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ABSTRACT

Alaska has long been recognized as a geologically complex region with a sharp 

contrast in tectonic activity between southern and northern Alaska. While the former is 

characterized by the subduction of the geometrically varying Pacific-Yakutat plate 

beneath the North American plate, the latter has a mostly stable cratonic setting. To 

investigate the mantle flow fields beneath Alaska and understand the influence of the 

subduction process on regional mantle dynamics, a total of 2790 pairs of well-defined 

teleseismic shear wave splitting (SWS) measurements recorded from 379 stations are 

obtained and analyzed. In addition, 247 pairs of SWS results from local earthquake 

events are measured to isolate contribution of the mantle wedge to the teleseismic shear 

wave splitting. We obtain well-defined two-layered anisotropy models in three areas in 

southern Alaska. The observations revealed several mantle flow fields, including trench- 

parallel flow beneath the Pacific slab, trench-normal flow beneath the flat Yakutat slab, 

toroidal flow around the Pacific-Yakutat slab edge, absolute plate motion-parallel flow in 

the stable cratonic area, and deflected flow around the deep continental keel in northern 

and possibly western Alaska. The presence of a slab edge and conflicting conclusions 

from previous shear wave splitting studies motivated us for an in-depth analysis of the 

splitting measurements in southcentral Alaska. The results indicate that the sub-slab flow, 

which is driven by slab roll-back, may separate into two branches at the edge: One flows 

anticlockwise to the wedge, and the other continues flowing to the east of the study area.



v

ACKNOWLEDGMENTS

First, I would like to express my sincere appreciation to my advisor Dr. Stephen 

Gao and my co-advisor Dr. Kelly Liu for their valuable academic guidance and day-to

day attention during the past several years. I feel truly blessed to pursue and accomplish 

my PhD degree under their suggestions and encouragements. Their diligence and tenacity 

on research will always inspire me to be a hardworking person.

Besides my advisors, I want to convey my gratitude to the rest of my dissertation 

committee members, Dr. David Wronkiewicz, Dr. Ryan Smith, Dr. Baojun Bai, and Dr. 

Xiaofei Fu for their constructive suggestions and comments. I also want to thank my 

colleagues and group members for academic discussions and teamwork. Furthermore, I 

want to express my thanks to the staffs in Geosciences and Geological and Petroleum 

Engineering department, Sharon Lauck and Patty Robertson, for their plentiful assistance, 

and to my graduate advisor Kathy Wagner and my international advisor Shawna Holle 

for the instructions on a list of required forms.

Last but not least, I would like to show my heartfelt gratefulness to my parents 

and family members for their continuous support and sacrifices. Without their 

encouragements and spurs, I cannot accomplish my research work and dissertation 

smoothly.



vi

TABLE OF CONTENTS

Page

PUBLICATION DISSERTATION OPTION................................................................... iii

ABSTRACT....................................................................................................................... iv

ACKNOWLEDGMENTS.................................................................................................. v

LIST OF ILLUSTRATIONS.............................................................................................. x

NOMENCLATURE.........................................................................................................xii

SECTION

1. INTRODUCTION.....................................................................................................1

PAPER

I. MANTLE FLOW SYSTEMS ASSOCIATED WITH SLAB SUBDUCTION 
AND ABSOLUTE PLATE MOTION IN ALASKA CONSTRAINED BY 
SHEAR WAVE SPLITTING ANALYSES............................................................... 3

ABSTRACT................................................................................................................... 3

1. INTRODUCTION...................................................................................................... 4

1.1. GEOLOGICAL SETTING OF THE ALEUTIAN-ALASKA
SUBDUCTION ZONE....................................................................................... 4

1.2. UPPER MANTLE STRUCTURE...................................................................... 5

1.3. SHEAR WAVE SPLITTING AND SEISMIC ANISOTROPY........................ 7

2. PREVIOUS SWS STUDIES AND RATIONALE OF THE PRESENT
STUDY....................................................................................................................... 9

3. DATA AND METHODS..........................................................................................12

4. RESULTS..................................................................................................................14

4.1. XKS MEASUREMENTS 16



4.1.1. Area A..................................................................................................... 16

4.1.2. Area B..................................................................................................... 17

4.1.3. Area C..................................................................................................... 17

4.1.4. Area D..................................................................................................... 17

4.1.5. Area E......................................................................................................18

4.1.6. Area F...................................................................................................... 18

4.2. LOCAL S MEASUREMENTS........................................................................ 19

4.2.1. Region 1.................................................................................................. 19

4.2.2. Region 2.................................................................................................. 19

4.2.3. Region 3.................................................................................................. 19

4.3. CHARACTERIZATION OF COMPLEX ANISOTROPY..............................19

4.3.1. Two-Layered Anisotropy........................................................................ 19

4.3.2. Spatially Varying Anisotropy................................................................. 24

5. DISCUSSION .......................................................................................................  25

5.1. MANTLE FLOW SYSTEMS RESPONSIBLE FOR THE OBSERVED
ANISOTROPY................................................................................................  25

5.1.1. Trench-Parallel Flow Beneath the Pacific Slab..................................... 25

5.1.2. Entrained and Deflected Flow Beneath the Yakutat Slab..................... 26

5.1.3. Toroidal Flow Around the Slab Edge..................................................... 28

5.1.4. APM-Induced and Keel-Deflected Flow in Northern Alaska............... 29

5.1.5. 3-D Dynamic Flow Model of the Subduction Zone............................... 30

5.2. POSSIBLE UNDERGROUND STRUCTURES AND THEIR
IMPLICATIONS .............................................................................................  30

vii

5.2.1. Possible Two-Layered Anisotropic Region. 30



5.2.2. Possible Lithosphere Anisotropy in the Yakutat Collision Zone.......... 31

5.2.3. Formation Mechanism of the WVF........................................................ 32

6. CONCLUSIONS.................................................................................................... 33

REFERENCES............................................................................................................. 34

II. MANTLE FLOW IN THE VICINITY OF THE EASTERN EDGE OF 
THE PACIFIC-YAKUTAT SLAB: CONSTRAINTS FROM SHEAR 
WAVE SPLITTING ANALYSES.......................................................................... 43

ABSTRACT ................................................................................................................  43

1. INTRODUCTION.................................................................................................... 44

2. PREVIOUS SWS STUDIES AND RATIONALE OF THE PRESENT
STUDY..................................................................................................................... 48

3. DATA AND METHODS......................................................................................... 50

4. RESULTS................................................................................................................  52

4.1. CHARACTERIZATION OF COMPLEX ANISOTROPY............................. 53

4.2. SPATIAL DISTRIBUTION OF THE SPLITTING OBSERVATIONS......... 56

5. DISCUSSION.......................................................................................................... 59

5.1. ENTRAINED FLOW BENEATH THE FLAT-SUBDUCTING Y T.............. 59

5.2. SUB-SLAB TRENCH PARALLEL FLOW FROM SLAB ROLLBACK.....60

5.3. CONTRIBUTION OF TRENCH-PARALLEL FLOW IN THE
MANTLE WEDGE TO THE OBSERVED ANISOTROPY.......................... 61

5.4. CONTINUATION OF SUB-SLAB MANTLE FLOW TOWARD
THE EAST....................................................................................................... 62

5.5. TOROIDAL MANTLE FLOW AROUND THE SLAB EDGE...................... 63

6. CONCLUSIONS...................................................................................................... 64

viii

REFERENCES 65



ix

SECTION

2. CONCLUSIONS.................................................................................................... 71

BIBLIOGRAPHY............................................................................................................. 73

VITA................................................................................................................................. 74



x

LIST OF ILLUSTRATIONS

PAPER I Page

Figure 1. A topographic relief map of the Alaska region showing major tectonic
features................................................................................................................. 6

Figure 2. Previous shear wave splitting measurements..................................................... 10

Figure 3. Examples of PKS, SKKS, and SKS splitting measurements............................. 13

Figure 4. 2790 pairs of XKS splitting measurements from this study...............................15

Figure 5. Station-averaged XKS splitting measurements.................................................. 16

Figure 7. Azimuthal variations of the combined splitting parameters from three
regions...............................................................................................................  20

Figure 8. Splitting parameters for the possible two-layered region.................................. 22

Figure 9. Example of spatially varying anisotropy........................................................... 23

Figure 10. Fast orientation pattern against BAZ and BAZ 90° showing the
existence of spatially varying anisotropy.........................................................25

Figure 11. A three-dimensional mantle flow model of the Aleutian-Alaska
subduction zone................................................................................................26

PAPER II

Figure 1. (a) Topographic relief map of the Alaska-Yakutat slab edge region 
with major geological structures. (b) Measurements from previous 
shear wave splitting studies labeled in the lower-right inset............................ 46

Figure 2. Examples of SWS measurements from two events recorded by
station RND........................................................................................................51

Figure 3. Examples of local S measurements from stations RND, PPLA, and TRF.......52

Figure 4. (a) 971 pairs of XKS splitting measurements from this study.
(b) 65 pairs of local shear wave splitting measurements and the rose 
diagram of the fast orientations.......................................................................... 53

Figure 5. Systematic azimuthal variation of the combined XKS splitting
measurements (black bars in Figure 4a).............................................................54



xi

Figure 6. Azimuthal variation of the combined measurements
(green bars in Figure 4a) showing spatially varying anisotropy.......................55

Figure 7. Spatial variation factors plotted against assumed depth of anisotropy 
for the XKS splitting measurements in the region outlined by the 
black rectangle in Figure 4a.............................................................................. 56

Figure 8. Subdivision of the study area based on the spatial distribution of XKS
splitting measurements......................................................................................57

Figure 9. Schematic diagram showing direction of flow lines.........................................60

Figure 10. A three-dimensional schematic model showing the mantle flow fields
in the four areas of the study area................................................................... 62



Symbol

$

St

xii

NOMENCLATURE

Description 

Fast Orientation 

Splitting Time



SECTION

1. INTRODUCTION

As demonstrated by numerous previous investigations, shear wave splitting 

(SWS) analysis using P-to-S converted phases (PKS, SKS, SKKS which are collectively 

termed as “XKS” hereafter) at the core-mantle boundary, has been extensively utilized to 

delineate spatial distributions of seismic azimuthal anisotropy and probe corresponding 

mantle dynamics (Long & Silver, 2009; Savage, 1999; Silver & Chan, 1991). The 

Transportable Array (TA) component of the USArray project, which started in 2011 and 

has recently completed its coverage of the contiguous Alaska region, has produced a 

broadband seismic data set at stations that are ~85km apart from each other with 

unprecedented quality and spatial coverage, permitting the deep study of the earth’s 

interior beneath the Alaska region.

The dissertation is mainly composed of two parts. The first part proposes the 

multiple mantle flow fields and related anisotropic structures beneath the entire Alaska 

region, based on the splitting measurements. Even though the mantle flow system in 

Alaska has been investigated by many previous SWS studies (e.g. Christensen & Abers, 

2010; Hanna & Long, 2012; McPherson et al., 2020; Perttu et al., 2014; Venereau et al., 

2019), most of the studies lack a broad station coverage and sufficient seismic data. By 

contrast, this study utilizes data with a recording period of ~30 years from late 1988 to 

March 2019. Moreover, the data are obtained by stations that cover the entire Alaska 

region. Such unprecedented data amount from three seismic phases significantly



improved the azimuthal coverage, enabling us to characterize complex anisotropy 

structures and subsequently obtaining a more reliable three-dimensional mantle flow 

model.

The second part is an in-depth investigation of the mantle dynamics in the eastern 

Alaska subduction zone (EASZ) where complicated splitting patterns are observed. The 

tectonic setting here is the most complicated throughout the entire Alaska region for the 

varying slab geometry and a sharp slab edge. However, detailed studies in this particular 

region are rare. In this study, 971 pairs of XKS and 65 pairs of local S splitting 

measurements are obtained. We visually examine all the XKS results to identify simple 

and complex anisotropy. Finally, we construct a new three-dimensional mantle flow 

model based on the observed anisotropy.

2
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PAPER

I. MANTLE FLOW SYSTEMS ASSOCIATED WITH SLAB SUBDUCTION AND 
ABSOLUTE PLATE MOTION IN ALASKA CONSTRAINED BY SHEAR WAVE

SPLITTING ANALYSES

ABSTRACT

The Aleutian-Alaska subduction zone is one of the most geologically complex 

regions in the world for its varying slab geometry, uncommon subducting type, and 

atypical volcanic activities. The sharp contrast between the subduction-impacted southern 

Alaska and the tectonically quiescent northern area makes Alaska an optimal locale for 

investigating the linkage between surface geological features and dynamic processes in 

the Earth’s deep interior. In this study, we obtain 2790 pairs of teleseismic shear wave 

splitting measurements from three seismic phases (PKS, SKS, SKKS which are 

collectively termed as “XKS” hereafter) recorded by 379 USArray and other stations to 

provide additional constraints on mantle flow and deformation models. Using all the 

three XKS phases and combining results from nearby stations significantly improved the 

azimuthal coverage, and consequently led to better constrained two-layered models of 

anisotropy in three areas in southern Alaska than those obtained by previous studies. In 

addition, 247 pairs of local S splitting results are measured to isolate contribution of the 

mantle wedge to the observed XKS splitting. The observations suggest the existence of 

different flow systems in the upper mantle beneath the Alaska region, including trench- 

parallel flow beneath the normal-dipping Pacific slab in the Aleutian arcs, trench-normal 

flow beneath the flat subduction region, toroidal flow around a sharp slab edge, absolute



plate motion-parallel flow in the stable cratonic area, and deflected flow around the deep 

continental keel in northern and possibly western Alaska.

4

1. INTRODUCTION

The Pacific plate has been subducting beneath the North American Plate 

northwestward along the Aleutian trench since mid-Jurassic (Fisher & Magoon, 1978). At 

the present time, the oblique convergence along the Alaska portion of the trench has a 

rate of approximately 50 mm/yr (Figure 1) (DeMets et al., 2010; Fisher & Magoon, 1978; 

Wang & Tape, 2014). The subduction process has produced substantial seismicity and 

volcanic activity, and intensive continental deformation along the convergent plate 

margin (Finzel et al., 2011; Hanna & Long, 2012; Venereau et al., 2019). In contrast, the 

tectonically quiescent area north of the Brooks Range is underlain by a cold lithospheric 

root (Jiang et al., 2018). Whether the subduction-related mantle flow system has reached 

this area is not clear and is one of the objectives of the current study.

1.1. GEOLOGICAL SETTING OF THE ALEUTIAN-ALASKA SUBDUCTION 
ZONE

The subduction of the Pacific Plate beneath the North American Plate along the 

Aleutian trench (Figure 1) is characterized by a nOormal dip angle of ~40° (measured

from the horizontal), while in southcentral Alaska the active tectonic setting is dominated 

by the flat subduction of the Yakutat terrane which is marked by a shallower than normal 

Wadati-Benioff zone with a dip angle smaller than 5° (Bauer et al., 2014; Christensen & 

Abers, 2010). The Yakutat terrane is believed to have originated as an oceanic plateau
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and subsequently migrated northward along the dextral strike-slip fault, named Queen 

Charlotte/Fairweather (QC-F) Fault (Figure 1) (Bauer et al., 2014; Christeson et al., 2010; 

Eberhart-Phillips et al., 2006). The Yakutat terrane consists of the northwestward 

shallow-dip Yakutat slab as well as the southeastern unsubducted terrane (Finzel et al., 

2011; Plafker & Berg, 1994), the latter of which has collided into the southeast corner of 

Alaska, forming the region referred to as the Yakutat Collision Zone (McPherson et al., 

2020) (Figure 1). The complicated subducting system in southern Alaska has led to some 

atypical magmatic features. The most enigmatic one is the Wrangell Volcanic Field 

(WVF). Preece & Hart (1994) interpret the WVF as being composed of three different 

geochemical trends, suggesting different magma sources and complicated melting 

processes. Finzel and Trop (2011) indicate that the northwestward Yakutat subduction 

may account for the northwestward volcanism progression in the WVF (Richter et al., 

1990).

1.2. UPPER MANTLE STRUCTURE

To reveal the subsurface structures and probe the relationship between the large- 

scale geological features with the deformations associated with the subduction, numerous 

seismic tomography studies have been conducted in southern Alaska (e.g. Gou et al., 

2019; Jiang et al., 2018; Martin-Short et al., 2018; Qi et al., 2007; Zhao et al., 1995). The 

Pacific slab is imaged as a strip of high-velocity anomalies that steeply sinks toward the 

northwest and reaches its maximum depth of ~450-500 km (Gou et al., 2019), while the 

high-velocity feature representing the shallower Yakutat slab only appears within the top 

~100 km (Martin-Short et al., 2018).
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Figure 1. A topographic relief map of the Alaska region showing major tectonic features.
The Yakutat Terrane is delineated by black line (Eberhart-Phillips et al., 2006). Red 

triangles indicate active volcanoes. Contour lines of the depth of the Pacific-Yakutat slab 
are shown in blue (200 km or shallower) and red lines (deeper than 200 km) (Gou et al., 
2019). Blue and red arrows represent the absolute plate motion direction based on the 

NNR-MORVEL56 model (Argus et al., 2011) and the HS3-NUVEL-1A model (Gripp & 
Gordon, 2002), respectively. KP: Kenai Peninsula. AR: Alaska Range. QC-F. Fault: 

Queen Charlotte/Fairweather Fault System.

Additionally, a high-velocity structure is imaged and interpreted as a possible 

Wrangell slab (Gou et al., 2019; Jiang et al., 2018; Yang & Gao, 2020), while Martin- 

Short et al. (2018) observe a sharp termination of S-wave anomaly beneath the WVF, 

indicating the absence of the Wrangell slab. Gou et al. (2019) also find a slab gap 

structure between the Wrangell slab and a possible aseismic slab portion to the northwest. 

Such a structure may serve as a channel in transporting hot mantle materials and explains 

the existence of adakitic magma in the WVF (Preece & Hart, 2004). Considerable



differences in the various seismic tomography studies in Alaska have led to conflicting 

conclusions on the formation mechanisms of the WVF and thus understanding the mantle 

dynamics may provide additional constraints on the geodynamic models, as demonstrated 

below.

1.3. SHEAR WAVE SPLITTING AND SEISMIC ANISOTROPY

Shear wave splitting analysis is the most frequently used technique for 

characterizing mantle dynamics and providing critical constraints on mantle flow models 

(Silver & Chan, 1991). When a P-to-S converted wave from the core-mantle boundary 

(SKS, SKKS, and PKS, hereafter collectively called XKS) propagates through an 

azimuthally anisotropic layer, the shear wave would split into two components with 

orthogonally polarized directions and different traveling speed (Long & Silver, 2009; 

Savage, 1999; Silver, 1996). Two splitting parameters, the polarization orientation of the 

fast component (or fast orientation) and the arrival time difference between the fast and 

slow components (or splitting time), are measured to quantify the orientation and strength 

of seismic anisotropy, respectively.

Under normal upper mantle temperature and pressure conditions, seismic 

azimuthal anisotropy is mainly caused by the lattice preferred orientation (LPO) of the 

crystallographic axes of anisotropic minerals such as olivine, as indicated by laboratory 

experiments and geodynamic modeling studies (Zhang & Karato, 1995). In the 

asthenosphere, flow-parallel LPO is most commonly observed and is considered to be 

generated by simple shear associated with various tectonic processes, such as the absolute 

plate motion (APM), slab subduction and rollback (Long & Becker, 2010; Schellart,

7



2004). Laboratory and observational studies suggest that the fast orientations of the XKS 

splitting are dominantly flow-parallel (Silver & Chan, 1988; Vauchez & Nicolas, 1991) 

except for areas dominated by high stress, low temperatures and moderate water capacity 

such as the area near the tip of the mantle wedge (Karato et al., 2008), where a “B-type” 

fabric produces flow-perpendicular fast orientations. Furthermore, in the lithosphere, 

horizontal compression may lead to LPO normal to the maximum horizontal shortening 

direction (e.g. Chastel et al., 1993; Francis, 1969; Hess, 1964; Silver, 1996; Silver & 

Chan, 1991), and oriented vertical lithospheric scale dikes may produce azimuthal 

anisotropy with a fast orientation parallel to the dikes (Gao et al., 1997).

Most of the XKS investigations are conducted under the assumption of simple 

anisotropy that refers to anisotropy from a single anisotropic layer with a horizontal axis 

of symmetry. This ideal condition produces similar splitting parameters with respect to 

the arriving azimuth of the events (back-azimuth or BAZ). In areas dominated by simple 

anisotropy, station-averaged splitting parameters can objectively reflect the anisotropy 

characteristics. Departures from the ideal conditions of simple anisotropy are termed as 

complex anisotropy (Silver & Savage, 1994), and the most common form of complex 

anisotropy structure consists of two anisotropic layers, each with a horizontal axis of 

symmetry. This form of complex anisotropy is characterized by systematic azimuthal 

variations of the individual splitting parameters with a 90° periodicity. If a station is 

located near the boundary between two or more areas with different anisotropic 

characteristics, the observed anisotropy at the station may also vary azimuthally (referred 

to as spatially varying anisotropy hereinafter), although the variation may not necessarily 

possess a 90° periodicity (Liu & Gao, 2013).

8



XKS splitting measurements in a subduction zone setting reflect the combined 

effect from anisotropy in the mantle wedge, subducting slab, sub-slab mantle, as well as

9

the overriding plate (Long & Wirth, 2013). Slab rollback has been proposed to be 

responsible for the trench-perpendicular 2-D corner flow in the mantle wedge and the 

trench-parallel flow in the sub-slab region (e.g. Fouch & Fischer, 1996; Hall et al., 2000; 

Russo & Silver, 1994). Furthermore, sub-slab entrained flow caused by the coupling 

between the subducting slab and sub-slab mantle can also induce trench-perpendicular 

azimuthal anisotropy (Russo & Silver, 1994). Near the edge of a subducting slab, sub

slab mantle materials may flow around the slab edge driven by slab rollback (e.g. Becker 

& Faccenna, 2009; Long & Wirth, 2013; Russo & Silver, 1994). In the wedge, such flow 

may either join the trench-perpendicular 2-D corner flow (e.g. Long & Silver, 2008, 

2009; Russo & Silver, 1994; Schellart, 2004; Stegman et al., 2006) or become trench- 

parallel due to the low viscosity and high flux speed (Jadamec & Billen, 2010, 2012).

2. PREVIOUS SWS STUDIES AND RATIONALE OF THE PRESENT STUDY

A number of SWS studies have been conducted in Alaska and adjacent areas over 

the past decades (Figure 2). Using data from a few seismic stations in the vicinity of the 

Denali fault, several SWS studies (Figure 2) propose that fault-parallel fast orientations in 

the shear zones are associated with the transpressional deformation ascribed to the 

combination of parallel strike-slip motion of the Denali fault and the orogenic activities 

(Rasendra et al., 2014; Silver & Chan, 1991; Vinnik et al., 1992). Based on splitting 

parameters from local earthquakes in the Shumagin islands of the Aleutian Arc, arc-
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parallel fast orientations and an increase in splitting times with the focal depth are found, 

suggesting that the observed anisotropy is sourced from the mantle wedge (Yang et al., 

1995).

Figure 2. Previous shear wave splitting measurements. Bars with different colors 
represent measurements from different studies, while black dots indicate stations used in 
this study. Note that the dark blue bars are measurements from several studies using few 

stations (Rasendra et al., 2014; Silver & Chan, 1991; Vinnik et al., 1992; Yang et al.,
1995).

With the recent development of portable seismic networks in the Alaska region, 

including the USArray Transportable Array (TA), Broadband Experiment Across the 

Alaska Range (BEAAR), Alaska Receiving Cross Transect of the Inner Core (ARCTIC), 

and Multidisciplinary Observations Of Subduction (MOOS), the last decade witnessed a 

dramatic increase in the number of SWS measurements and improvement in the spatial



coverage by the measurements in Alaska (Figure 2). The most prominent feature from 

these portable stations is an ~90° change of the fast orientation near the ~70 km slab 

depth contour line, which separates the northern area with mostly trench-parallel and the 

southern area dominated by trench-normal fast orientations (Christensen & Abers, 2010; 

Hanna & Long, 2012; Perttu et al., 2014). Specifically, Christensen & Abers (2010) find 

a positive correlation between the length of the wave paths within the mantle wedge and 

the splitting times, implying a mantle wedge source of anisotropy. Based on the splitting 

measurements from 239 TA and other stations, Venereau et al. (2019) propose multiple 

mantle flow regimes in the entire Alaska region, including the entrained flow beneath the 

Yakutat slab, trench-parallel flow along the Pacific slab, toroidal flow around the slab 

edge, and APM-parallel flow in northern Alaska. Using the data recorded over the period 

of 2010-2017, McPherson et al. (2020) obtain SWS measurements at 384 TA and other 

stations and divide the Alaska region into six sub-regions according to different splitting 

patterns. They speculate the existence of complex anisotropy in the tectonic transition 

zones between the sub-regions, although no attempt was made to characterize the 

anisotropic structure using the observed azimuthal dependence of the splitting 

parameters.

The current study is motivated by the following factors. The most significant one 

is the dramatic increase in the station and azimuthal coverages as a result of the 

deployment of the USArray Transportable Array (TA) stations. The most recent SWS 

study covering Alaska (McPherson et al., 2020) used data recorded from 2010-2017, 

when most of the TA stations had only operated several months. In comparison, this 

study uses all the available data recorded prior to early 2019. As demonstrated below, the

11



additional data recorded between 2017 and 2019 substantially improved the station and 

azimuthal coverages in Alaska, and consequently improved the possibility to probe and 

analyze complex anisotropy quantitatively. Furthermore, the utilization of local events 

which characterizes seismic anisotropy in the mantle wedge may provide more 

constraints in investigating the regional mantle flow mechanisms. In this study, we use 

over-30-year seismic data obtained from both teleseismic and local earthquake events 

with unprecedented station and azimuthal coverages in the Alaska region, to delineate 

spatial distributions of seismic azimuthal anisotropy, identify and characterize the 

complex anisotropic structures, and propose a 3-D geodynamic model invoking different 

mantle flow systems to interpret the SWS observations.

3. DATA AND METHODS

12

The XKS and local S data used in this study were recorded by 379 broadband 

seismic stations (i.e. black dots in Figure 2) located in the area of 52-72° N and 172- 

137°W covering a recording period of 30 years from late 1988 to October 2019. The 

seismic data were requested from the Incorporated Research Institutions for Seismology 

(IRIS) Data Management Center (DMC).

The splitting parameters were measured and ranked following the procedures 

described in Liu & Gao (2013) and are briefly summarized below. The procedures were 

developed based on the minimization of transverse energy technique (Silver & Chan, 

1991). Only events with a magnitude of 5.6 or greater were used for data requested from
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the DMC, and the cutoff magnitude was reduced to 5.5 for events with focal depths larger 

than 100 km, and for local S wave splitting analysis, the cutoff magnitude is 4.0.

Figure 3. Examples of PKS, SKKS, and SKS splitting measurements. Each figure shows 
the (top) original and corrected radial and transverse components, (middle) fast and slow 

components before and after correction, and particle motion patterns prior to and after 
forwarding the slow component by the optimal splitting time, and (bottom) misfit 

function maps calculated by measuring the energy on the corrected transverse 
component. The optimal splitting parameters marked by the black stars correspond to the

minimum value on the misfit function map.

Furthermore, only local events in the S-wave window (which is approximately 

within an angle of incidence of 35o) are used. The seismograms were initially windowed 

in the time period 5 s before and 20 s after the predicted time of the XKS arrival, and then 

were band-pass filtered in the frequency range of 0.04-0.5 Hz. The corresponding 

parameters for local S splitting are 5 s before and 10 s after, and 0.1-1.0 Hz. After all the



splitting parameters were automatically calculated and ranked (Liu & Gao, 2013), we 

manually checked all the measurements to verify and adjust the beginning and end of the 

XKS and local S time window, quality ranking, and band-pass filtering frequencies. The 

final SWS measurements were grouped into Quality A (outstanding), B (good), and C 

(not used), and only A and B measurements were used in the study. We also identified 

null measurements, which are characterized by strong XKS energy on the radial 

components but an absence of XKS energy on the transverse component (Silver & Chan, 

1991). For a raypath that travels through an azimuthally anisotropic area (integrated over 

the raypath from the core-mantle boundary to the station), null measurements are only 

observed when the BAZ is parallel or orthogonal to the fast orientation (assuming simple 

anisotropy). Because well-defined splitting parameters were obtained at all the stations 

with one or more events having strong XKS arrivals on the radial component, null 

measurements are not discussed in the following. Figure 3 exhibits examples of quality A 

measurements of three different XKS phases recorded at different stations.

4. RESULTS

14

A total of 2790 pairs of well-defined (Quality A or B) XKS measurements, 

including 54 PKS, 91 SKKS, and 2645 SKS measurements, are obtained at 379 stations, 

while 247 pairs of shear wave measurements from local earthquakes are measured at 70 

stations. For the XKS results, the fast orientations have a circular mean value of 45.0° ± 

41.1° and the splitting times range from 0.30 to 2.15 s with an average of 1.06 ± 0.32 s, 

which matches well with the global average of 1.0 s for continents (Silver, 1996).



15

Figure 4. 2790 pairs of XKS splitting measurements from this study. Different colors 
represent measurements in six different sub-regions (except for the cyan bars). The 

values are plotted at the surface projections of the ray-piercing points at the depth of 200 
km. Black and cyan bars represent results with azimuthal variations. The orientation of 

the bars represents the fast orientation, and the length is proportional to the splitting time.

The individual and station-averaged XKS measurements are respectively shown 

in Figures 4 and 5. Based on the different characteristics of the spatial distribution of the 

observed XKS splitting parameters, we divide the study area into six subregions (Figure 

4). Note that some of the measurements showing a feature of complex anisotropy are 

marked as black bars in Figure 4, which are not included in the calculation of the mean 

splitting parameters for each of the areas and will be discussed in Section 4.3. The 

average fast orientation and splitting time of local S measurements are 62.4° ± 38.3° and



0.41 ± 0.20 s, respectively. Based on different splitting patterns, the local S results are 

divided into different groups in three regions (Figure 6).
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Figure 5. Station-averaged XKS splitting measurements. Red bars indicate the mean 
splitting measurements from each station that shows a simple anisotropy feature. Three 

regions of two-layered anisotropy are marked with names. White bars indicate the 
splitting parameters in upper layers and blue bars represent those in lower layers. Black 

dots mark stations whose results are combined for grid-searching for two-layered 
anisotropy in each region. Black bars are the average measurements from each group of 

measurements of the station showing spatially varying anisotropy. The background color 
represents the lithospheric thickness (Pasyano et al., 2014).

4.1. XKS MEASUREMENTS

4.1.1. Area A. Area A includes the Aleutian Islands, Kodiak Island and their 

adjacent areas (Figure 1) in the southwestern corner of Alaska where the Pacific slab
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subducts beneath the Aleutian Arc with a relatively larger dip angle. This region contains 

134 XKS measurements recorded at 53 stations and the fast orientations are dominantly 

trench-parallel with a circular mean of 50.8° ± 21.5° (Figure 4). The mean splitting time 

is 1.04 ± 0.32 s in which the highest value emerges around ~158° W. In this area, two of 

the previous studies (McPherson et al., 2020; Venereau et al., 2019) reported a 

comparable number of SWS measurements which are largely consistent with our results.

4.1.2. Area B. Area B is situated in southcentral Alaska including the Kenai 

Peninsula and the western part of the Yakutat terrane (Figure 1). It is separated from Area 

A by an along-trench abrupt change in the fast orientations, from trench-parallel to 

trench-perpendicular, with a circular mean of 145.9° ± 17.1° (Figure 4) and a mean 

splitting time of 1.06 ± 0.30 s. This area contains 345 measurements from 49 stations, 

and the results are consistent with previous SWS studies (Hanna & Long., 2012; Perttu et 

al., 2014; Venereau et al., 2019; McPherson et al., 2020).

4.1.3. Area C. Area C locates in the southeastern corner of Alaska and is 

characterized by the collision between the unsubducted portion of the Yakutat terrane and 

southeastern Alaska (Figure 1), referred to as Yakutat collision zone (McPherson et al., 

2020). A total of 75 measurements obtained at 21 stations in this area show the feature of 

simple anisotropy, while those obtained at the other 27 stations are characterized by 

systematic azimuthal variations indicative of complex anisotropy. Most of the simple 

anisotropy results exist in the western part of the area and show NNE-SSW to N-S fast 

orientations (Figure 4).

4.1.4. Area D. Area D includes most of the regions between the Alaska Range 

(AR) and Brooks Range (Figure 1). It is distinguished from other areas in that the



splitting parameters in this region show a circular pattern, which is approximately 

centered at 147°W and 63°N, a possible location of the slab edge proposed by several 

previous studies (Gou et al., 2019; Hanna & Long, 2012; Venereau et al., 2019). The fast 

orientations from the 1172 measurements at 97 stations have a mean value of 57.8° ± 

26.2° (Figure 4), while the corresponding splitting times have an average value of 1.11 ± 

0.30 s.

4.1.5. Area E. Area E consists of the region north of the Brooks Range and most 

part of western Alaska including the Seward Peninsula (Figure 1). The fast orientations 

from 566 measurements at 72 stations have an average of 33.0° ± 27.3° (Figure 4), which 

is approximately consistent with the Apparent Plate Motion (APM) direction (Figure 1) 

in the HS3-NUVEL-1A model (Gripp & Gordon, 2002), and the mean splitting time is 

1.01 ± 0.29 s. In addition, we observe two areas with anomalous NW-SE fast orientations 

centered approximately at (68°N, 157°E) and (65.5°N, 165°E), respectively. Such 

orientations are distinctively different from the surrounding measurements and possible 

formation mechanisms have not been discussed by previous studies.

4.1.6. Area F. Area F resides in the northeast part of the Yakutat slab and its 

nearby areas. This region contains 14 stations and is differentiated from Area B and Area 

D by showing dominant NNE-SSW fast orientations (Figure 4), with an average value of 

25.8° ± 27.9°. The average splitting time is 0.98 ± 0.31s. Our results are consistent with 

those in the northwestern part of the “Slab Connection” region (McPherson et al., 2020). 

In addition, a large number of null measurements have been proposed in this region 

(Hanna & Long, 2012; McPherson et al., 2020).

18
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4.2. LOCAL S MEASUREMENTS

4.2.1. Region 1. Region 1 includes the area west of ~163° of the Aleutian arc. 

This region contains 48 measurements from 21 seismic stations and no previous local S 

investigations have been conducted in this region. The measurements here are 

distinguished by their generally trench-normal fast orientations with a mean value of 

138.8° ± 39.1° (Figure 6). The average splitting time is 0.42 ± 0.17 s.

4.2.2. Region 2. Region 2 locates in the area between ~163° and ~152° of the 

Aleutian arc. The region consists of 114 measurements obtained from 31 stations. The 

average splitting parameters are 60.3° ± 28.9° and 0.43 ± 0.26 s for the fast orientations 

and splitting times, respectively (Figure 6). A recent local S investigation exhibits 

uniform trench-parallel measurements in the forearc region and trench-perpendicular 

measurements in the backarc region (Karlowska et al., 2021). Our results are similar but 

we only obtain one measurement in the backarc region from a single station (SVW2).

4.2.3. Region 3. Region 3 locates in the area away from the Aleutian arc and 

includes the forearc and backarc regions in central Alaska (Figure 6). There are 85 

measurements recorded from 18 stations and no previous local S splitting results are 

found in this region. Similar to the results in region 2, the measurements here are also 

characterized by trench-parallel fast orientations which have an average value of 60.3° ± 

29.6°. The mean splitting time is 0.38 ± 0.13 s.

4.3. CHARACTERIZATION OF COMPLEX ANISOTROPY

4.3.1. Two-Layered Anisotropy. As the most common form of complex 

anisotropy, two-layered anisotropy is initially proposed by Silver and Savage (1994) and
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the two pairs of splitting parameters can be determined using the grid-searching 

technique. Due to the non-uniqueness of the resulting optimal parameters (Gao et al., 

2010; Hammond et al., 2014), several constraints have been applied to improve the 

reliability of the results.

Figure 7. Azimuthal variations of the combined splitting parameters from three regions. 
The plots on the right are fast orientations against BAZ 90°, while those on the left are 
splitting times against BAZ 90°. Gray lines indicate the predicted splitting parameters.

For example, an assumption that the upper layer anisotropy is originated in the 

crust whose anisotropy properties are determined using receiver functions is made (Wu et 

al., 2015), and the splitting parameters from the lower layer is constrained by assuming
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that the fast orientation is parallel to the asthenospheric flow (Yang et al., 2014). Another 

way to improve the reliability of the searched parameters is to combine results from 

nearby stations with similar splitting patterns (Cherie et al., 2016; Kong et al., 2018;

Yang et al., 2014). Both of the aforementioned approaches are used in this study.

Through visually scrutinizing the splitting parameters of all the stations used in 

the study area, we search for the patterns of complex anisotropy, which is characterized 

by systematic azimuthal variations. Finally, three regions, respectively named CEN 

(Central Alaska), SEA (Southeastern Alaska), and ENT (Entrained Flow Region), are 

identified (Figures 5 and 7) as possessing a two-layered anisotropic structure and the 

stations with similar measurements in each region are combined. The three sets of 

combined measurements are then used to grid-search the optimal parameters according to 

the procedures detailed in Gao & Liu (2009), in which misfits are calculated and the 

weighting factors are designed for obtaining the optimal pairs of parameters (Gao & Liu, 

2009).

Regions CEN and ENT exhibit a well-defined two-layered structure. However, 

the two-layered model is not well-contrained in region SEA, possibly related to the 

existence of intrinsic non-uniqueness. To provide the a priori constraint to reduce the 

non-uniqueness, we take a Bayesian approach by assuming that the anisotropy in the 

upper layer is generated in the lithosphere with a fast orientation in the range of 80° - 

110°. Such an assumption is made based on the following reasons. First, several studies 

indicate that the anisotropy in region SEA may include the contribution from both 

lithosphere and asthenosphere due to the complicated azimuthal variation in the SWS 

results (McPherson et al., 2020; Venereau et al., 2019). Second, previous studies propose
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that the lithospheric anisotropy may be generated by past compression events, leading to 

fast orientations that are perpendicular to the maximum horizontal shortening direction 

(Silver, 1996). Region SEA locates in the Yakutat collision zone (Figure 1) which is 

characterized by nearly N-S to NNE-SSW maximum strain direction as indicated by GPS 

data (Marechal et al., 2015), thus corresponding to a nearly E-W to WWN-EES fast 

orientation in the lithosphere. After adding this a priori constraint, the optimal two

layered parameters are obtained.

Figure 8. Splitting parameters for the possible two-layered region. The measurements are 
combined from results of 11 nearby stations.

Figure 7 shows the two-layered models with the corresponding parameters of the 

three regions. Region ENT locates in the western Kanai Peninsula (i.e. KP in Figure 1) 

and includes results from 6 individual stations. The combined individual parameters show 

a clear 90° periodicity (Figure 7a and 7b), indicating the existence of two-layered 

anisotropy. The fitted upper layer fast orientation is almost NW-SE (26°) and the lower 

layer’s is NE-SW (166°). The splitting time for the upper and lower layers are 0.4 s and 

0.3 s, respectively. Region SEA is in the southeast corner of Alaska and includes 27



stations showing a similar azimuthal variation (Figure 7c and 7d). The optimal 

parameters for the upper and lower layers are 47°, 0.7 s and 8°, 0.6 s, respectively.

Region CEN includes 17 stations and is located near the 70 km slab depth contour line 

with an abrupt apparent fast orientation variation from NW-SE in the south to NE-SW in 

the north (Christenson & Abers, 2010).
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Figure 9. Example of spatially varying anisotropy. Coordinate graphs show splitting 
parameters against BAZ and BAZ 90°, respectively. Event location, rose diagram, and 

distribution of splitting parameters are shown in the bottom.

McPherson et al. (2020) indicate a similar region between the 50 and 100 km slab

depth contour lines, where they observe strong azimuthal dependence in the splitting
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parameters in which waves from northwest show NE-SW fast orientations and those from 

southeast produce NW-SE fast orientations, consistent with our individual measurements. 

However, the combined results show a strong azimuthal variation with a 90° periodicity 

(Figure 7e and 7f) that suggests a typical two-layered anisotropy. The resulting 

parameters for the upper and lower layers are 53°, 0.6 s and 13°, 0.8 s, respectively.

In the region where the strike of the subducting slab begins to divert into a nearly 

NNE-SSW direction (Figure 4), we find that the fast orientations are generally azimuthal 

dependent. We then combine similar results from 11 adjacent stations to increase the 

reliability (Figure 8). The measurements from west are dominantly within the range of 

10° to 45°, consistent with the APM direction. On the other hand, most of the 

measurements from east and south are NW-SE or strike-parallel that are in accordance 

with those in Area B and Area A, respectively.

4.3.2. Spatially Varying Anisotropy.A special type of complex anisotropy, 

spatially varying anisotropy, is illustrated as presenting different splitting parameters for 

different seismic ray paths near the boundary of two or more areas. The splitting 

parameters vary according to ray-piercing locations and rarely demonstrate periodic 

azimuthal variations (e.g., Liu & Gao, 2013). In this study, the region possessing spatially 

varying anisotropy locates in the slab edge area and the corresponding measurements are 

marked as cyan bars (Figure 4).

These specific anisotropic patterns are seen in eight nearby stations which are 

subsequently combined together (Figure 10). As demonstrated by observations from 

RND, most of the events from southeast back azimuths show NW-SE fast orientations, 

while those from the west have NE-SW fast orientations (Figure 9).
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Figure 10. Fast orientation pattern against BAZ and BAZ 90° showing the existence of
spatially varying anisotropy.

5. DISCUSSION

5.1. MANTLE FLOW SYSTEMS RESPONSIBLE FOR THE OBSERVED 
ANISOTROPY

5.1.1. Trench-Parallel Flow Beneath the Pacific Slab. Sub-slab trench-parallel 

flow has been proposed in numerous subduction zones to explain trench-parallel fast 

orientations (e.g., Russo and Silver, 1994). Long & Silver (2008) suggest that in the 

subslab region, anisotropy is dominantly controlled by 3D returned flow and is believed 

to be parallel to the trench, possibly generated by slab rollback associated with trench 

migration. The uniform trench-parallel XKS splitting fast orientations observed in the 

Aleutian arcs are consistent with the geometry of the Pacific slab imaged by previous 

tomography studies (Gou et al., 2019; Jiang et al., 2018; Martin-Short et al., 2018). 

However, the local S measurements in the Aleutian arcs show trench-parallel fast 

orientations only in region 2, while the fast orientations from local S splitting are nearly 

trench-normal in region 1 (Figure 6). Due to the fact that local S splitting represents the 

characteristic of mantle wedge anisotropy, the inconsistency between XKS and local S
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results indicates that the uniform XKS trench-parallel measurements are originated from 

the sub-slab region. Similar interpretations are proposed by McPherson et al. (2020), in 

which they suggest that the thick Pacific slab separates the flows in the mantle wedge and 

the sub-slab region.

Figure 11. A three-dimensional mantle flow model of the Aleutian-Alaska subduction 
zone. Arrows with different colors represent mantle flows originated from different 

mechanisms. Black sawteeth mark the trench of the subduction zone. Purple texts (CEN
and ENT) show the two-layered regions.

5.1.2. Entrained and Deflected Flow Beneath the Yakutat Slab. Another 

distinctly different mantle flow model, in which splitting fast orientations are trench- 

normal, refers to the flow entraining with the slab due to the viscous coupling between 

the subducting lithosphere and asthenosphere. Such mechanism has been proposed in 

several subduction zones, including Cascadia (Currie et al., 2004; Russo, 2009), Mexico- 

Rivera (Leon Soto et al., 2009), and the Peruvian segment of the Peru-Chile subduction 

zone (Eakin & Long, 2013). The northwestward insertion direction of the Yakutat slab is 

comparable to the trench-normal splitting orientations observed in the area, suggesting



the existence of an entrained flow system beneath the Yakutat slab. On the other hand, 

the local S results in this region are basically trench-parallel, indicative of a mantle 

wedge origin of the observed anisotropy. Such a contrast further suggests that the XKS 

splitting patterns mostly reflect subslab anisotropy associated with the trench-normal 

entrained flow system. Notably, the transition zone between Area A and Area B 

corresponds well with the two-layered region ENT (Figure 5). The 26° fast orientation in 

the lower layer (Figures 5 and 11) is consistent with the adjacent measurements along the 

eastern Aleutian arc, and the 166° fast orientation in the upper layer is also accord with 

the measurements for the Yakutat slab in Area B. Thus, we suggest that the two-layered 

anisotropic structure in this region is generated by the confluence of the two different 

mantle flow systems at different depths (Figure 11).

Unlike normal subducting situations with slabs plunging into the mantle, the slab 

of flat subductions commonly intrudes a few hundred kilometers horizontally, and then 

descends into the deeper mantle (Manea et al., 2017). Such geometrical feature also 

occurs on the Yakutat slab as demonstrated by the slab contour lines (Gou et al., 2019) in 

Figure 4. The Yakutat slab begins subducting with a steeper angle near the ~70 km slab 

depth contour line. This variation in slab geometry is corresponding to previous XKS 

results. Christensen & Abers (2010) indicate that in the area north of the 70 km contour 

line, the observed fast orientations are trench-parallel, while those south of the contour 

line are trench-normal, implying wedge-derived and subslab anisotropy, respectively. The 

conclusion generally agrees with ours; however, in our study, the identification of the 

two-layered anisotropy in region CEN (Figure 5) reveals an 8° fast orientation for the 

lower layer where the slab descends more steeply, possibly representing the flow

27
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deflection. Such flow may further join the trench-parallel flow revealed by trench-parallel 

fast orientations in Area F. The 47° fast orientation for the upper layer is also consistent 

with the NE-SW fast orientation in Area D, indicating a mantle wedge origin. Therefore, 

we suggest that the region beneath the flat portion of the Yakutat slab is characterized by 

trench-normal entrained flow generated by the strong viscous coupling between the 

subducting lithosphere and asthenosphere. Beneath the steeply dipping portion of the 

slab, the flow gradually deflects to a trench-parallel direction probably due to the rollback 

of the steeply dipping slab (Olive et al., 2014; Paczkowski, et al., 2014a; Paczkowski, et 

al., 2014b).

5.1.3. Toroidal Flow Around the Slab Edge. Plentiful studies have observed the 

toroidal flow pattern associated with the slab edge effect (Civello & Margheriti, 2004; 

Eakin et al., 2010; Palano et al., 2017). They indicate that mantle materials may flow 

from one side to the other side of a slab around the edge due to three-dimensional mantle 

circulation. The Alaska subduction zone exhibits a typical slab edge (Figure 1), which 

has been imaged by numerous seismic tomography studies (Gou et al., 2019; Jiang et al., 

2018; Martin-short et al., 2018). In addition, a toroidal flow model where the mantle 

materials are transferred from the subslab region into the mantle wedge has been 

proposed using geodynamic modeling (Jadamec & Billen, 2010, 2012). A circular pattern 

is observed in the proximity of 146°E, 64°N, the region of the proposed slab edge 

(Figures 4 and 5). We suggest that the circular pattern is induced by toroidal flow around 

the slab edge. Local S results in region 3 further indicate above-slab trench-parallel flow 

that is probably related to the low viscosity and high flux speed of this flow field
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(Jadamec & Billen, 2012, 2013). Measurements from the adjacent Areas F and D may act 

as the beginning and final parts of the toroidal flow.

5.1.4. APM-Induced and Keel-Deflected Flow in Northern Alaska. The fast 

orientations in Area E are mostly parallel to the APM direction of the North American 

plate in both the NNR-MORVEL56 and Hotspot (Argus et al., 2011; Gripp & Gordon,

2002) models, and can be explained by the partial coupling between the asthenosphere 

and the overlying lithosphere. However, some NW-SE fast orientations, which are 

approximately normal to the APM direction, are found in the western Brooks Range and 

the Seward Peninsula (Figure 4). Such anomalously abrupt fast orientation changes have 

not been interpreted in previous SWS investigations in the study area but similar 

observations have been revealed and discussed in other regions. For instance, Klosko et 

al. (2001) observe fast orientations that shows a nearly 90° difference from those 

obtained at nearby stations which display APM-parallel fast orientations in the Ontong- 

Java oceanic plateau. They interpret this change as being affected by the distinct 

lithospheric root, which may have deflected the asthenospheric flow (Klosko et al.,

2001). Likewise, the region where NW-SE fast orientations are observed coincides well 

with the highest elevation of the Brooks Range that corresponds to a deep continental 

root (Jiang et al., 2018; O’Driscoll & Miller, 2015). Thus, we suggest those 

measurements may be attributable to the deflection of APM-induced mantle flow system 

by the deep continental keel, although whether such a deep root exists beneath the 

Seward Peninsula is not clear. These mechanisms have been proposed in other regions 

with a rapid change in lithospheric thickness such as around the southern and eastern
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margins of the North American Craton (Fouch & Rondenay, 2006; Refayee et al., 2014; 

Yang et al., 2017).

5.1.5. 3-D Dynamic Flow Model of the Subduction Zone. A three-dimensional 

model (Figure 11) of the spatial distribution of the anisotropy beneath Aleutian-Alaska 

subduction zone (Area A and Area B) is constructed to concisely present a multiple 

mantle flow system, which mainly consists of flows induced by three different 

mechanisms. The entrained mantle flow subducts beneath the flat portion of the Yakutat 

slab in a trench-perpendicular direction, possibly related to the viscous coupling between 

the subducting lithosphere and asthenosphere. Beneath the steeply dipping slab portion, it 

gradually diverts and moves toward the slab edge. The flow then spins around the slab 

edge, transfers sub-slab materials into the mantle wedge, resulting in an anticlockwise 

toroidal flow pattern (Figures 4 and 11). In the Aleutian arcs, sub-slab trench-parallel 

flow migrates along the steeply dipping Pacific slab due to the effect of slab rollback.

5.2. POSSIBLE UNDERGROUND STRUCTURES AND THEIR IMPLICATIONS

The SWS measurements have revealed different mantle flow systems throughout 

the entire Alaska region; however, several underground structures with complicated 

splitting patterns near the tectonic boundaries are still equivocal and opens to a variety of 

interpretations. Hence, we compare our results with previously proposed structures and 

discuss reasonable scenarios that may exist.

5.2.1. Possible Two-Layered Anisotropic Region. In the region where the slab 

strike turns into a nearly NNE-SSW direction, we observe numerous azimuthally 

dependent XKS measurements from 11 stations, possibly associated with the existence of



two-layered anisotropy. McPherson et al. (2020) obtain similar results of which the 

measurements from western back azimuths exhibit APM-parallel fast orientations, while 

those from south to southwest show fast orientations parallel to the slab strike, indicating 

the anisotropy from mantle wedge and sub-slab region, respectively. Unfortunately, due 

to the limited azimuthal coverage, we are not able to obtain a two-layered model from 

each of the 11 stations. Meanwhile, the combination of the 11 stations leads to another 

problem: the combination of the strike-parallel and NW-SE fast orientations in the 

assumed lower layer has resulted in the “overlapping phenomenon” of the fast 

orientations in BAZ 90° (Figure 8). Thus, we cannot grid-search the optimal splitting 

parameters for the two layers using combined data and such region is expected to be 

detected in future studies with more data.

Mountain Spurr (MS) (Figure 1) locates to the southeast of the possible two

layered region. This region is also featured by elusive splitting parameters from 6 

stations. Similarly, each of these stations only shows a small number of measurements 

with different splitting parameters, which are lack of systematic azimuthal patterns and 

cannot be explained by either two-layered anisotropy or spatially varying anisotropy. 

Notably, the region is situated at the joint point of Area A and Area B, a tectonic 

transition zone that may account for the complicated splitting pattern (McPherson et al., 

2020).

5.2.2. Possible Lithosphere Anisotropy in the Yakutat Collision Zone. The

southeastern corner of Alaska has collided with the unsubducted potion of the Yakutat 

terrane (Figure 1) since mid-Miocene (Plafker & Berg, 1994). This region includes 

numerous E-W and NE-SW measurements, similar to those obtained from McPherson et
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al. (2020). The combination of these similar results from 27 stations shows a clear 

azimuthal variation, suggesting the presence of a two-layered anisotropic structure 

(Figure 7c and 7d). Silver (1996) propose that lithospheric anisotropy can be generated 

by past compression activities, leading to fast orientations perpendicular to the maximum 

shortening direction. Therefore, the following assumption may account for the 

complicated splitting pattern here. The 109° fast orientation in the upper layer is 

perpendicular to the regional N-S to NNE-SSW maximum shortening direction 

(Marechal et al., 2015) and may stand for lithospheric anisotropy generated by the 

collision with the unsubducted Yakutat terrane. The 39° fast orientation in the lower layer 

is approximately consistent with the NNE-SSW measurements in Area C (Figure 4). We 

suggest that this lower layer anisotropy may stand for the asthenospheric mantle flow 

escaping from the Yakutat terrane or simply represent the APM-parallel anisotropy.

Thus, a two-layered anisotropic model with a lithospheric upper layer on top of a 39° 

asthenospheric mantle flow layer is suggested in this region.

5.2.3. Formation Mechanism of the WVF. The WVF locates to the east of the 

Yakutat slab (Figure 1) and the volcanoes in this area are differentiated from Aleutian arc 

volcanoes by their atypical magmatic composition and controversial magma origin 

(Preece & Hart, 1994). In spite of the abrupt termination of the Wadati-Benioff zone at 

~148°, a tectonic tremor study (Wech, 2016) argues that the Wrangell slab is likely 

aseismic due to the high tremor frequency in the vicinity of the WVF. Martin-Short et al., 

(2018) indicate that the Yakutat LAB ends directly beneath the WVF according to the 

surface wave tompgraphy results, while others image a high-velocity structure beneath 

the WVF, indicating the possible existence of a Wrangell slab (Gou et al., 2019; Jiang et
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al., 2018; Yang & Gao, 2020). Our results show two anisotropic patterns in the proximity 

of the WVF: the dominant N-S trend of fast orientations in the western part of Area C 

and the circular trend in Area F. If the Wrangell slab does exist, the N-S fast orientation 

may represent another northward entrained flow beneath the Yakutat terrane. The 

difference in the direction between this flow and that in Area B may be associated with 

the varying geometry of the Yakutat slab. Alternatively, the WVF is possibly induced by 

the toroidal flow around the slab edge. This interpretation is further buttressed by 

numerous null measurements in the WVF region from other SWS studies (Hanna &

Long, 2012; Mcpherson et al., 2020) and the existence of vertical upwelling suggested by 

geodynamic modelling studies (Jadamec & Billen, 2010; 2012). In this scenario, the N-S 

fast orientations to the south of the WVF likely represent the escaped flow moving 

through the Yakutat slab window, similar to the lower layer in the Yakutat collision zone.

6. CONCLUSIONS

To identify different mantle flow systems and probe relevant anisotropy structures 

beneath the entire Alaska region, a total of 2790 pairs of XKS and 247 pairs of local S 

splitting parameters are measured. Such unprecedented number of SWS measurements 

obtained using three seismic phases led to new understandings on regional mantle 

dynamics. Complex anisotropy is quantified in three regions in and near the subduction 

zone. The anisotropy structure in region ENT represents the confluence of different flow 

systems at different depths. Region SEA shows a two-layered structure that consists of a 

lower asthenospheric flow possibly escaped from the Yakutat slab window or induced by
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the APM, under the assumption of an upper compression-induced anisotropic layer in the 

lithosphere. Region CEN exhibits two anisotropic layers, corresponding to the trench- 

parallel wedge flow and sub-slab entrained flow, respectively. The anisotropy structure in 

region ENT represents the confluence of different flow systems at different depths. The 

mantle flow mechanism in the Aleutian-Alaska subduction zone is highly varied and is 

mostly controlled by slab geometry and subducting approach. Beneath the normal

dipping Pacific slab, the mantle flow is dominantly trench-parallel. Under the flat Yakutat 

slab portion, the flow initially entrains with the slab and subsequently deflects to a 

trench-parallel direction, and moves toward the slab edge, generating anticlockwise 

toroidal flow therein. Finally, in the stable continental region away from the areas 

affected by the subduction, the observed anisotropy is mostly caused by APM-induced 

simple shear, with possible deflections induced by the deep continental keel.
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II. MANTLE FLOW IN THE VICINITY OF THE EASTERN EDGE OF THE 
PACIFIC-YAKUTAT SLAB: CONSTRAINTS FROM SHEAR WAVE

SPLITTING ANALYSES

ABSTRACT

To investigate the effects of a slab edge and varying slab geometry on the mantle 

flow systems beneath south central Alaska, a total of 971 pairs of teleseismic shear wave 

(SKS, SKKS, and PKS) and 65 pairs of local S wave splitting parameters (fast 

orientations and splitting times) are measured using data from the USArray and other 

networks. The Pacific-Yakutat slab edge separates two regions with different 

characteristics of the splitting measurements. The area to the west of the slab edge has 

greater splitting times and mostly trench parallel fast orientations, and the area to the east 

is dominated by smaller splitting times and spatially varying fast orientations. The spatial 

distribution of the splitting parameters and results of anisotropy layering and depth 

analyses can be explained by a model involving three flow systems. The sub-slab flow 

initially entraining with the shallow-dipping Yakutat slab deflects to a trench-parallel 

direction near due to slab retreat and an increase in slab dip, and flows northeastward 

toward the slab edge, where it splits into two branches. The first branch enters the mantle 

wedge as a toroidal flow and flows southwestward along the slab, and the second branch 

continues approximately eastward. The flowlines of the toroidal and continued flow 

systems are approximately orthogonal to each other in the vicinity of the Pacific-Yakutat 

slab edge, producing the observed small splitting times and spatially varying fast

orientations.
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1. INTRODUCTION

The eastern terminus of the Pacific-Yakutat slab in south central Alaska (Figure 

1) is characterized by the partial subduction of the Yakutat terrene (YT), which has its 

origin as an oceanic plateau with anomalous crust of more than 20 km thick (Christensen 

et al., 2010; Ferris et al., 2003; Worthington et al., 2012). The buoyancy of the subducted 

portion of the YT has led to flat and shallow subduction in the area from the trench to 

~600 km inland (Eberhart-Phillips et al., 2006), where the slab resumes a steeper dip that 

is comparable to that of the neighboring normal oceanic slab (Figure 1). Slab rollback 

and southward trench migration of the “normal” Pacific slab west of the YT have been 

suggested by geodynamic modeling (Schellart et al., 2007), although the YT portion of 

the slab may not experience rollback due to its high buoyancy (Jadamec & Billen, 2012). 

Recent seismic tomography and receiver function studies suggest that the Pacific-Yakutat 

slab may plunge into a depth of over ~400 km in the mantle (Dahm et al., 2017; Gou et 

al., 2019; Jiang et al., 2018; Martin-Short et al., 2018). Seismic tomography studies 

reveal a sharp slab edge that is consistent with the eastward termination of the Wadati- 

Benioff zone (Martin-Short et al., 2018), while recent tomographic studies argue that the 

slab edge may extend further to the north in the area underlain by an aseismic section of 

the slab (Gou et al., 2019).

Numerous geodynamic modeling studies demonstrate that slab rollback near a 

slab edge can induce a toroidal component of mantle flow, which enters the mantle 

wedge from the sub-slab region (Jadamec & Billen, 2010, 2012; Kincaid & Griffiths, 

2003; Stegman et al., 2006). Specifically for the study area in south central Alaska,
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Jadamec & Billen (2012) conduct mantle flow modeling by considering a set of slab 

geometry ad rheology parameters. For virtually all models, an anticlockwise toroidal flow 

system associated with the Pacific-Yakutat slab edge is revealed. In contrast, based on 

azimuthal anisotropy measurements from the Moho to 200 km depth, a recent Rayleigh 

wave tomography study (Feng et al., 2020) suggests a clockwise flow system that 

continues toward the southeast after coming out from the slab edge.

One of the most effective techniques to provide direct constraints on mantle flow 

models is shear wave splitting (SWS) analysis (Hess, 1964; Silver & Chan, 1991). It has 

long been recognized that when a P-to-S converted wave from the core-mantle boundary 

(SKS, SKKS, and PKS, hereafter collectively called XKS) propagates through an 

azimuthally anisotropic layer, the shear wave would split into two components with 

orthogonally polarized directions and different traveling speeds (Ando, 1984; Silver & 

Chan, 1991). Two splitting parameters, the polarization orientation of the fast component 

(or fast orientation) and the arrival time difference between the fast and slow components 

(or splitting time), are measured to quantify the orientation and strength of the seismic 

azimuthal anisotropy, respectively.

The primary mechanism for the generation of seismic anisotropy in the upper 

mantle is the lattice preferred orientation (LPO) of the crystallographic axes of 

anisotropic minerals, especially olivine (Zhang & Karato, 1995). Under normal 

temperature and pressure conditions, progressive simple shear will result in the fast 

polarization orientation to be parallel to the a-axis of olivine (Ribe & Yu, 1991). Simple 

shear is commonly produced by the relative movements between the lithosphere and 

asthenosphere such as those associated with absolute plate motion and slab subduction
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(Long & Becker, 2010; Schellart, 2004; Silver & Chan, 1991). Additionally, the a-axis 

aligns at a right angle to the direction of maximum horizontal compression under uniaxial 

compression (Ribe & Yu, 1991).

Figure 1. (a) Topographic relief map of the Alaska-Yakutat slab edge region with major 
geological structures. The Yakutat slab is delineated by the thick black dash line 

(Eberhart-Phillips et al., 2006), while the thin dash line indicates the aseismic slab area 
imaged by Gou et al. (2019). Contour lines of the depth of the Pacific slab are shown in 
blue (Gou et al., 2019). AR: Alaska Range. The upper right inset shows the location of 

the study area, which is outlined by a red rectangle. The red sawteeth mark the trench of 
the Alaska-Yakutat subduction zone. (b) Measurements from previous shear wave 

splitting studies labeled in the lower-right inset. Red squares and black dots mark the 
stations with XKS and local S measurements in this study, respectively.

In a subduction zone configuration, XKS splitting measurements mainly reflect 

the combined contributions from the mantle flows in the sub-slab region and the mantle 

wedge (Long & Silver, 2009; Perttu et al., 2014), although contributions from the slab 

and the lithosphere of the overriding plate cannot be completely excluded (Feng et al., 

2020; Kong et al., 2020; Tian & Zhao, 2012). Trench-parallel flow in the sub-slab region 

is commonly attributed to slab rollback, which may also be responsible for trench-
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perpendicular corner flow in the mantle wedge (e.g., Fouch & Fischer, 1996; Kong et al., 

2020; Long & Silver, 2008, 2009; Russo & Silver, 1994). Away from the trench, trench- 

perpendicular entrained flow caused by viscous coupling between the slab and the 

underlying mantle has been proposed (Currie et al., 2004; Eakin & Long, 2013; 

Paczkowski et al., 2014; Russo & Silver, 1994). Numerous shear wave splitting 

measurements in the vicinity of a slab edge can be explained by edge induced toroidal 

flow (Civello & Margheriti, 2004; Hanna & Long, 2012; McPherson et al., 2020; Palano 

et al., 2017; Venereau et al., 2019).

Most XKS splitting studies including those conducted in Alaska (e.g., Christensen 

& Abers, 2010; Hanna & Long, 2012; Perttu et al., 2014; Venereau et al., 2019) were 

conducted under the assumption of simple anisotropy, which refers to anisotropy from a 

single anisotropic layer with a horizontal axis of symmetry (Silver & Chan, 1991). This 

ideal condition produces similar splitting parameters with respect to the arriving azimuth 

of the events (back-azimuth or BAZ). Departures from the ideal conditions of simple 

anisotropy are termed as complex anisotropy (Silver & Savage, 1994), and the most 

common form of complex anisotropy structure consists of two anisotropic layers, each 

with a horizontal axis of symmetry. The two-layered complex anisotropy is characterized 

by systematic azimuthal variations of the individual splitting parameters with a 90° 

periodicity. Additionally, if a station is located near the boundary between two or more 

areas with different anisotropic characteristics, the observed anisotropy at the station may 

also vary azimuthally (referred to as spatially varying anisotropy hereinafter), although 

the variation may not necessarily possess a 90° periodicity (Alsina & Snieder, 1995; Liu 

& Gao, 2013).
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2. PREVIOUS SWS STUDIES AND RATIONALE OF THE PRESENT STUDY

A number of previous SWS studies have been carried out in the Alaska region 

(Figure 1b), elucidating some significant mantle flow features in the vicinity of the 

Pacific-Yakutat slab edge. The most prominent feature observed by pre-USArray studies 

(Christensen & Abers, 2010; Hanna & Long, 2012; Perttu et al., 2014) in this region is an 

~90o change in the observed fast orientation near the ~70 km slab depth contour line, 

which separates the northern area with mostly trench-parallel fast orientations and the 

southern area that is dominated by trench-perpendicular orientations. The two clusters of 

fast orientations are mostly interpreted as reflecting along-strike flow in the mantle 

wedge and trench-perpendicular flow in the sub-slab region, respectively (Christensen & 

Abers, 2010).

Using data from some of the USArray and other stations, Venereau et al. (2019) 

and McPherson et al. (2020) conduct SWS investigations in the entire Alaska region. 

Both studies observe a circular pattern in the vicinity of the slab edge, and attribute the 

observations to an edge-induced toroidal flow system. Furthermore, on the basis of the 

consistency between the fast orientations and the strike of the regional strike-slip faults 

(e.g., Denali Fault, Figure 1a), the observed anisotropy near the fault zones is considered 

to be associated with shear strain generated by the relative motion along the faults 

(McPherson et al., 2020).

The current study was motivated by a number of factors. First, most of the 

previous SWS studies focus on identifying the different mantle flow systems in southern 

Alaska or the entire Alaska region (Hanna & Long, 2012; McPherson et al., 2020;



Venereau et al., 2019), and detailed analyses focused on the mantle flow systems 

associated with the slab edge are lacking. Second, complex anisotropy (mostly in the 

form of multi-layered anisotropy) has not been recognized in the study area due to a lack 

of adequate azimuthal coverage. Third, local S wave splitting analysis, which is an 

effective tool in discriminating wedge and sub-wedge anisotropy (e.g., Karlowska et al., 

2021; Kong et al., 2020), is scarce in this region. Fourth, due to the vertical incidence of 

the XKS phases, the depth of the source of the observed XKS splitting remains 

ambiguous. Fifth, some aspects of the mantle flow systems in the slab edge region, 

including the lateral extent of the toroidal flow and the existence or absence of an 

eastward continuation of the sub-slab flow after it comes out of the slab edge, are still not 

well understood (Feng et al., 2020; Hanna & Long, 2012; Jadamec & Billen, 2010; 

Venereau et al., 2019).

In this study, we take advantage of the recent significant improvement in both the 

station and azimuthal coverages in the study area as a result of the USArray deployment 

to systematically investigate the mantle flow system in the vicinity of the Pacific-Yakutat 

slab edge in south central Alaska.

We isolate contributions of sub-slab anisotropy from the entire anisotropy region 

to the observed SWS using local S wave splitting analysis, estimate the depth of the 

source of XKS splitting using a spatial coherency approach (Gao & Liu, 2012; Liu &

Gao, 2011), grid-search the two pairs of splitting parameters under a two-layered model 

(Silver & Savage, 1994), and propose a new mantle flow model to explain the observed 

seismic anisotropy.

49
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3. DATA AND METHODS

The XKS and local S data used in this study were recorded by 106 broadband 

seismic stations (Figure 1b) located in the area of 61-66° N and 153-143°W, covering a 

recording period of 30 years from late 1988 to October 2019. The epicentral distance 

range is 83o-180o, 95o-180o, and 120o-180o for SKS, SKKS, and PKS, respectively (Liu & 

Gao, 2013).

In comparison, the latest SWS study covering the study area (McPherson et al., 

2020) used only the SKS phase in the distance range of 80o-140o recorded during the 

period of early 2010 to middle 2017. The seismic data were requested from the 

Incorporated Research Institutions for Seismology (IRIS) Data Management Center 

(DMC).

The splitting parameters were measured and ranked following the procedures 

described in Liu & Gao (2013) for XKS and Jiang et al. (2021) for local S waves, and are 

briefly summarized below. For XKS splitting, the procedures were developed based on 

the minimization of transverse energy technique (Silver & Chan, 1991). Events with a 

magnitude of 5.6 or greater were used for data requesting from the DMC, and the cutoff 

magnitude was reduced to 5.5 for events with focal depths larger than 100 km.

For local S wave splitting analysis, the cutoff magnitude is 4.0. Additionally, only 

local events in the S-wave window (which is approximately within an angle of incidence 

of 35o) are used, and the splitting parameters were measured using the principle of 

minimizing the lesser of the two eigenvalues of the covariance matrix (Silver & Chan, 

1991).
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Figure 2. Examples of SWS measurements from two events recorded by station RND. 
The plots in the top row show original and corrected radial and transverse components, 

and plots in the central rows show the fast and slow waveforms and particle motions. The 
bottom plots are misfit maps, in which colors representing the energy on the corrected 

transverse component. The optimal pair of splitting parameters corresponds to the 
minimum value on the misfit map and are marked by the black star. Note the significant 
differences in the splitting parameters from the two events recorded by the same station

due to different piercing point locations.

For XKS splitting, the seismograms were initially windowed in the time period 5 

s before and 20 s after the predicted time of the XKS arrival, and were band-pass filtered 

in the frequency range of 0.04-0.5 Hz. The corresponding parameters for local S splitting 

are 5 s before and 10 s after, and 0.1-1.0 Hz. Then, we manually checked all the 

measurements to verify and (if necessary) adjust the beginning and end times of the XKS 

and local S window, quality ranking, and band-pass filtering frequencies. The final SWS 

measurements were grouped into Quality A (outstanding), B (good), N (null), and C (not 

used), and only A and B measurements were used in the study. Null measurements, 

which are characterized by robust XKS arrival on the original radial but no XKS energy
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on the original transverse components, were not used in the study because all the stations 

with clear XKS arrivals on the radial components resulted in at least one Quality A or B 

measurement. Figure 2 exhibits example XKS measurements recorded at station RND 

from two events with different back azimuths, while Figure 3 shows local S wave 

splitting measurements from three different stations.

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
Sp litting time (s) Sp litting time (s) Sp litting time (s)

Figure 3. Examples of local S measurements from stations RND, PPLA, and TRF. Note 
that the corrected radial and corrected transverse components are relative to the pre

splitting shear wave polarization orientation rather than the back azimuth of the event.

4. RESULTS

A total of 971 pairs of well-defined (Quality A or B) XKS measurements (Figure 

4a) were obtained at 106 stations, while 65 pairs of local S measurements (Figure 4b) 

were measured at 10 stations. For the XKS results, the fast orientations have a circular
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mean value of 55.0° ± 37.4° and the splitting times range from 0.40 to 2.15 s with an 

average of 1.14 ± 0.31 s, which is slightly larger than the global average of 1.0 s for 

continents (Silver, 1996). For the local S splitting measurements, the averages are 62.4° 

± 27.1° and 0.39 ± 0.13 s for the fast orientations and splitting times, respectively.

Figure 4. (a) 971 pairs of XKS splitting measurements from this study. Red bars stand for 
the splitting measurements from stations with azimuthally invariant measurements, black 

bars represent the splitting results showing systematic azimuthal variations with a 90° 
periodicity, and green bars indicate the splitting results exhibiting azimuthal variations 
without a 90° periodicity. All the measurements are plotted at the surface projections of 
the ray-piercing points at the depth of 200 km. Measurements in the black rectangle are 
used for anisotropy depth analysis shown in Figure 7. (b) 65 pairs of local shear wave 
splitting measurements and the rose diagram of the fast orientations. The background 

color shows the P wave velocity anomaly at 200 km depth (Gou et al., 2019).

4.1. CHARACTERIZATION OF COMPLEX ANISOTROPY

Two-layered anisotropy is considered as the most common form of complex 

anisotropy and the two pairs of splitting parameters can be determined using a grid

searching technique (Silver & Savage, 1994). Similar to previous complex anisotropy



studies (e.g., Cherie et al., 2016; Kong et al., 2018; Yang et al., 2014), measurements 

from 10 nearby stations with similar azimuthal variations (Figure 5) are combined in this 

study to improve the azimuthal coverage of the XKS events (black bars in Figure 4a).

The resulting upper layer fast orientation is 47° which is nearly trench-parallel and has a 

splitting time of 0.7 s, while the fast orientation for the lower layer is 8° with a splitting 

time of 0.6 s (Figure 5).
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Figure 5. Systematic azimuthal variation of the combined XKS splitting measurements 
(black bars in Figure 4a). (a). Fast orientations plotted against modulo-90° back azimuth. 
(b). Splitting times against modulo-90° back azimuth. (c). Fast orientations against BAZ. 

(d). Splitting times against BAZ. The gray line in each plot represents the theoretical 
apparent splitting parameters calculated using the resultant optimal two pairs of 

parameters shown at the top of the figure.
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Figure 6. Azimuthal variation of the combined measurements (green bars in Figure 4a) 
showing spatially varying anisotropy. (a). Fast orientations against the back azimuth. (b). 

Fast orientations against modulo-90° back azimuth.

Measurements from several stations (green bars in the black rectangle in Figure 

4a) also exhibit azimuthal variations but without a 90o or 180o periodicity (Figure 6), 

indicative of the possible existence of spatially varying (or piercing-point dependent) 

anisotropy. All the measurements from the northwest are trench-parallel, similar to the 

local S results, while those from the southeast are nearly NW-SE. Spatially varying 

anisotropy may reflect one anisotropy layer with different anisotropic characteristics 

(Alsina & Snieder, 1995; Liu & Gao, 2013), thereby implying a possible boundary that 

separates two or more areas with different anisotropy properties. We apply the spatial 

coherency approach to estimate the depth of the source of the observed anisotropy (Gao 

& Liu, 2012) using measurements from stations in the black rectangle in Figure 4a. The 

approach is based on the criterion that the optimal anisotropy depth corresponds to the 

highest spatial coherency reflected by the lowest spatial variation factor. The optimal 

anisotropy depth is searched in the range of 0 to 400 km with an interval of 5 km, and the



block size (dx) ranging from 0.22o to 0.30o are employed with a 0.02o interval. The 

anisotropy depth results are shown in Figure 7, in which all spatial variation factor curves 

indicate an estimated depth of ~250 km, comparable with the regional slab depth 

proposed by seismic tomography studies (e.g., Gou et al., 2019).
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Figure 7. Spatial variation factors plotted against assumed depth of anisotropy for the 
XKS splitting measurements in the region outlined by the black rectangle in Figure 4a. 
Different curves are obtained using different dx values. The red triangles on the curves 

represent the minimum variation factors corresponding to the optimal depths of
anisotropy.

4.2. SPATIAL DISTRIBUTION OF THE SPLITTING OBSERVATIONS

The study area is divided into 4 sub-regions (Figure 8) based on the 

characteristics of the XKS measurements. Area A includes the southmost portion of the
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subducted YT and includes 138 measurements from 18 stations. The circular mean of the 

fast orientations is 140.7° ± 14.8° and the mean splitting time is 1.15 ± 0.31s, both are 

consistent with those obtained by previous studies (Christensen & Abers, 2010; Hanna & 

Long, 2012; McPherson et al., 2020; Venereau et al., 2019). Almost all the stations 

located south of the ~40 km slab depth contour line show trench-perpendicular fast 

orientations, which change to a nearly N-S direction where the slab descends more 

steeply.

Figure 8. Subdivision of the study area based on the spatial distribution of XKS splitting 
measurements. All the measurements are plotted above the 200 km ray-piercing points. 
Black dash lines are the boundaries between the subregions (A-D). Each rose diagram 

indicates the fast orientations in each subregion.

Area B includes the NE portion of the YT and an area east of the Pacific-Yakutat

slab edge, with 67 measurements from 14 stations. The mean value of the fast



orientations and the splitting times is 15.3° ± 37.5° and 0.90 ± 0.27 s, respectively. The 

standard deviation of the fast orientations is the largest, and the mean value of the 

splitting times is the lowest, among the four regions. The YT portion of this area is 

dominated by NE-SW fast orientations, while fast orientations in the eastern part of the 

area, which is located to the immediate east of the slab edge, are mostly in N-S 

directions.

Area C includes most part of the steeply dipping portion of the Pacific-Yakutat 

slab. The area contains 640 measurements from 47 stations. The circular mean of the fast 

orientations is 55.4° ± 20.5° and the simple mean of the splitting times is 1.17 ± 0.11 s, 

which is the highest in the study area. The fast orientations show a general parallelism 

with the strike of the slab depth contours, i.e., NE-SW in the western part of the area and 

gradually rotate to E-W and then WNW-ESE near the slab edge, similar to those obtained 

from previous SWS studies (McPherson et al., 2020; Venereau et al., 2019). This region 

contains all the 65 pairs of local S splitting measurements from 10 stations (Figure 4b), 

with mean values of 62.4° ± 27.1° and 0.39 ± 0.13 s for the fast orientations and splitting 

times, respectively. At the same 10 stations, the average XKS fast orientation is 53.2° ± 

27.1°, which is similar to the average fast orientation of the local S results, and the mean 

splitting time is 1.25 ± 0.30 s, which is much larger than that of the local S results.

Area D is the easternmost part of the study area and includes 43 measurements 

from 5 stations. It is differentiated from Areas B and C by its dominantly WNW-ESE fast 

orientations (with a mean value of 100.1° ± 23.1°), similar to those in the northeastern 

part of Area C. The mean splitting time is 1.10 ± 0.32 s. These measurements are 

consistent with those from previous SWS studies.

58



59

5. DISCUSSION

The major features of the XKS and local S splitting measurements as well as 

results from two-layer fitting and depth estimate, can be accounted for by a model 

involving three flow systems, including an entrained flow beneath the flat subducting 

portion of the YT (Area A), a slab rollback driven toroidal flow system that includes a 

trench-parallel flow in the sub-slab region and a branch that goes around the slab edge 

and enters the mantle wedge, and an eastward continuation of the sub-slab flow after it 

passes the slab edge (Figures 9 and 10).

5.1. ENTRAINED FLOW BENEATH THE FLAT-SUBDUCTING YT

Both modeling and observational studies suggest that when the subducting 

lithosphere and the underlain asthenosphere are coupled, an entrained flow system 

reflecting the simple shear between the two layers can be generated, leading to trench- 

normal fast orientations (Jadamec & Billen, 2012; Russo & Silver, 1994). This type of 

mantle flow has been commonly observed in flat and shallow subduction zones, such as 

the Peruvian segment of the Peru-Chile subduction zone (Eakin & Long, 2013), the 

western Hellenic subduction zone (Olive et al., 2014), and the flat-subducting portion of 

the YT (Christensen & Abers, 2010; Hanna & Long, 2012; McPherson et al., 2020; Perttu 

et al., 2014; Venereau et al., 2019). The dominantly trench-normal fast orientations 

observed in Area A can thus be attributed to plastic flow entrained by the flat-subducting 

YT. Anisotropy in the lower layer obtained using stations in the junction zone of Areas



A, B, and C has a nearly N-S fast orientation (Figure 5), which is consistent with the 

dominant fast orientation in Area A and can also be attributed to entrained flow.
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Figure 9. Schematic diagram showing direction of flow lines. The solid lines represent 
flow entering the mantle wedge from the sub-slab region, and the dashed lines mark the 
rollback-induced strike-parallel flow beneath the slab and its continued portion. Thin red 
and green bars are individual XKS and local S measurements, respectively. The thick red 
and green bars respectively indicate the lower and upper splitting parameters in the area 
with two-layered anisotropy. The thick dashed green line is the approximate slab edge, 

conjected from the spatially varying anisotropy. The background basemap shows 
spatially smoothed XKS splitting times.

5.2. SUB-SLAB TRENCH PARALLEL FLOW FROM SLAB ROLLBACK

Trench parallel fast orientations observed in the southern part of Area C can be 

attributed to sub-slab trench parallel flow induced by slab rollback (e.g., Fouch & 

Fischer, 1996; Hall et al., 2000; Jadamec & Billen, 2010, 2012; Russo & Silver, 1994)
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with possible contributions from along-strike variations in slab dip (Kneller & Van 

Keken, 2008). Due to the high buoyancy of the YT, most studies suggest that slab 

rollback is insignificant in the study area. However, rollback of the “normal-dipping” 

section of the Pacific-Yakutat slab to the southwest of the YT has been suggested by 

some previous studies (e.g., Schellart et al., 2007), which should be capable of producing 

a sub-slab trench parallel flow that is responsible for the observed trench-parallel 

anisotropy in the southern part of Area C. Indeed, trench parallel fast orientations have 

been similarly observed along the entire Alaskan portion of the Aleutian subduction zone 

(McPherson et al., 2020; Venereau et al., 2019), indicating that variations in slab dip in 

the study area may not play a significant role in the observed trench parallel fast 

orientation.

5.3. CONTRIBUTION OF TRENCH-PARALLEL FLOW IN THE MANTLE 
WEDGE TO THE OBSERVED ANISOTROPY

The fast orientations observed in Areas A and C show a drastic variation from 

trench-perpendicular to trench-parallel. Based on the azimuthal and spatial variations of 

the SWS results, previous studies indicate that the ~70 km slab depth contour line 

represents the boundary separating the two fast orientation patterns, reflecting the sub

slab entrained flow and the trench-parallel flow in the wedge, respectively (Christensen 

& Abers, 2010; Hanna & Long, 2012; McPherson et al., 2020; Perttu et al., 2014; 

Venereau et al., 2019). However, the average splitting time from the local S 

measurements is only 0.39 ± 0.13 s, while the XKS results from the same 10 stations 

show a mean value of 1.25 ± 0.30 s, suggesting that contributions from trench parallel 

flow in the mantle wedge to the observed anisotropy is about half of that from the sub
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slab region. It should be mentioned that the splitting time of the upper layer from fitting 

of the apparent splitting parameters observed in the junction area of Areas A, B, and C is 

considerably larger (0.7 s) than that from local S wave SWS analysis, possibly due to the 

fact that the two areas do not exactly overlap, and to the different frequency compositions 

of the two types of waves.

Figure 10. A three-dimensional schematic model showing the mantle flow fields in the 
four areas of the study area. Solid red arrows represent the flowlines outside of the slab, 
and dashed arrows indicate those beneath the slab. The two red columns represent the 

two flow branches. The sawteeth mark the trench of the Alaska subduction zone.

5.4. CONTINUATION OF SUB-SLAB MANTLE FLOW TOWARD THE EAST

The dominantly E-W and WNW-ESE measurements in Area D are in alignment 

with the local NW-striking strike-slip faults (e.g., Denali Fault in Figure 1a). McPherson



et al. (2020) suggest that the anisotropy here is caused by the shear deformation 

associated with the strike-slip boundary because of the directional similarity between the 

boundary trend and SWS fast orientations. The general validity of such an interpretation 

is essentially based on the hypothesis of vertical coherent deformation (Silver & Chan, 

1991) advocating that the lithospheric mantle would deform consistently with the strike- 

slip processes in the crust and generate progressive simple shear. However, if lithospheric 

shear zones are the major contributors to the observed anisotropy in Area D, one would 

expect greater splitting times in areas of known shear zones (such as the Denali Fault). 

This spatial correspondence is not observed (Figure 9), and thus lithospheric fabrics may 

not be the major factor in generating the observed anisotropy in this area.

An alternative mechanism for the observed anisotropy in this region is an ESE- 

ward continuation of the sub-slab flow system, which splits into two branches after 

passing the slab edge: a toroidal branch entering the mantle wedge (see below), and a 

continuation branch. In the area immediately to the east of the slab edge (Area B), the 

moving directions of the two branches are approximately orthogonal to each other, 

leading to small splitting times (Silver & Savage, 1994).

5.5. TOROIDAL MANTLE FLOW AROUND THE SLAB EDGE

Geodynamic modeling investigations have demonstrated the presence of a 

toroidal component of mantle flow near a slab edge, where sub-slab trench parallel flow 

moves around the slab edge and enters the mantle wedge (Jadamec & Billen, 2010, 2012; 

Kincaid & Griffinths, 2003).

63
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However, the predicted flow direction in the mantle wedge beneath most part of 

Area C is trench normal, which is different from the observed fast orientations of local S 

waves (which mostly sample the mantle wedge) in this area by ~90o. In addition to the 

possible reasons for this discrepancy discussed by McPherson et al. (2020), we speculate 

that the proposed westward increase in the trench retreat rate (from 0.6 cm/yr in south 

central Alaska to 1.9 cm/yr in the central Aleutians) by Schellart et al. (2007) may cause 

the transported materials from the sub-slab region to flow further away from the slab 

edge along the slab. The observed large splitting times and trench parallel fast 

orientations (Figure 9) can thus be attributed to the combined effects of two anisotropic 

layers with similar fast orientations associated with trench-parallel flows in both the 

mantle wedge and the sub-slab region.

6. CONCLUSIONS

SWS measurements from both teleseismic and local events are utilized to 

constrain mantle flow patterns beneath south central Alaska. The vast majority of the 

observations, together with results from complex anisotropy analysis and depth 

estimation of the source of the observed anisotropy, can be explained by a model 

invoking the splitting of the sub-slab trench-parallel flow into two branches. One of the 

branches is a continuation of the sub-slab flow system toward the ESE direction, and the 

other branch flows around the slab edge, enters the mantle wedge, and flows toward the 

SW along the slab. The two branches are approximately orthogonal to each other in the
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area immediately to the east of the slab edge, producing spatially varying fast orientations 

with smaller than normal splitting times.
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SECTION 

2. CONCLUSIONS

In this research, we use all available broadband seismic data obtained from 

USArray Transportable Array (TA) and other seismic stations to investigate the upper 

mantle flow and the corresponding anisotropy structures in the contiguous Alaska region. 

Finally, a total of 2790 pairs of well-defined splitting measurements are obtained, and 

some significant findings are reportable, as listed below:

1). Multiple mantle flow fields are detected beneath the entire Alaska region. In 

southern Alaska where the subduction process is ongoing, the regional mantle flow 

system is strongly controlled by slab geometry and subducting approach. The mantle 

flow is dominantly trench-parallel beneath the normal-dipping Pacific slab, while the 

flow beneath the flat Yakutat slab is initially trench-perpendicular and subsequently 

deflects to a trench-parallel direction as the slab descends more steeply. A toroidal flow 

pattern is observed near the Pacific-Yakutat slab edge. Such flow transfers sub-slab 

mantle materials to the mantle wedge through a three-dimensional circulation. By 

contrast, the mantle flow in the tectonically stable northern Alaska is dominantly APM- 

parallel, with possible deflections induced by the deep continental keel.

2). Complex anisotropy is characterized in three regions in the vicinity of the 

Alaska subduction zone. The anisotropy structure in region ENT indicates the confluence 

of different flow systems at different depths. Region SEA shows a two-layered structure 

that consists of a lower asthenospheric flow possibly escaped from the Yakutat slab
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window or induced by the APM, under the assumption of an upper compression-induced 

lithospheric anisotropy layer. Region CEN also exhibits two anisotropic layers, 

corresponding to the trench-parallel flow in the mantle wedge and sub-slab entrained 

flow, respectively. In addition, the examination of spatially varying anisotropy indicates 

the possible location of the Pacific-Yakutat slab edge.

3). The slab rollback-induced sub-slab flow may separate into two branches at the 

edge: One branch flows in an anticlockwise direction, generating substantial trench- 

parallel flow in the mantle wedge. The other continues flowing to the eastern Alaksa.
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