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ABSTRACT

Due to fast developments of advanced sensors, count data sets have become ubiqui­

tous in many fields. Modeling and forecasting such time series have generated great interest. 

Modeling can shed light on the behavior of the count series and to see how they are related 

to other factors such as the environmental conditions under which the data are generated. 

In this research, three approaches to modeling such count data are proposed.

First, a periodic autoregressive conditional Poisson (PACP) model is proposed as a 

natural generalization of the autoregressive conditional Poisson (ACP) model. By allowing 

for cyclical variations in the parameters of the model, it provides a way to explain the 

periodicity inherent in many count data series. For example, in epidemiology the prevalence 

of a disease may depend on the season. The autoregressive conditional Poisson hidden 

Markov model (ACP-HMM) is developed to deal with count data time series whose mean, 

conditional on the past, is a function of previous observations, with this relationship possibly 

determined by an unobserved process that switches its state or regime as time progresses. 

This model, in a sense, is the combination of the discrete version of the autoregressive 

conditional heteroscedastic (ARCH) formulation and the Poisson hidden Markov model. 

Both the above models address the frequently present serial correlation and the clustering 

of high or low counts observed in time series of count data, while at the same time allowing 

the underlying data generating mechanism to change cyclically or according to a hidden 

Markov process. Applications to empirical data sets show that these models provide a 

better fit than the standard ACP models. In addition to the above models, a modification 

of a zero-inflated Poisson model is used to analyze activity counts of the fruit fly. The 

model captures the dynamic structure of activity patterns and the fly's propensity to sleep. 

The obtained results when fed to a convolutional neural network provides the possibility of 

building a predictive model to identify fruit flies with short and long lifespans.
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SECTION

1. INTRODUCTION

Nowadays, a wealth of time series data are generated via advanced technology, such 

as activity data recorded by wearable electronics. Further analysis of those time series 

plays an important role in helping people understanding the underlying data generating 

mechanism and providing guidance for future investigations. Among different types of time 

series, count data is being increasingly collected and important to model. One example is 

the high frequency activity data that are captured by high-tech sensors. Proper modeling 

and interpretation of such data would help us understand the relationships between behavior 

and biological characteristics.

Most count data have two main features that could not be ignored when modeling 

the underlying data generating process: serial correlation and seasonal or regime-based 

changes in the underlying mechanism. A high percentage of count data time series exhibit 

correlations among observations, resulting in clusters of high or low counts. In other words, 

a high count is likely followed by another high value, while a low count probably will be 

observed subsequent to a low number. For the second feature, the magnitude of the counts 

may change across time. For example, seasons have a huge impact on the case numbers 

of some epidemics; therefore, it is reasonable to assume the latent process changes its 

structure across different periods. Another example is the number of transactions of stocks 

observed intra-day, the interrelationship among which depends on the time of day, such as 

the beginning of the market, the middle of the day, and the closing of the market. These 

two characteristics lead to the necessity of developing models that could deal with such 

phenomena simultaneously. Thus, the models we proposed here are an attempt to provide 

formulations that can account for behaviors described above.
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2. LITERATURE REVIEW

A time series is a collection of observations {Xt : t e N} that are observed sequen­

tially according to time, and such series can be found in many areas ranging from biology to 

economics. With the development of advanced technology, numerous time series data sets 

have become available for analysis, enabling us to understand the underlying data generating 

mechanisms. The count data series consist of the numbers of discrete events recorded over a 

period of time, and most often, the measurements are taken at evenly spaced time intervals. 

A large number of models have been developed to explain the underlying mechanisms that 

generate real-world series, especially continuous valued time series, but there is a need to 

develop more versatile models for count data processes.

Markov chains are one way to deal with count data [1]. This method requires the 

definition of the (stationary) transition probabilities between all possible outcomes that the 

random variable could take. However, a sequence {Xt : t e N} of random variables taking 

values in some set is a Markov chain if and only if the conditional distribution of Xw+i, given 

X 1,X 2, . . .  ,X n, depends on Xn only, which would limit the use of this model because it 

ignores dependence on values prior to time n. Also, when the number of possible outcomes 

grows very large, this model is no longer easily tractable and its parameter estimation 

becomes cumbersome.

A related but more complex approach is to use a hidden Markov model. These 

models are an alternative application of Markov chains as it is assumed that an un­

derlying unobserved state of the system, determined by a Markov process, governs the 

parameters of the counting process. The system's present state should determine the 

distribution of observations at the current time [2]. Sebastian et al. [3] developed 

the Markov ordinal logistic regression model with the transition probability defined as 

P (Yi\Yi-1, Z) = eai-Z'P[1 -  eai-Z ^ ]-1, where U represents the states of the Markov chain,



3

while Z denotes a vector of some known covariates. Cooper et al. [4] proposed a so-called 

‘structured hidden Markov model’ for the epidemic process that intuitively follows a hid­

den Markov chain process since patients communicate with each other and the epidemic 

process usually gives out routine surveillance data that could often be partially observed. 

‘Structured’ implies that a simple transition model is driving the underlying Markov chain. 

However, the need to determine the order of the Markov chain before applying the model 

accounts for one obvious drawback of this type of model. Another inevitable problem of 

such models is that the variability of the outcomes may be small.

Another category of methods developed from the application of the Markov chain 

is the binomial thinning process proposed by McKenzie [5] as a simple model to deal with 

discrete variate time series problems. The thinning operator takes the sum of X ^i e N, 

identically independent Bernoulli random variables, each of which takes value 1 with 

probability a  and 0 with probability 1 -  a . The data generating mechanism is modeled 

similarly to an autoregressive (AR) process in the sense that the current count is dependent 

on the number of Bernoulli random variables given by the previous count. For example, 

Poisson AR(1) process is constructed as Xn = a  * Xn-1 + Wn, where Xn and Wn are 

both Poisson process with means 0 and 0 (1 -  a ) respectively. The thinning operator * is 

defined as follows: a  * Xn-1 denotes the number of successes observed from Xn-1 Bernoulli 

trails with success probability a. Geometric AR(1), negative binomial AR(1), binomial 

AR(1), and compound correlated bi-variate Poisson distribution were also proposed. They 

also investigated the seasonality problem in count data, and the seasonal mean was set as 

jun = a cos (wn) + b sin (wn). Similarly, the innovation mean was set as wn = A cos (wn) + 

B sin (wn) , where A = a -  a (a cos w -  b sin w) and B = b -  a (a sin w + b cos w ). Zhu and 

Joe [6] further modified the model, incorporating covariates to the mean of the stationary 

Markov time series allowing time varying components. Also, they extended the model with 

a structure to mimic an AR(2) model to account for higher order dependence present in 

many time series of count data. The problem with this type of model is that the seasonal
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pattern embedded in this fashion is not flexible enough to model data demonstrating complex 

periodic components, which may require the inclusion of a large number of trigonometric 

functions to model the cyclical behavior with reasonable accuracy.

Many count data models are based on the use of the Poisson distribution. The Poisson 

regression model, as the basic count model, is well described in the book by Cameron and 

Trivedi [7]. In this approach it is assumed that yi , an independent observation from a 

Poisson distribution, given the vector of regressor xi, has a density function f  (yi |xi) = 

e-pi [ y i !]-1, y i = 0 u  N. The relationship between the mean and regressors is shown by

the link function p i = exp (x'J3). It is worth noting that empirical data usually shows more 

variation than can be accounted by such Poisson models.

In order to account for unobserved heterogeneity and the correlation of events in the 

observed data, Winkelmann [8] derived several compound Poisson models, taking additional 

unobserved heterogeneity into consideration by letting Ai = exp (x f l  + ei) = exp (xiJ3)5i. 

They applied the model to labor mobility data and their results illustrate the necessity to 

allow for the generalizations of the standard Poisson regression model. Coxe et al. [9] 

provided a clear review of some appropriate regression models applicable to count data. 

Starting with the standard Poisson regression model, two variants of Poisson regression, 

negative binomial regression, and over-dispersed Poisson regression, were formed to handle 

the over-dispersion phenomenon. A comparison of those models, using a simulated data 

set of drinks consumed by university students on Saturday night [10], demonstrated the 

strengths and weaknesses of each of these models.

In order to generalize the relationship between the mean and the variance imposed 

by the Poisson regression models, Linden and Mantyniemi [11] utilized a negative binomial 

formulation. In their approach, two parameters were introduced to accommodate different 

‘quadratic mean-variance relationships’ [11]. They expressed the probability mass func­

tion of the random variable X  as P (X  = x |r ,p )  = r ( x  + r )p r(1 -  p )x [x !r(r) ]-1, with the 

expectation (theoretical mean) p  = r (1 -  p )p -1 and variance a 2 = r (1 -  p )p -2. Based
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on this setup, parameters r and p  could be solved from their relationship with the mean 

and the variance, as r  = p 2\ a 2 -  p ] -1 and p = p a -2. The negative binomial distribution 

allows more flexible parameterization, which could be used to represent multiple types of 

over-dispersed Poisson type processes. By establishing a quadratic function of the mean to 

describe the variance, a 2 = mp + Op2, diverse relationships between the mean and variance 

can be obtained by varying the two over-dispersion parameters m and O as long as the condi­

tion a 2 > p  is satisfied. Scenarios where over-dispersion might happen due to factors such 

as sampling, environmental dissimilarity, or flocking behavior were exemplified using bird 

migration data showing a high level of over-dispersion. In this study, the negative binomial 

distribution, using well-selected over-dispersion parameters, appropriately represented the 

mean-variance relationships in the considered scenarios. However, distinct assumptions 

about mean-variance relationships could lead to completely different coefficients, which 

need careful identification and interpretation.

Albert [12], taking advantage of the Poisson distribution and hidden Markov chain, 

developed the Poisson hidden Markov model (HMM) to handle count data with different 

status at different periods and applied to a time series of epileptic seizure counts [12]. It 

assumes the latent Poisson processes that generate the count data have significantly diverse 

means at different times. However, the Poisson processes are only determined by the status 

of the underlying Markov chain and conditioning on the past states. The current Markov 

chain state St only depends on the previous state St-1. As a result, the dependency amongst 

data points is not taken care of since a lot of time series demonstrate a characteristic that a 

high count would often be followed by several high counts.

The class of discrete-valued time series models analogous to Gaussian autoregres­

sive moving average (ARMA) models were advocated by Jacobs and Lewis [2]. The data 

generating process they assumed was a probabilistic linear combination of independently 

and identically distributed discrete random variables [13]. Two simple stationary processes 

of discrete random variables, DARMA (p, N + 1) and NDARMA (p, N ), whose first-order
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marginal distributions are arbitrarily chosen, are listed in [14]. One major drawback of 

the DARMA model is that even if the distribution of independent identically distributed 

variables is continuous, the sequence has a high density around a single value.

In the article by Heinen [15], an autoregressive conditional Poisson (ACP) model 

with an autoregressive mean structure was developed, which is also independently proposed 

by Rene [16] as the integer-valued generalized autoregressive conditional heteroskedastic 

(INGARCH) (p, q) process to model integer-valued data with Poisson deviates. In the 

article, important conditions for the existence of the mentioned process were discussed. 

When it comes to the situation p  = 1, q = 1, such an integer-valued GARCH process is, 

in essence, a standard ARMA (1 ,1 ) model. The asymptotic properties of the maximum 

likelihood estimates of model parameters were studied. The numbers of people infected by 

Campylobacterosis (a bacteria caused disease) over a certain period was analyzed by the 

observation driven model, and a one-step ahead forecast was also provided.

After the above autoregressive Poisson model was proposed, a negative binomial 

version was built on this structure. Zhu [17] developed the negative binomial integer 

GARCH (NBINGARCH) model and discussed some properties of it. By letting (1 -  

Pt)[Pt] -1 = dt = a 0 + £ f=i aiXt-i + £ Ip=1 fijAt-j , the negative binomial INGARCH could 

deal with problems that occur when fitting over-dispersed data by a Poisson based INGARCH 

model. The model could also handle potential extreme observations.

Another common feature in time series count data is the excessive zeros. The 

zero-inflated Poisson model [18] was introduced to deal with this type of data. The model 

assumes that the observed zeros arise from two processes: one from a binary process with 

probability n of getting a zero and another from an ordinary Poisson process. Later, Yang 

[19] linked the parameters of the rate of the Poisson process and the probability of the binary 

process with exogenous explanatory covariates. Moller [20] extended the binomial thinning 

AR(1) process by adding a bounded support to accommodate different zero-inflated data
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types. They assumed the observation at time t is generated from two thinning processes 

Xt = a  * Xt-1 + yS * (n -  Xt-1) , where a  and y8 are the probabilities of getting a one in a 

Bernoulli trial and n is the maximum value that Xt could take.

In the next section, ACP, Poisson HMM, and zero-inflated Poisson model are briefly 

introduced.

2.1. THE AUTOREGRESSIVE CONDITIONAL POISSON (ACP) MODEL

In the article by Heinen [15], an autoregressive conditional Poisson (ACP) model that 

handles count data from a Poisson distribution with an autoregressive mean was developed. 

At the same time, the model was also independently proposed by Ferland et. al [16] as 

the integer-valued generalized autoregressive conditional heteroskedasticity (INGARCH) 

process.

2.1.1. The ACP Model. Let % represent all information available before and in­

cluding time t. Conditioning on the past information, the count present follows a Poisson 

distribution with a mean ^ t related to the past such that,

N t |%-1 -  Pois (yUt),

where the mean has an autoregressive conditional intensity structure inspired by the condi­

tional variance formulation in GARCH [21] model of Bollerslev [22]. In the ACP model,

q p
E [ Nt |% -i] = yut = m + ^  aiNt-i + ^  SjPt-  j,

i=1 j=1

under the condition that all of a 's , yS'-s and m are positive.

2.1.2. Parameter Estimation of ACP Models. The Maximum Likelihood Esti­

mation method is used to provide estimates of the parameters of the ACP models. Let 

9 = (m,ai,J3j) for i = 1 , . . . ,  q, j  = 1 , . . . ,  p , represent all parameters in the ACP model



8

and the likelihood function at time t is

lt (6) = Nt ln n t -  n t -  ln N t !.

The corresponding score function and Hessian matrix take the form:

where

and

dlL  
d 6

=
d 6 2

/ Nt -  Mt' 
\ Mt )

Nl \  I dM± 
m2 I \ d 6

d_Mt_ 
d 6 ’

dMt \ '
d 6

dMt 
d 6 y t +1

j=i

dMt -  j 
d 6 ’

y  t = [1, N t - 1, Nt-2, . .  . ,Nt-q,Mt-l , Mt-2, . . . ,  Mt-p ].

2.2. THE POISSON HIDDEN MARKOV MODEL

The Poisson hidden Markov model (HMM) is first discussed by Hopkins [23]. 

Later the model was used by Alber [12] to handle the epileptic seizure counts by using a 

Poisson process whose mean varies at times. The model assumes the underlying mechanism 

of the count data changes states determined by a Markov chain, and also accommodates 

over-dispersion characteristics, which is commonly observed in count data time series.

2.2.1. The Poisson-HMM Model. Let a sequence of discrete random variables 

St : t e N to be a Markov Chain with m possible states and transition probability matrix 

r  (t) = {y?j (t)}, i = 1, 2 , . . .  , m , j  = 1,2 , . . . , m ,  where yfj (t) = P (Ss+t = j  | Ss = i). In

most cases, it is enough to use homogeneous Markov chains, which means y s-- does not
lJ
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depend on 5. Unless there is an explicit indication, it is assumed that Markov chain under 

discussion is a homogeneous one with transition probabilities denoted as j i j . Given the 

underlying Markov state St, the observed count data Nt follows a Poisson distribution

g-/h / k
P (Nt = k | St = i) = — ^ ,

k !

where Ai is the expected mean of the state dependent Poisson process when the corresponding 

latent Markov chain takes state i .

2.2.2. Parameter Estimation of Poisson HMM Models. The direct maximization 

of the likelihood could be accomplished by the following method.

Let 9 = (j i j ,A i ) for i = 1, 2 , . . .  ,m  and j  = 1, 2 , . . .  ,m,  represents all parameters 

in the Poisson hidden Markov model. The log-likelihood function for the model is given by

It (9) = log (p (X T = x T)) = log (SP(x i )TP(X2) • • • r P(xT)1'),

where S is the initial distribution and

P  (xt)

Pi (xt)

0

0

Pm (Xt)

Pi (xt) = P (Xt = Xt | St = i) ,

m
r =

Tim

Tml •• • Tmm

For the discrete case, elements in the likelihood function become progressively 

smaller as t increases, and thus scaling the forward probabilities is a common way to avoid 

underflow. The scaling yields:
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fio = SP (x i) ,

fit = fit- 1  r  P  (xt), f o r t  = 2, 3 , . . . , T .  

0o = S

Mt 0 t = Mt-10 t-l f it,

where

Mt = X  fit (i) = fit 1\
i

Mo = S1',

Thus the scaled log-likelihood function would be

T
log (L t ) = ^  log

t=l

Mt
Mt-1

T
X  log (0t-i f it 1').
t=i

2.3. ZERO INFLATED POISSON MODEL

Heinen [15] introduced an autoregressive conditional Poisson (ACP) model to deal 

with time series of count data with serial correlation. Building on Heinen’s work, the theo­

retical properties of the general ACP model was derived by Ghahramani and Thavaneswaran 

[24]. In brief, the count Xt observed during the interval (t-1, t] is considered a realization 

from a Poisson distribution with a conditional mean that is dependent on past observations 

and past conditional means. The process is formally defined as follows. Let the count data 

series be denoted by {Xt : t e N} and let % denote the sigma field generated by the set of 

random variables {Xi : i < t}. The counts are assumed to be realizations from a Poisson 

distribution with a conditional mean \ t, whose dependence on past conditional means and
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counts parallels the GARCH model of Bollerslev [21]:

Xt \Tt-i~P (At)

q p
E  (Xt \ Ft-1) = At = ao + &iXt-i + fljAt-j,

i=1 j =1

under the condition that all of a i'5, fij 's  are positive.

The above formulation is suitable for modeling discrete time series with over­

dispersion while taking serial correlation into consideration, with the latter property being 

of particular interest given that temporal dependence is not uncommon in times series of 

count data.

Zhu [25] proposed a generalized version of the ACP model by replacing the Pois­

son assumption with a zero-inflated Poisson (ZIP) distribution that has a zero-inflation 

parameter m. A Z IP  (A, m) distribution can be characterized by the probability mass 

function:
e-AAk

P (X=k ) =mSk o+ (1 -m)  ———, k eNU{0},
’ k !

where 0 <m< 1 and 6k 0̂ is the Kronecker delta such that

I 1 if k = 0
8k,0= \

I 0 if k *0

Thus, under the formulation of Zhu [25], the time series {X t : t e N}, conditional on Ft-1, 

satisfy

Xt \Tt-1~ZIP (At, m ) ,

q p
At = a 0 + a i Xt-i + f i jAt-  j ,

i=1 j =1

where 0 <m< 1, a 0> 0, a t>0, ySy >0, for i= 1 ,2 , . . . ,  q and j  = 1 ,2 , . . . ,  p.
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ABSTRACT

A periodic version of the autoregressive conditional Poisson model (ACP), intro­

duced by Heinen [1] in 2003, is proposed. In the ACP model, the conditional mean of the 

Poisson process at a given time is assumed to follow a formulation that links it to past counts 

and past means. The proposed periodic autoregressive conditional Poisson (PACP) model 

assumes that the data are generated by Poisson process whose conditional mean follows an 

ACP model with parameters that vary seasonally. Such models would be more appropriate 

when modeling count data series exhibiting conditional heteroskedastic behavior that varies 

from season to season. Properties of the model are investigated, and an alternative format 

of the model is presented to make it comparable to a vector autoregressive moving average 

(ARMA) process. A Monte Carlo simulation study that employs the maximum likelihood 

method to estimate the parameters shows an accurate estimation of the parameters with a 

relatively small Monte Carlo standard error. The simulation study also investigated the use 

of Akaike information criterion (AIC) and Bayesian information criterion (BIC) criteria to

mailto:zybvf@umsystem.edu
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differentiate between periodic and non-periodic cases with promising results. An analysis 

of simulated data is used to illustrate the importance of identifying the true structure of time 

series count data with periodic behavior and potential for the wide uses of such models. 

Keywords: count data, discrete time series, seasonality, conditional heteroskedasticity, 

time varying parameters.

1. INTRODUCTION

Advanced data collection technologies are generating numerous time series of count 

data that exhibit periodic behavior. Examples of such time series range from the number of 

transactions per minute involving a given stock to the number of hourly clicks on a website. 

While traditional approaches such as Poisson regression can handle many of these time 

series, some count series exhibit clustering of high counts, similar to volatility clustering 

found in stock return series. For example, such clustering is seen in incident counts of 

common infectious diseases, where a high prevalence of the disease during the recent past 

gives rise to higher counts during the next data gathering period. Among count data models, 

the autoregressive conditional Poisson (ACP) model proposed by Heinen [1] allows for such 

behavior, specifically because the structure of the ACP formulation is very similar to the 

generalized autoregressive conditional heteroskedastic (GARCH) processes that are used to 

model economic data with volatility clustering. In addition, the ACP model also makes it 

possible to analyze discrete correlated data with over-dispersion. However, the ACP model 

is not structured to capture periodic behavior inherent in some count data series. Thus, 

we proposed a generalized version of the ACP model, namely the periodic autoregressive 

conditional Poisson (PACP) model, which could accommodate such characteristics.
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2. REVIEW OF MODELS FOR TIME SERIES COUNT DATA

Markov chains are one way to deal with count data [2]. This method requires the 

definition of the (stationary) transition probabilities between all possible outcomes that the 

random variable could generate. However, a sequence X1, X2, . . .  of random variables 

taking values in some set is a Markov chain if the conditional distribution of Xw+i, given 

{X  : i e N}, depends on Xn only, which would limit the use of this model because it ignores 

dependence on values prior to time n. Also, when the number of possible outcomes grows 

very large, this model is no longer easily tractable, and its parameter estimation becomes 

cumbersome.

An alternative is to use a hidden Markov model. These models are a modified 

application of Markov chains as it is assumed that an underlying unobserved state of the 

system, determined by a Markov process, changes in time. The system's present state 

should determine the distribution of observations at the current time [3]. Sebastian et al. 

[4] developed the Markov ordinal logistic regression model with the transition probability 

defined as P (Yt \Yt-1, Z) = (eai-z  ^)[1 -  eai-z  ^ ]-1, where Yi represents the states of the 

Markov chain, while Z denotes some known covariates. Cooper et al. [5] proposed a so- 

called ‘structured hidden Markov model’ for the epidemic process that intuitively follows a 

hidden Markov chain process since patients communicate with each other and the epidemic 

process usually gives out routine surveillance data that could often be partially observed. 

‘Structured’ implies that a simple transition model is driving the underlying Markov chain. 

However, the need to determine the order of the Markov chain before applying the model 

accounts for one obvious drawback of this type of model. Another inevitable problem of 

such models is that the variability of the outcomes may be small.

Another branch of methods developed from the application of the Markov chain is 

the binomial thinning process proposed by McKenzie [6] as a simple model to deal with 

discrete variate time series problems. The thinning operator takes the sum of {Xi : i e N} 

identically independent Bernoulli random variables, each of which takes value 1 with
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probability a  and 0 with probability 1 -  a . The data generating mechanism is modeled 

similar to an autoregressive (AR) process in the sense that the current count is dependent 

on the number of Bernoulli random variables given by the previous count. For example, 

Poisson AR(1) process is constructed as Xn = a  * Xn-1 + Wn, where Xn and Wn are 

both Poisson process with means 6 and 6 (1 -  a ) respectively. The thinning operator * is 

defined as follows: a  * Xn-1 denotes the number of successes observed from Xn-1 Bernoulli 

trails with success probability a. Geometric AR(1), negative binomial AR(1), binomial 

AR(1), and compound correlated bi-variate Poisson distribution were also proposed. They 

also investigated the seasonality problem in count data, and the seasonal mean was set as 

Hn = a cos wn+b sin wn, similarly the innovation mean was set as wn = A cos wn+ B sin wn, 

where A = a -  a  (a cos w -  b sin w) and B = b -  a  (a sin w + b cos w). ZhuandJoe [7] further 

modified the model, incorporating covariates to the mean of the stationary Markov time 

series allowing time varying components. Also, they extend the model and the structure to 

mimic an AR(2) model to solve higher order dependence structure contained in time series 

count data. The problem with this kind of model is that the seasonal pattern embedded in this 

fashion is not flexible enough to model data demonstrating complex periodic components 

that may require the inclusion of a large number of trigonometric functions to model the 

cyclical behavior with reasonable accuracy.

Many count data models are based on the use of the Poisson distribution. The 

Poisson regression model, as the basic count regression model, is well described in the 

book by Cameron and Trivedi [8]. In this approach it is assumed that y i, an independent 

observation from a Poisson distribution, given the vector of regressor x i, has a density 

function f  (yi|x i) = (e-Hpiyi)[y i !]-1,y i e 0 U N. The relationship between the mean and 

regressors is shown by the link function p i = exp  (x 'fi) . It is worth noting that empirical 

data usually shows more variation than can be accounted by such Poisson models. In other 

words, empirical data shows over-dispersion.
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In order to account for unobserved heterogeneity and the correlation of events in the 

observed data, Winkelmann [9] derived several compound Poisson models, taking additional 

unobserved heterogeneity into consideration by letting A, = exp (x ,-'fi + e,) = exp (x ,-'f i)p , . 

They applied the model to labor mobility data and their results illustrate the necessity to 

allow for the generalizations of the standard Poisson regression model. Coxe et al. [10] 

provided a clear review of some appropriate regression models applicable to count data. 

Starting with the standard Poisson regression model, two variants of Poisson regression, 

negative binomial regression and over-dispersed Poisson regression are gradually formed 

to handle the over-dispersion phenomenon. A comparison among those models, using 

a simulated data set of drinks consumed by university students on Saturday night [11], 

demonstrates the strengths and weaknesses of these models.

In order to generalize the relationship between the mean and the variance imposed 

by the Poisson regression models, Linden and Mantyniemi [12] utilized a negative binomial 

formulation. In their approach, two parameters were introduced to accommodate different 

‘quadratic mean-variance relationships’ [12]. They expressed the probability mass function 

of the random variable X  as P (X  = x \ r , p ) = T(x + r )p r (1 -  p )x[xIT(r)]-1, with the 

expectation (theoretical mean) p  = r  (1 -  p )p -1 and variance a 2 = r (1 -  p )p -2. Based on 

this setup, parameters r andp  could be solved from their relationship with the mean and the 

variance, as r  = p 2 [a2 -  p ] -1 and p  = p a -2. The negative binomial distribution allows 

more flexible parameterization, which could be used to represent multiple types of over­

dispersed Poisson processes. By establishing a quadratic function of the mean to describe 

the variance, a 2 = mp  + 6p2, diverse relationships between the mean and variance can be 

obtained by varying the two over-dispersion parameters m and 6, as long as the condition 

a 2 > p  is satisfied. Scenarios where over-dispersion might happen due to factors such 

as sampling, environmental dissimilarity, or flocking behavior were exemplified using bird 

migration data showing a high level of over-dispersion. In this study, the negative binomial 

distribution, using well-selected over-dispersion parameters, appropriately represented the
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mean-variance relationships in the considered scenarios. However, distinct assumptions 

about mean-variance relationships could lead to completely different coefficients which 

need careful identification and interpretation.

The class of discrete-valued time series models analogous to Gaussian ARMA 

models were advocated by Jacobs and Lewis [3]. The data generating process they assumed 

was a probabilistic linear combination of independently and identically distributed discrete 

random variables [13]. Two simple stationary processes of discrete random variables, 

DARMA (p, N  + 1) and NDARMA (p, N ), whose first-order marginal distributions are 

arbitrarily chosen, are listed in [14]. One major drawback of the DARMA model is that 

even if the distribution of independent identically distributed variables is continuous, the 

sequence has a high density around a single value.

The autoregressive conditional Poisson (ACP) model [1], or simultaneously indepen­

dently proposed by Rene [15] as the integer-valued generalized autoregressive conditional 

heteroscedastic (INGARCH) (p,q) process, is developed to model integer-valued data with 

Poisson deviates. In the article, important conditions for the existence of the mentioned 

process were discussed. When it comes to the situation p  = 1, q = 1, such an integer-valued 

GARCH process is, in essence, a standard ARMA (1, 1) model. The asymptotic properties 

of the maximum likelihood estimates of model parameters were studied. The numbers of 

people infected by Campylobacterosis (a bacteria caused disease) over a certain period was 

analyzed by the observation driven model, and a one-step ahead forecast was also provided.

After the above ACP model was proposed, a negative binomial version was built on 

this structure. Zhu [16] developed the negative binomial integer GARCH (NBINGARCH) 

model and discussed some properties of it. By letting (1 -  p t)p -1 = At = a 0 + £ p.=1 aiXt-i + 

'Lq=1 P j h - j , the negative binomial INGARCH could deal with problems that occur when 

fitting over-dispersed data by a Poisson based INGARCH model. The model could also 

handle potential extreme observations.
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Another common feature in time series count data is the excessive zeros. The 

zero-inflated Poisson model [17] was introduced to deal with this type of data. The model 

assumes excessive zeros is the outcome from two processes: one as a binary process with 

probability n  of getting a zero and another as an ordinary Poisson process. Later, Yang [18] 

linked the parameters of the rate of the Poisson process and the probability of the binary 

process with exogenous explanatory covariates. Moller [19] extended the binomial thinning 

AR(1) process by adding a bounded support to accommodate different zero-inflated data 

types. They assumed the observation at time t is generated from two thinning processes 

Xt = a  * Xt-1 + 3  * (n -  X t - \ ) , where a  and 3  are the probabilities of getting a one in a 

Bernoulli trial and n is the maximum value that Xt could take.

3. PROPOSED PACP MODELS

In the article by Heinen [1], an autoregressive conditional Poisson (ACP) model that 

handles count data from a Poisson distribution with an autoregressive mean was developed. 

Let Ft represent all information available before and including time t. Conditioning on the 

past information, the count present follows a Poisson distribution with a mean ^ t related to 

the past,

Nt |F t-i ~ P (»t),

where the mean has an autoregressive conditional intensity structure inspired by conditional 

variance in GARCH [20] model of Bollerslev [21]. In the ACP model,

q p
E [ Nt |F t-i] = ^t = m + ^  aiNt-i + ^  PjUt- j,  (1)

*'=1 j=1

under the condition that all of a's, J3'-s and m are positive.
1 J
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However, there are empirical count data series that demonstrate periodic charac­

teristics. Therefore, a periodically varying coefficient autoregressive conditional Poisson 

model would be more appropriate under such circumstances. Thus, we generalize the ACP 

Model to a periodic autoregressive conditional Poisson model (PACP), which provides more 

flexibility when modeling periodic count data.

To define the desired structure, let {Nt : t e N} be the time series of interest, with 

Nt denoting the count at time t . We assume that t falls into one of s periods that recur in 

a periodic fashion, and let s ( t) denote the period to which t belongs. Denoting the a — 

algebra generated by {N  : i < t } as Ft. Assume that

N t|F t-i ~ P ( d ),

with the mean having a time varying structure

q p
dt = ^s(t) +  ̂®is (t) Nt - i +  ̂fijs (t) d t- j, (2)

i=1 j=1

where o>'s^ s ,  a'is(t)s, fi'.s^ s  and i = 1, 2 , , . . . ,  q, j  = 1 , 2 , . . . ,  p  are positive for all values 

of s (t). Note the s (t) represents the corresponding stage of the periodic cycle at time t. 

Note that the above formulation parallels that of a periodic GARCH(pq) process [21].

4. SOME PROPERTIES OF THE MODEL

Following the derivations by Bollerslev [21], the equation (1) could be rewritten as

N t  = f t  + <̂ s (t) +
ma x(p,q) p

^  (ais(t) + fiis(t))Nt-i -  ^  fijs(t) f t - j, 
i=1 .=1

where et = Nt -  dt .
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Now, model in equation (2) could be interpreted as an ARMA(max(p,q), p) process 

instead of a GARCH(p, q) process. Some properties of et are discussed below. We have

E (et) = E (Nt -  At) = E (E (Nt -  At |F - i ) )  = E(At -  At) = 0,

and

V a r(et) = Var (E(e t |F - i ) )  + E (Var(et |F - i ) )

= Var  (0) + E (Var(et |F t -i))

= Var  (0) + E (Var(N t -  At |F t-i))

= E (Var(Nt -  At |F - i ) )

= E (Var(N t | F - i ) )

= E (At).

We considered two cases: (1) Periodic data with a single observation within each 

period and (2) Periodic data with multiple observations within each period. For the first 

case, a Vector ARMA form of the time series is derived analogous to [21], and this form is 

derived in the appendix.

5. LIKELIHOOD FUNCTION, SCORE, HESSIAN AND PARAMETER
ESTIMATION

Let 6 = ( u s(t) , a is w ,fijs (t)) for i = i , . . . , q ,  j  = i , . . . , p ,  represent all parameters 

in the PACP model. The conditional log-likelihood function for the model could be written 

as the sum of log-likelihood for each observation. Thus we have

T
It (6) = Y j -At (6)+ Nt log At ( 6 ) -  log(Nt !).

t=1
(3)
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The corresponding score function and Hessian matrix are

dlt _ y  dXt N t IdXt \
~d6 -  ~d6 + J i \ d 6 )  ’

d2It _  y  /_  N tW  5At W 5At\ ' 
d e2 j _ ( \  A * l \ d  5  e )  ’

where

dXt_
d e v 't+ y  &Mt)

j _i

o_Al z l
d e ,

and

V t _ [1, N t-i, N t-2 , . . .  ,N t- q, At- 1, At- 2 , . . . ,  At- „ ].

6 . THE MONTE-CARLO SIMULATION STUDY

We conducted a Monte-Carlo simulation study to investigate how well the PACP 

model parameters are estimated by the MLE procedure. A simulation study was also 

performed to investigate the use of AIC and BIC criteria to differentiate between periodic and 

non-periodic cases. The maximum likelihood method is utilized to estimate the parameters 

of PACP model. The log-likelihood function is defined as (3).

The properties of estimates were studied across different combinations of parameters 

using 3,000 simulation runs for each combination. Biases and Monte Carlo standard errors 

(SE) were computed for each of the parameter combinations. In order to eliminate the 

artifacts arising out of initial conditions, the first 240 time series data points were discarded.
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6.1. CASE OF A SINGLE OBSERVATION WITHIN A PERIOD.

6.1.1. Two Periods with Single Observation within a Period. Let 9 = (m1,m2, 

a\,a2,J3) , represent all parameters in the PACP model. The simulated data were generated 

from a PACP process of 2 periods with p , q  = 1 and only a single data point within each 

period. Two different parameter sets were used for analysis.

Set 1. 9 = (3 ,5 ,0 .1 ,0 .3 ,0 .1) (Table 1).

Set 2. 9 = (10,8,0.25,0.35,0.2) (Table 2).

For each combination of parameter sets, sample size T=500 and T=1,000 were 

considered. Note that the time series lengths T=500 and 1,000 are comparable to the 

lengths of series of day and night counts of a given phenomenon over a few years. Maximum 

likelihood estimation results from 3,000 simulations based on the above sample sizes with 

a single observation within a period are reported in Tables 1 and 2.

Table 1. Maximum likelihood estimation results from 3,000 simulations based on different 
sample sizes (single observation within a period); parameter Set 1.

Parameters True Values
T=500 T=1,000

Estimates Bias SE Estimates Bias SE

W1 3 2.7783 -0.2217 0.0194 2.9019 -0.0981 0.0142

m2 5 4.8543 -0.1457 0.0130 4.9279 -0.0721 0.0097

«1 0 .1 0.0989 -0 .0 0 1 1 0.0009 0.0983 -0.0017 0.0007

« 2 0.3 0.2985 -0.0015 0.0015 0.2990 -0 . 0 0 1 0 0 .0 0 1 1

fS 0 .1 0.1345 0.0345 0.0030 0.1166 0.0166 0 .0 0 2 1
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Table 2. Maximum likelihood estimation results from 3,000 simulations based on different
sample sizes (single observation within a period); parameter Set 2.

Parameters True Values
T=500 T=1,000

Estimates Bias SE Estimates Bias SE

mi 10 10.2290 0.2290 0.0394 10.0930 0.0930 0.0285

m2 8 8.2398 0.2398 0.0407 8.0681 0.0681 0.0298

ai 0.25 0.2484 -0.0016 0 . 0 0 1 2 0.2500 0 . 0 0 0 0 0.0008

« 2 0.35 0.3477 -0.0023 0 . 0 0 1 2 0.3511 0 .0 0 1 1 0.0008

yS 0 .2 0.1889 -0 .0 1 1 1 0.0023 0.1949 -0.0051 0.0017

6.1.2. Three Periods with Single Observation within a Period. Let 6 = ^ , m2,

u 3, a \ , a 2 , a 3,0),  represent all parameters in the PACP model. The simulated data were 

generated from a PACP process of 3 periods with p ,q  = 1 and only a single data point 

within each period. Two different parameter sets were used for analysis.

Set 1. 6 = (5 ,8 ,3 ,0 .4 ,0 .2 ,0 .2 ,0 .3 ) (Table 3).

Set 2. 6 = (8 ,9 ,5 ,0 .1 ,0 .3 ,0 .2 ,0 .1 ) (Table 4).

For each combination of parameter sets, sample size T=1,040 and T=2,080 were 

considered. Note that the time series lengths T=1,040 is comparable to the lengths of series 

of morning, mid-day, and night counts of a given phenomenon over a year. Maximum 

likelihood estimation results from 3,000 simulations based on the above sample sizes with a 

single observation within a period are reported in Tables 3 and 4. Results show reasonably 

accurate parameters estimates with minimal bias and low standard error, with lower biases 

in the large sample case.



24

Table 3. Maximum likelihood estimation results from 3,000 simulations based on different
sample sizes (single observation within a period); parameter Set 1.

Parameters True Values

T=1,020 T=2,040

Estimates Bias SE Estimates Bias SE

mi 5 5.1430 -0.1430 0.0288 5.0520 -0.0520 0.0113

m2 8 8.1236 -0.1236 0.0289 8.0307 -0.0307 0.0108

m3 3 3.1409 -0.1409 0.0323 3.0459 -0.0459 0.0189

ai 0.4 0.1982 0.0018 0 .0 0 0 1 0.1980 0 . 0 0 2 0 0 .0 0 0 1

a 2 0 .2 0.4002 -0 . 0 0 0 2 0 .0 0 0 1 0.4001 -0 .0 0 0 1 0 .0 0 0 1

a 3 0 .2 0 . 2 0 2 2 -0 . 0 0 2 2 0 .0 0 0 1 0.2004 -0.0004 0 .0 0 0 1

P 0.3 0.2883 0.0117 0 . 0 0 0 2 0.2969 0.0031 0 .0 0 0 1

Table 4. Maximum likelihood estimation results from 3,000 simulations based on different
sample sizes (single observation within a period); parameter Set 2.

T=1,020 T=2,040
Parameters True Values

Estimates Bias SE Estimates Bias SE

mi 8 7.7426 0.2574 0.0292 7.8935 0.1065 0.0137

m 2 9 8.7822 0.2178 0.0354 8.8883 0.1117 0.0172

m3 5 4.6857 0.3143 0.0365 4.8889 0 .1 1 1 1 0.0240

a i 0 .1 0.1017 -0.0017 0 .0 0 0 1 0.1005 -0.0005 0 .0 0 0 1

a 2 0.3 0.2955 0.0045 0 .0 0 0 1 0.2993 0.0007 0 .0 0 0 1

a 3 0 .2 0.1982 0.0018 0 .0 0 0 1 0.1972 0.0028 0 .0 0 0 1

P 0 .1 0.1261 -0.0261 0.0003 0.1114 -0.0114 0 . 0 0 0 2
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6.2. CASE OF MULTIPLE OBSERVATIONS WITHIN A PERIOD

6.2.1. Daily Data with Multiple Observation within a Period. Let 9 = (w i,w 2, 

m3, m4, a \ , a 2, a 3, a 4, 0 ) , represent all parameters in the PACP model. The simulated data 

were generated from a PACP process of 4 periods with p , q = 1 and 90 data points within 

each period. Three different parameter sets were used for analysis.

Set 1. 9 = (2 ,5 ,3 ,4 ,0 .1 ,0 .05 ,0 .2 ,0 .2 ,0 .1 ) (Table 5).

Set 2. 9 = (10 ,7 ,5 ,12 ,0 .2 ,0 .3 ,0 .1 ,0 .3 ,0 .3 ) (Table 6 ).

Set 3. 9 = (4 ,6 ,5 ,4 ,0 .1 ,0 .2 ,0 .1 ,0 .2 ,0 .4 ) (Table 7).

For each combination of parameter sets, sample size T=540 and T=1,080 were 

considered. These are approximately equivalent to the numbers of observations for a 1.5- 

year and 3-year daily count data respectively. Maximum likelihood estimation results from 

3,000 simulations based on different sample sizes are reported in Tables 5-7.

Table 5. Maximum likelihood estimation results from 3,000 simulations based on different 
sample sizes (multiple observations within a period); parameter Set 1.

Parameters True Values
T=540 T=1,080

Estimates Bias SE Estimates Bias SE

^1 2 1.9741 -0.0259 0.0074 1.9907 -0.0093 0.0057

^2 5 4.8703 -0.1297 0.0170 4.9391 -0.0609 0.0131

^3 3 3.0080 0.0080 0.0133 3.0010 0.0010 0.0095

^4 4 4.0179 0.0179 0.0174 3.9968 -0.0032 0.0126

0.1 0.0935 -0.0065 0.0012 0.0957 -0.0043 0.0010

«2 0.05 0.0555 0.0055 0.0010 0.0525 0.0025 0.0009

U3 0.2 0.1812 -0.0188 0.0018 0.1923 -0.0077 0.0011

a4 0.2 0.1807 -0.0194 0.0019 0.1931 -0.0069 0.0011

p 0.1 0.1169 0.0169 0.0028 0.1074 0.0074 0.0021
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Table 6. Maximum likelihood estimation results from 3,000 simulations based on different
sample sizes (multiple observations within a period); parameter Set 2.

Parameters True Values
T=540 T=1,080

Estimates Bias SE Estimates Bias SE

mi 10 10.6510 0.6510 0.0433 10.3380 0.3380 0.0298

m2 7 7.5971 0.5971 0.0358 7.2991 0.2991 0.0248

^3 5 5.2499 0.2499 0.0197 5.1202 0.1202 0.0126

m4 12 13.1030 1.1030 0.0575 12.4000 0.4000 0.0328

a i 0.2 0.1897 -0.0104 0.0012 0.1914 -0.0086 0.0010

a 2 0.3 0.2882 -0.0118 0.0012 0.2916 -0.0085 0.0010

a 3 0.1 0.0926 -0.0074 0.0015 0.0939 -0.0061 0.0010

a 4 0.3 0.2843 -0.0157 0.0017 0.2944 -0.0056 0.0010

P 0.3 0.2780 -0.0220 0.0020 0.2917 -0.0083 0.0013

Table 7. Maximum likelihood estimation results from 3,000 simulations based on different 
sample sizes (multiple observations within a period); parameter Set 3.

Parameters True Values
T=540 T=1,080

Estimates Bias SE Estimates Bias SE

mi 4 4.4755 0.4755 0.0252 4.2636 0.2636 0.0183

m2 6 6.8556 0.8556 0.0421 6.4561 0.4561 0.0293

m3 5 5.6538 0.6538 0.0329 5.3267 0.3267 0.0224

m4 4 4.7379 0.7379 0.0330 4.3430 0.3430 0.0217

a i 0.1 0.0934 -0.0066 0.0012 0.0946 -0.0054 0.0010

a 2 0.2 0.1944 -0.0056 0.0013 0.1966 -0.0034 0.0010

a 3 0.1 0.0876 -0.0124 0.0014 0.0947 -0.0053 0.0010

a 4 0.2 0.1781 -0.0219 0.0018 0.1932 -0.0068 0.0010

P 0.4 0.3473 -0.0527 0.0031 0.3726 -0.0275 0.0022
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6.2.2. Weekly Data with Multiple Observations within a Period. Let 6 = (m^

m2, m3, m4, a 1, a 2, a 3, a 4, 0 , represent all parameters in the PACP model. The simulated 

data were generated from a PACP process of 4 periods with p ,q  = 1 and 13 data points 

within each period. Three different parameter sets were used for analysis.

Set 1. 6 = (2 ,5 ,3 ,4 ,0 .1 ,0 .15 ,0 .2 ,0 .2 ,0 .1 ) (Table 8 ).

Set 2. 6 = (2 ,3 ,1 ,4 ,0 .2 ,0 .3 ,0 .1 ,0 .2 ,0 .2 ) (Table 9).

Set 3. 6 = (7 ,3 ,8 ,4 ,0 .2 ,0 .1 ,0 .1 ,0 .2 ,0 .3 ) (Table 10).

For each combination of parameter sets, sample size T=260 and T=520 were con­

sidered. These are approximately equivalent to the numbers of observations for a 5-year and 

10-year daily count data respectively. Maximum likelihood estimation results from 3,000 

simulations based on different sample sizes are reported in Tables 8-10.

Table 8 . Maximum likelihood estimation results from 3,000 simulations based on different 
sample sizes (multiple observations within a period); parameter Set 1.

Parameters True Values
T=280 T=560

Estimates Bias SE Estimates Bias SE

m1 2 1.9865 -0.0135 0 .0 1 2 1 2.0085 0.0085 0.0094

m2 5 5.0565 0.0565 0.0273 5.0222 0 . 0 2 2 2 0.0207

m3 3 3.0502 0.0502 0.0208 3.0319 0.0319 0.0160

m4 4 4.0444 0.0444 0.0270 4.0353 0.0353 0.0209

«1 0 .1 0.0931 -0.0069 0.0027 0.0908 -0.0092 0 . 0 0 2 2

« 2 0.15 0.1300 -0 . 0 2 0 0 0.0032 0.1403 -0.0097 0.0024

«3 0 .2 0.1747 -0.0253 0.0036 0.1863 -0.0137 0.0025

®4 0 .2 0.1808 -0.0192 0.0036 0.1863 -0.0137 0.0027

yS 0 .1 0 . 1 1 0 0 0 . 0 1 0 0 0.0037 0.1057 0.0057 0.0030
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Table 9. Maximum likelihood estimation results from 3,000 simulations based on different
sample sizes (multiple observations within a period); parameter Set 2.

Parameters True Values
T=280 T=560

Estimates Bias SE Estimates Bias SE

mi 2 2.0719 0.0719 0.0155 2.0468 0.0468 0.0112

m2 3 3.1726 0.1726 0.0238 3.1174 0.1174 0.0179

^3 1 1.0072 0.0072 0.0072 1.0148 0.0148 0.0050

m4 4 4.1770 0.1770 0.0240 4.0901 0.0901 0.0166

a i 0.2 0.1801 -0.0199 0.0031 0.1915 -0.0085 0.0023

a 2 0.3 0.2712 -0.0289 0.0036 0.2829 -0.0171 0.0025

a 3 0.1 0.0953 -0.0047 0.0027 0.0932 -0.0068 0.0021

a 4 0.2 0.1759 -0.0241 0.0035 0.1883 -0.0117 0.0024

P 0.2 0.1978 -0.0022 0.0035 0.1956 -0.0044 0.0026

Table 10. Maximum likelihood estimation results from 3,000 simulations based on different 
sample sizes (multiple observations within a period); parameter Set 3.

Parameters True Values
T=280 T=560

Estimates Bias SE Estimates Bias SE

mi 7 7.3174 0.3174 0.0468 7.1385 0.1385 0.0351

m2 3 3.0347 0.0347 0.0172 3.0297 0.0297 0.0120

m3 8 8.1619 0.1619 0.0414 8.0981 0.0981 0.0299

m4 4 4.2597 0.2597 0.0340 4.0774 0.0774 0.0229

a i 0.2 0.1781 -0.0219 0.0030 0.1871 -0.0129 0.0023

a 2 0.1 0.0935 -0.0065 0.0026 0.0891 -0.0109 0.0019

a 3 0.1 0.0882 -0.0118 0.0026 0.0883 -0.0117 0.0020

a 4 0.2 0.1719 -0.0282 0.0033 0.1863 -0.0137 0.0022

P 0.3 0.2983 -0.0017 0.0030 0.3035 0.0035 0.0021
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From the simulation results, it is clear that the maximum likelihood estimation 

method gives a relatively small bias (10% or less in most cases) and low Monte Carlo 

standard errors. It is only in Table 7 we see a bias slightly larger than 10%. It may be 

because of the larger value for J3. Note that the estimation bias is smaller and standard error 

is lower for the larger sample size, in both the single observation per period and multiple 

observations per period cases. This demonstrates that the MLE is a viable method for 

estimating the parameters of the suggested periodic autoregressive Poisson model and that 

larger sample sizes produce more accurate estimates.

7. MODEL SELECTION

To examine whether AIC and/or BIC are good criteria to distinguish the true structure 

of the count data, a small scale Monte Carlo simulation study was performed. All statistics 

reported here are calculated from N=3,000 replications, and each replication having sample 

size of T=1,080. In order to avoid artifacts created by initial conditions, the first 360 time 

series data points were discarded.

Mean AIC is averaged from AIC values for each of the replications and the percentage 

in the brackets indicates the percentage of times a simulation run yielded a smaller AIC 

value for the corresponding model. Thus, 90% indicate that the corresponding model had 

a smaller AIC value in 90% of the simulation runs.

Table 11 shows results for the case when the data were generated from an ACP 

process with true parameters m = 2, a  = 0.1, and S  = 0.15. Both ACP and PACP model 

were used to fit the data. In 94 out of 100 times, the AIC values for ACP model are lower 

than those for the PACP models, which suggests that AIC performs well in identifying the 

true structure of the time series. BIC does not work in this situation since PACP model 

gives out the same estimates for each season as the ACP model. However, AIC put more 

penalty on large parameter sets than BIC. Thus it has better performance than BIC.
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Table 11. ACP and PACP model selection by AIC criterion with simulated time series data 
with ACP as the data generating process.

Parameters ACP Model PACP Model

Wl 1.8626 1.9312

W2 - 1.9271

W 3 - 1.9307

W4 - 1.9337

a i 0.0993 0.0959

«2 - 0.0972

a 3 - 0.0962

a4 - 0.0959

P 0.1558 0.1314

Mean AIC 3955.7701(94.233%) 3961.7950(5.767%)

Table 12. ACP and PACP model selection by AIC and BIC criteria with simulated time 
series data generated under a PACP model.

Parameters ACP M odel PACP M odel

wi 0.1594 1.9978

W2 - 4.9635

W3 - 3.0050

W4 - 3.9987

a i 0.1523 0.0948

a 2 - 0.0515

a 3 - 0.1936

a4 - 0.1951

p 0.8135 0.1048

M ean AIC 4726.2751 (0%) 4605.7300 (100%)

M ean BIC 4783.1362 (0%) 4650.5933 (100%)
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Table 12 shows results when a PACP process with true parameters mi = 2, m2 = 

5, m3 = 3,m 4 = 4 , a 1 = 0.1 , a 2 = 0.05, a 3 = 0.2, a 4 = 0.2, 3  = 0.1 is the underlying

structure producing the count data. Both ACP model and PACP model were used to fit the 

data. In this case, AIC and BIC both show their strong ability to select the right structure. 

Notice that when there is periodicity in the count data, an ordinary ACP model gives out 

estimates of a  and 3  with their sum close to one, suggesting near non-stationarity, raising 

questions about the appropriateness of the model.

8. VISUALIZATION OF SIMULATED DATA AND ESTIMATED INTENSITY
PROCESS

The application of the proposed PACP model is demonstrated using a simulated 

data set. The data is generated from a PACP process with 4 seasons and each season has 

90 data points. The parameter set is m1 = 2, m2 = 5, m3 = 3, m4 = 4, a 1 = 0.1, a 2 = 0.05, 

a 3 = 0 .2 , a 4 = 0 .2 , 3  = 0 .1 .

Simulated count data and estimated lambda

variable
cot nl

am cda

■'V ■jj;

Time

Figure 1. Simulated time series count data and the estimated intensity At process.
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As shown in Figure 1, the grey line represents the simulated data while the blue 

line indicates the estimated underlying periodic process. The results show the PACP model 

captures the cyclical movement of the process well.

9. REAL DATA ANALYSIS

In this section, the proposed PACP model is applied to fit a real dataset, and the 

performance is compared to a regular ACP model. From section 7, AIC is an appropriate 

standard to select the best model from all the competing models. The following example 

provides insight into the circumstances that a PACP model should be considered. The data 

set is weekly Astrovirus infection case numbers of males in Germany, which is available 

from Robert Koch Institute (website https://survstat.rki.de).

Figure 2. Weekly observations time series plot for Astrovirus infection cases of males in 
Germany. The time interval covering the count data is from week 36 of year 2015 to week 
14 of year 2020, resulting in a total of 240 weekly observations of infection cases. The data 
set has a mean of 14.4417 and a variance of 159.7121.

https://survstat.rki.de
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The time interval covering the count data is from week 36 of year 2015 to week 14 

of year 2020, resulting in a total of 240 weekly observations of infection cases. The data 

set has a mean of 14.4417 and variance of 159.7121. The periodicity is apparently shown 

in a time series plot of the data set in Figure 2, and it also suggested a varying structure of 

the volatility among the counts.

Figure 3 illustrates the time series are correlated. Combining the fact that an annual 

seasonality is observed in this count data, it is appropriate to consider fitting the PACP 

model to the time series. We need to consider several models to identify the best one that 

describes the periodicity and time varying auto-correlation structure shown in this data.

We fit three PACP model with 2, 3 and 4 periods separately, as shown in Table 14 

with model names as PACP (S=2), PACP (S=3) and PACP (S=4) respectively. We also fit 

a regular ACP model to compare its performance with our proposed PACP model. MLE 

algorithm is used to estimate the model parameters and AIC values are listed as the criteria 

to select the best model.

For PACP with 2 periods, we combined winter and spring since they have relatively 

large counts. Similarly we combined the summer and autumn since they have small counts. 

For PACP with 3 periods, we combined the summer and autumn since they all have low 

counts and less variation. Combining the spring and winter was also considered, resulting 

in a larger AIC value. For PACP with 4 periods, we naturally take the 4 seasons as it is to 

be the 4 periods.

Table 13. Periods defined for each PACP model.

Model S1 S2 S3 S4

regular ACP - - - -

PACP(S=2) Winter, Spring Summer, Autumn - -

PACP(S=3) Winter Spring Summer, Autumn -

PACP(S=4) Winter Spring Summer Autumn
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Figure 3. Auto-correlation function (ACF) and partial auto-correlation function (PACF) of 
Astrovirus infection count data.

According to the results shown in Table 14, the PACP model has an overall better 

performance than regular ACP model while PACP model with 3 seasons giving the best 

fit. The mean of the Poisson process estimated from regular ACP model is quite small 

(1.05), which in other words, is not quite reasonable for a time series count data with mean 

14.4417. However, the means for each season from the PACP model describe the pattern
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demonstrated in the time series plot well and the variations of the estimated alpha across 

the 3 seasons illustrate the periodic nature of the underlying serial correlations. Thus, the 

regular ACP model could not capture the time varying dependent structure like the proposed 

PACP model, which demonstrates the necessity of such a generalization.

Table 14. Estimated parameters, AIC for the Astrovirus infection cases of males in Germany.

Model Regular ACP PACP(S=2) PACP(S=3) PACP(S=4)

1.0486 4.6719 5.0388 4.9886

^ 2 - 1.8572 6.5027 6.3540

^  3 - - 1.3623 1.8554

^4 - - - 1.6735

ai 0.6081 0.5562 0.4013 0.5045

«2 - 0.3969 0.5292 0.5224

a 3 - - 0.4723 0.3559

a4 - - - 0.4938

P 0.3238 0.2506 0.2329 0.2454

AIC 1725.7 1650.0 1644.1 1649.9

10. CONCLUSION

The model provided here is a natural generalization of the autoregressive conditional 

Poisson model, which allows periodicity to be taken into consideration when modeling 

count time series. The reported simulation results in Section 6  show that the MLE provides 

reasonable estimates of the model parameters of the PACP model. We also studied the 

utility of using AIC and BIC criteria in determining if the underlying data generating 

process is ACP or PACP. Results suggest that the use of AIC criterion is a trustworthy way
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to differentiate between the underlying ACP or PACP structure. In addition, the simulated 

data and real data analysis illustrate there is indeed the necessity to generalize the original 

ACP model to accommodate periodic component in the count data.

APPENDIX

1. ACP EXTENSION

In this section, we derived the reformulation of the original set up equation for our 

model to an integer valued seasonal ARMA(max(p, q), p)  process. The count data has a 

stochastic process satisfies

q p
dt = us  (t) + j ®is (t) Nt—i +  ̂Pjs (t) ̂ t—j.

i=\ j =1

Equivalently, it could be rewritten as an integer valued ARMA(max(p, q), p) model.

(i) Case1. p  < q.

q p
Nt + d t = N t + ^ s (t) +  ̂ (t) Nt—i +  ̂fijs (t) d t—j,

i= 1 j = 1

q p
Nt = N t — d t + Us(t) + ^  ®is(t) Nt—i + ^  fijs(t) d t—j ,

i=1 j =1

q p p p
Nt = Nt — d t + ^s(t) + ^  Uis(t)N t—i + ^  fijs(t)Nt—j — ^  fijs(t)N t—j + ^  fijs(t)dt—j,

i= 1 J=1 J = 1 J = 1

q p p p
Nt = Nt — dt + Us(t) + ^  «is(t)Nt—i + ^  fijs(t)Nt—j — ^  fijs(t)Nt—j — ^  fijs(t) dt—j I ,

i=1 j=1 \  y= 1 j=
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Nt -  /lr +Wj(t) + ^  ais(t)Nf- i + ^  (f)^?- j ^  fijs(t)Nt—j ^  fijs(t)/ t —j J,
A " 7-1 \7-1 7=1i - 1

^■-1 Pjs o  £t-j

q p p
Nt -  6f + Ws(t) + ^  a is(t)Nf-i + ^  ̂ 7's(t)Nf- j  — ^  fijs(t) et-j, 

i-1 7- 1 j -1

q p p
Nt -  6t + Ws(t) + ^  «is(t)Nt-i + ^  fijs(t)Nt- j — ^  fijs(t) £t—j.

i-1 7- 1 7- 1

Choose f i jS(t) = 0 for j  > p,  then,

Nt -  £t + Ws(t) + ^  a is(t)Nt-i + ^  fijs(t)Nt-j ^  fijs(t)£t-j,
7-1 7-1i-1

 ̂  ̂ r

Nt -  £t + ws(t) + y   ̂&is(t)Nt - i + y  f̂ijs(t)Nt - j — y  f̂ijs(t)£t—j \ fijs(t)= o, vp < q,
i-1 j-1 j -1'-1

q
Nt -  £t + Ws(t) + ^  ̂( îs(t) + fiis(t))Nt—i 'y  ̂fijs(t) £t—j,

j - 1i-1

max (p,q)
Nt -  £t + Ws(t) + y   ̂ (ais(t) + fiis(t))Nt—i y   ̂fijs(t) £t—j.

'-1i-1

(ii) Case2. p > q.

q p
Nt + &t -  N t + Ws(t) + ^  a is(t)N t—i + ^  fijs(t) h —j ,

i-1 j -1

q p
Nt -  N t — &t + Ws(t) + ^  a is(t)N t—i + ^  fijs(t) h —j ,

i-1 j -1
q p p p

Nt -  Nt — / t  + Ws(t) + ^  a is(t)Nt—i + ^  fijs(t)Nt—j — ^  fijs(t)Nt—j + ^  fijs(t)/ t —j,
i-1 j -1 j -1 j -1
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q p p p
Nt = Nt -  At + Wj(t) + ^  Uis(t)Nt— + ^  fijs(t)Nt- j -  ^  fijs(t)Nt- j -  ^  fijs(t)ht-j | ,

i=1 j=1 \ 7=1 7=1

q p p p
Nt = N t -  ht +Ws(t) + ^  a is(t)Nt-i + ̂  fijs(t)Nt- j -  ^  fijs(t)Nt- j -  ^  fijs(t)^t- j |,

S  ̂ i=1 7= 1 \7= 1 7=1

^ / = 1 fiJs (t) et-j

q
Nt = £t + Ws(t) + /_] a is(t)N t-,

p

' + X j f i js (t) N t-j

p
-  X  fijs(t) et- j

i=1 J=1 J=1

q p p
Nt = €t + w j(t) + ^  a ij(t) N t-i: + 2  fijs(t) N t- 7 -  X  fij j  (t) et- j

i= 1 7=1 7=1

Now choose a is(t) = 0 for i > q. Then,

q p p
Nt = 6t + Ws(t) + ^  ais(t)Nt-i + ^  fijj(t)Nt - j -  ^  fijs(t)6t-j,

i=1 j =1 7=1

p p p
Nt = ^ t + ws (t) +  ̂a is(t) N t - i +  ̂fijs (t) N t - j —  ̂fijs(t) ̂ t-  j \ a is ( t)= °, —q ,

i=1 j=1 j=1

p p
Nt = t̂ + Ws(t) + ^   ̂(ais(t) + fiis(t))Nt-i -  ^   ̂fijs(t) ̂ t-j,

i=1 j=1

Nt = 6t + Ws (t) +
max (p,q) p

Y j  (aij(t)+ fiij(t))Nt-i fijs (t) ̂ t- j.
i=1 7 = 1

For both cases, they all could be rewritten as an ARMA(max(p, q), p)  process.

2. VARMA FORM (FOUR SEASONS WITHOUT REPEATED OBSERVATIONS)

In this section, we derived the Vector ARMA form of the periodic count time series 

from the integer valued seasonal ARMA(max(p,q),p) process. Note that we can write
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1 - ( ari4 + Pu)

0 1

0 0

0 0

0  0

-  (ai3 + Pi3) 0

1 - ( a 12 + Pn)

0  1

N4r ^ 4

N 4r-1 m3

Cl1b-
£

m2

£ 1
1__

_ m1

+

0

0

0

0 0 0

0 0 0

0 0 0

+

(a n  + P 11) 0 0 0 

0  0  0  0

0  0  0  0

0  0  0  0

P 11 0 0 0

£ 1

__
__

1

£ 1 T +
N4(r-1)-2

N 4(r-1)-3

1 - P 14 0

0 1

0 0

0 0

Q (r-1)

^4(r-1)-1

^4(r-1)-2

^4(r-1)-3

P 13

1

0

0

0

-  P 12 

1

£4r 

^4r-1 

^4r-2 

^4r- 3

Multiplying both sides by the inverse matrix given below,

1 a 14 + P 14 ( a 13 + ̂ 13) ( a 14 + ̂ 14)

0 1 a 13 + P  13

0 0 1

0 0 0

( a 12 + ̂ 12) ( a 13 + ̂ 13) ( a 14 + ̂ 14) 

( a 12 + ̂ 12) ( a 13 + ̂ 13) 

a 12 + P  12 

1
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we obtain the Vector ARMA form:

N4t Ml (ai2 + fil2) (ai3 + fil3) (ai4 + fil4) + M2 (ai3 + fii3) (ai4 + fii4) + M3 (ai4 + fii4) + M4

N4t-1 m1 ( a 12 + fil2) ( a 13 + fil3) + M2 ( a 13 + fil3) + M3

Cl1

£

M 1 (a 12 + fil2) + M2

£ 1
1__

_ Ml

+

(a ii + f in ) (a \2 + f in)  (a n  + fin,) (a i4 + fii4) 

(a ii + fiiO (a i2 + ̂ 12) (a i3 + fin)

(a ii + fiii) (a i2 + fii2) 

a ii + fiii

0  0  0 N4(t-1)

0  0  0 N4(t-1)-1

0  0  0 N4(t-1)-2

0  0  0 N4(t-1)-3

1 a i4 ai3 (ai4 + fii4) a i 2 (ai3 + fii3) (ai4 + fii4) £4t

0 i a i3 a i 2 ( a i3 + fii3) 4̂t-1

0 0 i a i 2 4̂t- 2

0 0 0 1 4̂t- 3

- f i ii ( a i2 + Jfii2) ( a i3 + Jfii3) ( a i4 + ̂ i4 ) 0 0 0 

- f i i i  (a i 2 + fii2) (ai3 + fii3) 0  0  0

- fiii ( a i2 + fii2) 0 0 0

-f ii i  0  0  0

C4(t-1) 

^4(t- 1) —1 

^4(t-1)-2 

^4(t-1)-3

Now take the expectation of both sides and assume that the observations from the 

same period have the same expected value, to get the expectation of each observation from 

each season:

E (di) = 

E  (d2) =

E (d3) = 

E (d4) =

m !  +  m2 ( a i 4  +  f i i 4 )  +  m 3 ( a i 3  +  f i i 3 )  ( a i 4  +  f i i 4 )  +  m 4  ( a i 2  +  f i i 2 )  ( a i 3  +  f i i 3 )  ( a i 4  +  f i i 4 )  

1 -  ( a i i  +  f i i i )  ( a i 2 +  fin)  ( a i 3  +  f i i 3 )  ( a i 4  +  f i i 4 )  

m !  ( a i i  +  f i i i )  ( a l2 +  Pn)  ( a 13 +  f i 13) +  m 2  +  m 3 ( a 13 +  f i 13) +  m 4  ( a 12 +  fin)  ( a 13 +  f i 13) 

1 -  ( a i i  +  f i i i ) ( a l2  +  f i 12) ( a 13 +  f i 13) ( a 14 +  f i 14)

m !  ( a i i  +  f i l l )  ( a i 2  +  fin)  +  m 2  ( a i i  +  f i i i )  ( a i 2 +  f i i 2) ( a i 4  +  f i i 4 )  +  m 3 +  m 4  ( a i 2 +  f i i 2) 

1 -  ( a i i  +  f i l l )  ( a i 2  +  f i i 2 )  ( a i 3  +  f i i 3 )  ( a i 4  +  f i i 4 )

m 1 ( a i i  +  f i i i )  +  m 2  ( a i i  +  f i i i )  ( a l4 +  f i l4 )  +  m 3 ( a l l  +  f i l l )  ( a 13 +  f i 13) ( a 14 +  f i 14) +  m 4  

1 -  ( a 11 +  f i 11) ( a 12 +  f i 12) ( a 13 +  f i 13) ( a 14 +  f i 14)
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Now let a n  + b n  = A, a n  + bn  = B, a 13 + bn  = C and a u  + b 14 = D , the

expectation of observation of each season could be rewritten as:

E (Ai) 

E  (A2) 

E (A3) 

E (A4)

W1 + Dw 2 + CDw 3 + BCDW4 

1 - ABCD
A B C w i+ W2 + Cw3 + BCw4 

1 - ABCD
ABwi + ABDw2 + W3 + BW4 

1 - ABCD
Aw1 + ADw2 + ACDW3 + W4 

1 - ABCD
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ABSTRACT

Poisson hidden Markov models (P-HMM), which are widely used for modeling 

time series count data, were originally established and applied in the biometric area [1]. In 

the Poisson hidden Markov models, the mean of a Poisson process varies according to the 

states of the latent Markov chain. The proposed autoregressive conditional Poisson hidden 

Markov model (ACP-HMM) assumes the mean of a Poisson process not only depends on the 

underlying states of a Markov chain but also depends on past values. It is more appropriate 

to fit time series count data with ACP-HMM when data exhibits strong auto-correlation. 

A Monte Carlo simulation study is performed to evaluate the estimation of parameters 

of ACP-HMM model employing the maximum likelihood method. The relatively small 

mean standard errors show that the maximum likelihood estimation (MLE) method works 

reasonably well for the model with a small number of states (n<4). A simulation study 

shows the importance of identifying the correct structure of an auto-correlated time series 

count data with possible hidden states. Finally, a real-life data is used to illustrates the 

potential for the wide uses of such models.

Keywords: count data, Markov chain, seasonality, conditional heteroskedasticity, time 

varying parameters.
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1. INTRODUCTION

A large number of high frequency count data time series are available thanks to 

advanced technology. Many of them exhibit changes of status over time while auto­

correlation between time points could not be ignored. Examples of such time series could 

be found everywhere from epidemic data to the field of economics. The Poisson hidden 

Markov model is one of the most common formulations used for modeling count data 

processes with different states. It was first developed and applied to a time series of 

epileptic seizure counts [1]. It assumes the latent Poisson processes that generate the count 

data have significantly diverse means at different times. However, the Poisson processes 

are only determined by the status of the underlying Markov chain and conditioning on the 

past states, the current Markov chain state St only depends on the previous state St-1. As a 

result, a longer-term dependency amongst data points is not taken care of. Many time series 

demonstrate a characteristic of a high count often followed by several high counts. Thus, 

the autoregressive conditional Poisson hidden Markov model (ACP-HMM) is proposed to 

deal with such types of data more appropriately. It could be seen as a combination of 

a hidden Markov model and an autoregressive structure, which admits the existence of 

various underlying mechanisms that shift back and forth while capturing the strong serial 

correlation among time series observations. It also provides more reasonable estimates of 

the mean values of Poisson processes in cases where a cluster of high or low counts is 

actually a result from strong correlation within observations.

2. REVIEW OF MODELS FOR TIME SERIES COUNT DATA

For modeling count data, one of the most common distributions utilized to analyze is 

the Poisson distribution. A lot of publications introducing the Poisson regression models are 

available [2, 3,4]. The basic probability mass function for a Poisson distribution is given by 

[3]: P(Y = y |u) = u ye- u [y !]-1, where y is the realization from a Poisson random variable
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Y and p is the arithmetic mean. The Poisson generalized regression model establishes a 

relationship between the expected mean and dependent variables X = [X1 ,X 1 , . . . ,  Xp] by 

the link function log(E (Y|X )) = J3q + J31 X\ + yS2X2 + • • • + J3pXp . However, such Poisson 

models are not able to handle more complex count data in reality. Thus, several variants 

from this model are developed to accommodate more characteristics in time series data.

For some data, variance observed is considerably larger than the expected, such 

phenomenon is called over-dispersion. In order to deal with this problem, which is a very 

common feature in count time series, several compound Poisson models are developed in 

diverse ways. Hinde [5] assumed that the mean of the Poisson distribution follows some 

form of another distribution and various kinds of distributions could lead to a whole class 

of different compound Poisson models. For example, the observations are set to follow a 

Poisson distribution with mean u, and the mean u  follows a gamma distribution u ~ T (k, 0 ) . 

The advantage of such a construction is that it provides a more analytically tractable model 

and the mean is preserved as the mean of gamma distribution under such assumption, while 

over-dispersion problem is also solved.

Although compound Poisson models could solve some problems, negative binomial 

distribution is introduced to allow a more flexible relationship between mean and variance. 

Negative binomial distributions are developed to well handle data with over-dispersion, 

which is a common phenomenon in empirical data sets. In to 1953, Bliss et al. [6 ] fitted the 

negative binomial distribution to biological data (e.g., plants and animals), where the vari­

ance is significantly larger than the mean. Linden and Mantyniemi [7] also adopted negative 

binomial distribution to model over-dispersion in ecological count data. They proposed a 

parameterization of the negative binomial distribution, where two over-dispersion parame­

ters were introduced to allow for various quadratic mean-variance relationships, including 

the ones assumed in the most commonly used approaches. They wrote the probability mass 

function as P (X = x |r , p ) = T (x + r )p r( 1 - p)x[x!T(r )]- 1, where the expectation (theoret­

ical mean) u  = r ( 1 -  p )p - 1 and variance a 1 = r ( 1 -  p )p - 2 . Then, they parameterized r
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and p  in terms of the mean and the variance as r  = p 2 [a 2 -  p ] -1 and p = p a -2. Using bird 

migration data as an example, they presented hypothetical scenarios on how over-dispersion 

arose due to sampling, flocking behavior or aggregation, environmental variability, or com­

binations of these factors. For all considered scenarios, mean-variance relationships can 

be appropriately described by the negative binomial distribution with two over-dispersion 

parameters.

For unexplained heterogeneity, Zeger [8] discussed a model for regression analysis 

with a time series of counts. Correlation was assumed to arise from an unobservable 

process added as another component of the mean. Hinde [5] introduced a different class of 

compound Poisson models to describe the variation of the data into two components. The 

original setup of the mean of the Poisson process Ai = exp (x$ )  was added with an error 

term resulting in A* = exp (xif5 + ei), where the error term could reflect a specification error 

caused by unobserved variation from the system itself. The compound Poisson distributions 

are a natural generalization of the basic Poisson models, which provide more flexibility to 

accommodate the complexity and multi-source variations in count data. It should be noticed 

that for certain parametric forms, the compound Poisson might not have a closed form and 

can be computationally cumbersome.

In reality, count data can be time correlated. McKenzie [9] developed two special 

classes of observation-driven models, which are known as the integer-valued autoregressive 

(INAR) and moving average (INMA) processes. The binomial thinning operator was 

introduced to generate sum of identical independent Bernoulli random variables, where the 

number of those random variables were determined by the previous counts. Another class 

of models that are widely used to model correlated time series is autoregressive moving 

average (ARMA) models. It incorporates the influence from previous observations into 

the present one. Continuous autoregressive time series data was introduced by Box and 

Jenkins [10], which is very useful to deal with the trend and seasonality. Then the discrete 

version: discrete autoregressive moving average (DARMA) models [11] are proposed for
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count data, which are analogous to Gaussian ARMA models and with arbitrarily chosen 

marginal distributions. These models were obtained by a probabilistic mixture of a sequence 

of independent identically distributed discrete random variables. As a result, the realization 

of the process requires many runs of a single value. Different orders of autoregressive form 

are available [12]. By coupling two simple stationary processes, DAR (p) and DMA(q), 

a mixed model of DARMA(p, q) can be generated. This model is simplified into a single 

equation as the NDARMA(p, q), X'n = VnX'n_A + (1 -  Vn)Yn_un, see Jacobs and Lewis 

[11]. The problem of the DARMA model is that a single value might have a high density 

around it when the sequence is generated from such structures. Ferland et al. introduced 

an integer-valued generalized autoregressive conditional heteroskedastic (INGARCH) (p, 

q) model with Poisson deviates [13]. For the case p  = 1, q = 1, this INGARCH becomes 

a standard autoregressive moving average (1,1) process. Zhu [14] developed a negative 

binomial integer-valued GARCH model, aiming to handle over-dispersion and extreme 

observations. After that, Zhu [15] introduced a class of generalized Poisson integer­

valued GARCH models, which can account for both over-dispersion and under-dispersion, 

mostly over-dispersion. The author considered the maximum likelihood estimators for the 

parameters and established their consistency and asymptotic normality. Chen et al. [16] 

proposed an autoregressive conditional negative binomial model for time series of counts 

that has a time-varying conditional autoregressive mean functions and heteroskedasticity. 

Since Poisson distribution could take care of integer data set and GARCH could incorporate 

the influence of previous observations, Heinen [17] proposed an autoregressive conditional 

Poisson model, of which the mean of the Poisson process parallels a GARCH structure.

Traditional linear models or similar regression based approaches are not able to 

capture the strong time-dependent trends, which exhibit the repeated patterns of seasonality. 

Markov chains represent a general class of models that can handle such time series of counts 

[9, 18, 19]. The Markov chain provides different states which correspond to certain count 

numbers, and the possible outcomes are controlled by transition probabilities. When
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conditioning on the past value, the distribution of Xt only depends on Xt- \. However, they 

tend to be overparameterized for most practical data as there are usually more than two 

possible outcomes. Also, due to the stationary correlation structure, Markov chains are 

not easy to generalize. Raftery [20] introduced a new structure for higher order Markov 

chains, which greatly reduced the required number of parameters and is more general. 

These models have autoregressive-like structures, and were later called mixture transition 

distribution (MTD) models. Jung and Tremayne reported a high order Markov model, with 

a focus on the second order case [21]. They provided means of obtaining estimated standard 

errors which were not accessible by analytical methods.

Based on Markov chains, the original concept and theories about hidden Markov 

models were advocated by Baum [22, 23]. It was first applied to speech recognition 

technology [24]. Hidden Markov models (HMMs) have become more and more popular 

thanks to their ability to accommodate different states that allow series’ structures to change 

over time. It is assumed that an unobserved latent state of the system changes over time 

according to a Markov process. As the result of booming bio-technology, count data 

carrying periodicity are available and often could be seen as the outcomes from repeatedly 

occurring different hidden states. Poisson hidden Markov model was first developed by 

Hopkins [25] and applied to a time series of epileptic seizure counts by Albert [1]. This 

model allows for the mean of a Poisson distribution to change according to an underlying 

two-state Markov chain. In case of excessive zero counts, DeSantis et al. [26] introduced 

a heterogeneous zero-inflated Poisson HMM (ZIP-HMM) by adding Markov chain into a 

zero-inflated Poisson process. The number of cocaine abuses per week before and after 

participation in a stress- and cue-reactivity study was used to demonstrate the performance 

of such a model. It is shown that the ZIP-HMM formulation performs better when compared 

with other time series models. What is proposed here borrows ideas from the P-HMM and

the ACP model.
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3. PROPOSED ACP-HMM MODELS

Let a sequence of discrete random variables {St : t e N} to be a Markov Chain with 

m possible states and transition probability matrix T (t) = {y f . (t)} , i = 1 , 2 , . . .  , m , j  = 

1, 2, . . . , m ,  where y f .  (t) = P  (Ss+t  = j  | Sf  = i) . In most cases, it is enough to uselJ
homogeneous Markov chains, which means y f .  does not depends on s . Unless there is an 

explicit indication, it is assumed that Markov chain under discussion is a homogeneous 

one with transition probabilities denoted as y -y. Given the underlying Markov state St , the 

observed count data Xt  follows a Poisson distribution

e- A  Ak
P (Xt = k | St  = i) = — , 

k !

where Ai is the expected mean of the state dependent Poisson process when the corresponding 

latent Markov chain takes state i.

However, the traditional Poisson hidden Markov model would not take care of the 

auto-correlation among time series data. Conditioning on the states, all observations are 

assumed to be independent. Thus the autoregressive conditional Poisson hidden Markov 

model proposed here is more appropriate to fit correlated count data whose means change 

with different states.

To define the suggested structure, let {Xt  : t e N} denote observed time series count 

data, with Xt  representing the count at time t. It is assumed that the means of the Poisson 

processes are generated from different Markov chain status and are also affected by the near 

previous counts. Let St denotes the state of the Markov chain to which t belongs and the 

a -  algebra generated by {Xi, Si : i < t } as Ft . Given the past information Ft - 1

Xt |F t-i -  Pois (At),
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where At is a time varying structure defined as

q
At,st = <̂ st + ^  ®i,St Xt-i,

i=1

and mSt, a '  Sts, i = 1,2 , , . . . ,  q, are positive for all values of St. Note the St illustrates the 

corresponding state of the underlying Markov chain at time t .

Note that the above formulation parallels that of an ARCH(q) process, but with the 

parameters varying with the state of the Markov chain. A simpler model, where the a i,St 

remain constant across all states St can be adopted and may be sufficient to model some 

empirical count data series.

4. SOME PROPERTIES OF THE MODEL

Denote the unconditional probabilities of a Markov chain at time t as P  (St = i) , and 

probabilities of all possible outcomes at time t as column vector u t = (P (St = 1), P (St = 

2 ) , . . . , P (St = m)) , t  e N, m representing the number of Markov states. Let T (t) = 

{Jij (t)}, i = 1,2 , . . . , m , j  = 1,2 , . . . ,  m, where j i j  (t) = P (Ss+t = j  | Ss = i) , and the mean 

of the Poisson process constructed as At,St = mSt + £ q=1 a i,StXt-i. In order to express the 

expected mean and variance of observation Xt by vector and matrix calculation, define the 

row vector of mean of the Poisson process under different states as At = (At (St = 1), At (St = 

2 ) , . . . ,  At (St = m)). Let S = u 1 = (P (S1 = 1 ) , P (S1 = 2 ) , . . .  , P (S1 = m)) as the initial 

distribution of the Markov chain, and the u t could be deduced from relation u t+1 = u tr  (t). 

We restrict the scope of the study here within homogeneous Markov chain model, thus T  (t) 

will be abbreviated as T . So we have

u t = Ut- 1T = ST t  1,

E  (Xt) = ut At = STt-1 At,
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Var (Xt) = E [Var (Xt | St)] + Var [E (Xt | St)]

E (Xt)+  Var( ^  At,stI{st=})
st=1
m

= E (Xt) + E [(["[ At,stI{St=i})2] + [E ( f [  At,stI{St =i})]‘ 
St=1 st=1

= s  r t-1At + s r t-1A2 + (s r t -1  At)2.

5. LIKELIHOOD FUNCTION AND PARAMETER ESTIMATION

Let 9 = (y kj , w St ,&i,St) f°r i = 1 ,2, . . . , q , k , j  = 1, 2, . . . , m  represents all pa­

rameters in autoregressive conditional Poisson hidden Markov model. The log-likelihood 

function for the model is given by

It (9) = l og P̂ (X T = x T)) = l og (SP(x 1)r P(X2) • • • r P(xT)!'),

where s  is the initial distribution and

P 1 (xt) ••• 0

P (xt) =

0 ••• Pm (Xt)

with diagonal elements of the matrix defined as

Pi (xt) = P (Xt = xt | St = i),

and the matrix r defined as

m

r =

T1m

Tm1 • • • Tmm
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For the discrete case, elements in the likelihood function become progressively 

smaller as t increases, scaling the forward probabilities is a common way to avoid underflow. 

The steps to scale the forward probabilities are shown as below.

fio = SP (xi ) ,

with fit defined recursively as

fit = f i t- 1 r  P  (xt), f o r t  = 2, 3 , . . . , T .

with

where

0 0 = 8,

1 fit
I t  = — ,mt

mt 0 t = mt-i i t - 1 B t,

mt = Y  fit (f) = f i t ̂
i

mo = 81' .

Thus the scaled log likelihood function would be

T
lo g (L t ) = Y  log

t = i

mt
mt-i

T
Y  log (i t -1 B t 1').
t = i

(1)

Note that the EM algorithm could also be derived and used. However, there are 

some parts required for the algorithm that do not have closed form of solutions, leading to 

complications in the computations. Thus maximum likelihood estimation method is more 

convenient and gives better estimates.
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6. THE MONTE-CARLO SIMULATION STUDY

We conducted a Monte-Carlo simulation study to investigate the performance of 

maximum likelihood estimators of ACP-HMM model, the log likelihood function used is 

defined as (1). A simulation study was also used to investigate the use of Akaike information 

criterion (AICc) and Bayesian information criterion (BIC) criteria to differentiate between 

highly correlated count data and regular Poisson HMM process.

The properties of estimates were studied across different combinations of parameters 

using 1,000 simulation runs for each combination. Bias, mean squared error (MSE) and 

mean absolute deviation (MAD) were computed for each of the parameter combination sets. 

In order to eliminate the artifacts arising out of initial conditions, the first 240 time series 

data points were discarded.

We provide the parameter sets used in simulation study here before we move to 

details of each cases.

Case 1. A time series of count data with 2 states and 2 lags is generated. Each state 

has the same lag coefficients.

r  =
0.7 0.3 

0.4 0.6
, mi = 2 0 , m2 = 1 0 , a  1 = 0 .1 , a 2 = 0 .2 .

Case 2. A time series of count data with 3 states and 2 lags is generated. Each state 

has the same lag coefficients.

0 .8 0.15 0.05

0.15 0.75 0 .1

0.05 0.15 0 .8

, mi = 20, m2 = 13, m3 = 8 , a i = 0.2, a 2 = 0.1.
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Case 3. A time series of count data with 4 states and 2 lags is generated. Each state 

has same lag coefficients.

0 .6 0 .2 0.15 0.05

0.15 0 .6 0 .2 0.05

0.05 0 .2 0 .6 0.15

0.05 0.15 0 .2 0 .6

0 .2 , a2 = 0.3.

10, m2 = 5, m3 = 15, W4 = 2 0 , a \ =

Case 4. A time series of count data with 2 states and 1 lag is generated. Each state 

has a different lag coefficient a .

r  =
0.75 0.25 

0 .2  0 .8
, mi = 10, m2 = 20, a i,i = 0.3, a i ,2 = 0.2.

Case 5. A time series of count data with 3 states and 1 lag is generated. Each state

has a different lag coefficient a .

0.3.

0.7 0.25 0.05

0.15 0.7 0.15

0.05 0 .2 0.75

, mi = 3, m2 = 8 ,m 3 = 4 ,a i,i  = 0 . 1 , a i ,2 = 0.5, a i, 3 =

Case 6 . A time series of count data with 4 states and 1 lag is generated. Each state

has a different lag coefficient a .



55

0 .6 0 .2 0.15 0.05

0.15 0 .6 0 .2 0.05

0.05 0 .2 0 .6 0.15

0.05 0.15 0 .2 0 .6

, = 10, m2 = 5, m3 = 8 , m4 = 7, a\,\ = 0.2, a\,2 =

0.05, ai,3 = 0.7, a M = 0.3.

6.1. CASE 1. A TIME SERIES OF COUNT DATA WITH 2 STATES AND 2 LAGS 
IS GENERATED. EACH STATE HAS SAME LAG COEFFICIENTS

The simulated data were generated from a ACP-HMM process with 2 states and 2 

lags. Each state has same lag coefficients. For Table 1, the true parameter set is

r  =
0.7

0.4

0.3

0 .6
, mi = 20, m2 = 10, ai = 0.1, a2 = 0.2.

Table 1. Maximum likelihood estimation results from 1,000 simulations based on different 
number of Markov states (m = 2, q = 2)

Parameter True Coefficient Estimates MSE MAD

Pii 0.7 0.70083 0.000973 0.031194

P12 0.3 0.29917 0.000973 0.031194

P 21 0.4 0.39909 0.001284 0.035827

P 22 0 .6 0.60091 0.001284 0.035827

m1 2 0 20.09900 0.796033 0.892207

m2 10 10.08003 0.641469 0.800917

a 1 0 .1 0.09775 0.000640 0.025289

a 2 0 .2 0.19806 0 .0 0 1 0 0 1 0.031631
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For simulation of the parameter set, sample size T=1,440 was considered, which 

is comparable to the length of series of minute count data of a day or daily count data 

of approximately 4 years. Maximum likelihood estimation results from 1,000 simulations 

based on the above sample size with a time series of count data with 2 states and 2 lags 

were generated. Each state has same lag coefficients.

6.2. CASE 2. A TIME SERIES OF COUNT DATA WITH 3 STATES AND 2 LAGS 
IS GENERATED. EACH STATE HAS SAME LAG COEFFICIENTS

The simulated data were generated from a ACP-HMM process with 3 states and 2 

lags. Each state has same lag coefficients.

Table 2. Maximum likelihood estimation results from 1,000 simulations based on different 
number of Markov states (m = 3, q = 2).

Parameter True Coefficient Estimates MSE MAD

P i i 0.8 0.75734 0.025900 0.069293

P 12 0.15 0.15960 0.017900 0.075879

P13 0.05 0.08306 0.007890 0.053554

P 21 0.15 0.16917 0.015500 0.061574

P 22 0.75 0.71248 0.030000 0.090094

P 23 0.1 0.11835 0.016601 0.066250

P 31 0.05 0.08872 0.015400 0.063711

P 32 0.15 0.19528 0.029200 0.094614

P 33 0.8 0.71600 0.056100 0.113975

m i 20 18.88701 7.213412 1.907206

m 2 13 12.01882 6.581093 1.725269

m 3 8 7.33770 2.882121 1.068537

a i 0.2 0.21170 0.001421 0.029035

« 2 0.1 0.13157 0.005563 0.050574
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For Table 2, the true parameter set is

0 .8 0.15 0.05

0.15 0.75 0 .1

0.05 0.15 0 .8

, mi = 2 0 , m2 = 13, m3 = 8 , a\ = 0 .2 , a 2 = 0 . 1 .

For simulation of the parameter set, sample size T=1,440 was considered, which 

is comparable to the length of series of minute count data of a day or daily count data 

of approximately 4 years. Maximum likelihood estimation results from 1,000 simulations 

based on the above sample size with a time series of count data with 3 states and 2 lags 

were generated. Each state has same lag coefficients.

6.3. CASE 3. A TIME SERIES OF COUNT DATA WITH 4 STATES AND 2 LAGS 
IS GENERATED. EACH STATE HAS SAME LAG COEFFICIENTS

The simulated data were generated from a ACP-HMM process with 4 states and 2 

lags. Each state has same lag coefficients. For Table 3, the true parameter set is

0.3.

0 .6 0 .2 0.15 0.05

0.15 0 .6 0 .2 0.05

0.05 0 .2 0 .6 0.15

0.05 0.15 0 .2 0 .6

, mi = 10, m2 = 5, m3 = 15, m4 = 20, a i = 0.2, a 2 =

For simulation of the parameter set, sample size T=1,440 was considered, which 

is comparable to the length of series of minute count data of a day or daily count data 

of approximately 4 years. Maximum likelihood estimation results from 1,000 simulations 

based on the above sample size with a time series of count data with 4 states and 2 lags 

were generated. Each state has same lag coefficients.
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Table 3. Maximum likelihood estimation results from 1,000 simulations based on different 
number of Markov states (m = 4, q = 2).

Parameter True Coefficient Estimates MSE MAD

P 11 0.6 0.59072 0.021195 0.121462

P\2 0.2 0.14493 0.020742 0.124613

P 13 0.15 0.14698 0.021254 0.128451

P14 0.05 0.11737 0.020622 0.106100

P 21 0.15 0.17713 0.020913 0.123070

P 22 0.6 0.56450 0.014809 0.092928

P 23 0.2 0.16797 0.020054 0.121475

P 24 0.05 0.09040 0.012942 0.079465

P 31 0.05 0.11546 0.021349 0.108176

P 32 0.2 0.13073 0.019580 0.119710

P 33 0.6 0.59138 0.024016 0.131772

P 34 0.15 0.16243 0.019272 0.116864

P 41 0.05 0.13782 0.025745 0.123332

P 42 0.15 0.09882 0.015453 0.109651

P 43 0.2 0.19901 0.186920 0.400990

P 44 0.6 0.56435 0.157511 0.364333

W1 10 9.18312 6.838601 2.186901

m2 5 4.97969 1.658411 0.994961

m3 15 14.55797 6.065909 1.926202

m4 20 19.64506 6.986931 2.021010

«1 0.2 0.18946 0.001192 0.027813

« 2 0.3 0.27415 0.003118 0.044445
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6.4. CASE 4. A TIME SERIES OF COUNT DATA WITH 2 STATES AND 1 LAG IS 
GENERATED. EACH STATE HAS A DIFFERENT LAG COEFFICIENT a

The simulated data were generated from a ACP-HMM process with 2 states and 1 

lag. Each state has a different lag coefficient. For Table 4, the true parameter set is

r  =
0.75 0.25 

0.2 0.8
, mi = 10, m2 = 20, a i,i = 0.3, ai,2 = 0.2.

For simulation of the parameter set, sample size T=1,440 was considered, which 

is comparable to the length of series of minute count data of a day or daily count data 

of approximately 4 years. Maximum likelihood estimation results from 1,000 simulations 

based on the above sample size with a time series of count data with 2 states and 1 lag were 

generated. Each state has a different lag coefficient a .

Table 4. Maximum likelihood estimation results from 1,000 simulations based on different 
number of Markov states (m = 2, q = 1).

Parameter True Coefficient Estimates MSE MAD

P11 0.75 0.74789 0.001008 0.024260

P12 0.25 0.25211 0.001008 0.024260

P 2i 0.2 0.20461 0.001951 0.025965

P 22 0.8 0.79539 0.001951 0.025965

W1 10 9.98615 0.470935 0.536199

m2 20 20.05603 1.107474 0.833189

a1,1 0.3 0.30087 0.001984 0.034581

a1,2 0.2 0.19915 0.001885 0.032861
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6.5. CASE 5. A TIME SERIES OF COUNT DATA WITH 3 STATES AND 1 LAG IS 
GENERATED. EACH STATE HAS A DIFFERENT LAG COEFFICIENT a

The simulated data were generated from a ACP-HMM process with 3 states and 1 

lag. Each state has a different lag coefficient. For Table 5, the true parameter set is

0.7 0.25 0.05

0.i5 0.7 0.i5

0.05 0 .2 0.75

, mi = 3, m2 = 8 , m3 = 4, a i,i = 0.1, a i ,2 = 0.5, a i, 3 = 0.3.

Table 5. Maximum likelihood estimation results from 1,000 simulations based on different 
number of Markov states (m = 3, q = 1).

Parameter True Coefficient Estimates MSE MAD

Pii 0.7 0.68446 0.010054 0.067461

Pi2 0.25 0.21080 0.011515 0.075060

P i3 0.05 0.10474 0.018946 0.090441

P 2i 0.15 0.15906 0.006665 0.060033

P 22 0.7 0.68963 0.004557 0.041534

P 23 0.15 0.15131 0.007579 0.065768

P 3i 0.05 0.09801 0.014336 0.080578

P 32 0 .2 0.18475 0.009468 0.073481

P 33 0.75 0.71724 0.012719 0.075851

mi 3 2.86848 0.240990 0.314269

m2 8 8.22341 1.214701 0.592089

m3 4 4.26150 1.426600 0.830676

a i,i 0 .1 0.23549 0.088734 0.246055

a i,2 0.5 0.42867 0.067414 0.204649

a i,3 0.3 0.31042 0.037574 0.173398
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For simulation of the parameter set, sample size T=1,440 was considered, which 

is comparable to the length of series of minute count data of a day or daily count data 

of approximately 4 years. Maximum likelihood estimation results from 1,000 simulations 

based on the above sample size with a time series of count data with 3 states and 1 lag were 

generated. Each state has a different lag coefficient a .

6.6. CASE 6. A TIME SERIES OF COUNT DATA WITH 4 STATES AND 1 LAG IS 
GENERATED. EACH STATE HAS A DIFFERENT LAG COEFFICIENT a

The simulated data were generated from a ACP-HMM process with 4 states and 1 

lag. Each state has a different lag coefficient. For Table 5, the true parameter set is

0 .6 0 .2 0.15 0.05

0.15 0 .6 0 .2 0.05

0.05 0 .2 0 .6 0.15

0.05 0.15 0 .2 0 .6

, mi = 10, m2 = 5, m3 = 15, m4 = 20, a i = 0.2, a 2 =

0.3.

For simulation of the parameter set, sample size T=1,440 was considered, which 

is comparable to the length of series of minute count data of a day or daily count data 

of approximately 4 years. Maximum likelihood estimation results from 1,000 simulations 

based on the above sample size with a time series of count data with 4 states and 1 lag were 

generated. Each state has a different lag coefficient a .

As was down in previous cases, we kept the probabilities of staying in the current 

state much higher than transitioning to a different state. This was intentionally down in 

order to make the state changes infrequent. The ACP-HMM model was built to allow the 

ACP component to model the high frequency changes in the count data and the HMM part 

to model the low frequency changes in the states.
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Table 6. Maximum likelihood estimation results from 1,000 simulations based on different 
number of Markov states (m = 4, q = 1).

Parameter True Coefficient Estimates MSE MAD

P 11 0.6 0.52966 0.024245 0.129561

P\2 0.2 0.16533 0.017840 0.110500

P 13 0.15 0.15392 0.021644 0.128321

P14 0.05 0.15109 0.030337 0.133185

P 21 0.15 0.10575 0.016595 0.113758

P 22 0.6 0.55517 0.012743 0.078093

P 23 0.2 0.16731 0.021481 0.125965

P 24 0.05 0.17177 0.033844 0.146897

P 31 0.05 0.12094 0.020470 0.107010

P 32 0.2 0.17373 0.011320 0.083275

P 33 0.6 0.53404 0.019775 0.108371

P 34 0.15 0.17129 0.017105 0.107620

P 41 0.05 0.14922 0.028730 0.129490

P 42 0.15 0.16034 0.013154 0.094199

P 43 0.2 0.17588 0.202360 0.424126

P 44 0.6 0.51456 0.113191 0.314562

W1 10 11.04803 4.878910 1.592500

m2 5 4.67898 0.664762 0.494271

m3 8 8.76332 2.276821 1.220924

m4 7 6.86989 1.973631 1.184100

« 1 ,1 0.2 0.26203 0.053422 0.183901

« 1 ,2 0.05 0.04577 0.000885 0.024387

«1,3 0.7 0.70129 0.008947 0.068687

«1,4 0.3 0.28628 0.036385 0.149790
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Based on the simulation results, it can be seen that the maximum likelihood esti­

mation method provides relatively good estimates for the parameters with low Monte Carlo 

standard errors. For cases that m < 3, the estimates are pretty accurate since the estimates 

are close to the true coefficients. When the number of states increases, fitting models 

with many omega and alpha values becomes more difficult. But the variance is still pretty 

reasonable given the fact that Poisson hidden Markov models give bigger variance [18]. 

This demonstrates the MLE is a promising method for estimating the parameters of the 

suggested autoregressive conditional Poisson hidden Markov model (ACP-HMM).

7. MODEL SELECTION

To illustrate the importance of selecting the correct structure of count data and also 

examine if AICc and/or BIC are good criteria to distinguish the true generation process, a 

small scale Monte Carlo simulation study was performed. All statistics reported here are 

calculated from N=1,000 replications and each replication having sample size T=1,440. In 

order to avoid artifacts created by initial conditions, the first 240 time series data points 

were discarded.

Table 7 shows results for the case when the data were generated from an ACP-HMM 

process with true parameters

r  =
0.7 0.3 

0.2 0.8
, mi = 5, m2 = 20, a  1 = 0.3, a 2 = 0.1.

Both ACP-HMM and Poisson HMM Model were ultilized to fit the data. The AICc 

and BIC values for ACP-HMM are lower than those for the Poisson HMM model, which 

suggests AICc and BIC perform well in identifying the true structure of the time series.
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Table 7. Poisson HMM and ACP-HMM selection by AICc and BIC criteria with simulated 
time series data for small a ’s that do not differ much.

Parameter True Coefficient ACP-HMM Poisson HMM

p 11 0.7 0.70224 0.73894

P12 0.3 0.29776 0.26106

p 21 0.2 0.20249 0.15565

p 22 0.8 0.79751 0.84435

m1 5 5.02370 12.21275

m2 20 20.01910 29.89603

a1 0.3 0.29968 -

®2 0.1 0.10057 -

AICc 10181 10792

BIC 10213 10827

Table 8 shows results when an ACP-HMM process is the underlying structure 

producing the count data with true parameters

r  =
0.7 0.3 

0.2 0.8
, = 2.5, m2 = 9 ,a \  = 0.8, a2 = 0.1.

Both ACP-HMM model and Poisson HMM model were utilized to fit the data. In 

this case, AICc and BIC also showed their ability to select the right structure. Note if 

the data generating process of a count data time series has an autoregressive conditional 

heteroskedastic structure, and its parameters are governed by a hidden Markov process, then 

the regular Poisson HMM provides a poor fit, especially when one or more of the a ’s are 

high.
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Table 8. Poisson HMM and ACP-HMM selection by AICc and BIC criteria with simulated 
time series data with one large a  and the other small.

Parameter True Coefficient ACP-HMM Poisson HMM

P11 0.7 0.71857 0.92571

P12 0.3 0.28143 0.07429

P21 0.2 0.20091 0.07384

P22 0.8 0.79909 0.92616

m1 2.5 2.56610 43.83731

m2 9 8.90310 68.34237

a 1 0.8 0.79107 -

a 2 0.1 0.09657 -

AICc 10461 12650

BIC 10493 12686

8. VISUALIZATION OF SIMULATED DATA

In order to provide a visual representation of how the ACP-HMM formulation 

behaves, data was generated from parameter set

r  =
0.7 0.3 

0.4 0.6
, mi = 20, m2 = 10, a i = 0 .1, a  = 0 .2.

In Figure 1, the grey line represents the simulated data while the blue line indicates 

the underlying mean of the Poisson process. The red bars at the bottom indicate time periods 

where the underlying process is at State 1 while the green bars indicate the periods in which 

the process is at State 2.
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State 1 
State2

Simulated Count Data with Underlying Lambdas and States

Varaibles
Lambda
Simulated

Time

Figure 1. Simulated time series count data, and the underlying At,st and states.

9. APPLICATION TO A REAL-LIFE DATA SET

Figure 2 demonstrates the daily number of deaths in Evora, Portugal from 01/01/1996 

to 12/31/2007. The sample mean equals 6.119 and the variance is 7.483. There seems to 

be irregular periodicity present in this time series.

Figure 2. Daily Death in Evora from 01/01/1996 to 12/31/2007.

The auto-correlation function plot of the count data (Figure 3) suggests there is 

auto-correlation in the count data and hence ACP structure is better than regular Poisson 

process. Some irregular periodicity is also observed, hence the motivation for fitting an 

ACP-HMM could be seen.
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Figure 3. Autocorrelation of Daily Death Count Data.

Table 9. Daily death data fitted by Poisson HMM and ACP-HMM with AICc provided.

Parameter ACP-HMM Poisson HMM

P11 0.9954 0.999999

P12 0.0046 0.000001

P21 0.0127 0.0422

P22 0.9873 0.9578

(̂ 1 5.5312 6.1230

W2 6.8751 33.0782

U1,1 0.0001 -

U1,2 0.1086 -

AICc 3445.2 3533.7
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Daily death data is fitted by Poisson HMM and ACP-HMM with 2 states and their 

corresponding AICc’s are provided. Without considering the correlation inside the data, 

Poisson HMM gives a pretty large mean for the second Poisson process and the transition 

matrix has extreme estimates for its probabilities. Based on two AICc, the ACP-HMM 

provides a better fit and indicates a need for this generalization of the poisson HMM in real 

data.

10. CONCLUSION

The model provided here is a natural generalization of the Poisson hidden Markov 

model, which takes the influence of previous observations into consideration when modeling 

auto-correlated count time series. The reported simulation results in Section 6 show that 

the MLE method provides reasonable estimates of the model parameters of the ACP-HMM 

model. However, when the number of states gets larger, the estimations are not very accurate 

and this is especially seen in estimates of transition probabilities that are close to zero. The 

study of the utility of using AICc and BIC criteria in determining the true structure of the 

count data shows promising results. Finally, we use a real-life data set to illustrate the 

importance of developing such a model.
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ABSTRACT

A model to classify the lifespan of the fruit fly is developed using a two-stage 

process. Stage one models the per minute activity counts of each fly using a zero-inflated 

autoregressive conditional Poisson model. These probabilities are allowed to vary hourly, 

reflecting the circadian and other cycles present in a fly’s sleep architecture. A five-day 

moving window was used to model data from five days at a time, allowing the model 

parameters to vary over the course of the fly’s life. The resulting probabilities capture 

information about changes in sleep patterns with age and are hypothesized to contain 

features that help categorize flies into short and long-lived groups. The resulting hourly 

zero-inflation probabilities over a 24 day period are utilized to create a "heat map” containing 

information on the 24-hour daily sleep cycle and its changes across the 24-day observation 

period. In stage two, the heat maps for individual flies were used as inputs to a convolutional 

neural network to build a classification model. The estimated model provides a reasonably 

accurate way to group flies into lifespan categories. Grouping flies into such categories 

would facilitate the discovery of biochemical markers of aging by assaying groups of short 

and long-lived flies.
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1. INTRODUCTION

Sleep has been found in every animal that has been rigorously evaluated. Adequate 

sleep is essential for good health [1] and poor sleep can lead to significant health issues, 

both physical and mental [2]. The study of sleep is not only important to understanding 

the relationship between inadequate sleep on both individual and population health [3], 

but is also central to determining its effect on lifespan [4]. For example, Gallicchio & 

Kalesan [5] employed meta-analysis to establish a relationship between sleep duration and 

mortality. Additional evidence has accumulated that both short and long durations of sleep 

contribute to a higher risk of mortality [6, 7]. Moreover, it is known that sleep patterns 

are affected by aging in the central nervous system [8]. Ohayon et al. [9] added to this 

evidence and showed that total sleep time and sleep efficiency decrease with age, but the 

reverse occurred with sleep latency. Unfortunately, studying how age-related changes in 

sleep architecture relate to human mortality is hampered by the decades' long lifespan. 

Alternatively, such investigations can be conducted using model organisms with short 

lifespans and high molecular and biochemical homology to human sleep regulation. The 

use of model organisms can also enhance the search for chemical biomarkers that are linked 

to biological aging. In this paper, we present the results of a study of the model organism 

Drosophila melanogaster, the fruit fly, to investigate if a single sleep characteristic of the 

flies derived from their per-minute activity counts can be utilized to classify study specimens 

into long- and short-lived categories. This is the first step in a series of studies, with the 

ultimate goal of building a predictive model based on multiple sleep characteristics to isolate 

flies into short- and long-lived categories, based on the sleep data in the early part of their
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lives. The classified flies can be assayed to determine biochemical markers of aging, thus 

helping to understand the role sleep plays in affecting the lifespan of this model organism 

and ultimately that of humans.

The fruit fly, Drosophila melanogaster, has emerged as an ideal model organism 

to study sleep [10, 11]. Sleep has been defined in the fly by measuring the quiescent 

episodes [12], and findings in the fly are relevant to understanding human sleep and health. 

Flies have their primary sleep period at night, the same neurotransmitters control sleep 

and wakefulness in both organisms, and proteins conserved between humans and flies both 

regulate sleep and wakefulness [12, 13]. The relatively short lifespan of the fruit fly allows 

one to evaluate sleep data continuously over their entire lifespan. In addition, Drosophila 

has been used to generate and evaluate numerous novel molecules and hypotheses in the 

aging field [14]. Preliminary analyses have demonstrated that features of sleep architecture 

associated with lifespan in the fly also apply to the understanding of human sleep and 

health [15]. However, quantitative studies of how sleep patterns affect lifespan in the fly are 

currently limited, and the results reported herein would be valuable in understanding how 

to improve sleep to limit the health impacts of inadequate sleep or to indirectly identify the 

onset of a decline in health.

In this study, per-minute activity counts of each fly are modelled using an autore­

gressive conditional Poisson (ACP) formulation with zero-inflation, with the zero-inflation 

parameter allowed to vary from hour to hour across each day, thus accounting for circadian 

rhythms and other cyclical activity patterns. The experiment was conducted under light 

and dark periods, each lasting 12 hours, which coordinates with the circadian rhythm of the 

Canton Special (CS) genotype studied. We hypothesize that the zero-inflation parameter is 

a proxy for the propensity to sleep during a given hour and thus models a particular aspect 

of the sleep architecture. This study has two intertwined goals. The first is to develop a 

predictive model that can be utilized to separate individual flies into short- and long-lived 

groups, and the second is to determine if the daily profile of zero-inflation probabilities
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contain information associated with aging. To this end, a convolutional neural network 

(CNN) is trained on ’heat maps’ generated from the estimated daily profile of zero-inflation 

probabilities to obtain a classification model.

In Section 2, we introduce a temporally dependent Poisson model with a zero- 

inflation parameter that varies with time. A brief introduction to CNNs and the reasons 

for its adoption in this study are presented in Section 3, followed by a discussion of the 

data collection and analysis given in Section 4. The results of the analyses are presented in 

Section 5. In Section 6, a discussion of the results is presented together with suggestions 

for future work. The paper is concluded with a summary given in Section 7.

2. ZERO-INFLATED POISSON MODEL

The first step in our approach is to build a count data model that incorporates 

zero-inflation, with the zero activity counts indicating possible periods of sleep. The CS 

genotype flies under study have a regular sleep pattern that repeats with approximately a 

24-hour period. Thus, a model that accounts for both a cyclically varying zero-inflation and 

serial dependence is needed.

Heinen [16] introduced an ACP model to deal with time series of count data with 

serial correlation. Building on Heinen’s work, the theoretical properties of the general 

ACP model were derived by Ghahramani and Thavaneswaran [17]. In brief, the count Xt 

observed during the interval (t-1, t] considered a realization from a Poisson distribution with 

a conditional mean that is dependent on past observations and past conditional means. The 

process is formally defined as follows. Let the count data series be denoted by {Xt : t e N } 

and let F t denote the sigma field generated by the set of random variables {X , : i < t}. The 

counts are assumed to be realizations from a Poisson distribution with a conditional mean 

Xt, whose dependence on past conditional means and counts parallels the GARCH model 

of Bollerslev [18]:

Xt | Ft-i~Pois (At)
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p q
E (Xt 1 T t- i) =At= ro+ y i UiXt-i+ ^^ fij At- j ,

i=1 j = 1

under the condition that all of a i's, fij's are positive.

The above formulation is suitable for modelling discrete time series with overdis­

persion while taking serial correlation into consideration, with the latter property being of 

interest given that temporal dependence is not uncommon in times series of count data.

Zhu [19] proposed a generalized version of the ACP model by replacing the Pois­

son assumption with a zero-inflated Poisson (ZIP) distribution that has a zero-inflation 

parameter m. A ZIP (A, m) distribution can be characterized by the probability mass 

function:
eAA-kP (X=k) =mSk0+ (1- m) — — , keN U{0} ,

’ k !

where 0 <m< 1 and 6k$ is the Kronecker delta such that

I 1 if k = 0 
^k,0= j .

[ 0 if k *0

Thus, under the formulation of Zhu [19], the time series {Xt : t e N } , conditional on Ft-1, 

satisfy

Xt |F -1 ~ Z IP  (At,m) , 

p q
At= ^0+ ^   ̂®iXt-i + ^  ̂fij At-j,

i=1 j=1

where 0 <m< 1, a 0> 0, a i>0, fij >0, for i= 1,2, . . .  ,p and j  = 1, 2, . . .  ,q.

The above model assumes that the zero-inflation probability is a constant over time, 

and this condition was relaxed by Ratnayake and Samaranayake [20]. This relaxation 

allows the zero-inflation probabilities to be influenced by an exogenous random variable 

or a function of time. Employing this concept, the following model is defined to allow 

zero-inflation probabilities to vary from hour to hour, over the 24 hours of a given day, 

to accommodate the circadian rhythm associated with sleep found in the CS fly. Defining
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{X  : t e N } and Ft as before, we let

P (Xt=k | F t-i) =utSk,0+ (1 -w t)
k !

where
p q

At=ao+ ^  &iXt-i + fijAt- j ,
i=1 j =1

under the constraints 0 <wt< 1, a0> 0, a i >0, ySy >0, for i= 1, 2, . . .  ,p, j  = 1, 2, . . .  ,q, and 

8ko  is the Kronecker delta defined previously, with wt= £ 241wi Ii(t). Note that U(t), i = 

1, 2, . . .  ,24 is a set of indicator functions that are zero except when i = t (mod 24). The 

above formulation will be referred to hereafter as the variable zero-inflated ACP model or 

the VZI-ACP model.

When applied to the activity count data obtained from the flies, we assume that for 

a given fly, the zero-inflation probability, wt, for the hour i of a day remains constant over 

that 1-hour period. Since the count time series of each fly is modelled individually, these 

probabilities may vary not only across the hours but also across flies as well. In fact, the 

other parameters of the model may also differ across flies. Thus the counts could be denoted 

by Xi,t, where l signifies the fly, and all the parameters of the above model can also be 

indexed by the subscript l, but for simplicity this additional indexing is avoided.

To allow for the variation of the zero-inflation probabilities across the lifespan of a 

single fly, the above model is fitted to 1-minute activity count data over a 5-day window, 

with this window shifted forward 1 day at a time. This approach yields parameter estimates 

that vary from day to day within a fly, including the 24 zero-inflation parameters. Results 

from fitting the VZI-ACP model to the fly activity data are discussed in Section 5. Note 

that each zero-inflation probability is estimated based on 300 data points.

The zero-inflation probabilities estimated from the VZI-ACP model are converted 

to images, as described in Sections 3 and 5, and used as input to a CNN trained to carry out 

the classification of the flies into short and long-lived groups.
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The question of whether the above VZI-ACP model is parsimonious is a natural one 

due to the presence of 24 zero-inflation parameters. For an individual fly, there may be 

adjoining hours on a particular day where a single zero-inflation parameter could be used. 

Using a common zero-inflation parameter across a particular multihour period would only 

work if this is a reasonable assumption across all 5 days used for modelling and the data 

show that this is not the case. In addition, the zero-inflation-based heat map inputs to the 

CNN must contain identical features for all the flies used in this study. Note that it is assumed 

that the other parameters remain constant while the zero-inflation probabilities, reflecting 

the circadian nature of the sleep-wake process, cycles over a given 24-hour period. Thus, 

the information about sleep architecture is captured only by the zero-inflation probabilities 

and not by the other model parameters. A potential alternative to the VZI-ACP model is 

found in Xu et al. [21]. While this model has advantages, its adaptive property allows both 

the zero-inflation and other model parameters to vary over the 24-hour cycle. Thus, sleep 

-related information will be captured by more than one variable and some may also capture 

other dynamics unrelated to sleep. In its current form, it is not suitable for our immediate 

objective of isolating a single variable that can be directly attributed to an aspect of the 

sleep architecture, namely, the propensity to sleep. As indicated before, this is the first in 

a series of studies that are planned, and an adaptation of Xu’s model will be considered in 

future studies.

3. CONVOLUTIONAL NEURAL NETWORKS (CNN)

In the past few decades, CNNs have attracted wide attention, especially in the context 

of image and video classification [22, 23, 24]. Applications of CNNs in medical image anal­

ysis have become common [25, 26, 27] and their utility has extended to modelling financial 

time series [28, 29]. In another application, researchers used handwritten digits (available 

in the MNIST database) as input and then classified the observations into corresponding 

numbers using a CNN successfully [30, 31]. The use of machine learning algorithms has
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extended to the study of sleep. For example, Oropesa et al. [32] combined a wavelet 

transform and an artificial neural network (ANN) for sleep stage classification. Recently, 

machine learning (including CNN) has been applied to classify sleep stages [33, 34, 35], 

which provides new and unambiguous insights into sleep organization. However, there has 

been no study that employs a CNN to classify Drosophila melanogaster into age categories 

using activity count-based information.

The typical input to a CNN is a two-dimensional image or a tensor, and when 

trained on an appropriate data set, it can differentiate input images or tensors into different 

categories. For a detailed description of CNNs the reader is referred to Aggarwal [36]. In 

addition, Sewak et.al. [37] provide a practical guide on the implementation of CNNs.

The architecture of CNNs is, in a sense, based on the visual cortex of the human 

brain, where each portion of an image is processed by a small set of neurons, called receptive 

fields, with multiple such neuron sets processing overlapping segments of an image [36]. 

In general, a CNN consists of an input layer, multiple inner layers, and an output layer. The 

first set of inner layers act similar to the receptive fields, processing overlapping segments 

of the image. These are called convolution layers, and the convolution of the input image 

pixels occurs by the application of a moving linear filter to segments of the image. The 

objective of this processing is to extract high-value features (e.g., edges). The convolution 

operations can be done using one or more layers. Following the convolution layers is the 

pooling layer, which reduces the dimension of the image. In max pooling, the maximum 

value of a rectangular section of the convolved image is returned, while in average pooling, 

the average of the values observed in that segment is used. The resulting outputs are then 

fed into a traditional neural network (NN) to obtain the output [36].

In the present study, a 24x24 pixel image that may be viewed as a ‘heat map’ is 

constructed using the hourly zero-inflation probabilities for a given day displayed along 

each row, and each of the 24 columns representing a particular hour of the day. There are 

exactly 24 rows, representing the first 24 days for which the activity data are available for
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each fly. The number of days in the study is not extended beyond Day 24 so as to enable 

the inclusion of data for flies with short lifespans. Note that to estimate the zero-inflation 

probabilities for Day 24, one needs data from Days 24-28.

A CNN was selected as the platform for building the classification model because 

of two reasons. The image inputs required by the CNN allow us to construct images that 

display the daily 24 zero-inflation probabilities in rows, preserving the temporal relationship 

between them within a day, while at the same time allowing the display of the zero-inflation 

probabilities for a specific hour across 24 days as a column, not only preserving the day-to­

day temporal relationship, but also highlighting any age related changes in this parameter. 

More importantly, subtle changes that may be related to biological aging may occur at 

different points in the lifespan and on different hours of the day for different flies. That 

is, the image pixels that relate to lifespan may appear at slightly different positions of the 

24x24 image for each fly. The CNNs have what is known as the translational invariance 

property (see [36]), which in lay terms means that key features of the image need not be at 

a fixed position for the CNN to perform well as a classifier. For example, images of dogs 

and cats need not be centered exactly when a CNN is used to classify them into dog and cat 

categories. This is very important in the current context because key sleep related features 

that change with biological aging are not found at exactly the same set of hours in each fly, 

and these changes may not occur at exactly the same point in time relative to their age. In 

addition, the duration between a fly's eclosing and the first full day in which the data were 

collected differed by several hours across the flies because of different lab conditions, and 

thus the translational invariance property becomes essential for the proper analysis of the 

data.

In addition, CNNs have fewer connections between nodes compared to fully con­

nected NNs, require less memory, and the pooling allows for only the valuable features to be
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passed to the next layer. Thus, they can be trained fairly quickly relative to fully connected 

NNs, and are regularized so that overfitting is reduced. Thus, CNNs also suit the current 

task, where only a small number of flies are available for model training and testing.

4. DATA

After eclosing, the fruit flies are housed in groups of 40 for 2 days, and then 

individuals are transferred to glass tubes that are 65 mm of length with 3 mm of inside 

diameter. The tube is placed in a monitor in which an infrared beam bisects the tube near 

the centre with food at one end and an air permeable barrier at the other. An activity count 

is registered when the fly breaks the beam [12]. The activity counts that are measured are 

the number of times the fly crossed the light beam. Each day, the flies are subject to 12 

hours of light and dark periods to simulate the day-night cycle.

In this study, 1-minute activity counts until their death were collected from 531 

CS male flies. The lifespan of each fly was also recorded, to an accuracy of 1 day. The 

minimum lifespan of the flies in the sample is 32 days, while the maximum is 74 days. 

The data set was divided into three groups based on days lived: (1) the short-lived group 

(labelled as Group 0), representing 151 flies with a maximum of 51 days lived; (2) the 

long-lived group (Group 2), consisting of 106 flies with a minimum of 60 days lived; and 

(3) the remaining falling into the middle group (Group 1). Note that an attempt was made 

to have Groups 0 and 2 be of equal size and represent approximately 25% of the flies in 

each category, but this could not be achieved due to ties at the Group 2 cut-off. A decision 

was made to exclude these ties from Group 2. To provide the CNN a good contrast between 

groups, the middle group was eliminated from our study. This left 257 flies in total for 

analyses and model building.

An actogram displaying 15 days’ of activity counts for a selected fly is given in 

Figure 1. Each row shows activity counts of the fly in half-hour bins over the 24-hour 

day, beginning with the first day the fly’s activities were recorded. For the convenience of
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comparison, 2 days’ worth of data are displayed in each row, say for day i and i+1, and the 

following row displays data for day i+1 and i+2. This is normally referred to as double 

plotting of the data. The actogram in Figure 1 clearly displays periods of high and low 

activity, with some periods showing the absence of any activity, indicating sleep. The main 

activity cycle coincides with the light/dark 12 hour periods flies are exposed to in order 

to maintain their circadian rhythm. Based on the inspection of the actograms for all flies, 

it can be observed that, in general, flies are more active when young and that their sleep 

patterns change as they age [38].

Figure 1. Actogram of activity data of an individual fly over fifteen days.
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Note on data accessibility: The data used in this study are gathered for a much broader 

and ongoing investigation on the relationship between sleep and aging in Drosophila. As 

such, the data relevant to this study will not be available until the broader research project 

is completed. Readers are welcome to contact the last author who is leading the broader 

study with any specific questions about the data.

5. ANALYSIS AND RESULTS

The implementation of and the results from the two modelling stages, namely, fitting 

the VZI-ACP model, and the use of a CNN for classification are described in Sections 5.1 

and 5.2, respectively.

5.1. RESULTS FROM FITTING THE VZI-ACP MODEL

In the VZI-ACP model, the zero-inflation probability was allowed to vary from hour 

to hour over the 24 hours of a day to reflect the circadian and other sleep cycles present 

in a fly's sleep architecture. A moving window of 5 days was used to model data from 5 

days at a time, allowing the model parameters to vary over the course of the fly's life. The 

estimates of the 24 zero-inflation probabilities from days i through i+4 were recorded as 

belonging to day i, i = 1 , 2 , . . . ,  24. Thus, the moving window used is a right-sided one. 

Observe that whether the window is centred or not does not matter because the classifier is 

only influenced by the order in which the rows in the heat map are arranged rather than the 

label given to each row. Results from the zero-inflated ACP model fitting are illustrated in 

Figure 2, which provides a plot of these probabilities for two flies, one short-lived and one 

long-lived. Note that rather than illustrating these probabilities using step functions, the 

probabilities were plotted centred at each hour and then connected to illustrate the typical 

‘m’ type shape of the sleep density exhibited by CS flies.
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Figure 2. Estimated zero-inflation probabilities over 24 days. Figure (a) is for a fly that 
lived for 44 days and figure (b) is for a fly that lived 62 days.

Figure 3. The graph of estimated zero-inflation probabilities over a day for an individual 
fly, with the 12-hour dark period shaded in grey.
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It is apparent from Figure 2 that the ‘m’ shape evolves with a fly’s aging process. 

These probabilities reflect the morning and evening points of peak activity (Figure 3) and 

suggest a change in the peaks as fly gets older. The underlying assumption in this study 

is that the zero-inflation probabilities capture information about how sleep patterns change 

with aging and they are hypothesized to contain features that will help categorize flies into 

short- and long-lived.

The resulting zero-inflation probabilities for each day, over a 24-day period (within 

the first 30 days of a fly’s life) were utilized to create a heat map as described in Section 

3, which contains information on the 24-hour sleep cycle for each day as well as how this 

profile changes across the 24-day observation period. The colours closer to red indicate 

high zero-inflation probabilities and those closer to purple signify low probabilities. Each 

row of the map represents the zero-inflation probability values for 1 day. Each column 

represents these probabilities for a specific hour across the 24 days over which the data are 

analysed. Examples of two such heat maps, one for a short-lived fly and the other for a 

long-lived fly, are displayed in Figure 4. The heat maps are used as input to the CNN to 

build the classification model.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour of day Hour of day

Figure 4. Heat map of zero-inflation probabilities for (a) short-lived and (b) long-lived flies.
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5.2. RESULTS FROM THE CONVOLUTIONAL NEURAL NETWORK

The CNN used in this study consists of three layers. The first layer is a convolutional 

layer with 16 kernels of size of 3x3. This layer will get diverse information on different 

parts of the heat maps while decreasing noise from the original input. A pooling layer 

employed local pooling of 2x2 clusters, and max pooling was used in this second layer. It 

reduces the amount of information for each characteristic obtained from the convolutional 

layer but will keep the most important features and drop the others. This layer also helps 

to align key spatial information found in approximately the same area to a fixed location. 

Finally, a fully connected layer with the rectified linear unit (ReLU) activation function was 

selected to calculate the final probabilities for falling into each lifespan category. These 

hyperparameters were determined based on a few initial trials using a subset of the data. 

We tested convolutional kernels of size 2x2, 3x3, and 4x4 and determined that 3x3 is best. 

In the pooling layer, local pooling cluster sizes tested included 2x2, 3x3, and 4x4, with the 

smallest cluster size producing the best results. Both max pooling and average pooling were 

employed, but average pooling did not produce reasonable results. The activation functions 

that were tested are ReLU, Logistic, TanH, and Leaky ReLU, with ReLU outperforming 

the alternatives. The learning rate and decay rates were varied and we settled on 1E-4 for 

the learning rate and 1E-5 for the decay rate. Note that we did not include multiple hidden 

layers between the pooling layer and out put layer in order to avoid over-fitting. We plan 

to re-estimate the parameters, with additional layers included, using additional data when 

they become available through future experiments.

To compare the CNN performance with an alternative classifier, an ANN was trained 

on the same data. Since the CNN we employed had one inner layer, the ANN was restricted 

to one hidden layer. The number of hidden nodes in the inner layer was varied from 144 

(which is comparable to the number of parameters in the CNN) to 288. Optimal results 

were obtained for an ANN with 216 hidden nodes, and the results are reported in Table 1.
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Table 1. Confusion table based on test samples.

Actual Group Column Total

Predicted Group 0 1

0 109 26 135 (80.74%)

1 42 80 122 (65.57%)

Row Total 151 (72.18%) 106 (75.47%) 257

Since the number of observations in the data set is limited, K-fold cross-validation 

was used instead of testing the estimated model employing a hold-out data set. Four disjoint 

subsets of data were created using stratified random sampling from the two lifespan groups 

(K=4). Three subsets were used as the training data and the remaining set as the test set. 

The process was repeated until all observations in each of the subsets were used in the test 

samples. The confusion table (Table 1) above provides the prediction results obtained by 

using probabilities greater than or equal to 0.5 to signify membership in a particular group. 

There are 151 short-lived flies and around 72% of these were predicted as short-lived by 

the CNN, while 80 out of 106 (around 75%) long-lived flies were predicted into the correct 

category. The prediction model yields reasonable accuracy, especially in light of the fact 

that sleep is not the only factor that affects the lifespans of the fruit flies. Results also show 

that the CNN outperformed the ANN across the board.

To provide a better view of how these two groups of flies are separated, a histogram 

of the difference in the probabilities of falling into Groups 0 and 2 are provided in Figure 

5. Most short-lived flies have a positive difference, while most long-lived flies have a 

negative difference. This is expected as the flies belonging to the short-lived group have a 

higher probability of falling into Group 0 than falling into Group 2, resulting in a positive 

difference. On the contrary, long-lived files have a negative difference.
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Figure 5. Frequency histogram of probability difference (probability of falling into Group 
0 minus the probability of falling into Group 2).

Frequency Histogram

1.00 -0 .7 5  -0 .5 0  -0 .2 5  0.00 0.25 0.50 0.75 1.00
Probability difference group 0 - group 2

Figure 6. Overlap of the two histograms displayed in Figure 5.

Overlaying the two graphs (Figure 6) shows that there is a substantial overlap between 

short- and long-lived flies. This is expected because sleep is just one factor that plays a role 

in determining lifespan. If we do not set the probability for membership in a group at 0.5
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or greater but set it at 0.75 or greater, there will be less mixing of these two groups. Table 

2 shows the result of this updated separation for the CNN classifier. This, however, leaves 

a large number of flies without a classification. Results in Tables 1 and 2 show that the 

zero-inflation probabilities, which can be regarded as related to sleep, do have information 

regarding lifespan that can be utilized to build a classification model.

Table 2. Confusion table based on test samples after changing criteria (Unclassified samples
not shown)

Actual Group Column Total

Predicted Group 0 1

0 45 7 52 (86.54%)

1 11 24 35 (68.57%)

Row Total 56 (80.36%) 31 (77.42%) 87

6. DISCUSSION

Our study can be viewed as a proof of concept exercise, with the goal of determining 

if the per-minute activity data can be utilized to extract sleep related information and used 

to build a classification model to identify flies that fall into short- and long-lived categories. 

The results show reasonable success in this attempt. Results are promising, especially since 

sleep is not the only factor that influences lifespan. Studies on humans have identified sleep 

duration as a sleep-related factor that influences mortality [6, 7] , but preliminary studies 

by the authors and their research team have not found compelling evidence that this is the 

case in Drosophila. The primary reason for this may be that at the individual level there 

are compensatory parameters, such as consolidation, that may decrease the influence of 

absolute duration. Thus, the finding that the zero-inflation probabilities contain information 

linked to lifespan is a significant discovery. One major significance of our finding is the
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generation of new hypotheses, testing of which can further our knowledge of the role sleep 

plays in health. For example, can we identify changes in the zero-inflation probabilities 

associated with a shorter or a longer lifespan? What do these changes signify with respect to 

restorative sleep? Are there biochemical markers that can be associated with such changes? 

In addition, our model will form the foundation for building even more accurate classifiers 

by incorporating other sleep characteristics. This will enable us to separate flies into short- 

and long-lived groups with even greater accuracy, with the predicted groups assayed to 

determine biochemical markers associated with biological aging. The results also show 

that image-based CNNs provide an appropriate platform for building a classification model 

for biological specimens where features useful for discrimination may vary slightly from 

one specimen to another.

These results, however, must be taken with a caveat. Our successful model was built 

using a CNN that was trained using only short- and long-lived flies. In addition, the training 

of the CNN was carried out using a relatively small data set. Once a sufficient number of 

observations become available to better tune the hyperparameters and train the CNN, we 

plan to train the CNN on three groups, short-, middle-, and long-lived. It is anticipated that 

future models will not only use the zero-inflation probability based heat maps, but images 

based on other statistics, such as the number of sleep-wake transitions. The addition of new 

input images when only a limited number of observations are available is problematic, and 

thus these advances will have to wait until a large number of additional experiments are 

conducted to incorporate more data.

7. CONCLUSIONS

A multi-stage modelling approach was employed to build a prediction model to 

identify fruit flies with short and long lifespans based on a sleep characteristic. Results 

show that the prediction model provides a reasonably accurate way to group flies into the 

two lifespan categories. In addition, the finding that the zero-inflation probabilities have
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information related to lifespan is an important discovery. Further improvements to the 

model may be possible when considerably more observations become available, allowing 

additional model training as well as the inclusion of heat maps based on other statistics.
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SECTION

3. CONCLUSION

In this work, several variations of the autoregressive conditional Poisson (ACP) 

model were developed to allow for greater applicability in modeling real-life data. First, 

a periodic autoregressive conditional Poisson (PACP) model was proposed as a natural 

generalization of the autoregressive conditional Poisson model to explain the periodicity 

inherent in some count data series. By letting cyclical variations of the parameters in the 

model, it provided a way to explain such periodicity. The maximum likelihood estimation 

(MLE) method was utilized to estimate parameters of the model and a small-scale Monte 

Carlo simulation study was conducted with results showing good performance with respect 

to parameter estimation. The Akaike information criterion (AIC) value was calculated 

and used as a criterion to distinguish the true structure of the underlying data generating 

mechanism. The model was fitted to a real-life data set consisting of epidemiological 

disease counts and the periodic model was shown to have a smaller AIC compared to the 

non-periodic version, illustrating the necessity of such a generalization.

Second, an autoregressive conditional Poisson hidden Markov model (ACP-HMM) 

was developed to deal with count data time series whose dependence structure is governed 

by a hidden process. This model addressed the frequently observed serial correlation and 

the clustering of high or low counts inherent in many time series of count data, while at 

the same time allowing the underlying data generating mechanism to change according to 

a hidden Markov process. A small-scale Monte Carlo simulation study demonstrated that 

MLE method was a trustworthy way of estimating the model parameters. The AIC and 

Bayesian information criterion (BIC) were examined to determine their appropriateness for 

distinguishing the true structure of the model. Results show that both the AIC and the
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BIC do a good job distinguishing the underlying model from an alternative. Application to 

daily number of deaths in Evora, Portugal, showed the model provided a better fit than the 

standard Poisson hidden Markov model.

Lastly, a modification of a zero-inflated Poisson model, whose zero-inflation pa­

rameters vary hourly within a day, was used to analyze activity counts of the fruit fly. The 

model captures the dynamic structure of activity patterns and the fly's propensity to sleep. 

The results were then fed to a convolutional neural network, and the life span categories 

(flies with short and long lifespans) were successfully identified by this multi-stage model.
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