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ABSTRACT

This research focused on the synthesis and phase formation of zirconium carbide 

with different carbon contents, and lattice thermal conductivity of zirconium carbide with 

different carbon vacancy, hafnium, and oxygen contents.

Nominally pure phase ZrCx was synthesized by solid-state reaction of zirconium 

hydride (ZrHs) and carbon black at a temperature as low as 1300°C. The powder 

synthesized at 1300C was carbon deficient ZrCx. Carbon stoichiometry of the as- 

synthesized powders increased as the synthesis temperature increased. As the synthesis 

temperature increase, the oxygen content of ZrCx decreased due to the increasing C site 

occupancy. Low stoichiometry ZrC0.6 powders were synthesized at 1300C and 2000C , 

and the formed phases were investigated. Carbon vacancy ordered phases were detected 

by neutron diffraction and selected area electron diffraction.

Lattice thermal conductivities of ZrCx with different carbon contents (x=1.0, 0.75,

0.5) and different hafnium contents (3.125 at% and 6.25 at% were studied theoretically.

A combination of first-principles calculations and the Debye-Callaway model was 

employed to predict the lattice thermal conductivities. Lattice thermal conductivities of 

all the compositions decreased as temperature increased. Increasing carbon vacancy 

content reduced the lattice thermal conductivity while increasing the grain size increased 

the lattice thermal conductivity. Lattice thermal conductivities of ZrCx also decreased as 

the content of H f increased. Carbon vacancies and H f impurities decreased the phonon 

transport, thus the lattice thermal conductivity decreased.
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1. INTRODUCTION

Zirconium carbide is a promising barrier layer material for tristructural-isotropic 

(TRISO) fuel particles that are employed in high-temperature gas-cooled reactors. 

Typically, that barrier layer is made of SiC. Due to the better stability under irradiation 

and mechanical integrity of ZrC, it could substitute for SiC in the future. Thus, it is 

essential to study the thermal properties of ZrC.

The most commonly used synthesis method to produce ZrC is carbothermal 

reduction. However, carbon stoichiometry is difficult to control for ZrCx synthesis due to 

the range of carbon stoichiometry and dissolved oxygen is difficult to remove. According 

to some theoretical ZrCx crystal structure and phase studies, carbon vacancy ordered 

phase preferred to form in ZrCx when x approaches the lower limit for stability of the 

rock salt structure. This contradicts the extensively accepted Zr-C phase diagram that is 

based on the experimental findings, which does not show vacancy ordering. Carbon 

stoichiometry affects the thermal conductivity of ZrCx. Systematic theoretical and 

experimental studies are needed. In addition, it is impossible to completely separate Zr 

and H f from each other. H f impurities are present in ZrCx before and after synthesis. 

However, the effects of H f impurities on the thermal conductivity of ZrC was rarely 

discussed in previous works.

In this research, solid state reaction was used for synthesis of ZrCx with controlled 

carbon stoichiometry. Starting materials were ZrH2 and carbon black with different 

mixing ratios. Dissolved oxygen levels were characterized in different ZrCx 

compositions. Phase formation of ZrC0.6 was investigated using neutron diffraction and
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selected area electron diffraction. Ordered phase can be formed after solid state reaction 

synthesis without a long period of isothermal holding. Different synthesis temperatures 

did not affect the vacancy ordering degree significantly. Lattice thermal conductivities of 

ZrCx with different carbon contents were calculated using first-principles calculation 

combined with the Debye-Callaway model method. Lattice thermal conductivity 

decreased as temperature increased. As the carbon content increased, lattice thermal 

conductivity decreased. The natural distributions of Zr isotopes, grain boundaries, and the 

interactions between phonons negatively affected lattice thermal conductivity. H f 

impurities in ZrCx reduced the lattice thermal conductivity. A small amount of H f 

decreased the lattice thermal conductivity of ZrC significantly. While further increase the 

H f impurity content did not affected the lattice thermal conductivity a lot.

Zirconium carbide powder synthesis, the formed phases, and the intrinsic thermal 

properties were studied in this thesis; there were four objectives. First, the effects of the 

Zr:C and synthesis temperatures on the synthesized ZrCx powders were studied. Second, 

carbon vacancy ordering was quantified in ZrC0.6 synthesized at different temperatures. 

Third, lattice thermal conductivities of ZrCx with different carbon contents were 

predicted using a combined method of first-principles calculations and the Debye- 

Callaway model. Fourth, a theoretical study of the effects of H f impurities on ZrCx lattice 

thermal conductivity was conducted.
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LITERATURE REVIEW

2.1. ZIRCONIUM CARBIDE PROPERTIES

Zirconium carbide, as one of the transition metal monocarbides (TMCs), belongs 

to the family of ultra-high temperature ceramics (UHTCs)[1]. It has a combination of 

properties including high melting point (3420°C)[2], high strength (> 400MPa) and 

hardness (> 25 GPa)[3], high thermal conductivity (> 20W /m K )[4], low electric resistivity 

(~ 60 gQ cm )[5], excellent corrosion resistance[6][7], and good thermal stability[8][9]. 

Zirconium carbide has a relatively high thermal conductivity among TMCs[10], which is a 

merit for using it in nuclear applications. In previously published reports, thermal 

conductivities of ZrCx were measured [8][9][11][12][13]. However, those measured values had 

discrepancies as shown in Figure 2.1. In one study, ZrC with a relative density of 93.3% 

had a thermal conductivity range of 31 to 38 W / m K  at temperatures from 200 to 1000C 

[12]. In another study, ZrC with relative density of 91.9% had a thermal conductivity range 

from 18 to 26 W / m K  at temperatures ranging from 300 to 1100C [11]. The differences 

between those values were due to the different average grain sizes, carbon vacancy 

contents, and porosity levels of the sintered ZrCx ceramics. The sintering methods and 

characteristics of ZrCx in previous studies are summarized in Table 2.1. In those studies, 

ZrC ceramics with larger grain sizes, lower carbon vacancy contents, and higher relative 

densities possessed the highest thermal conductivities.

2.1.1. Phase and Crystal Structure. A phase diagram of the Zr-C system is 

shown in Figure 2.2[14]. The ZrCx phase had a carbon stoichiometry ranging from 0.63 to 

0.98 based on an experimental study[2]. In this carbon stoichiometry range, ZrCx was



4

stable in the rock-salt crystal structure (Fm3m, space group No. 225) as shown in Figure

2.3. The sublattices of both Zr and C are face centered cubic.
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Figure 2.1. Thermal conductivities of zirconium carbide ceramics measured in previous

studies.

For ZrCx, experimental studies revealed that carbon vacancies can be ordered, 

which results in the formation of a superlattice. For example, ZrC0.61 powder synthesized 

using a mechanochemical method and densified by spark plasma sintering contained 

ordered carbon vacancies as shown by selected area electron diffraction (SAED)[15]. In 

another study, a ZrC0.7 sample prepared by arc-melting followed by annealing had a
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Table 2.1. Densification methods and sample characteristics of ZrCx from previous 
________ studies sorted by highest to lowest thermal conductivity.____________

Ref.
Densificatio  

n m ethod
Com position

R elative
density

Average  
grain size

Im purity
Content

Therm al 
conductivity  

(W /m K  )

8 HP ZrC0.98 95% 50 pm < 0 .2  wt% 32.2 , 600°C

13 HP ZrC0.98 95% 50 pm < 0 .2  wt%
3 8 .5 ,

1 3 0 0 C
12 SPS ZrC 93.3% ~ 1 0  pm N /A 31 .3 , 2 0 0 C

14 HP ZrC 91.5% N /A > 0 .165  wt%
2 6 .7 ,

1 3 2 5 C

11 HP ZrC 91.9% 3.7  pm N /A 17.7, 3 0 0 C

superlattice as revealed using a combination characterization methods including electrical 

resistivity, differential thermal analysis, and X-ray diffraction[16]. In addition to 

experimental studies, carbon vacancy ordering in sub-stoichiometric zirconium carbide
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was studied theoretically[17][18]. Figure 2.4 shows a computational Zr-C phase diagram[19]. 

According to this study, ordered phases of ZrCx could be formed at temperatures under 

1300 K for carbon stoichiometries ranging from x = 0.5 to 0.98. In two theoretical 

studies, stable and meta-stable ZrCx crystal structures were predicted by combining a 

cluster expansion method, first-principles calculations^201, and state-of-art evolutionary 

algorithms^211. The stability of the crystal structure was determined based on the 

calculation of formation enthalpies. Ordered phases of ZrCx ranged across the entire 

carbon stoichiometry range from x = 0.5 to 1.

2.1.2. Thermal Conductivity. The total thermal conductivity of a material 

includes contributions from electron and phonon components. The electron contribution

L Tcan be estimated using the Wiedemann-Franz law[22], Ke =  -0-, where L0 = 2.45x10 8

W /fi K2 is the theoretical Lorenz number, T is the absolute temperature, and p  is the 

electrical resistivity. At low temperatures (<100 K), thermal conductivity is mainly (>95 

%) due to phonon transport^231. Electron transports dominate the thermal conductivity at 

high temperatures (>1000 K)[241. In general, the thermal conductivity of ZrCx increases as 

temperature increases (Figure 2.1), in contrast to the trend in most ceramics. The thermal 

conductivity of ZrCx was also affected by carbon stoichiometry. Carbon vacancies in 

ZrCx scatter phonons and electrons, which decreased the thermal conductivity as x 

increased^251. The thermal conductivity of ZrC decreased as relative density decreased^121 

and porous ZrC can be considered as a high-temperature insulation material[261[27]. 

Impurities in ZrCx also decrease the thermal conductivity. Common impurities in
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Figure 2.3. Crystal structure of ZrC.

Figure 2.4. Computational Zr-C phase diagram[17].



zirconium carbide include hafnium[28], oxygen, and nitrogen. A study revealed that a 

composite that consisted of C/ZrO2/ZrC, had a thermal conductivity as low as 0.057 

W/m-K[29].

2.2. SAMPLE PREPARATION

High yield and low cost synthesis methods are in demand for producing ZrCx 

powder with controlled composition and particle size. Densification methods for 

fabricating bulk ZrCx ceramics with high-relative density and low impurity contents also 

need to be studied.

2.2.1. ZrCx Synthesis. ZrCx can be synthesized using different methods 

established by previous studies. For preparing ZrCx coatings, chemical vapor deposition 

(CVD) is the most common method, and it uses the reaction between zirconium halides 

(e.g., ZrCU) and hydrocarbon compounds (e.g., CH4)[30][31]. Molten salt synthesis was 

also developed to coat ZrC on the surface of flake graphite at a temperature as low as 

900°C[32]. Hexagonal shaped ZrC platelets were formed after self-propagating high- 

temperature synthesis when 20 mass% of Al was added into starting Zr and C 

powders[33]. Solid-state reaction, carbothermal reduction, molten salt synthesis, 

electrochemical synthesis, laser pyrolysis, and mechanochemical synthesis methods were 

used for powder synthesis in previous studies [34][35][36][37][38][39][40][41][42][43]. Compared 

with other synthesis methods, solid state reaction and carbothermal reaction have 

advantages that include: they are relatively simple; they control the particle morphology; 

and they can control carbon stoichiometry. However, carbothermal reaction synthesis 

requires high reaction temperatures and long holding periods due to the high enthalpy of

8



ZrC formation, and the need to remove residual oxygen from the resulting powder 

particles. Particle size increases as the synthesis temperature increases.

2.2.2. ZrCx Densification. Bulk ceramics made of ZrCx are typically prepared 

by hot-pressing or spark plasma sintering (SPS)[44][12]. Hot-pressing is a necessary process 

to fabricate high quality monolithic ZrCx ceramics with low porosities. Understanding the 

mechanism progress is essential. Low carbon content ZrCx is easily densified according 

to an experimental study[45]. Sinterability decreased as carbon content increased. The 

mechanism of reaction hot-pressing (RHP) and the progress of ZrCx densification were 

studied theoretically[46]. For single step RHP, at the initiation of densification, starting 

materials of Zr and C were densified at a certain rate. Then, the densification rate 

suddenly accelerated due to the creep of Zr. At the same time, the content of the hard 

ZrCx phase kept increasing. This stage ended after approximately 30-40 vol% of the Zr 

had reacted Zr and the system contained 40-50 vol% of the hard ZrCx phase. As the pores 

were removed, the densification rate decreased, and finally reached a constant rate. 

Relative density during this stage increased initially due to the creep of Zr, then 

decreased once a certain amount of Zr had reacted because of the de-densification of 

ZrCx formation relative to the creep of Zr.

Based on previous reports, RHP is the best way to obtain high purity ZrC 

ceramics if the cost is not considered. The starting carbon must be well dispersed when 

mixing with the starting Zr to avoid the formation of graphite during hot pressing. Then, 

carbon must fully react with Zr during hot pressing. Annealing may be considered to 

remove the dissolved oxygen or nitrogen from the lattice.

9
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2.3. OXIDATION AND NITRIDATION

Except for Hf, the most common impurities in ZrCx are O and N. Oxidation and 

nitridation can occur during powder synthesis or densification as well as during long-term 

exposure to air.

2.3.1. ZrC Oxidation. One of the disadvantages to zirconium carbide is that it 

has poor oxidation resistance. Oxidation can be inhibited by the formation of a dense 

oxidized layer on the outside of ZrC particles. Porous ZrO2 layers are not able to protect 

ZrC particles[47]. In addition to the external oxide, O dissolves into the ZrCx lattice when 

using carbothermal reduction to synthesize ZrC. The O atoms substitute onto carbon sites 

in the lattice[48], and the dissolved oxygen increases the metal—non-metal bond 

strength[49]. Therefore, the dissolution of oxygen into ZrCx decreases the lattice parameter 

compared to ZrCx with carbon vacancies. The kinetics of ZrC oxidation have been

Figure 2.5. Jander’s plot for the isothermal oxidation kinetics of ZrC at an oxygen 
pressure of 1.3 kPa at different temperatures[50].



studied previously. The reaction rate of ZrC and O2 exhibited a linear relationship with 

with time for increasing temperatures that was calculated using Jander’s equation[50], as
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Figure 2.6. Mechanistic model for the oxidation of ZrC to ZrO2[51].

Figure 2.7. (a) Calculated isothermal section of the Zr-C-O system at 2000°C with 
experimental data; (b) focused on zirconium oxycarbide solid solution[58].



shown in Figure 2.5. The mechanism for ZrC oxidation was studied using X-ray 

diffraction. The ZrC sample was heated in a mixture gas of oxygen, and argon. Oxidation 

products at different degrees of progress were measured. During oxidation, oxygen 

diffused from the outside to the inside of the bulk ZrC. A zirconium oxycarbide layer was 

initially formed outside of the ZrC particle, then ZrO2 formed as carbon separated from 

ZrC. Finally, all carbon of the carbon from the initial ZrCx reacted with oxygen. The final 

oxidation product was ZrO2[51]. The progress of ZrC oxidation is depicted in Figure 2.6. 

At the beginning of oxidation, the cubic structure of ZrO2 (preferred to grow in (220) 

orientation) was formed on the surface of ZrC because the crystal structure was stabilized 

by C. As oxidation progressed, the C content was reduced and the cubic ZrO2 

transformed into a monoclinic structure[52][53]. Usually, oxidized layers on ZrC surfaces 

have cracks due to the mismatch of the thermal expansion coefficients[54][55]. The weight 

of the oxidized layer presented a parabolic rise with time under certain temperatures and 

oxygen pressures[50][51][52]. Oxygen that was dissolved into the lattice of sub­

stoichiometric ZrCx formed a zirconium oxycarbide phase. Zirconium oxycarbide 

ceramics have been made by solid state synthesis[49] for a composition of ZrC0.64O0.26 ,and 

for carbothermal reduction[56] using a composition range from ZrC0.79O0.13 to ZrC0.97O0.04. 

In addition, ZrC0.6O0.4 was formed using an oxygen diffusion method by heat treating 

ZrC0.6[57]. Both ZrCx and ZrC0.6O0.4 were in ordered structures as determined by selected 

area electron diffraction (SAED). The Zr-O-C ternary phase diagrams at different 

temperatures were calculated using CALPHAD method based on experimental data. In 

the zirconium oxycarbide phase region, the maximum dissolved oxygen increased as

12
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temperature increased. At 2000°C, the zirconium oxycarbide phase with highest oxygen 

content was ZrC0.540O0.298, as shown in Figure 2.7[58].

2.3.2. ZrCx Nitridation. Another common impurity in ZrC is nitrogen[59]. 

Zirconium carbonitrides synthesis has been described in previous reports. It was 

synthesized by magnetron sputtering with a flowing Ar/N2/C2H2 atmosphere. The crystal 

structure was the same as ZrC[60]. The ZrCxNy was also synthesized using a two-step 

carbothermal reduction-nitridation method. ZrC was first synthesized by carbothermal 

reduction. Then, the ZrC was that synthesized was nitrided under a flowing H2/N2 

atmosphere[61].

2.4. ZrC IRRADIATION

The fourth-generation commercial nuclear reactors were built using high- 

temperature reactors that have outlet temperatures higher than 1000C. The current fuel 

particles for those reactors are tri-isotropic (TRISO) particles, which consist of a number 

of layers. A cross-section image of a TRISO particle is shown in Figure 2.8. The kernel 

of the TRISO fuel particle could be UO2, UC2, or the mixture of the two. Outside of the 

kernel are layers including a porous pyrolytic carbon (buffer) layer, an inner pyrolytic 

carbon layer, SiC layer, and an outer dense pyrolytic carbon layer. The function of those 

layers, especially for the SiC layer, is to contain the fission products to prevent their 

diffusion out of the particle[62]. ZrC is a candidate to replace SiC in TRISO particles 

because it has a higher melting point and lower neutron-absorption cross-section than 

SiC. The SiC and ZrC layers are usually deposited on the particles by chemical vapor 

deposition (CVD)[63]. The properties of ZrC under irradiation and the diffusion of fission



products through ZrC were studied previously. ZrC is resistant to fission products 

generated from UC2 and (Th,U)O2 kernels. The mechanical integrity of ZrC is excellent 

after irradiated[64]. This is crucial for TRISO particles because the volume of ZrC can 

changed after irradiation due to the formation of defect clusters. The mechanisms of 

diffusion for fission products and their retention in ZrC are not clear. Although the fission 

elements have similar atomic radii to Zr, the formation energy of Zr vacancies is much 

higher than for the formation of C vacancies according to a theoretical study[65]. The 

diffusion parameters of Xe in ZrCx with different carbon stoichiometries were studied. 

The activation energy increased as carbon stoichiometry increased from x = 0.58 to 0.83. 

Then higher carbon content reduced the activation energy due to the decreased number of
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Figure 2.8. Cross section of current TRISO fuel particle.
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C vacancies[66]. The release of 90Sr in ZrCi.3 (note that ZrCi.3 contains both ZrCx and free 

C) was determined using volume diffusion. The diffusion rates in the grain bulk and grain 

boundary were approximately equal. The diffusion mechanism for 137Cs and 144Ce in 

ZrC1.3 was determined as grain boundary diffusion[67]. ZrC inhibits the migration of UO2, 

And other highly diffusive elements such as silver and europium isotopes, which can be 

retained in ZrC at high temperatures[68]. ZrC is sensitive to oxidation, therefore a ZrC 

layer can be used as an oxygen getter for the UO2 kernel TRISO fuel particle. Directly 

coating a ZrC layer outside of the UO2 kernel can retain all fission products after a long 

period of post-irradiation annealing at high temperatures[69]. In general, ZrCx was quite 

stable under neutron irradiation at different temperatures. After neutron irradiation, some 

unidentified dislocation loops were present in ZrCx as identified by TEM; the size of the 

loops increased with increasing temperature. Loop sizes in the bulk were larger than near 

the surface because of lack of surface sink. Lattice parameters were slightly larger than 

the non-irradiated ones. Mechanical properties increased after the irradiation treatment. 

Thermal conductivity decreased after irradiation due to increased phonon- 

scattering[70][71].

2.5. ZrCx THEORETICAL STUDIES

Theoretical studies of ZrCx have been used to study densification mechanisms, 

phase diagrams, crystal structures for different compositions, mechanical properties, 

chemical bonding, and thermal properties.

2.5.1. Zr-C Phase Diagram. A Zr-C phase diagram was calculated using an 

order parameter function method. Ordered single and double phases were determined



with carbon stoichiometries ranging from x = 0.5 to 1.0 under 1220 K, as shown in 

Figure 2.4[72].

2.5.2. ZrCx Crystal Structures. The ZrC crystal structure with vacancies, 

antisite defects, and interstitials was examined by calculating defect energeties with ab 

initio methods. The most favorable defect was carbon vacancy with carbon interstitials 

second. The highest defect energy was for the formation of Zr interstitials[73]. Crystal 

structures of ZrCx were investigated using a combination of cluster expansion methods 

and first-principles calculations. Ground states of Zr8C7, Zr6C5, Zr4C3, Zr3C2, and Zr2C 

were ordered phases with structures of P4332, C2/m, C2/m, Fddd, and Fd-3m, 

respectively. The ordering enthalpy of ZrCx decreased with increasing carbon vacancy
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Figure 2.9. Carbon vacancy configurations in C-sublattice of (a) Zr8C7, (b) Zr6C5, (c) 
Zr4C3, (d) Zr3C2 and (e) Zr2C. (Note: 1NN is the 1st nearest neighboring; 2NN is the 2nd 

nearest neighboring; 3NN is the 3rd nearest neighboring; 4NN is the 4th nearest
neighboring.)



concentrations and it reached the lowest level when x was approximately 0.5. Carbon 

vacancy configurations of the C-sublattice for the ground states structures were also 

predicted, as shown in Figure 2.9[74]. Except for Zr2C, the above compositions also had 

metastable phases as follows: P-42im  for Zr8C7, P3i12 and C2/c for Zr6C5, C2/m for 

Zr4C3 and Zr3C2, and P4332 for Zr8C5[75]. Their formation energies were slightly higher 

than their stable counterparts. Theoretical XRD patterns for stable and metastable phases 

included superlattice peaks. Similar results from the sub-stoichiometry ZrCx crystal 

structure were also calculated by USPEX code based on DFT and Vienna Ab-initio 

Simulation Package (VASP). Space groups of carbon vacancy ordered phases of Zr8C7, 

Zr7C6, Zr6C5, Zr5C4, Zr4C3, Z0 C2 and Zr2C are P4332, R-3, C2/m, P-1, C2/c, C2/m, and 

Fd-3m[76]. More details regarding the predicted crystal structures, such as atom positions 

and coordination numbers, were given in another theoretical study[21].

2.5.3. ZrCx Theoretical Mechanical Properties. Stable and metastable ZrCx phases 

were mentioned in 1.5.2[74]. For those structures, theoretical mechanical properties 

decreased as carbon content decreased. Elastic properties of ZrCx under pressure were 

studied using a norm-conserving pseudopotentials method. The structure became more 

dense under pressure, which increased the bulk modulus[79]. Effects of carbon vacancies 

and O/N impurities on the mechanical properties, which include bulk modulus, shear 

modulus, Pugh’s ratio, and Vickers hardness, were calculated. In general, mechanical 

properties decayed with increased carbon vacancy content and oxygen concentration. 

However, nitrogen impurities slightly enhanced the mechanical properties[82].

2.5.4. ZrC Chemical Bonding. First-principles calculations were employed to 

study the electron density of states, electron charge density, and Mulliken population of
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ZrCx using the CASTEP code. Electron density of states and electron charge density 

revealed the strong covalent bonds between Zr and C atoms. Ionic and metallic bonds 

were also present in the structure based on the Mulliken population data[77]. A strong 

nearest-neighbor force constant between Zr and C was disclosed. Carbon atoms were 

ionized by negative charges[78]. Carbon vacancies weakens the chemical bonding of Zr-C 

that included covalent bonds, and strength the Zr-Zr metallic bond[77].

2.5.5. ZrCx Theoretical Thermal Conductivity. The increasing thermal 

conductivities of ZrCx with increasing temperature were explained by a theoretical study. 

Phonon thermal conductivity was calculated using a molecular dynamic methods, and 

electron thermal conductivity was calculated with DFT using the same empirical 

potential as used for the phonon calculations. Phonon thermal conductivity decreased 

regularly with increasing temperature. The increase in total thermal conductivity with 

increasing temperature was attributed to the electron contribution to thermal conductivity. 

Carbon vacancies significantly affected the phonon thermal conductivity; however, the 

electron thermal conductivity was not affected by carbon vacancies. Two primary reasons 

were identified as the cause of the increasing electron thermal conductivity with 

increasing temperature. First, electron thermal conductivity was determined using 

theWiedemann-Franz law (Ke = LoT), where L is the Lorenz number, a  is electrical 

conductivity, and T is absolute temperature. ZrC was defined as a semi-metal, the Lorenz 

number of the semi-metal increased with increased temperature, which caused an 

increase in the electron contribution to thermal conductivity. Second, the electron density 

of states at the Fermi level increased with increasing temperature, which in turn increase 

the electron thermal conductivity[i]. In another study, electrical conductivity of ZrC was
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calculated using Boltzmann transport approach from 0 K to 3500 K. At low temperatures, 

thermal conductivity initially increased sharply from 0 K to approximately 200 K, then it 

decreased with increasing temperatures and reached the lowest at approximately 1200 K. 

As the temperature further increased, thermal conductivity increased almost linearly. 

Grain boundaries restricted the transport of phonons, so the thermal conductivity was 

dependent on grain size and increased with increasing grain sizes[81].

2.6. ZrC APPLICATIONS

ZrC ceramics or composites containing ZrC can be used in rocket 

technology[82][83][84], cutting tools[85][86][87], nuclear reactor particle fuel[88][89][62][90][91][92][6], 

solar power receivers[93], and field emitter arrays[94]. The addition of ZrC can increase the 

ablation resistance of copper infiltrated tungsten, which is used for rudders in rocket 

motors. Pitch-derived ZrC/C composites also have good ablation resistance, making these 

composites suitable for aerospace applications. ZrC/W based composites are able to 

withstand ultra-high temperatures, so they can be used for rocket nozzles. Likewise, ZrC- 

ZrB2 and ZrC-TiB2 composites have superior mechanical properties; they are good 

candidates for cutting tools materials. ZrC is capable of retaining the fission product 

elements in the nuclear fuel kernel, so it is a promising barrier coating layer for TRISO 

fuel particles. Additionally, ZrC has good spectral selectivity, which is a well-known 

characteristics of ultra-high temperature ceramics. This property makes ZrC applicable 

for solar power receivers. ZrC is stable under high emitted currents. Combined with other 

properties, bulk and coating ZrC are promising for field emission applications.
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a b s t r a c t

Zirconium carbide (ZrCx) powders were synthesized at temperatures between 

1300°C and 2000°C by solid state reaction of zirconium hydride (ZrH2) and carbon black. 

Crystal structure, lattice parameters and grain sizes of the as-synthesized ZrCx powders 

were characterized for two different starting ZrH2 :C ratios of 1:0.60 and 1:0.98. Powders 

with stoichiometry approaching ZrC0.98 were synthesized at temperatures as low as 

1600°C whereas ZrCx powders synthesized at lower temperatures had lower carbon 

contents regardless of the starting ZrH2 :C ratio. Crystallite sizes as small as about 50 nm 

were obtained due to the low synthesis temperature. Oxygen dissolved into the ZrCx 

lattice when carbon vacancies were present. Neutron diffraction analysis was used to 

determine that carbon stoichiometry increased and dissolved oxygen content decreased as 

synthesis temperature increased.



Keywords: Zirconium carbide powder; Low temperature synthesis; X-ray 

diffraction; Carbon stoichiometry; Powder oxidation; Electron microscopy; Neutron 

diffraction; Intrinsic property.
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1. INTRODUCTION

Zirconium carbide (ZrCx) ceramics are proposed for use in extreme environments 

due to a combination of properties including high melting point (3420°C)[1], high strength 

(>400 MPa) and hardness (>25 GPA)[2], high thermal conductivity (>20 W /m K ) and low 

electrical resistivity (~60 p Q cm )[3], excellent corrosion resistance[4][5], and good thermal 

stability[6][7]. Some of the applications proposed for ZrCx ceramics include as a matrix or 

surface coating for fiber reinforced ultra-high temperature ceramic (UHTC) 

composites[8][9], and as structural or fission product barrier coatings for tri-isotropic 

(TRISO) coated nuclear fuel pellets[10].

Low cost and high yield methods are needed for the fabrication of powders with 

controlled composition and microstructure. Various methods have been reported for 

preparation of ZrCx. Chemical vapor deposition (CVD) using the reaction between 

zirconium halides (e.g. ZrCU) and hydrocarbon compounds (CH4 ) is the most common 

method for preparing ZrCx coatings[11][12]. Bulk ZrCx ceramics are typically prepared by 

hot-pressing (HP) or spark plasma sintering (SPS) of ZrCx powders with or without 

sintering aids[13][14]. For powder synthesis, solid state reactions[15][16][17][18], carbothermal 

reduction[19,20], molten salt synthesis[21], electrochemical synthesis[22] and laser 

pyrolysis[23][24] have been reported.



Solid state reaction and carbothermal reduction have several advantages 

compared to other synthesis methods including relatively simple processes along with 

control of the particle morphology of zirconium carbide and carbon stoichiometry. 

Mechanosynthesis of ZrCx was accomplished by grinding Zr and graphite powders by 

high-energy milling at room temperature[25]. Hexagonal monolayer platelets of (111) 

oriented ZrCx were grown by self-propagating high-temperature synthesis (SHS) using Al 

as an additive to control growth[26]. Nanocrystalline ZrCx was produced by reaction of 

ZrO2, Li2CO3 and Mg in an autoclave at 600°C[27]. Zirconium oxycarbide powders with 

carbon stoichiometries ranging from 0.79 to 0.97 were synthesized by carbothermal 

reduction[28]. Nanosize particles ZrCx encased by a graphitic shell were synthesized by a 

combination of mechanical milling and annealing metal-carbon powder mixtures[29].

Carbothermal reduction is the most common method for synthesis of ZrCx and 

has been reported to occur in two steps[30]. During the first step, oxygen-rich primary 

zirconium oxycarbide forms by solid-gas reactions. The particles formed in the first step 

are covered by amorphous carbon. In the second step, secondary carbon-rich zirconium 

oxycarbide forms continuously on the primary zircnoium oxycarbide particles. Two 

zirconium oxycarbides consume each other forming a homogeneous composition. At the 

same time, oxygen is removed by reaction with the reducing environment that is rich in 

carbon monoxide. At the conclusion of the second stage, zirconium carbide powder with 

its highest carbon stoichiometry and minimum oxygen content is produced. Depending 

on the presence of impurities and the ratios of starting materials, oxygen can be present in 

different amounts in the zirconium oxycarbide lattice on carbon sites[28]. Unfortunately, 

many reports of synthesis of ZrCx do not analyze the resulting powders using methods
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that can unambiguously determine carbon stoichiometry and oxygen content. For 

example, x-ray diffraction (XRD) analysis is the most common method used to 

characterize synthesized powders, but the lattice parameter of ZrCx has a complex 

relationship with carbon and oxygen contents that requires independent measurement of 

either oxygen or carbon content to explicitly determine carbon stoichiometry and 

dissolved oxygen content[31].

The purpose of this study was to investigate the effect of synthesis temperature 

and the starting ratio of zirconium to carbon on the composition of the resulting ZrCx 

powders.
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2. EXPERIMENTAL

2.1. STARTING MATERIALS

Commercial ZrH2 (Min. 95.5%, 27.1 pm, Chemadyne, LLC., Canoga Park, CA) 

and carbon black (BP-1100, Cabot Corporation, Alpharetta, GA, USA) powders were 

used as starting materials for ZrCx synthesis. The powders were batched with molar ratios 

of ZrH2 :C = 1:0.98 and 1:0.60. The powders were mixed by ball milling using zirconia 

grinding media in acetone for 12 hours under a rotation speed of 50 rpm. Afterward, 

rotary evaporation (Rotavapor R-124, Bucchi, Flawil, Germany) was employed to 

remove the acetone from the slurry at a temperature of 80°C, vacuum of 250 mmHg and a 

rotation speed of 90 rpm. For synthesis, pellets were produced by uniaxial pressing of 

three grams of mixed powder.
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2.2. SYNTHESIS OF ZRCx  POWDERS

Synthesis (Reaction 1 and 2, where y  is the molar ratio of C to Zr in the starting 

powder) was conducted in a graphite element furnace (3060-FP20, Thermal Technology, 

Santa Rosa, CA, USA) under flowing argon. The mixed powder was heated from room 

temperature to 800°C at a heating rate of 10°C/min, and a dwell time of 2 hours to 

promote decomposition of ZrH2 . Synthesis was promoted by heating to temperatures 

ranging from 1300C to 2000C  for 3 hours.

^ r ^2(s) ^  Z ^ )  +  #2(3) (1)

ZrCs) +  yC(s) ^  ZrCX(s) +  (y  -  x) C(S) (2)

2.3. CHARACTERIZATION

Phases were identified using X-ray diffraction (XRD, PANalytical X ’Pert3 

Powder, Malvern Panalytical Inc., Westborough, MA, USA) with Cu Ka radiation (A = 

1.5418 A). Lattice parameters and average crystallite sizes were determined using the 

Rietveld method (RIQAS4, Materials Data Inc., Livermore, CA, USA). The reliability 

factors Rp and Rwp were calculated by Equations 3 and 4:

_  Y,i\cYsim(20i)-IexP(20i)+Yback(20i)\ 
V = Zi\Iexp(20i)\ (3)

Rwp
[[Y,jWi(cYsim(20i)-IexP(20i)+Yback(20i))2]) 1/2 
l Y,iwi(Î xP(20i))2 } (4)

where c is an optimized scaling factor that produces the lowest value of Rwp, w t =  

1 /IexP(26i) is a weighting function, Iexp(26i) is the angle-dependent intensity from an



experimental spectrum, Ysim(26i) is the simulated diffraction intensity without the 

background contribution, Yback(26{) is the background intensity of the measured 

spectrum[32]. Total oxygen contents were determined by gas-fusion analysis (Leco, 

Model TC500, St. Joseph, MI, USA). Transmission electron microscopy (TEM, Tecnai F- 

20, FEI, Hillsboro, OR, USA) was used to observe the structure of ZrCx grains using an 

accelerating voltage of 200 kV. To make TEM specimens, 3 wt% of synthesized powder 

was suspended in acetone under ultrasonic vibration for 30 minutes, and then dropped on 

a Cu TEM grid with a carbon film (Carbon Film only on 400 mesh, Copper, Beijing 

Zhongjingkeyi Technology Co., Ltd, Beijing, China). Selected area electron diffractions 

(SAED) was used to determine the crystal structures for phase composition analysis. 

Surface areas were measured by nitrogen absorption (NOVA 1000, Quantachrome, 

Boynton Beach, FL, USA) and BET analysis. Equivalent particle sizes were calculated by 

assuming spherical particles using Equation (5),

x = 6/Sp  (5)

where S is the specific surface area and p  is the true density of the powder. Neutron 

powder diffraction (NPD) was measured using a high-resolution powder diffractometer. 

Neutrons with a wavelength of X = 1.485 A were selected using a double-focusing Si 

(511) crystal monochromator. About 1.5 grams of powder was loaded into a vanadium 

cell which was held in an aluminum exchange gas can. Diffraction patterns were 

collected by a set of five linear position-sensitive detectors (LPSDs). Data was binned in 

0.05° steps over the 20° angular range covered by each LPSD. Five detector arm 

positions achieved a total 29 range from 4.45° to 104.4° with position counting for ~3.5
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hours. Neutron diffraction patterns were analyzed by Rietveld refinement method using 

an open source code FULLPROF[33].

3. RESULT AND DISCUSSION

Reaction 1 produced ZrCx at temperature of 1300°C and higher for both starting 

ZrH2 :C ZrH2 :C ratios. Figure 1a shows the XRD patterns for powders produced using a 

starting ZrH2 :C ratio of 1:0.98, but patterns for powders produced from a starting ZrH2 :C 

ratio of 1:0.60 were similar (see Appendices). In both cases, ZrCx, with the Fm 3m  crystal 

structure (JCPDF card 35-0784), was the only phase detected and no extra peaks were 

apparent. The peaks shifted to lower angles as the synthesis temperature increased

Figure 1. XRD patterns for ZrCx powders synthesized using a starting ZrH2 :C ratio of 
1:0.98 after heating to different temperatures and indexed to the Fm3m crystal structure 

showing that: a) only ZrCx was detected, and b) peaks shifted to lower angles as synthesis
temperature increased.
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(Figure 1b) indicating that lattice parameters increased with increasing synthesis 

temperature. Based on the observations described above, ZrCx can be synthesized by solid 

state reaction of ZrH2 and carbon black at temperature as low as 1300°C. Amorphous 

carbon was observed after the powder with a starting ZrH2 :C ratio of 1:0.98 was reacted at 

1300C. Figure 2a shows lighter regions that appear to be amorphous carbon along with 

darker grains that are ZrCx. Increasing the synthesis temperature to 2000C  (Figure 2b) 

caused the excess carbon to disappear. No amorphous carbon was present when the starting

Figure 2. TEM micrographs for ZrCx powders synthesized using starting ZrH2 :C ratios 
of: (a)1:0.98 after heating to 1300C; (b)1:0.98 after heating to 2000C ; (c)1:0.60 after 

heating to 1300C; (d)1:0.60 after heating to 2000C.

ZrH2 :C ratio was 1:0.60 (Figures 2c and 2d). The results indicated that ZrCx was carbon 

deficient after synthesis at 1300°C, even with sufficient carbon present to produce fully
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stoichiometric ZrCo.98. Excess carbon was not detected by XRD analysis for any 

combination of ZrH2 :C ratio and synthesis temperature. Hence, other reports of ZrCx 

synthesis from a starting Zr:C ratio of ~1 likely produce a combination of carbon-deficient 

ZrCx and excess amorphous carbon that goes undetected by XRD and other typical 

characterization methods.

The temperature at which excess carbon dissolved into the ZrCx lattice was 

determined by heating powder with a starting ZrH2 :C ratio of 1:0.98 to intermediate 

temperatures between 1300°C and 2000°C. Amorphous carbon was still observed around 

ZrCx grains after reaction at 1500°C (Figure 3a). However, no amorphous carbon was 

found in powders that were heated to 1600°C (Figure 3b). Hence, a synthesis temperature 

of at least 1600°C was needed to fully react Zr and C when present in a starting ratio of 

ZrH2 :C of 1:0.98.

Figure 3. TEM micrographs for ZrCx powders synthesized using a starting ZrH2 : C ratio 
of 1 : 0.98 after heating to (a) 1500C, (b) 1600C.
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The synthesis temperature affected the lattice parameter of ZrCx powders. As can 

be seen in Figure 4, the lattice parameter of powders synthesized at temperatures below 

1500°C increased with increasing synthesis temperature from 4.686 A for synthesis at 

1300°C to 4.699 A for synthesis at 1500°C. The increase in lattice parameter could be due 

to the increasing carbon content in the ZrCx lattice in this temperature range based on the 

relationship reported by Jackson and Lee[34]. In contrast, the lattice parameter decreased in 

the next temperature regime from 4.699 A at 1500C to 4.694 A 1700C. In this regime, 

the decrease in lattice parameter was attributed to the loss of dissolved oxygen and/or
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Figure 4. Lattice parameter and estimated carbon stoichiometry for ZrCx powders 

synthesized using a starting ZrH2 :C ratio of 1:0.98 that were heated to different 
temperatures. Note that error bars on the lattice parameters are smaller than the data 

points. The lines were added as guides.



lattice parameter was constant at ~4.694 A, indicating that neither the carbon nitrogen 

from the ZrCx lattice[35]. Starting ZrH2 powder include oxygen impurity, and both oxygen 

and nitrogen impurities exist in the flowing argon. At 1700°C and above, the 

stoichiometry nor the dissolved content of oxygen and/or nitrogen changed significantly 

in this temperature regime.

Changes in the lattice parameter indicated that the carbon content of ZrCx changed 

as synthesis temperature changed for powders synthesized using a starting ZrH2 :C ratio 

of 1:0.98. The correlation between lattice parameter and carbon content determined by 

Jackson and Lee[34] was used to estimate carbon content from lattice parameters 

determined by Rietveld refinement of XRD patterns. The lattice parameter after synthesis 

at 1300°C was ~4.686 A, which would indicate a carbon content of less than ZrCo.60 after 

reaction at this temperature. Since the minimum C content shown by most Zr-C phase 

diagrams is x = 0.60[36], the lattice parameter for this synthesis condition may have been 

affected by dissolved oxygen and/or nitrogen or by strain that was due to the fine 

crystallite size (discussed below). Hence, no estimate of carbon stoichiometry was made 

for powders synthesized at 1300°C by this method. The lattice parameter was 4.693A 

after synthesis at 1400°C, which correlated to a carbon stoichiometry of ZrCo.60.

Likewise, the lattice parameter increased to 4.699 A after synthesis at 1500°C, indicating 

a carbon stoichiometry of ZrCo.69. At temperatures of 1600°C and higher, full carbon 

stoichiometry was assumed based on TEM observations discussed above wherein no 

excess carbon was present. Lattice parameters of those powders are in the range of 4.694 

A to 4.697 A (see Appendices), which is slightly lower than the value of ~4.697 A 

indicated by Jackson and Lee[34] for ZrCo.98. The reduction in lattice parameter compared
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to the fully stoichiometric value could be due to either a small fraction of carbon 

vacancies or residual dissolved oxygen and/or nitrogen in the lattice.

Crystallite size increased as synthesis temperature increased. As shown in Figure 5 

for a starting ZrH2 :C ratio of 1:0.98, synthesis at low temperatures (1300°C and 1400°C) 

resulted in a crystallite size between 40 nm and 50 nm. At this size, the particles could have 

significant compressive strain, which could also affect the lattice parameter measurements. 

Rietveld refinement indicated residual strains of up to about 0.09% after synthesis at 

1300°C (Table 1). Above 1400°C, crystallite size increased continuously with increasing

31



synthesis temperature, reaching ~130 nm for a synthesis temperature of 2000°C. 

Representative morphologies of as-synthesized ZrCx powders were shown in Figures 2 

and 3. For powders synthesized at temperatures of 1500°C and higher, crystallite sizes 

estimated by Rietveld method were smaller than observed by TEM. For example, Figure 

6 shows a TEM micrograph for powder synthesized at 1600°C. Some of the crystallites
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Table 1. Reliability factors of Rietveld refinement, lattice parameters, estimated carbon 
stoichiometry, crystallite sizes, surface areas, particle sizes, oxygen contents and C and O 
occupancies of ZrCx powders mixed using starting ZrH2 :C ratio of 1:0.6 and 1:0.98 and

synthesized at 1300C and 2000C.

^ " ^ S y n th e s is  tem perature (0C)

1300 2000

Starting Z rH 2 :C r a t i o '^ - ^
Rp (%) 5.77 5.28
Rwp (%) 4.98 4.77
Lattice parameter(A) 4.679 4.678
Strain 2.50x10-4 2.50x10-5
Carbon stoichiometry 0.6 0.6

1:0.6 Crystallite size (nm) 81.6 108.0
Surface area m2/g 0.795 0.636
Particle size (pm) 1.138 1.422
Oxygen content (wt%) 1.953 2.297
C occupancy 0.60 0.60
O and N occupancy 0.14 0.12
Rp (%) 5.33 7.63
Rwp (%) 5.07 5.28
Lattice parameter(A) 4.682 4.695
Strain 8.50x10-4 1.25x10-4

1:0.98 Carbon stoichiometry N/A 0.98
Crystallite size (nm) 43.3 130.7
Surface area m2/g 5.310 0.612
Particle size (pm) 0.170 1.478
Oxygen content (wt%) 1.997 1.011
C site occupancy 0.82 0.98
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appeared to be smaller than 100 nm, which is consistent with the size determined by 

Rietveld refinement of XRD data. However, most of the crystallites were larger than 200 

nm. The apparent differences in crystallite size between values estimated from XRD and 

TEM may be due to the limited number of particles observed by TEM, the different shape 

of the crystals (i.e., not spherical), or the crystallite size distribution.

All of the synthesized powders contained oxygen impurities. Oxygen contents 

determined by gas fusion ranged from as high as 2.3 wt% for powder synthesized at 

2000°C for a starting ZrH2 :C ratio of 1:0.60 to as low as 1.0 wt% for powder synthesized 

at 2000°C using a starting ZrH2 :C ratio of 1:0.98 (Table 1). High resolution TEM 

revealed that particles all had an exterior oxide layer that was typically about 5 nm thick

Figure 6. TEM micrographs for ZrCx powders synthesized using a starting ZrH2 : C ratio
of 1 : 0.98 after heating to 1600°C.



that accounted for at least some of the measured oxygen content (Figure 7). However, 

oxygen can also dissolve into the lattice and occupy carbon sites that would otherwise be 

vacant, so some of the measured oxygen content could be dissolved in the lattice. 

Likewise, nitrogen can dissolve into the lattice and occupy carbon vacancies.

Unfortunately, gas fusion analysis determines only total oxygen and nitrogen 

contents cannot distinguish between surface impurities and those on lattice sites. Based 

on this analysis, oxygen contents appear to decrease as carbon stoichiometry increases. 

The presence of dissolved oxygen also complicates determination of carbon 

stoichiometry from the lattice parameter of ZrCx since dissolved oxygen leads to a
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Figure 7. High resolution TEM micrographs of a ZrCx particle synthesized using a 
starting ZrH2 :C ratio of 1:0.98 after heating to 2000°C and an inset SAED pattern 

indexed to the Fm3m  crystal structure.

decrease in lattice parameter compared to full occupancy of carbon lattice sites by 

carbon, but an increase in lattice parameter compared to the presence of vacancies.



Characterization methods typically used in studies of ZrCx synthesis are not able to 

unambiguously determine the fraction of vacant carbon sites or the number of lattice sites 

occupied by oxygen and/or nitrogen due to lack of sensitivity or convoluted effects[35][37]. 

For example, XRD patterns are dominated by scattering from the Zr sub-lattice due to its 

much higher x-ray scattering factor for Zr (40) compared to carbon (6), nitrogen (7), or 

carbon vacancies (0). As a result, analysis of peak intensity from XRD patterns does not 

provide enough information to independently determine carbon, oxygen, and nitrogen 

contents or site occupancies. In contrast, the neutron scattering factors for C (5.6 barn) 

and N (11.5 barn) are comparable to those of Zr (6.5 barn), which enables more accurate
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Figure 8. Neutron powder diffraction patterns for ZrCx powder synthesized using a 
starting ZrH2 :C ratio of 1:0.98 after heating to 1300°C and 2000°C.



refinement of peak intensity data and more reliable estimation of site occupancies from 

neutron powder diffraction patterns than is possible from XRD. Figure 8 shows neutron 

diffraction patterns for ZrCx powders synthesized using a starting ZrH2 :C ratio of 1:0.98 

and heated to 1300°C and 2000°C. As with the XRD patterns, all of the peaks in both 

patterns were indexed to ZrCx with the Fm3m  crystal structure (JCPDF card 35-0784).

Rietveld refinement was used to estimate the fraction of C sites occupied (Table 

1). For this analysis, C sites were considered to either be occupied (i.e., contain a C, O, or 

N atom) or vacant without attempting to refine for each individual atom type. This 

analysis estimated that the fraction of C sites occupied after synthesis at 1300°C was 

0.82. Increasing the synthesis temperature to 2000°C increased the C site occupancy to 

0.98, which is consistent with observations by TEM that all of the initial carbon had been 

dissolved into the lattice (Figure 2b) as mentioned above. Based on this analysis and 

accepted Zr-C phase diagrams, full carbon stoichiometry was reached (i.e., ZrCo.98 was 

formed). ZrCx synthesized using a starting ZrH2 :C ratio of 1:0.6 showed that the fraction 

of carbon sites occupied was about 0.60 regardless of the synthesis temperature (Table 1). 

All of the analysis performed as part of the present study indicates that neutron 

diffraction is a reliable method for determining occupancy of carbon sites in the ZrCx 

lattice.
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4. CONCLUSION

Solid state reactions of ZrH2 and carbon black were used to synthesize ZrCx

powders. Different ratios of the reactants and different reaction temperatures were used to



study their effects on particle size and carbon stoichiometry. Single phase ZrCx was 

synthesized at temperatures as low as 1300°C. Below 1600°C, carbon was not fully 

incorporated into the ZrCx lattice. Observations by TEM indicated that all of the available 

carbon reacted with ZrH2 at 1600C and higher. Increasing the synthesis temperature 

increased the size of the resulting ZrCx crystallites from ~40 nm after reaction at 1300°C 

or 1400°C to ~130 nm after reaction at 2000°C. Oxygen impurities were present in all of 

the powders regardless of the starting ZrH2 :C ratio. Some of the oxygen was present as an 

oxide layer on the exterior of ZrCx particles, while the rest of the oxygen impurities were 

dissolved in the ZrCx lattice. Although XRD can confirm formation of the rock salt 

carbide structure, it was not able to determine carbon stoichiometry or dissolved oxygen 

content in transition metal carbides. Neutron diffraction was able to discern differences in 

site occupancy, showing that carbon stoichiometry increased and dissolved oxygen 

content decreased with increasing synthesis temperature.
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ABSTRACT

Ordered carbon vacancies were detected in zirconium carbide (ZrCx) powders that 

were synthesized by direct reaction. Zirconium hydride (ZrH2) and carbon black were 

used as starting powders with the molar ratio of ZrH2:C=1:0.6. Powders were reacted at 

1300°C or 2000°C. The major phase detected by x-ray diffraction was ZrCx. No excess 

carbon was observed by transmission electron microscopy in powders synthesized at 

either temperature. Ordering of the carbon vacancies was identified by neutron powder 

diffraction and further supported by selected area electron diffraction. The vacancies in 

carbon-deficient ZrCx exhibited diamond cubic symmetry with a supercell that consisted 

of eight (2x2x2) ZrCx unit cells with the rock salt structure. Rietveld refinement of the 

neutron diffraction patterns revealed that the synthesis temperature did not have a 

significant effect on the degree of vacancy ordering in ZrCx powders. Direct synthesis of 

ZrC0.6 resulted in the partial ordering of carbon vacancies without the need for extended 

isothermal annealing as reported in previous experimental studies
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Keywords: zirconium carbide; neutron diffraction; vacancies; non-stoichiometry; vacancy 

ordering.

1. INTRODUCTION

Zirconium carbide (ZrCx) is one of the transition metal monocarbides (TMCs) that 

are part of the family of ultra-high temperature ceramics (UHTCs)[1]. Zirconium carbide 

has the rock salt crystal structure, but is typically carbon-deficient compared to the ideal 

one-to-one metal to carbon stoichiometric ratio. Experimental phase diagrams for the Zr- 

C show that ZrCx is stable for x values ranging from 0.63 to 0.98[2]. Similarly, variable 

carbon stoichiometry is exhibited by other TMCs, such as TiCx[3][4][5], HfCx[6][7], VCx[8], 

NbCx[3][9], TaCx[10][11] and WCx[12]. Carbon stoichiometry affects the sinterability[13][14][15], 

mechanical properties[16][17], electrical properties[18] and radiation resistance[19] of ZrCx 

ceramics. Short- and long-range ordering of carbon vacancies in non-stoichiometric 

carbides have both been studied theoretically[20][21][22]. For example, a Zr2C superstructure 

with ordered carbon vacancies was predicted in a computational study of the Zr-C phase 

diagram[23]. Also, ZrCx with ordered carbon vacancies has been reported in several 

experimental studies. Carbon vacancy ordered ZrC0.61 was prepared by spark plasma 

sintering (SPS) after mechanochemical powder synthesis[24]. In another study, a 

superlattice was identified using a combination of electrical resistivity, differential 

thermal analysis, and x-ray diffraction measurements on a specimen of ZrC0.7 that was 

prepared by arc-melting and annealing[25]. Crystal structures of non-stoichiometric ZrCx 

have also been studied by computational methods, which predicted the stability of the
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Fd3m crystal structure at carbon stoichiometries as low as x=0.5 using mixing enthalpy 

calculations[26]. Phase stability of highly carbon deficient compositions (e.g., x < 0.5) has 

been studied using formation enthalpy calculations, which showed that the Fd3 m 

structure, with ordered vacancies, was the most stable[27]. However, not all of the carbides 

with the rock-salt crystal structure have the same characteristic as ZrCx. Micro-scale 

inhomogeneities were detected in the structures of NbCx and VCx powders that prepared 

by high-energy ball milling of the coarse-grained synthesized powders[28][29][30]. A lower 

carbon content was detected for a small grain size while a higher carbon content was 

detected for a large grain size by neutron diffraction analysis. Similarly, microscale 

stoichiometry variations have been identified in both experimental and theoretical studies 

of other compounds with the rock salt crystal structure including transition-metal 

monoxides[31][32][33] and PbS[34][35].

The purpose of the present study was to quantify carbon vacancy ordering in ZrCx 

powders synthesized by direct reaction of ZrH2 and C with x=0.6.

2. EXPERIMENTAL

The starting materials for ZrC0.6 synthesis were commercial ZrH2 (Min. 95.5%, 

27.1 pm, Chemadyne, LLC., Canoga Park, CA, USA) and carbon black (BP-1100, Cabot 

Corporation, Alpharetta, GA, USA). The starting powders were batched with a ZrH2 :C 

molar ratio of 1:0.6. Powders were mixed by ball milling using zirconia grinding media 

in acetone for 12 hours under a rotation speed of 50 rpm. Rotary evaporation (Rotavapor 

R-124, Bucchi, Flawil, Germany) was used to remove the acetone from the slurry using a



temperature of 80°C, rotation speed of 90 rpm and vacuum of 33.3 kPa (250 mmHg). 

Three grams of the dried powder was uniaxially pressed under a pressure of 44 MPa to 

produce cylindrical pellets for synthesis.

Synthesis by Reaction 1 was conducted in a graphite element furnace (3060-FP20, 

Thermal Technology, Santa Rosa, CA, USA) under flowing argon. The raw powder was 

heated at 10°C/min from room temperature to 800°C where it was held for 2 hours to 

promote decomposition of ZrH2 . Formation of ZrCx was promoted by heating at 

10°C/min to temperatures of 1300C or 2000C  with holding time of 3 hours. For 

synthesis at 2000°C, the furnace was cooled at 50°C/min from the maximum holding 

temperature to ~1450°C. Below that temperature and for the powder synthesized at 

1300°C, the furnace power was shut off and the furnace cooled at its natural rate, which 

was an average of ~18°C/min between ~1300°C and room temperature.

ZtH2 (s) +  0-6C(s) ^  ZrCo.6(s) +  ^ 2 (g) (1)

Powder X-ray diffraction (XRD, PANalytical X ’Pert3 Powder, Malvern 

Panalytical Inc., Westborough, MA, USA) with Cu Ka radiation (A = 1.5418 A) was 

employed for phase identification. The step size was 0.025°, and each step was counted 

for the equivalent of 75 s using an area detector (PIXCel detector, Malvern Panalytical 

Inc., Westborough, MA, USA). Rietveld refinement (RIQAS4, Materials Data Inc., 

Livermore, CA, USA) was used to determine the lattice parameter and average crystallite 

size of each powder. A high-resolution powder diffractometer was used for neutron 

powder diffraction (NPD) measurements. Neutrons with a wavelength of A = 1.485 A 

were selected by a double-focusing Si (511) crystal monochromator. Approximately 1.5 g 

of the synthesized powder was loaded into a vanadium cell, which was held in an
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aluminum exchange gas can. A set of five linear position-sensitive detectors (LPSDs) was 

employed to collect the diffraction patterns. Data was binned in 0.05° steps over the 20° 

angular range covered by each LPSD. Five detector arm positions achieved a total 29 

range from 4.45° to 104.4°. Each position underwent counting for ~3.5 hours. An open 

source code FULLPROF[36] was used to analyze the NPD patterns by the Rietveld 

method. Additional phase quantification was performed by the Rietveld method using 

commercial software (RIQAS4, Materials Data Inc., Livermore, CA, USA). A Zr2C 

crystal structure simulated in a previous first-principles study[37] was used as control 

model for analyzing. The peak intensities, peak broadening, and the corresponding C site 

occupancies were allowed to vary for the simulations. For observation of ZrC0.6 powder 

morphology, transmission electron microscopy (TEM, Tecnai F-20, FEI, Hillsboro, OR, 

USA) was employed using an accelerating voltage of 200 kV. Selected area electron 

diffraction (SAED) was used to investigate the crystal structure of the synthesized 

powders. To prepare the TEM specimens, 3 wt% of powder was suspended in acetone 

under ultrasonic vibration for 30 minutes, and then dropped onto a Cu TEM grid with a 

carbon film (Carbon Film only on 400 mesh, Copper, Beijing Zhongjingkeyi Technology 

Co., Ltd, Beijing).

3. RESULTS AND DISCUSSION

Zirconium carbide formed at temperatures as low as 1300°C as described 

previously[38]. Figure 1 shows the XRD patterns and Table 1 shows the detailed peak 

indexing for powders synthesized using a starting ZrH2 :C ratio of 1:0.6 heated to 1300°C
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and 2000°C. ZrCx with the Fm 3m  crystal structure (ICDD PDF card 35-0784) was the 

major phase detected in the powder heated to 1300C, along with a minor amount of 

residual Zr (ICDD PDF card 01-1147). The only phase in the powder heated to 2000C  

was ZrCx with all of the peaks indexed to ICDD PDF card 35-0784. While XRD was able 

to identify the formation of ZrCx, it was not able to provide information about carbon site 

occupancy or carbon stoichiometry due to the low x-ray scattering cross section of carbon 

(6), nitrogen (7), and oxygen (8) compared to zirconium (40).

Figure 1. XRD pattern for ZrCo.6 powder synthesized using a starting ZrH2 :C ratio of 
1:0.6 heating to (a) 1300C and (b) 2000C . Patterns were collected with Cu Ka radiation

(A =  1.5418 A).

The lattice parameter for ZrCx was determined to be 4.67928 (±0.00003) A after 

heating to 1300C and 4.67749 (±0.00003) A after heating to 2000C . The reliability 

factors were Rp = 5.52% and Rwp = 4.94% for the powder heated to 1300C, and Rp = 5.61% 

and Rwp = 4.83% for the powder heated to 2000C . Based only on the lattice parameter 

alone, the carbon stoichiometry of these powders would be expected to be less than x =
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0.6[39]. However, the ZrCx lattice parameter is affected by other factors such as crystallite 

size, strain, and partial occupancy of C vacancies by dissolved species such as O or N, 

meaning that XRD is not a definitive tool for determining C stoichiometry. The slight 

decrease in lattice parameter with increasing synthesis temperature was likely due to 

removal of O or N from the ZrCx lattice or slight changes in C stoichiometry[40][41]. Overall, 

the lattice parameters are consistent with carbon-deficient ZrCx.

Table 1. Peak positions, d-spacings and the Miller indices of the peaks in the X-ray 
diffraction patterns (A =  1.5418 A) for ZrCx synthesized at 1300°C and 2000°C. 

________(*Residual Zr was present in the powder synthesized at 1300°C.)________
Synthesis 

temperature (0C) Peak position (20) D-spacing (A) Miller indices

33.096 2.705 111
36.443* 2.463* 101*
38.922 2.342 200

1300 55.479 1.655 220
66.164 1.411 311
69.509 1.351 222
82.342 1.170 400
33.107 2.704 111
38.411 2.342 200

2000 55.508 1.654 220
66.196 1.411 311
69.547 1.351 222
82.376 1.170 400

TEM observations were used to evaluate the morphology of the ZrCx powders 

(Figure 2). No excess carbon was observed in either powder, indicating that most, or all, 

of the carbon was reacted. However, residual Zr was detected by XRD in the powder 

synthesized at 1300°C (Figure 1), indicating that either a small fraction of carbon black 

had likely not reacted with zirconium at that synthesis temperature or some of the ZrCx



that formed had a carbon content higher than ZrCo.6. The crystallite size of the powders 

varied significantly from ~50 nm to more than 1000 nm in diameter. In addition, the 

particles were agglomerated[42].
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Figure 2. TEM micrographs for ZrCo.6 powders synthesized at (a) 1300°C and (b) 
2000°C. Magnification varies between the two images.

Neutron powder diffraction was used to further characterize the ZrCo.6 powders 

(Figure 3). Initial analysis showed that the patterns could be indexed to the same ZrCx 

structure as the XRD patterns. The d-spacings of peaks that index to the rock salt 

structure of ZrCx (Fm3m  crystal structure, ICDD PDF card 35-0784) are labeled on the 

image. However, a number of additional peaks were apparent from NPD that were not 

detected by XRD. These peaks could not be indexed to ZrCx with the Fm 3m  crystal 

structure (ICDD PDF card 35-0784). Previous studies that employed first-principles 

calculations concluded that the lowest energy structure had vacancies ordered on a scale 

longer than the ZrCx unit cell, which was described as Zr2C (Fd3m,  No. 227) with
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vacancies having diamond cubic symmetry and a lattice parameter twice that of ZrCx[37]. 

Building on that knowledge, the peaks from the neutron diffraction patterns were indexed 

to the carbon vacancy ordered ZrCx superlattice as shown in Table 2 and Table 3. For 

instance, for the powder synthesized at 2000°C, the peaks located at 29 = 15.771°, 

30.555°, 31.937°, 37.046° and 40.551° corresponded to the (111), (311), (222), (400) and 

(331) planes of Zr2C (Table 3). Based on this assessment, at least some of the vacancies 

in carbon-deficient ZrCx appear to be ordered. Further, Rietveld refinement is consistent 

with vacancy ordering in a unit cell that has a lattice parameter that is twice as large as 

ZrCx. Additional NPD experiments (not shown) did not reveal any lower angle peaks that 

would indicate ordering at even longer length scales.
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Figure 3. Neutron powder diffraction patterns for ZrCo.6 powder synthesized using a 
starting ZrH2 :C ratio of 1:0.6 after heating to (a) 1300C and (b) 2000C  (A =  1.485 A). 

Miller indices of the ZrCx rock-salt structure and superlattice were labeled.

Rietveld refinement of neutron diffraction data was also used to determine site

occupancies in the ZrCx superlattice. Dissolved O and N occupied 14% of the C sites in
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the powder synthesized at 1300°C and 12% in the powder synthesized at 2000°C, which 

was estimated using Rietveld analysis of neutron powder diffraction patterns with the 

assumption that the carbon stoichiometry x = 0.6 as set by the nominal powder batching 

[38]. Based on this analysis, more than 25% of the carbon sites were vacant. The x2-factor

Table 2. Peak positions, d-spacings, and Miller indices of the peaks in the neutron 
_______ diffraction pattern (A =  1.485 A) for ZrCx synthesized at 1300°C._______

Peak position 
(20, °) D-spacing (A)

Miller indices 
for ZrC0.6 unit 

cell

Miller indices 
for ZrCo.6 

2x2x2 
supercell

Miller indices 
for Zr

15.786 5.407 111
30.582 2.815 311
31.931 2.699 111 222
33.492 2.577 002
35.160 2.458 101
37.036 2.338 200 400
40.557 2.142 331
46.085 1.897 422
48.750 1.799 333,511
53.386 1.653 220 440
56.035 1.581 531
60.919 1.465 103
63.551 1.410 311
66.714 1.350 222 444
69.086 1.309 551,711
75.173 1.217 731
78.869 1.169 400 800
87.560 1.073 331
90.476 1.046 420 840
92.622 1.027 911,753
94.950 1.007 842
98.484 0.980 931
102.103 0.955 422 844

values of the fittings are 9.7 for the powder synthesized at 1300°C and 12.7 for the 

powder synthesized at 2000C .
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The SAED patterns were also consistent with the ordering of carbon vacancies at 

length scales longer than the ZrCx unit cell. Figure 4 shows a high resolution TEM 

micrograph of ZrCx powder synthesized at 2000°C with the corresponding SAED along 

the [110] zone axis. Fundamental peaks appeared as the larger spots and were due to the 

rock-salt structure of the ZrCx unit cell. Superlattice peaks can be seen between the 

transmission spot and the family of {111} planes, which are consistent with supercell 

having cubic symmetry, but with a lattice parameter two times that of the ZrCx unit cell.

Table 3. Peak positions, d-spacings and the Miller indices of the peaks in the neutron 
________ diffraction pattern (A =  1.485 A) for ZrCx synthesized at 2000C.________

Peak position 
(20, °) D-spacing (A)

Miller indices 
for ZrC0.6 unit 

cell

Miller indices 
for ZrCo.6 

2x2x2 supercell

Miller indices 
for graphite

15.771 5.412 111
25.667 3.343 002
30.555 2.818 311
31.937 2.699 111 222
37.046 2.337 200 400
40.551 2.143 331
48.748 1.799 333,511
53.411 1.652 220 440
56.054 1.580 531
63.572 1.410 311
66.752 1.350 222 444
69.104 1.309 551,711
75.185 1.217 731
78.911 1.168 400 800
86.886 1.080 555,751
87.630 1.072 331
90.520 1.045 420 840
92.690 1.026 911,753
98.518 0.980 931
102.161 0.954 422 844
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The SAED pattern of the powder synthesized at 1300°C (not shown) was similar 

to the one synthesized at 2000C . These results are consistent with carbon vacancy 

ordering in both of the as-synthesized ZrCx powders. Further, the vacancies were ordered 

on a length scale that appears to be a superlattice consisting of eight ZrCx unit cells in a 2 

by 2 by 2 array.

Additional Rietveld refinements of NPD patterns were used to quantify the degree 

of ordering of the carbon vacancies in ZrCx. Crystal structures predicted by first 

principles studies for zirconium carbide with full carbon site occupancy (ZrC) and the 

lowest carbon site occupancy (called Zr2C in simulation studies) were used as control 

models for the simulations[37]. One output of these simulations was the average C site

Figure 4. High resolution TEM micrographs and selected area electron diffraction of
ZrCo.6 powders synthesized at 2000C.



occupancies for the different synthesis temperatures (Table 4). Average C site 

occupancies for the overall compositions were higher than 0.6 for both powders due to 

partial site occupancy by O or N in addition to C.

The additional Rietveld simulations also quantified the relative amounts of ZrCx 

with random vacancies (denoted ZrCx) and ordered vacancies (denoted Zr2C). Based on 

the simulations, ~25 wt% of the powder synthesized at 1300°C and ~23 wt% of the 

powder synthesized at 2000°C consisted of the carbon vacancy ordered phase Zr2C. The 

reliability factors of the NPD pattern refinement, Rwp, were 8.74% and 8.50% for the 

powders synthesized at 1300°C and 2000°C, respectively. The balance of both powders 

(~75 wt% of the powder synthesized at 1300°C and ~77 wt% of the powder synthesized 

at 2000°C) had disordered vacancies. Based on this analysis, vacancies were only 

partially ordered in ZrCx and synthesis temperature did not have a significant effect on 

ordering of vacancies in ZrCx powders. In a multi-phase sample, each phase contributes 

to the intensity of the NPD peaks[43]. Some parent peaks (Figure 3) are overlapped (e.g., 

the (222) peak in Zr2C and the (111) peak in ZrCx), which adds uncertainty to the phase 

quantification. However, the analysis indicates that the carbon vacancies were partially 

ordered in the ZrCo.6 powders synthesized in the present study.

The observation that the relative amounts of ordered vacancies were present in 

powders synthesized at different temperatures has two important implications on the 

results. The phase diagram calculated by Gusev[21] shows that ordering only occurs 

below the order-disorder transformation temperature of about 900°C. Hence, the first 

implication is that carbon vacancies should be random at both synthesis temperatures and 

should only order after synthesis when the powders cool to the order-disorder transition
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temperature. Other studies typically report that forming ordered vacancies requires 

annealing for extended times below the order-disorder transition temperature. Those 

studies predominantly use powders prepared by carbothermal reduction. The second 

implication is that the direct synthesis method used in the present study may have enabled 

vacancy ordering without annealing, but further research is needed to determine the 

effects that cooling rate and oxygen content have on vacancy ordering.

4. CONCLUSION

The ordering of vacancies in carbon-deficient ZrCx powders was studied. The 

major phase detected by XRD in the powder heated to 1300°C was ZrCx with a minor 

amount of residual Zr while only ZrCx was detected in the powder synthesized at 2000C . 

Neutron diffraction analysis revealed additional peaks that could not be indexed to the 

rock salt structure of ZrCx. Both neutron diffraction and SAED were consistent with the 

presence of a superlattice with ordered carbon vacancies. The degree of vacancy ordering 

was estimated to be between 20% and 25% in powders synthesized at 1300°C and 

2000°C, which indicates that synthesis temperature did not have a significant effect on 

vacancy ordering. These results indicate that ZrCx with partially ordered vacancies can be 

synthesized by direct reaction of Zr and C without the need for extended isothermal

holds.



55

ACKNOWLEDGEMENT

The current research was supported by the Ceramics Program in the U.S. National 

Science Foundation (DMR 1742086). The neutron powder diffraction data was collected 

at The Missouri Research Reactor, University of Missouri (MURR).

REFERENCES

[1] Nakamura K, Yashima M. Crystal structure of NaCl-type transition metal 
monocarbides MC (M= V, Ti, Nb, Ta, Hf, Zr), a neutron powder diffraction study. 
Mater. Sci. Eng., B. 2008;148(1-3):69-72.

[2] Sara RV. The system zirconium— carbon. J. Am. Ceram. Soc. 1965;48(5):243-247.

[3] Moisy-Maurice V, De Novion CH, Christensen AN, Just W. Elastic diffuse neutron 
scattering study of the defect structure of TiC0.76 and NbC0.73. Solid State Commun. 
(1981);39(5):661-665.

[4] Lee DW, Alexandrovskii SV, Kim BK. Novel synthesis of substoichiometric ultrafine 
titanium carbide. Mater. Lett. 2004;58(9):1471-1474.

[5] Tong L, Reddy R. Synthesis of titanium carbide nano-powders by thermal plasma.
Scr. Mater. 2005;52(12):1253-1258.

[6] Gusev AI, Zyryanova AN. Atomic-vacancy ordering and magnetic susceptibility of 
nonstoichiometric hafnium carbide. Journal of Experimental and Theoretical Physics 
Letters. 1999;69(4):324-329.

[7] Gusev AI, Zyryanova AN. Ordering and Magnetic Susceptibility of Non­
Stoichiometric Hafnium Carbide. Phys. Status Solidi A. 2000;177(2):419-437.

[8] Rafaja D, Lengauer W, Ettmayer P, Lipatnikov VN. Rietveld analysis of the ordering 
in V8C7. J. Alloys Compd. 1998;269(1-2):60-62.

[9] Ordan'yan SS, Avgustinik AI, Kudryasheva LV. Densification of nonstoichiometric 
niobium-carbide phases. Powder Metall. Met. Ceram. 1968;7(8):612-618.

[10] Rowcliffe DJ, Thomas G. Structure of non-stoichiometric TaC. Mater. Sci. Eng.
1975;18(2):231-238.



56

[11] Balani K, Gonzalez G, Agarwal A, Hickman R, O'Dell JS, Seal S. Synthesis, 
microstructural characterization, and mechanical property evaluation of vacuum 
plasma sprayed tantalum carbide. J. Am. Ceram. Soc. 2006;89(4):1419-1425.

[12] Kurlov AS, Gusev AI. Tungsten Carbides. Berlin: Springer; 2013.

[13] Nachiappan C, Rangaraj L, Divakar C, Jayaram V. Synthesis and densification of 
monolithic zirconium carbide by reactive hot pressing. J. Am. Ceram.
Soc. 2010;93(5):1341-1346.

[14] Wang X, Guo W, Kan Y, Zhang G, Wang P. Densification behavior and properties 
of hot-pressed ZrC ceramics with Zr and graphite additives. J. Eur. Ceram. Soc. 
2011;31(6):1103-1111.

[15] Chakrabarti T, Rangaraj L, Jayaram V. Computational modeling of reactive hot 
pressing of zirconium carbide. J. Mater. Res. 2015;30(12):1876-1886.

[16] Schonfeld K, Martin H, Michaelis A. Pressureless sintering of ZrC with variable 
stoichiometry. J. Adv. Ceram. 2017;6(2):165-175.

[17] Kannan R, Venkateswarlu K, Rangaraj L. Effect of nonstoichiometry on mechanical 
properties of reactive hot-pressed monolithic ZrCx Ceramic. Int. J. Appl. Ceram. 
Technol. 2018;15(6):1366-1374.

[18] Taylor RE, Storms EK. Thermal Transport in Refractory Carbides. In: Klemens PG, 
Chu TK. Thermal Conductivity 14. Boston, MA: Springer; 1976:161-174.

[19] Yang Y, Lo WY, Dickerson C, Allen TR. Stoichiometry effect on the irradiation 
response in the microstructure of zirconium carbides. J. Nucl. Mater. 
2014;454(1):130-135.

[20] de Novion CH, Landesman JP. Order and disorder in transition metal carbides and 
nitrides: experimental and theoretical aspects. Pure Appl. Chem. 1985;57(10):1391- 
1402.

[21] Gusev AI, Rempel AA, Magerl AJ. Disorder and Order in Strongly 
Nonstoichiometric Compounds. Heidelberg: Springer; 2001.

[22] Gusev AI, Rempel SV. C - Zr // MSIT Workplace - Research Results. Stuttgart: MSI, 
2002;50.12291.7.20:1-2.

[23] Gusev AI. Order-disorder transformations and phase equilibria in strongly 
nonstoichiometric compounds. Phys.-Usp. 2000;43(1):1-37.

[24] Hu W, Xiang J, Zhang Y, et al. Superstructural nanodomains of ordered carbon 
vacancies in nonstoichiometric ZrC0.61. J. Mater. Res. 2012;27(9):1230-1236.



57

[25] Naomi O, Noboru N. Superlattice formation in zirconium-carbon system. J. Nucl. 
Mater. 1976;60(1):39-42.

[26] Zhang Y, Liu B, Wang J. Self-assembly of Carbon Vacancies in Sub-stoichiometric 
Z rC 1-x . Sci. Rep. 2015;5:18098.

[27] Yu X, Weinberger C, Thompson G. Ab initio investigations of the phase stability in 
group IVB and VB transition metal carbides. Comput. Mater. Sci. 2016;112:318- 
326.

[28] Balagurov AM, Bobrikov IA, Bokuchava GD, et al. High-resolution neutron 
diffraction study of microstructural changes in nanocrystalline ball-milled niobium 
carbide NbC0. 93. Mater. Charact. 2015;109:173-180.

[29] Kurlov AS, Gusev AI, Kuznetsov VS, Bobrikov IA, Balagurov AM, Rempel AA. 
Time-of-flight neutron diffraction of nanocrystalline powders of nonstoichiometric 
niobium carbide NbC0.77. Phys. Solid State. 2017;59(3):607-612.

[30] Kurlov AS, Kuznetsov VS, Bobrikov IA, Balagurov AM, Gusev AI, Rempel AA. 
Microinhomogeneity of the Structure of Nanocrystalline Niobium and Vanadium 
Carbides. JETP Lett. 2018;108(4):253-259.

[31] Sorensen OT. Nonstoichiometric oxides. New York: Academic Press; 1981.

[32] Ramana CV, Hussain OM, Naidu BS, Julien C, Balkanski M. Physical investigations 
on electron-beam evaporated vanadium pentoxide films. Mater. Sci. Eng., B. 
1998;52(1):32-39.

[33] Gusev AI. Nonstoichiometry and superstructures. Phys.-Usp. 2014;57(9):839-876.

[34] Qadri SB, Singh A, Yousuf M. Structural stability of PbS films as a function of 
temperature. Thin Solid Films. 2003;431-432:506-510.

[35] Sadovnikov SI, Kozhevnikova NS, Pushin VG, Rempel AA. Microstructure of 
nanocrystalline PbS powders and films. Inorg. Mater. 2012;48(1):21-27.

[36] J. Rodriguez-Carvajal, FULLPROF version July-2017, ILL.

[37] Xie C, Oganov AR, Li D, et al. Effects of carbon vacancies on the structures, 
mechanical properties, and chemical bonding of zirconium carbides: a first- 
principles-study. Phys. Chem. Chem. Phys. 2016;18(17):12299-12306.

[38] Zhou Y, Heitmann TW, Fahrenholtz WG, Hilmas GE. Synthesis of ZrCx with 
Controlled Carbon Stoichiometry by Low Temperature Solid State Reaction. J. Eur. 
Ceram. Soc. 2019;39:2594-2600.



58

[39] Jackson HF, Lee WE. Properties and characteristics of ZrC. In: Konings RJM, eds. 
Volume 2 in Comprehensive Nuclear Materials. Amsterdam, Netherland: Elsevier; 
2012:339-372

[40] Sarkar SK, Miller AD, Mueller JI. Solubility of oxygen in ZrC. J. Am. Ceram. Soc. 
1972;55(12):628-630.

[41] Aigner K, Lengauer W, Rafaja D, Ettmayer P. Lattice parameters and thermal 
expansion of Ti (CxN1- x), Zr (CxN1- x), H f (CxN1- x) and TiN 1- x from 298 to 
1473 K as investigated by high-temperature X-ray diffraction. J. Alloys
Compd. 1994;215(1-2):121 -126.

[42] Ganguli D, Chatterjee M. Ceramic powder preparation: a handbook. New York: 
Springer Science+Business Media;1997.

[43] Erich HK, Christopher JH. Applications of Neutron Powder Diffraction. Oxford: 
Oxford University Press; 2008.



59

III. FROM THERMAL CONDUCTIVE TO THERMAL INSULATING: EFFECT 
OF CARBON VACANCY CONTENT ON LATTICE THERMAL 

CONDUCTIVITY OF ZRCx

Yue Zhou, William G. Fahrenholtz, Joseph Graham, Gregory E. Hilmas

Department o f  Materials Science and Engineering, Missouri University o f  Science and
Technology, Rolla, MO 65409, USA

ABSTRACT

Lattice thermal conductivities of zirconium carbide (ZrCx, x=1, 0.75 and 0.5) 

ceramics with different carbon vacancy concentrations were calculated using a 

combination of first-principles calculations and the Debye-Callaway model. The 

Gruneisen parameters, Debye temperatures, and phonon group velocities were deduced 

from phonon dispersions of ZrCx determined using first-principles calculations. In 

addition, the effects of average atomic mass, grain size, average atomic volume and Zr 

isotopes on the lattice thermal conductivities of ZrCx were analyzed using phonon 

scattering models. The lattice thermal conductivity decreased as temperature increased 

for ZrC, ZrCo.75 and ZrCo.5 (Zr2C) and decreased as carbon vacancy concentration 

increased. Intriguingly, ZrCx can be tailored from a thermal conducting material for ZrC 

with high lattice thermal conductivity to a thermal insulating material for ZrC0.5 with low 

lattice thermal conductivity. Thus, it opens a window to tune the thermal properties of 

ZrCx through controlling the carbon vacancy content.

Keywords: Zirconium carbide; Lattice thermal conductivity; Theoretical study; First- 

principle calculations.
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1. INTRODUCTION

Zirconium carbide (ZrCx) is a promising candidate material for nuclear energy 

applications as a layer in tri-isotropic (TRISO) fuel particles[1], which are used in high- 

temperature gas-cooled reactors[2]. The main function of the ZrCx layer is as a diffusion 

barrier for fission products from the kernel. Currently, SiC is the material of choice for 

such an application[3]. However, ZrC is stronger, which increases the crushing strength of 

ZrC-TRISO particles at elevated temperatures compared to SiC-TRISO particles[4]. In 

addition, ZrC is more stable than SiC under neutron irradiation at elevated 

temperatures[5][6], which increases the integrity of ZrC-TRISO fuel particles. Other 

potential applications of ZrC include heating elements in vacuum furnaces, coatings and 

matrices of ultra-high temperature ceramic matrix composites that could be used in 

hypersonic aerospace vehicles, rocket nozzles[7][8][9][10][11], and cutting tools[12][13][14].

For all the applications mentioned above, thermal conductivity plays a pivotal 

role. However, significant discrepancies exist among previously measured values of 

thermal conductivity of ZrCx ceramics[15][16][17][18][19] as shown in Figure 1. For example, 

in one study ZrC with a relative density of 93.3% had a thermal conductivity range from 

31 to 38 W /m K  at temperatures from 200 - 1000°C[15]. In another study, ZrC with a 

relative density of 91.9% had a thermal conductivity range from 18 to 26 W /m K  at 

temperatures from 300 - 1100C [14]. One possible reason for such differences is that these 

ZrCx samples were prepared by different methods that resulted in different average grain 

sizes, carbon vacancy contents, and/or porosity levels/distributions and relative densities. 

Table 1 summarizes the preparation methods and characteristics of zirconium carbide



ceramics from previous studies. The highest thermal conductivity values were reported 

for ZrC with larger grain sizes, lower carbon vacancy contents, and higher relative
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Figure 1. Thermal conductivities of zirconium carbide ceramics measured in previous

studies.

densities[13]. The typical room temperature thermal conductivity is about 30 W /m K , 

depending on relative density[15].

In the Zr-C phase diagram, rock salt structured zirconium carbide is stable across 

a wide composition range and is represented by ZrCx with x ranging from 0.98 to 0.63 

(i.e., carbon vacancy contents from 0.02 to 0.37)[20]. The change of carbon content not
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only influences the lattice constant of ZrCx, but also the thermal and mechanical 

properties. Previous studies demonstrated that the total thermal conductivity of ZrCx

Table 1. Densification methods and sample characteristics of ZrCx from previous studies 
________________ sorted by highest to lowest thermal conductivity._________________

Ref. Densificatio 
n method Composition Relative

density
Average 
grain size

Impurity
Content

Thermal 
conductivity 

(W/mK )
8 HP ZrC0.98 95% 50 pm <0.2 wt% 32.2, 600°C

13 HP ZrC0.98 95% 50 pm <0.2 wt% 38.5,
1300C

12 SPS ZrC 93.3% ~10 pm N/A 31.3, 200C

14 HP ZrC 91.5% N/A >0.165 wt% 26.7,
1325C

11 HP ZrC 91.9% 3.7 pm N/A 17.7, 300C

decreased with increasing carbon vacancy content[21] due to the scattering of phonons and 

electrons by carbon vacancies. Likewise, theoretical studies[22][23] predicted that the 

elastic properties, Vickers hardness, and thermal conductivities of ZrCx decreased with 

increasing carbon vacancy content. However, relatively few studies have been conducted 

using first-principles calculations to examine the lattice thermal conductivities of ZrCx 

with different carbon vacancy contents. Molecular dynamics[24] and the Debye-Slack 

model[21] have been used to calculate the lattice thermal conductivities of ZrCx with 

different carbon vacancy concentrations. However, the Debye-Callaway model has not 

been used to evaluate the effect of carbon vacancy on the lattice thermal conductivity of 

ZrCx[25][26]. The effect of ordering of carbon vacancies on the lattice thermal conductivity 

was also investigated since the carbon vacancy ordered phase ZrC0.5 has not only been 

predicted computationally[27][28] but also been observed experimentally[29][30]. However,



due to the fact that the carbon vacancy ordered Zr2C always coexists with rock salt 

structured ZrCx, its effect on the thermal conductivity of ZrCx is difficult to determine 

experimentally. Thus, theoretical prediction of the lattice thermal conductivity of this 

ordered phase is needed.

ZrCx is electrically conductive such that both electron and phonon transport 

contribute to thermal conductivity. As shown in Figure 1, the total thermal conductivity 

of ZrCx increases with increasing temperature, which is attributed to the increasing 

contribution of the electron contribution as temperature increases[31]. In addition, oxygen 

can dissolve into the ZrCx lattice and is expected to be present in the carbon vacancy 

sites[32]. Furthermore, phonon scattering is expected to increase when impurity atoms are 

present[33] so that the phonon thermal conductivity of ZrCx should decrease with 

increasing dissolved oxygen content. Thus, tailoring the thermal conductivity of 

zirconium carbide requires a deeper understanding of the mechanisms affecting the 

phonon transport in the lattice.

The Debye model is a statistical thermodynamic methodology to estimate the 

phonon contribution to heat capacity[34]. When the temperature (T) is much lower than the 

Debye temperature (Od), which is designated the “low” temperature regime, the model 

accurately predicts that heat capacity is proportional to T3. In the low-temperature regime, 

the phonon group velocity (v) has a linear relationship with the frequency distribution of 

acoustic phonons and is expressed as rn = vq, where ro is the phonon frequency, v is group 

velocity, and q is the wave vector of the phonon. Optical phonons are not active in the 

low-temperature regime. Likewise, the Debye model accurately predicts heat capacity in 

the “high” temperature limit where T >> Od and the Debye model simplifies to the
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DuLong-Petit Law. However, at intermediate temperatures where both low and high- 

frequency phonons are active, the relationship between the acoustic phonon frequency 

and group velocity is no longer linear, leading to significant inaccuracies in the phonon 

frequency distribution predicted by the Debye model.

Klemens studied the statistical equilibrium of phonons with respect to temperature 

gradients and developed a general prediction for the thermal conductivity of dielectric 

solids with fixed equilibrium atom positions[35]. When atoms deviate from their ideal (i.e., 

absolute zero) positions, phonons scatter. The mean time between scattering events is 

defined as the relaxation time and different relaxation times can be determined for each 

phonon scattering process. Phonon scattering processes are typically divided into two 

main types: normal processes (N) in which phonon momentum is not changed by 

scattering and Umklapp processes (U) that change phonon momentum. Normal processes 

dominate in the low-temperature regime. In contrast, U processes, such as anharmonic 

phonon-phonon and phonon-electron interactions, typically dominate in the high- 

temperature regime. Built on the Klemens model, Callaway argued that the total crystal 

momentum was conserved in N processes, which led to the conclusion that N processes 

do not contribute to thermal conduction. Callaway modified the initial model to capture 

the linear relationship between group velocity and the frequency distribution of acoustic 

phonons[36]. This enabled prediction of thermal conductivity in temperature regimes in 

which the Debye model accurately captured the phonon frequency distribution (i.e., the 

low-temperature regime). However, the Debye-Callaway model is not accurate at 

intermediate temperatures because of inaccuracies in the predictions of the underlying 

Debye model in this temperature regime.
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First-principles calculations can be used to improve the accuracy of the Debye- 

Callaway model in the intermediate temperature regime by directly determining phonon 

group velocities and frequency distributions. Using this methodology, intrinsic thermal 

conductivities have been predicted for y-Si3N4, y-Ge3N4[37], ZrB2[38], copper antimony 

selenium, and tin-selenium compounds[39]. For example, this methodology predicted a 

lattice thermal conductivity of about 300 W/m*K for y-Si3N4 at room temperature, which 

is only ~50% higher than the highest experimentally measured value[40][41]. In contrast, 

the Slack model predicted a lattice thermal conductivity of 80 W /m K [42] for the same 

material, which is less than half of the highest experimental value. Hence, utilizing first- 

principles calculations to determine phonon vibration frequency distributions improves 

the accuracy of the Debye-Callaway model in the intermediate temperature regime.

Up to now, this methodology has not been used to predict the thermal 

conductivity of ZrCx ceramics. The purpose of the present study is to use a combination 

of first-principles calculations and the Debye-Callaway model to predict the lattice 

thermal conductivities of ZrCx with different carbon stoichiometries. The result of this 

study is not only useful in explaining the origin of discrepancies in experimentally 

measured thermal conductivities but also can be used as a guideline for tuning the 

thermal properties of ZrCx ceramics.
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2. CALCULATION METHODS

2.1. LATTICE THERMAL CONDUCTIVITY

The total thermal conductivity (xtotai) of ZrCx arises from both electron (xe) and 

lattice (kl) contributions, /ctotai =  Ke +  kl . The magnitude of the electron contribution

L Tcan be estimated using the Wiedemann-Franz law[43], Ke =  -0-, where L0 = 2.45x10 8

W /fi K2 is the theoretical Lorenz number. Previous studies suggested that kl was the 

dominant contribution to /ctotai of ZrCx at lower temperatures[44]. In addition, the 

calculation of the electron contribution using the Wiedemann-Franz law is straight­

forward. As a result, kl will be the focus of the present study.

A combination of the Debye-Callaway model[45] and first-principles simulations 

was employed for calculating kl of ZrCx with different carbon stoichiometries (ZrC, 

ZrC0.75, and ZrCo.5 which is also called Zr2C in some studies) at different temperatures. In 

the Debye-Callaway model, heat is assumed to be transported by acoustic phonon modes 

because the group velocities of the optical phonons are significantly lower, which means 

their contribution to total thermal conductivity is small[46][35][47]. Two transverse (TA1 and 

TA2) and one longitudinal (LA) acoustic phonon branches contribute to kl , which can be 

expressed by Equation 1:

Kh = Ktai +  KtA2 +  Kla (1)

The acoustic phonon branches (Kt, with i represents TA1, TA2 and LA) are the usual 

Debye-Callaway terms and are expressed by Equations 2 and 3:

f t  •1 kgT3 r^rzlc(x)x4ex ,
Kil =  3 2n2h3vJo (ex-1)2 (2)
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In Equation 3, kB is the Boltzmann constant, h is the reduced Planck constant, v t is the 

group velocity of the phonons, 0j is the Debye temperature of the transverse and 

longitudinal acoustic phonons, respectively, which is determined by 0j =  h&max/ k B, 

where Mmax is the maximum frequency of the acoustic phonon branches at the Brillouin 

zone boundary[48]. The factor x is expressed by x = h ^ /k BT, xc is the total relaxation 

time of the active phonon scattering processes. In Equation 3, xN is the scattering rate for 

normal phonon processes, while xR is the sum of all of the resistive scattering processes. 

The relationship between the last three factors is x - 1 =  x - 1 +  x - 1. The total resistive 

phonon scattering rate (t- 1) is the sum of the phonon-phonon Umklapp scattering (t- 1), 

isotope scattering (t- 1), grain boundary scattering (t- 1), and phonon-vacancy scattering 

(t- 1) rates. The latter was considered only for ZrCo.75 since ZrC has no vacancies and the 

space group for ZrCo.5 accounts for carbon vacancies in that structure. The relaxation 

time of the Umklapp scattering process can be expressed as Equation 4[49]:

-e
[Th] 1 =  x2T3exP'M t )  x 2T3e xp { 3 0 (4)

where M is the average mass of atoms in the crystal, Yi is the Gruneisen parameter of the 

acoustic phonon branch which is estimated by Equation 5[50]:

I,Yi,qCi(q)
Yi =  ~ i ^ r

where Yi,q is the mode Gruneisen parameter for mode i at wave vector q which is 

determined by Equation 6:

(5)
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dlntoi,q 
= dlnV

where V is the volume of the unit cell. In Equation 5, Ct(q) is defined by Equation 7:

(6)

Ci(q) = kB kBT )
exp i ĥ i,q\

kBT)
exp ĥ i,q 

kBT . -1
2 (7)

Isotope scattering was assumed to be scattering from static imperfections with masses 

that are different from the host in a perfect crystal structure and is expressed as Equation

8[51]:

\Tn -1 = VkBr y4T4
[ 4nh4vl

where r  is the phonon-scattering parameter of the mass-fluctuation which can be 

calculated by Equations 9 and 10:

(8)

2
r =

m = Xj cj mj

(9)

(10)

where Cj is the fractional atomic natural abundance of the isotope with atomic mass, m j . 

Scattering from Zr isotopes is also considered in the present work using analysis similar 

to Equations 8 and 9. The abundance of the isotopes is assumed to be 51.45 wt% 90Zr, 

11.22 wt% 91Zr, 17.15 wt% 92Zr, 17.38 wt% 94Zr, and 2.80 wt% 96Zr.

Grain boundary scattering was assumed to be independent of temperature and phonon 

frequency and only dependent on group velocity and grain diameter[40] as shown by 

Equation 11:

t e l -1 =  ? ( 11)

where d  is the effective diameter of the ZrCx grains.



Phonon-vacancy scattering was assumed to occur due to the atomic mass and radius 

differences when vacancies form in a crystal structure[52] as described by Equation 12:
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[Tv]-1 l i f i ( 1 - ^ ) 2 +  l i f i ( 1 - ri ) 2 (12)

where is the ratio of vacancy, fh and m t are the average masses before and after the 

vacancy formed, r  and rt are the average atomic radius before and after the vacancy 

formed. As noted previously, phonon-phonon scattering was considered to be a U process 

and its effect on lattice thermal conductivity is determined using the Callaway model as 

shown in Equation 13[33]:

[tln]-1 =  ^ J 4 x 2r 5Mh4Vj

The phonon group velocity is defined by Equation 14:

dto(i,q)
vg (i ,q )  = dq

(13)

(14)

where the gradient of the dispersion curve at r  is the group velocity.

2.2. FIRST-PRINCIPLE CALCULATIONS

ZrC crystallizes in rock salt structure with a space group of Fm 3m  (No. 225) 

(Figure 2a). The lattice parameter is a = 4.699 A[22]. Zr and C atoms are located at (0, 0,

0) and (0.5, 0.5, 0.5), respectively. The crystal structure of ZrCo.75 was built by removing 

one C atom from the 1x1x1 unit cell of ZrC, as shown in Figure 2b, which results in 

ordered vacancies for the ZrC0.75 structure at the scale of the unit cell. The carbon 

vacancy ordered crystal structure Zr2C was used for ZrC0.5, which was built according to 

a Rietveld refined structure from the X-ray diffraction pattern[53]. The space group is 

Fd3m  (No. 227) and the lattice parameter is a = 9.399 A. The Zr and C atoms are located



at (0.3702, 0.3702, 0.3702) and (0.1250, 0.1250, 0.1250) positions, respectively, as 

shown in Figure 2c. This structure is essentially a 2x2x2 super cell of the ZrC unit cell, 

but with an ordered array of carbon vacancies that requires the larger super cell to fully 

describe the ordering.

Quantum Espresso (QE)[54] was employed to perform the density functional theory 

(DFT) calculations. Crystal structures were optimized using the Broyden-Fletcher- 

Goldfarb-Shanno (BFGS) scheme to minimize the total energy and interatomic force[55]. 

The criteria for convergence in optimizing lattice parameters and internal atom positions 

were total energy differences within 0.1 mRy/atom. Vanderbilt-type ultrasoft 

pseudopotentials[56] were employed to represent the interactions between atom cores and 

valence electrons. The exchange-correlation energy was treated under the generalized- 

gradient approximation (GGA)[57] based on the Perdew-Burke-Ernzerhof (PBE) scheme. 

The cutoff of kinetic energy for wavefunctions were fixed at 70 Ry in structure relaxation 

and self-consistent calculations after convergence tests for all structures. Brillouin zone 

sampling integration was conducted by the Monkhorst-Pack method[58] with a k-points
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Figure 2. Crystal structures of (a) ZrC, (b) ZrC0.75 and (c) Zr2C(ZrC0.5).
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mesh separation of 0.04 A"1. Elastic constants were calculated for all three compositions 

(ZrC, ZrC0.75 and ZrC0.5). A finite value of homogeneous deformation was generated for 

calculating the required stress. The three independent symmetry elements, cn, C12 and C44 

of the cubic structure were generated for estimating the polycrystalline shear modulus G 

and bulk modulus B according to the Voigt-Reuss-Hill approximation[59]. The Young’s 

modulus E, Poisson’s ratio v and microhardness H v were calculated based on shear 

modulus G and bulk modulus B according to the following relationships for isotropic 

materials[60]:

9BG 
35+ G (16)

3B-2G 
2X(35+ G) (17)

c3
H y =  2 X  ( ^ ) 0585 -  3 (18)

In Equation 18, microhardness has a unit of GPa, which must also be used for G and B in 

this calculation. Phonon frequencies as functions of Brillouin zone directions were 

conducted using density functional perturbation theory (DFPT)[61] with a 9*9*9, 6*6*6, 

and 5*5*5 ^-points mesh for ZrC, ZrC0.75, and ZrC0.5, respectively. In the phonon 

calculations within the quasi harmonic approximation (QHA), the cell volume was varied 

by less than ±1% with respect to the equilibrium cell volume of ZrC, ZrC0.75 and ZrC0.5.
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3. RESULTS AND DISCUSSION

3.1. LATTICE PARAMETERS, ELASTIC CONSTANTS, AND MECHANICAL 
PROPERTIES

Lattice parameters of ZrC, ZrCo.75 and ZrCo.5 were calculated in the present study 

and are compared in Table 2. The lattice parameter of ZrCo.75 was 4.692 A, which was 

smaller than the lattice parameter of 4.706 A for ZrC due to the presence of the carbon 

vacancies. The lattice parameter of ZrCo.5 was larger than those for ZrC and ZrCo.75 since 

the crystal structure contains 48 atoms compared to 8 atoms for ZrC and 7 atoms for 

ZrCo.75. However, the average distance between two neighboring Zr atoms along the 

crystallographic axes was 4.717 A, which is analogous to the lattice parameter for the 

other two structures. The lattice expanded for ZrCo.5 in contrast to the trend from ZrC to 

ZrCo.75. The lattice parameter decreased as carbon vacancy content increased initially due 

to the loss of carbon atoms that resulted in shrinkage of the structure. However, when the 

carbon vacancy content reaches about 2o% (i.e., ZrCo.8), the average distance between Zr 

atoms begins to increase due to the decrease in bond strength that results from the 

increasing metallic bond character with increasing carbon vacancy content[62].

Elastic properties are direct reflection of chemical bonding. Table 2 tabulates the 

elastic constants and microhardness of ZrC, ZrCo.75 and ZrCo.5. Data from previous 

publications are also included for comparison. The calculated mechanical properties of 

ZrC and ZrCo.5 are consistent with the values from previous studies. For example, the 

second-order elastic constants C11, C44 and C12 of ZrC are 451.6 GPa, 155.4 GPa and io6.9 

GPa, respectively, which are very close to corresponding values of 451.6 GPa, 155.3 GPa 

and 1o6.9 GPa calculated in a previous report[63], demonstrating the reliability of present
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calculations. The bulk modulus B, shear modulus G and elastic modulus E  of 

polycrystalline ZrCx all decrease with increasing carbon vacancy content. For example, G 

decreases from 162.2 GPa for ZrC to 119.5 GPa ZrC0.75, and 82.1 GPa for ZrC0.5. 

Correspondingly, Hv decreases from 24.2 GPa for ZrC to 16.2 GPa for ZrC0.75 and 11.7 

GPa for ZrC0.5. In contrast, Poisson’s ratio increases with increasing carbon vacancy

Table 2. Calculated lattice parameters (a (A)), elastic constants (cii, C44, cn) (GPa), shear 
modulus G (GPa), bulk modulus B (GPa), elastic modulus E  (GPa), Poisson’s ratio v, and 
microhardness H v (GPa) of ZrC, ZrCo.75 and Zr2C (ZrCo.5) in the present and (previously 

_____________________________ reported) calculations._____________________________
Composition ZrC ZrC0.75 Zr2C(ZrC0.5)

Lattice constant a (A) 4.706, (4.705)[63] 4.692 9.369[22]

cii 451.6, (451.6)[63] 369.2 205.3

c44 155.4, (155.3)[63] 108.9 101.6

c12 106.9, (106.9)[63] 98.4 100.0
G 162.2, (162.1)[63] 119.5 82.1, (71)[22]
B 221.8, (221.8)[63] 188.6 135.1, (137)[22]
E 391.2, (390.7)[63] 295.9 204.7

V 0.21, (0.206)[61] 0.24 0.25

Hv
24.2, (23.4)[21], 

(24.3)[22]
16.2

11.7, (8.4)[22], 
(10.8)[23]

content from 0.21 for ZrC to 0.25 for ZrCo.5, indicating a decrease in average bond 

strength as carbon atoms are removed from the structure.
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3.2. PHONON DISPERSIONS AND VIBRATION PROPERTIES

Phonon dispersion curves for ZrC are shown in Figure 3a. The primitive ZrC cell 

contains one Zr atom and one C atom, which result in six phonon branches, i.e., three 

acoustic (colored lines) and three optical (black lines). No imaginary frequencies were 

predicted in any of the high-symmetry directions in the Brillouin zone, indicating the 

dynamic stability o f ZrC under perturbation. The apparent gap between the acoustic 

phonon branches and optical phonon branches (>5 THz at the L point) is due to 

anisotropic bonding and mass differences between Zr and C in ZrC. These results also 

suggest that the contribution o f the optical modes to the thermal conductivity o f ZrC is 

negligible due to the significantly higher frequencies, as has been demonstrated in ZrB2 

by Xiang et al[42].

Figure 3. Phonon dispersion (a) and mode Gruneisen parameters (b) o f ZrC.

The phonon group velocities for TA1, TA2, and LA o f ZrC are 4.2 km/s , 4.2 km/s 

and 8.0 km/s, respectively, in the T-X direction (Table 3). Since spectral thermal 

conductivity is proportional to the square of the phonon group velocity, ^5(m) =



Cs(w )l^ (w )2r(w )[38], the higher group velocities are an indication of higher thermal 

conductivity for ZrC. Thermal conductivity is also proportional to the phonon relaxation 

time[39], which is the mean time between scattering events attributed to the various 

resistive processes.

The phonon relaxation time can be determined from the mode Gruneisen 

parameters, f i , which is related to the anharmonicity of the phonon vibrations and plays 

an important role in thermal conductivity. The mode Gruneisen parameters are calculated 

using harmonic lattice dynamic calculations over a range of volumes around the

75

Table 3. The Gruneisen parameters, Debye temperatures, and group velocities of ZrC, 
ZrCo.75 and Zr2C (ZrCo.5) compared with a highly thermal conductive (ZrB2)[37] and 

_________ ________ thermal insulating rare-earth pyrochlores[64].__________________

Ytai YtA2 Yla 6Tai 6tA2 6la VTA1 VTA2 vLa
Unit

Composition^
N/A (K) (km/s)

ZrC 1.79 1.51 1.65 340 340 467 4.2 4.2 8.0

ZrCo.75 0.92 1.28 1.52 242 242 242 2.4 2.4 3.2

Zr2C 10.05 9.12 4.32 167 172 220 4.0 4.8 7.1

ZrB2 1.50 1.22 1.43 380 355 422 6.5 6.5 9.2

Nd2Zr2O7 6.23 10.10 2.75 138 138 260 3.13 3.13 5.91

Sm2Zr2O7 7.40 11.98 2.81 137 137 256 3.09 3.09 5.78

Gd2Zr2O7 7.19 11.57 2.75 137 137 252 3.06 3.06 5.63

equilibrium state using Equation 6. As shown in Figure 3b, the mode Gruneisen 

parameters of ZrC are positive across the Brillouin zone, which implies that ZrC is stable 

in the rock salt structure at elevated pressures.
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Figure 4a shows the phonon dispersion curves for ZrCo.75. Compared to ZrC, the 

phonon dispersion curves for ZrCo.75 contain additional optical phonon modes at 

frequencies between ~6 THz and ~8 THz, which are due to the presence of carbon 

vacancy. These moderate frequency optical phonons scatter acoustic phonons (i.e., 

phonon-phonon scattering), especially the longitudinal acoustic phonon branch. The 

scattering of acoustic phonons results in reduced group velocities as can be seen from the 

gradient of the dispersion curve at the T points in Figure 4a and the data in Table 3. In

Figure 4. Phonon dispersion (a) and mode Gruneisen parameters (b) of ZrCo.75.

addition, the scattering of acoustic phonons by the moderate frequency optical phonons 

also decreases the Debye temperature and increases the longitudinal acoustic mode 

Gruneisen parameter compared to ZrC (Figure 4b). Since the Debye temperature is 

determined by the maximum frequency of the acoustic branches at the Brillouin zone 

boundary, a decrease in the Debye temperature is reasonable (Table 3) based on Figure 3 

and Figure 4. For example, 6TA1 and 6TA2 decrease from 340 K for ZrC to 242 K for 

ZrCo.75, while 6la decreases from 467 K for ZrC to 242 K for ZrCo.75. As a consequence,



scattering of acoustic phonons by the moderate frequency optical phonons is active in 

ZrCo.75, but not in ZrC, which should decrease the lattice thermal conductivity of ZrCo.75.

When more carbon atoms were removed from the structure and ZrCo.5 formed, 

more optical phonon modes were active at frequencies between ~4 THz and ~8 THz, as
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Figure 5. Phonon dispersion (a) and mode Gruneisen parameters (b) of Zr2C (ZrCo.5).

can be seen from the phonon dispersion curves shown in Figure 5a. The number of 

thesemoderate frequency optical modes increased from 0 for ZrC to 9 for ZrCo.75, and 21 

for ZrCo.5. Scattering of acoustic phonons by these low-lying optical phonons resulted in 

lower group velocities, which were v TA1 = 4.0 km/s, v TA2 = 4.8 km/s and vLA = 7.1 km/s 

(as can be seen from the reduced gradient of the dispersion curve at the r  points in Figure 

5a and Table 3). In addition, the mode Gruneisen parameters of the acoustic branches 

were very large with TA1, and TA2 values of more than 22 and LA of more than 5 (Figure 

5b). Since the mode Gruneisen parameter is a measure of lattice vibration anharmonicity, 

the large values indicate that the phonon thermal conductivity of ZrCo.5 will be much



lower than ZrC or ZrCo.75 due to the increased anharmonicity. The longitudinal acoustic 

phonon branches and the moderate frequencies optical phonon branches overlapped due 

to scattering of optical phonons by carbon vacancies. The frequencies of the acoustic 

phonon branches for ZrCo.5 were lower than those for ZrCo.75, so the Debye temperatures 

decreased as well (Table 3). For example, 6TA1 and 6TA2 decreased from 242 K for 

ZrCo.75 to 167 K and 172 K for ZrCo.5, respectively while 6LA decreased from 242 K for 

ZrCo.75 to 220 K for ZrCo.5. The reduction in the Debye temperature for ZrCx with 

increasing carbon vacancy content is consistent with previous studies[22].

3.3. GRUNEISEN PARAMETERS

The Gruneisen parameters (f i), Debye temperatures (6t) and group velocities (v t) 

of the acoustic phonon branches (Table 3) are the determinant parameters for calculating 

the phonon thermal conductivity. The changes in the thermal properties of ZrCx can be 

summarized by comparing the Gruneisen parameters and Debye temperatures with 

materials that have high lattice thermal conductivities, such as ZrB2[35], and low lattice 

thermal conductivities, such as rare-earth pyrochlore materials[50]. Gruneisen parameters 

and Debye temperatures of ZrC are close to ZrB2 (For example, Ytai. values are 1.79 and 

1.50, 6TA1 values are 340 K and 380 K for ZrC and ZrB2[35], respectively) as presented in 

Table 3. As the carbon vacancy content increases, the values of the Gruneisen parameters 

and Debye temperatures tend to change toward representative low lattice thermal 

conductivity materials such as Gd2Zr2O7[64]. Hence, the lattice thermal conductivity of 

ZrCx should decrease to values similar to thermal insulators as the carbon vacancy 

content increases. This result is intriguing since it implies that the thermal conductivity of
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ZrCx can be tuned from a high thermal conductivity/thermal dissipating material to a low 

thermal conductivity/thermal insulating material through controlling the composition and 

carbon vacancy content. From this angle, the lattice thermal conductivity can be 

increased with high x such as ZrC and decreased with low x such as ZrCo.5.

3.4. THERMAL CONDUCTIVITY

The temperature-dependent lattice thermal conductivities of ZrC, ZrCo.75 and 

ZrCo.5 predicted using the Debye-Callaway model are shown in Figure 6. The initial 

simulations predicted lattice thermal conductivities, labeled kjji in Figure 6, of 122 

W / m K  for ZrC, 33 W / m K  for ZrCo.75, and 3 W / m K  for ZrCo.5, considering the natural 

abundance of Zr isotopes. From these simulations, the lattice thermal conductivity of 

ZrCx decreases with the increasing carbon vacancy content. This decreasing trend is 

consistent with expectations based on trends in the Gruneisen parameters and Debye 

temperatures discussed above. The significant change of lattice thermal conductivity 

opens a new window to tailor the thermal conductivity of ZrCx through composition and 

carbon vacancy control. However, the predicted values of ZrC and ZrCo.75 are higher than 

the experimental values for total thermal conductivity at room temperature, which are 

less than 30 W / m K  for ZrCx with low (but not well-characterized) carbon vacancy 

contents. One reason that the predicted lattice thermal conductivity values are higher than 

measured values for ZrCx ceramics is that the simulations assumed perfect crystal 

structure without any impurities or defects. In addition, other possible scattering 

mechanisms may also need to be considered to decrease the predicted values and make 

them more realistic compared to experimental values. For ZrC, the room temperature
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lattice thermal conductivity decreased from 122 W / m K  when only considering isotope 

effects (k ui) to 100 W/m K when considering isotope and grain boundary effects (kua), 

and 68 W / m K  when considering isotope and grain boundary effects along with N and U 

scattering processes (kn). Even with these effects, the room temperature thermal 

conductivity of ZrC is still about twice of the experimental value, so other scattering 

mechanisms may have a significant impact on the lattice thermal conductivity of ZrCx 

ceramics. The simulations may also predict values that are too high since the sizes of the 

cells in the simulations were not large enough to capture the effects of random carbon 

vacancies (i.e., the simulations include the implicit assumption that the carbon vacancies

Figure 6. Lattice thermal conductivities of (a) ZrC, (b) ZrCo.75 and (c) Zr2C (ZrCo.5) based
on theoretical prediction. (k ui: isotope effect; k ua: isotope and grain boundary effects; kn:

isotope, grain boundary, U, and N effects.)

are ordered). Hence, simulations provide an upper bound for possible thermal 

conductivity values.

The lattice thermal conductivities decreased as temperature increased due to the 

increased phonon-phonon scattering[4]. When temperature is much higher than the Debye 

temperature, the number of phonons becomes proportional to temperature, and phonon-
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phonon interreactions increase significantly. For ZrC, the lattice thermal conductivity 

(kn) was 68 W / m K  at room temperature, and decreased to 7 W / m K  when temperature 

increased to 2000 K. The trend in the present study consist with a previous experimental 

result wherein the phonon contribution to thermal conductivity was obtained by taking 

the experimentally measured total thermal conductivity for ZrCx with x values 

approaching 1 and subtracting the electron contribution to thermal conductivity that was 

calculated using the Wiedemann-Franz law[40]. The total thermal conductivity of ZrCx 

increases with increasing temperature, as shown in Figure 1, and the high-temperature 

thermal conductivity is dominated by electron conductivity. In contrast to simulations, 

experimental measurements should be considered a lower bound for thermal conductivity 

because of the presence of grain boundaries, dissolved impurities, second phases, and 

other features that decrease the measured value compared to the inherent thermal 

conductivity of the material.

Lattice thermal conductivity can either be limited by extrinsic effects (e.g., 

isotopes, impurities, point defects, or grain boundary scattering)[65] or intrinsic effects 

(e.g., phonon-phonon scattering)[66]. Grain size is an extrinsic effect that decreases 

thermal conductivity because phonons are scattered by grain boundaries[29][67][68], thus 

lattice thermal conductivity decreases as the number of grain boundaries increases with 

decreasing grain size[69][70]. To quantify this effect, lattice thermal conductivities with 

grain sizes of 1 pm, 5 pm and 20 pm were calculated for all compositions as shown in 

Figure 7. For example, lattice thermal conductivity was 78 W / m K  for ZrC with a grain 

size of 1 pm, 100 W / m K  for a grain size of 5 pm, and 110 W / m K  for a grain size of 20 

pm. Similar trends were also predicted for ZrC0.75 and ZrC0.5. The calculations correctly
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predicted that lattice thermal conductivity decreased with decreasing grain size due to 

increasing phonon scattering at grain boundaries. However, the magnitude of this effect is 

not sufficient to explain the lattice thermal conductivity values typically measured 

experimentally for ZrCx ceramics.

The presence of mixed isotopes also affects lattice thermal conductivity, resulting 

in a decrease in thermal conductivity when the natural abundance of isotopes was

Figure 7. Lattice thermal conductivities of (a) ZrC, (b) ZrC0.75 and (c) Zr2C (ZrC0.5) with
different grain sizes.

Figure 8. Isotopopically pure and natural abundance isotope lattice thermal conductivities
of (a) ZrC, (b) ZrC0.75 and (c) Zr2C (ZrC0.5).
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considered[71][72][73][74][75][76]. For example, the thermal conductivity of 11B412C was about 

15% lower than 10B412C at room temperature[57] and is further lowered when mixtures of 

isotopes were considered. The heavier isotopes play a critical role in scattering.For some 

materials that have large mass differences between isotopes, phonon-isotope scattering 

can dominate the overall thermal conductivity (i.e., overwhelm phonon-phonon 

scattering) at room or elevated temperatures. For example, the thermal conductivity of 

GaN with a natural abundance of isotopes is about 33% lower than the isotopically pure 

GaN at room temperature due to weak anharmonic phonon-phonon scattering[60]. Strong 

isotope-phonon scattering and weak anharmonic phonon-phonon scattering result in a 

large isotope effect on the vibrational properties. The isotope effect on lattice thermal 

conductivity of ZrC was calculated previously[29], which showed that isotope scattering 

can be the predominant effect in determining lattice thermal conductivity. However, the 

isotope effect is temperature-dependent and its effectiveness decreases as temperature 

increases. In the present work, the effect of isotopes on the lattice thermal conductivities 

of ZrCx ceramics was minimal as shown in Figure 8. For example, accounting for the 

natural abundance of Zr isotopes only reduced room temperature lattice thermal 

conductivity from 126 W / m K  when the effect was not considered to 122 W / m K  when 

isotope effect was considered. Based on these analyses, isotope scattering is also not 

sufficient to account for the lower experimental values of thermal conductivity.

3.5. MECHANISM OF LOW LATTICE THERMAL CONDUCTIVITY

The combination of the Debye-Calloway model and first principles computations 

correctly predicted trends for the lattice thermal conductivity of ZrCx with temperature
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and carbon vacancy content. However, the predicted lattice thermal conductivity values 

for ZrC and ZrC0.75 are higher than measured total thermal conductivity values, so 

additional research will examine other possible mechanisms to explain the differences.

As discussed above, part of the difference is due to the effects of defects such as 

impurities or pores in real materials that reduce the measured thermal conductivity of real 

materials compared to the inherent value. All of these defects scatter the phonons or 

otherwise impede thermal transport. Common impurities in zirconium carbide include Hf, 

O, and N. All Zr-based materials made from commercial Zr sources contain H f due to its 

presence in naturally-occurring Zr minerals and the difficulty associated with separating 

Zr and Hf. The presence of H f impurities could decrease the thermal conductivity of ZrC 

significantly. Zirconium carbide also typically contains dissolved O and N that substitute 

onto carbon vacancy sites. These factors could lower experimental values of thermal 

conductivity compared to the present results, which do not take those factors into 

account. Similarly, pores could also reduce the thermal conductivities significantly. ZrCx 

samples with lower relative densities have relatively lower thermal conductivities as 

listed in Table 1 and shown in Figure 1. In addition, the high x value in the bulk ZrCx 

sample is 0.98 instead of 1. Thus the measured values are lower than the inherent thermal 

conductivity, simulations likely overestimate thermal conductivity since not all scattering 

mechanisms are considered. Future simulations could consider additional factors such as 

grain boundary resistance or phonon-electron scattering, which may be active in real 

materials and could reduce the predicted values. Once lattice thermal conductivity values 

are within the range expected based on experimental studies, then the effects of electron



thermal conductivity can be combined with lattice thermal conductivity predictions to 

more fully analyze total thermal conductivity of zirconium carbide ceramics.

4. CONCLUSION

The lattice thermal conductivities have been predicted for ZrCx with different 

carbon vacancy contents (ZrC, ZrCo.75 and ZrCo.5). Phonon frequencies were calculated 

as a function of Brillouin zone direction using the finite displacement method. In 

addition, the Gruneisen parameters, Debye temperatures, and group velocities were 

determined. The properties calculated from first principles predictions are consistent with 

other studies and were subsequently used as inputs to the Debye-Callaway model to 

determine lattice thermal conductivity. The lattice thermal conductivities of ZrCx with 

different carbon vacancy contents all decrease as temperature increases due to the effect 

of phonon-phonon scattering. Lattice thermal conductivities of ZrCx also decreased with 

increasing carbon vacancy content because increasing carbon vacancy content decreases 

the vibration frequencies, which causes a decreased ability to transport heat. Thus, ZrCx 

can be tailored from a thermal dissipating material with x^1 to a thermal insulating 

material when x=0.5, which opens a new window to tune the thermal conductivity of 

ZrCx through carbon vacancy control. The effects of the natural distribution of Zr 

isotopes, grain boundaries, and phonon-phonon interactions all decrease the lattice 

thermal conductivities for all of the compositions studied in this work. While these 

calculations correctly predict the trends in lattice thermal conductivity with temperature, 

the magnitudes of the values predicted for ZrC are higher than experimentally measured
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total thermal conductivity values. Hence, future research will focus on incorporating 

additional mechanisms to account for differences between predicted lattice thermal 

conductivity values and those typically measured for ZrCx ceramics.
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IV. ELECTRONIC STRUCTURE AND THERMAL CONDUCTIVITY OF 
ZIRCONIUM CARBIDE WITH HAFNIUM ADDITIONS
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ABSTRACT

The lattice thermal conductivity of ZrC with different H f contents was 

investigated theoretically. The band structures, density of states, and electron density 

differences were calculated for ZrC and (Zr,Hf)C containing 3.125 at% or 6.25 at% H f . 

The electronic structure did not change significantly with H f additions. Lattice thermal 

conductivities were calculated for all of the compositions by combining first-principles 

calculations with the Debye-Callaway model. The theoretical lattice thermal conductivity 

of ZrC was 68 Wm-1K-1 at room temperature. When adding 3.125 at% and 6.25 at% H f 

into ZrC, lattice thermal conductivity decreased to 18 Wm-1K-1 and 21 Wm-1K-1, 

respectively. With the addition of H f impurities, the frequency of the acoustic phonons 

decreased, which resulted in decreases in the Debye temperature and lattice thermal 

conductivity.

Keywords: Zirconium carbide; Lattice thermal conductivity; Theoretical study; First- 

principle calculations.
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1. INTRODUCTION

Zirconium carbide is a promising material for potential use in tri-structural 

isotropic (TRISO) fuel particles[1] that will be used in advanced high temperature nuclear 

reactors[2][3]. The coolant outlet temperature of the Very High Temperature Reactor 

concept is around 1000 °C. To optimize the performance of TRISO fuel particles, 

zirconium carbide is being considered as an alternative to the silicon carbide layer. 

Zirconium carbide is structurally stable at the predicted operating temperatures and has 

favorable thermal conductivity, fission product retention characteristics, and radiation 

damage resistance. Zircon (nominally ZrSiO4) is a naturally occurring mineral and is the 

principal raw material used in the commercial production of zirconium. Typically, zircon 

contains about 2 wt% of hafnium[4]. In practice, separating hafnium from zirconium is 

difficult since they have similar atomic radii, valence electron configurations, and 

chemical properties[5]. Therefore, H f impurities are an important defect in ZrC and other 

zirconium compounds.

Solid solution additions generally decrease the thermal conductivities of the 

resulting alloys. The thermal conductivity of Ge-Si alloys is lower than that for either 

pure element[6]. For example, the thermal conductivity of Sio.7Geo.3 is about 6.3 W m'1K '1, 

which is lower than either pure Si, about 88 Wm"1K"1, or pure Ge, about 50 Wm"1K"1. 

Thermal conductivities of Mg alloys also decrease as the amount of alloying 

increases[7][8][9][10][11]. Likewise, the thermal conductivity of (Zr,Hf)NiSn half-Heusler 

alloys decreases when Ti is substituted onto the (Zr,Hf) sites, or by substituting Sb onto 

Sn sites[12]. Solid solutions of yttria-stabilized hafnia-zirconia have lower thermal



conductivities than either yttria-stabilized zirconia (YSZ) or yttria-stabilized hafnia end 

members. Replacement of Zr4+ ions on the zirconia sublattice with Hf4+ ions decreases 

the phonon mean free path[13]. For Al alloys, thermal conductivities of binary Al alloys 

(Al-Si, Al-Cu, Al-Fe and Al-Mg) are all lower than 99.8 % pure Al[14]. The thermal 

conductivity of Al-Cu decreases as Cu content increases due to the formation of AhCu at 

interfaces and the resulting scattering of electrons and phonons[15]. The thermal 

conductivity of Al-Si foundry alloys decreases due to the addition of the main alloying 

elements of Si, Cu, and N i[16]. Some theoretical studies found that solid solutions of 

Mg2SixSn1-x had bulk thermal conductivities that were smaller than bulk Mg2Si and bulk 

Mg2Sn[17]. Similarly, lattice thermal conductivities of TixHf1-xNiSn and ZrxHf1-xNiSn 

half-Heusler alloys are lower than those for TiNiSn, ZrNiSn and HfNiSn due to the mass 

disorder effect[18].

Thermal conductivities of ceramic solid solutions have been studied 

experimentally. Thermal conductivities of high entropy carbides and high entropy borides 

are lower than the constituent transition metal carbides and borides[19][20][21][22]. The 

thermal conductivity of YSZ can be reduced by decreasing the grain size[23] and by 

doping with rare-earth oxides[24]. The thermal conductivity of Si also decreases with 

decreasing grain size (i.e., increasing density of grain boundaries) and due to increasing 

impurity content, both of which scatter phonons[25][26]. Irradiation has been shown to 

reduce the thermal conductivity of CeO2[27], SiC, AhO3, MgAhO4, AlN, Si3N4 and 

BeO[28] due to defect formation. Grain boundaries of Y3A bO 12 also scatter phonons and 

reduce thermal conductivity[29]. Theory-based analysis provides an excellent complement 

to experimental results and can help provide insight into mechanisms controlling the
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observed behavior. Several recent studies have used the Debye-Callaway model with 

parameters determined from first-principles calculations to calculate lattice thermal 

conductivity for materials including selenium compounds[30], y-Si3N4, y-Ge3N4[31] and 

ZrB2[32]. Previous experimental studies of the thermal conductivity of ZrC have resulted 

in values that range from about 26 Wm"1K"1 to 42 Wm"1K"1 at around 1500 K without a 

systematic explanation of the reasons for the differences[33].

The purpose of this paper is to use theoretical methods to study the effect of 

hafnium content on the electronic structure and lattice thermal conductivity of (Zr,Hf)C 

solid solutions. Note that some of the results for pure ZrC used for comparison in the 

present study were from our previous study of the effect of carbon vacancy content on the 

thermal properties of ZrCx ceramics[34]. The previously published results are shown in 

Figures 1a, 7a, and 8a as well as in Table 1.

2. CALCULATION METHODS

2.1. FIRST-PRINCIPLE CALCULATIONS

The valence electron configurations are 4d25s2 for zirconium, 5d26s2 for hafnium 

and 2s22p2 for carbon. The crystal structure of ZrC is rock salt (Space group: Fm3 m, No. 

225) with an initial lattice constant of 4.699 A before geometry optimization as shown in 

Figure 1a. The atom coordinates are (0, 0, 0) for Zr and (0, 0.5, 0) for C with other atom 

positions generated based on the rock salt symmetry. To investigate the effect of H f 

impurities on the electronic structure and thermal properties of ZrC, 2*2*2 supercells of 

(Zn-xHfx)C with x = 3.125 at%, hereafter written Zr0.97Hf0.03C, and x = 6.250 at%,
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hereafter written Zr0.94Hf0.06C were built. The supercells were based on the ZrC unit cell 

with some Zr atoms replaced by H f as shown in Figure 1b and c. The H f atom positions 

were assigned to ensure that the structures of the supercells retained the point group 

symmetry of pure ZrC. The equilibrium crystal structures were optimized using the

1 1 1
. # *

1 1  1 1
•  Z r

• © •  C ®  . © *
1 1 1 1

• ® *  © * °  . © *
1 1 1 1

Q  H f

© • ©  . © •  © • ©
(a)

0 . ®
(b )

•  c

( 0

l 1 1

(d)
Figure 1. Unit cells of (a) ZrC and (b) HfC, and supercells of ZrC with (c) 3.125 at% H f 

(Zr0.97Hf0.03C) and (d) 6.25 at% H f (Zr0.94Hf0.06C).

Broyden-Fletcher-Goldfarb-Shanno (BFGS) methodology[35]. The band structures, 

density of states, electron density differences, and phonon dispersion curves were 

calculated from first principles using density function theory (DFT; Quantum 

Expresso)[36]. Interactions between the ionic cores and the valence electrons were 

represented by Vanderbilt-type ultrasoft pseudopotentials[37]. The generalized-gradient



approximation (GGA)[38] based on the Perdew-Burke-Ernzerhof (PBE) scheme was 

employed to treat the exchange-correlation energy. A plane-wave cut-off energy of 70 Ry 

was set after convergence tests. A separation of 0.04 A '1 was selected for the k-point 

mesh in the Brillouin zone according the Monkhorst-Pack method[39]. Lattice parameters 

and internal atom positions were optimized assuming the total energy was 5*10-6 

eV/atom and a maximum ionic displacement of 5*10-4 A. Phonon dispersion curves were 

calculated using density function perturbation theory[40].
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2.2. LATTICE THERMAL CONDUCTIVITY CALCULATIONS

Lattice thermal conductivities (K i) were calculated at different temperatures using 

the Debye-Callaway model[41]. Two transverse (KTA1 and KTA2) and one longitudinal 

(Ki4 ) acoustic phonon modes contributed to the total lattice thermal conductivity (Kx) as 

expressed by Equation 1:

Kl -  KTA1 + KTA2 + KLA (1)

In the present study, the contributions of optical phonons to lattice thermal conductivity 

were ignored due to the low group velocities of the optical phonons, which result in lower 

contributions to thermal conductivity than for acoustic modes[42][43][44]. Each of the 

acoustic branches (Kj, where i represents TA1, TA2, and LA) give rise to Debye- 

Callaway terms, which are expressed as:

Q •1 k%T3 r^ rlc(x)x4ex 
i1 3 2n2h3Vif 0 (ex- 1)2

Ki2 -  T

2

k%T3
r~TTr(x)x4e*
LT CV  ,2 dxJ0 (ex-i)2

3 2n2h3Vj l± Ti
1 r 'T  1 rT__ L_Clf T^J0

(x)x4ex
TlN(x)TlR(x)(eX-1)2-dx

(2)

(3)
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where kB is the Boltzmann constant, h is the reduced Planck constant, v t is the group 

velocity of the acoustic phonons evaluated at the zone center. 6t is the Debye temperature 

of the acoustic phonons, which is determined from 6t = h&max/k B, where Mmax 

represents the maximum frequency of the acoustic phonon branches at the Brillouin zone 

boundary[30]. The factor x is determined by x = h u /k BT. In both Equation 2 and 3, xc is 

the total relaxation time for all phonon scattering processes. It is a combination of normal 

(N) and resistive (R) processes. The relaxation time for normal phonon processes is xN 

while tr is the sum of all the resistive scattering processes. Then, the total scattering rate 

is the sum of normal and resistive scattering rates, x - 1 =  x - 1 +  x - 1. The relaxation 

time for resistive processes is the sum of contributions from isotope scattering (t- 1), 

grain boundary scattering (t- 1) and Umklapp scattering (t- 1). Isotope scattering arises 

from random mass variations (from multi-isotope elements) at an atomic site in an 

otherwise perfect crystal. The scattering rate for isotope scattering can be expressed as[45]:

f t ]
n - 1 _  vk%r■f— x 4T44 nh4v[ (4)

where r  is the phonon-scattering parameter of the mass-fluctuation as determined by:

' = ^ - r a 2 (5)

with m  =  CjW,j (6)

Cj and mj are the natural abundances and masses of the constituent isotopes.

Grain boundary scattering is related to the phonon transit time between regularly spaced 

grain boundaries:

n -1 _  vi (7)d

where d is the effective grain size. The grain boundary scattering rate is independent of
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temperature. The Umklapp scattering rate can be expressed as[46]:

, 2^C -  S ^ ( l f )  x 2 T 3 e x p (̂ ) (8)

where M is the average mass of atoms in the structure, Yi is the Gruneisen parameter of 

the acoustic phonon branch which is calculated by[47]:

ZYi,qCi(g)
Yi = ZCi(q)

where Yi,q is the mode resolved Gruneisen parameter for mode i at wave vector q which 

is determined by:

(9)

Yi,i dln^iq
dlnV (10)

where V is the volume of the unit cell. In Equation 9, C^q) is expressed as:

C.(n) = k ( h“ 1* ) 2Cl(q) = k B( k ) h 2

The group velocities of the acoustic phonons are determined as:

dto(i,q)

(11)

vg (i ,q) - dq (12)

where the directional derivative of the dispersion is taken in the [100]. Low energy 

acoustic phonons have dispersion surfaces that are approximately conical. Therefore, 

group velocity is treated as isotropic.

3. RESULTS AND DISCUSSION

3.1. ELECTRON STRUCTURES

The band structure of pure ZrC is shown in Figure 2a. The bands below about -8 

eV have primarily C 2s and Zr 4d character with Zr 4p, Zr 5s, and C 2p states also having



small contributions. The bands above -6 eV are of primarily C 2p, Zr 4p and Zr 4d  

character. At the Fermi level, the valence and conduction bands overlap at the r  point, 

indicating that metallic bonding is present in ZrC and that ZrC should exhibit metallic 

conductivity.

The band structures of Zr0.97Hf0.03C and Zr0.94Hf0.06C are shown in Figure 2b and 

c. Valence bands and conduction bands overlap for both compositions, which indicates 

metallic bonding and electronic conductivity similar to ZrC.

The density of states for ZrC is shown in Figure 3 a. A non-zero density of states at 

the Fermi level confirms the presence of metallic bonding in ZrC. From the partial 

density of states curves, the states at the Fermi level are mostly from the Zr 4d and C 2p 

states, demonstrating that the main contribution to electrical conductivity is from these 

states. In addition, an obvious gap is present from -8 eV to -6 eV below the Fermi level, 

indicating strong hybridization of electron orbitals. From the partial density of states of 

Zr, the Zr 5s, Zr 4p, and Zr 4d orbitals are in the same energy range due to d2sp3 

hybridization from the Zr6 octahedra present in ZrC. The lowest lying states from -11.4 

eV to -8.1 eV are mostly from quasi-core C 2p with small contributions from Zr 5s, Zr 4p 

and Zr 4d bands and they are not involved in chemical bonding. The states from -5.6 eV 

to -1.7 eV are mainly from overlapping C 2p and Zr 4d2sp3 orbitals, which form covalent 

bonds.

The density of states for Zr0.97Hf0.03C and Zr0.94Hf0.06C are shown in Figures 3b 

and 3 c. The partial density of states for H f are very similar to Zr in both compositions.
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Figure 2. Band structures of (a) a primitive cell of pure ZrC, and supercells for (b)
Zr0.97Hf0.03C, and (c) Zr0.94Hf0.06C.



101

Figure 3. Density of states of (a) pure ZrC, (b) Zr0.97Hf0.03C and (c) Zr0.94Hf0.06C.

Thus, the bonding properties of ZrC are not changed significantly when H f is present in 

solid solution.

Electron density difference maps for ZrC are shown in Figure 4. The (100) and 

(111) planes were selected to study Zr -  C and Zr -  Zr bonds. On the (100) plane (Figure 

4a), strong overlap was obvious between the Zr 4deg and C 2pi (i represents the x, y and z 

directions) orbitals, which indicates that strong covalent bonds form between Zr and C 

atoms. In addition, the electron densities close to C atoms are higher than that around Zr 

atoms, which indicates charge transfer from Zr to C. In other words, the bonds between 

Zr and C atoms have both covalent and ionic character. Typical metallic bonds between 

Zr atoms result in the triangular-shaped regions of higher electron density seen between 

Zr atoms on the (111) plane of ZrC (Figure 4b).

Figure 5 and 6 show the electron density difference maps for Zr0.97Hf0.03C and 

Zr0.94Hf0.06C. The (002) planes were selected since these planes contain Zr, H f and C 

atoms in both supercells. No significant differences were observed in the covalent-ionic
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bonds between H f and C compared to the bonds between Zr and C atoms. Similar to ZrC, 

the (111) planes were selected to view the electron density differences between Zr -  Zr 

and Zr -  H f pairs. The metallic bonds in Zr0.97Hf0.03C and Zr0.94Hf0.06C are similar to 

those in ZrC. Electron density difference maps indicate that the addition of H f does not

Figure 4. Electron density difference plots of ZrC for the (a) (100) plane and (b) (111)
plane.

Figure 5. Electron density difference plots of Zr0.97Hf0.03C for the (a) (002) plane and (b)
(111) plane.
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significantly change the electron structure of Zr0.97Hf0.03C or Zr0.94Hf0.06C compared to 

ZrC.

3.2. PHONON DISPERSION AND GROUP VELOCITY

Phonon dispersion curves and group velocities for ZrC, HfC, Zr0.97Hf0.03C, and 

Zr0.94Hf0.06C are shown in Figure 7. ZrC and HfC have six phonon branches since the 

primitive cells contain one Zr or H f atom and one C atom. The low frequency branches 

(below 10 THz for ZrC and 8 THz for HfC) are acoustic phonons (colored lines) and the 

high frequency branches (above 10 THz for ZrC and 8 THz for HfC) are optical phonons 

(black lines). The gaps between the acoustic and optical phonon branches for ZrC (5.6 

THz at the r  point) and HfC (10.3 THz at the r  point) were attributed to anisotropic 

bonding and the mass difference between the Zr and C atoms in ZrC, and between the H f 

and C atoms in HfC[48]. With the addition of H f into the ZrC lattice, the low

Figure 6. Electron density difference plots of Zr0.94Hf0.06C for the (a) (011) plane and (b)
(111) plane.
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Figure 7. Phonon dispersions and group velocities of (a) ZrC and (b) HfC, (c) 
Zr0.97Hf0.03C and (d) Zr0.94Hf0.06C.
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frequency optical phonon branches overlap with the acoustic phonon branches as shown 

in Figures 7c and7d due to the scattering of the optical phonons by H f atoms.

Group velocities were calculated for the acoustic phonons for all compositions. The 

group velocities are shown in Figure 7 beside the corresponding phonon dispersion curves 

and of the acoustic phonons according to Equation 12. Similarly, the initial addition of 3 

at% of H f into the ZrC lattice decreased the group velocities compared to pure ZrC (for the 

values are compiled in Table 1. Group velocities of HfC (vTA1 = 3.23 km/s, v TA2 = 3.23 

km/s and vLA = 6.43 km/s) are lower than the corresponding group velocities in ZrC (vTA1 

= 4.24 km/s, v TA2 = 4.24 km/s and vLA = 7.97 km/s). HfC has lower group velocities 

because of the lower acoustic phonon frequencies, which reduce the slopeZr0.97Hf0.03C, 

vta1 = 2.37 km/s, v TA2 = 2.37 km/s and vLA=3.99 km/s). When the H f content increased 

to 6 at%, group velocities increased (for Zr0.94Hf0.06C, v TA1 = 4.21 km/s, v TA2 = 4.21 km/s 

and vLA = 8.54 km/s). Higher group velocities of Zr0.94Hf0.06C reflect the higher acoustic 

phonon frequencies compared to Zr0.97Hf0.03C as shown in Figure 7. The contributions of 

the optical phonon branches to the group velocities were ignored due to their low values 

compared to the contributions of the acoustic branch, especially for Zr0.97Hf0.03C. Lattice 

thermal conductivity is proportional to the square of phonon group velocity, which can be 

expressed as Ks(m) =  Cs(m )t^(m )2T(m)[ii]. Reduction of group velocity will, therefore, 

decrease lattice thermal conductivity.
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3.3. DEBYE TEMPERATURE

Debye temperatures were determined from the maximum acoustic phonon 

frequencies (two transverse and one longitudinal) at the Brillouin zone boundaries. The 

Debye temperature for HfC (dTA1 = 253 K, 0TA2 = 253 K, dLA = 343 K) were lower than 

those for ZrC (0TA1 = 340 K, 0TA2 = 340 K, 0LA = 467 K) as shown in Table 1. The lower 

Debye temperature of HfC was due to the lower acoustic phonon frequencies. The 

addition of 3 at% H f into ZrC reduced the Debye temperature (for Zr0.97Hf0.03C, 0TA1 = 

158 K, 0TA2 = 158 K, 0LA = 176 K) due to scattering of acoustic phonons by low lying 

optical phonons as shown in Figures 7c and 7d. Increasing the H f content to 6 at% in ZrC 

increased the Debye temperature (for Zr0.94Hf0.06C, 0TA1 = 184 K, 0TA2 = 184 K, 0LA = 

204 K) as presented in Table 1. The elastic constants of Zr0.94Hf0.06C (cn = 470.2 GPa, C12 

= 101.2 GPa, C44 = 156.8 GPa) were higher than Zr0.97Hf0.03C (cn = 467.7 GPa, C12 =

101.1 GPa, C44 = 156.6 GPa), which means Zr0.94Hf0.06C has stronger chemical bonds.

Table 1. Group velocities, Debye temperature and Gruneisen parameters of ZrC, HfC,
Zr0.97Hf0.03C and Zr0.94Hf0.06C.

VTA1 VTA2 vLa 0TA1 6tA2 &LA Ytai YtA2 Yla

'Unit''cOmpOsition,. (km/s) (K) N/A

ZrC 4.24 4.24 7.97 340 340 467 1.79 1.51 1.65

HfC 3.23 3.23 6.43 253 253 343 1.80 1.84 1.67

Zr0.97Hf0.03C 2.37 2.37 3.99 158 158 176 1.72 0.47 1.68

Zr0.94Hf0.06C 4.21 4.21 8.54 184 184 204 1.91 1.08 1.42
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The stronger chemical bonds increased the acoustic phonon frequency and increased the 

Debye temperature.

3.4. LATTICE THERMAL CONDUCTIVITY

Temperature-dependent lattice thermal conductivities for ZrC, HfC, Zr0.97Hf0.03C 

and Zr0.94Hf0.06C are shown in Figure 8. The grain size was assumed to be 5 gm (Table 2) 

for all calculations. In those plots, kui is the lattice thermal conductivity for isotopically 

pure ZrC and HfC; kuA is the lattice thermal conductivity with grain boundary effects; 

and kN represents the thermal conductivity with grain boundary effects plus Umklapp and 

normal phonon-phonon scattering processes. At room temperature, lattice thermal 

conductivities of ZrC were 122 Wm-1K-1 for kui, 100 Wm-1K-1 for kuA and 68 Wm-1K-1 

for kN. As discussed in our previous study[33], these values are higher than experimentally 

measured values for ZrCx ceramics due to the assumption of no carbon vacancies, no 

impurities, and no porosity.

The lattice thermal conductivities of HfC (kui = 83 Wm-1K-1, kuA = 68 Wm-1K-1 and 

kN = 47 Wm-1K-1 at room temperature) were lower than ZrC, as expected from the lower 

group velocities. Typical experimental values for thermal conductivity of HfCo.98 range 

from 20 to 25 W m'1K '1 at temperatures from 25 to 100°C[49]. Analogous as ZrCx, the 

thermal conductivity of HfC predicted herein is higher than the experimental values, 

which are reduced by the defects in the sintered products[50][51][52] that are not accounted 

for in the models.

After adding 3.125 at% of H f into ZrC, the lattice thermal conductivity decreased 

compared to pure ZrC or pure HfC. At room temperature, kui was 33 Wm-1K-1, kuA was



28 Wm"1K"1, and ku was 18 Wm"1K"1 for Zr0.97Hf0.03C. The predicted lattice thermal 

conductivity values for Zr0.94Hf0.06C at room temperature were kui = 36 Wm"1K"1, kuA =

27 Wm"1K"1 and ku = 21 Wm"1K"1, which were almost the same as Zr0.97Hf0.03C. Four 

effects contribute to the decrease in lattice thermal conductivity when H f is added to ZrC.
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Figure 8. Lattice thermal conductivity of (a) ZrC, (b) HfC, (c) Zr0.97Hf0.03C and (d) 
Zr0.94Hf0.06C. (kui represents the lattice thermal conductivity which considered as isotope 
effected; kuA represents the lattice thermal conductivity with isotope and grain boundary 
effects; ku represents the thermal conductivity with isotope and grain boundary effects, 

Umklapp and normal phonon-phonon scattering.)
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The first is the decrease in group velocity (Table 1). The spectral thermal conductivity is 

proportional to the square of the group velocity, Ks(m) =  Cs(M)Vg (m) 2t(m) [53\  

therefore, decreasing group velocity leads to lower lattice thermal conductivity. The 

second reason is the decrease in Debye temperature (Table 1). According to Equations 2 

and 3, decreasing Debye temperature decreases both acoustic and optical phonon thermal 

conductivities; hence, the total lattice thermal conductivity is also decreased. Third, strain 

induced by the presence of H f in the ZrC lattice decreases thermal conductivity. The 

average Zr -  C bond length (which was given after geometry optimization) for ZrC was

Table 2. Average atomic masses, average grain diameters, and average atomic volumes 
___________________of ZrC, HfC, Zr0.97Hf0.03C and Zr0.94Hf0.06C.___________________

Average atomic 
mass (a.u.)

Average diameter 
(pm)

Average atomic 
volume (A3)

ZrC 51.62 5 13.02
HfC 95.25 5 13.06

Zr0.97Hf0.03C 52.98 5 13.04
Zr0.94Hf0.06C 54.34 5 13.06

2.3524 A while the average length of H f -  C bonds was 2.3607 A. After adding 3.125 

at% H f to ZrC, the average Zr -  C bond length decreased to 2.3522 A. Similarly, after 

adding 6.25 at% H f to ZrC, the average Zr -  C bond length was 2.3519 A while the 

average H f -  C bond was 2.3604 A. The polarization of the bonds increases as the bond 

length increases due to the strain in the ZrC lattice after adding Hf, which leads to 

polarization scattering the phonons[54]. The final reason for the decrease in thermal 

conductivity is the increase in average atomic mass when Hf is added. The average 

atomic mass increased since H f has a higher atomic mass than Zr. Increasing average



atomic mass decreases the acoustic phonon frequencies and thereby decreases lattice 

thermal conductivity.
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4. CONCLUSION

Electronic structures and lattice thermal conductivities were studied for ZrC and 

for ZrC containing H f additions. The addition of H f did not change the electronic 

structure of ZrC significantly. The lattice thermal conductivities were calculated with the 

Debye-Callaway model using Gruneisen parameters, Debye temperatures, and group 

velocities calculated from first principles. HfC has higher average Gruneisen parameters, 

lower Debye temperatures, and lower group velocities compared to ZrC. As expected, the 

lattice thermal conductivity of HfC (kw = 47 Wm"1K"1 at room temperature) was lower 

than ZrC (kw = 68 Wm-1K-1 at room temperature). The decrease in lattice thermal 

conductivity with the addition of Hf into the ZrC lattice was attributed to the decrease in 

frequencies of acoustic phonons, which in turn induced lower the Debye temperatures.

ACKNOWLEDGEMENT

This research was supported by the Ceramics Program in the Division of 

Materials Research at the U.S. National Science Foundation (DMR 1742086). The first 

principles calculations work was conducted with help by National Supercomputing

Center in Shenzhen, China.



111

REFERENCES

[1] Ueta S, Aihara J, Yasuda A, Hideharu I, Takayama T, Sawa K. Fabrication of uniform 
ZrC coating layer for the coated fuel particle of the very high temperature reactor. J. 
Nucl. Mater. 2008; 376(2): 146-151. https://doi.org/10.1016/i.inucmat.2008.02.068.

[2] Sabharwall P, Bragg-Sitton SM, Stoots C. Energy Convers. Manage. Challenges in the 
development of high temperature reactors. 2013; 74: 574-581. 
https://doi.org/10.1016/i.enconman.2013.02.021.

[3] Futterer MA, Fu L, Sink C, de Groot S, Pouchon M, Kim YW et al. Status of the very 
high temperature reactor system. Prog. Nucl. Energy. 2014; 77: 266-281. 
https://doi.org/10.1016/i.pnucene.2014.01.013.

[4] Gambogi J. Zirconium and hafnium. Ind. Miner. 1994:311.

[5] Xu L, Xiao Y, Van Sandwijk A, Xu Q, Yang Y. Production of nuclear grade 
zirconium: A review. J. Nucl. Mater. 2015; 466: 21-28. 
https://doi.org/10.1016/i.inucmat.2015.07.010.

[6] Abeles B, Beers DS, Cody GD, Dismukes JP. Thermal conductivity of Ge-Si alloys at 
high temperatures. Phys. Rev. 1962; 125(1): 44. 
https://doi.org/10.1103/PhysRev.125.44.

[7] Rudaievova A, Von Buch F, Mordike BL. Thermal diffusivity and thermal 
conductivity of MgSc alloys. J. Alloys Compd. 1999; 292(1-2): 27-30. 
https://doi.org/10.1016/S0925-8388(99)00444-2.

[8] Rudajevova A, Stanek M, Lukac P. Determination of thermal diffusivity and thermal 
conductivity of Mg-Al alloys. Mater. Sci. Eng., A. 2003; 341(1-2): 152-157. 
https://doi.org/10.1016/S0921-5093(02)00233-2.

[9] Pan H, Pan F, Yang R, Peng J, Zhao C, She J et al. Thermal and electrical conductivity 
of binary magnesium alloys. J. Mater. Sci. 2014; 49(8): 3107-3124. 
https://doi.org/10.1007/s10853-013-8012-3.

[10] Su C, Li D, Ying T, Zhou L, Li L, Zeng X. Effect of Nd content and heat treatment 
on the thermal conductivity of MgNd alloys. J. Alloys Compd. 2016; 685: 114-121. 
https://doi.org/10.1016/i.iallcom.2016.05.261.

[11] Su C, Li D, Luo AA, Ying T, Zeng X. Effect of solute atoms and second phases on 
the thermal conductivity of Mg-RE alloys: A quantitative study. J. Alloys Compd. 
2018; 747: 431-437. https://doi.org/10.1016/i.iallcom.2018.03.070.

https://doi.org/10.1016/j.jnucmat.2008.02.068
https://doi.org/10.1016/j.enconman.2013.02.021
https://doi.org/10.1016/j.pnucene.2014.01.013
https://doi.org/10.1016/j.jnucmat.2015.07.010
https://doi.org/10.1103/PhysRev.125.44
https://doi.org/10.1016/S0925-8388(99)00444-2
https://doi.org/10.1016/S0921-5093(02)00233-2
https://doi.org/10.1007/s10853-013-8012-3
https://doi.org/10.1016/j.jallcom.2016.05.261
https://doi.org/10.1016/j.jallcom.2018.03.070


112

[12] Sakurada S, Shutoh N. Effect of Ti substitution on the thermoelectric properties of 
(Zr, Hf) NiSn half-Heusler compounds. Appl. Phys. Lett. 2005; 86(8): 082105. 
https://doi.org/10.1063/1.1868063.

[13] Winter MR, Clarke DR. Thermal conductivity of yttria-stabilized zirconia-hafnia 
solid solutions. Acta Mater. 2006; 54(19): 5051-5059. 
https://doi.org/10.1016/i.actamat.2006.06.038.

[14] Chen JK, Hung HY, Wang CF, Tang NK. Thermal and electrical conductivity in A l- 
Si/Cu/Fe/Mg binary and ternary Al alloys. J. Mater. Sci. 2015; 50(16) :5630-5639. 
https://doi.org/10.1007/s10853-015-9115-9.

[15] Wu J, Zhang H, Zhang Y, Li J, Wang X. Effect of copper content on the thermal 
conductivity and thermal expansion of Al-Cu/diamond composites. Mater. Des. 
2012; 39: 87-92. https://doi.org/10.1016/i.matdes.2012.02.029.

[16] Stadler F, Antrekowitsch H, Fragner W, Kaufmann H, Pinatel EF, Uggowitzer
PJ. The effect of main alloying elements on the physical properties of Al-Si foundry 
alloys. Mater. Sci. Eng.A. 2013; 560: 481-491. 
https://doi.org/10.1016/fmsea.2012.09.093.

[17] Li W, Lindsay L, Broido DA, Stewart DA, Mingo N. Thermal conductivity of bulk 
and nanowire Mg2SixSni-x alloys from first principles. Phys. Rev. B. 2012; 86(17): 
174307. https://doi.org/10.1103/PhysRevB.86.174307.

[18] Eliassen SNH, Katre A, Madsen GKH, Persson C, Lovvik OM, Berland K. Lattice 
thermal conductivity of TixZryHfi- x- y NiSn half-Heusler alloys calculated from first 
principles: Key role of nature of phonon modes. Phys. Rev. B. 2017; 95(4): 045202. 
https://doi.org/10.1103/PhysRevB.95.045202.

[19] Yan X, Constantin L, Lu Y, Silvain JF, Nastasi M, Cui B. (Hf0. 2Zr0. 2Ta0. 2Nb0. 2Ti0. 2) 
C high-entropy ceramics with low thermal conductivity. J. Am. Ceram. Soc. 2018; 
101(10): 4486-4491. https://doi.org/10.1111/iace.15779.

[20] ] Gild Joshua, Wright A, Quiambao-Tomko K, Qin M, Tomko JA, bin Hoque MS et 
al. Thermal conductivity and hardness of three single-phase high-entropy metal 
diborides fabricated by borocarbothermal reduction and spark plasma sintering. 
Ceram. Int. 2020; 46(5): 6906-6913. https://doi.org/10.1016/i.ceramint.2019.11.186.

[21] Dai FZ, Wen B, Sun YJ, Xiang HM, Zhou YC. Theoretical prediction on thermal 
and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep 
learning potential. J Mater. Sci. Tech. 2020; 43:168-174. 
https://doi.org/10.1016/i.imst.2020.01.005.

https://doi.org/10.1063/1.1868063
https://doi.org/10.1016/j.actamat.2006.06.038
https://doi.org/10.1007/s10853-015-9115-9
https://doi.org/10.1016/j.matdes.2012.02.029
https://doi.org/10.1016/j.msea.2012.09.093
https://doi.org/10.1103/PhysRevB.86.174307
https://doi.org/10.1103/PhysRevB.95.045202
https://doi.org/10.1111/jace.15779
https://doi.org/10.1016/j.ceramint.2019.11.186
https://doi.org/10.1016/j.jmst.2020.01.005


113

[22] Dai FZ, Sun YJ, Wen B, Xiang HM, Zhou YC. Temperature Dependent Thermal and 
Elastic Properties of High Entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2 : Molecular Dynamics 
Simulation by Deep Learning Potential. J Mater. Sci. Tech. 2021; 72: 8-15. 
https://doi.org/10.1016/jjmst.2020.07.014.

[23] Yang HS, Bai GR, Thompson LJ, Eastman JA. Interfacial thermal resistance in 
nanocrystalline yttria-stabilized zirconia. Acta Mater. 2002; 50(9): 2309-2317. 
https://doi.org/10.1016/S1359-6454(02)00057-5.

[24] Zhu D, Miller RA. Thermal Conductivity and Sintering Behavior of Advanced 
Thermal Barrier Coatings. Nonmetallic Materials. NASA/TM-2002-211481, NAS
I .  15:211481, E-13249. 2002. http://gltrs.grc.nasa.gov/GLTRS.

[25] Wang Z, Alaniz JE, Jang W, Garay JE, Dames C. Thermal conductivity of 
nanocrystalline silicon: importance of grain size and frequency-dependent mean free 
paths. Nano Lett. 2011;11(6):2206-2213. https://doi.org/10.1021/nl1045395.

[26] Bux SK. Synthesis and characterization of bulk nanostructured semiconductors for 
thermoelectric applications. Adv. Funct. Mater. 2009; 19(25): 2445-2452.

[27] Khafizov M, Pakarinen J, He L, Hurley DH. Impact of irradiation induced 
dislocation loops on thermal conductivity in ceramics. J. Am. Ceram. Soc. 2019; 
102(12): 7533-7542. https://doi.org/10.1111/jace.16616.

[28] Snead LL, Zinkle SJ, White DP. Thermal conductivity degradation of ceramic 
materials due to low temperature, low dose neutron irradiation. J. Nucl. Mater. 2005; 
340(2-3): 187-202. https://doi.ore/10.1016/ijnucmat.2004.11.009.

[29] Bisson JF, Yagi H, Yanagitani T, Kaminskii A, Barabanenkov YN, Ueda KI et al. 
Influence of the grain boundaries on the heat transfer in laser ceramics. Opt. Rev. 
2007; 14(1): 1-13. https://doi.org/10.1007/s10043-007-0001-9.

[30] Zhang Y. First-principles Debye-Callaway approach to lattice thermal conductivity.
J. Materiomics. 2016; 2(3): 237-247. https://doi.org/10.1016/i.imat.2016.06.004.

[31] Xiang H, Feng Z, Li Z, Zhou Y. Theoretical investigations on mechanical and 
dynamical properties of MAlB (M=Mo, W) nanolaminated borides at ground-states 
and elevated temperatures. Sci. Rep. 2018; 8(1): 1-9. 
https://doi.org/10.1016/iiallcom.2017.12.206.

[32] Xiang H, Wang J, Zhou Y. Theoretical predictions on intrinsic lattice thermal 
conductivity of ZrB2 . J. Eur. Ceram. Soc. 2019; 39(10): 2982-2988. 
https://doi.org/10.1016/iieurceramsoc.2019.04.011.

[33] Katoh Y, Vasudevamurthy G, Nozawa T, Snead LL. Properties of zirconium carbide 
for nuclear fuel applications. J. Nucl. Mater. 2013; 441(1-3): 718-742. 
10.1016/i.inucmat.2013.05.037.

https://doi.org/10.1016/jjmst.2020.07.014
https://doi.org/10.1016/S1359-6454(02)00057-5
http://gltrs.grc.nasa.gov/GLTRS
https://doi.org/10.1021/nl1045395
https://doi.org/10.1111/jace.16616
https://doi.org/10.1016/j.jnucmat.2004.11.009
https://doi.org/10.1007/s10043-007-0001-9
https://doi.org/10.1016/j.jmat.2016.06.004
https://doi.org/10.1016/j.jallcom.2017.12.206
https://doi.org/10.1016/j.jeurceramsoc.2019.04.011


114

[34] Zhou Y, Fahrenholtz WG, Graham J, Hilmas GE. From thermal conductive to 
thermal insulating: Effect of carbon vacancy content on lattice thermal conductivity 
of ZrCx. J. Mater. Sci. Technol. 2021; 82: 105-113. 
https://doi.org/10.1016/i.imst.2020.11.Q68.

[35] Pfrommer BG, Cote M, Louie SG, Cohen ML. Relaxation of crystals with the quasi­
Newton method. J. Comput. Phys. 1997; 131(1): 233-240. 
https://doi.org/10.1006/icph.1996.5612.

[36] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C et al.
QUANTUM ESPRESSO: a modular and open-source software project for quantum 
simulations of materials. J. Phys.: Condens. Matter. 2009; 21(39): 395502. 
https://doi.org/10.1088/0953-8984/21/39/395502.

[37] Vanderbilt David. Soft self-consistent pseudopotentials in a generalized eigenvalue 
formalism. Phys. Rev. B. 1990; 41(11): 7892. 
https://doi.org/10.1103/PhysRevB.41.7892.

[38] Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made 
simple. Phys. Rev. Lett. 1996; 77(18): 3865. 
https://doi.org/10.1103/PhysRevLett.77.3865.

[39] Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys. Rev.
B. 1976; 13(12): 5188. https://doi.org/10.1103/PhysRevB.13.5188.

[40] Gonze X. First-principles responses of solids to atomic displacements and 
homogeneous electric fields: Implementation of a conjugate-gradient algorithm.
Phys. Rev. B. 1997; 55(16): 10337. https://doi.org/10.1103/PhysRevB.55.10337.

[41] Morelli DT, Heremans JP, Slack GA. Estimation of the isotope effect on the lattice 
thermal conductivity of group IV and group III-V semiconductors. Phys. Rev. B. 
2002; 66(19): 195304. https://doi.org/10.1103/PhysRevB.66.195304.

[42] Xiang H, Zhou Y. Phonon engineering in tuning the thermal conductivity of alkaline- 
earth hexaborides. J. Eur. Ceram. Soc. 2020;40(4):1352-1360. 
https://doi.org/10.1016/i.ieurceramsoc.2019.10.047.

[43] Asen-Palmer M, Bartkowski K, Gmelin E, Cardona M, Zhernov AP, Inyushkin AV 
et al. Thermal conductivity of germanium crystals with different isotopic 
compositions. Phys. Rev. B. 1997; 56(15): 9431. 
https://doi.org/10.1103/PhysRevB.56.9431.

[44] Lindsay L, Broido DA, Reinecke TL. Phonon-isotope scattering and thermal 
conductivity in materials with a large isotope effect: A first-principles study. Phys. 
Rev. B. 2013; 88(14): 144306. https://doi.org/10.1103/PhysRevB.88.144306.

https://doi.org/10.1016/j.jmst.2020.11.068
https://doi.org/10.1006/jcph.1996.5612
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1103/PhysRevB.41.7892
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.55.10337
https://doi.org/10.1103/PhysRevB.66.195304
https://doi-org.libproxy.mst.edu/10.1016/j.jeurceramsoc.2019.10.047
https://doi.org/10.1103/PhysRevB.56.9431
https://doi.org/10.1103/PhysRevB.88.144306


115

[45] Klemens PG. The scattering o f low-frequency lattice waves by static 
imperfections. Proceedings o f the Physical Society. Section A. 1955; 68(12): 1113. 
https://doi.org/10.1088/0370-1298/68/12/303.

[46] Morelli DT, Heremans JP, Slack GA. Estimation o f the isotope effect on the lattice 
thermal conductivity o f group IV and group III-V semiconductors. Phys. Rev. 
B.2002; 66(19): 195304. https://doi.org/10.1103/PhysRevB.66.195304.

[47] Grimvall G. Thermophysical properties o f materials. Amsterdam, Netherlands: 
Elsevier; 1999.

[48] Xiang H, Feng Z, Li Z, Zhou Y. First-principles investigations on elevated 
temperature elastic and thermodynamic properties o f ZrB 2 and HfB 2 . J. Am. Ceram. 
Soc. 2017; 100(8): 3662-3672. https://doi.org/10.1111/iace.14877.

[49] Opeka MM, Talmy IG, W uchina EJ, Zaykoski JA, Causey SJ. Mechanical, thermal 
and oxidation properties o f refractory hafnium and zirconium compounds. J. Eur. 
Ceram. Soc. 1999; 19(13-14): 2405-2414. https://doi.org/10.1016/S0955- 
2219(99)00129-6.

[50] W uchina E, Opeka M, Causey S, Buesking K, Spain J, Cull A et al. Designing for 
ultrahigh-temperature applications: the mechanical and thermal properties o f HfB2 , 
HfCx, HfNx and aH f (N). J. Mater. Sci. 2004; 39(19): 5939-5949. 
https://doi.org/10.1023/B:JMSC.0000041690.06117.34.

[51] Chen H, Xiang H, Dai F, Liu J, Zhou Y. Low thermal conductivity and high porosity 
ZrC and HfC ceramics prepared by in-situ reduction reaction/partial sintering method 
for ultrahigh temperature applications. J. Mater. Sci. Technol. 2019;35(12):2778- 
2784. https://doi.org/10.1016/i.imst.2019.05.044.

[52] Shimada S, Inagaki M, Matsui K. Oxidation kinetics o f hafnium carbide in the 
temperature range o f 480 to 600°C. J. Am. Ceram. Soc. 1992; 75(10): 2671­
2678. https://doi.org/10.1111/i.1151-2916.1992.tb05487.x.

[53] Morelli D, Heremans J. Thermal Conductivity o f Germanium-, Silicon-, and Carbon 
Nitride. Appl. Phys. Lett. 2003;81(27):8-10. https://doi.org/10.1063/1.1533840.

[54] Toberer ES, Zevalkink A, Snyder GJ. Phonon engineering through crystal chemistry. 
J. Mater. Chem. 2011;21(40):15843-15852. https://doi.org/10.1039/C1JM 11754H.

https://doi.org/10.1088/0370-1298/68/12/303
https://doi.org/10.1103/PhysRevB.66.195304
https://doi.org/10.1111/jace.14877
https://doi.org/10.1016/S0955-2219(99)00129-6
https://doi.org/10.1016/S0955-2219(99)00129-6
https://doi.org/10.1023/B:JMSC.0000041690.06117.34
https://doi.org/10.1016/j.jmst.2019.05.044
https://doi.org/10.1111/j.1151-2916.1992.tb05487.x
https://doi.org/10.1063/1.1533840
https://doi.org/10.1039/C1JM11754H


116

SECTION

3. SUMMARY AND OVERALL CONCLUSION

This research included ZrCx powder synthesis, phase formation analysis, and the 

investigation of the intrinsic thermal properties. Solid state powder synthesis was 

employed for prepare the samples for the synthesis and phase stability study. 

Characterizations were performed by XRD, TEM and neutron diffraction. First-principles 

calculations and the Debye-Callaway model were used for investigate the ZrCx intrinsic 

thermal properties.

ZrCx powders with different carbon vacancy contents were synthesized using 

starting materials of ZrH2 and carbon black in different ratios by solid state reaction. 

Powders were synthesized at different temperatures to study the effects on the final 

particle size and the carbon stoichiometry. Single phase of ZrCx was achieved at 

temperatures as low as 1300°C, and carbon fully reacted with ZrH2 at 1600°C. Crystallite 

size of the as-synthesized powder was not affected by the temperature below 1400C. 

When the synthesis temperature was more than 1400C, crystallite size increased with 

increasing temperature. All the synthesized powders were partially oxidized during 

synthesis. An oxidized layer was observed on particles by TEM. Part of the oxygen also 

dissolved into vacancies in the ZrCx lattice. Neutron diffraction results revealed that 

carbon content increased with increasing synthesis temperature, and the dissolved oxygen 

decreased with increasing carbon stoichiometry.
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ZrCo.6 powders were synthesized at 1300°C and 2000C  to study the ordering of 

carbon vacancies. According to XRD, the major phase of the powder synthesized at 

1300C was ZrCx with a small quantity of Zr. ZrCx was the only phase detected in the 

powder synthesized at 2000C . Neutron diffraction analysis of both powders detected 

peaks for a ZrCo.6 superlattice, which indicated ordering of vacancies on a length scale 

that was longer than the unit cell. Ordering was also supported by SAED. The degrees of 

vacancy ordering were about 20% and 25% for the powder synthesized at 1300C and 

2000C.

The lattice thermal conductivities of ZrCx ceamics with different carbon vacancy 

(ZrC, ZrCo.75 and ZrCo.5) and H f (3.125 wat% and 6.25 at%) contents were calculated by 

a combination method of Debye-Callaway model and first-principles calculations.

Phonon dispersion curves for ZrCx were calculated as a function of Brillouin zone 

direction by the finite displacement method. The key parameters for lattice thermal 

conductivity calculation (Gruneisen parameter, Debye temperature, and group velocity) 

were determined based on the phonon dispersions. Lattice thermal conductivities 

decreased with increasing temperature for all compositions due to the effect of phonon- 

phonon scattering at high temperature. Lattice thermal conductivity also decreased with 

increasing carbon vacancy and H f contents. Phonon frequency decreased with increasing 

carbon vacancy content, which reduced the thermal transport through the lattice. 

Consequently, ZrCx with x = 1 can be treated as a thermal dissipating material and ZrCo.5 

with a higher carbon vacancy content can be considered to be a thermal insulating 

material according to our calculation data. The effects of Zr isotopes, grain boundaries, 

and phonon-phonon interactions all decrease the lattice thermal conductivity of ZrCx. The



ffect of H f impurities on ZrCx thermal conductivity was also studied. The electronic 

structure did not change with the addition of H f into ZrCx, thus, the change of lattice 

thermal conductivity dominated the change of the total thermal conductivity. The lattice 

thermal conductivity of HfC was lower than ZrC. H f impurities reduced the lattice 

thermal conductivity of ZrCx by decreasing of acoustic phonon frequencies.

Solid state reaction with starting materials of ZrH2 and carbon black is better than 

carbothermal reduction method for synthesis ZrCx. The existence of the ordered phase in 

ZrC0.6 was proved experimentally. Together with previous theoretical studies, one can see 

that the Zr-C phase diagram needs additional experimental validation. Thermal 

conductivity of ZrCx can be tuned by adjusting the carbon stoichiometry and H f content. 

That is another advantage for ZrCx applied in nuclear fuel compared to SiC.
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4. SUGGESTIONS FOR FUTURE WORK

The forming conditions for vacancy ordered phases in ZrCx should be studied. 

ZrCo.6 can be synthesized at 1300°C with a cooling rate of 10oC/min. According to a 

calculated Zr-C phase diagram, ZrCx with carbon content of 0.6 should form an ordered 

phase below 945°C, but experimental verification is needed. This could be done by 

quenching samples after synthesis at 1300°C (should be fully disordered), and annealing 

at 900°C after synthesis (should be fully ordered). Neutron diffraction and selected area 

electron diffraction could be employed to determine the degree of vacancy ordering. Hot- 

pressing can be used to prepare ZrCx ceramics with different carbon vacancy contents to 

determine the carbon stoichiometry range over which the ordered phases can be formed. 

Through the above experiments, the forming conditions for ordered ZrCx phases could be 

defined in terms of temperature, and carbon stoichiometry.

The effect of oxygen impurity content on the ordering of carbon vacancies in low 

stoichiometry ZrCx should be investigated. According to a calculated Zr-C-O phase 

diagram, zirconium oxycarbide can have carbon stoichiometry as low as 0.54 and a 

maximum oxygen stoichiometry of 0.298 (ZrC0.54O0 .29s) at 2000C . This composition 

could potentially be synthesized by solid state reaction. The stable phase formed could be 

characterized by XRD, neutron diffraction, and SAED to determine the relative degrees 

of carbon vacancy ordering. Carbon and oxygen stoichiometry could be measured by 

combustion methods. This series of experiments could disclose the effect of dissolved 

oxygen atoms on the carbon ordering.



Thermal conductivity of ZrCx could be measured from room temperature to 

2000°C by the laser flash method. A dilatometer can be used to measure the thermal 

expansion of the sample, then the density can be calculated. Specific thermal 

conductivities can be calculated based on heat capacities determined from the standard 

thermodynamic data. This methodology could be used to study the effects of carbon 

stoichiometry, hafnium content, and oxygen content on thermal conductivity since the 

thermal conductivity of the material needs to be known for nuclear applications.
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