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ABSTRACT

iii

Privacy budget allocation is a key step of the differential privacy (DP)-based 

privacy-preserving data publishing (PPDP) algorithm development, as it directly impacts 

the data utility of the released dataset. This research describes the development of an 

optimal privacy budget allocation algorithm for transit smart card data publishing, with 

the goal of publishing non-interactive sanitized trajectory data under a differential 

privacy definition. To this end, after storing the smart card trajectory data with a prefix 

tree structure, a query probability model is built to quantitatively measure the probability 

of a trajectory location pair being queried. Next, privacy budget is calculated for each 

prefix tree node to minimize the query error, while satisfying the differential privacy 

definition. The optimal privacy budget values are derived with Lagrangian relaxation 

method, with several solution property proposed. Real-life metro smart card data from 

Shenzhen, China that includes a total of 2.8 million individual travelers and over 220 

million records is used in the case study section. The developed algorithm is 

demonstrated to output sanitized dataset with higher utilities when compared with 

previous research.
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NOMENCLATURE

Symbol Description

V Trajectory dataset

V Sanitized trajectory dataset output by PPDP algorithm

T Timestamp domain

£  Location domain

t Timestamp, t ET

l Location, l E £

PT  Prefix tree

v0 Root of prefix tree PT

E Set of edges of prefix tree PT, each
and location

V Set of nodes of prefix tree PP, each 
trajectory

Vi A tree node in set V

Ci A count number on node vt

ein A tree edge in set E and an in-edge of node v t

eout A tree edge in set E and an out-edge of node v t

tili A trajectory point on edge ein, t t ET, E £

t i+1li+1 An adjacent trajectory point with till on edge eout, t i+1 E T, li+1 E £

h Prefix tree height

edge represents a pair of timestamp 

node stores the count of a sub-

6 Threshold to determine if a noisy prefix tree node should be deleted or not



tr

x

Trajectory of a trip that include pairs of timestamp and location, 
represented by E in a prefix tree

e Privacy budget

S Parameter that relaxes differential privacy requirements



1. INTRODUCTION

Privacy issues have been a major concern in transportation engineering, as 

transportation datasets usually capture each individual traveler’s spatial-temporal 

movements and, as a common practice, to make them publicly available after some 

simple attempts at anonymity. In this manuscript, we focus on data collected by a smart 

card (or IC card) that record the payment history of travelers who boarded and/or alighted 

from transit vehicles in Shenzhen, China. The dataset being analyzed includes a total of 

2.8 million different travelers and over 220 million records. One would think that, with 

merely two boarding/alighting records for each trip, and without including personal 

information (such as names, home addresses, and dates of birth), such data would not 

impose a privacy concern. However, our analysis shows that, if a traveler’s two travel 

records are known, and by using subway station names and departure times (with an 

accuracy of 10 minutes), 30.7% of users can be uniquely identified even though their 

personal information has been removed from the original dataset.

Figure 1.1 presents part of June 7, 2016, Shenzhen metro smart card dataset, 

which includes anonymous ID and ride records. Each line includes an anonymous 

identifier for the passenger, part of the trajectory records, and sensitive information that 

can be inferred from historical trajectories (such as home and work address). For 

example, as shown in the second line, a user with a pseudo-identifier ID 20016755 

checked into “Bu Xin” station at 09:24am, and then “Fu Tian” station at 09:52am. The 

red line in Figure 1.1 represents the background knowledge owned by the attacker. The 

green line represents the sensitive information that an attacker may obtain. If an attacker



has already known Alice has traveled to “Bu Xin station” on that day, around 7:20am- 

7:30am (i.e., with an accuracy of 10 minutes), and to “Long Cheng Center” station (on 

the same day) around 8:09am -8:19am, Alice’s unique ID can easily be found to be 

20015461 as she is the only passenger with these two travel records in the dataset. With 

this information, the attackers can discover all historical travel records for Alice, and use 

them to infer sensitive personal information (such as approximate home and work 

addresses and other living habits).

2

20015461 Longcheng Square

20149779

Known trajectory points

(6/7/2016 07:20-07:30, Bu Xin /2016 08:09-08:19, Long Cheng Square)

Shenzhen metro smart card

-=F\(6/7/2016 07:25 (6/7/2016 08:14, Longcheng Squarel -  (6/7/2016 17:18, Longcheng Square) -  (6/7/2016 18:06, Buxin) -  (6/8/2016 07:23, Buxin)

(6/7/2016 09:24, Buxin) -  (6/7/2016 09:52 Futian) -  (6/7/2016 17:25 Futian) -  (6/7/2016 17:53 Buxin) 50 Buxin) -  (6/8/2016 10:22 Futian)

(6/7/2016 08:21, Shuibei) -  (6/7/2016 09:02, Longcheng Square) -  (6/7/2016 17:45, Longcheng Square) -  (6/7/2016 18:23, Shuibei) -  (6/8/2016 08:05, Shuibei) Longcheng Square

(6/7/2016 07:48, Gangxia) -  (6/7/2016 08:23, Bantian) -  (6/7/2016 20:10, Bantian) -  (6/7/2016 20:45. Gangxia) -  (6/8/2016 07:50, Gangxia) Gangxia

(6/7/2016 07:03, Futian Checkpoint) -  (6/7/2016 07:19, Chegongmiao) -  (6/7/2016 17:47, Chegongmiao) -  (6/7/2016 18:04, Futian Checkpoint) Futian Checkpoint Chegongmiao

Bus -  (6/7/2016 07:42, Gangxia) -  (6/7/2016 07:57, Chegongmiao) -  (6/7/2016 19:49, Chegongmiao) -1(6/7/2016 19:59, Gangxia) Near Gangxia Chegongmiao

background knowledge

sensitive information (6/7/2016 19:54-20:04, Gangxia) -  Bus

Figure 1.1 Sample smart card data.

The degree for a privacy breach increases when more background knowledge of 

the trip or traveler becomes available. For example, if an attacker already knows that 

Frank has traveled to “Gangxia station” on June 7, 2016, at around 19:00-21:00 (i.e., with 

an accuracy of 2 hours), they are not sure if his identification number is 20160553 or 

20099459. However, if they know that Frank rode on a bus right after the subway, then 

Frank’s unique ID can easily be identified as 20099459. From our experiment, if we have 

a passenger’s background information on a bus transfer, then the likelihood of him/her



being uniquely identified in the dataset will increase to 41.4%. In other words, almost 

half of the people using smart cards are identifiable and an attacker can use such 

information to view an individual’s complete travel history in the dataset.

3

One of the previous research (Li et al. 2020) focuses on enhancing the transit 

smart card sanitized data utility as well as on improving runtime efficiency. To achieve 

these goals, a new prefix tree structure, an incremental privacy budget allocation model, 

and a spatial-temporal dimensionality reduction model are proposed. It argues that 

previous research allocates privacy budget equally on each layer of the tree, which is 

problematic due to the nature of the tree structure, when the depth increases, the number 

of nodes in each layer decreases and the random noise generated by the same amount of 

privacy budget becomes more significant. The proposed incremental privacy budget 

allocation model is shown in Equation (1), in which the privacy budget ei of each level is 

the results of a function of tree level l, and a is an adjustable parameter. As such privacy 

budget function ei is increasing by level, from the top down, et < ei+1, 1 < i < h. The 

reason is that, under the same privacy budget, the higher the count value is, the smaller 

the impact would be due to the added noise.

igG+v) „ „ _ ^ n (1)x e , a > 0’Z?=1 ig(i+<r)

While such incremental privacy budget allocation model is demonstrated to 

improve data utility along the right direction, the proposed model lacks theoretical 

support to reach optimality and thus, may not lead to the optimal privacy budget 

allocation solution. In other words, if we can formulate the privacy budget allocation 

problem as an optimization model, the optimal budget allocation model would lead to not 

only a theoretical sound but also a verifiable improved solution.
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To optimally allocate the privacy budget, we use the same prefix tree structure to 

store the trajectory data as Li et al. (2020), but develop a query probability model to 

quantitatively measure the probability of a trajectory location pair being queried. The 

rational is that the sensitivity of outcomes caused by adding noises depends on the 

trajectory location pair frequencies if it is queried more frequently, the impact of adding 

the same amount of noise would become more significant. As such, in the next step we 

then allocate privacy budget for each prefix tree level based on the query probability of 

all nodes at that tree level, with the problem formulated with the Lagrangian relaxation 

method to minimize the query error.

This work is organized as follow. Work related to various privacy protection 

models is reviewed in Section 2. Some applications of privacy protection methods in 

transportation engineering are also summarized. Section 3 introduces some preliminary 

concepts that are relevant with this work, including the definition and properties of 

differential privacy, prefix tree structure, and the definition of query error. Section 3 

designs the query probability model to quantitatively measure the probability of a 

trajectory location pair being queried. Section 4 formulates the problem with an 

optimization model for privacy budget allocation for each prefix tree level, and a 

Lagrangian relaxation method is used to solve the problem. The developed algorithm is 

implemented and compared with existing models in Section 5, using the real-life metro 

smart card data of 2.8 million individual travelers and over 220 million records from 

Shenzhen, China. Section 6 concludes this research along with some discussion of future

work.
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2. LITERATURE REVIEW

With the ubiquitous applications of intelligent transportation system and the 

monitoring of trajectories databases in various traffic system, the trajectory data has been 

widely used in various transportation research. For example, in travel time estimation (Li 

et al. 2018, Tang and Hu 2020), driving risk analysis (Hu et al. 2015, Zhu et al. 2017, Ma 

et al. 2018, Ma et al. 2019), congestion mitigation (Cheng et al. 2020, Hu et al. 2020), 

transit operation improvement (Deng et al. 2020a, Deng et al. 2020c, Tang et al. 2021), 

taxi behavior modeling (Yu et al. 2019, Deng et al. 2020b, Tang et al. 2020), and many 

others (An et al. 2017, Chen et al. 2020, Qi and Hu 2020). A common practice is to share 

the data with researchers, or, even the public. However, privacy preserving is becoming 

increasingly important when making these data public. Many researchers focused on 

privacy preserving trajectory data publishing with different privacy-preserving models. In 

this section, we review those works based on their privacy models.

Syntactic privacy models are widely utilized in trajectory data privacy preserving, 

such as k-anonymity (Sweeney and Systems 2002) and e- diversity (Machanavajjhala et 

al. 2007). They stipulated that the output dataset of an anonymization algorithm must 

adhere to some syntactic conditions in order to protect data records and sensitive items. 

Nergiz et al. (2008) applied k-anonymity to a trajectory dataset, whereby every trajectory 

in its entirety must be indistinguishable from at least k — 1 other trajectories. Abul et al. 

(2008) proposed (k, S)-anonymity that enforced space translation, resulting in having 

every trajectory coexisting with a minimum of k — 1 other trajectories within a proximity 

of S. Monreale et al. (2010) achieved k-anonymity by using spatial generalization. The



novelty of their method lied in dynamically generating geographical areas based on the 

input dataset, as opposed to generating a fixed grid. Hu et al. (2010) applied k-anonymity 

to a trajectory dataset with respect to a reference dataset containing sensitive events. 

Moreover, Barak et al. (2007) developed local enlargement that transforms the trajectory 

dataset such that every sensitive event was shared by at least k users. In addition to 

generalization and space translation, suppression-based techniques have been proposed to 

achieve k-anonymity-based privacy models. Terrovitis and Mamoulis (2008) developed a 

privacy model that assumed different adversaries possess different background 

knowledge, and consequently they modeled such knowledge as a set of projections over a 

sequential trajectory dataset. Their anonymization method limits the inference confidence 

of locations to a predefined threshold. Fung et al. (2009) and (2010) proposed an LKC- 

privacy definition that could avoid attacking identity linkages and attribute linkages. 

Similarly, Cicek et al. (2014) ensured location diversity by proposing p-confidentiality, 

which limits the probability of visiting a sensitive location to p. Ghasemzadeh et al. 

(2014) proposed to preserve flow analysis in published trajectories under the LK- 

anonymity model. We argue that it is possible to achieve comparable analysis results 

without employing syntactic privacy models, which have been proven to be prone to 

privacy attacks.

To apply differential privacy in mobility dataset, many works discarded temporal 

dimension and generate trajectories as sequences. Due to the inherent sparsity and high 

dimensionality, it is challenging to publish differentially private sequential data. In Chen 

et al. (2012a), a synthetic dataset based on the Markov assumption was generated from 

the variable-length n-gram model to ensure the published data was differentially private.

6



Mir et al. (2013) proposed a differentially private algorithm, namely DP-WHERE, by 

adding controlled noise to the set of empirical probability distributions that is used to 

aggregate collections of cellphone Call Detail Records (CDRs) and form a mobility 

model. He et al. (2015) firstly introduced an end-to-end solution of generating e- 

differentially private GPS mobility data, called DPT, by constructing prefix trees based 

on the hierarchical reference system. Xiao and Xiong (2015) protected the true GPS 

trajectory within a set of probable locations based differential privacy, which is named 

"5-location set", to account for the temporal correlations in location data. Gursoy et al. 

(2018) proposed DP-Star, which added noise under a density-aware grid so that spatial 

densities can be preserved. Liu et al. (2019) introduced VTDP, which sanitize the fine­

grained vehicle trajectories including properties like IDs, positions, speeds, accelerations, 

and timestamps with differential privacy.

Jiang et al. (2013) sampled distance and angle between true locations within a 

trajectory in order to publish an e-differentially private version of that trajectory. 

However, their method publishes a single trajectory only, i.e., the entire privacy budget is 

spent on sanitizing a single trajectory. Primault et al. (2015) proposed to hide moving 

individuals’ points of interest, such as home or work. While their method protects against 

inference attacks, we argue that hiding points of interest is harmful for applications that 

rely on such information, e.g., traffic analysis and probabilistic flow graph analysis.

Chen et al. (2012b) is the first to introduce a differentially private algorithm to 

publish a large sequential special dataset. The sequential locations were organized as a 

prefix tree from root node to leaf node and each node recorded the sub-sequence frequent 

pattern, in which the Laplacian noises were added. Though the authors claimed that it can

7



be extended to trajectory data, Li et al. (2020) shows this work is not suitable for large 

trajectory data. Compared with sequential data, trajectory data also contains the time 

dimension besides the spatial dimension, which is highly valuable in many research areas 

on one hand, nevertheless, on the other hand, leads to an exponentially increased 

dimension. Thus, directly adding noise to nodes is extremely challenging (McSherry and 

Talwar 2007).

Al-Hussaeni et al. (2018) implemented Chen et al.’s extension (Chen et al. 2012a, 

Chen et al. 2012b), called it SeqPT and generated a new noisy prefix tree which is e- 

differntially private namely SafePath by introducing a variable height and degree tree 

with location and timestamps categorized. Real-life transit data experiment suggests that 

SafePath has significantly higher efficiency and scalability with respect to large and 

sparse data scenario than SeqPT. As the privacy budget is partly wasted by the taxonomy 

tree, the utility of published data was decreased under the same private budget. Li et al. 

(2020)proposed a new prefix tree structure without a taxonomy tree at each level to 

improve SafePath. An incremental privacy budget allocation mechanism and a spatial- 

temporal dimensionality reduction model by filtering unreachable nodes are also 

proposed to enhance the sanitized data utility as well as to improve runtime efficiency. 

The developed algorithm shows higher utilities and efficiency in the application of real-

8

life metro smart card data.
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3. PRELIMINARIES

3.1. TRAJECTORY DATA

Trajectory data is very common in transportation, for example, smart card data, 

GPS data, camera data. These data are collected by different equipment and 

organizations. But in essence, they describe the vehicle movements in the spatial and 

temporal dimension. As such, conceptually we can extract two important dimensions 

from these very detailed data, with a number representing the time dimension, and a letter 

representing the space dimension, i.e., 1Y^ 2X, means the trajectory from space Y at 

time 1 to space X at time 2.

Table 3.1 Trajectory dataset.

ID Trajectory

tr1 1Y^ 4X

t?2 2X ^ 3Z

tr3 2X ^ 3Z^ 4Y

tr4 2Y ^ 4X

tr5 2Y ^ 3Z

tr6 3X^ 4Y

tr7 1Z^ 2X ^ 3Z

tr8 1Z^ 4X

Table 3.1 is an example of a trajectory dataset which includes a total of eight 

trajectory data. Among them, the first trajectory data trx travels from location Y at time 

slot 1 to location X at time slot 4. Note that t t is strictly increasing in the sequence. |tr |
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denotes the trajectory length which is the number of timestamp and location pairs in tr, 

for example we have \tr1\ = 2  in Table 3.1.

3.2. PREFIX TREE

Prefix tree is a commonly seen tree structure to organize structural data. A prefix 

tree is a kind of tree data structure that is often used to store a dictionary table or some 

sequence of characters. The trajectory data concerned in this manuscript is a kind of 

spatial-temporal sequence data, which makes a prefix tree a good match.

For example, corresponding to the example shown in Figure 3.1. The maximum 

tree height is 4, the longest tree is 4 like A ^  C ^  H ^  N . The shortest tree length is 3, 

like A ^  B ^  G.

Figure 3.1 Prefix tree of sample trajectory.
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In the resulted prefix tree, each user location from the smart card dataset becomes 

an arc, and two arcs form a trajectory location pair. For example, Arc AB represents 1Y, 

and arcs AB and BG form a trajectory location pair 1Y->4X, i.e., trajectory trx is now 

represented by arcs AB and BG, or nodes A ^  B ^  G. The node count equals to the 

number of incoming trajectory data, for example, for node B, the number of incoming 

trajectory data 1Y is 1, so we have count(B)=1, whereas for node C we have count(C)=2.

3.3. DIFFERENTIAL PRIVACY

Differential Privacy is different from K-anomality which we need to assume the 

attackers’ knowledge, capabilities, and goals. In contrast, no matter what the attackers 

know and want to do, differential privacy protects the any kind of individual information, 

such as sensitive attributes and if the dataset contains a specific individual. That means 

there is no need to assume the attacking pattern.

Definition 3 (Differential Privacy). A randomized mechanism M gives e- 

differential privacy if for any neighboring datasets Dx and D2 differing by at most one 

record and for any possible sanitized dataset V e Range(M), the following Equation (2) 

is always satisfied:

Pr[M(D1 ) = 25] < exp(e) x Pr[M(D2) = 25] (2)

The parameter e refers to the privacy budget, which controls the level of privacy 

guarantee achieved by mechanism M. A smaller e represents a stronger privacy level and 

can cause more noise to be added to the true answer. e typically ranges 0 < e < 1.

Sequential composition properties: Suppose we output via Kx and K2 with e1, e2 

differential privacy, result of (K-̂ , K2) is e1 + e2 differentially private.
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Parallel composition properties: If the inputs K1 and K2 are disjoint, then result of 

(K-i, K2) is max (e1, e2) differentially private.

3.4. RELATIVE ERROR

Definition 4 (Relative Error) Relative error of count queries on synthetic dataset 

D is defined as Equation (3). It represents how different the synthetic dataset D is from 

the real trajectory dataset D.

, .. / \q (S )  -  q(V)\\  „
relativee„ „  -  (  max{q(V) s} J (3

where s is a sanity bound and is suggested to take a value of 0.1% of the dataset size.
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4. METHODOLOGY

In the section below, we discuss a new algorithm of privacy-preserving trajectory 

data publishing based on differential privacy. Section 4.1 is a brief outline of the 

algorithm, Section 4.2 illustrates each step of the algorithm, and Section 4.3 presents a 

theoretical analysis of privacy and algorithm complexity.

4.1. METHODOLOGY OVERVIEW

This proposed algorithm generates sanitized trajectories by differential privacy 

with optimized budget. Compared with former algorithms, one major advantage of the 

methodology is that it considers the probability of different trajectories being queried 

which improves the utility of the sanitized trajectory when satisfies the same level of 

privacy security. Another improvement is that our algorithm optimizes the budget 

allocation of all nodes over prefix tree which contributes to a lower relative error rate 

when doing the trajectory query as well.

Figure 4.1 illustrates the algorithm framework, which includes four main 

components. Firstly, a prefix tree with the original time and location trajectory is built. 

Secondly, we optimize the budget allocation strategy and generate customized budget for 

each trajectory node in the prefix tree. After that, we add Laplace distributed noise 

according to the generated budgets to the prefix tree and introduce the sanitized tree, and 

finally, we traverse and output sanitized trajectories from the sanitized tree.
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Figure 4.1 Algorithm framework.

4.1.1. Query Probabilistic Model. This section describes the assumed query 

probability model. Assumptions in trajectory query generation are as following:

1. Queries are generated randomly until all possible trajectory patterns are 

enumerated.

2. Each location in the trajectory data is sampled from the entire location set 

with replacement. However, following typical trip patterns, two adjacent 

locations in a trajectory set cannot be the same.

3. Each trajectory query is generated independently.

For example, if we have three locations, X, Y and Z from a trajectory dataset with 

l-min = 1 and lmax = 3, the set of trajectory data that might be queried by a hacker will 

include [X, Y, Z] for trajectory = 1, [XY, XZ, YX, YZ, ZX, ZY] for trajectory length = 2,
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and [XY, XYZ, XYX, XZ, XZX, XZY, YX, YXY, YXZ, YZ, YZX, YZY, ZX, ZXY,

ZXZ, ZY, ZYX, ZYZ] for trajectory length = 3.

In general, if we have a total of n locations, for trajectory length=Z, the total 

number of possible trajectory data can be calculated as Equation (4)

Ni = n *  ( n — I)1-1 (4)

So, for trajectory length from lmin~lmax, the total number of possible trajectory 

data is expressed as Equation (5).

Lm a x  Lm a x

N =  ^  Ni = ^  n * ( n —1)1-1
l —  l —  Im i n (5)

n * ( n — 1)lm in  1 [(n — l) lmax lmin+1 l]
n — 2

A bottom-up approach is used to examine the probability of each arc in the prefix 

tree. Firstly, we consider from the bottom level (with l = lmax) and examine the arcs 

associated with the leaf nodes. As there is only one possible trajectory from a leaf to the 

root, the probability of a leaf node being queried equals the probability of that the single 

trajectory being queried, thus we have:

_  1 _  
Pleaf = 77 =

n — 2
N n * (n — 1) lmin 1 [ (n—V)1 l] (6)

Then move on to one level up to l = lmax — 1, if the leaf node has k — 1 sibling 

nodes, i.e., the parent node i has a total of k children nodes, the probability of the parent 

node being queried equals to the probability of itself being queried, plus that of any of its 

children node being queried. For example, XY is queried by queries of not only XY but

also XYZ and XYX.
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So, we have

1 1
Pi — Pitself + k * PchUd — "77 + k * — (7)N N

In general, for each node in the prefix tree, the probability of it being queried 

equals the probability of itself being queried, plus that of any of its children being 

queried. So iteratively, the following Equation (8) can be generated for any node i in the 

prefix tree:

P i — Pitself+ Y  p; —^  + X  pi (8)—̂ij&child(i) ™ j echild(i)

4.1.2. Optimal Privacy Budget Allocation Algorithm. We assume the noise 

follows Laplace distribution. If X~Laplace(j, b), the probability density function is 

shown as following:

(1 x-jj
^r-e b i f  x < j

1  j-x  (9)
2b e b i f  x ^ J

The expectation value of Laplace distribution E(X) — j ,  and the variance D(X) — 2b2.

If we assign a privacy budget of Et to a prefix tree node i, the potential error 

brought by adding Laplace noise equals to

Err — 2/ e 2 (10)

For a node i, if Laplace noise with privacy budget Et is added, since it is queried 

for a total of pt times, the expectation of introduced error by noise can be derived as 

below. E (Err ( i) ) — pt * 2/e(2 (11)
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As such, the problem can be formulated as the following equation:

PiMinimize f (£i) = ^ 2 E(Err(o )  = (12)

Start from any leaf node j  to the root, the summation of privacy budget along the 

path should be equal to £ as shown in Equation (13).

^  £a = £ Vjeleaf (13)
aEpath(root,j)

For example, in Figure 3.1, we have a total of 7 leaf nodes, so we have a total of 7 

constraints as listed below.

£g + sb + sa = £

£n + £h + ec + £a = £
(14)

£M + £p + £A = £

The model formulation can be expressed by equation (15).

Minimize f(e)  = ^ E ( E r r ( i ) )  =

s. t. ^  £a = £ yjeleaf
(15)

aEpath(rootj)

Converting the above problem with Lagrangian relaxation method and Equation 

(16) can be generated. In this equation, Aa is the dual parameter.

PiMinimize L(£i) = '^^-E + ^  Aa( ^  £a - e ) (16)
jeleaf aEpath(rootJ)
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For any leaf node i, if we calculate the first derivative and make it equal to 0, 

Equation (17) is obtained for each of the leaf node.

dL(ei) Pi
—  = - 2 * i - 3 + ^  = 0 (17)

For example, in Figure 1.1, we have a total of 7 equations derived as below.

Pr—2 * ^  + A1 = 0

9 P n  -i o—2 * —- + A2 = 0
% (18)

9 P m  ,  n—2 * — - + A7 = 0
eM3

For any non-leaf node i, let calculate the first derivative and make it equal to 0, 

we will obtain Equation (19) for each of the non-leaf node.

dL(£j) 
da-

Si) 9  Vi ^ V
-  = —2 * - 3 +   ̂ L Aa = 0 (19)

aEchildren(i)

For example, in Figure 1.1, we have a total of 7 equations derived as below.

Vn—2 * J-^  + A1 = 0
£b3

—2 * —3 + (A3 + A4) = 0
eD (20)

—2* —t + (Â  + A2 + A3 + A4 + A5 + Aq + A7) = 0
3

Before we propose the solution algorithms, examine Equations (17) and (19) for a

few useful properties in the solutions.
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Solution property 1: for a non-leaf node, the summation of privacy budget in any 

of its child tree is equal. It can be proofed as following:

Suppose a node i has two children, i1 and i2, and they are associated with 

trajectory trx and tr2 respectively.

Since for any trajectory, starting from its leaf node to the root, the summation of 

privacy budget added to the nodes along the path should be equal to e.

Assume trx goes through nodes trxx, tr12,.... i1 before reaching node i, and tr2 

goes through nodes tr21, tr22,.... i2 before reaching node i. We will have the following 

equations:

I + £i +  ^* £a = £ (21)
aepath(tr11,i1) aepath(i,root)

1  c° + £i +  1> ea = Z (22)
aepath(tr2j1,i1) aepath(i,root)

By comparing Equations (21) and (22), we can generate Equation (23)

Iaepath(tr11,i1)
= Iaepath(tr21,i1)

£a (23)

The proof is now complete.

Solution property 2: As a special case of solution property 1: the privacy budgets 

of all leaf nodes with the same parent are equal as shown in Equation (24).

Ei = £j i f  i and j  are sibling leaf nodes (24)

In Figure 1.1 example, Ej = Ej. Note this property applies only to leaf node. For 

example, as node L is not a leaf node, el ^ em.
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Solution property 3: For any non-leaf node i, if it covers a total of k children leaf 

nodes denoted as c1, c2 ... ck, Equation (25) holds.

Pi_
p.3Cl Iae[1,k]

Pca
" ca

3 (25)

In Figure 3.1, I and J are two children leaf nodes of D, N is a child leaf node of H 

and C, and all leaf nodes of [G, N, I, J, K, O, M] are leaf nodes of A.

From Equation (17) we can derive Equation (26) for any leaf node.

PiAt = 2 * —  (26)
ci

Plug in Equation (26) to Equation (19), we will have Equation. (27) for any non­

leaf node:

y  K  y  Pca
£t3 1  2 Aa 1  £c 31 ae[1,k] -r~ 11 nae[1,k]

Pc
£c 3 La

The proof is now complete.

For example, in Figure 1.1, we have

Pb _  Pg 
£b3 £g3

Pd = Pi Pj
t D tj

(27)

(28)

Pa _ P g Pn Pi Pj Pk Po Pm
r. 3 r. 3 ^ p  3 y . 3 y . 3 y .  3 y  3 ^ p  3 tA t G t N t I tJ bK t O bM

And thus, we can calculate £t for any non-leaf node i as expressed in Equation

(29).

(
Pi

V P°a ^ae[1,k] ~ 3 ĉa
(29)

1
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With these two solution properties, the optimization problem can be solved in an 

easier way with linear formulation.

To solve the optimization problem, we can start from the bottom level. For 

example, node G in Figure 3.1.

4.2. ALGORITHM STEPS

Algorithm 1 is the main algorithm including four parts: build a tree, allocate 

budgets, add noise and output, as illustrated in Figure 4.1. It inputs a trajectory dataset V 

and outputs the sanitized trajectory dataset V .

In Algorithm 1, a raw trajectory dataset V is scanned once to build a trajectory 

prefix tree PT, with a given height h (Algorithm 1, Line 1), and then the budgets are 

allocated to each nodes by Procedure 1 (Algorithm 1, Line 2). After that, noise is added 

to PT, layer by layer, iteratively, to build a differential private prefix tree in a top-down 

fashion (Algorithm 1, Line 3-11). In the last, the sanitized trajectory dataset V is 

outputted (Algorithm 1, Line 12).

The most important part of the algorithm is to optimize the privacy budget 

allocation which is implemented in Procedure 1. The input is a prefix tree and the output 

is the tree with allocated budget et of each node. Two recursion functions are included in 

the procedure. The first one is to allocate budgets for the leaf nodes (Procedure 1, Line 1­

4) and the nodes whose every children node has been allocated with an optimized budget 

utilizing Equation (29) (Procedure 1, Line 5-16). And the second function Normalize 

(Vi, coef) is to make sure that the sum of allocated budgets in each path is always the 

same, i.e. Equation (23) is always satisfied (Procedure 1, Line 17-24). That ensures for



any trajectory, starting from its leaf node to the root, the summation of privacy budget 

added to the nodes along the path should be equal to s.

Algorithm 1. MainFunc

Input: Raw trajectory dataset V, Timestamp domain T, Location domain L

Input: Height of the prefix tree h

Input: Privacy budget e

Input: Threshold parameter k, b

Output: Differentially private trajectory dataset V

1. Scan dataset V once to build a Prefix tree PP  with height of h;

2. BudgetAllocation(^T)

3. i = 1;

4. while i < h do

5. Qt = k x  l-1  + b;

6. for each node Vi in level i of PP  do

7. add noise to the count value stored in node vt;

8. BuildChildTree (vt, eu 6i);

9. end for

10. i +—+;

11. end while

12. D ^  Output (PP ); 

return V ;

22
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Procedure 1. BudgetAllocation 

Input: Root node v0 of prefix Tree PP

Input: Total budget e

Output: Prefix Tree with optimized budget et for each node PT'

1. function Allocate^ )

2. if v t is leaf node then

3. Vi .epsilon = e

4. break

5. else

6. for each children node v i+1 of vt do

7. Allocate(^j+1)

8. end for

9. sum = 0

10. for each leaf node vh of vt do

11. sum += e /(v h. epsilon)3

12. end for

13. v t. epsilon = vt. children_count/ sum1/3

14. Normalize (vt, v t. epsilon/e + 1)

15. end if

16. end function

17. function Normalize (Vi, coef)

18. v t. epsilon/=  coef
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19. if Vi is not leaf node then

20. for each children node Vt+1 of vt do

21. Normalize (vi+1,coef)

22. end for

23. end if

24. end function

25. Start allocation from the root node v0 of prefix Tree P T : A llocate^)

One of the most important steps in Algorithm 1 is to grow a subtree of each parent 

node vi by selecting out-edges of eout. This is implemented in Procedure 1. When 

handling a sub-level, noise is added first to the count on each existing node, according to 

privacy budget l (Procedure 2, Line 3). If the noise count on a node is greater than, or 

equal to, threshold l, the node is retained (Procedure 2, Line 4-7). After handling all 

existing nodes (Procedure 2, Line 2-11), if the summation of the noise on all existing 

children nodes is less than the noise count q  on the parent node (Procedure 2, Line 12), 

then more timestamp and location pairs (that did not exist in the current edges) are 

randomly selected from a reasonable timestamp and location domain, according to the 

restricted location domain Lr (Procedure 2, Line 12-27). The count value on the newly 

selected nodes equals to 0 plus noise (Procedure 1, Line 17), and if the result is greater 

than, or equal to, l , the node is added to the child node set (Procedure 2, Line 17-19).

The newly selected nodes, with an initial count of 0, are called “empty node”. If an empty 

node is selected, the noise count is added to the summation output sum (Procedure 2,



Line 20-21). The summation sum is used to determine when to stop growing out-edges 

through the accumulation of counts on the child nodes. When the value of summation is 

greater than, or equal to, the count value q , the loop ended (Procedure 2, Line 23-25).

Take the trajectories in Table 3.1 as an example and set the total budget equals to 

1. The budget allocation starts from trx, and calculated follows Procedure 1. Finally, the 

optimized result showed in Figure 4.2 can be calculated.

25

Figure 4.2 Prefix tree with optimized budgets. 

Procedure 2. BuildChildTree

Input: Parent node q , noisy count q , location , time q 

Input: Privacy budget l , Threshold l
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Output: Noisy child nodes set N 

1: sum = 0;

2: for each child node vi+1 of vt do

3. vi+1count = vi+1count + v i+1. + Lap(1/ei+1);

4. if v i+1count > di then

5. N ^  vt+1 ;

6. sum +=  vi+1count;

7. end if

8. if sum > ci then

9. break;

10. end if

11. end for

12. while sum < ct do

13. Randomly select a time t i+1 E T and t i+1 > t t

14. Lr ^  RestrictedLocDom (lt, t i+1 — t t);

15. for each location li+1 E Lr do

16. count = Lap(1/ei+1) E Tr do;

17. if count = Lap(1/ei+1) + 0 then

18. add eout as a new out-edge with t i+1li+1;

19. add vi+1 as a new child node;

20. v i+1. count = coun;

21. sum += count;
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22. end if

23. if sum > ci then

24. break;

25. end if

26. end for

27. end while

28. return N ;

4.3. THEORETICAL ANALYSIS

This section includes theoretical analysis of three aspects: algorithm improvement 

and privacy guarantee.

4.3.1. Algorithm Improvement. We compare the proposed model with SeqPT 

model (Chen et al. 2012a, Chen et al. 2012b), SafePath model (Al-Hussaeni et al. 2018) 

and Li et al’s model (2020). SeqPT model and SafePath model allocate privacy budget 

evenly on each level of the prefix tree. Every node at the same level shares the privacy 

budget, regardless of the number of nodes at each level, due to the characteristics of the 

prefix tree. And Li et al’s model (2020) is designed to assign privacy budgets and 

threshold to different levels. However, Li et al’s model (2020) uses the same budget for 

all nodes in the same level and their allocation function is qualitive with the equation

lg(Z+c)
^  = £f=ilg(Z+tf) x e.

For those reasons, we propose a new algorithm to optimize the budget allocation 

policy and try to allocate more budget to the nodes that have higher probability of being



queried, which finally contributes to increase of the utility of the differential privacy 

model.

4.3.2. Privacy Guarantee. Algorithm 1 consists of four steps: BuildRawTree, 

BudgetAllocation, BuildChildTree, and Output. Given the total privacy budget e, the first 

step converts the original trajectory dataset into the data structure of the trajectory prefix 

tree, and the second step only calculates and optimizes the budgets allocation of all 

nodes. Thus, there is no privacy budget consumption in the first two steps.

In third step, we added noises by iteratively constructing one level at a time based 

on the output of the first step. According to the parallel composition theorem, the entire 

privacy budget consumed in a level is shared by all the nodes on the same level since all 

nodes on the same level contain a disjoint set of trajectories. Each level is a dedicated 

privacy budget portion, since the height of the noisy prefix tree is h, the BuildChildTree 

consumes the privacy budget in an amount Yli=1 e. The summation of privacy budget 

along any path equals to the total privacy budget.

In the last step, we processed the noise prefix tree without accessing the 

underlying raw trajectories which is similar to the first two steps. Therefor, there is no 

privacy budget consumption in this step.

In conclusion, with the given privacy budget, Algorithm 1 is s-differentially

28

private.
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5. NUMERICAL EXPERIMENT

This section analyzes the utility and efficiency of proposed algorithm. We used 

the same data as Li et al. (2020) and follow the evaluation method from previous works 

(Chen et al. 2012a, Chen et al. 2012b, Al-Hussaeni et al. 2018, Li et al. 2020). The real- 

life datasets from the Shenzhen Metro smart card records, that are used, cover 2.8 million 

smart card users. 4 different datasets with different trajectory size, time domain and max 

trajectory length are listed in Table 5.1 are utilized in the algorithm evaluation. Time 

Domain represents the time domain size, and every time interval equals to 15 minutes. 

We evaluate the efficiency and scalability of the proposed algorithm, as well as the utility 

of the sanitized trajectory data used for counting queries.

Table 5.1 Datasets in numerical experiment.

Dataset Trajectory Size Time Domain Max Trajectory Length

Dataset 1 393,552 16 6

Dataset 2 772,606 48 16

Dataset 3 824,957 64 18

Dataset 4 845,727 80 20

5.1. UTILITY ANALYSIS

This section shows the utility examination result of a sanitized algorithm output. 

Same as the previous evaluation method, 40,000 random count queries of length |q| = 2 

are generated to examinate our algorithm to evaluate its utility.



Figure 5.1 indicates the average relative error difference under different total 

budget and prefix tree height of four datasets. X-axis represents different prefix tree 

height and Y-axis represents the average relative error. It can be observed that the 

average relative error generally decreases when the prefix tree height gets higher in 

dataset1 and Dataset3. However, in Dataset2, the average relative error does not change a 

lot with the change of prefix tree height. In the other hand, the utility is also influenced 

by total budget e.

30

Figure 5.1 Average error comparison under different tree height.
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5.2. SCALABILITY ANALYSIS

Figure 5.2 shows the runtime difference under different parameters and datasets. 

The parameter h = 14 and e = 1.

—© -  Reading 
—f t -  Allocation 

H  Sanitizatioi

—fi— Total Runtime

k=l,5, b=l, £=l b = l ,  e = 1

120 -

- 0 -  VWiting

s o  - LOO -

Dataset3
-  (: -bC -

4U -

2 0

Dataset
(a)Ryntim e under different dataset (b)Runtime under different k

k=l.5, e=1 k=1.5, b = l

100 -

40 -50 -
y. -  Dataset3

25 -

—  ■

0 50
Dataset

(c)Runtime under different b (d)Runtime under different t

Figure 5.2 Scalability analysis.

Subgraph (a) describes the runtime of each part and the total runtime of the 

algorithm, including reading, budget allocation, sanitization, writing. X-axis represents 

different dataset and Y-axis represents runtime. We can conclude that the sanitization
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takes most of the total runtime while budget allocation and writing account for a very 

small partition in subgraph (a).

Subgraph (b), (c), and (d) show the runtime varies under different parameters 

including threshold function parameters k, b and total budget e. X-axis represents k, b 

and £ respectively and Y-axis represents runtime. It can be observed that the algorithm 

keeps steady in all situations of all 4 datasets. And the largest dataset, dataset 4 spends 

the longest time in every scenario.

Figure 5.3 Relative error comparison of different datasets under different tree heights.
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5.3. COMPARISON WITH OTHER MODELS

This section compares our algorithm’s relative error and runtime with SeqPT and 

SafePath.

Figure 5.3 shows the results of utility comparison, with four subgraphs 

representing results under four different datasets, max |q| = 2 in this experiment. X-axis 

represents different h, Y-axis represents average relative error. The proposed algorithm 

outperforms the other three algorithms at different prefix tree heights, from 2 to 5. This 

especially occurs under Dataset 1, and the error rate of our algorithm is from 0.018 to 

0.045 which is about far less than of Seqpt and it fails to generate a sanitized tree from 

other three datasets. Our algorithm has a better performance with all metro smart card 

datasets, which include both a smaller dataset with a lower domain size and a larger 

dataset with a higher domain size.

Figure 5.4 shows the results of efficiency comparison, with four subgraphs 

representing results under four different datasets, max |q| = 2 in this experiment. X-axis 

represents different height and Y-axis represents average relative error. In Dataset 1, the 

proposed algorithm has a similar runtime with Safepath and the algorithm of Li et al. 

(2020). However, it is far smaller than Seqpt model which spends almost 120 seconds. In 

other three datasets, though the proposed algorithm has lower efficiency than the 

algorithm of Li et al. (2020), which meets the theoretical analysis because of the extra 

step, budget allocation, it still performs better than SafePath when the height is low and 

slightly poorer when the prefix tree height gets higher. In general, the runtime keeps 

increasing in a stable and approximately linear rapid, which guarantees the practicality in 

big trajectory data sanitization.
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Figure 5.4 Runtime comparison of different datasets under different height.
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6. CONCLUSIONS

In this work, we focus on the budget allocation optimization on trajectory data 

publish with e- differentially private. The trajectory data that we handle is spatial- 

temporal data with features that are large scale, high-dimensional, and sparse, which 

brings challenges to improving algorithm efficiency and data utility. A Lagrangian 

relaxation method is proposed to optimize the budget allocation model, and an 

incremental privacy budget allocation model is developed to improve data utility. 

Through theoretical analysis and comparisons with previous works based on real-life 

trajectory datasets, the proposed algorithm demonstrates more efficient and scalable 

results. The sanitized trajectory dataset is also shown to have better utility. In addition to 

the transit smart card data, our method has the potential of being directly applied to other 

types of trajectory data, such as those from social media, navigation apps, ridesharing,

and so on.



36

REFERENCES

[1] Abul, O., et al. (2008). Never walk alone: Uncertainty for anonymity in moving 
objects databases. 2008 IEEE 24th international conference on data engineering, 
Ieee.

[2] Al-Hussaeni, K., et al. (2018). SafePath: Differentially-private publishing of 
passenger trajectories in transportation systems. Computer Networks. 143126-139.

[3] An, K., et al. (2017). A Network Partitioning Algorithmic Approach for 
Macroscopic Fundamental Diagram-Based Hierarchical Traffic Network 
Management. IEEE Transactions on Intelligent Transportation Systems. PP(99): 
1-10.

[4] Barak, B., et al. (2007). Privacy, accuracy, and consistency too: a holistic solution 
to contingency table release. Proceedings of the twenty-sixth ACM SIGMOD- 
SIGACT-SIGART symposium on Principles of database systems.

[5] Chen, C., et al. (2020). Analysis of Electric Vehicle Charging Behavior Patterns 
with Function Principal Component Analysis Approach. Journal of Advanced 
Transportation. 20208850654.

[6] Chen, R., et al. (2012a). Differentially private sequential data publication via 
variable-length n-grams. Proceedings of the 2012 ACM conference on Computer 
and communications security.

[7] Chen, R., et al. (2012b). Differentially private transit data publication: a case 
study on the montreal transportation system. Proceedings of the 18th ACM 
SIGKDD international conference on Knowledge discovery and data mining.

[8] Cheng, Y., et al. (2020). Monte Carlo Tree Search-Based Mixed Traffic Flow 
Control Algorithm for Arterial Intersections. Transportation Research Record. 
2674(8): 167-178.

[9] Cicek, A. E., et al. (2014). Ensuring location diversity in privacy-preserving 
spatio-temporal data publishing. The VLDB Journal. 23(4): 609-625.

[10] Deng, Y.-J., et al. (2020a). Reduce Bus Bunching with a Real-Time Speed 
Control Algorithm Considering Heterogeneous Roadway Conditions and 
Intersection Delays. Journal of Transportation Engineering, Part A: Systems. 
146(7): 04020048.



37

[11] Deng, Y., et al. (2020b). Heterogenous Trip Distance-Based Route Choice 
Behavior Analysis Using Real-World Large-Scale Taxi Trajectory Data. Journal 
of Advanced Transportation. 20208836511.

[12] Deng, Y., et al. (2020c). Modeling and Prediction of Bus Operation States for 
Bunching Analysis. Journal of Transportation Engineering, Part A: Systems. 
146(9): 04020106.

[13] Fung, B. C., et al. (2009). Privacy protection for RFID data. Proceedings of the 
2009 ACM symposium on Applied Computing.

[14] Fung, B. C., et al. (2010). Privacy-preserving data publishing: A survey of recent 
developments. ACM Computing Surveys (Csur). 42(4): 1-53.

[15] Ghasemzadeh, M., et al. (2014). Anonymizing trajectory data for passenger flow 
analysis. Transportation Research Part C: Emerging Technologies. 3963-79.

[16] Gursoy, M. E., et al. (2018). Differentially private and utility preserving 
publication of trajectory data. 18(10): 2315-2329.

[17] He, X., et al. (2015). DPT: differentially private trajectory synthesis using 
hierarchical reference systems. 8(11): 1154-1165.

[18] Hu, H., et al. (2010). Privacy-aware location data publishing. ACM Transactions 
on Database Systems (TODS). 35(3): 1-42.

[19] Hu, X., et al. (2015). Studying Driving Risk Factors using Multi-Source Mobile 
Computing Data. International Journal of Transportation Science and 
Technology. 4(3): 295-312.

[20] Hu, X., et al. (2020). Will information and incentive affect traveler’s day-to-day 
departure time decisions?—An empirical study of decision making evolution 
process. International Journal of Sustainable Transportation. 14(6): 403-412.

[21] Jiang, K., et al. (2013). Publishing trajectories with differential privacy 
guarantees. Proceedings of the 25th International Conference on Scientific and 
Statistical Database Management.

[22] Li, Y., et al. (2020). A differential privacy-based privacy-preserving data 
publishing algorithm for transit smart card data. Transportation Research Part C: 
Emerging Technologies. 115102634.

[23] Li, Z., et al. (2018). Reconstructing Vehicle Trajectories to Support Travel Time 
Estimation. Transportation Research Record. 2672(42): 148-158.



38

[24] Liu, B., et al. (2019). VTDP: Privately Sanitizing Fine-grained Vehicle Trajectory 
Data with Boosted Utility.

[25] Ma, Q., et al. (2019). Taxicab crashes modeling with informative spatial 
autocorrelation. Accident Analysis & Prevention. 131297-307.

[26] Ma, Y.-L., et al. (2018). The use of context-sensitive insurance telematics data in 
auto insurance rate making. Transportation Research Part A: Policy and Practice. 
113243-258.

[27] Machanavajjhala, A., et al. (2007). l-diversity: Privacy beyond k-anonymity. 1(1): 
3-es.

[28] McSherry, F. and K. Talwar (2007). Mechanism design via differential privacy. 
48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07), 
IEEE.

[29] Mir, D. J., et al. (2013). Dp-where: Differentially private modeling of human 
mobility. 2013 IEEE international conference on big data, IEEE.

[30] Monreale, A., et al. (2010). Movement data anonymity through generalization. 
Trans. Data Priv. 3(2): 91-121.

[31] Nergiz, M. E., et al. (2008). Towards trajectory anonymization: a generalization- 
based approach. Proceedings of the SIGSPATIAL ACM GIS 2008 International 
Workshop on Security and Privacy in GIS and LBS.

[32] Primault, V., et al. (2015). Time distortion anonymization for the publication of 
mobility data with high utility. 2015 IEEE Trustcom/BigDataSE/ISPA, IEEE.

[33] Qi, H. and X. Hu (2020). Real-time headway state identification and saturation 
flow rate estimation: a hidden Markov Chain model. Transportmetrica A: 
Transport Science. 16(3): 840-864.

[34] Sweeney, L. J. I. J. o. U., Fuzziness and K.-B. Systems (2002). k-anonymity: A 
model for protecting privacy. 10(05): 557-570.

[35] Tang, Q. and X. Hu (2020). Modeling Individual Travel Time with Back 
Propagation Neural Network Approach for Advanced Traveler Information 
Systems. Journal of Transportation Engineering, Part A: Systems. 146(6): 
04020039.

[36] Tang, Q., et al. (2021). Analytical characterization of multi-state effective 
discharge rates for bus-only lane conversion scheduling problem. Transportation 
Research Part B: Methodological. 148106-131.



39

[37] Tang, Q., et al. (2020). Modeling Routing Behavior Learning Process for Vacant 
Taxis in a Congested Urban Traffic Network. Journal of Transportation 
Engineering, Part A: Systems. 146(6): 04020043.

[38] Terrovitis, M. and N. Mamoulis (2008). Privacy preservation in the publication of 
trajectories. The Ninth International Conference on Mobile Data Management 
(mdm 2008), IEEE.

[39] Xiao, Y. and L. Xiong (2015). Protecting locations with differential privacy under 
temporal correlations. Proceedings of the 22nd ACM SIGSAC Conference on 
Computer and Communications Security.

[40] Yu, X., et al. (2019). A Markov decision process approach to vacant taxi routing 
with e-hailing. Transportation Research Part B: Methodological. 121114-134.

[41] Zhu, X., et al. (2017). A Bayesian Network model for contextual versus non­
contextual driving behavior assessment. Transportation Research Part C: 
Emerging Technologies. 81172-187.



40

VITA

Chenxi Chen was born in Zhejiang, China. Chenxi received his bachelor’s degree 

in Civil Engineering from Zhejiang University, China, in June 2018. He came to Missouri 

University of Science and Technology in September 2018 to pursue his Ph.D. degree in 

transportation engineering and joined the research team as a Graduate Research Assistant 

under the supervision of Dr. Xianbiao Hu. He published one paper titled “Analysis of 

Electric Vehicle Charging Behavior Patterns with Function Principal Component 

Analysis Approach” by Journal of Advanced Transportation. He switched to a MS degree 

in June 2021. In July 2021, he received his MS degree in Civil Engineering from 

Missouri University of Science and Technology.


	Optimization of transit smart card data publishing based on differential privacy
	Recommended Citation

	tmp.1631111403.pdf.8sP0a

