATERIALS AND LAY-UP ORIENTATIONS 

Material selection is a crucial stage in any engineering design process. In this study, 

IM7/Cycom 5320-1 carbon/epoxy prepreg (manufactured by Cytec Materials Inc.) was 

selected to be the primary material to manufacture the CFRP blades for the HAWT. It was 

specially designed for the out-of-autoclave (OOA) manufacturing processes. It has the 

ability to cure at relatively low temperatures, which allows it to be suitable for prototyping 

where thermoplastic-based tooling can be used [34]. Although Cycom 5320-1 is designed 

for the OOA manufacturing process, it can produce high-quality samples with low porosity 

[35, 36]. Elastic and strength properties of the IM7/Cycom 5320-1 carbon/epoxy prepreg 

are listed in Table 1 [36]. 
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Table 1. Material properties of the IM7/Cycom 5320-1 carbon/epoxy prepreg 

Property Symbol Value 

Longitudinal tensile modulus E11 156 GPa 

Transverse tensile modulus E22 9.3 GPa 

Longitudinal Poisson’s ratio ν12 0.3 

Longitudinal shear modulus G12 5.5 GPa 

Transverse shear modulus G23 5.4 GPa 

Longitudinal tensile strength XT 2.503 GPa 

Longitudinal compressive strength XC 2.078 GPa 

Transverse tensile strength YT 759 MPa 

Transverse Compressive strength YC 165 MPa 

Longitudinal and Transfer shear strength SL and ST 73 MPa 

 

To study the effect of the lay-up orientation, three different laminate stacking 

sequences were selected: (a) [0o]4, (b) [0o/90o]S, and (c) [+45o/-45o]S. All CFRP blades with 

these lay-up orientations were manufactured using the OOA procedure. 

3.2. MANUFACTURING OF LAMINATES WITH DEBONDING 

This study investigates the effect of lay-up orientation on interlaminar debonding 

within HAWT blades; therefore, interlaminar defects with known dimensions were 

implemented. The separation between the layers was created by placing non-stick Teflon 

sheets in two different locations along the blade span. Locations were selected to be near 

the root of the blade and in the middle of the blade. The exact locations of the Teflon sheets, 
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as well as the dimensions, are shown in Figure 2. Each blade was made using eight plies 

of IM7/Cycom 5320-1 carbon/epoxy prepreg. Four plies were used for the upper half of 

the blade (mold), and the remaining four were used to create the bottom half of the CFRP 

blade. The Teflon sheets were placed in the middle of each stack, which is between ply 

number 2 and ply number 3 in both halves of the blade. After curing the CFRP blades, the 

Teflon sheets were able to create the desired interlaminar separation. Thermography 

images were taken to confirm the separation. Finally, three blades with the three different 

lay-up orientations were manufactured and attached to a hub and tested in the water tunnel. 

 
Figure 2. The two selected locations of Teflon sheets to induce debonding between the 

laminates 

3.3. WATER TUNNEL TEST 

A 1520-HK research water tunnel (Figure 3) located at Missouri S&T was utilized 

to measure the power generated by a three-blade CFRP composite water turbine. The water 

tunnel test section has length, width, and depth of 60 inches (152.4 cm), 15 inches (38.1 

cm), and 20 inches  (50.8 cm), respectively, and a maximum water velocity of 3.28 ft/second 
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(1 m/second). It has an overall capacity of 1,000 gallons (3,785.4 liters). To withstand the 

pressure of the water, the tempered glass in the test section is 0.375 inches (9.52 mm)  thick 

on the sidewalls and 0.2 inches (5.08 mm) thick on the bottom. This water tunnel uses a 

LM16234 motor with 10 HP, 230 VAC, and 33 amps. This was desirable because the pump 

was configured as a direct drive unit (no pulley gearing). 

 
Figure 3. The 1520-HK research water tunnel located at Missouri S&T 

The torque and rotational speed required to calculate the power were attained using 

a 0.353 N.m FUTEK reaction torque sensor and a time-average RPM sensor. By using the 

trial and error approach, the optimum pitch angle of the blade with the Eppler 395 hydrofoil 

was found to be around 5o. However, to avoid operating under extreme hydrodynamic 



54 
 
loadings and thus the possibility of rapid failure of the blades during the experiments, the 

blades were pitched to 20𝑜𝑜 while the flow speed was set to 0.816 m/s. The power 

coefficient (𝐶𝐶𝑃𝑃) versus tip speed ratio (TSR) curve was generated by applying incremental 

load on the turbine system output shaft by the mean of 0.226 N.m magnetic particle clutch. 

The experiment setup is illustrated in Figure 4. Increasing the applied load will raise the 

torque and reduce TSR. The optimum TSR (the TSR at the maximum power) was found 

to be approximately 2.87 from the experiment results. The 3-blade CFRP composite turbine 

was operated in the water tunnel at the optimum TSR for 1 million, 2 million, and 3 million 

revolutions to investigate the blades interlaminar debonding behavior. 
 

 
Figure 4. The complete setup for testing the 3-blade CFRP composite turbine in the 1520-

HK research water tunnel 
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3.4. THERMOGRAPHY ANALYSIS 

Thermography analysis is a non-destructive test in which images are taken for an 

object under investigation to show the energy leaving a surface as radiant heat[37]. Every 

object radiates energy that is transported in the form of electromagnetic waves[38]. In this 

study, measuring the quantity of the energy leaving the body was not the primary goal. 

Instead, the energy distribution along the span of the blade as a form of heat was the core 

objective. The heat distribution shows the locations of the interlaminar defects based on 

the color distribution. The thermography images showed the area of the interlaminar defect 

before the blades start operating in the water tunnel, after 1 million revolutions, 2 million 

revolutions, and 3 million revolutions. In every iteration, blades were taken out of the water 

tunnel, and the area of delamination was measured based on the images provided by the 

infrared camera. A FLIR camera was used to capture the thermal images, and the samples 

were heated using two 2.5 kW halogen lamps. The prepared samples were placed at a 

distance that would show both locations clearly. The distance ranged from 10 to 12 inches 

(25.4 – 50.8 cm) from the camera. A simple thermography analysis testing setup is shown 

in Figure 5. For thermographic evaluation, the samples were heated for 180 seconds and 

allowed to cool down. The thermal camera recorded the temperature profile during the 

entire heating and cooling process. The recorded images were analyzed using ImageJ 

software to measure the area after each iteration. The captured images were evaluated to 

investigate the development of delamination growth after each iteration. 
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Figure 5. Thermography analysis testing setup 

4. FLUID-STRUCTURE INTERACTION 

A high fidelity one-way FSI was reported to provide satisfactory solutions while 

involving lower computational effort compared to a two-way FSI [39]. The one-way FSI 

simulation was performed to obtain hydrodynamic loads and structural response of the 

turbine blades. The FSI results are then used to characterize the delamination at the Teflon 

regions. The CFD and FEA approaches were used to find the deflections and stresses on 

the blades, as shown in the flowchart in Figure 6. 
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Figure 6. Flow chart for the one-way FSI analysis procedure 

4.1. COMPUTATIONAL FLUID DYNAMIC MODEL 

A CFD simulation was employed to calculate the hydrodynamic loads on the 

turbine blades using the commercial software of ANSYS 18.2/Fluent. The mesh, 

turbulence model, used solver, and employed boundary conditions (BCs) are discussed 

below: 

4.1.1. Geometry and Meshing. The used rotor is a three-blade rotor. The blades  

were untwisted, had a fixed chord length of 0.66 inches (1.67 cm), and a span length of 5.5 

inches (13.97 cm). The hub had a diameter of 1.25 inches (3.17 cm). The water tunnel was 

given a cross-section of 15 inches × 20 inches (38.1 cm × 50.8 cm). All these dimensions 

were identical to those used in the experiment. The water tunnel stream-wise dimension 

was designed such that the rotor upstream and downstream lengths were 10x the diameter 

of the rotor and 25x the diameter of the rotor, respectively. The rotor and the water tunnel 

were meshed separately using ANSYS 18.2/ICEM. The rotor blades were meshed 
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separately. Each blade was surrounded by the flow domain that represented one-third of a 

cylinder (Figure 7a). The water tunnel was assigned a mesh size of 3.55 million with a finer 

grid towards the rotor domain (Figure 7b). The rotor domain was subtracted from the tunnel 

domain (the domains were integrated afterword as unstructured meshes in Fluent). All 

common surfaces between blades domains and between the blades domains and water 

tunnel domain were defined as interfaces, and the corresponding interfaces were linked. 

This was to allow the later incorporation of a moving reference frame (MRF) technique 

used by the turbulence model to accelerate the calculation. Because the water tunnel 

domains were stationary, and rotor domains were moving, the generated interfaces were 

non-conformal (had non-matched nodes). These interfaces transferred velocity and 

velocity gradient from one mesh to another when the MRF approach was utilized. 

 
Figure 7. The structured mesh of (a) one-third of the rotor and (b) rotor domain in the 
water tunnel (scan planes were used to illustrate the water tunnel mesh distribution) 

A mesh sensitivity study was conducted to determine the appropriate mesh size that 

yields a solution independent of the mesh size. Table 2 shows the operational conditions 
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and the resulted moment coefficient (CM) and its relative error (ε) calculated with respect 

to the finest mesh. The mesh size of 1.91 million was considered. This mesh size yielded a 

relative error that is less than 5% and allowed a faster-converged solution compared to the 

larger mesh sizes.  

Table 2. The moment coefficient (CM) and the relative error (ε) based on different 
operational conditions 

Pitch 
angle 

(degree) 

Velocity 
(m/s) 

Rotational 
speed 

(RPM) 

Mesh size per 
blade domain in 

millions 

Grids 
along 

the foil 
CM 𝜀𝜀 

(%) 

20 0.911 375 

1.46 109 0.001755 40.69 

1.91 165 0.002364 4.42 

2.76 226 0.002373 4.01 

3.06 250 0.002413 2.31 

4.24 339 0.002469 0 

 

4.1.2. Turbulence Model. The selected turbulence model was Shear Stress  

Transport (𝑆𝑆𝑆𝑆𝑇𝑇 𝑘𝑘 − 𝜔𝜔) [40]. The 𝑆𝑆𝑆𝑆𝑇𝑇 𝑘𝑘 − 𝜔𝜔 model was chosen due to its capability of 

predicting adverse pressure gradient flows, which occurs in water turbines [41, 42]. The 

turbulence model was considered steady, and a multiple moving reference frames (MRF) 

approach was incorporated. In MRF, the flow within the rotor domain is steady with respect 

to the rotating blades, which further simplifies and accelerates solving the turbulence 

model. The governing equations utilized by the moving reference frame in steady 

turbulence model are as below [43]: 
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𝜕𝜕𝜋𝜋
𝜕𝜕𝜕𝜕

+ ∇��⃑ ⋅ 𝑈𝑈��⃗ 𝜋𝜋 = 0 (1) 

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜋𝜋𝑈𝑈��⃗ 𝜋𝜋� + ∇��⃑ ⋅ �𝜋𝜋𝑈𝑈��⃗ 𝜋𝜋𝑈𝑈��⃗ 𝜋𝜋� + 𝜋𝜋�2𝜌𝜌�⃗ × 𝑈𝑈��⃗ 𝜋𝜋 + 𝜌𝜌�⃗ × 𝜌𝜌�⃗ × 𝜋𝜋� = −∇��⃑ 𝑝𝑝 + ∇��⃑ ⋅ 𝜏𝜏𝜋𝜋� + �⃗�𝐹 

(2) 

where, 𝑈𝑈��⃗ 𝜋𝜋 is the relative velocity and is defined as 𝑈𝑈��⃗ 𝜋𝜋 = 𝑈𝑈��⃗ − 𝜌𝜌�⃗ × 𝜋𝜋 , where 𝑈𝑈��⃗  is flow 

velocity. The Coriolis and centripetal forces are introduced in the MRF momentum 

equation through the terms 𝜋𝜋�2𝜌𝜌�⃗ × 𝑈𝑈��⃗ 𝜋𝜋� and 𝜋𝜋(𝜌𝜌�⃗ × 𝜌𝜌�⃗ × 𝜋𝜋) respectively, where 𝜌𝜌�⃗  is the 

angular velocity, ∇��⃑ 𝑝𝑝 is the pressure gradient through the rotor, 𝜏𝜏𝜋𝜋�  is the viscous shear stress 

tensor, and �⃗�𝐹 is the external force. For the current steady-state simulation of the turbine, 

the first term in Equation 1 (𝜕𝜕𝜌𝜌
𝜕𝜕𝑡𝑡

) and the last term in Equation 2 (�⃗�𝐹) are eliminated. 

4.1.3. Solver and Boundary Conditions. The computational domain and applied  

boundary are denoted in Figure 8. One sidewall of the water tunnel and one-third of the 

rotor interfaces were hidden in Figure 8 to allow for the demonstration of components. The 

model was considered steady, incompressible, and was solved in ANSYS 18.2/Fluent. The 

solver type was set to a pressure-based coupled algorithm. This solver simultaneously 

solves the momentum equations (expressed using absolute velocity formulation) and the 

pressure-based continuity equation. The inlet was given a uniform velocity of 0.911 m/s, a 

turbulent intensity of 1%, and a turbulence length scale (𝑙𝑙) of 0.00117348. The turbulence 

length scale was calculated using the imperial relation 𝑙𝑙 = 0.07 × chord length. At the 

outlet, the relative pressure was set to zero, and the same inlet value of the turbulence length 

scale was assigned. The flow domains around the blades were set to the rotational frame of 

motion and were given the value of operational rotational speed, whereas the water tunnel 

domain was given a stationary frame of motion. Second-order up-winding discretization 
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schemes were selected for solving all the flow equations. Convergence criteria have been 

set such that the residuals for continuity equation, x-momentum, y-momentum, z-

momentum, 𝗄𝗄, and ω were less than 10−4. 

 
Figure 8. The water tunnel dimensions and boundary conditions (walls and free surface 

are hidden) 

4.1.4. Experimental Validation. The results generated from CFD were validated  

before importing loads to the FEA model. The CFD input operational conditions are listed 

in Table 3. The listed values of RPM were within the range between the optimum rotational 

speed (210 RPM) in the water tunnel power experiment and the used rotational speed in 

the delamination investigation experiment (245 RPM). The predicted power coefficient 

(𝐶𝐶𝑃𝑃), in Figure 9a, was in a good agreement with the experiment results. However, as 

shown in Figure 9b, the CFD model underestimated the thrust coefficient (𝐶𝐶𝑇𝑇). The 

predicted 𝐶𝐶𝑇𝑇 was noticed to deviated farther as TSR increased. 
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Table 3. CFD input operational conditions 

 

 

Figure 9. Predicted (a) power coefficient and (b) thrust coefficient validated against the 
corresponding experimental measurements 

4.2. FINITE ELEMENT ANALYSIS 

The finite element method was used to analyze the blade structural response using 

the commercial software of ABAQUS/CAE 2018. The pressure loads obtained from the 

CFD model was imported to the finite element model. Figure 10a shows the pressure 

distribution on the blade surfaces using CFD. Figure 10b shows the same pressure loads 

Pitch angle 

(degree) 

Velocity 

(m/s) 

Rotational speed 

(RPM) 

20 0.911 

210 

235 

245 
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mapped onto the finite element model using ABAQUS/CAE 2018. More details about the 

geometry and model setup are discussed in this section. 

 
Figure 10. (a) Total pressure distribution obtained in ANSYS Fluent and (b) total 

pressure imported to ABAQUS/CAE 2018 using the analytical mapped fields 

4.3. BLADE GEOMETRY 

The blade used in the finite element simulation was similar to that used in both the 

experiment and the CFD simulation; however, the blade layers were individually modeled 

as solid bodies as shown in Figure 11. The Teflon sheets were represented inside the blade 

body by subtracting Teflon volume form the composite materials between the second and 

the third layers at the upper and the lower halves of the blade. These Teflon locations were 

similar to that in the fabricated and tested blades. The blade layers were modeled using 
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MATLAB and CAD software. The MATLAB code was developed to split the hydrofoils 

into upper and lower curves and then offset these curves by multiple of the layer thickness 

(0.3175 mm); thus, all layers curves are generated.  

 
Figure 11. An illustration of the 8 CFRP laminates used to model the blade 

5. RESULTS AND DISCUSSION 

The samples were thermographically imaged after every million resolutions. The 

infrared images were analyzed to measure the area of delamination after each run. Figure 

12 shows an example of the taken thermography images for all three layup orientations.  
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Figure 12. Thermography images of (a) [45o/-45o]S back side before operation, (b) [0o]4 
back side before operation, (c) [0o/90o]S back side after operation, (d) [45o/-45o]S back 

side after 3M revolutions, (e) [0o]4 back side after 3M revolutions, and (f) [0o/90o]S back 
side after 3M revolutions 

A MATLAB code was generated to process the images and pinpoint the pixels that 

are gradually changing in color from fully debonded layers to intact layers. Once the pixels 

were determined, ImageJ software (developed by NIH, Bethesda, MD) was used to 

measure the area based on the number of pixels and the size of each pixel. The images were 

converted into 8-bit to create a grayscale image before setting up the scale size and create 

a threshold that will generate a color contrast for each pixel or group of pixels that have 

the same intensity. A total of 24 images were analyzed. Table 4 shows the area of 
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delamination for each blade before the operation, after 1 million revolutions, 2 million 

revolutions, and 3 million revolutions. To reduce the noise, the pixels with a size less than 

0.03 inch2 (20 mm2) were excluded, which will result in having only two highlighted areas 

in each image (middle and bottom debonding locations), as shown in figure 13.  

Table 4. The area measurements of all blades 

Laminate 
stacking 
sequence 

Number of 
revolutions 
in millions 

Middle 
Back 
(mm2) 

Middle 
Front 
(mm2) 

Bottom 
Back 
(mm2) 

Bottom 
Front 
(mm2) 

[0o/90o] 0 167.771 168.222 167.603 169.778 

[0o/90o] 1 169.487 170.051 224.931 217.775 

[0o/90o] 2 170.008 170.408 227.134 220.015 

[0o/90o] 3 170.257 170.597 229.566 222.947 

[0o] 0 169.431 168.055 170.727 168.215 

[0o] 1 169.917 169.643 180.623 175.009 

[0o] 2 170.099 169.882 181.913 176.184 

[0o] 3 170.155 169.959 182.056 176.468 

[45o/-45o] 0 167.915 168.123 170.845 167.991 

[45o/-45o] 1 169.004 171.357 214.036 184.641 

[45o/-45o] 2 169.399 172.701 217.451 188.041 

[45o/-45o] 3 169.529 173.765 219.093 190.586 
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Figure 13. The process of eliminating the noise and calculating the area where(a) the 
image after being converted to 8-bit, (b) the image before creating a threshold and it 

shows 1026 readings, and (c) the final image after eliminating the noise and it shows only 
the two debonded areas 

A finite element model was created using ABAQUS/CAE 2018 to visualize the 

stress distribution along the blade up to the point of failure. Figure 14 shows the exerted 

stresses on both sides of the [0o/90o]S blade. The backside showed a higher magnitude of 

stress compared to the front side, which supports the findings of this study. 
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Figure 14. The von Mises stress distribution on (a) front side of the blade and (b) 

backside of the blade 

The [0o]4 blades showed the least stresses resulted from the hydrodynamic loads. 

On the other hand, the [0o/90o]S showed the maximum stresses. Accordingly, the results 

from the thermography analysis showed significant debonding growth in the [0o/90o]S blade 

compared with the other two lay-up orientations. The least growth was noticed in the 

unidirectional blade ([0o]4). In addition, there was a direct relationship between the radial 

location of the damaged area and the rate of delamination growth. At the middle debonding 

location, all blades showed relatively very little delamination. On the other hand, the 

bottom location showed a clear delamination growth after each iteration. It was noticed 

that the backside had more delamination than the front side. This can be attributed to the 

fact that there are higher stresses near the root of the blade on the backside compared to 

the front side. Figures 15 and 16 showed the change in interlaminar debonding areas in the 

middle and the bottom of the blade, respectively. 
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Figure 15. The growth in the debonding area of the three laminate stacking sequences at 

(a) middle back, (b) a middle front 

 
Figure 16. The growth in the debonding area of the three laminate stacking sequences at 

(a) bottom back, (b) bottom front 

The mismatch in the stiffness between the adjacent layers has directly contributed 

to the delamination growth. Since the axial stresses dominated the loading, therefore, the 
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[0o]4 blade has shown the best performance with the least propagation. The percentage of 

delamination growth at the bottom location of the backside after the first million revolution 

for the [0o]4, [0o/90o]S, and [45o/-45o]S lay-ups were 5.79%, 34.2%, and 25.28% 

respectively. After two million revolutions, the percentage of growth dropped significantly 

to become 0.71%, 1.42%, and 1.59%, respectively. After three million revolutions, the 

debonding growth was 0.07%, 0.62%, and 0.75% respectively. The experiments ended 

after three million revolutions due to the stability of the blade to resist the interlaminar 

debonding growth. 

6. CONCLUSION 

Analysis and experiments on the interlaminar debonding growth with respect to the 

orientation of the laminate in a CFRP water turbine blade was presented. Unidirectional 

([0o]4), cross-ply ([0o/90o]S), and angle-ply ([45o/-45o]S) laminate stacking sequences were 

selected for this study. CFRP composite blades were manufactured using the OOA 

technique. During the manufacturing process, two defects were introduced at two locations 

(middle and bottom of the blade). These defects were created on both sides of the blade 

(front and back). Infrared images were taken on four stages: (1) before placing in the water 

tunnel, (2) after running in water tunnel for one million revolutions, (3) after two million 

revolutions, and (4) after three million revolutions. A finite element model was created to 

predict the stress distribution on both sides of the blade. The bottom debonding location 

showed higher growth in delamination compared to the middle location. The observations 

obtained from this study are in complete agreement with the stress distribution analysis 

that showed the maximum stresses being located near the root of the blade. The 
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unidirectional laminates showed the least debonding growth compared to the other two 

angle-ply laminates. This higher resistance of interlaminar debonding growth was 

contributed to the fact that the direction of the load is parallel to the fibers in the 

unidirectional blade. In conclusion, the unidirectional blades are recommended when 

manufacturing CFRP composite blades for horizontal axis water turbines because of their 

higher stiffness and higher delamination resistance. 
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ABSTRACT 

Due to its high strength to weight ratio, sandwich structures have become very 

popular in recent years. However, these structures are plagued with a weak core-to-

facesheet bond strength. In this work, the effect of increasing the contact area between the 

composite facesheet and honeycomb core was studied. Sandwich panels were 

manufactured using two different honeycomb structures, a regular and a modified 

honeycomb, and their respective bond strengths were evaluated using the flatwise tension 

test. The modified honeycomb was designed to have a larger surface area while retaining 

the same relative density as the regular honeycomb. A finite element model was created to 

study the integrity of the sandwich structures subjected to localized impact damage. In 

order to validate the model, impact specimens were manufactured and tested for impact 

resistance. The facesheets were made out of carbon-fiber, while the core was additively 

manufactured using 304L stainless steel powder. The finite element model of the damage 

resistance due to impact showed a good agreement with the experimental results. Samples 

with increased contact area showed higher impact resistance. The average impact strength 

of the modified samples was 41.3% higher than the average impact strength of the regular 
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samples. Flatwise tension results showed that by increasing the contact area between the 

core and the facesheet the core-to-facesheet bond strength increased. 

1. INTRODUCTION 

Fiber-reinforced composite materials are made of high strength fibers, which are 

bonded to a matrix [1]. The fibers' contribution can be condensed down to load carrying, 

while the matrix is the member that holds the fibers together [2]. Sandwich structures 

incorporate a core that is sandwiched between two facesheets made from stiff materials 

[3]. Sandwich structures use a light weight core material to increase the thickness of the 

composite panels which increases the bending stiffness of the composite panels by 

increasing the bending moment [4]. Sandwich structures can also be flat or curved, as 

shown in Figure 1.  

 
Figure 1. (a) Flat sandwich structure and (b) curved sandwich structure 
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These facesheets support the structure against bending loads, while the core 

transfers shear force between the faces in a sandwich panel under load [5, 6]. The main 

reason for seeking to use honeycomb sandwich structures lies in their high stiffness to 

weight ratio. They can be light in weight and yet withstand relatively high loads. This 

property makes them preferable for applications where weight reduction is important. The 

configuration of the core differs based on the application. The honeycomb shape is a 

common core configuration in sandwich structures.  Paik et al. [7] go as far as claiming 

that this configuration is the most popular one when constructing sandwich structures.  

Due to its lightweight and reduced stiffness, the core is normally the weakest part 

of sandwich composites [8]. Although sandwich structures are desirable in a wide range of 

applications, they only see limited use in some applications such as large aircraft structures. 

This is due to their relatively poor resistance to localized impact loading from dropped 

tools to hail to debris encountered during operation [9]. Studies have been done to improve 

the performance of the sandwich structures. Leijten et al. [10] experimentally investigated 

the impact behavior of sandwich structures in aircraft. The aim was to reduce facing 

thickness and add an additional layer of fabric to improve the performance of the structure. 

However, it was concluded that both reducing the thickness of the facesheet and putting an 

additional layer of fabric did not have any significant impact on the performance.  

For marine applications, Zenkert et al. [11] studied three localized damage cases on 

carbon fiber-reinforced polymer (CFRP) sandwich structures. It was found that any impact 

will significantly reduce the load-carrying capacity of the composite facesheet; however, 

the damage caused by localized transfer loads, which causes indentation on the composite 

facesheets, was found to less significant. Nevertheless, the accumulation of the onset of the 
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residual dent was found to causing an extreme loss of stiffness of the sandwich structure. 

Hull and Edgren [12] investigated the buckling, which resulted from low-velocity impacts 

in order to predict the residual strength of CFRP sandwich structures. Both thick and thin 

facesheet sandwich structure configurations were considered in the analytical study. The 

developed model was not able to predict the difference in residual strength between the 

thick and the thin laminates. These studies, along many other studies, may not have found 

the ultimate solution for all challenges that face sandwich structures; however, they are 

essential in understanding the behavior of sandwich structures under localized loads such 

as impacts. This work is focused on enhancing the performance of the honeycomb 

sandwich structure by increasing the contact area between the facesheet and the core while 

maintaining the weight of the whole sandwich structure.  

2. MATERIALS 

2.1. FACESHEETS 

The facesheets of the sandwich panels were manufacture using IM7/Cycom 5320-

1 carbon/epoxy prepreg by Cytec Engineering Materials Inc. This prepreg system is 

distinguished by its suitability to the out-of-autoclave (OOA) manufacturing process. The 

material properties of the IM7/Cycom 5320-1 prepreg system are shown in Table 1 [13].  

Table 1. Material properties of IM7/Cycom 5320-1 carbon/epoxy prepreg 

Property Symbol Value 

Longitudinal tensile modulus E11 156𝑥𝑥109 Pa 

Transverse tensile modulus E22 9.3𝑥𝑥109 Pa 

Longitudinal Poisson’s ratio ν12 0.3 
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Damage evolution fracture energy constants for IM7/Cycom 5320-1 carbon/epoxy 

prepreg laminate were taken from literature, and they are shown in Table 2 [14]. To 

improve the accuracy of the calculations, viscosity coefficients for longitudinal tensile 

strength, longitudinal compressive strength, transverse tensile strength, and transverse 

compressive strength were assumed to be 1 × 10−4 [15, 16].  

Table 2. Damage evolution fracture energy constants of the IM7/Cycom 5320-1 

 

Table 1. Material properties of IM7/Cycom 5320-1 carbon/epoxy prepreg (cont.) 

Property Symbol Value 

In-plane shear modulus G12 5.5𝑥𝑥109 Pa 

Transverse shear moduli G13, G23 5.5𝑥𝑥109 Pa 

Longitudinal tensile strength XT 2.503𝑥𝑥109 Pa 

Longitudinal compressive strength XC 2.078𝑥𝑥109 Pa 

Transverse tensile strength YT 75.9𝑥𝑥107 Pa 

Transverse Compressive strength YC 165𝑥𝑥106 Pa 

Longitudinal shear strength SL 73𝑥𝑥106 Pa 

Transverse shear strength ST 73𝑥𝑥106 Pa 

Property Symbol Value 

Longitudinal tensile fracture energy FLT 81.5×103 J/m2 

Longitudinal compressive fracture energy FLC 106.5×103 J/m2 

Transverse tensile fracture energy FTT 0.277×103 J/m2 

Transverse compressive fracture energy FTC 5.62×103 J/m2 
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2.2. THE CORE 

Argon gas atomized 304L stainless steel powder was used as the feed material for 

the core during this study. The size of the powder particles ranged between 15 µm to 63 

µm. When 304L stainless steel is utilized in the selective laser melting (SLM) 

manufacturing process, it minimizes the need for solution annealing, due to its low carbon 

content [17]. 

3. MANUFACTURING AND ASSEMBLY 

Two different honeycomb core configurations were manufactured. The first 

configuration was a normal hexagon shape honeycomb, as shown in Figure 2. For the sake 

of simplicity, this configuration will be called “regular.”  

 
Figure 2. (a) The designed configuration of the regular honeycomb core and (b) the 

additively manufactured regular honeycomb core 

The second configuration is a hexagon honeycomb core with 238% more surface 

area at the top and bottom faces. This configuration will be referred to as the “modified” 
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honeycomb core. The modified honeycomb core is illustrated in Figure 3. In order to 

maintain the same weight for both configurations, the size of the walls for the modified 

honeycomb core was minimized from 0.15 mm (regular core) to 0.137 mm. This step was 

necessary to compensate for the increase in surface area. Both configurations had a height 

of 20 mm. 

 
Figure 3.  (a) The designed configuration of the modified honeycomb core and (b) the 

additively manufactured modified honeycomb core 

A Renishaw AM250SLM machine was used to manufacture the honeycomb 

samples by selective laser melting of the 304L stainless steel powder. The samples were 

cut into 50.8 mm X 50.8 mm X 20 mm. Each sample was weighed on an LBK12a Adam 

Weighing Scale with an accuracy of 0.45 gram (0.001 lb). The samples were found to be 

88 grams (0.194 lb) with a 0.51% error. This corresponds to an area density of 34.1 kg/m2. 

The out-of-autoclave process was utilized to complete the fabrication of the 

facesheets. IM7/Cycom 5320-1 carbon/epoxy prepreg was selected to manufacture the 
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facesheets. The thickness of each sandwich facesheet was 1.27 mm. Afterward, the SLM 

304L stainless steel honeycomb cores and the composite facesheets were bonded using 

MTA241/PK13 adhesive system, manufactured by ACG. MTA241/PK13 has a nominal 

density of 29 g/cm2. The out-of-autoclave process was used to ensure a better bond between 

the facesheet and the core, as shown in Figure 4.  

 
Figure 4. Out-of-autoclave process bagging assembly 

 
Figure 5. Manufacturer recommended cure cycle 
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4. EXPERIMENTS 

4.1. IMPACT TEST 

Instron Dynatup 9250 HV shock drop tower was utilized to carry out all impact 

tests, as shown in Figure 6. This machine is a gravity/spring falling weight type of tower, 

with the ability to electronically control the free-fall height, impact energy, or impact 

velocity. It has the capability of impacting samples at energies of up to 1603 J/m. It 

provides a high-speed precision data collection (up to 5 MHz). In this study, all samples 

were impacted with a 6.435 kg drop weight. The drop height was 0.0958 m for all samples 

to generate a 1 J/mm impact. Samples were secured during the impact tests by the mean of 

two clamping plates. The samples were impacted with a 12.7 mm diameter impactor pin 

with a rounded tip. Impulse software was used to display and store the impact data. The 

standard practice for damage resistance testing of sandwich constructions (ASTM 

D7766/D7766M-16) [18] was followed during the experiment preparation process.  

 
Figure 6. The impact test setup 
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Both Configurations, modified and regular, were tested for energy absorption. 

Samples were prepared to be 50.8 mm X 50.8 mm with a facesheet thickness of 1.27 mm. 

The height of the core was 20 mm, which makes the height of the whole sandwich structure 

from panel to panel is 23.1 mm ± 0.73 mm, including the adhesive layers between the 

facesheet and the core.  

4.2. FLATWISE TENSION TEST 

Flatwise tension testing was performed on the regular and modified samples using 

Instron 5985 test frame with a 250 kN load cell. Testing was based on ASTM C297- 

Standard Test Method for Flatwise Tensile Strength of Sandwich Constructions [19]. 

Aluminum loading blocks were attached to 50.8 mm x 50.8 mm samples using the 

MTA241/PK13 adhesive system. Samples were tested at ambient conditions with a 0.50 

mm/min loading rate. Three samples were tested for each honeycomb core. 

 
Figure 7. The setup of the flatwise tension test 
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4.3. FINITE ELEMENT ANALYSIS OF IMPACT 

ABAQUS/CAE Software was used to develop a model of the two sandwich core 

composite structures for this study. Material properties were assigned using literature 

properties from section 2. The simulation was carried out using dynamic/explicit solver 

with a step time of 10 × 10−3 seconds. For the adhesive layers between the facesheet and 

the honeycomb core, a cohesive material behavior was created with a mixed-mode damage 

evolution. The impactor was modeled as a discrete rigid body with a diameter of 12.7 mm 

and a mass of 6.435 kg. Four plies were modeled to represent a single facesheet, with each 

ply having a thickness of 0.3175 mm. The facesheets were modeled using a continuum 

shell. The laminate stacking sequence of [45o/0o/-45o/90o]S was created for the composite 

layup orientation. A general contact (explicit) was selected to represent the interaction 

between the sandwich structure and the impactor. A tangential behavior with penalty 

friction formulation and friction coefficient of 0.3 was created as an interaction between 

the CFRP laminates. The impact panel was pinned from four sides (U1=U2=U3=0) and 

ENCASTRE of the edges of the bottom face (U1=U2=U3=UR1=UR2=UR3=0), as shown in 

Figure 8. Where U1, U2, U3, UR1, UR2, and UR3 are the displacement in the x-direction, 

displacement in the y-direction, displacement in the z-direction, rotation along the x-axis, 

rotation along the y-axis, and rotation along the z-axis, respectively.  
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Figure 8. The boundary conditions of the modeled sandwich structure 

A reference point was created at the tip of the impactor, and it was given a velocity 

of 1.37 m/sec. All components were meshed individually using ABAQUS/CAE meshing 

tool, and the technique selected during the meshing process was sweep with a quad-

dominated element shape. Figure 9 shows the meshed assembly. The mesh size was 

verified using the built-in mesh verification tool in ABAQUS/CAE, and the worst aspect 

ratio was 1. This step was very important as it guaranteed that there would be no excessive 

element distortion during the simulation.  
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Figure 9. The meshed components using ABAQUS/CAE meshing tool 

5. RESULTS AND DISCUSSION 

5.1.  IMPACT RESULTS 

Impact testing of the honeycomb sandwich panels showed an improvement in the 

damage resistance when using the modified core structure. Both samples withstood a 6 J 

impact and suffered some surface denting.  Analysis of the data shows that the modified 

structure absorbed an average of 4.22 J of energy, and the regular structure absorbed 4.73 

J. The modified core average resting energy was 1.798 J, while the regular honeycomb core 

average resting energy was 1.277J. This is an improvement of 38% over the traditional 

honeycomb. The modified structure was also able to withstand more force before the 
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damage. The modified sandwich core generated average peak loads of 10.23 kN versus the 

regular core’s 8.47 kN, an improvement of 20%. The modified samples also generated less 

deviation for the test. Tables 4 and 5 show the results obtained from the impact tests for 

the modified and the regular sandwich structures, respectively.   

Table 4: Modified sandwich impact results 

Sample Max Force 
(kN) 

Peak Energy 
(J) 

Absorbed 
Energy 

(J) 

Resting Energy 
(J) 

1 10.115 5.999 4.179 1.820 
2 10.311 6.049 4.292 1.756 
3 10.276 6.022 4.204 1.818 

Average 10.234 6.023 4.225 1.798 
Standard 
Deviation 0.104 0.024 0.059 0.036 

 

Table 5: Regular sandwich impact results 

Sample Max Force 
(kN) 

Peak Energy 
(J) 

Absorbed 
Energy (J) 

Resting Energy 
(J) 

1 8.989 6.012 4.579 1.433 
2 8.298 6.019 4.816 1.203 
3 8.135 5.985 4.789 1.196 

Average 8.474 6.005 4.728 1.277 
Standard 
Deviation 0.453 0.017 0.129 0.134 

 

The plots of force versus time show more deviation in loading for the regular 

honeycomb core. This deviation during loading can be attributed to the destruction of the 

composite facesheet.  
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Figure 10. Impact load of modified honeycomb cores 

 
Figure 11. Impact energy of modified honeycomb cores 
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Figure 12. Impact load of regular honeycomb cores 

 
Figure 13. Impact energy of modified honeycomb cores 
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5.2. FLATWISE TENSION RESULTS 

Flatwise tension testing showed an increase in the face bonding strength with the 

increase in the contact area between the core and the face sheets. The tested samples all 

exhibited adhesive failure of the core-facing adhesive. For the conducted tests, the strength 

of the adhesive was the critical failure in the composite design. The ability to increase the 

bonding area through the use of a modified core leads to a 70% increase in tensile strength 

for the sandwich structures.  

 
Figure 14. The flatwise tensile strength of all samples 
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Table 6: Flatwise tension maximum load 

Sample Regular (kN) Modified (kN) 
1 11.02 15.20 
2 9.90 15.35 
3 11.25 14.01 

Average 10.72 14.85 
Standard Deviation 0.72 0.73 
 

Table 7: Ultimate flatwise tension strength 

Sample Regular (MPa) Modified (MPa) 
1 3.476 5.863 
2 3.333 5.832 
3 3.413 5.760 

Average 3.407 5.818 
Standard Deviation 0.072 0.053 
 

5.3. FINITE ELEMENT ANALYSIS RESULTS 

The results obtained from the finite element model showed a higher damage 

resistance in the modified honeycomb core sandwich structure compared with the regular 

one. The maximum force for the modified core was 10.43 kN, as shown in Figure 15. 

Whereas the maximum force for the regular honeycomb core was 7.38 kN, as illustrated in 

Figure 16. Thus, the modified core has increased the impact resistance for the whole 

structure by 41.3%.  



94 
 

 
Figure 15. The load and energy of the impacted modified honeycomb core 

 
Figure 16. The load and energy of the impacted modified honeycomb core 

Figure 17 shows a comparison between the experimental results and numerical 

results. The results obtained from the finite element model showed a good agreement with 



95 
 
the experimental results. The modified core showed superior performance in comparison 

with the regular core.  

 
Figure 17. The maximum load obtained from the finite element model vs. experiments 

for both configurations  

The impactor traveled a larger distance while impacting the regular samples 

compared with distance traveled while impacting the modified samples. Figure 18 and 

Figure 19 show the impacted zone for regular and modified honeycomb core, respectively.  
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Figure 18. The magnitude of the displacement in the Z-direction for the regular core 

 

 
Figure 19. The magnitude of the displacement in the Z-direction for the modified core 
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6. CONCLUSION 

Two honeycomb cores, regular and modified, configurations were designed and 

additively manufactured using 304L stainless steel. The modified honeycomb core had a 

238% larger contact area when compared to the regular honeycomb core. Sandwich 

composite panels were manufactured using these two cores and a carbon prepeg facesheet. 

These sandwich panels were evaluated for their bond strength and impact resistance using 

the flatwise tension test and impact test respectively. The configuration with a larger 

contact area showed a better performance compared with the regular honeycomb core. 

Results showed that the flatwise tensile strength increased greatly due to the additional 

bonding area. A finite element model was developed to study the damage due to impact. 

The model was validated using the results obtained from the experiments. The modified 

honeycomb core showed an impact resistance with a 41.3% higher than the regular core. 

In addition, the increased contact area acted as an additional supporter to the sandwich 

structure and prevented the impactor nose from further penetrating the core. Therefore, 

from this study it can be concluded that increasing the surface bonding area in sandwich 

composites will lead to higher impact resistance and stronger bonding between the core 

and the facesheet. 
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SECTION 

3. CONCLUSION 

The first paper involved the investigation of the structural integrity of CFRP water 

turbine blades with different laminate stacking sequences. A finite element model was 

developed to determine the location of the failure initiation. A modified blade element 

momentum theory was used to determine the hydrodynamic forces along the span of the 

blade while operating under optimum characteristics. The blades were tested till failure, 

and then results were compared with the FEM for validation. The effect of the bending 

load and the hydrodynamic load on the water turbine blades with unidirectional laminates 

and cross-ply laminates were investigated. The unidirectional blades showed a higher 

resistance towards both loads. However, as angles were induced while applying the load, 

the unidirectional blades showed a deterioration in the performance while the cross-ply 

blades had a steady performance. Both laminate stacking sequences showed the failure 

initiation near the root of the blade. This study concluded that the hydrodynamic loads are 

not strong enough to initiate any failure on the blades. However, it is important to note that 

the periodic application of the small load/traction may induce failure due to fatigue, which 

was beyond the scope of the current work. The maximum stress due to the hydrodynamic 

forces was around 0.060 GPa, which was located at the root of the blade. 

The second paper involved an investigation of the delamination growth based on 

the laminate stacking sequence of CFRP water turbine blades. Samples were manufactured 

from IM7/Cycom 5320-1 prepreg system using OOA process. Three different layup 

orientations were tested ([0o/90o/90o/0o], [0o/0o/0o/0o], and [+45o/-45o/-45o/+45o]). An 
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interlaminar separation was created between the plies in two different locations (middle 

and bottom) and from both sides (back and front) of the blade. Thermography analysis 

approach was utilized to visualize the internal separation growth. Thermal images were 

taken of the interlaminar debonding locations before the blades start the operation in the 

water tunnel and after every 1 million revolutions. The experiment was stopped after 3 

million revolutions because the behavior of the delamination of all blades had a very small 

fluctuation. A one-way fluid-structure interaction model was developed to visualize the 

stresses along the blade. The unidirectional blade showed the highest resistance to 

delamination. Whereas, the cross-ply laminate blades showed the highest delamination 

growth.  

In the third paper, the effect of increasing the contact area between a facesheet and 

a core in a sandwich structure was studied. The core was additively manufactured using 

304L stainless steel powder. Two honeycomb core configurations were manufactured. 

First, a regular honeycomb core with no modifications in the top and bottom faces. The 

second configuration has been modified to have 238% more surface area on both faces. 

The weight of both configurations was maintained equally by reducing the wall thickness 

of the modified core. The facesheets were manufactured using IM7/Cycom 5320-1 prepreg 

system, and they were bonded to the cores using a commercial adhesive system. A finite 

element analysis (FEA) model was developed to investigate the resistance of the localized 

damage due to the impact of both configurations. Experiments were carried out to validate 

the FEA model. The modified honeycomb core showed a 41.3% higher resistance to the 

impact damage. A flatwise tensile strength test was conducted to evaluate the increase of 

the contact area on the strength of the bond between the core and the facesheet. The 
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modified sandwich structures showed an improvement in the bonding strength compared 

to the regular core. The maximum tensile strength of the modified samples was 15.35 kN, 

while the maximum tensile strength of the regular honeycomb core was 11.25 kN. The 

finite element model showed a good agreement with the experiments. This study concluded 

that increasing the contact area between the facesheet and the core can lead to an increase 

in the damage resistance due to impact and a higher tensile strength.  
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