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ABSTRACT

iii

With increasingly stringent requirements for lower voltage supply, and higher 

density in PCB PDN design, now integrity (PI) is an increasingly important aspect that 

must be considered. A pre-layout tool based on the Cavity Model and Boundary Element 

Method is built to automatically achieve a specified target impedance for a multi-layered 

Printed Circuit Board (PCB) Power Distribution Network (PDN) design with a minimal 

number of decoupling capacitors.

The pre-work about the post-layout design and analysis is proposed and the 

guidelines for creating a decoupling capacitors network with better performance has been 

built. With limit inputs, physical limitations for the minimal impedance that can be 

achieved in PDN system are calculated first to determine if a design is physically realizable 

and provide feedback to the user. The decoupling capacitor location will be determined by 

physics. Then a special decoupling capacitor selection algorithm through poles and zeros 

is utilized to determine which decoupling capacitor from a library should be added. Finally, 

the target impedance could be achieved using the minimum number of decoupling 

capacitors. Genetic algorithm is utilized to verify the performance and time cost of the new 

designed algorithm and several industry designs are used to verify the calculation result. 

The process is quite time-saving and convenient, and allows the user to do design discovery 

quickly, and determine the limiting factors under different conditions.
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1. INTRODUCTION

As we enter the era of large-scale integrated circuit (IC) systems, Moore's Law -  

the number of transistors in a dense IC doubles about every two years -  places greater 

demands on system design. To achieve higher speed and density, lower power consumption 

and higher transient currents, engineers need to consider about how to design a system -  

level power distribution network (PDN) that meet engineering requirements with better 

performance and greater stability under a variety of constraints. This difficulty comes from 

two sources: on the one hand, the modeling methods used to solve the problems are loss of 

use with the accelerated complexity of the printed circuit board (PCB); on the other hand, 

in the conditions of Moore's law, the time leaving for scholars to solve the model is 

gradually compressed, that is, researchers are required to use less time to handle more 

complicated issues.

There are many considerations and constraints for PCB design, however, power 

integrity (PI) is a major bottleneck faced by system today [1]. As data rates increase, with 

higher power consumption of ICs and ASICS, and lower signal voltages, there is often 

more focus on the signal integrity (SI) design in a high-speed electronic system. However, 

because of the advancement of semiconductors and packaging technology, the maximum 

tolerable power voltage ripple on the PCBs has also significantly reduced [2]. As a result, 

the reduction of the voltage noise margin makes it harder to meet the power transmission 

requirements under new demands, which poses challenges for the design and power 

integrity analysis of power distribution networks (PDNs) in contemporary electronic

systems.
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In general, the function of PDN is to establish a current path to deliver power to a 

PCB device. A typical PCB PDN, which is illustrated in Figure 1.1, mainly includes the 

power and the decoupling capacitor network, voltage regulator modules (VRM), and 

several network cabling. For convenience, decoupling capacitor or decoupling capacitors 

would be referred as “decap or decaps” in this thesis. At the center point there is a packaged 

IC part. IC is mounted on the mainboard with a power supply through a socket, where the 

voltage is transformed from the source to IC through VRM.

Because of the parasitic parameters in the PDN system, voltage ripple would be 

generated from the transient current caused by the switching circuit in the ICs, and there 

would be PI problems from the voltage drop at the power supplies, which would have a 

bad impact on the performance and usage of the PDN. The voltage drop at the IC port can
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not only slow down the electron transfer rate on the transistor, but also prevent the transistor 

from switching states. Meanwhile, the increased voltage at the IC port can cause reliability 

issues and even lead to the damage of the PCB. Therefore, the impedance from the VRM 

to the IC section, which is usually defined as PDN impedance (Figure 1.2), should meet 

the requirements of the target impedance so that the DC current fluctuations would not 

affect the working states of all transistors. At the same time, electromagnetic interference 

(EMI) problems and signal integrity (SI) problems of a PDN system could also be caused 

by various aspects [3]-[9], such as, the noise from the IC switching current, the coupling 

from the voltage ripple through different DC supplies and nearby signals, the radiation 

from the discontinuities on the boards and so on [10].

Figure 1.2 The system PDN diagram and PDN impedance definition.

In the process of modern technology development, multilayer PCBs (more than 20 

-  30 layers), also with multiple power layers and power nets, have gradually replaced 

single-layer boards as the mainstream in the industry. Fundamentally speaking, in order to 

solve PDN problem, it is necessary to implement a better system design with minimized 

PDN impedance as seen looking from the IC because of the complex systems. There are 

many methods generated to analysis PI problem, to be specific, including the resonant 

Cavity Model, Partial Element Equivalent Circuit (PEEC), Boundary Element Method
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(BEM), and so on. Also, several commercial tools could be used to simulate the 

performance of a designed PDN, such as CST, Matlab, PowerSI and so on.

This thesis will start from the power supply integrity problem, and then propose a 

system understanding about the post-layout PCB PDN design from the theoretical basis to 

the establishment of a reasonable pre-layout PCB PDN tool with the application of real 

products. The main idea is that if  engineers can have a better analysis and prediction of 

various performance of the PDN system at the early stage of design, users can find and 

solve the hidden power integrity problems as much as possible to minimize the possibility 

of product development failure and improve circuit reliability, which can not only reduce 

the cost, but also shorten the development time and provide a better reference for the 

subsequent design solutions.
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2. PHYSICS BASED PCB PDN MODELING METHOD

The PDN impedance should be carefully designed and minimized to achieve the 

required performance. For multilayer boards, designers have the flexibility to control the 

location of power layer in the board, the placement of decaps, and the number, distance, 

and arrangement pattern of decaps and each of these design options can affect the 

performance of the input impedance [11]-[16]. To meet the requirements, the PDN 

impedance (referred as Zpdn) must be designed smaller than the target impedance, which 

is set to achieve voltage ripple specifications.

Then the verification of the PDN design can be another issue. Usually it can be 

done through simulation, but the results cannot be simply linked to the real PDN design, 

one reason is that the simulation time is so long that, as the circuit complexity is increasing, 

the simulation of multi-layer circuit boards need to consume several days, so it is necessary 

to find a more concise way to calculate Zpdn; the second reason is that there is still a certain 

gap between the simulation structure and the real case, and then users are required to spend 

more time on the real measurements.

Meanwhile, various methods have been developed over the years to perform the 

calculations, for example, for modeling the power/ground plane, there are the Partial 

Element Equivalent Circuit (PEEC) method [17]-[19], the Finite-Different Time-Domain 

(FDTD) method [20]-[21], the Method of Moments (MOM) method [22], the Plane 

Resonant Cavity Model method [23]-[24], the Transmission-Line Matrix (TLM) method, 

the Finite Element Method (FEM) [25], the Boundary Element (BEM) method [26] and so 

on. The system PDN could be divided into three parts, as PCB PDN, package (PKG) PDN
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and chip PDN and different part need to use different method to build the circuit model. 

PCB PDN is the main part of a PDN system, which is used to deliver power from the source 

through VRM to the ICs. This thesis would focus more on the PCB PDN part and Cavity 

Model, PEEC/Parallel Plate PEEC (PPP) and BEM are used in the PCB PDN equivalent 

circuit model extraction based on the different geometry details of different components in 

PCB PDN.

2.1. PDN IMPEDANCE CURVE WITH EQUIVALENT CIRCUIT MODEL

First, the target impedance (referred as Ztarget) should be defined carefully based on 

the IC switching current and the maximum allowable voltage drop to clarify the design 

requirements. A very straightforward and intuitive definition is given in [11] as:

7  _  Power Supply VoltagexVoltage allowed ripple(%)
" ta r9 et Current ( )

however, the voltage ripple and switching current would change with time and in this 

equation, the target impedance is a constant frequency domain concept. Actually, in high 

frequency range, PDN inductance would increase with the frequency and the constant 

resistance target impedance in the high frequency range, after about 100 MHz, could result 

in an over design [11]. Here a simple resolution is that after mid frequency range, such as 

100 MHz, the constant resistance could be replaced by an inductance and there would have 

a 20dB/decade increase in the target impedance curve as shown in Figure 2.1.
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Figure 2.1 The target impedance definition and the impedance curve of a typical PCB
PDN.

Based on the previously mentioned constrains about the PCB PDN design, solving 

PDN impedance equals to ensure the Zpdn is lower that the Ztarget, in other words, designers 

are suggested to first have a quick and convenience approach to calculate PDN impedance, 

then to layout the system which is complied with the industry specifications. And the 

inductance calculation part is the most essential aspect of PDN analysis. Analytical 

calculations for specific PCBs require area partitioning. The inductance associated with the 

current path between the IC to the decaps placed on the PCB is divided into smaller blocks, 

including Lpcb_eq, Lpcb_ic, LpCB_Decap, LpCB_Plane and Labove, that can be modeled separately, 

and the requirement is that there is little or no coupling between different blocks.

Figure 2.2 shows how a PCB can be divided so that the dominant part of the 

impedance in different frequency ranges can be clearly identified, and the researchers can 

use this as a basis for improving the inductance of a particular piece. Different methods are 

used to calculate different components of the PCB PDN. The inductance contribution of 

current between IC and power layer is defined as LPCB_IC and can be calculated by cavity 

model, the inductance contribution of current between decaps and power layers is defined
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as LpcB_Decap and also calculated by cavity model. Inductance of power plane, LpcB_piane, 

could be calculated by PEEC/PPP and the inductance between top or bottom layer and the 

decaps, which is defined as Labove could be obtained by pEEc.

Figure 2.2 The side view of a typical PCB PDN with decaps placed on the surface.

From low frequency range to high frequency range, the pDN impedance has a 

generic trend between different designs, as shown in Figure 2.1. If the VRM, PKG and 

Chip model are ignored first, at low frequency, the dominant structure is the decap 

capacitance and the impedance decreases as the frequency increases. At that stage, the 

current goes from IC to the decaps through the power area fill in the PDN system, then 

goes back from the decaps to the power return plane (ground plane). The equivalent 

inductance (Lpcb_eq) in the mid frequency can be calculated as,



9

LpCB_EQ = LpcBJC + LpcB_Decap + ^PCB_Plane + Labove (2)

in the mid and high frequency, instead of going to the decaps, the current would directly 

come back from the power area fill through the capacitance between the power area fill 

(power plane) and its nearby ground plane, calculated based on the plane area and distance 

as:

C,
eA

plane = ^ (3)

and the impedance would decrease with the frequency again. After that in the high 

frequency range, the dominate component is the inductance from the current contribution 

of the IC to the power plane, which is the minimum inductance of a typical PCB PDN. In 

the even higher frequency range, the cavity resonance leads to the end of the PDN modeling 

process.

Then the PI problem can be approached by handling each part of the inductance, 

such as, improving the IC pin map to decrease LPCB_IC, adding more decaps or changing 

the power layer location in the stackup to have smaller LPCB_Decap, arranging decaps 

placement around the IC to minimize LPCB_Plane, and utilizing better package and layout for 

the decap interconnect to achieve a lower Labove. In real case, VRM model would have 

influence on the PCB PDN in low frequency range and Chip and PKG model would have 

effect on the PCB PDN at mid and high frequency.
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2.2. INDUCTANCE EXTRACTION METHOD

According to the different geometries in the system, different methods are used in 

this thesis to generate inductance matrix from the design. The Cavity Model method is used 

for the cases with regular and large enough power and ground layers, while BEM is used 

for the cases with irregular power and ground layers with voids. The tool used for Labove 

calculation is based on PPP and the details are described in [27]-[30].

2.2.1. Cavity Model Method Used for Regular Plane Shape Case. The widely 

used cavity model method is utilized here to generate the inductance contribution for the 

current flowing through a parallel plane pair structure [31]-[32]. In most cases, the board 

vertical size is relatively smaller than its horizontal size so that it could be treated as 

electrically small and invariant in the analysis. Figure 2.3 shows a typical geometry of a 

two-layer case with a single via. Assume there is a current flowing throw the power via 

and there is also a current return via in the cavity. According to the cavity model method, 

it could be modeled by electromagnetic field theory and with the usage of Maxwell's 

equations, the Green's function and the boundary condition, the inductance between the 

two vias can be calculated as [11]:

j  (  n _ y ro  y rn (2 Sm)(2. &n)Li j \Wj — L m = o in = 0 Is2 _ 2^mn
f  (Xi,yi,Xj,yj') |(m,n)*(0,0) (4)

where:

f { x i, y i,x j , y j ) — cos sin  C Ifm n W r f n n y{\
2 a )  cos sin c

CnnWy (\ 
(  2b J

(m n x j\  . fm n W x ;\ f n n y ; \  . fn n W y f \
J sin  c (— cos (—j-1) s in  c (  2b J,
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k x  — 

—

2
m n nn  2 m n  2 n n \
—  ’ Ky -  Km n - [ — )  +  ( Y )

1 , m  -  0 l , n  -  0
0 , m ^ 0  ’ n - l 0 , n ^ 0 ’

2
k 2 — m 2^ e,

and a and b are the dimensions of plane along the x and y directions; (xi, yi, xj, yj) is the 

location of ith and j th port; Wxi and Wyi are the dimensions of ith port along x and y 

directions; m and n are the mode numbers; p is the permeability of the dielectric layer and 

s is the permittivity of the dielectric layer.

Figure 2.3 A rectangular power cavity with a power plane and return plane, with the 
lumped circuit model, including the parallel plate capacitance, loss, and inductors [33].

The advantage for Cavity Model is that the self and mutual inductance are already 

including in the calculation, and it can be easily extended from two planes structure to 

multiple layers PCB. However, it has the weak point that the Cavity Model method can 

only be applied when the two planes are large enough compared with the whole structure 

without voids in the layers.

2.2.2. Boundary Element Method Used for Arbitrary Plane Case. The

disadvantage of cavity model is that it cannot handle the case which the plane shape is 

irregular. And to solve that problem, another method named PEEC is suggested to extract
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the inductance value. However, PEEC would cost a lot of time to do the calculation with 

complex system, and then a method called BEM is implemented to generate inductance 

value of parallel-plane structures in [34]-[35]. The Boundary Element method is a very 

effective and time saving approach for calculating the quasi-static port inductance in 

irregular shaped power/ground plane structure, which is based on the Green’s function.

A typical case is designed to compare the different between BEM and Cavity Model 

method. The stack-up and IC pin map are placed in Figure 2.4 and the inductance 

performance in the 1GHz, named as Lpcb_ic in Section 2.1 is calculated to do the 

verification. To ensure the case is suitable for the cavity model, all the power layers and 

power-return layers are set as rectangular, and the sizes are large enough for placing all the 

vias. The comparison of the Zpdn with 18 low frequency decaps of 470 uF, which are placed 

at the top layer, is plotted in Figure 2.5.

(a) (b)

Figure 2.4 Geometry. (a) The stack-up (side view) of the designed case. (b) The IC pin 
map of the designed case. Blue dots are ground vias and red dots are power vias.
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Figure 2.5 Comparison of results from Cavity Model and BEM.

At higher frequency, the Lpcb_ic generated from BEM is 7.60 pH and the inductance 

calculated from Cavity Model is 7.09 pH. The difference is less than 7%, which means that 

these two methods agree well with each other.

2.2.3. Labove Calculation Based on PEEC/PPP. The inductance of a PCB PDN is 

not only coming from the system itself, but also the decap itself. Capacitor’s vendors would 

provide ESL, ESR and Capacitance value for each decaps, which is usually measured in a 

certain environment and the ESL value cannot be used directly in PDN analyses since the 

inductance would be different in different layouts or under different conditions. The Labove 

includes the inductance from the vias, pads and traces in the decap structure when it is
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mounted on the PCB surface as Figure 2.6 [29]. It is a decap layout named as ‘Doublet’ 

with two decaps and four vias are used to connect these decaps to the surface of PCB. And 

the inductance could be generated with PEEC.

Figure 2.6 A typical decap layout structure.

2.3. EQUIVALENT CIRCUIT WITH A SINGLE POWER LAYER CASE

After obtaining the inductance matrix for every via segment with multiple layers 

and multiple via connections from the Cavity Model or BEM, a simplified inductance 

matrix can be generated based on [14]. Also, the inductance matrix could be divided into 

different segments and then extended to multiple cavities. After simplified, a 4x4 matrix 

with self and mutual inductance from the current contribution in IC and around IC power 

and ground vias is constructed as:

\L big matr ix \

LIC_Power
L'AroundIC_Power

LIC_Ground
(5)

L'AroundIC _Ground

here LIC_Power and LIC_Ground is the inductance coming from IC power pins and ground vias; 

LAroundIC_Power and LAroundIC_Ground is the inductance coming from power vias and ground vias
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for the decaps placed around IC. As a result, the inductance for each portion in Figure 2.2 

can be calculated separately and used in the PDN impedance calculation.

After that, an impedance equivalent circuit model for a multilayer PCB with a 

single power net area fill can be developed, which is shown in Figure 2.7, based on the 

individual inductance portions and plane capacitance calculation. Here the decap network 

includes local decaps and low frequency decaps, which are the large decaps placed 

relatively far away from IC part to reduce the impedance in low frequency range. Also, 

there are some bulk decaps placed near the VRM model, even further than the low 

frequency decaps, which is ignored in this thesis. The plane capacitance is generated from 

a parallel plane capacitance calculation equation (3) and plane inductance must be 

simulated with Hspice because of the coupling between power-ground cavities, or a self

written Matlab circuit solver is used in this thesis and the boards with multiple power layers 

could also be modeled. The values from VRM, PKG and chip model would be provided 

by designers.

Figure 2.7 Equivalent circuit model.
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Finally, the remaining part in the equivalent circuit model is the loss, including R ic, 

G_piane and part of R_Decap since except for the decap loss, there would also be ESR value 

for different decaps. The loss of a PDN could be divided into two parts, as via loss and 

plane loss. The via loss calculation is simple and straightforward. The current would only 

flow through the surface of vias when the frequency increases, as shown in Figure 2.8, then 

the via loss can be generated as:

sk indep th  = -̂ ~ , A  = — n(rvia — skindepth.)2 = sk indep th  * 2nrvia (6)

h
Via loss = — , o  = 5.8 x  10

oA
7 (7)

and based on boundary conditions and cavity model, the input impedance could be 

generated by Green’s function as:

7 _ V’ro
^in = Zjm=0 2̂ n= 2ab{kxm+kyn k 2~) ( c o s k 2x m T ) 2 C nk2xmW/2) 2

V Xm J V ^xmW/2 J
(8)

if the material is not lossless, which means that k = k '  —]k",  then the equation can be 

rewritten as:

Zi n = l
ro
m=0 2̂ n= 0 . + ■

juC m n- j ( —^ - ) + G mn juC 00+G00
1 1

(9)

G00 = C00 x  (tan S + s k in d e p th /d ) (10)

then the first term of (10) is used as plane loss.
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skindepth

h

Figure 2.8 Via structure.

Several cases are used to validate this method. Here shows one of the test cases. 

Figure 2.9 is the stackup and board top view and Figure 2.10 shows the comparison result 

of Matlab calculation and CST simulation. The inductance difference is less than 5% and 

the peak of the resonance is greatly reduced when adding loss in the system.

Figure 2.9 The geometry details of the test board.
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Figure 2.10 Comparison between HFSS simulation and Matlab calculation.

With the circuit model and all existing values from the equation calculation, the 

PDN impedance can be calculated in different cases.
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3. POST-LAYOUT PCB PDN DESIGN

As mentioned before, there are two major challenges faced by the SI and PI 

designers when developing a PCB PDN, including how to analyze the performance of PCB 

PDN, which is defined as the post-layout design and how to improve the PDN network, 

which is defined as the pre-layout design. The physics-based post-layout PCB PDN design 

is an essential approach to solve the first problem, which would be the prerequisites for 

handling the second issue with a pre-layout design.

Also, it is necessary to think about what should be added in design considerations. 

Most important parts here are IC pin map, layout of the board, stack-up and decap network. 

Usually, the first three items are not decided by PI engineers, so this thesis mostly considers 

decaps, to be specific, the number, location, size, and layout of decaps and so on. Another 

pre-work for the pre-layout design in the post-layout part is to explore the influence of 

decap network to the inductance as Labove [12], LPCB_Decap [36] and LPCB_Plane [37]. Based 

on the equivalent circuit mentioned in Figure 2.6 and the methods mentioned in Section

2.2, the PDN impedance could be calculated and the comparison between the Matlab 

calculation and CST simulation is proposed in this section.

3.1. EQUIVALENT DECOUPLING CAPACITOR INDUCTANCE LIBRARY

Based on the equivalent circuit model theory, the mid frequency equivalent 

inductance (Lpcb_eq) is decided by LPCB_Decap, Lpcb_ic, LPCB_Plane and Labove. The calculation 

for LPCB_Decap based on Cavity Model method for different decap layouts has been validated 

with measurement and a library for LPCB_Decap values under different conditions has been
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built in this section. The calculation process and the results could be provided as guidelines 

in the following pre-layout design.

3.1.1. Different Layouts When Calculating LpcB_Decap. Decap inductance is the 

inductance from the current contribution through the decaps to the power-return plane 

which is the most nearby from the power plane. There are several factors can put influence 

on the decap inductance, including different geometries of decap layouts (The layouts are 

shown in Figure 3.1, and the first four cases are used in this thesis to process the study) and 

different number of decap pairs (1, 2, 4, 8, 16, 32, the placement of different decap pairs is 

shown in Figure 3.2). When adding decaps in the design, the simplest idea is that the decap 

inductance would be divided by the decap number. In fact, there are mutual inductance in 

between the power and ground vias in one single decap pair model and the inductance 

would tend to converge after adding lots of decaps.

Figure 3.1 9 different decap layouts.
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Figure 3.2 The decap placement when adding different number of decap pairs with power 
vias (red dots) and ground vias (blue dots) locations.

As a mostly commonly used decap placement pattern, the Shared via pattern 

(Figure 3.3 (a)) consists of two decaps and two vias which are connected by traces. 

However, according to the methods for LPCB_Decap calculation, the inductance of Shared- 

via case is much larger than other cases under the same condition, since the equivalent 

inductance cannot be reduced by mutual inductance.

When designing a PCB PDN, most engineers choose to add more decaps to get a 

smaller PDN impedance. However, due to the larger coupling inductance between adjacent 

decaps and vias, the actual impedance will be much larger than the ideal value. Therefore, 

some scholars have proposed a method of placing vias alternately, such as the structure of 

Doublet (Figure 3.3 (b)), to reduce the total impedance and also some practical experiments 

have shown that alternating of power and ground vias do effectively reduce inductance.

Other generally used layouts are Aligned and Alternating. In Aligned case (Figure 

3.3 (c)), decaps are placed directly, which will lead to a larger current path, thereby 

increasing the inductance. To improve this layout, Alternating is shown Figure 3.3 (d). This
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case is a modification of the Aligned case. The decap pairs are placed alternatively then 

the inductance of decaps is greatly reduced from the previous larger value.

(a)

(c)

(b)

(d)

Figure 3.3 Decap geometry. (a) Shared-via layout. (b) Doublet layout. (c) Aligned layout. 
W=50 mils, L=100 mils. (d) Alternating layout. Gap=11 mils, W=50 mils, L=100 mils.

3.1.2. Measurement and Validation for LpcB_Decap Calculation. Since a certain 

difference between the ideal simulation environment and the actual situation would always 

exist, the measurement is required to verify the result of the Matlab calculation. Based on 

the real inductance value, the inductance is so small that if  they are directly measured, the 

error would be very large. As a result, to make the error as small as possible, when 

designing the test board, the distance between first layer and second layer is relatively 

larger (40 mils) than others (8 mils) so that the inductance of decap part will be obvious.
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The details of the test cases are shown in Figure 3.4 and a picture of the real PCB is placed 

in Figure 3.5. The per-unit-length inductance of decap part can be calculated as:

LPCB_Decap_PUL — (l Fiixture  #1 — LFixture #2 ) / Dt o p _GND (11)

Figure 3.4 The stack-up of the test vehicle cases.

Figure 3.5 Test PCB.

The structures of these two test cases are similar. The first, second, and fourth layers

are ground layer, and the third layer is power layer. The inductance of decaps are marked
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in Fixture 1. And two-port measurement is used as [38] proposed. In Fixture 1, a short 

geometry is added between the top layer and the power via, then the current flows from IC 

port, through the power vias and go into the decap section to the power-return net and 

finally back to the port; in Fixture 2, the short geometry is placed between the second 

power-return layer and the power via, so the current will return from the ‘GND’ layer 

instead of flowing through the decap at the top layer. Then the two inductances of two 

cases can be measured and the objective inductance can be obtained by subtracting these 

two inductances. The inductance results for per unit length of different layouts are listed in 

Table 3.1. The results of all are similar and the error is small.

Table 3.1 The comparison of the Matlab, CST and measurement [36].

Number Matlab (pH) CST (pH) Test (pH)

Shared-via
1 17.8 17.6 17.1

2 8.9 8.6 8.2

Doublet
1 7.2 7.0 7.0

2 3.6 3.6 3.2

Alinged
1 18.7 18.3 18.4

2 9.3 8.7 9.2

Alternating
1 10.6 10.8 10.6

2 5.3 4.9 4.6
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The conclusion summarized from the results is that when adding decaps in the 

design, the Doublet layout can lead to the smallest decap inductance due to the negative 

mutual inductance caused by the different directions of the current flowing in the power 

and ground vias when connecting the decaps to the PCB. And other layouts can also be 

used if the Doublet layout is not available in the design.

3.2. PHYSICS BASED EQUIVALENT CIRCUIT MODEL VALIDATION

To make sure the post-layout calculation process is accurate and correct, a 

comparison for a typical PCB PDN product is used in this thesis, and the calculation result 

from the self-written PI tool is compared with commercial tool to validate the PDN 

impedance generated from the equivalent circuit model and all the values in it. The 

equivalent circuit model can only handle cases with only one power layer.

3.2.1. The Geometry Details for A Typical Production in PCB PDN Design. 

The top view of the production with a general PCB PDN geometry is represented in Figure 

3.6. It is a high-speed board with 20 layers and Layer ‘V11’ and Layer ‘V12’ are designed 

as power layers. The center of the board is designed as the IC pins and 60 decaps, including 

20 decaps of 1uF, 20 decaps of 0.1uF and 20 decaps of 0.01uF, are placed at the bottom 

layer under the IC part. Approximately 800mils away from the IC part, there are 7 decaps 

of 0.1uF placed at the top layer. And totally 28 low frequency decaps, with 4 decaps of 

470uF and 24 decaps of 100uF, among those 12 decaps are placed at the top layer and 12 

decaps are placed at the bottom layer, are used remotely from the center of the board to 

restrict the impedance in the low frequency range, with values provided in Table 3.2.
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Figure 3.6 The geometry and top view of a 20-layer board showing the IC and decap
locations.

Table 3.2 Low frequency decaps used in the design.

Name ESL (H) ESR (Ohm) C (F) Number Layer

C1 1e-9 0.03 4.7e-4 4 Top

C2_1 1e-9 0.03 1e-4 12 Top

C2_2 1e-9 0.03 1e-4 12 Bottom

To simplify the calculation process, and also the equivalent circuit model can only 

handle the simple case with only one power layer, one power layer is deleted, and the power 

layer location is placed in Layer ‘V11’. Then based on cavity model theory, all the parallel
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plane cavities built by two ground layers can be assembled and the inductance is 

proportional with the combined cavity height. The side view of the example is placed in 

Figure 3.7 and the height in each cavity is marked in the same figure.

38.5 mils

4 mils
Ground Layer

8 mils __________________

30.5 miis Power Layer

Figure 3.7 The represented side view of the PCB PDN with a simplified conceptual
model.

3.2.2. Impedance Equivalent Circuit Model and the Comparison with 

Commercial Tool. The PI tool places decaps under the IC from the left side to the right 

side with given IC pin map and would place a ring of four separate decaps around the IC 

in one step. So here, as shown in Figure 3.8 (a), 8 decaps are placed around the IC to make 

an approximate for the production case. The equivalent circuit model and part of the circuit 

RLC values are labeled in Figure 3.8 (b) and Table 3.3. Here Lpcb_ic is dominated for the 

inductance behavior in high frequency range when plane capacitance is represented as short 

circuit and the current is only flowing from IC power vias to the power plane and then back 

through IC ground vias. With all the values in the circuit model calculated, the PDN 

impedance can be generated and compared with the commercial tool simulation result, 

which is plotted in Figure 3.9.
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The discrepancies in the results come from different placement of the decaps in the 

two cases. It is a post-layout design, however, there are around 123 IC pins in the IC part, 

and it is a hard work to input the real decap location with the decap values. In these two 

cases, the decap locations for under the IC decaps and around the IC decaps are not the 

same. Also, there is one more decap placed around the IC part in the post-layout design 

due to the defects of the tool so the results in the mid frequency range are not very accuracy.

(a)

Figure 3.8 Test case. (a) The bottom view with 60 decaps placed under IC and 8 decaps 
placed around IC. (b) Equivalent circuit model with values for Lpcb_ic and Cpcb _plane.
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Table 3.3 RLC values in the equivalent circuit.

Branch # 1 2 3 4

Decap # 20 20 20 20

Decap location Under IC Under IC Under IC AroundIC

Labove (pH) 9.92 9.92 9.92 9.75

LPCB_Decap (pH) 52.3 33.6 31.7 54.98

ESL (pH) 50 50 50 125

ESR (mOhm) 0.5 0.5 0.5 1.25

C (uF) 20 2 0.2 0.8

Overall, the PDN impedance given from the post-layout calculation matches 

adequately with the commercial tool simulation result. The capacitance behavior in the low
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frequency range and the inductance behavior in the high frequency range are almost the 

same. The poles and zeros and the peak locations are similar.

Moreover, from Figure 3.9, a brief rule about the decap network effect on the Zpdn 

could be generated. The impedance in the low frequency range is affected by the inductance 

and capacitance contribution from low frequency decaps, which would be decided before 

placing local decaps at the first step by users. The inductance in the high frequency range 

is LPCB_IC, which would be mostly defined by the IC pin map and the height from the top 

layer to the power layer. The impedance in the mid frequency range, is mostly determined 

by the placement and values of decaps under and around the IC and the stack-up. Besides, 

the three poles and zeros are coming from the three different decaps of 1uF, 0.1uF and 

0.01uF, which leads to an estimation that a well-arranged series of decaps can contribute 

to reduce the PDN impedance with minimum number of decaps.

3.3. MATLAB BASED SELF-WRITTEN CIRCUIT SOLVER

When generating LPCB_EQ, the inductance related to the current flowing through the 

power layer and nearby ground layers, referred as plane inductance (LPCB_Plane), plays an 

essential and irreplaceable role in the total inductance. Because of the coupling of different 

cavities near the power layer, the plane inductance would be more difficult to calculated 

and estimated as other Ground-Ground cavities which do not include power layers. In 

Section 3.2, a physics based equivalent circuit model is implemented to handle the cases 

with only one power layer. The reason is that the circuit is only designed for the simple 

situation with a single power layer. Another disadvantage comes from the time of 

calculating plane inductance. The plane inductance is not proportional with the cavity
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height so that the value needs to be simulated by Hspice or other methods as PEEC or PPP, 

which are time-consuming.

The node voltage method is utilized in this post-layout design to generate Z 

parameters with the inductance big matrix built from Section 2.2 and the plane capacitance 

calculated from (3) using matrix formulations [39] so that it can handle cases with more 

than one power layer. The main idea is from the relationship of voltage and current as:

(A x Y b x  AT) x Y n = In (12)

here the A matrix is the relationship of all the current directions and nodes in the system; 

Vn is the node voltage, and In is the node current (the direction is the current entering the 

node); Yb is the inverse of the Z matrix building with as:

Z

Wb] = l/& ][^] =  [
Cavity #1 

0 
0

0

0

0
0

^Cavity#n

z
], [Yb] = [

-1
Cavity #1 

0 
0

0 0
... 0 ]
0 7 -10 ^Cavity#n

(13)

after generating the Z parameter from (12), the Z matrix after placing a single decap at port 

‘p ’ can be calculated based on [40] as:

^aa Zaa ^ap(^pp + ^dd) ^pa (14)

here the Z matrix before placing the decap has a+1 ports and the decap is placed at port ‘p ’ 

and Zdd is the Z parameter for the decap. Zdd equals to:
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Zdd = j u (ESL + Labove) +  - ^  +  (ESR + R_via)  (15)

here ESL and ESR are the input value for each kind of decaps in the library provided by 

the vendors; The added loss (R_Via) caused by placing one via is calculated by (7) and 

since it is a frequency dependent item, the used frequency in the circuit model is 10 MHz 

to estimate the loss at a certain situation since the ZPDN in the mid frequency range is the 

major consideration. Then all the decaps could be placed one by one at different nodes in 

the system.

Hspice can also be used to get the Z parameter o f a typical PCB PDN, it is a time

consuming process so that it is not a best approach to handle circuit, however, it can be 

utilized to do the verification with the node voltage method. A comparison between the 

Hspice simulation and Matlab circuit solver is made. The stack-up and top view about the 

IC and around IC decap vias placement are shown in Figure 3.10, and the results calculated 

from Hspice and Matlab are plotted in Figure 3.11. To be specific, there are 50 IC pins and 

8 around IC pins and in this case, 25 decaps o f 0.01 uF and 25 decaps o f 0.1 uF are placed 

under IC, 8 decaps o f 0.1 uF are placed at the top layer and 8 decaps o f 1 uF are placed at 

the bottom layer around IC

20 mils 

10 mils 

10 mils 

10 mils 

20 mils

Figure 3.10 Stack-up and top view of the test vehicle.
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Figure 3.11 Results comparison.

The Matlab calculation result and Hspice simulation result are nearly the same. And 

the same case in Section 3.2 is used here for the result verification, which is shown in 

Figure 3.12 (a). In the comparison, the only difference is the loss estimation in the low 

frequency range and high frequency range. The difference comes from two parts. The first 

is the inaccurate low-freq decap locations, which is plotted in Figure 3.12 (b) and can lead 

to the inaccuracy of inductance and loss calculation. The second reason is from frequency 

dependent loss calculation. The loss is calculated at 10 MHz so that in low frequency range, 

the calculated loss would be larger than the real loss, which leads to a larger zero than the 

simulation result. The resonance frequency for each poles and zeros are nearly the same 

and the inductance are similar for Matlab calculation and PowerSI simulation.

To reach the objective of handling the cases with two power layers, Layer ‘V11’ 

and ‘V12’ is used as power layers for the testing. The geometry is the same with the PCB
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PDN in Section 3.2 and the only change is the number of power layers. The results 

comparison is shown in Figure 3.12 (c) and the stackup detail is shown in Figure 3.12 (d).

Matlab calculation
PowerSI simulation

Frequency [GHz]

(a)

------ Matlab calculation
------ PowerSI simulation

10'4 10'3 10'2 10‘1 10°  

Frequency [GHz]

(c)

(b)

m m

mm

38.5 mils 

4 mils 

8 mils 

3.7 mils 

26.8 mils

(d)

Figure 3.12 Solutions. (a) Comparison between PowerSI and Matlab calculation for one 
power layer case. (b) Designed decap locations. (c) Stackup with two power layers. (d) 
Comparison between PowerSI simulation and Matlab calculation for two-power case.
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According to Figure 3.12 (c), in the low frequency, the capacitance and inductance 

behavior show similar trend except for the deep in the first zeros, which is not very 

important since the peaks in the estimation are more essential than the deeps. And the 

reason is the same with the calculation result from one-power layer case. As the frequency 

enters the mid frequency range, the poles and zeros caused by the three different decaps 

are similar between the two approaches. Then in the high frequency, the peak for the plane 

capacitance in the Matlab calculation is the same with the first peak of the simulation result. 

Since the power area fills in the two power layers are different in the real case, and there 

are also irregular ground layer shapes in the same layer with the power layer shape, there 

are multiple resonances in the simulation results, which may be caused by other power- 

ground cavities, which are not included in the calculation process.

In this section, the PDN impedance of a typical production PCB design is calculated 

with based on cavity model, BEM, equivalent circuit model method and node voltage 

method. A simulation result from a commercial tool, PowerSI, is provided to validate the 

accuracy of the impedance equivalent circuit model achieved by node voltage method and 

network reduction of the physics-based model obtained from a first principles formulation. 

The results agree with each other before high frequency as 1 GHz.
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4. A PI PRE-LAYOUT PCB PDN TOOL

A pre-layout tool based on the cavity model and parallel plate PEEC is built to 

automatically achieve a specified target impedance for a multi-layered PCB PDN design 

with a minimal number of decoupling capacitors. Only limited input geometry details are 

required for the tool. Physical limitations for the minimal target impedance that can be 

achieved are calculated first to determine if a design is physically realizable and provides 

feedback to the user. Most importantly, since choosing decoupling capacitors is a primary 

issue in PDN design, a special selection algorithm based on zeros and poles is utilized to 

determine which decoupling capacitors from a library should be added. The decoupling 

capacitor location will be determined by physics. Finally, the target impedance could be 

achieved using the minimum number of decoupling capacitors. The calculations are 

accurate and fast. Several industry design cases are used to verify the calculation result. 

The process is quite time-saving and convenient, and allows the user to do design discovery 

quickly, and determine the limiting factors under different conditions.

4.1. DESIGN CONSIDERATIONS

Because of the increasingly requirement for the lower voltage supply and higher 

density in PCB PDN design, how to solve power integrity issue plays a more important 

role among industry teams. The performance of the board must be able to pass the checking 

procedure after completing the PCB, or designers are required to modify the design again 

and again to make sure the target is satisfied. Many general principles and commercial 

tools are utilized to help PCB PDN designers saving time in the repetitive work, for
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instance, how to generate a better stack-up, how to save cost while placing enough 

decoupling capacitors, how to make a best placement of IC pins and so on. The most 

essential part in the PCB PDN design is the approach of placing as less as possible 

decoupling capacitors to achieve industry requirement. In this pre-layout tool, the influence 

from the decoupling capacitors types and stack-up is mostly considered. The variety of 

decoupling capacitors contribute to the objective of reaching the target with minimum 

number of decoupling capacitors.

The design considerations in the PCB PDN area are including multiply cases, such 

as IC pin map, stack-up, and decap network and even the padstack. All in all, the most 

important part is the decap type and placement, and here this thesis only talks about local 

decaps except for low frequency decaps and how the PDN impedance would be influenced 

by the decap network is discussed in this section. The geometry, the stack-up, IC pin map, 

decap library and so on are the same from the production in Section 3, which is used in this 

part to continue the design analysis.

4.1.1. Stackup. Based on the physics, LPCB_Decap is promotional to the distance 

between decaps to the power layer or LPCB_Decap_PUL, which would be a great and major part 

in LPCB_EQ because of the thinner PWR-GND cavity with smaller LPCB_Plane in general 

multiple-layered PCB PDN design. If the power layer is placed closer to the decap location, 

the needed decap number to achieve target impedance would be reduced.

Assume Layer ‘V06’, which is closer to the decaps placed on the top layer is used 

as power layer and assume another power layer is Layer ‘V09’, then the comparison results 

for only under IC decaps and both under and around IC decaps are plotted in Figure 4.1 (a) 

& (c) and the stackup details are plotted in Figure 4.1 (b) & (d). The frequency range of
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interested is from 100 kHz to 200 MHz and the resistance in the initial point of the defined 

target impedance is 32 mOhm.

(a) (b)

(c) (d)

Figure 4.1 Results. (a) Comparison result with 60 decaps placed under IC. (b) The 
represented side view by a simplified conceptual model when power layer is ‘ V06’. (c) 
Comparison results with 60 decaps placed under IC and 8 or 6 decaps placed around IC 

when Layer ‘V06’ or Layer ‘V09’ is designed as the only power layer. (d) The 
represented side view by a simplified conceptual model when power layer is ‘V09’.
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First decaps are typically placed under the IC because no additional vias are 

required, and hence, the routing of signals is not restricted with this choice. In this case, 

with 60 decaps a maximum under the IC, the target impedance cannot quite be reached. 

Then more decaps are placed around the IC on the top layer. The conclusion is that if power 

layer location is changed as close to the decap network as possible, the inductance would 

be nearly similar if  only a maximum number of decaps is decided and it cannot reach the 

target impedance. Meanwhile, if  more decaps are allowed in the design, the inductance 

would be reduced and the amount for placed decaps could be smaller to save cost in the 

same design.

4.1.2. Decap type. One strategy for choosing decap values proposes using the 

largest decap value in a given package size. Another strategy is to use a series of values, 

e.g., three or four decaps per decade of frequency. Using a poles and zeros algorithm allows 

the target impedance to be met with a well-designed series of different decaps. The 

available decap ESL, ESR and C values in the library of the design are listed in Table 4.1. 

The maximum number of both under and around IC decaps are set as 60, which means that 

it would be marked as failed in the design process if the target impedance cannot be 

achieved with 60 decaps placed under the IC plus 60 decaps placed around IC. And the 

tool would only place decaps around IC after completing the placement of 60 decaps under 

IC however without reaching the target impedance. A complex RL-RL target impedance 

with a resistance of 3.5 mOhm at 1 MHz and a resistance of 35 mOhm at 100 MHz is used; 

and the frequency of interest is from 100 kHz to 300MHz. ‘V11’ is used here as power 

layer.
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Table 4.1 Decap library.

Under IC Decaps

Name ESL (pH) ESR (Ohm) C (F) Size

DecapU1 3.0e-01 1.0e-09

DecapU2 2.5e-01 2.2e-09

DecapU3 9.0e-02 4.7e-09

DecapU4 6.0e-02 1.0e-08

DecapU5 0.4 4.3e-02 2.2e-08 0402
DecapU6 3.8e-02 4.7e-08

DecapU7 2.8e-02 1.0e-07

DecapU8 2.0e-02 2.2e-07

DecapU9 1.6e-02 4.7e-07

DecapU10 1.2e-02 1.0e-06

Around IC decaps

DecapA1 1.6e-02 4.7e-07

DecapA2 1.2e-02 1.0e-06

DecapA3 0.4 9.0e-03 2.2e-06 0402

DecapA4 7.0e-03 4.7e-06

DecapA5 5.0e-03 1.0e-05

The impedance curve under a different condition is shown in Figure 4.2, and the 

summary of decap type and number are listed in Table 4.2. Among all four cases, the target 

impedance is achieved, and the objective cannot be reached only by under IC decaps. As a 

result, except for the 60 decaps placed under IC, several around decaps are mounted to 

meet the target in the mid frequency range. In Figure 4.2, U8 and A5 are used in (a); U1, 

U4, U8 and A5 are used in (b); U1~U8 and A5 are used in (c); U1~U8 and A1~A5 are 

used in (d).
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Figure 4.2 Target impedance and PDN impedance result with different designed decap
networks.
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Table 4.2 Used decap type number and used decap number in the design.

Number of different decap values from the library used

Type Number

Under IC 1 3 8 8

AroundIC 1 1 1 5

Used decap number in the design

Under IC 60 60 60 60

AroundIC 14 10 8 6

Achieve target or not? Yes Yes Yes Yes

Figure 4.2 (a) shows the result with a single decap value from under the IC decap 

library and a single decap value from around IC decap library. In the picture, there is only 

one pole in the under IC result and one pole in the around IC result, which is typical for the 

two different decap types. And in this case, except for 60 under IC decaps, 14 around IC 

decaps are used to achieve target impedance. Figure 4.2 (b) shows the result with 3 decap 

values from under IC decap library and a single decap value from around IC decap library. 

Also, in the result, there are multiple poles and zeros, which is consistent with multiple 

decap types. Figure 4.2 (c) shows the result with 8 decap values from under IC decap 

library, and a single decap value from around IC decap library. There are also multiple 

poles and zeros around 50MHz, corresponding to the multiple capacitor values. Figure 4.2 

(d) shows the result with 8 decap values from under the IC decap library and 5 decap values 

from around the IC decap library. There are more poles and zeros around both 3 MHz and
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50 MHz, corresponding to the increase in the number of different decap values. As seen 

in the progress in Figure 4.2, suitably expanding the number of decap values available for 

use, and properly calculating the placement of zeros, can lead to a smaller number of 

overall decaps used.

The conclusion generated from Section 4.1 is that placing the power layer near 

decaps reduces the decap inductance and number of decaps necessary. Meanwhile, using a 

series of decaps of different values and an appropriate zero placing algorithm, instead of a 

single decap value can reduce the number of decaps needed in the design.

4.2. DECOUPLING CAPACITOR OPTIMIZATION ALGORITHM

The main idea to achieve target impedance with minimum amount of decaps is to 

use a series of decaps which are useful to lower the PDN impedance. For the decaps 

network, the location, layout, and type are considered separately to simplify the problem. 

Firstly, an optimization for the decap location placement for under IC and Around IC is 

established, including how to mount decaps on the existing IC vias, how to choose layers 

on the PCB to place decaps and how to place decaps around IC to achieve smaller LPCB_Plane. 

Secondly, there are different decap layouts with four of them are analyzed in Section 3.1. 

The layout should be carefully decided to obtain lower LPCB_Decap and Labove [41]-[42]. 

Finally, the decap types are essential to the inductance at mid frequency and a poles and 

zeros algorithm is proposed to use in the design and compared with the genetic algorithm.

4.2.1. Decap Location and Layout Optimization. On the one hand, the first step 

for decap network design is placing decaps under the IC since there are designed IC vias 

to connect decaps to the PCB and large space under IC region in most cases. The main
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approach in this part is to choose decaps as ‘Doublet’ part based on the conclusion in 

Section 3.1 and [36]. Then based on the various input and options in the design, the 

workflow for using under IC vias to place decaps is plotted in Figure 4.3. After using all 

the possible ‘Doublet’ pattern, the tool would choose the power vias with most ground vias 

nearby to achieve the lower inductance.

Get the map of interested PWR vias and
available GND vias

O

Place decaps as doublet
pairs will lead to smallerFind Doublet first
inductance.

OUpdate available PWR & GND vias O

Allow 45 degree? Allow shared via?

The more GND vias aroundChoose the PWR vias from which have the
a PWR via, the design getsmost GND vias around to which have the
smaller inductanceleast GND vias around

Figure 4.3 Under IC decap placement with IC power and ground vias.

On the other hand, for around IC decaps, it is suggested to place decaps as a ring 

around the IC region as Figure 4.4 (a). Another aspect for around IC decaps is the layer 

which should be used to mount decaps. There are two possible locations to place decaps, 

as top layer and bottom layer. A simple way to decide which one is better to use is to 

compare the distance between the top layer and closest ground layer and the bottom layer 

with the closest ground layer. Based on the conclusion made from Section 3.1, the smaller 

distance leads to the lower inductance of Lpcb_ Decap.
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Figure 4.4 Top view about the suggested around IC decap placement and the order.

To optimize LPCB_Decap and Labove, the inductance from the decap to the most nearby 

power layer could be generated by Cavity Model method and the inductance from the decap 

to the top or bottom layer should be calculated based on PEEC. There are 9 different decap 

layouts in the most designs as described in Figure 3.1. The estimate equivalent inductance 

for a single decap pair can be generated, and a layout could be easily decided by the 

inductance value.

4.2.2. Decap Type Optimization. Several algorithms are used based on different 

methods to choose decap types from a library, such as, physic understand is applied to 

decap network design in [43]-[45] to save time while improve the performance, while 

genetic algorithm is utilized in [46]-[47] to achieve the target, and there are also some other 

methods which are demonstrated in [48]-[50] to handle this issue.

A decoupling capacitor optimization algorithm based on poles and zeros is applied 

in this PI pre-layout tool in PCB PDN design. There are given possible decoupling 

capacitor locations including the X and Y dimensions for power and ground vias in the 

tool. A library with series of decoupling capacitors is provided and the ESL, ESR and C
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values are listed in the input spreadsheet. Then in the algorithm, the frequency intersection 

of target impedance, plotted as f1, and PDN impedance, plotted as f2, are marked, and 

shown in Figure 4.5, and the needed decoupling capacitor type is calculated with RLC 

frequency equation from the library.

allest A/

Impedance - Bulk impedance LCmodel for Decap
Z target
L PCB 1C minimum inductance
All decap locations minimum inductance
Buk decaps
Simulation

[GHz]

Figure 4.5 One example for the poles and zeros algorithm.

Another approach in the poles and zeros algorithm is that after adding decaps, the 

updated f1 would be compared with the original f1. If the intersection frequency point is 

turned left by adding one decap, the tool would use a larger value decap instead of the 

calculated one to ensure the peak would not be too high to touch the target impedance 

curve. And for the time-saving requirement, this judgement would only be made for one 

loop.

The whole process is quite time-saving and convenient, and it helps the pre-layout 

tool with a better performance. A comparison for both time and performance for the
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designed decap network between the poles and zeros algorithm and GA are made in the 

later section with real productions.

4.3. DESIGN WORKFLOW FOR THE PRE-LAYOUT TOOL

The algorithm is based on local optimization to minimize Lpcb_eq by minimizing 

inductance contribution from each part, as Lpcb_ic, LpcB_Decap, LpcB_Plane and Labove. For each 

component, Lpcb_ic is decided by the IC pin map design and broad stack-up., while 

LpcB_Decap and Labove are determined by decap network design, such as decap location, type 

layout and so on. The last one as LpcB_Plane is influenced by the power-ground cavities and 

the decap network. As a result, an effect way to minimize Lpcb_eq is to design a suitable 

decap network, which is considered in the pre-layout tool.

The design workflow is demonstrated in Figure 4.6. A special designed input 

spreadsheet is used for the basic geometry details such as the stack-up, I c  pin map and 

decap library. Then the fundamental inductance limits are calculated to determine if user 

design can meet the target impedance in the limitation check step. After that, the decap 

network is designed to decrease the pDN impedance. Usually, designers would prefer to 

place the decaps under IC since there are existing IC vias to connect decaps to the PCB and 

the space for around I c  decaps is limited. So, the tool would first plane to place under I c  

decaps if it is allowed by the users. Then if around IC decaps are allowed and needed, the 

decaps would continue to place these decaps around I c  region to reach the target 

impedance. After placing every single decap pair, the pDN impedance would be calculated 

by the circuit solver and compared with the target impedance to make sure the minimum 

decap number is used.
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1ecaps under 
the 1C? _

'above
Z  Target?

Via available?

Z  Target?

Basic Input: YesLimitation
Stack-up,IC checkDecap lib

Place decaps Place decapsPassed
around the IC (Top under the IC

& Bottom layer)
or L Not passed
design

Npt passed

Not passedPlace decaps according
Passeddesignto L

Output: decap layout
Passed circuit model ,

inductance analysis
Passed feedback,.

Figure 4.6 Design workflow for the pre-layout tool.

Then the details for the workflow would be explained step by step in the following 

section, including a special designed input spreadsheet, limitation checks, previous 

mentioned decap network design and the output report details and feedback from the design 

process.

4.3.1. Special Designed Input Spreadsheet. First, a excel format input 

spreadsheet is designed as the input file for the users, including four important segments, 

as Simulation, IC, Stackup and Decap, which are displayed in Figure 4.7 to Figure 4.10 as 

an example. There are comments added in the green area and rollover tips with the red 

rectangle. Then the users are required to fill in the white blank part. Others would be locked 

to avoid unwanted changes. It is created as simple as possible with rollover tips and

comments to save users’ time.
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Figure 4.7 Simulation setup.

In the ‘Simulation’ part step 1, ‘LengthUnit’ and ‘FreqUnit’ are the length and 

frequency unit in the whole design; ‘StartFreq’ and ‘EndFreq’ are the frequency range 

which would be modeled in the calculation process, while ‘LowestTargetFreq’ and 

‘HighestTargetFreq’ are the frequency range of interest in which the PDN performance
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would be compared with the target impedance; ‘NumberOfFreqPoints’ and ‘ScaleForFreq’ 

define the frequency points used in each decade; ‘ComparisonFile’ is the possible file name 

input in case users plan to make a comparison between the too result and the existing snp 

file; ‘BrdFilePath’ and ‘BrdFileName’ are used to input the board file if  the users wish to 

input geometry details from an existing design.

IC Pin Map
S te p  1: F ill  B 4 -  B6
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S te p  2: C h o o s e  l t y p e  fo r  IC  p in  m a p  in p u t

IC _ P IN _ M A P _ t y p e l  ^ On
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C o lu m n
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Figure 4.8 IC pin map.
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Figure 4.9 Stackup.

For step 2, ‘D_Top’, ‘D_Bottom’ and ‘D_LowFreq’ are explained in Figure 4.11 

(a); ‘CopperToCopper’ is the minimum distance between two copper edge; 

‘DecapsUnderlC’ and ‘DecapsAroundlC’ are the chooses of placing decaps under IC or 

around IC, which could be turned on or turned off; ‘DecapUnderIC45’ is a way to place 

decaps as 45 degree; ‘SharedGNDVia’ means that whether users allow shared ground vias
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or not; ‘Tolerance’ is a term created to make the target easier or harder to achieve; 

‘Algorithm’ is an option for the user to choose one decap placement algorithm, including 

‘poles and zeros algorithm’, which is faster, and ‘genetic algorithm’, which maybe better 

in the decap number reduce than the first one but more time-consuming.

For the target impedance input in step 3, there are 3 kinds of definition in the design, 

including simple RL target impedance, freq-impedance definition and RLC target 

definition, which are shown in Figure 4.11 (b). And the padstack definition is in step 4, 

which has name, drill, antipad and pad size, which is plotted in Figure 4.11 (c). And the 

tool can only handle through- hole via case

Four different kinds of IC input are used in this tool. First, the power and ground 

net name should be the first input. The type 1 and type are utilizing the board file to input 

IC pin map from existing design; type 3 and type 4 require user to define the IC pin map. 

Figure 4.11 (d) are the different IC placement types [51] in type 3.

In the stackup part, first, the ‘BoardSizeX’ and ‘BoardSizeY’ are the max X and Y 

size to create a rectangular board, which is also the ground layer size. The stackup is either 

read from the board or created by the users. There two kinds of power layer setting, one is 

for the cases with power net area fill on single layer only and the layer on which the power 

net can be located can be swept over several or all layers for design discovery to develop a 

suitable solution; another is for the cases that power net area fills of the same net can be 

located on multiple layers. The footprint of the power net could be arbitrary, and the 

footprint is the same for the power net area fills on all layers on which it is located. For the 

outer boundary input, type 1 and type 2 are from the chip size and an area multiplied factor, 

while type 3 is from the dimensions by user’s input.
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type and maw number settings
SharecLvia Doublet

Decap

Aligned Alternating V ia_in_p V ia_in_p  3-termin; Single
□n □n Off | Off | Off Off Off Off I Off
M a n  u m b e r_ u n d e r 1C 
MaK_number_aw ayf romll 
'^adstack

40
Off200 On

PBGA1MM
Step 2: Decap library 
DecapUnderIC

J Name E SL (H ) ESR(O hm ) C (F ) Size ”  Status
DeoapU13 4.00E-10 1.61E-01 1.00E-09 402 On
DecapU14 4.00E-10 1.15E-01 2.20E-09 402 On
DecapU15 4.00E-10 6.30E-02 4.70E-03 402 On
DecapU16 4.00E-10 6.00E-02 1.00E-08 402 On
DeoapU17 4.00E-10 4.30E-02 2.20E-08 402 On
DecapU18 4.00E-10 3.80E-02 4.70E-08 402 On
DecapU18 4.00E-10 2.80E-02 1.00E-07 402 On
DecapU20 4.00E-10 2.00E-02 2.20E-07 402 On
DeoapU21 4.00E-10 1.60E-02 4.70E-07 402 On
DecapU22 4.00E-10 1.20E-02 1.00E-06 402 On
DecapU23 4.00E-10 9.00E-03 2.20E-06 402 On
DecapU24 4.00E-10 7.00E-03 4.70E-06 402 On
DecapU25 4.00E-10 5.00E-03 1.00E-05 402 On

DecapAroundlC
Name ES L [H ) ESR (O hm ) C [F ] Size Status

402
603
805

Top Bottom

DeoapAI 4.00E-10 6.00E-02 1.00E-08 402 On
DecapA2 4.00E-10 4.30E-02 2.20E-08 402 On
DecapA3 4.00E-10 3.80E-02 4 .70E-0S 402 On
DecapA4 4.00E-10 2.60E-02 1.00E-07 402 On
DecapAS 4.00E-10 2.00E-02 2.20E-07 402 On
DecapAG 4.00E-10 1.60E-02 4.70E-07 402 On
DecapAT 4.00E-10 1.20E-02 1.00E-06 402 On
DecapAS 4.00E-10 9.00E-03 2.20E-06 402 On
DecapAS 4.00E-10 7.00E-03 4.70E-06 402 On
DecapAIG 4.00E-10 5.00E-03 1.00E-05 402 On
D ecapA II 4.00E-10 4.00E-03 2.20E-05 402 On
Lowfreq_cap

(N am e ES L [H ) ESR (O hm ) C [F ] Number Layer
C1 1.00E-03 0.03 4 .70E-04 4 Top
C2 1.00E-09 0.03 1.00E-04 12 T op
C2 1.00E-09 0.03 1.00E-04 12 Bottom
Step 3: Keepln area settings 
KeepInArea AroundIC LowFreqDecap
Top On Off
Bottom Off Off
Left On On
Right Off Off
LeftTop Off Off
LeftBottom Off Off
RightTop Off Off
RightBottom Off Off
DX 200 300
DfY1 150 100
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Figure 4.10 Decap.
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The decap library is the last part for the input. There are 9 different decap layouts 

in the design (Figure 3.1) which could be used, and ‘Via in Pad’ and ‘Via in Pad 

Alternating’ are marked as off since the cost are high in these two designs.

For under IC decaps, only the ‘single’ type would be used in the design since the 

existing power and ground vias are placed as single type. The decaps would be placed a 

little bit farther from the vias in the real production, leading to a special structure called 

‘Dog-bone’, which the inductance is very small and would be ignored in this design. The 

widely used package sizes for under IC decaps are 0402 and 0201, which is decided by the 

minimum distance between the power vias and ground vias, referred as ‘Pitch size’. 

Usually, 0402 package size would be used when the pitch size is 1 mm and 0201 package 

size would be used when the pitch size is 0.8 mm. The pitch would be input in the IC part 

or generated from the board file.

Only one decap layout and package size from step 1 would be used to achieve the 

minimum inductance for around IC decaps, the allowable package size is decided by users 

from 0805, 0603 and 0402 since 0201 package size is too small for around IC decaps. The 

ESL, ESR and C values in each decap type are collected from decap vendors. Then the 

possible inductance caused by different decap package size and type would be estimated 

in advance and the one decap size and layout with the smallest decap inductance would be 

used in the design. The keep in area for around IC decaps should be input in this part with 

the allowable space in the PCB and the dimensions for creating the grid.

The number and location for the low-freq decaps are also required for this version 

of the tool since there are no low-freq decaps optimization option. The keep in area 

definition which can place decaps is placed in step 3 with details put in the sheet.
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(a)

(b)

(c) (d)

Figure 4.11 Input details. (a) Distance between decaps and IC part definition. (b) Three 
kinds of target impedance. (c) Size for the padstack. (d) Different types for IC pin

placement.
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4.3.2. Limitation Check. A limitation check is proposed before the design to give 

a brief estimation about the design possibilities. If the target cannot be met according to 

the input geometry, users can find other approaches such as improving the stackup or IC 

map to develop the design instead of wasting time on the decap network.

There are two steps for the limitation check. According to the equivalent circuit 

model, in high frequency range, plane capacitance shows short circuit as Figure 4.12 (a), 

then IC is the dominant inductance part and the minimum inductance in the design, which 

is referred as minimal LPCB_EQ. By adding decaps, the inductance in mid frequency range 

could be reduced and if we add as many decaps as we can both under IC and around IC at 

the top and bottom layer and treat all decaps as short circuit as Figure 4.12 (b), as a result, 

there would be a best inductance we could achieve in this design process, which is referred 

as physical limitation of Lpcb_eq. Figure 4.13 plots these two kinds of limitations and 

compare the inductance got from limitation check with target, the tool would tell the 

possibility for the design.

(a) (b)

Figure 4.12 Equivalent circuit. (a) Equivalent circuit in high frequency range. (b) 
Equivalent circuit in mid frequency range when adding as many decaps as possible.
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Figure 4.13 Two kinds of limitations.

4.3.3. Output Report with Feedback for Users. The output is including two 

parts: the decap solution and the impedance curve. First, there are geometry details for the 

stackup, padstack and board top view in the design. Then for each power layer settings, the 

impedance curve is exported and there are also a excel sheet contains the decap information 

such as ESL, ESR and C values, the x and y dimensions for vias and the decap layer 

location. Also, a picture and a list for the decap colors for different types are drawn based 

on the decap solution.

Following would lead to the stop of the tool, including:

• File cannot read due to format error, please make sure the file is compatible.

• Not enough room for low frequency decaps.

• Limitation checks failed.

• Zpdn (Bare board only with low-freq decaps or/and VRM model) is larger than 

Ztarget in the low frequency range, means need more low-freq decaps.

• Design completed only using under IC decaps.
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• Design failed only using under IC decaps, and around IC decaps is not allowed.

• Design completed using both under IC and around IC decaps, or only around 

IC decaps if underIC decap is not allowable.

• Design failed using both underIC and around IC decaps, or only around IC 

decaps if underIC decap is not allowable.

More details for the output are plotted in the Section 4.4 with the tool solutions for 

real productions.

4.4. EXAMPLES FROM TYPICAL PRODUCTION

To make a conclusion for the designed pre-layout tool, first, after reading the input 

from the spreadsheet, the stackup and IC pin map are generated and the vias for the possible 

around IC decaps are also built together to calculate the inductance big matrix through 

Cavity Model method and BEM. Then based on [52]-[55], the inductance matrix is reduced 

and Z parameter for the bare board only with low frequency decaps is got from the node 

voltage theory. Then the decap network are designed based on the poles and zeros 

algorithm and the decap is added in the Zpcb_pdn with matrix calculation. Finally, the output 

and feedback are provided for the users.

The tool is applied in different real cases and several simulations for the existing 

designs are given based on the method in [56]-[58]. The performance of the tool is tested 

with GA.

4.4.1. Design Case #1 with One Power Layer. When applying the pre-layout tool 

to the first case, the target impedance would be achieved by only placing decaps under IC
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at the bottom layer. In this section a real production from industry is used to show the 

convenience of the tool.

All the geometry details are input in the spreadsheet, including the stackup, IC pin 

map, decap distance between the IC center and so on. Then 29 larger decaps are placed at 

the board to lower the impedance at low frequency according to the real design. The 

geometry details are plotted in Figure 4.14. In order to reduce the decap amount, the type 

of the decaps in the library are extended and the values are listed in Table 4.3.

Table 4.3 Pre-added decap library.

Name ESL (H) ESR (Ohm) C (F) Size

Under IC decaps

DecapU 1 4.00E-10 8.30E-02 4.70E-09 0402

DecapU2 4.70E-10 7.80E-02 1.00E-08 0402

DecapU3 4.50E-10 4.40E-02 2.20E-08 0402

DecapU4 4.00E-10 4.00E-02 4.70E-08 0402

DecapU5 8.60E-10 2.85E-02 1.00E-07 0402

DecapU6 4.40E-10 2.00E-02 2.20E-07 0402

DecapU7 4.00E-10 1.59E-02 4.70E-07 0402

DecapU8 7.00E-10 1.09E-02 1.00E-06 0402

DecapU9 3.71E-10 1.00E-02 2.20E-06 0402

DecapU10 3.00E-10 9.00E-03 4.70E-06 0402

DecapU 11 4.00E-10 5.00E-03 1.00E-05 0402
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Figure 4.14 Board bottom layer view and the stackup for the design.

The designer also provides a solution and PowerSI simulation result. Based on the 

power AC simulation, a special target impedance is generated to achieve a better 

performance with the solution. First a resistance about 4 mOhm is used for the inductance 

comparison in the low frequency range. And then a capacitance and a resistance again is 

used in the middle frequency range to make sure the designed target is close to the 

simulation result. Finally, an inductance with 20/db per decade increase is created to model 

the circuit behavior at high frequency.

The stackup, low frequency decaps location and possible around IC decaps location 

are shown in Figure 4.15, while the interest range of the frequency is from 100 kHz to 800 

MHz. The decap solution made from the pre-layout tool is shown in Figure 4.16 (a) with a 

comparison with the industry solution. And the decap location is shown in Figure 4.16 (b), 

while different color refers to different decap type, and the decap number difference is

listed in Table 4.4.
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(a)

PowerAC Simulation

Target impedance

Target Impedance
LowestT argetFreq
Highest! argetFreq

[GHz]

Figure 4.15 Test case. (a) Stackup details generated by pre-layout tool. (b) Decap location 
details generated by pre-layout tool. (c) PowerSI simulation result and special designed

target impedance.
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(a)

(b)

Figure 4.16 Solution. (a) Impedance curve and the impedance comparison between 
industry solution and pre-layout solution. (b) Decap location for the pre-layout solution.
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Table 4.4 Decap solutions comparison from real design and pre-layout tool.

Cap Value 
(uF) Size Location Industry

Solution
Pre-layout
Solution

0.0047 0402 UnderIC 0 6

0.01 0402 UnderIC 10 6

0.022 0402 UnderIC 12 1

0.047 0402 UnderIC 18 10

0.1 0402 UnderIC 12 31

0.22 0402 UnderIC 20 5

0.47 0402 UnderIC 0 7

1 0402 UnderIC 23 7

2.2 0402 UnderIC 16 1

4.7 0402 UnderIC 0 2

10 0402 UnderIC 0 1

22 0603 Bot layer around IC 3 3

47 0805 Bot layer around IC 4 4

100 1209 Bot layer around IC 12 12

470 7374 Top layer around IC 10 10

Total 111+29=140 77+29=106

There is a greatly reduced in the decap number while using pre-layout solution since 

the decap library is extended. There are only 7 different under IC decap types in the original 

design, while 11 types in the new pre-layout solution. Around IC decaps are not used in 

both real design and pre-layout solution, since the target impedance could be met using 

available IC vias to place decaps under IC.

4.4.2. Design Case #2 with One Power Layer and Multiple Power Layer 

Settings. When applying the pre-layout tool to the next case, the target impedance would
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also be achieved by only placing decaps under IC at the bottom layer. The difference is 

that in this case there are only one power layer, but the designer plans to check the solution 

difference when placing power layer on different layers in the stackup.

In this case, the geometry is input by a different option in the sheet instead of simply 

adding the path and name of the existing board file. The board file is also not provided as 

part of input in this case, but an txt format file is used as the input for the power and ground 

vias of the IC pin map. The stackup, board top view and IC pin map are plotted in Figure 

4.17 and Figure 4.18, and it is a one power layer case, but the users plan to have a look at 

both when the 6th layer is the power layer and when the 9th layer is the power layer. At this 

requirement, the tool would run the design twice for each power layer setting and give a 

comparison when placing one power layer on different layers. There is a simple VRM 

model, a series of 1 mOhm resistance and 0.2 nH inductance, added in the real production. 

However, the first version of the tool cannot handle cases with VRMC models so that it 

utilizes low-freq decaps (18 decaps with 470 uF, 2.3 nH and 49 mOhm, placing on the top 

layer) to reduce the impedance at low frequency.

Figure 4.17 Board top view and IC pin map with power and ground vias.
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Figure 4.18 Stackup for different power layer settings.

There are totally 44 available IC pins to place decaps under IC and all possible 

around IC decaps are placed on the top layer since the top layer is closer to the power layer, 

which is near the middle of the stackup, under both conditions than the distance between 

bottom layer to the power layer. The used decap library is listed in Table 4.5, similar with 

the library input in the case in Section 3.2. Two different solutions from the pre-layout tool 

are given in Figure 4.19 (a) and (b), and a comparison between these two power layer 

settings is plotted in Figure 4.19 (c). The interest frequency range is from 100 kHz to 20 

MHz. When the 6th layer is the power layer, only 43 under IC decaps are needed, while 44 

under IC decaps and 2 around IC decaps are needed when 9th layer is set as power layer. 

The most essential conclusion draw from the solutions is that placing power layer near the 

decap network is a useful way to reduce the decap number while reaching the target, which 

is the same with the guideline generated from Section 4.1.1.
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Table 4.5 Pre-added decap library.

Name ESL (H) ESR (Ohm) C (F) Size

Under IC decaps

DecapU 1 4.00E-10 3.80E-02 4.70E-08 0402

DecapU2 4.00E-10 2.80E-02 1.00E-07 0402

DecapU3 4.00E-10 2.40E-02 1.50E-07 0402

DecapU4 4.00E-10 2.00E-02 2.20E-07 0402

DecapU5 4.00E-10 1.60E-02 4.70E-07 0402

DecapU6 4.00E-10 1.20E-02 1.00E-06 0402

DecapU7 4.00E-10 9.00E-03 2.20E-06 0402

DecapU8 4.00E-10 7.00E-03 4.70E-06 0402

DecapU9 4.00E-10 5.00E-03 1.00E-05 0402

Around IC decaps

DecapA1 3.70E-10 1.90E-01 1.00E-05 0805

DecapA2 3.70E-10 1.47E-01 2.20E-05 0805

DecapA3 3.70E-10 1.40E-01 4.70E-05 0805
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(a)

(b)

Figure 4.19 Solutions. (a) Impedance curve and decap location when 6th layer is set as 
power layer. (b) Impedance curve and decap location when 9th layer is set as power layer. 

(c) Comparison for two different power layer settings.
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Then a decoupling solution with ‘V09’ power layer setting and 44 maxima under 

IC decaps made from an industry designer is compared from the pre-layout tool solution 

(Figure 4.19 (b)), which is listed is Table 4.6.

Table 4.6 Decap solutions comparison from real design and pre-layout tool.

Cap Value (uF) Size Location Real Design 
Solution

Pre-layout
Solution

0.047 0402 UnderIC 0 17

0.1 0402 UnderIC 12 5

0.15 0402 UnderIC 10 6

0.22 0402 UnderIC 9 5

0.47 0402 UnderIC 8 4

1 0402 UnderIC 3 3

2.2 0402 UnderIC 1 2

4.7 0402 UnderIC 1 0

10 0402 UnderIC 0 2

10 0805 AroundIC 8 2

22 0805 AroundIC 4 0

47 0805 AroundIC 0 0

Total 44+12 = 56 44+2 = 46

The pre-layout solution uses 10 less decaps than the real design. The difference is 

that the pre-layout tool use two more decap types in the library. Also, decap location and 

type optimization algorithms play an important role in reducing the decap quantity [59].
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4.4.3. Design Case #3 with Two Power Layers. The geometry details for the last 

design are the same with Figure 3.6 and Figure 3.12 (d). All other information is 

demonstrated in Figure 4.7 to Figure 4.10 and the only difference is that the ESL values 

for all the decaps in the under IC decap library is set as 0.3 nH. The output for the geometry 

information is plotted in Figure 4.20.

Figure 4.20 Geometry details.
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The comparison between the simulation for the design with 67 decaps, the pre

layout calculation with the same design with 67 decaps, the poles and zeros algorithm 

solution with 53 decaps and the GA solution with 50 decaps is placed in Figure 4.21.

Lo w estT  argetFreq
-T a rg e t Im pedance

H ighestTargetFreq
Pow erA C  Sim ulation: 60  d e cap s UnderIC  & 7 d ecap s AroundIC
Poles and ze ro s algorithm: 53 d e cap s U nderIC  & 0 d e cap s AroundIC
GA : 50  d e cap s UnderIC  & 0 d e cap s AroundIC
Pre-layout solution: 60 d e cap s UnderIC  & 7 d e cap s A roundIC

P ow erA C  Sim ulation: 60  d e cap s UnderIC  & 7 d ecap s Aroun
P o les and ze ro s algonthm: 53 d e cap s UnderIC  & 0 d e cap s Around 1C
G A : 50 d e cap s UnderIC  & 0 d e cap s AroundIC
Pre-layout solution: 60 d e cap s U nderIC  & 7 d e cap s Aroundl

[GHz]

Figure 4.21 Impedance curve.

Then the details for the zeros and poles algorithm solution with results from the 

limitation checks are in Figure 4.22 (a) and the decap location and type information is 

drawn in Figure 4.22 (b). The output for the decap details are listed in Table 4.7. The
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maximum number for under IC decaps is set as 60 and both solutions from the poles and 

zeros algorithm and GA are reaching the target with only under IC decaps.

Table 4.7 Decap details for solutions from poles & zeros algorithm and GA.

Type C Num 
-  GA

Num

P&Z

Num -  
Real 

design
PlaceOrder -  GA PlaceOrder -  P&Z

1 1 nF 1 1 20 49 53

2 2.2
nF 4 3 40,41,45,47 50,51,52

3 4.7
nF 9 16 29-34,37,39,42, 33-49

4 10
nF 15 12 20 20-25,27,28,35, 

36,38, 43,46,48,50 20-32,38

5 22
nF 8 7 13-19,26 14,16-19,22,28

6 47
nF 3 5 10,11,12 10-13,15

7 100
nF 3 3 20 7-9 7-9

8 220
nF 3 2 5,6,44 5,6

9 470
nF 1 1 4 4

10 1 uF 0 2 0 2,3

11 2.2
uF 2 1 2,3 1

12 4.7
uF 1 0 1 0
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(a) (b)

Figure 4.22 Pre-layout solution. (a) Impedance curve for pre-layout solution. (b) Decap
type and location for pre-layout solution.

Based on Figure 4.21, following conclusion could be made:

• The pre-layout calculation result agrees with the simulation before 1 GHz.

• Both poles and zeros algorithm and GA are better than the original design which 

uses 60 under IC decaps and 7 around IC decaps.

• The poles and zeros algorithm use 3 more decaps than GA, while it only needs 

3 minutes for the decap solution and GA needs around 11 minutes.

• The solutions from the poles and zeros algorithm and GA are similar. The 

results from these two algorithms are close to the target impedance, which 

means that the primary estimation about how to minimize the decap number 

based on poles and zeros is reasonable.

Both algorithms would be added in the tool so that the tool would contain two 

options during the design. In the future version, the voltage ripple calculation also will be 

added in the tool [60] -  [61].
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A pre-layout tool based on physics is built in PCB PDN design to achieve industry 

specifications with minimum number of decaps. During the calculation process, all current 

segments inductance contribution in all layers are modeled and the self-inductances for 

every segments and mutual inductance between segments are extracted using the cavity 

model and BEM. The calculation process of one of the inductance segments, LPCB_Decap, is 

validated by two-port measurement. After that, circuit reduction can be done to produce an 

impedance equivalent circuit model in which the model values can be calculated. The 

impedance equivalent circuit model can be directly related to the geometry and current 

paths.

The Z parameter for the bare board can be calculated by node voltage method and 

the decaps can be placed at the ports in the Z matrix through KCL and KVL equation. 

Fundamental inductance limits are calculated to determine if the design can meet the target 

impedance after placing as much decaps as possible at first to save the time. Then a special 

designed poles and zeros algorithm are defined to optimize the decap network. The solution 

is compared with genetic algorithm and it’s a faster algorithm with wonderful performance.

The tool can also be applied for multi-layer PCB with arbitrary number of layers. 

The power area fill shape can be irregular, and it can handle cases with multiple power 

layers. A well-designed input spreadsheet is created with more than one meaning for the 

target impedance, IC pin map, stackup and power area fills to save users’ time.

In the future, more functions are suggested to add in the tool for improvement. The 

ground layer should be defined as arbitrary shape so that it has the ability to handle more

5. CONCLUSION
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complex case. More elaborate VRMC, PKG and Chip model can be used by RLC values 

or s parameter to model real situation and reduce the impedance in low and high frequency 

range. Also, the Labove calculation is needed to develop by equation estimation to save lots 

of time and decap ESL value is required to be generated by PEEC to increase inductance 

calculation accuracy. There are also some other discussions about low freq decaps 

optimization, multiple objective optimization such as decap cost and other functions such 

as voltage ripple estimation.



75

BIBLIOGRAPHY

1. M. Swaminathan, Joungho Kim, I. Novak and J. P. Libous, "Power distribution 
networks for system-on-package: status and challenges," in IEEE Transactions on 
Advanced Packaging, vol. 27, no. 2, pp. 286-300, May 2004, doi: 
10.1109/TADVP.2004.831897.

2. H. Sasaki et al., "Electromagnetic interference (EMI) issues for mixed-signal 
system-on-package (SOP)," 2004 Proceedings. 54th Electronic Components and 
Technology Conference (IEEE Cat. No.04CH37546), Las Vegas, NV, USA,
2004, pp. 1437-1442 Vol.2, doi: 10.1109/ECTC.2004.1320302.

3. B. Zhao, S. Bai, S. Connor, M. Cecchini, D. Becker, M. Cracraft, A. Ruehli, B. 
Archambeault, and J. Drewniak. "System Level Power Integrity Analysis with 
Physics-Based Modeling Methodology." In 2018 IEEE Symposium on 
Electromagnetic Compatibility, Signal Integrity and Power Integrity (EMC, SI & 
PI), Long Beach, CA, USA, July 30 -  Aug 3, 2018, pp. 379-384.

4. Y. T. Lo, D. Solomon, and W. F. Richards, “Theory and experiment for 
microstrip antennas”, IEEE Trans. Antennas Propagation, vol. AP-27, pp. 137
145, Mar. 1979.

5. T. Sudo, H. Sasaki, N. Masuda and J. L. Drewniak, "Electromagnetic interference 
(EMI) of system-on-package (SOP)," in IEEE Transactions on Advanced 
Packaging, vol. 27, no. 2, pp. 304-314, May 2004, doi: 
10.1109/TADVP.2004.828817.

6. Jingook Kim, M. D. Rotaru, Seungyong Baek, Jongbae Park, M. K. Iyer and 
Joungho Kim, "Analysis of noise coupling from a power distribution network to 
signal traces in high-speed multilayer printed circuit boards," in IEEE 
Transactions on Electromagnetic Compatibility, vol. 48, no. 2, pp. 319-330, May 
2006, doi: 10.1109/TEMC.2006.873865.

7. Y. Ko, K. Ito, J. Kudo and T. Sudo, "Electromagnetic radiation properties of a 
printed circuit board with a slot in the ground plane," 1999 International 
Symposium on Electromagnetic Compatibility (IEEE Cat. No.99EX147), Tokyo, 
Japan, 1999, pp. 576-579, doi: 10.1109/ELMAGC.1999.801393.

8. Jun So Pak, Junwoo Lee, Hyungsoo Kim and Joungho Kim, "Prediction and 
verification of power/ground plane edge radiation excited by through-hole signal 
via based on balanced TLM and via coupling model," Electrical Performance of 
Electrical Packaging (IEEE Cat. No. 03TH8710), Princeton, NJ, USA, 2003, pp. 
181-184, doi: 10.1109/EPEP.2003.1250027.



9. I. Novak, "Reducing simultaneous switching noise and EMI on ground/power 
planes by dissipative edge termination," IEEE Transactions on Advanced 
Packaging vol. 22, pp. 274-283, 1999.

76

10. B. Zhao, “A physics-based approach for power integrity in multi-layered PCBs”, 
M.S. thesis, Dept. Elect. Eng., Missouri Univ. of S&T, Rolla, MO, 2017.

11. J. Kim, S. Wu, H, Wang, Y. Takita, H. Takeuchi, K. Araki, G. Feng, and J. Fan, 
"Improved target impedance and IC transient current measurement for power 
distribution network design," 2010 IEEE International Symposium on 
Electromagnetic Compatibility, Fort Lauderdale, FL, 2010, pp. 445-450.

12. S. Yang, Ying S. Cao, H. Ma, J. Cho, A. E. Ruehli, J. L. Drewniak, and E. Li. 
"PCB PDN prelayout library for top-layer inductance and the equivalent model 
for decoupling capacitors." IEEE Transactions on Electromagnetic Compatibility 
vol. 60, no. 6, pp. 1898-1906, Dec. 2018.

13. K. Shringarpure, S. Pan, and J. Kim., "Innovative PDN design guidelines for 
practical high layer-count PCBs." DesignCon 2013: Where Chipheads Connect. 2. 
1290-1314.

14. J. Kim, K. Shringarpure, J. Fan, J. Kim and J. L. Drewniak, "Equivalent Circuit 
Model for Power Bus Design in Multi-Layer PCBs With Via Arrays," in IEEE 
Microwave and Wireless Components Letters, vol. 21, no. 2, pp. 62-64, Feb.
2011.

15. B. Zhao, C. Huang, K. Shringarpure, S. Bai, T. Makharashvili, Y. S. Cao, B. 
Achkir et al. "Transient simulation for power integrity using physics based circuit 
modeling." In Electromagnetic Compatibility (APEMC), 2016 Asia-Pacific 
International Symposium on, vol. 1, pp. 1087-1089. IEEE, 2016.

16. K. Shringarpure, B. Zhao, B. Archambeault, A. Ruehli, J. Fan, and J. Drewniak. 
"Effect of narrow power fills on PCB PDN noise." 2014 IEEE International 
Symposium on Electromagnetic Compatibility (EMC), pp. 839-844. IEEE, 2014.

17. A. E. Ruehli, "Inductance Calculations in a Complex Integrated Circuit 
Environment," in IBM Journal of Research and Development, vol. 16, no. 5, pp. 
470-481, Sept. 1972, doi: 10.1147/rd.165.0470.

18. A. E. Ruehli, G. Antonini, J. Esch, J. Ekman, A. Mayo and A. Orlandi, 
"Nonorthogonal PEEC formulation for time- and frequency-domain EM and 
circuit modeling," in IEEE Transactions on Electromagnetic Compatibility, vol. 
45, no. 2, pp. 167-176, May 2003, doi: 10.1109/TEMC.2003.810804.



77

19. B. Archambeault and A. E. Ruehli, "Analysis of power/ground-plane EMI 
decoupling performance using the partial-element equivalent circuit technique," in 
IEEE Transactions on Electromagnetic Compatibility, vol. 43, no. 4, pp. 437-445, 
Nov. 2001, doi: 10.1109/15.974623.

20. Xiaoning Ye, M. Y. Koledintseva, Min Li and J. L. Drewniak, "DC power-bus 
design using FDTD modeling with dispersive media and surface mount 
technology components," in IEEE Transactions on Electromagnetic 
Compatibility, vol. 43, no. 4, pp. 579-587, Nov. 2001, doi: 10.1109/15.974638.

21. W. D. Becker and R. Mittra, "FDTD modeling of noise in computer packages," in 
IEEE Transactions on Components, Packaging, and Manufacturing Technology: 
Part B, vol. 17, no. 3, pp. 240-247, Aug. 1994, doi: 10.1109/96.311769.

22. T. K. Sarkar, B. Kolundjiza, A. R. Djordjevic and M. Salazar-Palma, "Accurate 
modeling of frequency responses of multiple planes in gigahertz packages and 
boards," IEEE 9th Topical Meeting on Electrical Performance of Electronic 
Packaging (Cat. No.00TH8524), Scottsdale, AZ, USA, 2000, pp. 59-62, doi: 
10.1109/EPEP.2000.895493.

23. G. Antonini, "A Low-Frequency Accurate Cavity Model for Transient Analysis of 
Power-Ground Structures," in IEEE Transactions on Electromagnetic 
Compatibility, vol. 50, no. 1, pp. 138-148, Feb. 2008, doi: 
10.1109/TEMC.2007.915283.

24. H. Ma et al., "Cavity model method based with gradient current distribution along 
the via for power integrity simulation," 2017 IEEE International Symposium on 
Electromagnetic Compatibility & Signal/Power Integrity (EMCSI), Washington, 
DC, USA, 2017, pp. 209-212, doi: 10.1109/ISEMC.2017.8077868.

25. Yun Ji and T. H. Hubing, "On the modeling of a gapped power-bus structure 
using a hybrid FEM/MoM approach," in IEEE Transactions on Electromagnetic 
Compatibility, vol. 44, no. 4, pp. 566-569, Nov. 2002, doi: 
10.1109/TEMC.2002.804775.

26. M. Friedrich and M. Leone, "Boundary-Element Method for the Calculation of 
Port Inductances in Parallel-Plane Structures," in IEEE Transactions on 
Electromagnetic Compatibility, vol. 56, no. 6, pp. 1439-1447, Dec. 2014, doi: 
10.1109/TEMC.2014.2352971.

27. A. E. Ruehli, "Equivalent Circuit Models for Three-Dimensional Multiconductor 
Systems," in IEEE Transactions on Microwave Theory and Techniques, vol. 22, 
no. 3, pp. 216-221, Mar. 1974, doi: 10.1109/TMTT.1974.1128204.



28.

78

L. Li, A. E. Ruehli and J. Fan, "Accurate and efficient computation of power 
plane pair inductance," 2012 IEEE 21st Conference on Electrical Performance of 
Electronic Packaging and Systems, Tempe, AZ, USA, 2012, pp. 167-170, doi: 
10.1109/EPEPS.2012.6457869

29. Siqi. Bai, “A novel power integrity modeling method based on plane pair PEEC”,
M . S. thesis, Dept. Elect. Eng., Missouri Univ. of S&T, Rolla, MO, 2018

30. S. Bai et al., "Inductance extraction for physics-based modeling of power net area 
fills with complex shapes and voids using the plane-pair PEEC method," 2016 
IEEE/ACES International Conference on Wireless Information Technology and 
Systems (ICWITS) and Applied Computational Electromagnetics (ACES), 
Honolulu, HI, USA, 2016, pp. 1-2, doi: 10.1109/ROPACES.2016.7465441.

31. J. Cho et al., "Modeling and analysis of package PDN for computing system 
based on cavity model," 2017 IEEE International Symposium on Electromagnetic 
Compatibility & Signal/Power Integrity (EMCSI), Washington, DC, USA, 2017, 
pp. 213-218, doi: 10.1109/ISEMC.2017.8077869.

32. Guang-Tsai Lei, R. W. Techentin and B. K. Gilbert, "High-frequency 
characterization of power/ground-plane structures," in IEEE Transactions on 
Microwave Theory and Techniques, vol. 47, no. 5, pp. 562-569, May 1999, doi: 
10.1109/22.763156.

33. K. Shringarpure, S. Pan, J. Kim, J. Fan, B. Achkir, B. Archambeault and J. 
Drewniak, "Formulation and Network Model Reduction for Analysis of the Power 
Distribution Network in a Production-Level Multilayered Printed Circuit Board," 
in IEEE Transactions on Electromagnetic Compatibility, vol. 58, no. 3, pp. 849
858, June 2016.

34. M. Leone, M. Friedrich, and A. Mantzke, “Efficient broadband circuit-modeling 
approach for parallel-plane structures of arbitrary shape,” IEEE Trans. 
Electromagn. Compat., vol. 55, no. 5, pp. 941-948, Oct. 2013

35. M. Friedrich and M. Leone, "Quasi-Static Inductance of Vertical Interconnections 
in Parallel-Plane Structures," in IEEE Transactions on Electromagnetic 
Compatibility, vol. 54, no. 6, pp. 1302-1305, Dec. 2012, doi: 
10.1109/TEMC.2012.2218284.

36. B. Zhao et al., "Decoupling capacitor power ground via layout analysis for multi
layered PCB PDNs," in IEEE Electromagnetic Compatibility Magazine, vol. 9, 
no. 3, pp. 84-94, 3rd Quarter 2020, doi: 10.1109/MEMC.2020.9241560.



79

37. Y. Ding et al., "Equivalent Inductance Analysis and Quantification for PCB PDN 
Design," 2019 IEEE International Symposium on Electromagnetic Compatibility, 
Signal & Power Integrity (EMC+SIPI), New Orleans, LA, USA, 2019, pp. 366
371, doi: 10.1109/ISEMC.2019.8825244.

38. S. M. Sandler, "Extending the usable range of the 2-port shunt through impedance 
measurement," 2016 IEEE MTT-S Latin America Microwave Conference 
(LAMC), Puerto Vallarta, Mexico, 2016, pp. 1-3, doi: 
10.1109/LAMC.2016.7851286.

39. L. Zhang, J. Juang, Z. Kiguradze, B. Pu, S. Jin, S. Wu, Z. Yang, and C. Hwang, 
“Efficient DC and AC Impedance Calculation for Arbitrary-shape and Multi-layer 
PDN Using Boundary Integration,” IEEE Trans. Electromagn. Compat., to be 
submitted.

40. J. Kim et al., "Chip-Package Hierarchical Power Distribution Network Modeling 
and Analysis Based on a Segmentation Method," in IEEE Transactions on 
Advanced Packaging, vol. 33, no. 3, pp. 647-659, Aug. 2010, doi: 
10.1109/TADVP.2010.2043673.

41. S. Bai et al., "Plane-Pair PEEC modeling for package power layer nets with 
inductance extraction," 2018 IEEE Symposium on Electromagnetic 
Compatibility, Signal Integrity and Power Integrity (EMC, SI & PI), Long Beach, 
CA, USA, 2018, pp. 1-17, doi: 10.1109/EMCSI.2018.8495227.

42. X. Fang et al., "PEEC macromodels for above plane decoupling capacitors," 2015 
IEEE 24th Electrical Performance of Electronic Packaging and Systems (EPEPS), 
San Jose, CA, USA, 2015, pp. 127-130, doi: 10.1109/EPEPS.2015.7347145.

43. S. Han and M. Swaminathan, "A Non-Random Exploration based Method for the 
optimization of Capacitors in Power Delivery Networks," 2020 IEEE 29th 
Conference on Electrical Performance of Electronic Packaging and Systems 
(EPEPS), San Jose, CA, USA, 2020, pp. 1-3, doi: 
10.1109/EPEPS48591.2020.9231448.

44. K. Shringarpure et al., "On finding the optimal number of decoupling capacitors 
by minimizing the equivalent inductance of the PCB PDN," 2014 IEEE 
International Symposium on Electromagnetic Compatibility (EMC), Raleigh, NC, 
USA, 2014, pp. 218-223, doi: 10.1109/ISEMC.2014.6898973

45. K. Koo, G. R. Luevano, T. Wang, S. Ozbayat, T. Michalka and J. L. Drewniak, 
"Fast Algorithm for Minimizing the Number of decap in Power Distribution 
Networks," in IEEE Transactions on Electromagnetic Compatibility, vol. 60, no.
3, pp. 725-732, June 2018, doi: 10.1109/TEMC.2017.2746677.



80

46. Sungtek Kahng, "GA-optimization for finding decoupling capacitors to damp the 
rectangular power-bus resonances," 2007 18th International Zurich Symposium 
on Electromagnetic Compatibility, Munich, Germany, 2007, pp. 103-106, doi: 
10.1109/EMCZUR.2007.4388206.

47. I. Erdin and R. Achar, "Multipin Optimization Method for Placement of 
Decoupling Capacitors Using a Genetic Algorithm," in IEEE Transactions on 
Electromagnetic Compatibility, vol. 60, no. 6, pp. 1662-1669, Dec. 2018, doi: 
10.1109/TEMC.2018.2803047.

48. A. Kamo, T. Watanabe and A. Asai, "Simulation for the optimal placement of 
decoupling capacitors on printed circuit board," ISCAS 2001. The 2001 IEEE 
International Symposium on Circuits and Systems (Cat. No.01CH37196), Sydney, 
NSW, Australia, 2001, pp. 727-730 vol. 2, doi: 10.1109/ISCAS.2001.921435.

49. Haihua Su, S. S. Sapatnekar and S. R. Nassif, "Optimal decoupling capacitor 
sizing and placement for standard-cell layout designs," in IEEE Transactions on 
Computer-Aided Design of Integrated Circuits and Systems, vol. 22, no. 4, pp. 
428-436, April 2003, doi: 10.1109/TCAD.2003.809658.

50. J. N. Tripathi, J. Mukherjee, P. R. Apte, N. K. Chhabra, R. K. Nagpal and R. 
Malik, "Selection and placement of decoupling capacitors in high speed systems," 
in IEEE Electromagnetic Compatibility Magazine, vol. 2, no. 4, pp. 72-78, 4th 
Quarter 2013, doi: 10.1109/MEMC.2013.6714703.

51. B. Zhao et al., "Systematic Power Integrity Analysis Based on Inductance 
Decomposition in a Multi-Layered PCB PDN," in IEEE Electromagnetic 
Compatibility Magazine, vol. 9, no. 4, pp. 80-90, 4th Quarter 2020, doi: 
10.1109/MEMC.2020.9327998.

52. J. Kim, J. Kim, L. Ren, J. Fan, J. Kim and J. L. Drewniak, "Extraction of 
equivalent inductance in package-PCB hierarchical power distribution network," 
2009 IEEE 18th Conference on Electrical Performance of Electronic Packaging 
and Systems, Portland, OR, USA, 2009, pp. 109-112, doi: 
10.1109/EPEPS.2009.5338464.

53. B. Zhao et al., "Physics-Based Circuit Modeling Methodology for System Power 
Integrity Analysis and Design," in IEEE Transactions on Electromagnetic 
Compatibility, vol. 62, no. 4, pp. 1266-1277, Aug. 2020, doi: 
10.1109/TEMC.2019.2927742.

54. J. Kim, L. Ren and J. Fan, "Physics-Based Inductance Extraction for Via Arrays 
in Parallel Planes for Power Distribution Network Design," in IEEE Transactions 
on Microwave Theory and Techniques, vol. 58, no. 9, pp. 2434-2447, Sept. 2010, 
doi: 10.1109/TMTT.2010.2058278.



81

55. J. Kim et al., "Closed-Form Expressions for the Maximum Transient Noise 
Voltage Caused by an IC Switching Current on a Power Distribution Network," in 
IEEE Transactions on Electromagnetic Compatibility, vol. 54, no. 5, pp. 1112
1124, Oct. 2012, doi: 10.1109/TEMC.2012.2194786.

56. W. D. Becker et al., "Modeling, simulation, and measurement of mid-frequency 
simultaneous switching noise in computer systems," in IEEE Transactions on 
Components, Packaging, and Manufacturing Technology: Part B, vol. 21, no. 2, 
pp. 157-163, May 1998, doi: 10.1109/96.673703.

57. M. Cocchini, L. Jenkins and W. D. Becker, "Simulation and Measurement of a 
Power Distribution Network Including Point-of-Load Regulation," 2020 IEEE 
International Symposium on Electromagnetic Compatibility & Signal/Power 
Integrity (EMCSI), Reno, NV, USA, 2020, pp. 16-21, doi: 
10.1109/EMCSI38923.2020.9191610.

58. X. Fang, S. Bai, S. Liang, B. Zhao, “A Two-Port Measurement With 
Mechanically Robust Handhold Probes for Ultra Low PDN Impedance”, 2019 
IEEE International Symposium on Electromagnetic Compatibility &
Signal/Power Integrity (EMCSI), New Orleans, LA, USA, July 22-26, 2019.

59. B. Archambeault, B. Zhao, K. Shringarpure and J. Drewniak, “Design tips”, IEEE 
Electromagnetic Compatibility Magazine vol. 4, no. 2: 106-107, Aug. 2015.

60. B. Zhao, C. Huang, K. Shringarpure, J. Fan, B. Archambeault, B. Achkir, S. 
Connor, M. Cracraft, M. Cocchini, A. Ruehli, J. Drewniak, “Analytical PDN 
Voltage Ripple Calculation Using Simplified Equivalent Circuit Model of PCB 
PDN,” 2015 IEEE Symposium on Electromagnetic Compatibility and Signal 
Integrity, Santa Clara, CA, USA, Mar. 15-21, 2015, pp. 133-138.

61. C. Huang, B. Zhao, K. Shringarpure, S. Bai, X. Fang, T. Makharashvili, H. Ye et 
al. "Power integrity with voltage ripple spectrum decomposition for physics-based 
design." 2016 IEEE International Symposium on Electromagnetic Compatibility 
(EMC), Ottawa, ON, Canada, July 25-29, 2016, pp. 318-323.



82

VITA

Shuang Liang was born in Zhejiang, China. She received her Bachelor’s degree in 

Information Science and Electrical Engineering from Zhejiang University, Zhejiang 

Province, China in 2018. She joined the Electromagnetic Compatibility Laboratory at 

Missouri University of Science and Technology and worked as a graduate research 

assistant from 2018 to 2021. She received her Master’s degree in Electrical Engineering 

from Missouri University of Science and Technology, Rolla, MO, USA in July 2021.


	A physics-based pi pre-layout tool for PCB PDN design
	Recommended Citation

	II

