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ABSTRACT

iii

The large sizes of mining equipment pose challenges for analysis using experiments 

or simulation. While scaled physical and simulation models can address this challenge, no 

previous work has explored how similitude theory and modeling can provide valid analysis 

of large equipment such as rubber tire loaders. The objective of this research was to apply 

similitude theory and discrete element modeling (DEM) to study the effect of different 

digging parameters on the penetration and the draft on the buckets of rubber tire loaders. 

The work sought to (1) test the hypothesis that the geometry of a rubber tire loader bucket 

and operating conditions significantly affects the resistive force (draft) and penetration; (2) 

test the hypothesis that different geometry orientations and operating conditions of a rubber 

tire loader bucket significantly affects draft and penetration; (3) apply DEM to scale models 

of rubber tire loader buckets to understand the effect of bucket geometry, orientations, and 

operating conditions on draft and penetration; and (4) evaluate the effectiveness of using 

discrete element models and similitude theory to predict draft and penetration.

The results show that geometry, muckpile particle sizes, height above the floor, 

rake angle, speed, and motor power output are correlated to penetration and draft. This 

work has demonstrated that we can build valid DEM models for predicting at a larger scale. 

The chamfer angle of semi-spade bucket cutting blades significantly affects the draft on 

the buckets and 30° chamfer cut angle performs the best with the lowest peak resistive 

forces and energy consumption. The work finds that the forces observed during the rotation 

phase of the simulation are lower than the observed forces during penetration.
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1. INTRODUCTION

This section explains the background of this work, statement of the research 

problem, objectives, and scope of the study. This section also covers the research 

methodology and scientific and research contributions of this work.

1.1. BACKGROUND

The rubber tire loader (RTL) comprises of the front end loader (FEL) and load haul 

dump (LHD) (Figure 1-1). These loaders are extensively used in the mining and 

construction industry due to their flexible operation and mobility. These loaders operate in 

four distinct steps 1) penetration; 2) rotation; 3) lift; and 4) pull out. An in-depth 

understanding of these four steps is necessary to improve the overall efficiency of the 

operation and provide data for the automation of these loaders. The cycle time for 

penetration ranges from 60-70 percent of total excavation time leaving 30-40 percent for 

rotation, lift, and pull out for different types of rocks. The understanding of loading 

operation for RTL is an understudied area even with their extensive utilization in the 

mining industry worldwide.

Mining RTLs, especially the ultra class FELs, are expensive machines that require 

high capital investments. For example, a Komatsu WA-2350 will cost around US$ 3 to 4 

million. The bucket of such a machine could cost around $30,000 to $50,000 depending on 

the application. The life of such a bucket is estimated to be 10,000 hours with good 

maintenance leading to a cost of $3/hour, which is significant given that overall mining 

cost is typically in the same order of magnitude. Thus, the operating and capital costs
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associated with RTLs and RTL buckets are high and require that such machines are used 

efficiently to ensure adequate returns on the investment.

Cabin-
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Figure 1-1. Rubber tire loader nomenclature: (a) Front-end loader; (b) Load haul dump

The mining and construction industry uses buckets of different designs and 

geometries for different operations. The decision to select a particular bucket is made 

largely based on the cost, personal experience of the engineers, and the after-sale services 

associated with the bucket of the original equipment manufacturer (OEM). Industry has a 

practice of using different types of buckets for different operations. However, different 

manufacturers also offer different bucket geometries for conducting similar operations and 

claim performance benefits with very little basis in the open literature. The effectiveness 

of different RTL buckets when excavating different types of material has not been 

rigorously studied due to a lack of resources to conduct extensive experimentation on a 

variety of bucket designs.

The large sizes and operating costs restrict full-scale testing on many buckets of the 

sizes used in mining. However, the literature shows the successful application of similitude 

theory in testing and analysis of different prototypes and scale models (Casaburo et al.,
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2019; Coutinho et al., 2016; Kumar et al., 2016; Kumar, 2018; Ramu et al., 2013; Simitses 

& Rezaeepazhand, 1994; Ur Rehman et al., 2020; Ur Rehman & Awuah-Offei, 2020b; 

Williams, 2020). Experimentation based on sound application of similitude theory can 

overcome the challenge posed by the size and cost but will need extensive experimentation, 

to carry out full factorial design experiments to test and analyze different designs, in order 

to evaluate the best approaches to scaling. The sheer number of experiments, necessary to 

characterize the effects of every significant parameter can also be expensive and prone to 

errors and uncertainty.

The challenge of conducting excessive experimentation can be overcome by using 

numerical modeling applications (Waqas, 2018). Discrete element methods are the most 

appropriate method for estimations involving rock particles or discontinuous material 

(Obermayr, Vrettos, Eberhard, & Dauwel, 2014; Tekeste, Way, Syed, & Schafer, 2020a) 

as the discrete element model successfully incorporates the interactions between the 

particles along with the interactions between the tool and particles (Cundall & Strack, 

1979). Thus, building a valid discrete element model that can predict draft on a bigger 

model will solve the limitations due to size and experimentation limitations posed by large 

mining machinery. However, discrete element modeling and simulation is limited by the 

size of mining equipment which makes these problems computationally expensive (Ali, 

2016; Ali & Frimpong, 2018b; Gbadam, 2017; Waqas, 2018).

1.2. STATEMENT OF PROBLEM

The author is not aware of any work in the literature that conducted factorial design 

experimentation on RTL performance analysis. While RTL applications are common in
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mining and construction, gaps exist in our understanding of how they perform in different 

materials (coal, hard rock, iron ore, etc.) and how or whether their performance changes 

with changes in operating conditions and dynamic parameters. The majority of our 

understanding of RTL bucket operations is derived from work on agricultural tools and 

limited work on other mining equipment such as the cable shovel that differs in key respects 

from RTLs. There is a dire need to investigate and analyze RTL interactions to improve 

our understanding of RTL loading as this will help to improve their loading efficiency and 

extend their applications. Different variables such as speed, motor power output, and 

orientation of the bucket can affect the initial penetration of RTL buckets. Quicker and 

efficient initial penetration and with reduced draft (horizontal force) can significantly 

improve RTL cycle time and productivity, thereby improving the economics of the 

operation. Common orientation parameters for ground engaging tools such as rake angle 

and height above the floor and operating parameters such as speed and motor power output 

have been studied extensively in the literature for the interaction of different blade types 

and tillage tools with soil (Ashrafizadeh & Kushwaha, 2003). Such studies focus on 

agricultural tools, and the literature does not show enough study on the interactions 

between RTL buckets and soil.

A variety of methods can help us analyze the effect of different operating 

parameters and different bucket geometries on their performance. Machinery designers and 

researchers have used different empirical, analytical, and numerical methods to carry out 

such analyses (Ali & Frimpong, 2017c, 2018b, 2019; Awuah-Offei, 2005; Frimpong, Hu, 

& Awuah-Offei, 2005a; Gbadam, 2017; Ghorbani, 2019; Hayat, Ur Rehman, Ali, Saleem, 

& Mustafa, 2019; Tekeste, Balvanz, Hatfield, & Ghorbani, 2019; Waqas, 2018). All of
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these methods need extensive experimentation to build the base for empirical findings and 

relationships, as well as generate data to calibrate and validate numerical models. The large 

size of mining machinery limits the extensive experimentation required and increases the 

computational (and actual) expense to build valid numerical models. Industry and 

academia have found a way around this obstacle by making inferences from results of 

studies on ground engaging tools on agricultural tools. However, the buckets used in 

mining and construction are not only different in size from the agricultural tools but also 

operate differently. The huge size of mining buckets, complex geometry, and differences 

in application limit the usage of such studies for suggesting any improvements in the 

current operation.

Thus, the application of similitude theory and prototype testing could be a viable 

approach to test design ideas and improve the design process for these large mining RTLs. 

Correct application of similitude theory for prototype testing helps to reduce cost and time 

for analysis by a scale of 1/4 to 1/3 (Samuel Holmes & Sliter, 1974). These benefits have 

resulted in the broad application of similitude methods in engineering design tasks in 

industries such as aerospace, military sciences, civil, naval, and automotive industries 

(Casaburo et al., 2019; Ur Rehman & Awuah-Offei, 2020c).

In addition to the benefits to supporting design, prototype testing using similitude 

theory can also support validation of numerical models. The development of a valid scale 

discrete element model (DEM) requires experimental data to help in the calibration and 

validation of the model. The excessive experimentation needed to calibrate different 

dimensions and operating parameters requires extensive experimentation that yields result 

to be used in the DEM models. Also, validating smaller scale numerical models will require
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fewer computational resources than running simulation experiments at the full scale of the 

mining equipment.

This Ph.D. study sought to overcome the challenges of (i) lack of information on 

the interaction of RTL with rocks at different operating parameters; (ii) evaluating 

performance of different bucket designs in a variety of muck piles; (iii) building valid 

discrete element models for extending our understanding of different operating parameters; 

and (iv) evaluating the effectiveness of scale DEM in predicting draft for a bigger model.

1.3. RESEARCH OBJECTIVES AND SCOPE

The objective of this Ph.D. research is to apply similitude theory and discrete 

element modeling (DEM) to study the effect of different digging parameters on the 

penetration and the draft on the buckets of rubber tire loaders. Specifically, this work seeks 

to:

1. Test the hypothesis that the geometry of a rubber tire loader bucket and operating 

conditions significantly affects the resistive force (draft) and penetration;

2. Test the hypothesis that different geometry orientations and operating conditions of 

a rubber tire loader bucket significantly affects the resistive force (draft) and 

penetration;

3. Apply DEM to scale models of rubber tire loader buckets to understand the effect 

of bucket geometry, orientations, and operating conditions on resistive forces 

(draft) and penetration; and

4. Evaluate the effectiveness of using discrete element models and similitude theory 

to predict resistive forces (draft) and penetration.
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The first objective will be achieved by conducting full factorial experiments on a 

1:16 scale model of a load-haul-dump (LHD) with a bucket capacity of 18 t (19.8 tons). 

The experimental results will be analyzed using statistical tools to examine whether there 

is a significant association between penetration and resistive forces (draft) and different 

bucket designs and operating conditions in all possible muck pile materials. The research 

will make recommendations to improve the loading operation of RTLs, better performance 

indicators in different bucket designs, and the significance of different features of buckets 

based on the experimental results.

The second objective will be achieved by conducting full factorial experiments on 

a 1:16 scale model of LHD with a bucket capacity of 18 t (19.8 tons). The experimental 

results will be analyzed using statistical tools to examine whether there is a significant 

association between penetration and resistive forces (draft) and different bucket 

orientations and operating conditions. The research will make recommendations for 

operators, trainers, and management on how to efficiently operate RTLs based on the 

results.

The third and fourth objectives will be achieved by developing a valid DEM model 

for RTL buckets at a scale of 1:16. The DEM model will be built in Abaqus® Software. 

The validated DEM models of the 1:16 scale bucket will be used to predict resistive forces 

for a larger scale physical model (1:8) to achieve the fourth objective. Using similitude 

theory, the research will use the DEM predictions at 1:16 scale to predict penetration and 

resistive forces at 1:8 scale as a means to evaluate how effective it is to use a scaled DEM

model to predict penetration and forces for mining equipment.



8

1.4. RESEARCH METHODOLOGY

Figure 1-2 shows the general approach to this research.

Figure 1-2. Key milestones in this research

Objectives (1) and (2) are driven by scale models based on a thorough literature 

review. The literature review will identify key operating parameters for conducting the 

analysis. The research will use randomized factorial design experiments to gather data on 

draft and longitudinal penetration. Speed, motor power output, rock types, bucket designs, 

and the height above the digging floor are independent variables for objective (1) and 

speed, motor power output, muck pile particle sizes, and rake angle are independent 

variables for objective (2). The draft and penetration are dependent variables for both 

objectives. The research will use generalized regression analysis is used in JMP® to do 

statistical analysis for both the objectives.

For objective (3) inputs from objectives (1) and (2) will be used to calibrate and 

validate scale DEM models in Abaqus®. Once models are validated, they will be used to
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evaluate the performance of different types of buckets available in the market. Similarly, 

the scale DEM model will be used to predict the draft on a bigger (1:8) model to see the 

effectiveness of the combination of similitude and DEM. The bigger model (1:8) will be 

built to evaluate the performance of the 1:16 scale DEM model and physical model in 

predicting draft and penetration at the 1:8 scale (twice the size of the initial prototype and 

DEM model) to accomplish objective (4).

1.5. STRUCTURE OF THE DISSERTATION

This dissertation contains nine sections. The rest of the dissertation is structured as 

follows. Section 2 presents a comprehensive literature review. Section 3 discusses the 

experimental setup for conducting this work. Section 4 presents the research and findings 

on the effects of bucket geometry and operating parameters on the performance of RTL. 

Section 5 presents the research and findings on the effect of operating parameters and 

bucket orientations on the performance of RTL. Section 6 presents the effectiveness of 

similitude theory for bucket design and analysis. Section 7 shows the DEM modeling, 

verification, and validation along with predictions of draft on a bigger scaled model. 

Section 8 provides the use of validated DEM model to design and evaluate bucket 

prototypes based on changing chamfer cut angle. Section 9 provides the conclusions of this 

study and recommendations for future work.
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2. LITERATURE REVIEW

2.1. RUBBER TIRE LOADERS

Figure 2-1 shows a schematic explanation of interaction between a RTL bucket and 

muck pile. The bucket penetrates the muck pile due to the force from the machine, which 

is a function of speed and tractive effort (which in turn depends on the motor power output 

of the drive mechanism), and resistance of the muck pile to penetration (which depends on 

the level of interlocking between the rocks in the muck pile among others). The resistance 

faced by the bucket while penetrating the muck pile is the resistive force. The horizontal 

resistive force is called the draft in the literature (Chen, 2002; Ehrhardt, Grisso, Kocher, 

Jasa, & Schinstock, 2001; Gaspar, Co^a, Cardei, & Viorel Fechete-Tutunaru, 2019; Mari 

et al., 2015; Obermayr, Dressler, Vrettos, & Eberhard, 2011; Ranjbarian, Askari, & 

Jannatkhah, 2017; Rehman & Awuah-Offei, 2020; Tekeste et al., 2019). This dissertation 

focuses on draft because it evaluates initial penetration where draft is the predominant 

resistive force.

Intuitively, the higher the draft, the more effort the RTL will need to penetrate the 

pile during excavation. Researchers have investigated techniques to minimize the draft for 

different ground engaging tools. Studies have analyzed and assessed the effects of different 

operating parameters on the draft and suggested measures to minimize it. This work also 

revolves around draft and penetration. One of the reasons for the lack of studies on RTLs 

is the challenge and expense of studying such large machines (particularly mining RTLs). 

Application of similitude theory and prototype testing is a means to overcome this 

challenge. There is not much in the literature regarding similitude theory application to
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RTLs. This section, however, reviews the basic theory on similitude theory and draws 

inferences that are applicable for RTL prototype testing.

Resistive force 
i— (Draft)

Penetration

Figure 2-1. Bucket interaction with muck pile

Discrete element method utilizes numerical method that considers the discrete 

particles’ interactions by calculating mutual forces at the points of contacts. The equation 

of translation movement and rotation movement are solved for each particle. A DEM 

model takes inputs for each contact (particle to particle and particle to geometry) in the 

form of static friction, coefficient of rolling friction and coefficient of restitution. Usually 

Hertz contact models are used to calculate the normal forces and Coulomb law for 

calculating tangential forces (Coulomb, 1776; Cundall & Strack, 1979; Gelnar & Zegzulka, 

2019b; Raymond D Mindlin, 1953; Raymond David Mindlin, 1949). DEM is 

computationally expensive, especially for large geometry problems (Cleary, 2004; Feng & 

Owen, 2014; Jajcevic, Siegmann, Radeke, & Khinast, 2013). This work uses DEM to study
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the interactions between RTL buckets and muck piles and evaluates how to use scaled 

DEM models to overcome the computational expense of using DEM for mining studies.

Section 2 of literature review looks into the effects of different parameters such as 

rake angle, height above the floor, speed, tractive effort, geometry, and muck pile 

properties on the penetration and resistive forces (draft). Section 3 looks into the previous 

studies regarding similitude theory application, whereas section 4 discusses the findings of 

literature review relating to numerical applications and their evolution over time with a 

focus on DEM. Section 5 presents a summary of the literature review.

2.2. PENETRATION AND RESISTIVE FORCE

The previous work in the literature suggests that geometry of the tool and the 

operating parameters, such as speed and tractive effort, affect the draft exerted on a cutting 

or ground engaging tool (Abo-Elnor, Hamilton, & Boyle, 2003; Ashrafizadeh & 

Kushwaha, 2003; Formato, Faugno, & Paolillo, 2005; Ahmad Hemami, 1993; Ahmad 

Hemami & Daneshmend, 1992; A. Ibrahmi, Bentaher, Hbaieb, Maalej, & Mouazen, 2015; 

Larson, Lovely, & Bockhop, 1968; Luth & Wismer, 1971; Manuwa, 2009; Manuwa & 

Ogunlami, 2010; Ucgul, Fielke, & Saunders, 2014, 2015b, 2015a; Wismer & Luth, 1972). 

However, the literature lacks such work on the effect of different dynamic and operating 

parameters as well as buck geometry and orientations on RTL bucket draft. Regardless of 

this, the literature contains some basic relationships that this work reviews to provide basis 

for the hypothesis and assumptions in this work.

2.2.1. Rake Angle. The literature establishes rake angle as a critical parameter that 

affects the resistive forces on several digging tools (Gaspar et al., 2019; Gebresenbet &
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Jonsson, 1992; Ucgul et al., 2014; Wilkinson & DeGennaro, 2007). For example, 

Gebresenbet and Jonsson (Gebresenbet & Jonsson, 1992) varied the working conditions 

for an agricultural colter’s rake angle and showed that the rake angle affected the variation 

in equilibrium depth (similar to penetration for RTL). Zhang et al. (X. C. Zhang et al., 

2016) found that rake angle is a significant parameter in disturbance of bulk soil for tine 

furrow openers, and Rahman and Chen (Rahman & Chen, 2001) found that reducing the 

rake angle for a liquid manure injection tool reduced the draft forces during prototype 

testing.

Previous research has shown that the effect of rake angle on resistive forces and 

performance varies with different tools, as the effect of the rake angle is a function of 

operating conditions and the specific rake angle. For example, Moinfar and Shahgholi 

(Moinfar & Shahgholi, 2018) observed that a tractor’s tractive efficiency increased with an 

increase in rake angle. However, other researchers have observed that increasing the rake 

angle resulted in higher draft forces for tillage tools (Gebregziabher et al., 2016; Manuwa 

& Ogunlami, 2010; Shahgholi, Kanyawi, & Kalantari, 2019). The rake angle has been used 

by many researchers as a key parameter in different settings for a variety of ground 

engaging tools (Barr, Desbiolles, Ucgul, & Fielke, 2020; Elbashir, Zhao, Hebeil, & Li, 

2014; Fielke & Riley, 1991; Gaspar et al., 2019). This established association between rake 

angle and digging resistance motivates this author to hypothesize that the rake angle is 

associated with resistive forces and penetration (performance) of the RTLs and must be 

investigated for associations.

For mining applications of RTLs, operators usually choose the rake angle based on 

their training and experience, the operating conditions, and the particular task they are
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performing. Typically, for normal digging and loading operations, operators will use rake 

angles near zero degrees. However, for some cleaning tasks on the bench, the operator 

might use higher rake angles (Ur Rehman & Awuah-Offei, 2020c). Rake angles in RTL 

operations in mining typically range from 0° to 15° although optimal rake angles for other 

tools can be much higher than this range (X. C. Zhang et al., 2016).

There is no work in the literature that explicitly examines the relationship between 

RTL rake angles and penetration or resistive forces. Thus, while this author hypothesizes 

that there is a likely a relationship, research is necessary to confirm such a relationship and 

the nature of the association.

2.2.2. Height Above the Floor. The height of the digging tool above the floor, for 

the same bank or muck pile profile, is inversely proportional to the cutting depth, which 

many researchers have shown to be a key parameter for digging forces and performance in 

different settings for a variety of ground engaging tools (Gaspar et al., 2019; Ahmad 

Hemami & Daneshmend, 1992; A. Ibrahmi, Bentaher, Hamza, Maalej, & Mouazen, 2015; 

Karpuz, Ceylanoglu, & Pa§amehmetoglu, 1992; Manuwa, 2009; Rowlands, 1992; Ur 

Rehman & Awuah-Offei, 2020c, 2020b). The literature establishes the importance of 

cutting depths for different ground engaging tools and shows that increasing the depth of 

tillage tools results in significantly (in some cases 26-58%) higher drag forces compared 

to the average drag force (Gaspar et al., 2019). For example, Moinfar and Shahgholi 

(Moinfar & Shahgholi, 2018) observed that the draft forces on a chisel plow increased with 

increasing tilling depth, which is similar to what Shahgoli et al. (Shahgholi et al., 2019) 

showed, using discrete element simulations, for narrow cutting tools such as tines. The
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accepted effect of height above the floor for agricultural ground engaging tools suggests a 

similar association in the mining ground engaging tools such as RTL buckets.

However, for RTLs, the effect of height above the floor on draft might differ in one 

major respect from the depth of cut for other digging tools. As RTL buckets operate along 

the floor of the bench (operating along a fixed surface), the fixed floor might introduce 

edge effects where the rocks near the floor will resist motion (Pulungan, Lubineau, 

Yudhanto, Yaldiz, & Schijve, 2017; Ryska, 1985). Thus, edge effects are likely to lead to 

a situation where increasing the height above the floor will reduce resistance and increase 

penetration much like the classical effect depth of cut. The need to enhance our 

understanding of the relationship between the depth of cut and draft motivates this author 

to investigate the relationship between the height of the bucket above the floor with the 

draft and longitudinal penetration.

2.2.3. Speed and Traction (Motor Power Output). Larson et al. (1968) presented 

that the draft depends upon the speed of the agricultural cutting tool. Luth and Wismer 

(1971) showed a positive association between resistive forces (draft) and velocity and 

confirmed the established relationships by evaluating them in different soil profiles for 

different cutting tools (Wismer & Luth, 1972). Qinsen and Shuren (1994) observed 

increases in the draft from increasing the velocity of tillage tools and bulldozer blades at 

velocities higher than 30 cm/sec; however, the observed relationship was not observed at 

speed lower than 20 cm/sec.

The increase in resistive forces (draft) due to the speed can be explained by the 

higher shearing rate from increase speed which in turn causes higher inertial forces required 

to move material at a faster speed. Swick and Perumpral (1988) introduced the term
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“accelerational force”, defined as the forces required to accelerate soil from rest to a certain 

velocity. They showed that this accelerational force depends on the tool speed and soil 

failure geometry. Analytical models of draft forces, such as the one presented by Zeng et 

al. (2007), show that resistive forces increase with increasing acceleration. The change in 

resistive forces due to changing velocity is significant at the start of interaction with soil 

and dampens as the tool moves into the soil (Abo-Elnor et al., 2003; Shen & Kushwaha, 

1998). The failure rate (effective penetration) also increases with increasing speed (Chen, 

2002b; A. Ibrahmi, Bentaher, Hamza, et al., 2015; A. Ibrahmi, Bentaher, Hbaieb, et al., 

2015; Manuwa, 2009; Mari et al., 2014; Shahgholi et al., 2019; Shen & Kushwaha, 1998; 

Wilkinson & DeGennaro, 2007; Zeng & Chen, 2018).

Traction is an important dynamic factor pertaining to RTLs, and it is similar to the 

ability of tillage tools to accelerate in the interacting soil. The traction emanates from the 

ability of the machine to provide power to keep pushing into the rocks to maximize 

penetration. Tractive effort, traction, and motor power output are used interchangeably for 

RTLs although there are minor differences.1 Traction significantly affects the tractor 

performance (similar to the nature of RTL) and the initial penetration is significantly 

influenced by the RTLs tractive effort. This phenomenon is not evident with other mining 

excavators (e.g. cable shovels and track-mounted hydraulic excavators) as these machines 

are typically stationary when digging begins and usually operate on tracks instead of rubber 

tires. Previous research has shown that traction is a key indicator of tractor performance

1 Tractive effort is the amount of constant push a machine can provide for penetrating into the rocks; traction 
is the ability of tires to provide force for pushing a machine into the rocks for penetration; and motor power 
output is the engine’s or (in case of electric drive) motor’s output to provide for pushing a machine to 
penetrate into the rocks.
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(Gaspar et al., 2019; Moinfar & Shahgholi, 2018; Ranjbarian et al., 2017; Shafaei, Loghavi, 

& Kamgar, 2019). Traction is a function of tractor drive technology, tire properties, type 

of soil the tires are operating on, and the digging tool (Dedousis, 2007a; Gebresenbet & 

Jonsson, 1992; Mishin, Maksimov, & Drandrov, 2005; Safa & Tabatabaeefar, 2008; 

Sarauskis & Vaitauskiene, 2014). The operating conditions such as ground conditions and 

speed affect the tractive effort (Shafaei, Loghavi, & Kamgar, 2018), thereby implying that 

higher tractive effort is required to obtain similar penetration under adverse conditions. 

Sarauskis and Vaitauskiene (2014) observed that the tractive effort required for a sowing 

machine increases with an increase in speed from 5km/h to 7 km/h, but no significant 

change when speed is increased from 7 km/h to 9 km/h. Other researchers have observed 

higher power losses for machines operating on soils with lower compaction and noted the 

importance of rolling resistance of tires for effective traction between tire and soil (2019). 

The issue of tire properties and lack of ability to replicate ground conditions for the tires 

can leave only tractor drive technology as a testing parameter. Consequently, the maximum 

power output available for RTL to operate (either by design or based on the power the 

operator is applying) becomes the easy way to control traction during RTL experiments. 

The significant associations presented in the literature (Sarauskis & Vaitauskiene, 2014; 

Shafaei et al., 2019) suggest potential for association between traction and RTL bucket 

penetration and draft.

The literature lacks explicit explanation of the relationship between RTL tractive 

effort and penetration or resistive forces. Thus, while this autor hypthesizes that there is a 

likely relationship, research is necessary to confirm such a relationship and understand

nature of associations.
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2.2.4. Geometry. The significance of cutting tool geometry and its effect on 

performance and resistive forces (draft) are well established for agricultural tools (He et 

al., 2016; Manuwa, 2009; Manuwa, 2013; Solhjou et al., 2013). For example, Gill and 

Vanden Berg (1968) emphasized that the optimal design and geometry of the tillage tool 

can improve energy consumption. Energy consumption directly relates to the efficiency of 

the operating machine. A key indicator of the energy consumption of a given tool is an 

estimate of the draft incurred by the tool during interaction with the soil (Ehrhardt et al., 

2001). The draft depends on tool geometry, working depth, speed, the width of tool, and 

soil properties (Glancey, Upadhyaya, Chancellor, & Rumsey, 1996; Shahgholi et al., 2019; 

Ucgul et al., 2015a; Z. Zeng & Chen, 2018). Manuwa and Ogunlami (Manuwa & 

Ogunlami, 2010) tested rectangular flat, semi-circular flat, and semi-circular concave 

blades in a laboratory setup for tillage tools and found a significant difference in draft 

incurred by different cutting blade profiles. Similarly, He et al. (He et al., 2016) studied the 

effect of different cutting edge geometries of tines on soil penetration and resistance using 

finite element analysis and observed differences in results for different cutting blades.

While this association between cutting blade profiles and resistance is well known 

for agricultural tools, very little work on this subject exists for excavator buckets 

(Narayanan & Bhojne, 2017) and, for rubber tire loader buckets, this author could find 

none in the literature. RTL buckets and agricultural tools differ in the application as tillage 

tools are significantly smaller in size and soil properties are different from those of the 

muck piles that RTL buckets interact with. Such differences require specific work about 

cutting blades of different buckets for RTL to investigate whether similar associations exist 

with resistive forces (draft) and penetration (longitudinal penetration).
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Elbashir et al. (2014) showed that the rake angle of a tillage tool, together with the 

tool geometry, affects resistance and energy consumption. For excavator buckets, flat and 

wedge floor buckets are available that can interact at different “rake angles” to the pile. 

Also, the lifting angle of a moldboard plow, which is similar to the bucket floor profile 

angle, is known to influence the effectiveness of agricultural tool interaction with soil 

(Bentaher et al., 2013; A. Ibrahmi, Bentaher, Hamza, et al., 2015; A. Ibrahmi, Bentaher, 

Hbaieb, et al., 2015; Ayadi Ibrahmi, Bentaher, Hamza, Maalej, & Mouazen, 2017a). Yet, 

there is no study on the effect of buckets with different types of floors on resistive forces 

and penetration. Similarly, previous research on agricultural tools (e.g. tines and furrows) 

has shown that tool thickness affects draft forces (resistance) (Barr et al., 2020; He et al., 

2016; X. C. Zhang et al., 2016). For example, He et al. (He et al., 2016) observed a 

nonlinear increase in penetration resistance due to an increase in the thickness of tine, while 

Zhang et al. (X. C. Zhang et al., 2016) observed a significant effect of thickness on furrow 

performance. The significance of cutting tool thickness is further confirmed by research 

showing that a backhoe bucket’s blade thickness is a key parameter for digging 

performance (Narayanan & Bhojne, 2017). DEM studies by Ucgul et al. (2015a) also show 

that a sharper cutting edge can reduce draft observed on agricultural tools. The thickness 

of cutting blade for RTL buckets can vary and there is no real work in the open literature 

on how these variations affect draft and penetration. This author could not find any studies 

for rubber tire loader buckets that test for the significance of cutting lip/blade thickness and 

its association with penetration and resistive forces (draft). Therefore, research is needed 

to enhance our understanding of the effect of different geometries of RTL buckets on 

resistive force or penetration.
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2.2.5. Muck Pile Properties. The importance of soil/rock type in understanding 

the performance of ground engaging tools is well established as different researchers who 

have used a variety of soil types in conducting studies on different tillage tools have 

emphasized the importance of soil (Chen, 2002; Dongming, Lianhao, Xiaodong, & Sarker, 

2017; Glancey et al., 1996; Milkevych, Munkholm, Chen, & Nyord, 2018; Murray & Chen, 

2019; Ucgul, Saunders, & Fielke, 2017; Yang, Li, Tong, & Ma, 2018). For example, Zhang 

et al. (2016) concluded that soil type has a significant effect on soil disturbance for furrow 

openers. Similarly, Gaspar et al. (2019) found soil properties to be important in their study 

of no-till planters. Others have shown that differences in material properties such as bulk 

density, cohesion, and shear strength affect the resistive forces encountered by ground 

engaging tools (Awuah-Offei, 2005; Ucgul et al., 2015b).

Awuah-Offei (2005) used a passive earth bucket resistance model with a kinematics 

and dynamics model of shovel digging to evaluate the effect of density, cohesion and shear 

strength on shovel performance and found that shovel performance is most sensitive to 

bulk density of the material. Chen (2002a) showed that, for liquid manure injection tool, 

soil properties affect injection performance. Dongming (2017) developed a power 

consumption model for no-till planter to test working parameters and used soil parameters 

along with other depth of cut as constraint to analyze the relationship of traction force, 

speed and power output for no-till planter.

Glancey et al. (1996) developed a new technique to predict draft using a standard 

tillage tool that acted as an analog device to characterize the dynamic soil conditions. They 

established the importance of different types of soil, due to its properties. They proposed a 

methodology to eliminate the need for testing every implement in every type of soil
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condition to estimate draft. This work is limited in its application because their standard 

tool has not been comprehensively evaluated with each available implement. Milkevych et 

al (2018) also show the importance of soil properties as they emphasized that understanding 

the dynamic soil response (soil displacement) is an important element of engineering 

application of tools during sweep cultivation.

Apart from the few discussed, several other researchers have emphasized the 

importance of soil properties in evaluating different outputs for a variety of ground 

engaging tools (Abrougui et al., 2019; Buchi et al., 2017; Cerda et al., 2020; de Carcer, 

Sinaj, Santonja, Fossati, & Jeangros, 2019; Legrand et al., 2018; . Zhang et al., 2018).

In the mining industry RTLs are deployed in and interact with variety of materials 

at different stages of operation for hauling and loading purposes. RTLs are deployed in 

coal, iron ore, and hard rock mines. These material ranges from blasted rocks during 

development phase, a good blast during production phase, processed material coming out 

of primary crusher, secondary crusher and handling of post processed waste material (that 

is usually very fine debris). The literature shows no studies that characterize the effect of 

material properties (rock types) on resistive force, penetration, or other performance 

metrics of RTLs. As different soil types have shown significant relationship with 

performance in the literature, the author hypothesizes that there exist relationships between 

RTL performance and rock types (material properties). Thus, there is a need to extend the 

frontier to understand the effect of different rock types on the performance of RTL. This 

work attempts to achieve this objective.
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2.3. SIMILITUDE THEORY

Similitude theory refers to the application of set of tools, referred to as similitude 

methods, which help researchers, scientists and engineers to establish necessary conditions 

to design a scaled model of a full scaled or prototype structure (Casaburo et al., 2019). The 

application of similitude methods helps reduce the cost of and, in some cases, make it 

feasible to analyze big structures like wind turbines, ships, planes, and different building 

constructions(Coutinho et al., 2016a; A.R. Kumar, Arya, Wedding, & Novak, 2017; S. 

Kumar, Itoh, Saizuka, & Usami, 1997).

High-performance computers are helping solve problems that were impossible to 

solve in the past. Even so, to solve large scale problems, such as those that involve huge 

mining machinery, requires a lot of computational power and an expensive experimental 

setup to generate data for verification and validation. To counter the problem of expensive 

experimentation to generate data for engineering design and research, engineers and 

researchers could apply similitude theory to such large mining machinery (and associated 

engineering problems). This is a practical approach that not only helps to reduce the 

computational time, but also reduces the cost related to expensive experimentation needed 

for validation.

2.3.1. Scaled Model Testing. Similitude theory establishes the necessary sufficient 

conditions of similarity among phenomena to help engineers to accurately predict the 

behavior of real sized systems with smaller (scaled) prototypes through scaling laws 

applied to obtain the experimental results (Coutinho et al., 2016a). In 1944, the National 

Advisory Committee for Aeronautics (NACA) presented the first application of similitude 

theory for structural systems (Goodier & Thomson, 1944). The two main methods to apply
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similitude theory are dimensional analysis and governing equations (Curtis, Logan, & 

Parker, 1982; Salmani, Mahpeykar, & Rad, 2019). Dimensional analysis is based on 

Buckingham pi-theorem (Buckingham, 1915) that utilizes the dimensionless constants in a 

relationship to reduce the parameters to keep the functional relationship between variables 

intact (Simitses & Rezaeepazhand, 1994). Similarly, Kline is seen as the first person to use 

differential equations to establish similitude between the prototype (the real-life system or 

sub-system under study) and scaled model (Baker, Westine, & Dodge, 1991; Kline, 1986). 

The use of governing equations is superior in most cases because it ensures the scaling 

maintains similitude in the phenomenon. However, this is time consuming and is 

sometimes impossible as the process of developing the governing equations for 

complicated engineering phenomena takes time and more suited for fluid dynamics 

application(Cummings, Griffiths, Nilson, & Paul, 2000).

This work utilizes the Buckingham pi-theorem because it is not as expensive (time 

and effort), has been used successfully in past for early spacecraft scaled model testing and 

development, and has successfully achieved dynamic similarity, which this work seeks to 

achieve (Blanchard, 1968; Catherine, 1965; Curden & Herr, 1964; Herr & Leonard, 1967; 

Mixson & Catherine, 1964a, 1964b). It is also important to evaluate whether this simpler 

method could successfully work in this application so that the industry does not have to 

adapt a complicated method with associated cost.

All examples of similitude theory in mining applications are based on Buckingham 

Pi Theorem (Corke, Roberts, & Winstanley, 1998; Petty, Billingsley, & Tran-Cong, 1997; 

Steele, Ganesh, & Kleve, 1993). Steele et al. (1993) developed a 1/10th scaled model using 

Buckingham Pi Theorem to develop an algorithm to advance tele-managed LHD machines
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and experimental results indicate reasonable behavior with certain limitations such as speed 

and induction of deadband in control algorithm. Also, Corke, Roberts and Winstanley 

(1998) attempted to use a 1/10th scaled model of dragline, scaled using Buckingham Pi 

theorem, to develop a vision-based control algorithm for operator-free operation of a 

dragline. The results of this work were not applicable to real-life due to underlying 

assumptions regarding rock face and on-ground conditions. Petty et al. (1997) successfully 

used a scaled LHD model to validate control algorithms for vehicle guidance and bucket 

scooping.

There have been many attempts to automate the loading operation of LHDs 

(Andrew, Andr, & Louis, 1994; Brophey & Euler, 1994; Lever & Wang, 1995; Takahashi, 

Tsukamoto, & Nakano, 1999; TAKAHASHI, Tsukamoto, & Nakano, 1997). However, all 

these attempts have ignored the effect of the interaction between the bucket and the muck 

pile, which limits the usefulness of this research. These initiatives can be more useful if 

they can achieve improved understanding of excavating forces incurred by buckets. 

Hemami (1993) showed the necessity to understand these forces although his analytical 

approach to predict resistive force incurred during automated scooping action was limited 

in application due to simplifying assumptions (e.g., the digging profile was not 

representative of any particular application, inadequate soil properties, ignoring the effect 

of cutting depth etc). The robotic bucket utilized by Takahashi et al. (1997) was 100 mm 

wide with rock particles having a mean size of 5.7 mm, which are not based on proper 

application of similitude theory. Thus, the results are unlikely to scale up properly.

Perhaps, the work that is most relevant to this work is the work by Nezami et al. 

(2007), which used a 1/12th scale model of a 998G Caterpillar front end loader to
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understand resistive forces of a wheel loader. The experimental setup is established in a 

reasonable way to replicate on-site conditions, but the height of the bucket above ground 

was higher than what is practical in real mining scenarios. In real loading conditions, the 

convention is to put the bucket on the ground and push is along the ground into the pile, 

whereas Nezami et al. (2007) kept it at heights of 40-230mm, which at full scale will be 

around 480-2760 mm, making it impractical to apply their results to actual loading 

operations. Apart from the impractical height above the floor, the work did not replicate 

realistic front end loader buckets for experimentation while conducting DEM. Nezami et 

al also show no correlation with a bigger model (numerical or an actual prototype).

The work in the literature can be improved by proper application of similitude 

theory to avoid discrepancies. The consistency of relationships between different operating 

parameters observed in physical experiments can also be used as validation of DEM model. 

The author for this dissertation has taken into account all the discussed limitations in order 

to design improved experiments and develop DEM models to better replicate the original 

setup. Additionally, this work also developed a prototype to evaluate the correlations from 

a scaled model to a prototype (bigger model) in order to validate the application of 

similitude theory to mining excavation problems.

2.3.2. Scaled Bucket Soil Interactions. Other researchers have used scaled models 

in various forms to study bucket-soil interactions (Coetzee & Els, 2009a; Rowlands, 1992; 

Willem & Esterhuyse, 1997). Willem and Esterhuyse (1997) used scaled models to test the 

efficiency of different geometries of dragline buckets and found that shorter, wider buckets 

with lower hitch resulted in improved performance. Similarly, Rowlands (1992) also 

studied different geometries of dragline buckets at different scaling factors of 1/32nd,
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1/12.5th, and 1/6th and confirmed the usage of scaled models for valuable and inexpensive 

investigation of dragline buckets. Rowlands (1992) investigated the main bucket design 

factors (the drag hitch, the geometry and size of the teeth, weight distribution and bucket 

proportions) and their effect on drag forces, dig energy, bucket payload, filling distance, 

and digging material flow behavior. The understanding from the experimental setup was 

used to design a prototype that performed better than the conventional design. However, 

the work was more focused towards the design of buckets for dragline instead of predicting 

or analyzing relationships of factors with draft and penetration. Maciejewski and 

Jarzebowski (2002) conducted a laboratory-scale soil-tool interaction study on five 

different geometries of a simplified model of a K-111 Warynski excavator (1/3rd scale 

model) and found that the specific unit energy was the lowest for longer tools (bottom). 

However, the paper shows no discussion of the establishment of similitude and the soil 

used was a mixture of cement, bentonite, sand, and white vaseline. Maciejewski and 

Jarzebowski (2002) also did not evaluate the predictions of the small scaled model against 

the prototype (or scale up), thus, their work is limited in its application and conclusions.

2.4. EXCAVATION ANALYSIS METHODS

This section presents a comprehensive review of relevant literature on the 

prediction of resistive forces and the different methods adopted to calculate the resistive 

forces. Generally, researchers have used empirical studies, analytical methods, and 

numerical methods to study resistive forces (application of similitude theory is discussed 

in Section 2.3). Resistive forces have been a key interest of researchers from mid of the 

twentieth century and the research community started seeing publications in the research
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area of resistive forces. Osman (1964) presented the passive earth equation to measure the 

forces on tillage tools. Since then a lot of research has been published on resistive force 

measurements and the importance of resistive forces for ground engaging tools. Initial 

studies were of empirical or analytical nature as researchers experimented on different 

settings and presented different models. With the advent of high powered computers, 

researchers have used numerical models in studying resistive forces too.

2.4.1. Empirical Studies. Initial studies involving soil cutting tools were mainly 

focused on agricultural plows for analyzing draft. The first empirical model to predict the 

resistive forces for a model moldboard plow working in soil was established by Larson et 

al. (1968). Three different geometries of moldboard plows were tested at different speeds 

in different soils. The draft force prediction equation presented by Larson et al. (1968) 

shows that force depends on the width and speed of plow along with bulk density and other 

soil properties. Another empirical model was developed by Luth and Wismer (1971) to 

predict horizontal (draft) and vertical force resulting from the soil as incurred by the ground 

engaging tool. The empirical model was established after excessive experimentation on 

three different types of ground engaging tools and three different levels of bulk densities 

for soil (Luth & Wismer, 1971). The studies were further extended by Wismer and Luth 

(1972) after changing the type of soils with different compaction and saturation level.

These empirical models show that resistive forces are dependent on tool parameters 

(blade inclination (rake angle), width, lateral angle of plough surface), operating 

parameters (speed) and material properties (bulk density, cohesion, adhesion, and 

coefficient of friction). These publications show that similar relationships may exist 

between rubber tire loader buckets and tool parameters, operating parameters and material
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properties. However, these models are limited in application to rubber tire loaders because 

RTL buckets have similar widths however, their cutting blade profiles do differ from 

bucket to bucket and blade inclination is fixed, however the bucket can be operated at 

different rake angles. Similarly, a big component in RTL performance comes from tractive 

effort (Ur Rehman & Awuah-Offei, 2020a) which has not been studied in these empirical 

models. Another limitation on application of these analytical models is their specificity to 

agricultural application as RTL usually deal with blasted or processed rocks that have 

negligible cohesion and adhesion. The discussed limitations result in lack of practicality 

for RTL loaders and demand RTL specific studies as presented in this work. ...

2.4.2. Analytical Studies. The enormous size of mining machinery makes it 

economically impossible to do empirical testing. Thus, the previous work on mining 

equipment have relied on analytical methods and numerical models (Awuah-Offei, 2005; 

Coulomb, 1776; McKyes, 1985; Osman, 1964; Whitlow, 1990). The history of the first 

theoretical model for characterizing soil failure dates back to Coulomb (1776) who 

suggested that at a critical point of failure, the shear strength of the soil is given by Equation 

(2.1). It is acceptable to believe that soil fails through shearing and follows the Coulomb 

criteria.

t = c + an ta n ^  (2.1)

Graphical methods and equations were presented by Mohr (1914) to find stresses 

on different planes in a material at equilibrium and relating Mohr’s idea with Coulomb’s 

criteria result in Equation (2.2) (McKyes, 1985; Whitlow, 1990).

an = °1+ ff3V ? * cos2q (2.2)2 2
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Failure of soil during soil cutting was studied by employing photographic 

observation by (Payne, 1956) and he concluded that different tool geometry has different 

outcomes when used for cutting soil. A 2-D model of soil cutting force that utilizes a wedge 

forming ahead of the tool was presented by (Osman, 1964). Although the rupture surface 

was not flat in most cases, analytical solutions to the problem were only possible by 

assuming the rupture surface as flat. Osman (1964) grouped the components forces in 

passive soil resistance and presented Equation (2.3).

P / Y d 2 = / ( yy d . 7y d '7y d ' ^ “ ) <23)

Building on Equation (2.3) Reece (1965), presented a universal earthmoving 

equation (Equation 2.4) for explaining the force required by the tool to cut through the soil 

using N-factors (Ny, Nc, Na, and Nq). These N-factors depend on the soil properties, tool 

geometry, and tool to soil interface strength properties.

P = (y g d 2NY + cdNc + cadNa + qdNq) w  (2.4)

These models are capable of predicting resistive forces accurately but their 

inherited limitations are that they apply to simple tool geometry (N-factors cannot be 

determined for complicated tool geometry) and soil has to be assumed as a continuum, 

whereas in practice, mining excavation material is not only granular but also not usually 

soil but rocks.

A 2-D formation resistance model was developed by Qinsen and Shuren (1994) for 

different models (blades) of the bulldozer. The forces acting on the wedge of the soil ahead 

of the blade were solved analytically. The resultant force was resolved into their horizontal 

and vertical component to evaluate the performance of the model with experimental data 

and was found to correlate. The model was utilized in evaluating the effects of soil density,
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tool depth, and velocity of the blade on the resistive force on the blade of the dozer. The 

results revealed that material density and tool depth have a significant effect on the mean 

and fluctuating amplitudes of forces incurred by the blade of the dozer. The effect of 

velocity becomes significant beyond the speed of 0.3 m/s (Qinsen & Shuren, 1994).

Balovnev (1983) extended the passive earth theory (Osman, 1964) for a bucket 

excavation process by dividing bucket into sides and blade and calculating influence 

separately. Lastly separate influences were combined to obtain a combined influence of the 

bucket. Hemami et al. (1994) considered excavation forces on a loader bucket during the 

loading operation for the purpose of automation. The work by Hemami et al calculated the 

resistive forces based on the cutting force equation presented by Zelenin et al (1986) with 

estimation at different soil and tool properties such as soil compactness, resistance to 

cutting, depth of cut, thickness of cutting surface and similar parameters. The work of 

Hemami et al shows lack of practicality as the conditions for mining are different from 

agricultural ground engaging tools. The application of analytical model for mining tool 

built for application of ground engaging tools in agricultural industry is also a major 

limitation that debars extending of frontiers in the area. The theoretical resistive force 

model for LHD was developed by Takahashi et al. (1997) and was extended by Takahashi 

et al. (1998). Both models focused on predicting resistive forces to be incurred by LHD 

bucket to facilitate automation of bucket scooping. The models were validated using scaled 

models of LHDs which had flaws in the way materials were scaled (see discussion in 

Section 2.3.2). Awuah-Offei (2005) also used an analytical model to calculate resistive 

forces on cable shovels for oil sands excavation. Similarly, other researchers have used 

analytical models to predict resistive forces for cable shovel dippers and generic buckets (
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Godwin, Misiewicz, White, & Underhill, 2013; Stavropoulou, Xiroudakis, & Exadaktylos, 

2013)

Analytical models are limited in practice because of the inherent simplifying 

assumptions such as material is homogeneous, continuous and have isotropic behavior 

(Blouin, Hemami, & Lipsett, 2001). In real applications, none of these are true as a ground 

engaging tools or RTL buckets undergo penetration in material that has a wide particle size 

distribution, the material is discontinuous and experiences discontinuous strains due to 

volume of voids between material particles, and material loading from blast face shows 

anisotropic behavior (Bernold, 1993; Blouin et al., 2001; Fielke & Riley, 1991; Fowkes, 

Frisque, & Pariseau, 1973; Gill & Vanden Berg, 1968; T. C. Thakur & Godwin, 1990; 

Willman & Boles, 1995; Zelenin et al., 1986). The necessity to correctly predict resistive 

forces ahead of tool soil interaction is important from an autonomous loading standpoint, 

but the understanding of these forces is also necessary for designing better buckets for 

loaders and providing the customer with the right kind of bucket. Because of the limitations 

of analytical models, some researchers have resorted to numerical models to predict forces 

for realistic excavator buckets.

2.4.3. Numerical Models. The inherent simplifying assumptions of analytical 

models and the development of powerful computing capabilities have resulted in the use 

of numerical methods for modeling ground engaging tools interaction with soil and 

prediction of resistive forces. Finite Element Method (FEM) and Discrete Element Method 

(DEM) are two popular methods for solving excavation problems (Andruszko, Moczko, 

Pietrusiak, Przybylek, & Rusinski, 2019; Azam & Rai, 2017; Bahrami, Naderi-Boldaji, 

Ghanbarian, Ucgul, & Keller, 2020; Barr et al., 2020; Coetzee & Els, 2009b; Elbashir et
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al., 2014; Filla, Obermayr, & Frank, 2014; Gelnar & Zegzulka, 2019b, 2019a; Hang, Gao, 

Yuan, Huang, & Zhu, 2018a; He et al., 2016; Henriksson & Minta, 2016; A. Ibrahmi, 

Bentaher, Hamza, et al., 2015; Keppler, Hudoba, Oldal, Csatar, & Fenyvesi, 2015; P. Li, 

Ucgul, Lee, & Saunders, 2020; Liu, Zou, & Liu, 2015; Milkevych et al., 2018; Murray & 

Chen, 2019; Nakashima & Takatsu, 2008; Narayanan & Bhojne, 2017; Pulungan et al., 

2017; Ramu, Prabhu Raja, & Thyla, 2013b; Ramu et al., 2013a; Sadek & Chen, 2015; 

Shahrin et al., 2019; Suryo, Bayuseno, Jamari, & Wahyudi, 2018; Tekeste et al., 2019; S. 

C. Thakur, Ahmadian, Sun, & Ooi, 2013; Ucgul et al., 2014; Ucgul, Saunders, & Fielke, 

2018; Ucgul & Saunders, 2020; Upadhyaya, Rosa, & Wulfsohn, 2002; Ur Rehman et al., 

2020; Xu & Wang, 2005).

Many researchers have applied finite element to solve excavation problems related 

to various agricultural tools (Bentaher et al., 2013; Ayadi Ibrahmi et al., 2017a) and also 

excavator buckets (Azam & Rai, 2017; Djurdjevic, Maneski, Milosevic-Mitic, Andjelic, & 

Ignjatovic, 2018; Hadi, Bayuseno, Jamari, Muhamad Andika, & Chamid, 2018; Hadi 

Suryo, Irfan Ardiyanto, Teliti Wilarsati, & Yunianto, 2020; Saldana-Robles et al., 2020; 

Suryo et al., 2018; Suryo, Fawwaz, Wijaya, Saputro, & Harto, 2020). For instance, a 

generic FEM model of stress for dragline bucket was developed by Golba§i and Demirel 

(2015), wherein they estimated the resistive forces incurred by bucket during operation. 

Also, Suryo et al. (2018) used FEM to analyze the effect of rake angle on stress distribution 

on excavator teeth using static loading and 2D modeling. While these efforts have been 

meaningful contributions, FEM is limited when applied to excavation problems because it 

treats material as a continuous material when in reality it is discrete. The applicability in 

two-dimensional space also adds to the inherent approximation for estimation. FEM also
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lacks the ability to replicate the discrete nature of internal contacts between particles that 

are a key component for ground engaging tools especially mining machinery that must deal 

with rocks of different size ranges in a single muck pile. Because of the limitation of FEM, 

Cundall and Strack (1979) presented DEM as an alternative to FEM, to determine the 

dynamic behavior of granular material. Since then, the technique has become popular 

among researchers to study deformation and force response of granular material in multiple 

applications (Abdelaziz, Zhao, & Grasselli, 2018a; Blais, Vidal, Bertrand, Patience, & 

Chaouki, 2019; Hang, Huang, & Zhu, 2017; Kosteski, Iturrioz, Lacidogna, & Carpinteri, 

2020; X. F. Li et al., 2020; X. Li, Kim, & Walton, 2019a; Muller, Fruhwirt, Haase, 

Schlegel, & Konietzky, 2018; Peng, Doroodchi, & Moghtaderi, 2020a; Shang, 2020a; 

Suchorzewski, Tejchman, & Nitka, 2018a; Takabatake, Mori, Khinast, & Sakai, 2018; Yu, 

Yao, Duan, Liu, & Zhu, 2020).

However, DEM is very predominant in excavator problems because soils and muck 

piles are granular materials and researchers recognize the benefits of a technique that can 

handle this property (Ucgul et al., 2018). For example, Obermayr et al. (2011) used DEM 

for predicting draft forces in cohesionless soil for ground soil-tool interaction. They used 

triaxial tests for calibration and experimental tests for validation. In their validation 

experiments, a single vertical blade was moved through steel balls and round gravel at a 

constant velocity. The model indicated good correlation with experimental work. Ucgul 

and Saunders (2020) simulated tillage forces and furrow profiles during soil moldboard 

plow interaction using discrete element modeling and identified that DEM can be used to 

model moldboard plow interaction. The developed model successfully predicted the draft 

forces better than analytical methods and also successfully predicted the profile of furrow
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using DEM. The forces predicted by the DEM model were within 3.6-44.4% of total cutting 

forces with furrow predicted area within 0.8-16.5% of measured furrow profile area. 

Research in different areas of furrow opener performance analysis and soil tool interaction 

of other ground engaging tools have shown the successful application of DEM for analysis 

(Barr et al., 2020; P. Li et al., 2020; Ucgul et al., 2015b, 2015a; Ucgul, Saunders, & Fielke, 

2016; Ucgul et al., 2017).

In simple terms, DEM considers the mutual interactions between discrete particles 

and other bodies in the problem and evaluates the mutual forces on them (Gelnar & 

Zegzulka, 2019a). In DEM the equation of translation movement and rotation movement 

are solved for each particle. A DEM model takes inputs for each contact (particle to particle 

and particle to geometry) in form of static friction, coefficient of rolling friction and 

coefficient of restitution. Various researchers have worked on evaluating different 

components, resistive forces, stresses and other evaluating parameters using DEM in 2D 

and 3D space in variety of DEM codes (Ali & Frimpong, 2017a, 2017b, 2018a, 2018b; 

Coetzee, Basson, & Vermeer, 2007; Gbadam, 2017; Ghorbani, 2019; Henriksson & Minta, 

2016; Nezami et al., 2007; Tekeste et al., 2019; Ucgul & Saunders, 2020; Waqas, 2018).

While DEM application has been successful in some instances, its application in 

some instances (particularly large scale problems such as mine excavation problems) can 

be improved by improving the calibration and validation techniques which are usually 

improvised due to lack of resources for experimentation, and lack of computational 

resources to carry full scale DEM experiments. For instance, some researchers use 2D 

DEM modeling to overcome computational challenges. Gbadam (2017) also developed a 

2D DEM model in PFC2D code for simulating and analyzing the microscopic viscoelastic
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response of oil sands material. The developed model could successfully predict the 

dynamic modulus and phase angle with a maximum error of 13.6%. The particle sizes used 

in the work didn’t replicate the original particle size due to computational limitations 

associated with DEM application. However, Ali (2016) developed a 3D virtual prototype 

model and used DEM to study high impact of shovel loading operations. Experiments were 

conducted with the model simulating the ultra-large cable shovel P&H 4100XPC loading 

an ultra-large CAT 793D haul truck using a simplistic linear contact model with DEM (Ali 

& Frimpong, 2017a). Impact force at the truck bed surface was recorded for each of those 

experiments. The model was later modified with the inclusion of improved particle-to- 

particle and particle-to-surface contact definition. The dumping operation was then 

simulated for various material properties (Ali, 2016; Ali & Frimpong, 2018a, 2018b, 2020). 

However, the work calibrated the model with a virtual model built based on previously 

published research in the similar area (Aouad & Frimpong, 2013). Similarly, Ghorbani 

(2019) used DEM coupled with multi-body dynamics techniques to design and analyze off

road equipment. The developed model could give quantitative predictions of the soil 

reaction forces on the equipment for simulation-based design. The DEM model was 

validated by an improvised simple pendulum test for soil to tool interaction application.

Apart from improvised calibration and validation techniques, computational 

challenges also result in researchers simplifying DEM problems to facilitate 

computationally tractable problems. This results in solutions that are very specific to the 

problem being addressed and lack broader application.

Henriksson and Minta (2016) used DEM to analyze bucket soil interaction for a 

Volvo L180G wheel loader. They observed that analyzing machinery of that size is
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computer-intensive and researchers have to focus on the model sensitivity to identify which 

parameters have the largest influence on the simulation results, however no physical 

experimentation was done to calibrate the DEM model. Similarly, Nezami et al. (2007) 

emphasized the need for accurate estimation of resistive forces from soil or rocks for better 

and reliable design of earthmoving equipment. Nezami et al ran a series of simulations on 

a prototype of a front-end loader using DEM and compared them with the experimental 

results. The results showed that using smaller particle sizes improves the results and 

provides a better match with the experiments. The scaled models were used for doing the 

experimentation for validation. However, the DEM model used particles three times larger 

than the particles in the experiment to address the computational challenges of DEM.

Tekeste et al. (2019) used a 3D DEM soil model to evaluate equipment design and 

performance of tillage tools. The model developed by Tekeste et al successfully predicted 

draft at 7% error from measured values. The soil failure zone prediction was 24% of the 

measured values of the experiment values. Similarly, Tekeste et al. (2020a) used DEM 

modeling to analyze soil-bulldozer blade interactions and illustrated the idea that a 

similitude-based DEM model can be used to overcome computational challenges 

associated with the analysis of soil and bulldozer blade interaction. However, Tekeste et al 

calibrated the bulk material response with bigger particle sizes as compared to the 

experimentation due to computational challenges. The literature contains many examples 

of DEM models calibrated using bulk material response (Gbadam, 2017; Tekeste et al., 

2019; Tekeste, Way, Syed, & Schafer, 2020b) but this approach can yield bias in 

calibration as the model might perform well when used to calibrate bulk stress-strain
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relationships for uni-axial or triaxial cell loading, for example, even though it would not 

perform well when the material experiences excavation loads.

The above discussion establishes that numerical methods can be used to establish 

the relationship between different geometries, different parameters, and their effect on tool 

performance, wear, penetration, and measuring resistive forces or draft. While the 

capability of numerical methods is unquestioned for evaluating soil tool interaction, the 

validity of these numerical simulations (when compared to actual results) is limited 

because most of the reviewed research is missing calibration and validation or the 

calibration and validation is improvised due to limited computational or experimental 

resources. A few have done experimentation to validate their numerical models, but there 

is a need for further work on calibration and validation of DEM models of mining 

equipment.

Admittedly, excessive experimentation on full-scale mining machinery is not only 

time consuming, but also cost-ineffective. A different approach to deal with huge 

machinery is the application of similitude theory, wherein a scaled model is tested and 

experimented with before going into actual designing. If researchers could also use scaled 

models of DEM in DEM simulations and calibrate with proper similitude theory, this could 

reduce the cost of experimentation for calibration and validation and reduce the 

computational expense for running DEM simulations. This candidate found no work in the 

literature that has examined how well scaled DEM simulation results scale up and whether 

this solution is viable. This dissertation examines this question for RTLs.
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2.5. SUMMARY OF LITERATURE REVIEW

The above discussion leads to the following highlights of the literature review.

1. Resistive force and penetration are key performance metrics for RTLs.

2. Rake angle, height above the floor, speed, tractive effort, geometry of the tool, and 

muck pile properties are key parameters that affect the performance of a ground 

engaging tool.

3. While other applications of similitude techniques show potential to apply 

Buckingham Pi Theorem to RTL bucket-muck pile interaction, its ability to 

adequately predict penetration and resistive forces are yet to be tested.

4. Discrete element methods can be used for the analysis of RTL but are limited due 

to computational requirements and lack of direct validation of models. Using valid 

similitude theory to run scaled DEM models could simultaneously reduce the cost 

of validation experiments and reduce the computational cost of DEM simulations.
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3. EXPERIMENTAL SETUP

3.1. SCALED MODEL

As stated earlier, similitude theory establishes the necessary sufficient conditions 

of similarity among phenomenon to help designers, engineers, and decision makers to 

accurately predict the behavior of real sized systems with smaller prototypes (Coutinho et 

al., 2016a). Scaled models can be built using governing equations or Buckingham Pi 

theorem (dimensional analysis) for analysis (Salmani et al., 2019). The governing 

equations are more suited for complicated engineering phenomenon, takes time in 

development and are more suited for fluid dynamics related applications (Cummings et al., 

2000). The Buckingham Pi theorem is easier to use, less time consuming and has 

successfully been used for prototype testing in the aeronautical industry (Blanchard, 1968; 

Buckingham, 1915; Catherine, 1965; Coutinho et al., 2016a; Curden & Herr, 1964; 

Goodier & Thomson, 1944; Kline, 1986; Ashish Ranjan Kumar, 2018; Ashish Ranjan 

Kumar et al., 2016; Simitses & Rezaeepazhand, 1994), for automation and experimentation 

on mining machinery (Andrew et al., 1994; Brophey & Euler, 1994; Corke et al., 1998; 

Lever & Wang, 1995; Petty et al., 1997; Ridley & Corke, 2003; Steele et al., 1993), for 

investigating soil-tool interactions (Upadhyaya, 2013), and for validating bucket-soil 

interaction models (Hemami & Daneshmend, 1992; Maciejewski & Jarz§bowski, 2002; 

Nezami et al., 2007). It is important to evaluate this simpler method for its effectiveness in 

successful application for RTL analysis and evaluation so that industry does not have to 

develop a complicated method which is cost and time intensive. Scaled models allow 

researchers to study phenomena in detail in cases where full-scale experimentation is
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challenging or impossible. For large rubber tire loaders, experimenting in a controlled 

manner is very challenging and expensive due to the size and cost of the machines.

This work uses the Buckingham Pi theorem (dimensional analysis) to scale down 

the bucket of the 18-t capacity Komatsu LHD (Table 3-1). The work uses the Buckingham 

Pi theorem because of the advantages stated above along with the fact that it is simpler to 

evaluate and eliminates, if  successful, the need for a more complicated and time consuming 

task. Table 3-2 shows the scaling factor relationships per the Buckingham Pi theorem. The 

1:16 model is the basic scaled model. However, to evaluate how the results scale up without 

using full scale experiments, the research also includes a 1:8 model that is used to validate 

how results scale up to a larger scale.

3.2. SCALED MODEL DESIGN

Figure 3-1 shows the scaled models used in this research. Instead of trying to 

duplicate the complete functionality of rubber tire loaders, the scaled model was built to 

replicate essentials functions for this research (i.e., ability to provide initial horizontal 

penetration and measure draft). Both scaled models were built with similar features 

although motor sizes and machine dimensions differ. Figure 3-2 shows a schematic of the 

scaled models used in this research. There is a load cell between the bucket and the rigid 

counterweight. This load cell measures the draft when the bucket moves into the rocks. 

The counterweight has rail slides that move on guide rails in longitudinal directions. A 

geared belt drive system is used to drive the scaled model. The motor drives a gear, which 

makes the scaled model move forward or backward on the fixed geared belt (Figure 3-1). 

The motor is fixed on a bearing and has a load cell attached to its back. As the real LHD
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uses an electric motor drive, the scaled model was also built using an electric motor drive. 

Table 3-3 shows the details of the drive mechanisms used for the scaled models. To 

simulate tire traction, this research uses a geared conveyor belt system instead of rubber 

tires on the ground.

Table 3-1. Dimensions and parameters of full-scale Komatsu LHD and scale models

Dimension Full-scale 
Komatsu LHD 1:16 Model 1:8 Model

Height of body (tires 
excluded) (mm)

1,616 96.96 193.92

Width of body (mm) 2,800 168 336
Length of body (mm) 7,400 444 888

Mass of body (kg) 53,300 11.45 45.8
Speed 16 (km/h) 268 (mm/s) 536 (mm/s)

Height of bucket (mm) 1914.5 114.87 229.74
Width of bucket (mm) 2989.3 179.35 358.7

Longitudinal dimension of 
bucket (mm)

2028 125 250

Table 3-2. Scaling relationships

Parameter Scaling Factor
Length, width, height S*

Volume S3
Speed S
Draft S2

Forward displacement S
*S=1/16, for bigger scaled model S=1/8
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Figure 3-1. Scaled models; (a) 1:16 model; (b) 1:8 model
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Table 3-3. Drive parameters for scaled models

Specifications 1:16 model 1:8 model
Maximum motor power (watt) 13 45

Voltage 12 24
RPM 612 180

The author determined from preliminary experiments that at 2 Amps, the motor was 

able to move the 1:16 scaled model; thus, he set this as the minimum motor power output 

during the experiments (4 Amps was the equivalent for the 1:8 scaled model). For each 

experiment, the author set the speed of bucket to advance towards the muckpile and the 

maximum available current. The scaled model moves the bucket towards the muckpile at 

this speed using the motor output (and current) necessary to do this. Once the bucket enters 

the pile of rocks, the motor draws more and more current in order to overcome the draft 

and continue moving the bucket forward. At some point, the draft becomes equal to the 

maximum motor output (minus losses in the drive mechanism) for that current setting, and 

the bucket stalls. The scaled model stopped when it was stalled for one second while 

interacting with the rocks. The model used Arduino integrated development environment 

(IDE) (Arduino LLC, Ivrea, Italy) to write code to control the model and recorded the draft, 

penetration, speed, acceleration, motor power output, lift, current, and voltage derived by 

the motor every 0.02 seconds.
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4. EFFECT OF BUCKET GEOMETRY, FORWARD SPEED, MOTOR POWER 
OUTPUT, AND ROCK PARTICLE SIZE ON BUCKET PENETRATION AND 

DRAFT FOR RUBBER TIRE LOADERS

4.1. BACKGROUND

Rubber tired loaders (RTL), which this dissertation uses to refer to hydraulic 

actuated, rubber tire mounted loaders, are used abundantly in mining and construction as 

well as other sectors. The front end loader (FEL) is the most common of this class but the 

load haul dump (LHD) is also very popular in underground mining. The loading operation 

of these loaders can be divided into four distinct steps; 1) penetration; 2) rotation; 3) lift; 

and 4) pull out. An in-depth understanding of these four steps will improve the efficiency 

of the loading operation and facilitate the automation of these loaders. The penetration step 

depends on the speed of the loader (bucket) and the traction force that the loader generates 

(which is limited by the motor power output for an electric drive RTL) while entering the 

muckpile. Quick and efficient penetration reduces draft incurred by the loader, decreases 

cycle times, and increases productivity. While the literature contains extensive research 

pertaining to interactions between blades and tillage tools, and soils (Ashrafizadeh & 

Kushwaha, 2003), it does not contain as much on the interactions between bucket tools and 

soils or blasted rock. To fully understand the tool-soil interaction, it is necessary to 

understand the effects of factors such as tool depth, tool speed, tool geometry, rake angle, 

and properties of the soil (Formato et al., 2005; Manuwa, 2009; Manuwa & Ogunlami, 

2010). Many researchers have shown that the tool geometry is an important factor in 

understanding draft force and overall tool-soil interaction (Shahgholi et al., 2019; Ucgul et 

al., 2014).
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Often soil-tool interaction models used in mining and construction are derived from 

agricultural tillage research though, in reality, the loading operation of mining excavators 

such as rubber tire loaders is different from soil-tillage tool interaction. In mining loading 

activity, the bucket’s geometry is more complex than tillage tools and often interacts with 

blasted formation, which has different geotechnical properties from the soil, in a way that 

changes the rake angle during a loading cycle. Also, large mining buckets are substantially 

bigger than any agricultural soil-engaging tools. For example, the Komatsu® model 

WA1200-6 (Komatsu Ltd., Tokyo, Japan) has a bucket capacity of up to 35 m3 and can 

carry up to 35 t of material. Such differences mean models based on agricultural tools have 

limited applicability for mining and construction (Ur Rehman & Awuah-Offei, 2020c).

The mining industry uses buckets of different geometries for different operations 

largely based on cost, personal experience of engineers, and after-sale services associated 

with the bucket. Apart from the practice of using different buckets for different operations, 

different manufacturers offer different bucket geometries for similar operations with very 

little basis in the open literature. The effectiveness of rubber tire loader buckets with 

different geometries when excavating different types of rocks has not been rigorously 

studied. This is important because even slight improvements in productivity and loading 

cycle times, of these large machines, can significantly improve overall profits. Such work 

can remove the subjectivity associated with bucket selection and lead to more efficient 

operations.

Typically, rubber tire loader buckets differ in the geometry of the cutting edge 

blade, floor profile, thickness of various parts of the bucket, and other geometric 

parameters. Generally, the mining and construction industry uses three types of cutting
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edge blade geometries: straight, spade nose, and semi-spade (Figure 4-1). The industry 

generally uses two different bucket floor profiles: flat floor and wedged floor (Figure 4-2).

Figure 4-1. Typical cutting blade profiles: (a) spade nose; (b) semi-spade; and (c) 
straight. Top views with the leading edge of each blade facing toward the top of the

image.

Figure 4-2. Right side views showing typical bucket floor profiles: (a) flat floor;
(b) wedged floor.

Cutting and digging tool geometry, and dynamic parameters including speed, affect 

the cutting and digging force (or draft) exerted on a cutting tool (Formato et al., 2005; A. 

Ibrahmi, Bentaher, Hbaieb, et al., 2015; Tamas, Olah, Racz-Szabo, & Hudoba, 2018; 

Ucgul, Fielke, & Saunders, 2015c). However, it is important to note that most of the work 

in the literature only covers simple geometries and does not evaluate traction force, which 

is very important for rubber tire loaders.
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The significance of cutting tool geometry and its effect on performance and draft is 

well established for agricultural tools (Bentaher et al., 2013; Ehrhardt et al., 2001; Elbashir 

et al., 2014; Glancey et al., 1996; Ayadi Ibrahmi et al., 2017a; Manuwa, 2009; Shahgholi 

et al., 2019; Solhjou et al., 2013; Ucgul et al., 2015a; Ur Rehman et al., 2020; Z. Zeng & 

Chen, 2018; X. C. Zhang et al., 2016). While this association between cutting blade profiles 

and draft is well known for agricultural tools, very little work on this subject exists for 

excavator buckets (Narayanan & Bhojne, 2017). For rubber tire loader buckets, this 

researcher found none in the literature. Rubber tire loader buckets and agricultural tools 

differ in application, as tillage tools are substantially smaller in size. Also, agricultural tools 

typically operate in soil, while rubber tire loader buckets typically interact with rocks, and 

the physical properties of soil differ from those of rocks.

Previous research shows that the draft depends on speed (Larson et al., 1968; Luth 

& Wismer, 1971; Qinsen & Shuren, 1994; Wismer & Luth, 1972). Others have shown that 

the force required to accelerate material from rest to a certain velocity depends on speed 

(Abo-Elnor et al., 2003; Mari et al., 2014; Shen & Kushwaha, 1998; Swick & Perumpral, 

1988; Z. Zeng & Chen, 2018). Another important dynamic factor that is unique to rubber 

tire loaders is the traction force generated by the tires, which is similar to the ability to 

accelerate for the tillage tools. For an electric drive RTL, the maximum possible traction 

force depends on the motor output that drives tires, among others. Research has shown that, 

for example, the traction force is a key parameter in evaluating a tractor’s performance 

(Gaspar et al., 2019; Moinfar & Shahgholi, 2018; Ranjbarian et al., 2017; Shafaei et al., 

2019). The traction force depends on technology, construction parameters of the working 

parts, and properties of the soil on which the wheels are working, as well as the digging
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tool (Dedousis, 2007a; Safa & Tabatabaeefar, 2008; Sarauskis & Vaitauskiene, 2014; 

Shafaei et al., 2018). The required traction force depends on the operating conditions, 

including the working depth, speed, and material properties (Czarnecki et al., 2019; 

Ranjbarian et al., 2017).

The importance of soil/rock type in understanding the performance of ground 

engaging tools is also well established (Awuah-Offei, 2005; Chen, 2002; Dongming et al., 

2017; Glancey et al., 1996; Milkevych et al., 2018; Murray & Chen, 2019; Ucgul et al., 

2015a, 2017; Ur Rehman & Awuah-Offei, 2020b; Yang et al., 2018; X. C. Zhang et al., 

2016).

The literature establishes a strong relation between speed, soil/material type, and 

traction force and draft for a variety of ground engaging tools, but such studies are not 

present for rubber tire loader buckets. As discussed earlier, there are differences between 

tillage operations and bucket loading. Also, the complex geometry of the bucket is different 

from the simple geometries of agricultural tools. Thus, literature needs independent studies 

on the significance of speed, rock type, and traction force for rubber tire loader buckets to 

better understand rubber tire loader operation. The objective of this section of this 

dissertation is to evaluate the effect of bucket geometry (using buckets that differ in floor 

profile, blade thickness, and cutting blade profile), motor power output of the drive motor, 

and forward speed of a rubber tire loader bucket on penetration (used here to mean the 

longitudinal penetration distance into a muckpile) and draft for various muckpiles. Because 

the author could precisely control motor power output (and maximum traction force is 

directly related to it), he chose to use the motor output in this study as a proxy for traction 

force. This work varies the maximum motor power output by varying the current available
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to run the motor (motor torque is directly proportional to current for a DC motor). This 

study uses a full factorial experimental design that includes the bucket geometry, bucket 

forward speed, motor power output, and particle size to achieve the objectives.

The study uses a “scaled model” which is a 1:16 scaled model of a representative 

18 t capacity Komatsu model LHD (Figure 3-1) throughout the experiment. Figure 3-1 

shows the schematics of the apparatus in section and side views. There is a load cell 

between the bucket and the rigid counterweight. This load cell measures the draft when the 

bucket moves into the rocks. The motor drives a gear, which makes the scaled model move 

forward or backward on the fixed geared belt (Figure 3-1). The motor is fixed on a bearing 

and has a load cell attached to its back.

This work provides new knowledge that extends our understanding of the effect of 

geometry on draft to more complicated geometries and blasted rock. Such knowledge is 

vital for engineers and managers in mining and construction so they can select the best 

bucket geometry for the task. Also, such knowledge will facilitate the better design of 

buckets for mining and construction applications.

4.2. EXPERIMENTAL PLAN

This work tested five buckets of different geometries using five different muckpile 

particle size distributions at various speeds and limiting the maximum motor power output 

to assess their effect on longitudinal displacement (penetration) and draft. The 

experimental plan was a randomized full factorial experimental design with five 

replications (Table 4-1).
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Table 4-1. Summary of the experimental setup I

Factor Level 1 Level 2 Level 3 Level 4 Level 5
Maximum 

Motor power 
output

2 A 10 A 20 A

Velocity
(mm/s)

300 400 500

Geometry B1 B2 B3 B4 B5
Pile Waste or 

reject 
material

Processed
material-I

Processed
material-II

Good
blast

Badly
shot
rock

The author emptied the muckpile out of the wooden container holding the rocks 

and refilled the container with the rocks after every 5 replications to avoid changes in the 

results due to the muckpile settling in the bin. The conclusion that 5 replications were 

adequate was based on preliminary experiments that indicated that after 7 to 10 replications 

with different particle sizes, the forces increased, and the penetration decreased in a 

statistically significant way. The researcher filled the bin in a manner that replicates post

blast muckpiles by adding a temporary wooden block and filling the gravel in a column 

and then suddenly removing the block (Figure 4-3).

4.2.1. Buckets. All buckets used in this work were dimensionally similar in width 

and height, however, B1 has a flat floor profile, B2 has a 2 mm thick cutting edge 

(compared to 5 mm for B2, B3, B4, and B5), B3 has a wedged floor profile, B4 has a spade 

nose cutting edge, and B5 has a semi-spade cutting edge. Figure 4-4 shows the profiles of 

all buckets in this study.
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Figure 4-3. A sample muckpile before the experiment

Figure 4-4. Tested buckets

4.2.2. Muckpiles. FELs and LHDs in mining deal with a variety of material ranging 

from huge boulders resulting from poorly blasted rock to very fine slushy reject material 

coming from processing plants. These materials have different particle size distributions
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and this study attempts to investigate the effect of these materials using scaled-down 

particle sizes.

Although no general criteria exist for scaling down particle sizes from dimensional 

analysis, some researchers have developed scaling laws for reducing particle sizes for 

specific applications. Because of the varying particle size distributions that rubber tire 

loaders encounter in mining, this researcher chose to construct realistic particle sizes at the 

reduced scale without scaling down a specific size distribution. Jimeno et al. (1995) 

recommended that the particle size of blasted rock must not exceed 0.8 times the admissible 

size of the crusher. Sanchidrian (2009) suggested that optimum bucket performance is 

obtained at a fragmentation size of 1/8th to 1/6th of the bucket’s smallest dimension. This 

worked used these two criteria as guiding principles for selecting the particle sizes for the 

muckpiles. In this work, the different piles represented processed material, waste or reject 

material, badly shot rock, and an actual replication of a pile with particle distributions 

derived from the size distribution of the good blast presented by Ur Rehman (2017). The 

waste or reject material is added for analysis as rubber tire loaders are used to move such 

material for filling and cleaning purposes, processed material-I and II replicate (primary or 

secondary) crushing products that require material handling. The good and badly shot rocks 

replicate material that rubber tire loaders interact with the most at loading sites during the 

normal blasting and development phase, respectively. The size distribution for respective 

size ranges is presented in Table 4-1 while Figure 4-5 shows the different piles tested in 

this study.
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Figure 4-5. Tested muckpiles

Table 4-2. Particle sizes for the tested muckpiles

Nomenclature Type a Particle size (mm)
P1 (Pile 1) Waste or reject material <3
P2 (Pile 2) Processed material-I 2-12
P3 (Pile 3) Processed material-II 14.5-22
P4 (Pile 4) Good blast (size distribution 

mimics Ur Rehman (2017))
<96

P5 (Pile 5) Badly shot rock 22-96
a Waste (as opposed to ore) or reject material is aquarium gravel
Processed material-I is pea gravel
Processed material-II is pea gravel
Good blast is a mixture of sieved particle size by mass
Badly shot rock is a mixture of sieved particles by mass

4.2.3. Data Analysis Approach. The generalized regression analysis is used to 

evaluate the effect of bucket geometry and other factors (particle size distribution, speed, 

and maximum motor power output). The analysis treated longitudinal displacement and 

draft (the maximum draft during each run) as dependent variables and speed, motor power
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output, and bucket geometry as independent variables. The work tested the association 

between the longitudinal displacement of and draft encountered by the scaled model bucket 

for every possible combination using the generalized regression function of JMP® (SAS 

Institute, Cary, NC). The analysis treated speed and motor power output as continuous 

variables and bucket geometry, and pile as nominal variables and tested for any association 

between dependent and independent variables using possible combinations of up to two 

factors from the factorial design. Only significant effects and combinations are presented 

to avoid redundancy in results. The generalized regression function of JMP® uses the Wald 

Chi-Square test to evaluate the statistical significance of the regression coefficients and the 

statistical significance of a variable’s effects.

In addition to the regression analysis, the work used mean and variance analysis to 

analyze (with respect to draft and longitudinal displacement into the pile) examine the 

effect of different geometric features of the buckets such as thin cutting edge vs normal 

cutting edge, fla t inner floor o f  bucket vs wedged inner floor o f  bucket, and straight cutting 

edge vs semi-spade nose cutting edge vs spade nose cutting edge. The next section 

discusses the results of this analysis.

4.3. RESULTS AND DISCUSSION

Figure 4-6 shows a sample of the results obtained from each experimental run. As 

the reader can see, the draft increases rapidly as the model penetrates the muckpile for the 

first 0.6 seconds. Afterward, the displacement is minimal as the draft increases until it 

approaches the maximum motor power output at the specified available current for the 

experiment. This trend is similar for all the experiments in this study. Figures 4-7 and 4-8
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show a summary of the experimental results for penetration and maximum draft, 

respectively, for the experiments at speed of 300 mm/sec. Similar trends are observed for 

the other speeds. The results clearly show that the penetration and draft differ for the 

different buckets, even at the same speed and in the same pile. Tables 4-3 and 4-4 show 

the results of the regression analysis for penetration and draft, respectively. The results 

show that bucket geometry significantly affects penetration (p-value < 0.0001 for both 

parameter estimation and effect test). The results endorse Shahgholi and colleagues’ (2019) 

finding that geometry has a significant effect on the performance of ground engaging tools. 

The results in this work show no statistically significant association between bucket 

geometry and draft.

Figure 4-6. Sample experimental results for experiment with motor power output = 10 
Amps; velocity 500 mm/sec; rake angle = 5°; height = 20mm
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Figure 4-7. Summary of longitudinal penetration distances into muckpiles at minimum
traction (2 Amps) and 300 mm/s speed.

Figure 4-8. Summary of the draft at minimum traction (2 Amps) and 300 mm/s
speed
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Table 4-3. Results of penetration regression analysis

Parameter estimation for 
original predictors

Effect tests

Term Coeff.
Estimat

e

Wald
Chi-Sq.

Prob > 
Chi-Sq.

Wald
Chi-Sq.

P-
value

Intercept 40.9818 67.2977 <.0001 - -
Motor power output (M) 3.6933 933.1138 <.0001 933.1138 <.0001

Speed (S) 0.0377 10.1603 0.0014 10.1603 0.0014
Pile[1-5]1 30.4229 352.6844 <.0001 578.5357 <.0001
Pile[2-5] 31.2621 437.2241 <.0001
Pile[3-5] 29.7330 370.7125 <.0001
Pile[4-5] 20.4694 257.0022 <.0001

Geometry[1-5]
26.4739

412.6298 <.0001 941.0181 <.0001

Geometry[2-5]
27.5839

387.2596 <.0001

Geometry[3-5]
22.3772

327.2527 <.0001

Geometry[4-5] -8.7276 18.1276 <.0001
Speed*Motor power output -0.0055 153.0489 <.0001 153.0489 <.0001

(M-10.67)*pile[1-5] 2.9669 443.1914 0.0008 613.5295 <.0001
(M-10.67)*pile[2-5] 2.3850 287.8680 0.0040
(M-10.67)*pile[3-5] 1.6224 135.2866 <.0001

(M-10.6667)*pile[4-5] 1.2062 75.0571 0.0148
(M-50.67.67) *Geometry[1-5] 0.2242 3.9020 0.0482 18.3730 0.0010
(M-50.67.67) *Geometry[2-5] 0.3838 12.9039 0.0003
(M-50.67.67) *Geometry[4-5] 0.1869 3.3131 0.0687

(Speed-400) *Pile[1-5] 0.0452 10.9696 0.0009 46.3793 <.0001
(Speed-400) *Pile[2-5] 0.0670 25.1463 <.0001
(Speed-400) *Pile[3-5] 0.0568 16.4250 <.0001
(Speed-400) *Pile[4-5] 0.0842 41.9200 <.0001

Pile[1-5] *Geometry[2-5] 4.9296 4.5679 0.0326 88.8500 <.0001
Pile[1-5] *Geometry[3-5] -7.4454 13.6086 <.0001
Pile[1-5] *Geometry[4-5] 6.9688 6.4079 0.0114
Pile[2-5] *Geometry[2-5] 3.6126 2.5535 0.1101
Pile[3-5] *Geometry[1-5] 4.3405 4.0691 0.0437
Pile[3-5] *Geometry[2-5] 9.6250 14.0138 0.0002
Pile[4-5] *Geometry[3-5] -8.7386 17.6305 <.0001
Pile[4-5] *Geometry[3-5] -8.7386 17.6305 <.0001
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1 In the JMP generalized regression function’s parameterization of nominal 

variables, the regression coefficient is for an indicator variable that is the difference 

between the mean response at that level and the mean response at the last level. So Pile[1- 

5] is the variable representing the difference between the mean responses for Piles 1 and 5. 

This is similar for all nominal variables in this table.

Table 4-4. Results of draft regression analysis

Parameter estimation for 
original predictors

Effect tests

Term Coeff.
Estimat

e

Wald
Chi-Sq.

Prob > 
Chi-Sq.

Wald
Chi-Sq.

P-
value

Intercept 10.4905 26.9113 <.0001 - -
Motor output power (M) 3.5071 1235.081

7
<.0001 1235.081

7
<.0001

Speed 0.0297 67.7326 <.0001 67.7326 <.0001
Pile[1-5]1 -7.1876 78.6391 <.0001 111.5515 <.0001
Pile[2-5] -6.8930 15.5501 0.0001
Pile[3-5] -7.5532 87.5586 <.0001
Pile[4-5] -7.6986 85.6927 <.0001

(Speed-400) * ( M -10.67) -0.0011 19.3299 <.0001 19.3299 <.0001
(M -10.67) *Pile[1-5] 0.3250 11.2103 0.0008 32.5511 <.0001
(M -10.67) *Pile[2-5] 0.3069 8.2816 0.0040
(M -10.67) *Pile[3-5] 0.4639 22.1661 <.0001
(M -10.67) *Pile[4-5] 0.2413 5.9382 0.0148

1 See note for Table 4-3.

On the contrary, the results show that both penetration and draft depend on speed 

and motor power output. In fact, the associations are so strong that the test for effects for 

speed and motor power output shows that all are significant at very high levels of
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confidence (p-value < 0.0001). The results also show that the interaction between speed 

and motor power output affects penetration (p-value < 0.0001). The interaction between 

motor power output and muckpile particle sizes significantly affect penetration and draft 

(p-value < 0.0001) for the test of effects for those indicator variables found to be 

significant).

Similar to speed and motor power output, it was observed that the particle sizes of 

the muckpile significantly affect penetration and draft. Results showed significant effects 

for all the indicator variables (given that different muckpiles are treated as nominal 

variables) (p-value < 0.0001).

As the scales of the independent variables vary significantly (e.g. speed is between 

300 to 500 mm/sec while motor power output between 2 Amps to 20 Amps), the reader 

should be careful not to confuse higher regression coefficient estimates to necessarily 

imply a higher effect on the dependent variables. In this case, the p-values are more 

indicative of the strength of the association. In fact, JMP’s algorithm attempts to find 

variables with the lowest regression coefficients so it can test for whether these coefficients 

significantly differ from zero (SAS Institute Inc., 2019).

4.3.1. Motor Power Output, Forward Speed, and Muckpile. The statistical 

analysis shows a strong correlation between speed, maximum motor power output, and 

muckpile particle sizes, on one hand, and penetration and draft, on the other. The analysis 

also shows that these parameters also combine to influence penetration and draft.

The results show that speed is positively correlated with penetration (coefficient 

estimate of 0.0377 with a p-value of <0.0014) and a draft (coefficient of 0.0297 and p- 

value of <0.0001). This result is consistent with the findings of other researchers who have
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also observed the association between speed and draft and penetration (Abo-Elnor et al., 

2003; A. Ibrahmi, Bentaher, Hamza, et al., 2015; Mari et al., 2015; Shahgholi et al., 2019). 

This is to be expected because increasing the speed at which the bucket travels into the 

material increases inertial and non-inertial forces required to penetrate the muckpile. The 

results also show that the combined effect of speed and particle sizes of the muckpile affect 

penetration, though this work does not show a similar effect on the draft. The combined 

effect of speed and particle sizes is positively correlated to penetration with coefficients 

ranging from 0.0452 to 0.0842 (p-values <0.0001). While it is not surprising to find that 

speed and particle sizes, independently affect penetration, it is interesting to find that the 

two factors interact as well to affect penetration. This significant combined effect of speed 

and particle size is a novel finding and can be used to optimize the speed based on the 

muckpile particle sizes. This observation shows that increasing speed as particle sizes 

decrease is likely to lead to higher penetration than one would expect from just increasing 

speed or decreasing particle sizes. Further work is required to investigate the manner of 

this interaction between speed and changing particle sizes.

Similarly, this work shows that the available motor power output is positively 

correlated to penetration (coefficient of 3.6933 with a p-value of <0.0001) and draft 

(coefficient of 3.5071 with a p-value of <0.0001). This result agrees with the literature, 

which shows that similar parameters like traction force and tractive effort affect draft and 

penetration. (Gaspar et al., 2019; Sarauskis & Vaitauskiene, 2014; Seyed Mojtaba Shafaei;, 

Mohammad Loghavi;, & Saadat Kamgar, 2018; Shafaei et al., 2018, 2019; Ur Rehman & 

Awuah-Offei, 2020c). The work also shows that motor power output combines with 

particle sizes to increase penetration (coefficient values decrease from 2.9669 to 1.2062 as
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the particle size of pile increases). This result implies that an RTL with higher motor power 

output or an operator who draws on more power will result in higher penetration in the 

material of finer particle sizes.

The results show a statistically significant but negative correlation between the 

combined effect of speed and motor power output with penetration (coefficient of -0.0055 

and p-value of <0.0001). This shows that increasing speed while increasing available motor 

power output could actually yield lower penetration. Most likely, this is due to the fact that, 

even with higher motor power, attempting to move the bucket at a higher speed can lead to 

the motor stalling before the bucket penetrates as much as it could with a lower speed (i.e. 

more energy is dissipated in an attempt to move faster). This is a further indication that the 

operating conditions of the machine are key components in achieving efficient digging. 

The observed interaction between speed and motor power output means that mine 

managers should train operators or assist them with technology to optimize speed and how 

hard they drive RTLs to achieve the best penetration with the least energy consumption, as 

suggested by Godwin (2007) for tillage tools.

The results of this work show that increasing particle sizes is negatively correlated 

to penetration and positively correlated to draft. The estimated coefficients of the indicator 

variables representing the expected penetration of the other muckpiles over muckpile 5 

(which has the largest particle sizes) range from 20.4694 to 31.2621 for coarser to finer 

average particle sizes with p-values <0.0001. Thus, this work shows that, with respect to 

penetration, muckpile 2 > 1 > 3 > 4 > 5 (Pile 1 has the lowest mean particle size and Pile 5 

has the highest mean particle size). The regression coefficient estimates for the association 

between the particle sizes of the different piles with draft suggests that, generally, finer
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particles will result in a lower draft, whereas coarser particles will have a higher draft. The 

negative correlation coefficients (p-values < 0.0001) suggest that all the muckpiles will 

have a lower maximum draft than muckpile 5. Based on the coefficient values, this work 

suggests that, with respect to the maximum draft, muckpile 5 > 4> 3 > 1 > 2. This trend is 

generally in line with expected and the literature (Glancey et al., 1996) except for muckpile 

1, which has the lowest particle sizes but appear to have a slightly higher coefficient than 

Pile 2 instead of being lower. It is possible the very fine particles resulted in an even higher 

draft than some of the larger particle sizes due to better packing. The reasons for this have 

to be explored with further work.

The analysis in this work confirms our hypothesis that speed, motor power output, 

and muckpile particle sizes are associated with penetration and draft. In this regard, the 

results of this work are similar to previous work in the literature, even if there are nuances 

to the differences in the overall conclusion.

This work confirms the perception in the industry that penetration (and 

performance) changes with different material types (at least if  they differ in particle sizes). 

Thus, mine managers and engineers should expect different performance in different 

materials and plans (by deploying the right number of loaders) accordingly.

4.3.2. Bucket Geometry. Though no statistically significant association is 

observed between bucket geometry and draft, Table 4-3 shows that the bucket geometries 

evaluated in this study affect longitudinal penetration. The results show a statistically 

significant association between the indicator variables for differences between each of 

buckets, B1-B4, and B5 with p-values <0.0001. Since each of the buckets differ from the 

rest in at least one geometric parameter (cutting blade profile, floor profile, or blade
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thickness), one could conclude that these parameters are significant to penetration. In order 

to examine this in detail, the buckets are separated into binary groups and the means of the 

experiments (with and without a particular geometric parameter) compared with each 

other.

Figures 4-9 and 4-10 show the mean analysis for longitudinal penetration into the 

muckpile and draft incurred during that initial penetration. Figures 4-9(a) and 4-10(a) show 

almost similar means for longitudinal penetration and draft of buckets with the flat floor 

(B1) and wedged floor (B3). Similarly, Figures 9(b) and 10(b) show that the penetration 

and draft for the thick cutting edge (B3) and thin (B2) cutting edge appears to be similar. 

However, Figures 9(c) shows that the bucket with a semi-spade cutting blade has the 

highest mean penetration followed by that with spade type cutting blade and straight cutting 

blade, respectively. Table 4-4 presents the analysis of variance results for all the tested 

buckets. The results indicate that the differences in longitudinal penetration for the buckets 

with different types of cutting blades are statistically significant. No other comparison 

yielded a significant difference between the observed longitudinal penetration and draft for 

different buckets. The horizontal lines in Figures 4-9 and 4-10 are mean values for 

penetration and draft with the 95% confidence intervals.

Figure 4-9. Mean analysis for penetration a) flat floor vs wedged floor bucket; b) thick 
cutting edge vs thin cutting edge; c) semi-spade vs spade vs straight cutting blade.
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Figure 4-10. Mean analysis for the draft a) flat floor vs wedged floor bucket; b) thick 
cutting edge vs thin cutting edge; c) semi-spade vs spade vs straight cutting blade.

Table 4-5. Analysis of variance for tested buckets

Comparison P-value
Penetration Force

Flat bottom vs wedged floor bucket 0.5700 0.6938
Thick cutting edge vs thin cutting edge 0.7473 0.6046
Semi spade vs spade vs straight cutting edge <.0001 0.9034

Table 4-6. Mean values for buckets with different cutting blades

Type of Bucket Mean (mm) Std. Dev. 
(mm)

Semi Spade Cutting blade 118.30 43.60

Spade Cutting blade 108.88 45.26

Straight Cutting blade 95.19 44.50

4.3.3. Buckets with Different Cutting Blade Geometries (Spade Nose, Semi

Space Nose, Straight). This work shows that the penetration of the different cutting blades, 

in decreasing order, is semi-spade nose (SSP)> spade nose (SP) > straight (S). Table 4-5 

shows the mean values for the buckets with different cutting blades. The mean penetration 

for the bucket with semi spade cutting blade is 118.30 mm which is 10 mm higher than
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spade nose and almost 27 mm higher than the longitudinal penetration observed for the 

buckets with straight cutting edge. The statistical analysis does not show any significant 

association between draft and the buckets with different cutting blade profile. This 

contradicts some of the work published in the literature for agricultural tools (Manuwa & 

Ogunlami, 2010). This work’s methodology might be one reason for this disagreement as, 

in this study, all other factors were controlled during the test for association. The results 

also show that using spade nose and semi-spade nose blades increases penetration without 

significant differences in draft. This is contrary to what one would expect, that is higher 

penetration would result in lower draft (e.g., Figures 4-7 and 4-8 show the piles with higher 

draft result in lower penetration).

The conclusion that SSP>SP>S with respect to penetration agrees with what other 

researchers have observed previously (Elbashir et al., 2014; Solhjou et al., 2013). Elbashir 

et al. (2014) evaluated two different tillage tool geometries and showed that a trapezoidal 

flat tool is more efficient than a rectangular one. One can infer that the concentration of 

stress at the tip of a tool with a pointed edge makes it is easier to fail the material compared 

to a tool with flat edge that distributes the stress across the entire edge. For a bucket, as 

compared to a tillage tool, another reason for higher penetration of the spade nose and 

semi-spade nose blades might be the effect of extending the blade farther forward than the 

bucket lip. As the bucket begins to fill up, the material inside the bucket starts acting against 

the material coming into the bucket, thereby indirectly increasing the draft and reducing 

penetration. The buckets with extended cutting blades ahead of the bucket may increase 

the penetration of buckets because this provides an extended portion of the bucket that does 

not retain material, thereby, reducing the draft, and enabling the machine to use that energy
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to penetrate further into the pile. This seems to be supported by Maciejewski & 

Jarz§bowski (2002).

From an application viewpoint, this work endorses the use of buckets with extended 

cutting blades (spade nose and semi-spade) for excavation as they provide better initial 

penetration, and facilitate efficient excavation. While the performance of a semi spade nose 

cutting blade is likely to be better than spade nose blade, the cost effectiveness depends 

upon the type of operation. Importantly, while the overall draft is not significantly different 

for a spade nose and a semi-spade nose blade for the buckets tested in this work (Table 4

4), the stress concentration on the bucket tip is likely to be higher for the spade nose cutting 

blade leading to shorter useful life and higher replacement costs in material that exerts 

substantial draft. Engineers and mine managers should consider this disadvantage prior to 

switching to spade nose or semi-spade nose buckets. The semi spade nose bucket’s 

performance is 24% better than straight cutting edge and 9% better than spade nose cutting 

blade. This significant improvement for a bucket’s performance throughout the life of 

operation shows obvious gains in return on investment when bucket selection is optimal.

4.3.4. Bucket Floor Profile. This work evaluated the association between bucket 

floor profile and draft and longitudinal penetration because of the presence of flat and 

wedged floor buckets in industry with claims that one performs better than the other. Also, 

the literature shows that lifting angle is one of the key geometric parameters for some 

ground engaging tools (Ayadi Ibrahmi et al., 2017a). While the literature shows no 

previous research on buckets with different floor profiles, many researchers have studied 

the effect of the rake angle of agricultural tools, which is different from a bucket’s rake 

angle. The lifting angle of tools like the moldboard are rather more analogous to a bucket’s
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floor angle. This work finds no significant difference in the performance of the buckets 

with different floors (wedged or flat) on the penetration or draft, contrary to the literature 

and industrial practices (Bentaher et al., 2013; A. Ibrahmi, Bentaher, Hamza, et al., 2015; 

Ayadi Ibrahmi, Bentaher, Hamza, Maalej, & Mouazen, 2017b). For example, Ibrahmi et 

al. (2017b) suggest that increasing the lifting angle will increase energy consumption, 

whereas the results of this study show no significant effect.

The difference between rubber tire loader buckets along with the methodology of 

this study might be reasons for the differences in the outcomes regarding the influence of 

bucket with different floor profiles on longitudinal penetration and draft. However, it is 

also possible that the lack of significant association is because of the difference in the lifting 

angles of moldboards and angle of wedge floor and how they contribute to draft and 

longitudinal penetration.

Based on the results of this work, mine engineers and managers should note that 

neither flat nor wedged floor buckets provide significantly different performance relative 

to longitudinal penetration or draft. Thus, the bucket floor profile should play a minor role 

in bucket selection. In cases where a wedged floor leads to a lower bucket volume, a flat 

floor bucket will be better as it provides a higher production rate. Further work is required 

to enhance the understanding of the conditions under which buckets with different floor 

profiles significantly affect draft and penetration so that mine engineers, and managers can 

make informed choices regarding the bucket designs on the market.

4.3.5. Blade Thickness. Similar to the observations regarding buckets with 

different floor profile, this work finds that there is no significant difference between the 

buckets with different blade thickness, contrary to what other researchers have observed in
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the literature (Ucgul et al., 2015a; Wu, Lv, & Yu, 2016; X. C. Zhang et al., 2016). For 

instance, DEM studies by Ucgul et al. (2015a) showed that a sharper blade reduced the 

draft during tillage. Conceptually, this should be the case as increasing the blade thickness, 

much like the straight versus spade nose blade effects, reduces the pressure on the material 

and, thus, its effectiveness at dislodging the material. However, this work shows that this 

effect might be limited (at least within the range evaluated) in the case of rubber tire loader 

buckets, compared to the effect of other parameters evaluated in this study. Practically, this 

conclusion means that engineers who design rubber tire loaders buckets can use thicker 

blades for strength and longevity without significantly compromising the penetration and 

performance of the bucket.

4.4. SUMMARY OF SECTION FOUR

The results show statistically significant association between geometry, muckpile 

particle sizes, speed, and motor power output, on one hand, and longitudinal penetration 

and draft, on the other. Speed and motor power output are positively correlated to both 

penetration and draft while muckpile particle size is positively correlated only to 

penetration (it is negatively correlated to draft). Furthermore, the results also show that the 

buckets with different cutting blade profiles have significantly different longitudinal 

penetration; however, there is no such difference in their maximum draft. The results show 

that buckets with a semi-spade cutting nose profile yield the highest penetration followed 

by those with spade, which also yield higher penetration than those straight blades. The 

work shows no significant difference in penetration or draft of buckets with different floor 

profiles or with different blade thicknesses.
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The work also shows that increases in speed and motor power output have a greater 

effect in piles with smaller particle sizes than in those with larger particle sizes. Therefore, 

operators need not increase speed or motor power output as much in muckpiles with 

smaller particle sizes to achieve similar penetration.

Specifically, the work shows that increasing speed or motor power output while 

decreasing particle sizes will lead to additional increases in bucket longitudinal penetration 

beyond the primary effects of these variables (i.e. combined effects). Mine managers and 

engineers can also select buckets for different material types based on empirical evidence 

presented in this work.
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5. UNDERSTANDING HOW SPEED, TRACTIVE EFFORT, DIGGING HEIGHT, 
AND RAKE ANGLE AFFECT BUCKET PENETRATION AND RESISTIVE 

FORCES (DRAFT) FOR RUBBER TIRE LOADERS

5.1. BACKGROUND

The abundant use of rubber tire loaders in mining and construction is testament to 

their many advantages including flexibility, versatility, and efficiency. While they are 

common in mining, there are still gaps in our understanding of how they perform in 

different materials (coal, hard rock, iron ore, etc.) and the effect of various operating 

conditions and dynamic parameters on their performance. There is a need to improve our 

understanding of RTL loading in order to improve its loading efficiency and extend its 

applications. As discussed earlier, the first step of RTL loading is penetrating the pile of 

rocks. Different variables such as speed, tire tractive effort, and orientation of the bucket 

can affect penetration. Improved and efficient penetration and reduced resistive forces 

(draft) can improve RTL cycle time and productivity. The previous section looks at the 

effect of bucket geometry on penetration and draft. Bucket orientation parameters such as 

rake angle and the cutting tool’s height above the floor together operating parameters such 

as speed and tractive effort have been studied extensively in the literature for the interaction 

of blades and tillage tools (agricultural tools) with soil (Ashrafizadeh & Kushwaha, 2003). 

Thus, one could assume that the orientation of RTL buckets (e.g., rake angle and height 

above the floor) will also have a significant effect on RTL performance. However, the 

literature does not show enough study on the interactions between RTL buckets and 

soil/muck pile. Figure 5-1 explains rake angle and height above the digging floor, as used

in this work.
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Figure 5-1. Rake angle and height above the floor explanation

To enhance our understanding of the digging operation of RTLs, it is necessary to 

understand the effect of all the different factors including the digging depth (or height of 

the bucket above the digging floor), speed, bucket geometry, bucket rake angle, and soil or 

muck pile properties (Formato et al., 2005; Manuwa, 2009; Manuwa & Ogunlami, 2010). 

Many researchers have already shown the importance of tool orientation, and operating 

parameters in understanding soil-tool interaction (Gill & Vanden Berg, 1968; Glancey et 

al., 1996; Shahgholi et al., 2019; Ucgul et al., 2015a; Z. Zeng & Chen, 2018). It is 

reasonable to infer that RTL bucket orientation is likely to have some impact on RTL 

performance.

Rubber tire loader operators perform loading operations based on their experience 

and training. The operator determines the bucket orientation based on his/her personal 

experience and training and this decision can be subjective. This choice can have a 

significant effect on RTL performance and productivity. Improved knowledge about the 

significance of different bucket orientation parameters (rake angle and height above the 

floor) will help operator trainers emphasize the right parameters to enhance productivity
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and operation. The study reported in this section will assist in reducing the subjectivity of 

operator decisions when operating the RTL.

Previous research has established that rake angle is a key operating parameter for 

RTLs (Gebregziabher et al., 2016; Manuwa, 2013; Shahgholi et al., 2019; Yang et al., 

2018). During normal operation, an operator pushes the bucket into the pile until it has 

attained maximum penetration. This initial push of the bucket can be at different angles 

with the ground (rake angle). The usual practice is to keep this angle between 0° and 7.5° 

depending upon the operator’s training and experience. For cleaning purposes, operators 

sometimes use even steeper rake angles. The effect of rake angles on penetration and 

resistive forces for RTLs, while controlling for all other parameters, has not been studied 

in the past. Such scientific studies will help reduce reliance on the operator’s subjective 

decisions regarding rake angles and will help reduce fatigue and stress build-up.

Similar to the rake angle, the height of the tool above the ground (in most respects, 

the opposite of the depth of the digging tool) can affect the penetration of and resistive 

force on a bucket, thereby affecting the efficiency of the operation. The usual operator 

practice is to drag the bucket alongside the floor of the bench. Previous research has not 

analyzed, in depth, the effect of the interaction of RTL buckets with rocks at different 

heights although the few papers that looked into it showed evidence that height above the 

floor is important. For example, Nezami et al. (2007) use a discrete element model to 

examine the effect of varying heights on RTL performance, although the heights used for 

the analysis were not representative of actual heights above ground used in the industry. 

There is a need for more studies on the effect of height above the floor on penetration and
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resistive forces to further examine this effect and provide a scientific basis for selection of 

height above the floor and reduce the subjectivity of operator decisions.

Other researchers have used various rake angles and cutting depths to test the effect 

of these parameters on resistive forces for agricultural tools (Gebregziabher et al., 2016; 

Manuwa & Ogunlami, 2010; Ucgul et al., 2018; Yang et al., 2018) but their work did not 

control for the effect of other operating parameters such as speed, tractive effort, and 

material properties. The effect of speed, tractive effort, and material properties is well 

established in the literature and is also intuitive (Abo-Elnor et al., 2003; Dwyer, 1984; 

Hang, Gao, Yuan, Huang, & Zhu, 2018b; Obermayr et al., 2011; Pelechano & Malkawi, 

2008; Sarauskis & Vaitauskiene, 2014; Yang et al., 2018). Controlling for operating 

parameters will help us understand how important these bucket orientation parameters 

(rake angle or height above the floor) are in explaining penetration and resistive forces, 

relative to operating parameters like speed, tractive effort, and material properties.

The main objective of the work in this section is to test for the effect of different 

bucket orientation parameters (rake angle and height), and different operating parameters 

(speed and tractive effort) on the penetration of and resistive forces (draft) on an RTL 

bucket. The work uses a 1:16 scaled model of an 18 ton (19.8 t) LHD in a factorial design 

experiment that includes the speed, tractive effort, rake angle, and height of the bucket 

above the floor to achieve the objectives. The work further investigates the trends in 

different types of rocks to find common trends in the tested effects. This work is a novel 

contribution to the literature as previous research has not studied the effect of RTL bucket 

orientation on penetration and resistive forces in such detail (in particular, in the presence 

of the effect of operating parameters). To the best of author’ knowledge, the literature
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contains no work that studies the effect of bucket orientations on penetration and resistive 

forces, while controlling for the operating parameters. The current literature on the effect 

of bucket orientations focuses on the simple geometries of agricultural tools and small 

implements. Thus, this work presents new knowledge for trainers, operators, and engineers 

to better understand the digging operation of RTLs to improve the overall loading operation 

and enhance the productivity of RTLs in mining and construction applications.

5.2. EXPERIMENTAL PLAN

The author tested for three different levels of rake angles, two different levels of 

heights, three different levels of speed and two different levels of tractive effort (as with 

the previous section motor current is used as a proxy for tractive effort in this section too). 

The experiment was a randomized full factorial experimental design with five replications 

(Table 5-1). After every set of replications, the researcher removed the rocks from the bin 

and refilled the wooden bin (after every five replications) to avoid changes in the results 

due to the settling of rocks. The number of adequate replications was determined by 

running preliminary experiments, which indicated there was a statistically significant 

decrease in penetration and increase in draft after 7 to 10 replications for different particle 

sizes. In order to replicate the post-blast conditions in the experimental setup, the researcher 

added a temporary wooden barricade and filled the rocks in the column. The barricade was 

suddenly removed to let rocks settle on their own, similar to how they settle after a blast. 

The data log was analyzed for any communication errors to avoid incorrect readings and 

experiments were repeated for the runs that showed communication errors.
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Table 5-1. Summary of experimental setup II

Factor Level 1 Level 2 Level 3
Maximum Motor power output 2 A 10 A

Velocity (mm/s) 400 500
Rake Angle (degree) 0° 5° 7.5°

Height above the floor (mm) 10 20

Figure 5-2. Scaled model of LHD

The author ran the experiment on two rock types (Figure 3) in order to evaluate 

whether the results persist in different materials. The two rock types differ in the particle 

size distribution (both piles consist of crushed limestone from a local quarry in Texas). 

Rock type I has size distribution of 2 - 12 mm, whereas rock type II has size distribution 

of 14 -  22 mm. This approach will help us understand the effects that persist with 

increasing particle sizes.
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Figure 5-3. Different types of rocks (a) Rock type (I); (b) Rock type (II)

Table 5-2. Summary of the experimental Setup

Field Name Level 1 Level 2 Level 3
Tractive Effort 25% 50%

Velocity (mm/sec) 400 500
Rake angle (degree) 0° 5° 7.5°

Height (mm) 10 20

5.3. DATA ANALYSIS APPROACH

This work used regression analysis to evaluate the effect of rake angle, height above 

the floor, speed, tractive effort, and angle of repose on the penetration and resistive force. 

The analysis treated the maximum penetration and peak draft for each run as dependent 

variables and rake angle, tractive effort, speed, height above floor, and angle of repose as 

independent variables. The work tested for association of resistive forces and penetration 

with all possible combinations of independent variables using the generalized regression 

function in JMP®. All variables (dependent and independent) were treated as continuous 

variables. The work used the sine of rake angles in the analysis since angles are circular
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variables that should not be used directly in such statistical analysis (Batschelet, 1981; 

Jammalamadaka & Sengupta, 2001). The sine of rake angles is preferred over cosine as the 

value for sine of rake angle increase as the rake angle increased within the range of values. 

Only statistically significant associated effects and combined effects are presented in the 

results section to avoid redundancy (the complete results are included in Appendix A, B, 

C, D). This work considers effects to be statistically significant at a  = 0.05. The generalized 

regression analysis function of JMP® uses the Wald Chi square test to evaluate the 

statistical significance of the regression coefficients and the variable’s effect.

5.4. RESULTS

Figure 5-4 shows sample results from the experiments. The results shown in Figure 

5-4 are representative of all the experiments in the research and as same as Figure 4-6. As 

the bucket enters the muck pile, the resistive force increases with penetration until the 

forces peak and the bucket stalls. The author saved data from each experiment into a 

separate file and then extracted the maximum force and displacement as variables to use in 

the statistical analysis.

Figure 5-4. Sample results for experiment with tractive effort = 50%; velocity = 
500mm/sec; rake angle = 5°; height = 20 mm: (a) Penetration; (b) Resistive forces



78

5.4.1. Rock Type I. Tables 5-3 and 5-4 show the results of regression analysis of 

resistive forces (draft) and penetration, respectively, for rock type I (as indicated earlier, 

the full results are in Appendix A and B).

Table 5-3. Results of resistive forces (draft) regression analysis for rock type I

Term Estimate Std
Error

Wald Chi 
Square

Prob > Chi 
Square

Intercept -1.4133 2.8843 0.2401 0.6241
Tractive effort (T) 0.4913 0.0322 232.0481 <.0001

Speed (S) 0.0591 0.0050 140.8036 <.0001
(T-37.5)*(sin(A)-0.07256) -1.5885 0.5347 8.8249 0.0030

Table 5-4. Results of penetration regression analysis for rock type I

Term Estimate Std
Error

Wald Chi 
Square

Prob > Chi 
Square

Intercept -5.9765 3.1818 3.5282 0.0603
Tractive effort (T) 0.6103 0.0378 260.5896 <.0001

Speed (S) 0.1340 0.0053 639.2483 <.0001
Height (H) 2.2549 0.0946 567.8227 <.0001

(T-37.5)*(S-500) -0.0020 0.0004 22.4951 <.0001
(S-500)*(sin(A)-0.07256) 0.2660 0.0970 7.5255 0.0061

The results (Table 5-3) indicate that, of all tested effects, only speed, tractive effort, 

and combined effect of tractive effort and rake angle significantly affects resistive forces 

(draft) for rock type I. The results show that speed and tractive effort are strongly associated 

with resistive forces (p-value<0.0001). The combined effect of tractive effort and rake 

angle also shows association with resistive forces (p-value=0.0030). However, the results 

show no significant association between resistive forces and height above the floor.
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The results (Table 5-4) for the association between penetration and independent 

variables show some significant associations. Tractive effort, speed, and height above floor 

show strong association with bucket penetration (p-value<0.0001) just as the combined 

effect of tractive effort and speed shows strong correlation with bucket penetration (p- 

value<0.0001). The combined effect of speed and rake angle also shows statistically 

significant association (p-value=0.0061) with bucket penetration.

5.4.2. Rock Type II. Tables 5-5 and 5-6 show the results of regression analysis of 

resistive forces and penetration, respectively, for rock type II. The results show that only 

speed and tractive effort show statistically significant association with resistive forces (p- 

value<0.0001). The results for association of the independent variables with penetration 

show that tractive effort, speed, height above the floor, and rake angle are all strongly 

associated with penetration (p-value<0.0001). Similarly, the combined effect of rake angle 

and height above the floor (p-value<0.0001), speed and height above floor (p- 

value=0.0011), speed, and rake angle (p-value=0.0014), and tractive effort and height 

above the floor (p-value=0.0077) all showed significant association with penetration. 

Appendix C and D show the detailed results for rock type II.

Table 5-5. Results of resistive force regression analysis for rock type II

Term Estimate Std
Error

Wald
ChiSquare

Prob > 
ChiSquare

Intercept 9.30782 3.68640 6.37517 0.0116
Tractive effort (T) 0.33142 0.04128 64.44979 <.0001

Speed(S) 0.05482 0.00610 80.78764 <.0001
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Table 5-6. Results of penetration regression analysis for rock type II

Term Estimate Std
Error

Wald
ChiSquare

Prob > 
ChiSquare

Intercept -10.3176 4.2750 5.8249 0.0158
Speed (S) 0.1240 0.0077 256.4995 <.0001

Height (H) 1.8989 0.1338 201.4419 <.0001
sin(A) -114.3602 11.5312 98.3566 <.0001

(H-15)*(sin(A)-0.07256) 21.2689 2.3058 85.0872 <.0001
Tractive effort (T) 0.2984 0.0535 31.1371 <.0001

(S-500)*(H-15) -0.0051 0.0015 10.7076 0.0011
(S-500)*(sin(A)-

0.07256)
-0.4680 0.1465 10.2064 0.0014

(T-37.5)*(H-15) 0.0285 0.0107 7.0904 0.0077

5.5. DISCUSSION

The statistical analyses presented in Section 5.3. of this dissertation examines the 

effect of tractive effort (as measured by the maximum allowed current to the drive motor) 

and speed (operating parameters) as well as height above the floor and rake angle 

(geometry orientation parameters) on resistive forces and penetration. The results confirm 

the overall research hypotheses of this dissertation (see Section 1.3), based on the previous 

literature (Dedousis, 2007b; Dongming et al., 2017; Gaspar et al., 2019; Plackett, 1985; 

Shahgholi et al., 2019), that speed, depth, and soil properties would have a significant effect 

on the performance of RTL buckets. As with the analysis in Section 4, the readers of this 

dissertation should be careful about the importance they attach to the magnitude of the 

regression coefficients as the range of the independent variables vary significantly (rake 

angle is between sin(0) and sin(7.5°), and speed between 400 to 500 mm/sec). Higher 

regression coefficients do not necessarily imply stronger association. The p-values are 

more suggestive of the strength of the association.
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5.5.1. Rake Angle. This work shows that rake angle is a significant parameter for 

overall RTL bucket performance and confirms what the literature says about the 

importance of rake angle (Gaspar et al., 2019; Ucgul et al., 2014; Wilkinson & DeGennaro, 

2007). The effect of rake angle appears to be higher for penetration than resistive force 

(this work observed significant association only for rock type I and, even then, only as 

combined effect with tractive effort). The association of rake angle with penetration is 

strong for rock type-II with coefficient estimate of -114.3602 (p-value <0.0001). The 

negative sign indicates that by increasing the rake angle, at least within the range of rake 

angles tested, bucket penetration will decrease. This is consistent with those researchers 

who have observed that increasing rake angle increases draft forces for tillage tools 

(Gebregziabher et al., 2016; Manuwa & Ogunlami, 2010; Shahgholi et al., 2019). In this 

respect, RTL buckets appear to behave similar to agricultural tools.

The combined effect of speed and rake angle shows significant association with 

penetration for both rock types with co-efficient of estimates of 0.2660 (p-value = 0.0061) 

and -0.4680 (p-value = 0.0014). This indicates the dynamic effects interact with rake angle 

(geometric parameter) to affect bucket penetration during RTL loading. This is a novel 

finding that requires future work to optimize the combined effect of speed and rake angle 

to maximize initial penetration and minimize the resistive forces. No other combined effect 

of rake angle appeared to be significant for rock type-I; however, the combined effect of 

rake angle and height is significant for rock type-II, with coefficient estimate of 21.2689 

(p-value < 0.0001). The positive coefficient estimate suggests that by increasing the rake 

angle and height above floor of the bucket for RTLs, the penetration will increase. Findings
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from this work confirm previous work (Barr et al., 2020; Elbashir et al., 2014; Gaspar et 

al., 2019) that suggest rake angle as a key parameter in excavation studies.

These findings lead us to accept our first overall hypothesis that rake angle is 

associated with penetration. However, the statistical analysis in this work does not find any 

significant association between resistive forces and rake angle when controlling for all 

other parameters tested in this work. While statistically significant association between the 

combined effect of rake angle and speed with resistive forces is observed, for rock type I 

only, overall, it is difficult to conclude that an association between rake angle and resistive 

forces is observed. This result does not necessarily show that there is no connection 

between resistive forces and rake angle. It only shows that rake angle does not offer much 

explanatory power in explaining the variability in resistive forces when all these parameters 

are involved.

From the application viewpoint, this work suggests that operating RTL buckets 

with lower rake angles will yield better initial penetration and facilitate efficient excavation 

without incurring significantly different resistive forces. Trainers as well as application and 

reliability engineers can use this study as a base point to improve the operation of RTLs in 

the industry and suggest better operating parameters for the operators.

5.5.2. Height Above the Floor. This work finds that the height of the bucket above 

the floor is not associated with resistive forces for the two rock types. The results show no 

significant association between any combined effect and resistive forces as well for any 

rock type. The literature for agricultural ground engaging tools suggests that increasing the 

depth (decreasing height above the floor for RTLs) results in higher resistive force (Gaspar 

et al., 2019; Rahman & Chen, 2001; Shahgholi et al., 2019). This is not what a reader
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observes in this work. There are two possible explanations for this: (i) this shows the 

uniqueness of RTLs and should serve as a caution for using models and conclusions from 

agricultural tools to make inferences about RTLs; or (ii) the explanatory power of speed 

and tractive effort far outweighs that of the height above the floor (cutting depth) for RTL 

buckets (at least within the ranges in this work). Regardless of the specific explanation, the 

results show that, in complex mining operations where all other factors do not stay 

constant, one can assume that the operator’s decision on how far from the floor he/she 

operates has no significant effect on the resistive forces.

Unlike the results for resistive forces, the effect of height above the floor on 

penetration suggests strong association with coefficient estimates of 2.2549 (p-value < 

0.0001) and 1.8989 (p-value < 0.0001) for rock types I and II, respectively. This indicates 

that, as this author hypothesized, increasing the height of the RTL bucket above the floor 

will increase bucket penetration. This is because increasing the height above the floor 

reduces the depth of cut (Gaspar et al., 2019; Moinfar & Shahgholi, 2018; Shahgholi et al., 

2019) and reduces the influence of edge effects (Pulungan et al., 2017; Ryska, 1985). The 

decrease in regression coefficient from rock pile-I to rock type-II also suggests that the 

effect of height above the floor decreases with an increase in the average particle size of 

the muck pile. This appears to support the edge effects hypothesis for RTL operation (and 

some other mining and construction digging operations) that is absent in agricultural soil 

cutting operations. If edge effects play a dominant role, then it will require a larger height 

above the floor to reduce edge effects for larger particles; thus, reducing the influence of 

height above the floor on penetration. This trend should be explored further in future 

studies to see if the extent of this relationship (beyond the particle sizes tested in this work).
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While the author did not observe any significant association between combined 

effects of height and the other independent variables for rock type-I, the combined effect 

of height with rake angle, speed, and tractive effort show significant association with 

penetration at regression coefficients of 21.2689 (p-value < 0.0001), -0.0051 (p-value = 

0.0011), and 0.0285 (p-value = 0.0077), respectively. The positive regression coefficient 

for the combined effect of rake angle and height above the floor suggests that by increasing 

the rake angle and height of the bucket above the floor together, the penetration will 

increase. Similarly, the combined effect of height above floor and tractive effort for rock 

type II is positively correlated with penetration. These are not surprising as height above 

the floor, as well as rake angle and tractive effort, are all positively correlated with 

penetration for rock type II. However, the combined effect of height above the floor and 

speed shows negative correlation suggesting that increasing height and speed together will 

result in a reduction in penetration for rock type-II. This is a novel observation that has not 

been reported previously in the literature. The reasons behind this observation are not 

entirely clear. It is possible that increasing the bucket speed while also increasing the height 

above the floor introduces dynamic effects that combines with edge effects to decrease 

penetration. Further research is necessary to fully understand this phenomenon.

Overall, the results are consistent with the second hypothesis that height above the 

floor is positively correlated with penetration. However, the results lead us to reject the 

other part of that hypothesis that height above the floor will be negatively correlated to 

resistive forces. There is no statistically significant relationship between height above the

floor and resistive forces for RTL buckets.
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From an industrial application viewpoint, this work suggests that increasing the 

RTL bucket’s height above the floor will result in improved initial penetration. Combined 

with the knowledge that the material remaining on the floor is likely to be easier to dig with 

the reduced depth of cut, it would seem a good practice for RTL operators to set the bucket 

height not too close to the floor for maximum performance and clean the floor later. The 

results of this paper can thus yield useful guidance for operator training and best practices 

if adopted by the industry.

5.5.3. Speed and Tractive Effort. The statistical analysis suggests a strong 

positive correlation between speed and tractive effort, on one hand, and resistive forces, on 

the other, with the coefficient estimates as 0.0591 (p-value < 0.0001) and 0.4913 (p-value 

< 0.0001), respectively, for rock type I. The analysis on rock type II shows similar results 

as speed and tractive effort are positively correlated with the resistive forces with 

coefficient estimate of 0.0548 (p-value < 0.0001) and 0.3314 (p-value < 0.0001) for rock 

type II. The coefficient estimates show that if  speed or tractive effort is increased 

independently, the resistive forces will also increase. The effect of speed and tractive effort 

on resistive forces for both size distributions tested in this work are very similar as indicated 

by the similar regression coefficients and p-values. This observation is in line with that of 

other researchers (Larson et al., 1968; Qinsen & Shuren, 1994; Wismer & Luth, 1972) and 

the work presented in Section 4. The combined effect of the operating parameters (speed 

and tractive effort) with the geometry orientation parameters (rake angle and height above 

the floor) have already been discussed in the previous sections and are not repeated here to 

avoid redundancy. The results presented in this section endorse the findings of previous
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researchers regarding the association of speed with resistive force (Shahgholi et al., 2019; 

Shen & Kushwaha, 1998; Z. Zeng & Chen, 2018).

Comparing the regression coefficient estimates of speed and tractive effort for the 

different particle size distributions (rock type-I and rock type-II) shows that increasing 

particle size results in a reduction in the effect of speed and tractive effort. The difference 

in the coefficients for tractive effort in particular seems significant (difference of 0.33 is an 

order of magnitude higher than the range of standard errors for the coefficients -  ranging 

from 0.03 to 0.04 -  Tables 1 and 3). This finding indicates that, while the effect of tractive 

effort is significant regardless of the muck pile particle sizes, there may be a reduction in 

the effect with increasing particle sizes (i.e. increasing tractive effort increases resistive 

forces much more for smaller sized particles than for larger rock types). This perhaps is 

due to the effect of higher packing in the muckpiles with smaller particle sizes. Further 

research is required to explore the full reasons behind this.

The results for association of penetration with operating parameters reveal strong 

correlation between speed, and tractive effort and penetration with coefficient estimates of 

0.1340 (p-value < 0.0001) and 0.6103 (p-value < 0.0001), respectively, for rock type I. 

For rock type II, regression coefficient estimates for the association between speed and 

tractive effort and penetration are 0.1240 (p-value < 0.0001) and 0.2984 (p-value < 

0.0001), respectively. The positive estimates imply that higher tractive effort will produce 

higher penetration, as presented by (Shafaei et al., 2018). The regression coefficient 

estimates for rock type I and II follow a similar trend for speed, and tractive effort as 

observed for the height above floor. The coefficient estimates are lower for larger particle

sizes.
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The aforementioned discussion leads us to accept the third hypothesis that speed 

and tractive effort are (directly) associated with penetration and resistive forces. This is 

generally consistent with the literature that shows that increasing speed (and tractive effort) 

would increase the penetration (Gaspar et al., 2019; Moinfar & Shahgholi, 2018; 

Ranjbarian et al., 2017; Shafaei et al., 2019). This is also consistent with the work presented 

in Section 4 of this dissertation. However, because of increasing inertial forces and shearing 

rate associated with increasing speed and tractive effort, resistive forces increase with 

increasing speed and tractive effort.

This result suggests that operators should not rely solely on speed to increase 

penetration as this might result in excessive resistive forces, which might result in higher 

energy consumption as well as excessive whole-body vibrations. The utilization of tractive 

effort in conjunction with speed is key to minimizing the resistive forces. The negative 

correlation of combined effect of speed and tractive effort to penetration and resistive force 

is a novel finding of this work and is useful for making RTL operations efficient. This work 

also establishes the importance of good quality tires for RTL operation as traction is not 

possible with worn-out tires.

5.6. SUMMARY OF SECTION FIVE

This section evaluated the effect of bucket geometric orientations (rake angle and 

height above the floor) and operating parameters (speed and tractive effort) on resistive 

forces (draft) and penetration for rubber tire loaders (RTLs). The evaluation consisted of 

tests on two different muck piles with different particle size distributions to find the 

common trends and present evidence of any effects due to particle sizes. The work used a
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1:16 scale LHD model in full factorial experiments of RTL bucket operating at different 

levels of tractive effort, speed, height above the floor, and rake angles. The work used 

generalized regression modeling to test the association of rake angle, tractive effort, speed, 

and height above the floor on penetration and resistive forces (draft).

The results show that speed and tractive effort are much more important in 

explaining the variation in RTL bucket penetration and resistive forces than rake angle and 

height above the floor. The observed, statistically significant, association between speed 

and tractive effort and penetration and resistive forces for the two rock types tested in this 

work suggests these two operating parameters play a major role in the performance of 

RTLs just as this work reported in Section 4. Specifically, the work finds that speed and 

tractive effort are positively correlated to the resistive forces incurred during the initial 

penetration. The results also show that the combined increase in speed and tractive effort 

will result in decreased penetration and decreased resistive forces. Further research should 

explore this combined effect in order to determine how to optimize and limit each effect to 

maximize or minimize the effect of this combined effect.

On the other hand, the results show that height above the floor and rake angle are 

more important in explaining variations in RTL bucket penetration than resistive forces 

(rake angle possibly less so than height above the floor). Height above the floor is positively 

correlated with the penetration, whereas rake angle is negatively correlated with the 

penetration. The work also shows that the combined effect of speed and tractive effort is 

negatively correlated to penetration and resistive forces. The negative correlation of 

combined effect of speed and tractive effort with penetration and resistive forces is a novel 

contribution that enhances our understanding of RTL loading operations. The results also
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show that the particle sizes of the muck pile have a mitigating effect on the influence of 

some of the variables in this work. The work found that the effect of speed, tractive effort, 

and height above the floor all change with changes in particles size.

Although the results show that rake angle, height above the floor, tractive effort, 

and speed significantly affect the performance of RTL, the work also finds the interaction 

between these factors also affect the performance. This result suggests future work should 

explore the optimization of these parameters to improve penetration and reduce resistive 

forces.

This work adds to the literature by enhancing our knowledge about the effect of 

rake angle, height above the floor, tractive effort, and speed on bucket penetration and 

resistive forces on rubber tire loaders. This work will assist mine managers, trainers, 

engineers, and maintenance crews in analyzing and improving RTL operations based on 

evidence. Future work should explore the effect of these variables on productivity 

(including effect on fill factor and cycle times) so that industry can fully take advantage of

these results.
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6. EFFECTIVENESS OF SIMILITUDE THEORY FOR BUCKET DESIGN AND 
ANALYSIS FOR RUBBER TIRE LOADERS

6.1. BACKGROUND

Rubber tire loader (RTL) buckets are available in different geometries with very 

little basis in the literature on their performance. Full scale analysis of these tools is tedious 

and expensive due to their extremely large sizes. For example, the Komatsu L2350 loader 

operates with a 1,715 kW drive and can lift 40.5 m3 of material in a single scoop. 

Experimental testing is a fundamental step in product design, which ensures the validation 

of the system along with desired reliability, performance, and safety (Casaburo et al., 

2019). While the literature contains extensive research pertaining to interactions between 

tillage tools and soils (Ashrafizadeh & Kushwaha, 2003), it does not contain as much on 

the interactions between bucket tools and fragmented rocks (muck piles). This limitation 

results in RTL design engineers making assumptions based on the literature on agricultural 

ground engaging tools. The limited literature and lack of practical testing limits our 

understanding of the behavior of different buckets when interacting with muck piles in 

varying operating conditions in mining and construction applications.

Design engineers are restricted by the enormous sizes and operating costs on how 

much RTL full scale testing they can do during machine/bucket design. However, the 

literature shows successful application of similitude theory in testing and analysis of 

different prototypes and scaled models (Casaburo et al., 2019; Coutinho, Baptista, & Dias 

Rodrigues, 2016b; Ashish Ranjan Kumar, 2018; Ashish Ranjan Kumar et al., 2016; Ramu 

et al., 2013a; Simitses & Rezaeepazhand, 1994; Ur Rehman & Awuah-Offei, 2020b; Ur 

Rehman et al., 2020; Williams, 2020). Thus, similitude theory and prototype testing could



91

be a viable approach to test design ideas and improve the design process. The ability to 

predict the performance on the actual or bigger model from the results of the scaled model 

depends on correct application of similitude theory and rigorous experimental design 

covering all major aspects (Casaburo et al., 2019). Correctly applying similitude theory for 

prototype testing helps to reduce cost and time for analysis by a scale of 1/4 to 1/3 (Samuel 

Holmes & Sliter, 1974). These benefits have resulted in broad application of similitude 

methods in engineering design tasks in industries such as aerospace, military sciences, 

civil, naval, and automotive industries (Casaburo et al., 2019; Ur Rehman & Awuah-Offei, 

2020c). This broad acceptance of similitude methods in different engineering fields 

motivates this work to apply and validate it for RTL bucket design.

However, merely conducting analysis based on a scaled model does not ensure 

reliable predictions. There are many approaches to applying similitude theory to build 

prototypes depending on the complexity of the phenomenon under study (Antoniou, 

Nikitas, Anastasopoulos, & Fuentes, 2020; Coetzee, 2019; Feng, Han, Owen, & Loughran, 

2009).To facilitate design of mining excavation equipment where there is complex 

interaction between the bucket and the muckpile, it is important to assess whether simple 

similitude approaches such as the Buckingham Pi theorem (Hu & Chang, 2020; Polverino, 

Bove, Sorrentino, Pianese, & Beretta, 2019; Tang et al., 2020) can adequately predict key 

parameters without the need for establishing fundamental similitude relationships.

In the case of RTL buckets, penetration and excavation forces incident on the 

bucket are key performance metrics in addition to bucket fill factor, weight, and ability to 

withstand stresses. Initial penetration is important because it determines the depth of cut, 

which affects energy consumption during digging, fill factor, and production rate (Awuah-
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Offei & Frimpong, 2007; Karpuz et al., 1992). Excavation forces are important because 

they determine the energy consumption and wear and tear on the machine. This work 

focuses on these two metrics because it seeks to improve our ability to predict the draft on 

a bucket during initial penetration using scaled model. The work presented in this section 

uses two scaled models (one larger than the other) to evaluate the effectiveness of 

similitude theory in predicting the draft of a rubber tire loader’s bucket during initial 

penetration. The work utilizes similitude theory to build 1:16 and 1:8 scaled models of a 

representative model of a Komatsu 18t LHD (Figure 3-1). The author collected data on 

draft and penetration for the 1:16 scaled model at different bucket orientation (rake angle 

and height above the floor) and operating parameters (speed and motor power output). He 

then used the observed values from the smaller scaled model (1:16) to predict draft and 

penetration on the larger scaled model (1:8). The work investigates the relationship 

between operating parameters and bucket orientation, on one hand, and draft and 

penetration for both scaled models using Generalized Regression Analysis.

This section contributes to Objective 4 of this dissertation (evaluate the 

effectiveness of using discrete element models and similitude theory to predict resistive 

forces (draft) and penetration). Specifically, the work in this section evaluates whether 

similitude theory can be successfully applied to the physical models as a first step in 

evaluating whether we can use similitude theory and DEM to predict resistive forces and 

penetration. Specifically, this section focuses investigation on following two hypotheses:

H1 : A scaled model, scaled using Buckingham Pi theorem, can predict draft on and 

penetration of a full-size machine.
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H2 : The relationship between draft and longitudinal penetration, on one hand, and 

operating parameters and conditions, on the other, observed at a scaled model level hold 

true for a full-size machine.

The first hypothesis is tested by comparing the actual draft on and penetration of 

the 1:8 model with the draft on and penetration of the same model predicted using the draft 

on the 1:16 model. The second hypothesis is tested by comparing generalized regression 

results of the relationships at the 1:16 and 1:8 scales.

6.2. EXPERIMENTAL PLAN

In this work, the penetration and draft are evaluated on both scaled models at three 

levels of speed, three levels of motor power output, three levels of rake angle, and two 

levels of height above the floor. Our experimental plan was a randomized full factorial 

experimental design with five replications (Table 6-1). After every five replications, the 

rocks were removed from the container and refilled to avoid experimental errors due to the 

settling of rocks. The researcher filled the bin to match post-blast muck piles by placing a 

temporary block to first create a column of rocks then removed the temporary block 

suddenly to allow the rocks to settle. Figure 6-1 shows the final shape of rocks before 

interacting with the bucket for the smaller scaled model. The size of rocks used in the 

experiments of the bigger sized model was twice that of the rocks used for the smaller 

scaled model. The size and dimensions of scaled models were designed based on similitude 

theory principles. The details of the tested parameters are available in Table 6-1.

The details of scaled models tested in this work are provided in Section 3 of this 

dissertation, so information is not repeated here to avoid redundancy.
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Figure 6-1. A sample muckpile before the experiment

Table 6-1. Summary of the experimental design

Factor Level 1 Level 2 Level 3
Motor power output (Watts) 

1:16/1:8
1/4 6.5/22.5 13/45

Velocity (mm/s) 
1:16/1:8 60/120 80/160 100/200

Rake Angle 0 degrees 5 degrees 7.5 degrees
Height above floor 10 mm 20 mm

6.3. DATA ANALYSIS

A two-step approach was used to analyze the data and validate similitude for this 

work. First, the regression analysis function of JMP® was used to evaluate the association 

of operating parameters (speed, motor power output, force, rake angle, height above the 

floor) with the draft and longitudinal penetration. The generalized regression function of 

JMP® uses the Wald Chi-Square test to evaluate the statistical significance of the 

regression coefficients and the statistical significance of a variable’s effects. The operating 

parameters were treated as independent variables, while draft and longitudinal penetration
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were treated as the dependent variable. The analysis was performed on both scaled models, 

independently. The combined effect of all possible combinations of operating parameters 

up to 2 degrees from a full factorial design experiment were also tested. The pattern of 

associations between dependent and independent variables was used as the first criteria to 

evaluate the validity of similitude application in this research. Second, the relationship 

between the predicted and actual draft and penetration for the larger scaled model was used 

to validate the similitude application for RTL. The draft and penetration observed on the 

smaller scaled model were used to predict the draft and penetration on the bigger scaled 

model for this analysis. The next section of this section discusses the results of this analysis.

6.4. RESULTS AND DISCUSSION

Figure 6-2 shows the draft measured over time for both models, whereas Figure 6

3 shows the penetration of both scaled models during the same experiment. The slower 

speed for the small scaled model resulted in noise for both draft and penetration as 

compared to bigger model.

Figure 6-2. Draft measured over time on (a) smaller scaled model; (b) bigger model
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Figure 6-3. Penetration measured over time on (a) smaller scaled model; (b) bigger model

Figures 6-4 and 6-5 show the draft and penetration, respectively, observed on the 

small scaled and bigger models as well as the draft predicted from small scaled model. 

Table 6-2 shows the results of regression analysis for draft on both scaled models. To avoid 

redundancy, only significant associations of effects are shown for both draft and 

longitudinal penetration (the full results are in Appendix E, F, G, and H).

Figure 6-4. Draft observed and predicted for scaled models
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Figure 6-5. Penetration observed and predicted for scaled models

The results indicate that motor power output has a strong association (P<0.0001) 

with draft. Motor power output is positively correlated with the draft for the small and 

bigger model with coefficient estimates of 2.2960 and 16.7970, respectively. The forward 

speed shows a strong association (P<0.0001) with the draft for both small and bigger scaled 

models. The coefficient of estimate is 0.1722 and 0.2026 for small and bigger scaled model, 

respectively. The combined effect of speed and motor power output also show a strong 

association with draft for both models (P<0.0001 and P=0.0431 for small and larger scaled 

models, respectively). The coefficient estimate for the combined effect of speed and motor 

power output on draft shows a negative correlation with coefficients of -0.0229 and -0.0137 

for the smaller and bigger models, respectively.
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Table 6-2. Draft comparison

Bigger Scaled Model Smaller Scaled Model

Term Estimate Prob > 
ChiSquare

Estimate Prob > 
ChiSquare

Intercept -54.3516 <0.0001 21.9473 <0.0001
Motor power output (M) 16.7970 <0.0001 2.2960 <0.0001

Speed (S) 0.2026 <0.0001 0.1722 <0.0001
M*S -0.0137 0.0431 -0.0229 <0.0001

Table 6-3 shows the results of the regression analysis for longitudinal penetration 

of both scaled models. The results indicate that motor power output is strongly associated 

(P<0.0001) with longitudinal penetration for both scaled models. The motor power output 

is positively associated with longitudinal penetration with estimated coefficient values of 

2.0156 and 6.4974 for small and bigger scaled models, respectively. The forward speed 

also shows a strong association with longitudinal penetration (P<0.0001) for both models. 

The coefficient estimates are 0.4353 and 0.1865 for the small and bigger scaled models, 

respectively, showing a positive correlation between forward speed and longitudinal 

penetration. The combined effect of forward speed and motor power output also indicates 

a strong correlation (P<.0001) for both scaled models. However, the nature of the 

correlation differs as the smaller scaled model shows a positive correlation with a 

coefficient estimate of 0.8480 while the bigger scaled model shows a negative association 

with an estimate of -1.1837. The combined effect of height above the floor and rake angle 

also shows a significant association (P<0.0001) with longitudinal penetration for the 

bigger scaled model (coefficient of -16.2911) although the regression results do not show 

any significant association for the smaller model. The combined effect of motor power
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output and height above the floor for the bucket shows a significant association with 

longitudinal penetration for both models (P<0.0001 and P=0.0009 for the small and bigger 

scaled models, respectively). The coefficient estimates for the relationship between the 

longitudinal penetration and the combined effect of motor power output and height above 

the floor are -0.2496 and -0.0657 for the small and bigger scaled models, respectively. The 

complete detail of results is in Appendix E, F, G, and H.

Table 6-3. Penetration comparison

Bigger Scaled Model Smaller Scaled Model

Term Estimate Prob > ChiSquare Estimate Prob > 
ChiSquare

Intercept -35.7029 0.0024 59.6857 <0.0001
Motor power output (M) 6.4974 <0.0001 2.0156 <0.0001

Speed(S) 0.1865 <0.0001 0.4353 <0.0001
Height (H) -1.1837 <0.0001 0.8480 <0.0001

Rake Angle (R) 0 1 -20.2810 0.0452
M*S -0.0192 <0.0001 -0.0478 <0.0001

H*Rake Angle -16.2911 <0.0001 0 1
M*H -0.0657 0.0009 -0.2496 <0.0001

Table 6-4 shows the results of the analysis of residuals for the predicted draft and 

actual draft observed on the bigger model. The residuals were calculated by subtracting 

predicted draft values from actual draft values observed on bigger model. The residuals 

range from -24.756 N to 21.858 N with a mean of 1.7084 N and a standard deviation of 

12.3553 N. The residuals show skewness of -0.37224 and kurtosis of -0.53971. The 

residuals were fitted for statistical distributions using JMP® and normal distribution 

showed the best fit. Figure 6-6 shows the residuals plots with normal distribution fit.
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Table 6-4. Residuals (Actual -  Predicted) (N)

Statistic Value
Mean 1.7084

Std Dev 12.3553
Std Err Mean 2.5220

Upper 95% Mean 6.9256
Lower 95% Mean -3.5088

Skewness -0.37224
Kurtosis -0.53971

Maximum 21.858
Minimum -24.754

20 -15 -10 -5 0 5 10 15 20 25
Residuals (Actual - Predicted)

Figure 6-6. Residual plot (Actual -  Predicted) with normal distribution fit

Table 6-5 shows the univariate statistics for the predicted and actual draft for the 

bigger scaled model. The mean of the predicted draft is 330.252 N, whereas, the mean of 

the actual draft observed on the bigger scaled model is 328.544 N. The standard deviation 

is 12.0822 N and 9.1927 N for predicted and actual draft, respectively.

Figure 6-7 shows the linear fit between predicted and actual draft on the bigger 

scaled model. Table 6-6 shows the relationship between predicted and actual draft observed
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on the bigger scaled model. The estimated slope of the predicted draft with the actual draft 

is 1.0048 with the strong significant association (P<0.0001). The correlation coefficient is 

0.3504, while the covariance is 38.916.

Table 6-5. Univariate analysis of the predicted and actual draft

Mean Std Dev Minimum Maximum
Predicted 330.252 12.0822 310.760 349.920

Actual 328.544 9.1927 312.470 342.226

Figure 6-7. Linear Model Fit for Draft

Table 6-6. Relationship between predicted draft and the actual draft

Parameter Estimated Slope t Ratio Prob>t Correlation Covariance
Actual 1.0048 130.75 <0.0001 0.3504 38.916
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Table 6-7 shows the results of the analysis of residuals for the predicted penetration 

and actual penetration observed on the bigger model. The residuals were calculated by 

subtracting predicted penetration values from actual penetration values observed on bigger 

model. The residuals range from 116.05 mm to 208.778 mm with a mean of 151.471 mm 

(which is significantly different from zero, which is what one would expect) and a standard 

deviation of 26.836 mm. The residuals show skewness of 0.2675 and kurtosis of -0.9523. 

The residuals were fitted for statistical distributions using JMP® and normal distribution 

showed the best fit. Figure 6-8 shows the residuals plots with normal distribution fit.

Table 6-7. Table: Residuals (Predicted - Actual)

Mean 151.471
Std Dev 26.836
Std Err Mean 5.478
Upper 95% Mean 162.803
Lower 95% Mean 140.138
N 24
Skewness 0.2675
Kurtosis -0.9523
Maximum 208.778
Minimum 116.05

Table 6-8 shows the univariate statistics for the predicted and actual penetration for 

the bigger scaled model. The mean of the predicted penetration is 288.128 mm, whereas, 

the mean of the actual penetration observed on the bigger scaled model is 136.657 mm. 

The standard deviation is 22.5243 mm and 11.9783 mm for predicted and actual 

penetration, respectively.

Figure 6-8 shows the linear fit between predicted and actual penetration on the 

bigger scaled model. Table 6-9 shows the relationship between predicted and actual
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penetration observed on the bigger scaled model. The estimated slope of the predicted 

penetration with the actual penetration is 2.091 with the strong significant association 

(P<0.0001). The correlation coefficient is 0.1347, while the covariance is 0.0027. The 

subsequent sub-sections discuss these results and findings.

Table 6-8. Univariate analysis of the predicted and actual prenetration

Mean Std Dev Minimum Maximum
Predicted 288.128 22.5243 259.560 334.600

Actual 136.657 11.9783 118.114 163.924

120 HO 160 180 200
Residuals (Predicted - Actual)

Figure 6-8. Residual plot (Predicted -  Actual) with normal distribution

Figure 6-9. Linear Model fit for Penetration
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Table 6-9. Relationship between predicted penetration and the actual penetration

Parameter Estimate F Ratio Prob>t Correlation Covariance
Actual 2.091 1535.7981 <0.0001 0.1347 0.0027

6.4.1. Effect of Operating Parameters and Conditions on Draft and 

Longitudinal Penetration. The statistical analysis shows that the dynamic parameters 

have similar relations with draft at both scales. Motor power output shows a strong 

association with draft for both scaled models. The forward speed, which is the other 

dynamic parameter, also shows a strong association with draft for both scaled models. 

Similarly, the combined effect of speed and motor power output also shows a strong 

association. Similar associations were observed for the relationships of longitudinal 

penetration with motor power output, forward speed, and their combined effect for both 

the scaled models. P-values for all these relations were <0.0001 (Tables 6-2 and 6-3). The 

effect of forward speed (Chen, 2002; Shen & Kushwaha, 1998; Z. Zeng & Chen, 2018) 

and motor power output (Moinfar & Shahgholi, 2018; Ranjbarian et al., 2017; Shafaei et 

al., 2019) on draft for both the scaled models is consistent with the findings of other work 

in the literature. This shows that, not only did the scaled models perform as expected from 

the literature, but the relationships between dynamic parameters and draft also stayed 

consistent when scaled up.

However, the results are different when comparing the relationships for operating 

parameters (height above the floor and rake angle). Because none of the operating 

parameters were found to be statistically significant in explaining the variation in draft, the 

reader is left with the relationships to longitudinal penetration (Table 4) to examine whether
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these relationships stay the same with scale up. An examination of Table 4 shows that, 

unlike speed and motor power output, the relationships between height above the floor and 

rake angle, on one hand, and penetration, on the other, change from the smaller to the 

bigger scaled model.

For the smaller scaled model, increasing the height of the bucket results increases 

the penetration, whereas for the bigger scaled model the observed trend is the opposite. 

The literature shows that increasing the height above the floor should increase longitudinal 

penetration up to a point (Manuwa & Ogunlami, 2010; X. C. Zhang et al., 2016) and then 

it would decrease the penetration (Karpuz et al., 1992). This is because of edge effects and 

the effect of depth of cut. Edge effect causes the tool moving along the floor of the bench 

(operating along the fixed flat surface) to get resistance from rocks near the floor, if  the 

tool is close enough to the floor, that have higher inertia of moving (Manuwa & Ogunlami, 

2010; X. C. Zhang et al., 2016). However, once the bucket operates past the edge effects 

envelope, increase the height above the floor reduces the depth of cut, which is known to 

be directly correlated to penetration (Karpuz et al., 1992). During this research, the it was 

observed that the relative height above the floor for the 10 mm height on the smaller scale 

model was much lower resulting in pronounced edge effects (Figure 6-10). This tendency 

for particles to wedge in-between the bucket and the floor reduced the penetration 

significantly for the 10 mm height leading to the positive correlation. Without this edge 

effect, the larger scale model shows the relationship one would expect when the 

relationship is controlled by depth of cut. Unfortunately, because the smaller scale model 

was constructed with two limits, therefore unable to test different heights that would have 

eliminated the edge effects.
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Figure 6-10. Rocks flowing under the bucket (pronounced edge effect)

A similar reversal of trend with rake angle is seen. There is a statistically significant 

(p  = 0.0452) negative correlation between rake angle and penetration for the smaller model 

but no correlation between rake angle and penetration for the larger model. Also, the 

combined effect of rake angle with the height above the floor does not show any significant 

association with the longitudinal penetration for the smaller scaled model, however it 

shows strong association for the bigger scaled model. The literature shows that rake angle 

is directly proportional to the draft observed on ground engaging tools (Gebregziabher et 

al., 2016; Shahgholi et al., 2019). This is because at higher rake angles the tool has higher 

contact area with the muck pile particles and faces higher resistance to break the 

interlocking between the muck pile particles. Similar to the height above the floor, the 

author observed pronounced edge effects (Figure 6-10) at higher rake angles for the smaller 

scale model. Thus, rake angle is negatively correlated to penetration in the smaller model 

(Table 6-3) whereas there is no correlation in the larger model where edge effects are 

minimal.

Overall, the observed trends of the draft with dynamic parameters (motor power 

output and speed) for both scaled models show very good similarity. Also, the relationship
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between motor power output and speed and penetration are similar for both scaled models. 

However, the observed trends for penetration and the operating parameters (rake angle and 

height above the floor) do not show the same similarity with scale. Thus, one can conclude 

that Hypothesis 2 is only partially confirmed by the results of this work. Further work is 

required to examine whether the operating parameters will also scale up with a scale model 

that does not limit the height above the floor as much as the one used in this research.

6.4.2. Predicting Draft at a Larger Scale. A good scaled model should be able to 

predict the draft to be expected on a bigger model. For model predictions to be unbiased, 

the expected value of the residual should be zero (or near zero) and the distribution of 

residuals should be symmetric. It is also desirable for the standard deviation (or variance) 

to be low. Such model predictions should also not show any conditional bias (i.e., the 

scatter plot of the actual vs predicted values should plot generally along the y  = x line and 

not deviate at the high or low end of the range) (Isaaks & Srivastava, 2001).

Table 6-4 and Figure 6-6 show the analysis of residuals, in newtons (N), for the 

predicted draft from 1:16 scaled model and actual draft observed on the 1:8 bigger model. 

The mean and standard deviation of residuals of 1.7084 N (95% confidence interval of [

3.51, 6.93], which includes zero) and 12.3553 N, respectively, are relatively low given the 

average draft is approximately 330 N (Table 6-5). However, the residuals are not 

symmetric with skewness of -0.37224 and kurtosis of -0.53971 indicating slight over 

prediction. The mean predicted draft is 330.252 N, whereas the mean of actual draft 

observed on bigger scaled model is 328.544 N. The standard deviation estimates of 12.0822 

N and 9.1927 N for predicted and actual draft, respectively, show similar variability in draft 

of the both scaled models. The predicted values have a higher range (Table 6-5) and
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standard deviation due to the quadratic scaling effect (Table 3-2). This implies the higher 

the scale factor (S), the more variability one would expect in the predicted draft. This issue 

can be addressed by increasing the number of replicates (above the five used in this work) 

for each experimental condition and using the mean values for prediction. Nonetheless, 

engineers using predictions from a scaled model for design and analysis must account for 

the effect of scaling on the variance (e.g., by using adequately high number of replicates).

The relationship between predicted and actual draft observed on the bigger scaled 

model shows a strong significant association (P<0.0001) with an estimated slope of 

1.0048. The slope of greater than one reflects the slight over-prediction on the high end of 

the scale. Figure 6-9 shows that some of the actual values observed above 332 N are 

predicted to be much higher. The correlation coefficient is 0.3504, which appears to be on 

the lower side but reasonable for experimental work given the inherent variability. The 

positive covariance of 38.916 also endorses the similarity in the predicted and actual draft 

observed for the scaled model.

Overall, the results present compelling evidence to accept our second hypothesis 

that a smaller scaled model can be used to predict draft on a full size or bigger model or 

machine. The residuals are low (even if slightly skewed) and the slope of 1.0048 is 

reasonably close to one. While the variance of the predicated draft is slightly higher 

because of the effect of scaling, the variance compares well at the scales in this work and 

further improvement in variance can be achieved with more replicates.

6.4.3. Predicting Penetration at a Larger Scale. Similar to the prediction of draft, 

a good scaled model should also be able to predict the longitudinal penetration to be 

expected on a bigger model. Similarly, it is expected that the expected value of the residual
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should be near zero and the distribution of residuals should be symmetric as well as a low 

standard deviation and the slope of the line of fit near one.

Table 6-7 and Figure 6-8 show the mean and standard deviation of residuals of

151.47 mm and 26.836 mm, respectively, are far from zero. The residuals also show 

significant skewness with skewness of 0.2675 and kurtosis of -0.9523. Given the scaling 

relationship (Table 3-2), the penetration of the 1:16 model is expected to be twice that of 

the 1:8 model. However, the penetration observed for the 1:8 model is not that high. Table 

6-8 shows the mean for predicted penetration is 288.128 mm, whereas mean of observed 

penetration is only 136.657 mm. Such high differences (reflected in the mean residual of

151.47 mm) show that the 1:16 model is unable to predict penetration while scaling up. 

While Figure 6-9 and Table 6-9 show there is strong association between the predicted and 

actual penetration, the slope estimate is 2.091 rather than the one that is expected for this 

part of work. The correlation and covariance of 0.1347 and 0.0027, respectively, also 

suggest a weaker relationship between the predicted and observed values than that 

observed between the draft forces.

These results motivate us to investigate further the reasons for this. It is important 

to note here that the draft prediction was quite accurate and the general relationships 

between input parameters and the penetration (Table 6-3) are similar for both models as 

they are for draft (Table 6-2). However, the penetration predictions are not as accurate as 

the draft predictions. This can be explained by breaking down the process of penetration. 

The bucket of the scaled model moves towards the pile of rocks at a specified speed and 

maximum motor power output, which generates the momentum that pushes the bucket into 

the muck pile. The resistance of the muck pile to this forward motion is the draft measured



110

by the model. The momentum generated by the machine keeps pushing the bucket into the 

muck pile until the resistance equals the force with which the model can push the bucket. 

At that point, the bucket stops, and the penetration is recorded as the penetration for that 

condition. It appears the muck pile for the 1:8 model showed a higher level of packing than 

that of the 1:16 model. Therefore, the 1:8 model generates significantly more resistance for 

much lower penetration than expected based on our scaling approach. For this work, rocks 

are scaled up linearly as per Buckingham Pi Theorem using the particle sizes as the 

Theorem has no specific scaling laws for the rocks. The discrepancy between the 

penetration (deflection) required to produce the equivalent draft endorse other work in the 

literature that shows that scaling particles for deflection and resistance is challenging 

(Coetzee, 2019; Feng et al., 2009). The proposed solutions in these papers are easier to 

apply in numerical models such as discrete element modeling, but for experimental 

analysis, including rocks with specific properties is either too expensive or not possible. 

However, these papers show that more fundamental similitude analysis including the 

governing equations is required to accurately scale particle sizes and properties to ensure 

adequate prediction of both penetration and draft, instead of the simple linear relationship 

suggested by the Buckingham Pi Theorem. The application of governing equations is 

challenging in this case as each rock particle in the muck pile is different in shape and 

surface properties. It is difficult to generate real muck piles with the same properties to 

match the results of using governing equations for similitude analysis. This should be the 

subject of future studies.

Overall, the results of this work show that the simple analysis using the 

Buckingham Pi Theorem is adequate for predicting draft but not adequate for predicting
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the penetration. Thus, our Hypothesis 1 is only valid in the case of draft but not so in the 

case of penetration, even though the scaled model is able to predict the overall relationships 

between the dynamic and operating parameters and the penetration (Hypothesis 2 -  Table 

6-3).

6.5. SUMMARY OF SECTION SIX

The work in this section evaluates the application of similitude theory to predict 

penetration of and draft forces on the bucket of rubber tire loaders. The work uses 1:16 and 

1:8 scale models of 18 t capacity load haul dump to evaluate the ability to predict the 

penetration and draft using a smaller scaled model under different operating conditions 

(speed, rake angle, and height above the floor) and different dynamic conditions (motor 

power output and speed) using a randomized full factorial design experiment. The work 

hypothesized that the observed relationships between the draft and longitudinal penetration 

and operating and dynamic conditions will hold true for a bigger model. Similarly, it 

hypothesized that small scaled model should be able to predict the draft on and penetration 

by the bucket of a bigger model with statistical significance.

The results show that the relationships between the draft and longitudinal 

penetration and operating and dynamic parameters for the small and bigger models are 

similar. The work finds motor power output and speed to affect draft and penetration in the 

same manner for both models. The work finds that the bucket’s rake angle and its height 

above the floor also affects penetration although those relationships differ for the two 

scaled models. Further work is required to explore the reasons for those differences. By 

comparing the predicted draft with the actual draft observed for the 1:8 scale model, the
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work finds that the 1:16 model can predict the draft. The mean difference between 

predicated and actual is 1.71 N with 95% confidence interval of [-3.51, 6.93] (compared to 

average draft of approximately 330 N). Thus, the work concludes that a scaled model, 

scaled using Buckingham Pi theorem, can predict draft on a full-size machine. However, 

the work finds that scaling muck pile particle sizes using the same Buckingham Pi Theorem 

does not lead to accurate prediction of penetration. Future work should use governing 

equations to scale muck pile particle sizes to ensure accurate penetration prediction or 

develop own scaling laws for scaling up rock particles. Even then, it will be challenging to 

use realistic muck pile properties with crushed rock as properties cannot be guaranteed in 

real experiments.

This work presents a complete methodology to help the mining and construction 

manufacturing industry develop a low-cost experimental setup that can yield data to be 

used for rubber tire loader design. Industry can utilize this technique to optimize new 

bucket designs without investing a lot of money in new stencils. This same technique can 

be applied to other ground engaging tools used in the mining, agriculture, and construction 

industries. This work will also assist manufacturers and researchers to generate meaningful 

data that will act as a baseline for future autonomous systems and controls.
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7. DISCRETE ELEMENT MODELING OF RTL BUCKET PENETRATION

7.1. BACKGROUND

The literature review (Section 2) shows many successful applications of discrete 

element modeling for studying different ground engaging tools and design (Abdelaziz, 

Zhao, & Grasselli, 2018b; Bahrami et al., 2020; Coetzee & Els, 2009a, 2009b; Coetzee, 

Els, & Dymond, 2010; Filla et al., 2014; Gelnar & Zegzulka, 2019a, 2019b; A. Ibrahmi, 

Bentaher, Hbaieb, et al., 2015; P. Li et al., 2020; X. Li, Kim, & Walton, 2019b; Murray & 

Chen, 2019; Narayanan & Bhojne, 2017; Peng, Doroodchi, & Moghtaderi, 2020b; Sadek 

& Chen, 2015; Shahrin et al., 2019; Shang, 2020b; Suchorzewski, Tejchman, & Nitka, 

2018b). DEM models help researchers study and analyze different aspects of operations by 

running a computer simulation of scenarios happening in the real world. The correct 

application of DEM can help save a lot of time and resources needed to run experiments 

for analysis purposes.

The work presented in this section achieves Objective 3 (apply DEM to scale 

models of rubber tire loader buckets to understand the effect of bucket geometry, 

orientations, and operating conditions on resistive forces (draft) and penetration) and 4 

(evaluate the effectiveness of using discrete element models and similitude theory to 

predict resistive forces (draft) and penetration) of this PhD research. In order to accomplish 

these objectives, the work needs to first build a valid DEM model of the RTL bucket 

penetration so it can use the model to study the effect of bucket geometry, orientations, and 

operating conditions on draft and penetration.
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This work uses Abaqus® for DEM analysis. The DEM model’s parts are built using 

SolidWorks® and imported into Abaqus to be assigned their properties. The imported parts 

are used to build an assembly. Distinct steps of the operation are defined. The DEM 

analysis in this work fixes the displacement in order to predict the forces (draft). To mimic 

the exact experimental setup the author added two steps in the model. The initial step 

converted the rock pile into the rocks as in the case of the physical experiments, the second 

step moved the bucket into the muck pile using dynamic displacement profiles matching 

that of the particular physical experiment. The author used profile of the draft on the bucket 

during experiment as the criterion for calibration and validation.

7.2. DISCRETE ELEMENT MODELING

The design of the discrete element model can be divided into three distinct steps. 

The first step is the construction of parts as in the real-life scenarios, the second step is 

building a running DEM model, and the last step is post-processing the results of the model. 

The parts were built in SolidWorks®. Three parts were built with the major part being the 

bucket that replicated a real-life scaled model of 18 t LHD. The other two parts built in 

SolidWorks® were the container used to hold the rocks, and a block that was discretized 

to become discrete element particles with properties similar to the muck pile particles tested 

for this work. Figure 7-1 shows the bucket part built using SolidWorks® used in the base 

case experiments this work.

Once all the parts were successfully built, these parts were imported into Abaqus® 

so that the researcher can assign properties to them in building a standard explicit model.
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After assigning the material properties to each part, the assembly was built in the Abaqus 

using the assembly function.

Figure 7-1. Bucket part for base case discrete element model assembly

The assembly built using Abaqus® is shown as Figures 7-2, 7-3, and 7-4. Table 7

1 shows the properties assigned to the parts. It is pertinent to mention here that, as buckets 

in the physical experiments were made of PLA plastic, PLA plastic properties were used 

in the model for bucket parameters.

Figure 7-2. Assembly in Abaqus® top view
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Figure 7-3. Assembly in Abaqus side view

Figure 7-4. Assembly in Abaqus in front view
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Table 7-1. Abaqus® DEM model input properties

Input parameter Value
Particle sizes 10 mm

Particles
Density 2.58 t/m3
Young’s modulus 80 GPa
Poisson ratio 0.3

Bucket -  PLA Plastic
Density 1.24 t/m3
Young’s modulus 45 GPa
Poisson ratio 0.33

Box casing
Density 3 t/m3
Young’s modulus 100 GPa
Poisson ratio 0.3
Contact model Hertz
Contact model input

Friction coefficient between particles 0.55
Friction coefficient between particles and bucket 0.55
Friction coefficient between particles and floor 0.70

Other model inputs
Alpha (Damping) 7
Particle settling time 6.3 second

After making the assembly, the model was assigned distinct steps for processing. 

As in the real-life expeirments, rocks are usually allowed to settle first before the bucket 

interacts with them. The author mimicked this by dividing the simulation run into two 

steps. The first step discretized the block and converted it into the particle sizes of 10mm 

with properties as presented in Table 7-1. This work relies on the literature to estimate the 

properties of the bucket, particles, and wooden box (to enclose particles). A lot of DEM- 

related work has used ranges of Poisson's ratio, elastic modulus, and density for materials 

used in the DEM model for this work. The material properties were iterated within the 

range available in the literature (Abdelaziz et al., 2018b; Aruan Efendy & Pickering, 2019;
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Blais et al., 2019; Ferreira, Amatte, Dutra, & Burger, 2017; Gercek, 2007; Gere & Czigany, 

2020; Krause, Liedmann, Wiese, Wirtz, & Scherer, 2015; A. Kumar, Jayakumar, Raj, & 

Ray, 2003; Obermayr et al., 2014; Qin et al., 2019; Ucgul et al., 2018; Upadhyaya et al., 

2002; Ur Rehman et al., 2020). The finalized version of material properties are listed in 

Table 7-2 for all material properties used in the DEM model. After numerous iterations, it 

was observed that after 6.3 seconds of settling time for the rocks there is no significant 

difference in the model’s estimate of draft, therefore, the time for the first step of the 

simulation was kept at 6.3 seconds. The second step of the simulation was the replication 

of the physical experiments by matching speed, distance, and time to the displacement 

profile of the bucket. The time of this step varied depending on the speed at which the 

bucket was moving towards the DEM particles. However, for model calibration, this work 

used a speed of 400 mm/s and took 1 second to complete the initial penetration as in the 

case of the corresponding physical experiment. Thus, the second timestep was for 1 second, 

making the total time of simulation 7.3 seconds.

The bucket motion was fixed in 5 degrees of freedom to account for movement in 

only one direction (x-axis, which is the direction of motion). Bucket in the simulation was 

initiated for motion from a distance of 100 mm from pile of rocks as in the physical 

experiments matching the speed profile of the experimental bucket. The Hertz contact 

model is used for the interaction between particles due to the assumption that the indenter 

(bucket in our case) is non-deformable (Hertz, 1881). The bucket is modeled as a rigid 

element for this analysis to focus on the effect of various testing parameters on the draft 

incurred by the bucket. The draft is calculated using the CNORM and reaction force 

functions of Abaqus®. The model comprises of 72,967 nodes and 57,765 elements. It took
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72 to 120 hours to run this simulation on a Dell Precision machine with a Windows 10 

operating system and Intel (R) Xeon (R) CPU E5-2609 v2 @2.50 GHz with 128 GB RAM.

Figure 7-5 shows the simulation model ready for running, Figure 7-6 shows the 

simulation at the end of the first step, and Figure 7-7 shows the simulation at the end of the 

simulation. Figure 7-8 shows a side by side comparison of both simulation and 

experimental models. The creation and settling of particles took 86% of simulation time, 

which makes the simulation highly inefficient, with respect to computational time, and this 

has to be repeated for every simulation.

Figure 7-5. Front view of model in Abaqus® before start of simulation
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Figure 7-6. Model after the end of first simulation step (particle settle) in Abaqus®

Figure 7-7. Model after the end of second simulation step (penetration) in Abaqus®

Figure 7-8. Side by side comparison of simulation and experimentation
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7.3. MODEL CALIBRATION AND VALIDATION

The model was calibrated using the draft observed during the experimental setup 

running at 400 mm/s, 50% tractive effort, and at a rake angle of 5° and peak draft observed 

during the simulation. The calibration process lasted for 4 months in which time the author 

iteratively changed the damping and material properties within the ranges set by the 

literature (Abdelaziz et al., 2018b; Aruan Efendy & Pickering, 2019; Blais et al., 2019; 

Ferreira et al., 2017; Gercek, 2007; Gere & Czigany, 2020; Krause et al., 2015; A. Kumar 

et al., 2003; Obermayr et al., 2014; Qin et al., 2019; Ucgul et al., 2018; Upadhyaya et al., 

2002; Ur Rehman et al., 2020). Once the model started showing a good match with the 

experimental results (Figure 7-9), it was declared calibrated. The calibrated model was then 

used in validation by running at various input parameters and matching the draft with the 

experimental data. Five different operating parameters (speed, tractive effort, and rake 

angle) were modified to test the simulation model for validation (Table 7-2).

Table 7-2. Model runs for calibration and validation of DEM model

Model runs Speed mm/s Motor Power Output (Amps) Rake angle (Degrees)
Calibration 400 10 5°
Validation 400 10 7.5°
Validation 400 20 5°
Validation 400 20 7.5°
Validation 100 20 5°
Validation 100 20 7.5°

The results of calibration and validation between simulation and experiments are

presented from Figure 7-9 to Figure 7-14.
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Figure 7-9. Calibrated DEM model results at 400 mm/s, 10 Amps, 5° rake angle

Figure 7-10. DEM model validation results: 400 mm/s, 10 Amps, 7.5° rake angle
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Figure 7-11. DEM model validation results: 400 mm/s, 20 Amps, 5° rake angle

Figure 7-12. DEM model validation results: 400 mm/s, 10 Amps, 7.5° rake angle
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Figure 7-13. DEM model validation results: 100 mm/s, 20 Amps, 5° rake angle

Figure 7-14. DEM model validation results: 100 mm/s, 20 Amps, 7.5° rake angle

There are differences in the sampling rate of the physical experiments and the 

simulation experiments. In the physical experiments, the data was collected every 0.02
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seconds, whereas the time step in the simulation was 0.05 seconds. Similarly, the particles 

in the simulations were spheres, whereas in the rocks in the physical experiments have 

internal interlocking that is not observed in the case of DEM simulation with spherical 

particles. Due to these differences, the model shows higher noise than the experimental 

setup. These are known limitations of computer simulations (Filla et al., 2014; Obermayr 

et al., 2014; Ucgul et al., 2015b). In most DEM simulation, the DEM simulation has more 

noise than the physical experiments (Ju, Wang, Su, Zhang, & Ren, 2019; Obermayr et al., 

2011). Nonetheless, the relationship between experimental and simulation data shows a 

good match and this work concludes that the DEM models are valid. The valid DEM model 

is used for doing further analysis.

The validated DEM models are used to predict forces on a bigger model (scale 

factor =2).

7.4. USING DEM SCALED MODELS TO PREDICT AT LARGER SCALES

Full-scale DEM simulation of heavy machinery is computationally expensive, thus 

approximations, indirect calibrations, or even results without verification have been 

presented in the literature (Ali & Frimpong, 2018b; Frimpong, Hu, & Awuah-Offei, 2005b; 

Gbadam, 2017). Even the calibration and validation of the DEM models is an uphill task 

given the computational expense (Obermayr et al., 2014). These limitations are even more 

pronounced for very large machines such as RTL. The challenge of experimenting on large 

engineering systems has already been addressed by using similitude techniques (Antoniou 

et al., 2020; Tekeste et al., 2020a; Ur Rehman & Awuah-Offei, 2020c). Thus, this work set 

out to use a scaled DEM model to predict forces at a larger scale (scale factor of 2) to
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evaluate the effectiveness of using discrete element models and similitude theory to predict 

resistive forces (draft) (Objective 4 of the dissertation).

To achieve the objective of this section, a set of simulations were run using the 

validated DEM models at various speeds, maximum motor power output, and rake angle 

as shown in Table 7-3. The peak draft observed on the DEM models for different 

parameters was used to predict the peak draft on the bigger scaled model. The peak draft 

observed on the bigger scaled model is compared the peak draft predicted by the DEM 

model. The results and discussion section of this section explain the analysis in detail. 

Section 3 of this dissertation discusses the construction of the physical model that is twice 

the size of the physical model used to validate scaled DEM model. The discussion is not 

repeated to avoid redundancy.

Table 7-3. Experiments for DEM and bigger scaled model

Rake Angle 
(Degrees)

Experimenting 
Speed (mm/s)

5° 60
70
80

7.5° 60
70
80

7.5. RESULTS AND DISCUSSIONS

The peak draft for the larger scale experiment was predicted using similitude 

principles and laws for a bigger scaled model using the simulation results of the 1:16 model. 

The results of the draft for simulation and prediction of the draft to expect on a bigger
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scaled model are presented in Table 7-5. Figure 7-15 shows the comparison of the predicted 

and actual draft for the 1:8 scaled model based on the DEM simulation results. Table 7-4 

shows the relationship between actual and predicted penetration on the 1:8 scaled model 

based on validated DEM models. The estimated slope of the actual and predicted draft is 

0.9708 with a strong significant association (P<0.0001). The correlation coefficient is 

0.5524 while covariance is 0.0044.

Table 7-4. Prediction and actual draft for a bigger scaled model

Rake
Angle

(Degrees)

Experimenting 
Speed (mm/s)

Peak Draft 
DEM 

Model (N)

Predicted 
Peak Draft 

(N)

Actual 
Peak Draft 

(N)

Discrepancy
(N)

5° 60 39 156 318 162
70 83 332 332 0
80 90 360 312 48

7.5° 60 80 320 335 15
70 83 332 336 4
80 98 392 309 83

Average 78.83 315.33 323.67 52

Figure 7-15. Predicted and observed draft for a bigger scaled model
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Table 7-5. Relationship between predicted and actual draft

Parameter Estimated
slope

Wald Chi 
Square

Prob > Chi 
Square

Correlation Covariance

Predicted 0.9708 215.8223 <0.0001 0.5524 0.0044

The statistical analysis suggests a strong association between the predicted draft 

based on the validated DEM model and the actual draft observed on the bigger scaled 

model. A good DEM model should be able to predict the draft to be expected on the bigger 

scaled model, and the DEM model presented in this work shows it can do this. In an ideal 

case, the estimated slope value should be 1, however 0.9708 value shows slightly under 

prediction as compared to the observed value in actual. The predicted draft for 5 degree 

rake angle and 60 mm/s speed (Run 1) is much lower prediction than what was observed 

from the physical experiment. Similarly, the draft for 7.5 degree rake angle at 80 mm/s 

speed (Run 6) shows higher predicted draft based on DEM results than the draft observed 

on the bigger scaled models. These two major differences explain the low correlation 

coefficient of 0.5524. The covariance value of 0.0044 shows very minimal differences in 

predicted and observed results for the draft, however correlation coefficient is a better term 

for analyzing the relationships.

The results appear to follow a general trend where the DEM model under predicts 

the peak draft at lower speeds but over predicts at higher speeds. At 60 mm/s, the peak 

draft predicted is lower than the observed peak draft, while, at 70 mm/s, the predicted and 

observed peak drafts are almost similar with a non-significant difference. At 80 mm/s, the 

predicted peak draft is higher than the observed peak draft. The DEM model appears to be 

much more sensitive to loading rate than the physical experiments. This is possibly because
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of differences in muck pile properties. The simulation uses spherical particles while the 

actual experiment uses rocks with complex shapes that results in the interlocking of rocks. 

Thus, simulated muck pile is much more sensitive to the rate of loading than the actual 

muck pile. In particular, faster loading in the DEM simulation results in much more spheres 

interacting with the bucket, which leads to more forces incident on the bucket.

The difference in the predicted and actual draft does not appear to out of the context 

due to inherent variability of the experimental setup and limitations of numerical 

simulation. The mean discrepancy of 52 N is 16% of the average observed peak draft (the 

average is only 9%, without Run 1, which is the outlier). The prediction results do appear 

to be reasonable from the DEM perspective.

Overall, the results present compelling evidence that a valid scaled DEM model can 

be used to predict draft on a bigger scaled model. The slope of 0.9708 and correlation 

coefficient of 0.5524 provide evidence to accept the hypothesis that a valid scaled DEM 

model should be able to predict draft on a bigger scaled model.

The valid DEM models show good results when it comes to predicting draft on 

bigger scaled model, therefore, they can be used for different designs and analyses for 

improved RTL buckets.

7.6. SUMMARY OF SECTION SEVEN

The work in this section applies DEM to scale models of rubber tire loader buckets 

to understand the effect of bucket geometry, orientations, and operating conditions on 

resistive forces (draft) and penetration) and evaluates the effectiveness of using discrete 

element models and similitude theory to predict draft and penetration. The first part of the
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work successfully builds a valid DEM model of a 1:16 18 t capacity load haul dump. The 

second part uses the 1:16 scaled DEM model to run simulations at three different speeds 

(60 mm/s, 70 mm/s, and 80 mm/s), two different rake angle (5° and 7.5°), and at maximum 

power output to evaluate the ability to predict the peak draft on a 1:8 scaled model using a 

valid DEM model . The work hypothesized that the simulated peak draft on the DEM model 

should be able to predict draft on the bigger scaled model with statistical significance.

The results show that the predicted peak draft based on DEM results are reasonable 

when compared to the peak draft observed during the physical experiments on bigger 

scaled models. The work finds that the slope of the regression line between the predicted 

and actual values is 0.9708 and the correlation coefficient is 0.5524. The work also finds 

that there is an under-prediction at lower speed and over-prediction at a higher speed of 

operation indicating that the DEM model is much more sensitive to the loading rate.

This work presents a complete methodology to help the mining and construction 

original equipment manufacturers (OEMs) develop valid DEM models that can help 

predict draft on bigger models that can yield data to be used for rubber tire loader design 

and analysis. The industry can utilize this technique to optimize new bucket designs 

without investing a lot of money in new stencils. This same technique can be applied to 

other ground-engaging tools used in the mining, agriculture, and construction industries. 

This work will also assist OEMs and researchers to test different prototypes for analysis 

and design, thus building better and more efficient buckets and other components.
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8. EVALUATING EFFECT OF CHAMFER CUT ANGLES ON SEMI-SPADE 
CUTTING BLADES FOR RTL BUCKETS

8.1. BACKGROUND

Section 4 of this work evaluated different geometries of RTL buckets on the smaller 

scaled model and concluded that the cutting blade profile is a key geometric feature that 

significantly affects RTL performance (penetration). The literature on the effect of cutting 

tool geometry for agricultural tools (He et al., 2016; Manuwa, 2009; Manuwa, 2013; 

Solhjou et al., 2013) and experimental evidence from detailed testing on RTL bucket 

geometry motivates this author to test the effet of cutting blade profiles on RTL 

performance. The work in Section 4 shows that cutting blade profile is the most significant 

of the bucket geometric features examined (which included buckets’ inner floor profile, 

cutting blade thickness, amd cutting blade profile) and, of the cutting blade profiles 

examined, the most efficient (with respect to penetration) was the semi-spade profile. The 

work in this section attempted to further refine this finding by examining different 

geometries of semi-spade cutting blades.

The work presented in this section builds on to the conclusions of Section 4 and 

evaluates five different prototypes of RTL buckets, which are generated by modifying the 

chamfer cut angle the cutting blades of the buckets. Figure 8-1 explains chamfer cut angle, 

as defined in this dissertation. The valid DEM model presented in Section 7 is used to 

analyze the prototypes in this section. In addition to examining different chamfer angles, 

the work in this section also examines more complete bucket trajectories beyond just the 

initial penetration. This allows for more realistic assessment of the bucket performance.
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Figure 8-1. Chamfer cut angle definition for a semi-spade cutting blade 

8.2. METHODOLOGY

To achieve the objective of this section, a set of simulations were run using the 

validated DEM models and the new bucket prototypes. The DEM models were built in 

Abaqus® and the prototype buckets (Figure 8-2) were designed using SolidWorks®. The 

chamfer angles of the cutting blades varied from 0 to 60 degrees in steps of 15 degrees (the 

0° chamfer angle bucket is equivalent to a straight cutting profile). To analyze a full digging 

trajector, the DEM models were run for complete digging trajectories i.e. initial penetration 

and rotation. Figure 8-3 shows the bucket trajectory used in these simulations. The bucket 

trajectory illustrated with reference to the tip of bucket’s cutting blade. All the bucket 

dimensions and properties along with material parameters are the same as those of the valid 

DEM models presented in Section 7. For comparative analysis, the magnitude of forces on 

the bucket in all the directions are taken as simulation output.
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Figure 8-2. Prototype designs for evaluation: A) 0 degree chamfer cut; B) 15 degree 
chamfer cut; C) 30 degree chamfer cut; D) 45 degree chamfer cut; and E) 60 degree

chamfer cut

Figure 8-3. Bucket tip trajectory
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The simulations were run according to the displacement profile of 400 mm/s and 

100% motor power output. The rake angle was kept at 0° and height above the floor was 

kept at 10 mm. Some of the details pertaining to DEM modeling and simulation is not 

repeated to avoid redundancy. The simulations were run continuously from the start to end, 

however the timeline as shows in Figure 8-4 depicts the timesteps for each phase (particles 

settling, initial penetration, and rotation). The work evaluates the performance of the 

simulated buckets based on peak forces and energy consumption during the penetration 

phase of the simulation.
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Figure 8-4. Timeline for simulation steps

8.3. RESULTS AND DISCUSSIONS

The combined results of the penetration and rotation phases of the simulations are 

presented in Figure 8-5. The combined results are further divided into the penetration and 

rotation phases in Figures 8-6 and 8-7, respectively. The reader has to note that these are
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scaled model based tests and a difference of 1 N at scaled model amounts to a difference 

of 256 N on the actual machine. Considering the effect of scaling on the differences in the 

peak forces the results show a significant difference between the tested profiles for the 

initial penetration part of the excavation. The results show that resistive forces during the 

rotation phase of the simulations do not vary as much (apart from a peak force on the bucket 

with 30° chamfer cut angle) as the forces during the penetration phase. This is consistent 

with the other work in literature that suggests that resistance forces and performance are 

much more dependent on the penetration phase than the rotation phase of RTL digging 

(Nezami et al., 2007).

Figure 8-5. Combined simulation results for resistive forces
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Figure 8-6. Simulation results (forces) of the penetration phase of the simulation

Figure 8-7. Simulation results (forces) for the rotation phase of the simulation
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8.3.1. Evaluating Buckets Based on Peak Forces. Table 8-1 shows the peak 

forces that are expected on the buckets at full scale. Using the force estimates at full scale 

helps us understand the significant differences between the observed forces on the 

prototypes. Bucket C (30° chamfer cut angle) has the lowest peak resistive force of all the 

tested prototypes. Bucket A (the straight cutting profile) has the highest peak force of all 

the buckets, which confirms the results from Section 4. This shows that any design of semi

spade cutting profile results in lower peak resistive forces than a straight edge cutting 

profile. As explained in Section 4, this is due to accumulation of forces towards the tip 

making it easier to fail the material as compared to the tools with flat edges that have more 

evenly distributed stresses, similar to the observations in the literature (Elbashir et al., 

2014; Solhjou et al., 2013).

For the buckets with semi-spade cutting blade profiles, the results show that forces 

decrease as the chamfer cut angle increased from 15 to 30 degrees and then started 

increasing again from 45 to 60 degrees. This shows that the chamfer cut angle does affect 

the overall forces on the buckets. Bucket C, with 30° chamfer cut angle, performs better 

than all the other tested buckets. However, there might be a better chamfer cut angle 

between 15 and 45 degrees that might even perform better than the 30 degree angle. 

Nonetheless, based on the tested prototypes, Bucket C with 30° chamfer cut angle 

outperforms all the tested buckets.

The results show that, while semi-spade cutting blades are superior to straight 

cutting blades, the resistive forces on buckets with semi-spade cutting blades differ 

significantly depending on the chamfer cut angle of the cutting blade. This knowledge can 

help engineers design better buckets and managers make better decisions on bucket
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purchases. The knowledge that semi-spade cutting blades outperform straight cutting 

blades (as demonstrated in Section 4) can help engineers modify their current buckets and 

improve the machinery life to avoid excessive overloading.

Table 8-1. Expected forces on actual machine and comparison of forces on each
prototype

Prototype Name 
(Chamfer Cut Angle)

Peak forces 
(N)

Expected peak 
forces on actual 

machine (N)
Bucket A 

(0°)
160 40,960

Bucket B 
(15°)

130 33,280

Bucket C 
(30°)

90 23,040

Bucket D 
(45°)

113 28,928

Bucket E 
(60°)

123 31,488

Average 123.2 34,539.2

8.3.2. Evaluating Buckets Based on Work Done during Penetration Phase.

This analysis used Equation (1) to estimate the power at each time step in the simulation. 

Figure 8-8 shows the results of the power estimates for all the simulations. The analysis 

estimated work done (energy consumed) from the power estimates by numerically 

estimating the area under each of the curves.

Power = Force x  ve lo c ity  (1)

Figure 8-9 shows the work done (energy consumed) during the penetration phase 

of the simulation using the tested prototypes for this work. The energy consumed during 

the penetration phase is a useful criterion (in addition to the peak forces) to understand the
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overall performance of a particular prototype. This analysis will help decision makers 

evaluate how a specific design might help reduce overall energy requirements for RTL 

penetration.

Figure 8-8. Instantaneous Power (watt) for each prototype tested

The findings of this analysis (Figure 8-9) concur with the findings of the peak force 

evaluation. The bucket with 30° chamfer cut angle requires the least energy, of all the tested 

prototypes, to do move through the same trajectory. This is also consistent the findings of 

Section 4 that flatter cutting blades are prone to higher resistive forces (Elbashir et al., 

2014; Solhjou et al., 2013).

The result show that semi spade cutting blades are better than the straight cutting 

blades, but not all semi spade cutting blades are efficient. For instance, the 60° chamfer cut 

angle and flat cutting blade (the 0° degree chamfer cut angle) consumed similar amount of 

energy to carry out a similar task.
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Another finding from the work was to find the comparison of instantaneous power 

at each time step and availability of maximum power for an actual machine. The maximum 

power for the equivalent scaled model is 13 watt and the results of simulation do show a 

peak for each tested prototype crossing the allowable limit. Even though major portion of 

simulation stays below the maximum power available, the peaks do suggest the actual 

penetration will be lesser than the penetration these simulations were tested. This points to 

another limitation associated with simulation based studies wherein, the actual machine’s 

limitations are compromised while doing analysis. However, for this work, none of the 

prototype was actually ran on a scaled model and DEM model was used to analyze different 

designs. The power consumption peaks also suggest that Bucket C performs the best among 

the all tested bucket designs. The usage of instantaneous power and total energy 

consumption along with peak force during a digging operation can help designers come up 

with a better designs by evaluating different prototypes.

8

Bucket A Bucket B Bucket C Bucket D Bucket E
Tested prototypes

Figure 8-9. Comparisons of energy consumed using each prototype
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8.4. SUMMARY OF SECTION EIGHT

The work in this section used valid DEM models to evaluate five different RTL 

bucket prototypes. These prototypes differ in the chamfer cut angles for semi-spade buckets 

(the 0 degree angle was essentially a flat cutting blade bucket) and are evaluated based on 

peak resistive forces (the magnitude of forces in all directions on the RTL bucket) and 

energy consumed during the penetration phase. Each simulation was run for both 

penetration and rotation phases of the loading process. All simulations were run at 400 

mm/s, 100% motor power output, 10 mm height above the floor and 0° rake angle.

The results show that the peak forces and energy consumed during the penetration 

phase differ significantly for tested bucket prototypes. Analyzing the expected forces on 

an actual machine further shows how significantly different the resistive forces are on the 

buckets. Based on the tested prototypes Bucket C (30° chamfer cut angle) performs the 

best with the lowest peak forces. Bucket C had 78% lower peak force than what was 

observed on Bucket A (the bucket with the straight cutting blade) and 26% lower than 

Bucket D (second best in the tested group), with a chamfer cut angle of 60°. The work finds 

that the forces observed during the rotation part of the simulation are lower than the 

observed forces during penetration.

The difference in energy consumed during the penetration phase for the different 

bucket prototypes also suggests that Bucket C performs the best followed by Bucket D and 

bucket B. This trend follows the conclusions made from the peak force analysis. The 

selection of appropriate design of bucket will help industry achieve production targets with 

less strain on the RTL machinery. Higher resistive forces affect the structural components 

of the machinery, thus increasing down time, making operation less efficient. Lower
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resistive forces also mean lower power draw from the machine leading to more efficient 

loading.

This work improves our understanding of the effect of cutting blade chamfer cut 

angle on resistive forces and energy consumptions. First, the analysis in this section 

confirms that semi-spade cutting blades perform better than straight cutting blades. Second, 

the analysis shows that the chamfer cut angle influences the peak resistive forces and the 

energy consumed during penetration. Third, of the tested chamfer cut angles, the 30° 

cutting blade chamfer cut angle performs the best though it is possible other angles between 

15° and 45° could perform better. The industry can utilize this information and knowledge 

to optimize new bucket designs without investing a lot of money in new stencils. This same 

technique can be applied to other ground-engaging tools used in the mining, agriculture,

and construction industries.
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9. CONCLUSIONS, RECOMMENDATIONS & FUTURE WORK

9.1. SUMMARY

An inherent limitation of large size machines like rubber tire loaders (RTLs) is the 

lack of computation and financial resources to do intensive analysis for analyzing different 

operating and geometric parameters. Usually, researchers and engineers draw inferences 

from other ground engaging tools, especially agricultural tools, and apply them to different 

mining excavation tools. However, the complex design, operating mechanism, and size of 

mining buckets (front end loader, load haul dump, shovels, and excavators, etc.) makes the 

results of this approach limited in its usefulness and not helpful to industry in improving 

their operations and selecting the right type of buckets for their operations.

Understanding the effect of operating parameters on performance (penetration and 

draft) can help mine managers and engineers train operators based on rigorous scientific 

evidence and improve the overall operation of the mining industry. Similarly, enhanced 

understanding of the effect of bucket geometry and muck pile particle sizes can help 

industry select the optimal bucket design for the operation and can help designers design 

better buckets.

Other researchers have successfully applied similitude theory to solve other 

engineering and scientific problems where full scale experiments are too expensive or 

impossible. However, it is important to understand the relationships between the scaled 

models and the actual or a bigger scaled model when using particular similitude methods 

to strengthen the case for using these models. Physical experimentation takes a lot of time 

and resources even at a smaller scale and that hinderance can be overcome by building
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valid scaled DEM models that can predict draft on a bigger scaled model. Combining 

similitude theory with DEM modeling is complimentary as DEM simulation is 

computationally expensive at full scale for large mining equipment.

The goal of this PhD research work was to apply similitude theory and discrete 

element modeling (DEM) to study the effect of different digging parameters on the 

penetration and the draft on the buckets of rubber tire loaders. To achieve the broader goal 

of this PhD, the specific objectives of this work were:

1. Test the hypothesis that the geometry of a rubber tire loader bucket and operating 

conditions significantly affects the resistive force and penetration.

2. Test the hypothesis that different geometry orientations and operating conditions 

of a rubber tire loader bucket significantly affects the resistive force and 

penetration.

3. Apply DEM to scaled models of rubber tire loader buckets to understand the effect 

of bucket geometry, orientations, and operating conditions on resistive forces and 

penetration.

4. Evaluate the effectiveness of using discrete element models and similitude theory 

to predict resistive forces and penetration.

9.2. CONCLUSIONS

The extensive work done in pursuit of the objectives of this work resulted in 

several conclusions.

1. With respect to the first and second objectives, the research shows that
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a. Geometry, muckpile particle sizes, speed, and motor power output show 

statistically significant correlation to longitudinal penetration and draft.

b. Speed and motor power output are positively correlated to penetration 

and draft.

c. Muckpile particle size is positively correlated to penetration and 

negatively correlated to draft.

d. Buckets with different cutting blade profiles (straight, semi-spade or 

spade nose) show a significantly different penetration; however, no such 

relationship was observed for the draft. The semi-spade nose resulted in 

the most penetration followed by spade nose and straight blade.

e. Bucket floor profile (flat or wedged inner floor profile) has no 

significant effect in penetration or draft.

f. Blade thickness has no significant effect on observed draft and 

penetration.

g. Increases in speed and motor power output have a greater effect in piles 

with smaller particle sizes than in those with larger particle sizes.

h. Speed and motor power output are much more important factors in 

explaining the variations in RTL bucket’s penetration and draft.

i. Height above the floor is positively correlated with penetration but no 

such association exists for draft.

j. Rake angle is negatively correlated with penetration but no such

association with draft was observed.
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k. The combined effect of speed and motor power output shows negative 

correlation with draft and penetration.

l. The particle sizes of the muck pile have a mitigating effect on the 

influence of tested variables.

m. Similitude theory, using Buckingham Pi Theorem, can be successfully 

applied for evaluation of RTL draft. This result is confirmed by the 

observation that statistical relationships observed for the smaller scaled 

models hold true for bigger scaled models as well.

n. The use of Buckingham Pi Theorem to scale particle sizes appear not to 

be valid for scaling penetration. The smaller scaled model is not able to 

predict penetration on bigger scaled model.

2. With respect to objective 3 and 4.

a. The work has demonstrated that we can build valid DEM models to 

predict peak draft for a bigger scaled model. The work finds that the 

slope of the regression line between the predicted and actual peak draft 

is 0.9708 and the correlation coefficient is 0.5524. The work also finds 

that there is under-prediction at lower speed and over-prediction at 

higher operating speeds indicating that the DEM model is much more 

sensitive to the loading rate.

b. Using the valid DEM models, the work shows that the chamfer angle of 

semi-spade bucket cutting blades significantly affects the draft on the 

buckets. Of the tested prototypes, the 30° chamfer cut angle performs 

the best with the lowest peak resistive forces, which was 78% lower than



147

the peak force observed on a similar bucket with a straight cutting edge 

and 26% lower than the peak resistive force on the bucket with 60° 

chamfer cut angle (second best in the tested group). Similarly, the 30° 

chamfer cut angle consumes the least amount of energy, of all the tested 

prototypes, to carry out the same work.

c. The work finds that the forces observed during the rotation part of the 

simulation are lower than the observed forces during penetration 

confirming that the penetration phase of RTL digging is much more 

important than the rotation phase with respect to energy consumption.

9.3. CONTRIBUTION OF THE RESEARCH

1. This work is a pioneering effort to enhance the understanding of the effect of 

different digging parameters on the penetration of and draft on RTL buckets. 

The work is also unique in its application of similitude theory and discrete 

element modeling to overcome the cost of experimenting with such large 

equipment and the computational cost of numerical modeling.

2. Contributions to the literature

This work is first attempt to provide research on the association between bucket 

geometry, muckpile particle sizes, speed, motor power output, rake angle, and 

height above the tool, on one hand, and penetration and draft on the other. The 

uniqueness of this work is that these parameters are not tested independently 

but together so all effects can be evaluated relative to each other. This work will 

be helpful for researchers who would like to extend and analyze the
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understanding of RTL bucket interactions with different types of soils. 

Specifically, the work shows that:

a. Speed and motor power output are more important parameters in 

explaining bucket penetration and draft than bucket geometry, muck 

pile particle sizes, rake angle, and height above the tool.

b. Bucket rake angle and height above the floor are more important in 

explaining the variation in RTL bucket penetration than draft.

c. When accounting for speed and motor output, bucket floor profiles 

and blade thickness have no significant effect on penetration or 

draft.

d. Spade and semi-spade bucket cutting profiles are more efficient than 

straight cutting edge in increasing penetration and reducing draft. 

Further, the work shows that the chamfer cut angle for semi-spade 

cutting blades significantly affect draft. For the chamfer cut angles 

tested in this work, 30° chamfer cut angle is optimal relative to peak 

resistive force and energy consumption.

e. Similitude theory, using Buckingham Pi theorem, can be 

successfully applied for RTL applications to predict resistive forces.

f. These results have been validated with experiments on different size 

RTL simulators. The draft values observed on smaller scaled models

correlate to the draft values on bigger scaled models.



149

g. On the contrary, the Buckingham Pi theorem does not perform well 

when predicting bucket penetration. The work hypothesizes this is 

because it poorly scales muck pile particles sizes.

h. Valid scaled DEM models can successfully predict draft on the 

bigger scaled models. This is a significant contribution because it 

allows researchers to significantly reduce computational costs in 

using DEM to study mining excavation problems.

i. DEM models are more sensitive to the loading rate than the physical 

experiments. This is supported by the fact that DEM slightly under

predicts draft during penetration at lower speeds and over-predicts 

at higher speeds.

3. Contributions to practice

This dissertation provides new knowledge for mine managers and engineers, 

equipment design engineers, and RTL operators to improve their operations, 

training, design methodology, and analysis. Specific contributions to practice 

are:

a. RTL operators should be trained to maximize the gains from the 

combination of speed and motor power output. The work shows that 

speed and motor power output interact to minimize draft and 

maximize penetration. This is a novel observation that has been 

demonstrated for the first time in this work.

b. Approaching a muck pile at higher elevation above the ground and 

slightly higher rake angle (greater than 0° but lesser than 5°) can
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provide significant improvement in the penetration of RTL bucket, 

thus better performance.

c. Operators need not increase speed or motor power output as much 

in muckpiles with smaller particle sizes to achieve similar 

penetration. The work shows that increases in speed and motor 

power output have a greater effect in piles with smaller particle sizes 

than in those with larger particle sizes.

d. There is no need for mine managers and engineers to purchase 

buckets based on the bucket floor profile or cutting edge thickness 

as these two do not affect bucket performance in any way based on 

this work. However, the cutting edge profile significantly affects 

draft and penetration. This work shows that semi-spade cutting edge 

profiles outperform spade and straight blades.

e. The selection of a better bucket design by mine managers, engineers, 

and mine operations can will result in more efficient mining 

operations, less down time, higher performance, and improved 

overall operational efficiency.

f. OEMs can develop scaled models such as those used in this 

dissertation and experimental labs for experimental analysis of 

different designs. This work shows that scaled models can 

successfully shed light on excavation problems.
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9.4. RECOMMENDATIONS FOR FUTURE WORK

The following are recommendations for future work that can extend the body of 

knowledge from this research:

1. Future research should evaluating the combined effect of speed and motor 

power output to find the optimal speed and motor output for maximizing RTL 

performance. This work showed that the combined effect of speed and motor 

power output is negatively correlated to penetration and draft although each 

factor, independently, is positively correlated to draft and penetration. This 

poses a risk that simultaneously increasing speed and motor output (tractive 

effort) could actually lead to decreased penetration. Further work is required to 

understand the nature of this interaction and determine optimal speed and motor 

output to maximize penetration and minimize draft.

2. More work is required to developing specific scaling laws for the different sized 

rocks to ensure that scaled models can adequately predict penetration (just as 

they predicted draft in this work). The literature does not contain scaling laws 

for different types of rocks and different muck pile particle sizes. This is a key 

element when it comes to ground engaging tools analysis with scaled models. 

Therefore, an independent study to develop scaling laws for rocks (muck pile 

particle sizes) should help improve the ability to predict displacement 

(penetration).

3. The DEM simulation experiments in this work focused only on varying chamfer 

cut angle for semi-spade cutting profiles of buckets. This can be extended to 

other parameters such as inner floor profile and cutting blade thickness to
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examine various aspects of RTL buckets to further improve performance. The 

difference of chamfer cut angle was 15° between each tested prototype, testing 

the chamfer cut at lower range difference of 1-2° might help improve the 

understanding and finding the optimal chamfer cut angle.
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DRAFT -  ROCK TYPE I
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Table A-1. Draft results on rock type I

Term Estimate Std Error Wald
ChiSquare

Prob > 
ChiSquar 

e
T.E 0.4912546 0.0322491 232.04808 <.0001*
Speed 0.0591305 0.0049832 140.80359 <.0001*
(T.E-37.5)*(sin(A)-
0.07256)

-1.588475 0.5347191 8.8248931 0.0030*

sin(A) 12.570076 6.5222102 3.7143788 0.0539
Intercept -1.413256 2.8842504 0.240091 0.6241
height 0 0 0 1.0000
(T.E-37.5)*(Speed-500) 0 0 0 1.0000
(T.E-37.5)*(height-15) 0 0 0 1.0000
(Speed-500)*(height-15) 0 0 0 1.0000
(Speed-500)*(sin(A)-
0.07256)

0 0 0 1.0000

(height- 15)*(sin(A)- 
0.07256)

0 0 0 1.0000
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PENETRATION -  ROCK TYPE I
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Table B-1. Penetration results on rock type I

Term Estimate Std Error Wald
ChiSquare

Prob > 
ChiSquare

T.E 0.6102505 0.0378033 260.58959 <.0001*
Speed 0.1340376 0.0053014 639.24827 <.0001*
height 2.2548542 0.0946263 567.82274 <.0001*

(T.E-37.5)*(Speed-500) -0.002049 0.0004321 22.495078 <.0001*
(Speed-500)*(sin(A)-

0.07256)
0.2659636 0.0969513 7.5255295 0.0061*

Intercept -5.976544 3.1818229 3.5281603 0.0603
sin(A) 0 0 0 1.0000

(T.E-37.5)*(height-15) 0 0 0 1.0000
(T.E-37.5)*(sin(A)-

0.07256)
0 0 0 1.0000

(Speed-500)*(height-15) 0 0 0 1.0000
(height- 15)*(sin(A)- 

0.07256)
0 0 0 1.0000
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DRAFT -  ROCK TYPE II
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Table C-1. Draft results on rock type II

Term Estimate Std Error Wald
ChiSquare

Prob > 
ChiSquare

Intercept 9.3078167 3.6863968 6.3751659 0.0116*
T.E 0.3314237 0.0412831 64.449792 <.0001*
Speed 0.0548171 0.0060988 80.787635 <.0001*
height 0 0 0 1.0000
sin(A) -14.81177 9.3324484 2.518969 0.1125
(T.E-37.5)*(Speed-500) -0.000248 0.0005132 0.2339735 0.6286
(T.E-37.5)*(height-15) 0 0 0 1.0000
(T.E-37.5)*(sin(A)-
0.07256)

0 0 0 1.0000

(Speed-500)*(height-15) 0 0 0 1.0000
(Speed-500)*(sin(A)-
0.07256)

-0.097902 0.1000008 0.9584641 0.3276

(height-15)*(sin(A)-
0.07256)

2.5784331 1.8871944 1.8667169 0.1719
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Table D-1. Penetration results on rock type II

Term Estimate Std Error Wald
ChiSquar

e

Prob > 
ChiSqu 

are
Speed 0.1239814 0.0077413 256.49954 <.0001*
height 1.8989434 0.1337941 201.44189 <.0001*
sin(A) -114.3602 11.531163 98.356591 <.0001*
(height- 15)*(sin(A)- 
0.07256)

21.268944 2.305759 85.087163 <.0001*

T.E 0.2983999 0.0534761 31.137083 <.0001*
(Speed-500)*(height-15) -0.005068 0.0015488 10.707552 0.0011*
(Speed-500)*(sin(A)-
0.07256)

-0.467968 0.1464806 10.206376 0.0014*

(T.E-37.5)*(height-15) 0.028538 0.0107173 7.0904173 0.0077*
Intercept -10.31764 4.2750033 5.8248893 0.0158*
(T.E-37.5)*(Speed-500) 0 0 0 1.0000
(T.E-37.5)*(sin(A)-
0.07256)

0 0 0 1.0000
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Table E-1. Draft relationships for bigger scaled model

Term Estimate Std
Error

Wald
ChiSquare

Prob > 
ChiSquare

Intercept -54.3516 6.1013 79.3560 <0.0001
Motor Power Output (M) 16.7970 0.2052 6698.7290 <0.0001

Speed 0.2026 0.0465 18.9814 <0.0001
Height 0.2990 0.2333 1.6416 0.2001

Rake Angle 0.0000 0.0000 0.0000 1.0000
(M -10.67)*(Speed-160) -0.0137 0.0068 4.0901 0.0431
(M -10.67)*(Height-15) 0.0505 0.0369 1.8686 0.1716

(M -10.67)*(Rake ANgle- 
0.53628)

0.0000 0.0000 0.0000 1.0000

(Speed-160)* (Height-15) 0.0000 0.0000 0.0000 1.0000
(Speed-160)*(Rake ANgle- 

0.53628)
-0.1197 0.0903 1.7556 0.1852

(Height-15)*(Rake ANgle- 
0.53628)

0.0000 0.0000 0.0000 1.0000
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BIGGER SCALED MODEL PENETRATION
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Table F-1. Penetration relationships for bigger scaled model

Term Estimate Std
Error

Wald
ChiSquare

Prob > 
ChiSquare

Motor Power Output 6.4974 0.0994 4273.3480 <0.0001
Speed 0.1865 0.0261 51.2268 <0.0001
Height -1.1837 0.1778 44.3102 <0.0001

(M -10.6667)*(Speed-160) -0.0192 0.0029 43.0878 <0.0001
(Height-15)*(Rake Angle- 

0.53628)
-16.2911 4.1554 15.3704 <0.0001

(M -10.6667)*(Height-15) -0.0657 0.0199 10.9602 0.0009
Intercept -35.7029 11.7575 9.2210 0.0024

(Speed-160)*(Rake Angle- 
0.53628)

0.0430 0.0570 0.5694 0.4505

Rake Angle 0.0000 0.0000 0.0000 1.0000
(M -10.6667)*(Rake Angle- 

0.53628)
0.0000 0.0000 0.0000 1.0000

(Speed- 160)*(Height-15) 0.0000 0.0000 0.0000 1.0000
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Table G-1. Draft relationships for small scaled model

Term Estimate Std
Error

Wald
ChiSquare

Prob > 
ChiSquare

Intercept 21.9473 2.4123 82.7726 <0.0001
Motor Power Output 2.2960 0.0532 1860.9540 <0.0001

Speed 0.1722 0.0240 51.4653 <0.0001
(M -10.6667)*(Speed-80) -0.0229 0.0033 49.2574 <0.0001

(M -10.6667)*( Rake 
Angle -0.07256)

-2.1145 0.9806 4.6499 0.0311

Height -0.1302 0.0784 2.7584 0.0967
Rake Angle 11.0419 7.2208 2.3384 0.1262

(M -10.6667)*(Height-15) -0.0139 0.0106 1.6971 0.1927
(Speed-80)*( Rake Angle - 

0.07256)
0.3735 0.4422 0.7134 0.3983

(Speed-80)*(Height-15) -0.0017 0.0048 0.1232 0.7256
(Rake-0.07256)*(Height-

___________ 1 5 ___________
-0.4897 1.4442 0.1150 0.7345
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Table H-1. Penetration relationships for smaller scaled model

Term Estimate Std
Error

Wald
ChiSquare

Prob > 
ChiSquare

Intercept 59.6857 3.3831 311.2604 <0.0001
Motor Power Output (M) 2.0156 0.0746 729.2063 <0.0001

Speed 0.4353 0.0337 167.3002 <0.0001
(M -10.6667)*(Speed-80) -0.0478 0.0046 109.2842 <0.0001
(M -10.6667)*(Height-15) -0.2496 0.0149 279.5646 <0.0001

Height 0.8480 0.1099 59.5149 <0.0001
(Speed-80)*( Rake Angle - 

0.07256)
1.2708 0.6201 4.1998 0.0404

Rake Angle -20.2810 10.1264 4.0112 0.0452
(Speed-80)*(Height-15) 0.0128 0.0067 3.5890 0.0582

(M -10.6667)*( Rake 
Angle -0.07256)

-2.4817 1.3752 3.2568 0.0711

(Rake Angle - 
0.07256)*(Height-15)

0.2038 2.0253 0.0101 0.9198
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