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ABSTRACT

Current infrastructure systems modeling literature lacks frameworks that integrate 

data visualization and trend extraction needed for complex systems decision making and 

planning. Critical infrastructures such as transportation and energy systems contain 

interdependencies that cannot be properly characterized without considering data 

visualization and trend extraction.

This dissertation presents two case analyses to showcase the effectiveness and 

improvements that can be made using these techniques. Case one examines flood 

management and mitigation of disruption impacts using geospatial characteristics as part 

of data visualization. Case two incorporates trend analysis and sustainability assessment 

into energy portfolio transitions.

Four distinct contributions are made in this work and divided equally across the 

two cases. The first contribution identifies trends and flood characteristics that must be 

included as part of model development. The second contribution uses trend extraction to 

create a traffic management data visualization system based on the flood influencing 

factors identified. The third contribution creates a data visualization framework for 

energy portfolio analysis using a genetic algorithm and fuzzy logic. The fourth 

contribution develops a sustainability assessment model using trend extraction and time 

series forecasting of state-level electricity generation in a proposed transition setting.

The data visualization and trend extraction tools developed and validated in this 

research will improve strategic infrastructure planning effectiveness.
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SECTION

1. INTRODUCTION

1.1. BACKGROUND AND MOTIVATION

Current infrastructure systems modeling literature lacks frameworks that integrate 

data visualization and trend extraction needed for complex decision making and planning. 

This is evidenced by the consistent, substandard performance of United States 

infrastructure systems (American Society of Civil Engineers, 2021a). Further 

investigation of performance reports underscore trends that explain the status of 

infrastructure systems in the United States (American Society of Civil Engineers, 2021b). 

Maintenance backlogs continue to complicate the optimal allocation of resources toward 

addressing issues systematically. Use of asset management tools has helped address this 

problem by providing decision makers with information regarding areas in greatest need 

of investment. Additionally, data availability and reliability remain a problem. Critical 

infrastructures such as transportation and energy systems contain interdependencies that 

cannot be properly characterized without considering data visualization and trend 

extraction (Ramachandra et al., 2014). Providing decision makers with tools that simplify 

and expedite this process will greatly improve strategic planning effectiveness.

This dissertation presents two case analyses to showcase the effectiveness and 

improvements that can be made using these techniques. Case one examines flood
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management and mitigation of disruption impacts using geospatial characteristics as part 

of data visualization. A flood event occurs when water flows onto land that is typically 

dry due to failures in manmade structures such as dams and levees or large amounts of 

precipitation (National Weather Service, 2020; United States Geological Survey, 2020). 

One of the consequences associated with climate change is an increase in the frequency 

of heavy precipitation events (National Aeronautics and Space Administration, 2020). 

These events will further expose transportation infrastructure vulnerability to floods 

impacts such as inundation that results in road closures, property damage, and loss of life 

(National Oceanic and Atmospheric Administration, 2021). Flood modeling efforts 

should capture influencing factors that are geospatial and temporal in nature. Case two 

incorporates trend analysis and sustainability assessment into energy portfolio transitions. 

Energy infrastructures are primarily dependent on fossil fuel resources that perpetuate the 

effects of climate change (Energy Information Administration, 2021a). Most climate 

change mitigation strategies at the national level are set in terms of reducing greenhouse 

gas pollution based on the levels present at some previous time. The US government has 

identified a 50-52% reduction in greenhouse gas pollution from 2005 levels by 2030 to 

address climate change (White House, 2021). This task is complicated further due to 

energy sources accounting for large portions of sector-specific energy portfolios (Energy 

Information Administration, 2021b). Energy transition modeling efforts should be 

responsive to sector consumption behavior and temporal trends.

Infrastructure decision makers are tasked with allocating finite resources in a 

timely manner. This is a complex task due to interdependencies present in infrastructure
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systems coupled with a lack of effective decision support tools. Transportation and 

energy infrastructures were chosen to demonstrate methodological efficacy due to their 

importance in providing basic needs. However, the frameworks developed are applicable 

to other infrastructure systems where data is sufficiently available. In the next section, the 

primary contributions for each publication in this dissertation are presented. Further 

analysis positions the contributions in the context of climate change mitigation strategies 

and improved planning before and after flood events occur.

1.2. RESEARCH OBJECTIVES AND CONTRIBUTION

This dissertation aimed to identify material ways to improve transportation and 

energy infrastructure planning effectiveness by developing tools using trend extraction 

and data visualization techniques. Transportation infrastructures are vulnerable to the 

impacts associated with floods. Therefore, flood modeling efforts should include an 

investigation of influencing factors that are responsive to geospatial and temporal trends. 

Energy infrastructures must be transitioned to renewable alternatives to mitigate the 

effects of climate change. Successful decarbonization of the energy infrastructure will 

require decision makers to evaluate various portfolio combinations in a temporally 

dynamic environment. To improve infrastructure planning effectiveness, geospatial data 

integration, optimization, computational intelligence, and forecasting theories were 

applied.

Publication I: floods are a complex phenomenon. Investigation of flood 

influencing factors must be undertaken prior to model development. A State-of-the-Art
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Matrix was used to identify trends in model inputs. Ten flood influencing factors were 

identified: slope, stream power index, topographic wetness index, digital elevation model, 

curvature, elevation, distance from river, soil type, rainfall, and normalized difference 

vegetation index. This research provided a basis by which to inform the development of 

planning tools that improve on those publicly available.

Publication II: further investigation of flood influencing factors and publicly 

available data revealed that stream stage is closely related to flood inundation profile. 

Further, 15-minute increment data is typically available where monitors are present. A 

long short-term memory (LSTM) network was developed to provide a univariate time 

series prediction of stream stage height. This prediction is then tied to a corresponding 

flood inundation profile in a geographic information system (GIS) setting. Geoprocessing 

techniques were then applied to visualize flood inundated roads. This research developed 

a forecasting tool that improved on publicly available forecasts in terms of accuracy and 

temporal resolution in addition to providing a visualization tool that decision makers 

could use.

Publication III: transitioning energy portfolios toward renewable alternatives is a 

critical part of decarbonizing energy infrastructures to mitigate the consequences 

associated with climate change. However, identifying the optimal set of energy sources 

present in a complex task. Energy sources were evaluated on the basis of efficiency, 

affordability, eco-friendliness, reliability, and acceptability. Each objective function was 

represented using triangular membership functions in a fuzzy environment. A rules-based 

single-objective genetic algorithm was then applied to select the optimal configuration of
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energy portfolio elements. This approach is beneficial as it allows for the incorporation of 

varying stakeholder interests and the trade space present between objective functions.

Publication IV: energy transitions occur over time. Therefore, modeling should 

account for changes in demand when phasing out energy sources. Using Missouri’s 

electricity sector as a model testbed, 10-year forecasts were developed using simple 

exponential smoothing and autoregressive integrated moving average models. Superior 

model results were then used as an input for a sustainability assessment model that 

measured changes in water, land, carbon, and cost footprints. From a sustainability 

perspective, it is important to capture temporal energy transition metrics and performance 

results beyond cost or emission reductions.

Use of sophisticated modeling techniques will increasingly become normative as 

the quantity and quality of data improves for infrastructure systems. Development of 

tools that improve planning effectiveness were investigated for transportation and energy 

infrastructures. Flood influencing factors are identified and used to form the basis for 

improved infrastructure planning in the event that a flood is likely to occur. Transitioning 

energy portfolios is a complex task. A tool was developed that captured both stakeholder 

interests and the relationship present between competing objectives. Additionally, a 

sustainability assessment tools was created that measured performance beyond the 

conventional cost versus emissions reduction criteria. By providing these tools to 

decision makers, infrastructure planning can be markedly improved.
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PAPER

I. FLOOD MANAGEMENT DEEP LEARNING MODEL INPUTS: A REVIEW 
OF NECESSARY DATA AND PREDICTIVE TOOLS

Jacob Hale1, Suzanna Long1, Steven M. Corns1, and Tom Shoberg2

department of Engineering Management and Systems Engineering, Missouri University 
of Science and Technology, Rolla, MO 65409

2Center of Excellence for Geospatial Information Science, United States Geological
Survey, Rolla, MO 65401

ABSTRACT

Current flood management models are often hampered by the lack of robust 

predictive analytics, as well as incomplete datasets for river basins prone to heavy 

flooding. This research uses a State-of-the-Art matrix (SAM) analysis and integrative 

literature review to categorize existing models by method and scope, then determine 

opportunities for integrating deep learning techniques to expand predictive capability. 

Trends in the SAM analysis are then used to determine geospatial characteristics of the 

region that can contribute to flash flood scenarios, as well as develop inputs for future

modeling efforts. Preliminary progress on the selection of one urban and one rural test 

site are presented subject to available data and input from key stakeholders. The
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transportation safety or disaster planner can use these results to begin integrating deep 

learning methods in their planning strategies based on region-specific geospatial data and 

information.

1. INTRODUCTION

The Federal Emergency Management Agency (FEMA) reported that 98% of 

counties in the United States were impacted by flooding events between 1996 and 2016 

(FEMA, 2019). Potential flood cost evaluations depend upon the extent of the flooding, 

subjective evaluation of personal property, and the size of the home among other 

variables. The cost of the total loss to a single residential dwelling can range anywhere 

from thousands to hundreds of thousands of dollars (FEMA, 2017). In early 2019, parts 

of Iowa and Nebraska were devastated by floods. Official cost estimates have not been 

published, but preliminary evaluations from state governments suggest billions of dollars 

in damage. These costs present a daunting challenge to the United States economy with 

respect to infrastructure damage, loss or partial damage of residential dwellings, and loss 

of crops to name but a few. Disaster managers are tasked with breaking down these cost 

estimates and determining emergency response strategies in a timely manner with finite 

resources. An important but often over-looked dimension of flood costs are the indirect 

costs associated with road closures. Before indirect costs can be calculated, a highly 

accurate and spatially resolute flood prediction model must be developed to identify the 

extent of road closures. This work provides a preliminary review of flood prediction
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studies to determine trends in model inputs and data sources for use in developing a flood 

prediction model.

Flood prediction is a complicated task that has become the subject of increased 

research focus as the frequency and cost of flooding events continues to increase. Deep 

learning has emerged as a sophisticated technique to solve complex problems but has 

limited application in hydrological studies (Hu et al., 2018). This methodology is a 

subfield of machine learning where computation models comprised of multiple layers 

learn representations of the data (LeCun et al., 2015). While deep learning has emerged 

as a premium candidate for flood prediction efforts, the term has become a catch-all term 

in artificial intelligence literature. Therefore, it is imperative that methods be reviewed 

and compared to determine the optimal choice subject to sufficiently robust and granular 

dataset availability.

The study presented here consists of three sections. The first section introduces an 

integrated literature review and state-of-the-art matrix of flood prediction literature with 

specific emphasis on deep learning techniques. This review technique is effective in 

compiling methodologies and identifying trends and limitations in the literature. The 

second section leverages the key findings of the literature and evaluates available data 

sets to gauge the utility of prevalent deep learning techniques. Data from the United 

States Geological Survey (USGS), the National Ocean and Atmospheric Administration 

(NOAA), and the United States Department of Agriculture (USDA) are compiled and 

integrated with special emphases on the temporal and spatial resolution of parameters. 

The third section presents the preliminary progress in selection of an urban and rural test
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site in the state of Missouri. Site selection is currently underway and is progressing on the 

basis of available data and input from key stakeholders. The findings of this study 

demonstrate some consistency in deep learning model inputs and limitations for flood 

prediction, a wealth of data repositories in the United States to gather data for the model, 

and the preliminary progress of test site determination.

2. METHODS

This study presents an integrated literature review coupled with a state-of-the-art 

matrix (SAM) analysis to review flood prediction literature. Integrated literature reviews 

are an appropriate methodology when dealing with new subjects where a synthesis of 

several theoretical domains is a prerequisite to developing novel approaches for future 

research (Kohtala, 2015; Torraco, 2005). SAM analyses consist of compiling critical 

information from the integrated literature review and presenting it in a matrix format. 

Combining these two methods results in a high-quality data visualization tool for 

researchers and practicioners to determine future areas of research or industry use. This 

tool has been demonstrated effectively in reviewing barriers to adoption for both electric 

vehicles and microgrid energy systems and determining areas of future research focus 

(Egbue and Long, 2012; Hale and Long, 2018). Given the emerging nature of flood 

prediction techniques, this coupled methodology is justified and presented here.

Proper use of this approach requires strict adherence to the following steps. First, 

determine the structure of the matrix that will be used to visualize the results of the
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integrated literature review. The SAM presented in this study consists of columns 

dedicated to author(s), year, method, data, and limitations. These dimensions were chosen 

to identify trends and limitations in the literature to inform future research direction. The 

SCOPUS database was used to retrieve peer-reviewed journal articles under the search 

terms “flood” AND “prediction”. Search critiera was refined to include peer-reviewed 

sources only. 18 articles out of nearly 3000 published from 2012-2019 were selected to 

demonstrate a breadth of methodologies. Reliability of findings increases as more articles 

are added to the analysis. Therefore, the findings presented here are inconclusive, but 

provide a preliminary basis for future research direction. The results of the integrated 

literature review and SAM analysis are presented in Table 1.

The second part of this study uses the findings of the integrated literature review 

and the SAM analysis as model inputs to determine the type and amount of data that is 

required. Datasets from USGS, NOAA, and USDA are reviewed here including tools 

they use. The concurrent findings of the integrated literature review and SAM are then 

synthesized with the review of data sources to review suitable test locations in one urban 

and one rural area of Missouri.

3. RESULTS AND DISCUSSION

A summary of the SAM analysis can be found in Table 1. The results show that 

no single method or model dominates the literature, but there are clear trends related to 

data and its quality as a limitation in current models. This limitation could be addressed
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by gathering more data, increasing the interval of measurement, or improving the quality 

of instrument used to gather the data. Table 2 presents the most prevalent model inputs 

and their frequency of use in the articles that used machine learning or deep learning 

techniques. Based upon these findings, the remainder of this section will be divided into 

subsections that better organize the information: Deep Learning Methods, Other 

Methods, Data, and Review of Data Sources.

3.1. DEEP LEARNING METHODS AND DATA

There is perhaps some confusion between the term artificial intelligence, machine 

learning, and deep learning. Artificial intelligence is any program that exhibits intelligent 

behavior such as the ability to sense, reason, act, and adapt. Machine learning is the 

process by which algorithms improve their performance through exposure to data over 

time. Deep learning is a more comprehensive form of machine learning where 

multilayered neural networks learn from large amounts of data (Intel, 2017).

Nine of the 18 articles included in the SAM used machine learning methodologies 

such as support vector machine, random forest, decision trees, and artificial neural 

networks. The purpose of this study is to investigate the use of these techniques in flood 

prediction modeling. Brief summaries of a technique are given here, but readers seeking 

to better understand model theory are directed to the references.

Support vector machines are an emerging approach in flood prediction studies. 

This technique is a supervised machine learning algorithm that finds a hyperplane that 

divides the dataset into two classes. Tehrany et al. (2015a) used this methodology to
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assess flood susceptibility in Malaysia. Their study used four different types of kernels 

that directly affect the training and classification process: linear, polynomial, radial basis 

function, and sigmoid. Using area under the curve as the evaluation metric, their model 

successfully identified 80-89% of flood events and predicted 81-84%, based on which 

kernel was used. Some studies compared the results of using support vector machines 

with a different machine learning technique such as random forest.
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Table 2. Dominant Model Inputs as a Percentage
M odel Input %

S l o p e 8 9 %

S t r e a m  P o w e r  I n d e x 8 9 %

T o p o g r a p h i c  W e t n e s s  I n d e x 8 9 %

D i g i t a l  E l e v a t i o n  M o d e l 8 9 %

C u r v a t u r e 7 8 %

E l e v a t i o n 6 7 %

D i s t a n c e  f r o m  r i v e r 6 7 %

S o i l  T y p e 6 7 %

R a i n f a l l 5 6 %

N o r m a l i z e d  D i f f e r e n c e  V e g e t a t i o n  I n d e x 4 4 %

The random forest algorithm draws multiple samples using the bootstrap 

resampling method and then builds classification trees for each bootstrap sample. 

Ultimately, forecast classification trees are combined and voting determines final 

classification results. Wang et al. (2015) used this methodology and compared its results 

to the support vector machine for the same data for flood hazard risk assessment in 

China. Their results demonstrate that the percentage error rate decreased as sample size 

and number of decision trees increased. The correlation coefficient between random 

forest and support vector machine was 0.9156, demonstrating comparable performance in 

most cases.

Decision trees consist of breaking down data into increasingly smaller subsets 

using if-then-else rules. The structure of the decision-making process resembles that of a 

tree with increasing depth resulting in a more complex and fit model. Khosravi et al. 

(2018) used four different decision tree algorithms, logistic model trees, reduced error
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pruning trees, naive bayes trees, and alternating decision trees to model flash flood 

susceptibility in Iran. Area under the curve was again used to evaluate model 

performance. Their study found that alternating decision trees achieved an area under the 

curve value of 0.976.

Artificial neural networks are a widely used machine learning algorithm due to 

their computational efficiency. However, the model technique has weaknesses resulting 

in poor predictive capabilities due to dataset characteristics. Bui et al. (2016) took the 

integrated fuzzy inference system (Chang and Tsai, 2016; Guclu and Sen, 2016; Lohani 

et al., 2012; Shu and Ouarda, 2008) and added two metaheuristic algorithms, 

evolutionary genetic and particle swarm, to optimize it. The model was tested on a high- 

frequency tropical cyclone area in Vietnam. The model was compared to other models 

using decision trees, neural nets, random forest, support vector machine, and adaptive 

neuro fuzzy inference system. Their findings demonstrate that the fuzzy inference system 

model with metaherustic optimization outperformed other models in terms of prediction 

capability with a superior area under the curve value.

All the inputs in Table 2 achieved coverage in the literature greater than 50% with 

the exception of normalized difference vegetation index (NDVI). The lack of presence in 

the literature is likely attributable to sensors used in the data collection process. 

Specifically, NDVI is a variable almost exlusively used by studies that rely on land 

satellite imagery. This input was included to capture unique runoff characteristics. 

However, NDVI would only capture those characteristics in a setting where vegetation 

was present (i.e. rural). Further investigation into general runoff values is required to
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encompass that portion of a flood event. Model input exclusion here does not signify that 

it is unnecessary. The authors of these studies were thorough in their use and elimination 

of flood mechanisms that included comprehensive literature reviews and multicollinearity 

tests to ensure that there was no correlation among independent variables.

Flood prediction literature, especially pertaining to the use of machine learning 

and deep learning methodologies, has seen a considerable increase in publications 

recently. This can largely be attributed to an increase in the frequency and magnitude of 

flooding events worldwide, data availability, and improvements in computing power. 

These techniques will be enhanced as the amount and quality of available data improves.

3.2. OTHER METHODS

The focus of this study is to investigate the potential of machine learning 

techniques to predict flood events and the data required to do so. However, nine of the 18 

articles covered in the SAM deployed methods unrelated to machine learning. This 

section will briefly examine those articles to determine if key findings could be integrated 

into future model development.

As data quality emerged as a limitation, it became apparent that further research 

into quality improvement studies was required. Therefore, conversations with industry 

professionals indicated work being done in part by the Center of Excellence for 

Geospatial Information Science within USGS. Their work primarily deals with improving 

the National Map, a highly detailed and multi-layered topographic map for the United 

States. Anderson-Tarver et al. (2012) presented an algorithm that delineates cartographic
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centerlines. This process enriches the hydrographic database for base mapping at smaller 

scales. This contribution is important due to challenges with extracting important features 

in the absence of available information regarding stream order, channel depth, or flow 

rate. Further improvement to the national map was achieved when Stanislawski et al. 

(2015) proposed the coefficient of line correspondence metric that assessed the similarity 

of two different sets of linear features. Their study improved the national hydrography 

dataset by making it more consistent and suitable for hydrologic investigations by 

thinning flowlines where content is too dense to achieve the resolution required. These 

studies represent data source improvements to enhance investigation efforts.

The remaining papers present flood prediction methodologies without the use of 

machine learning techniques. Sampson et al. (2015) presented a high-resolution global 

flood hazard model framework. The framework consisted of the following workflow: 

global terrain data, extreme flow generation, global river network and geometry, flood 

defenses, computational hydraulic engine, and automation framework. Their model used 

similar data compared to the machine learning studies including rainfall data, 

hydrography data, and data extracted from digital elevation models. Their findings 

presented a model that was capable of capturing two thirds to three quarters of flooded 

areas in the local benchmark data. Yucel et al. (2015) used an integrated model that 

consisted of a numerical weather prediction model and fully distributed hydrologic and 

hydraulic models to simulate heavy rain induced flood events over mountainous basins in 

Turkey. Their model reasonably simulated features of flood events such as volume, peak 

flow rate, and timing. These studies represent a different yet effective approach to



17

predicting floods. Key findings pertaining to data quality improvement and model 

frameworks used can be effectively integrated into deep learning methodologies to 

improve model performance and provide a basis for comparison of model results.

4. DATA SOURCES

Large amounts of high-quality data are prerequisite in implementing deep 

learning techniques. Based on the results of the integrated literature review and SAM 

analysis, the model inputs listed in Table 2 were determined. Fortunately, the United 

States has several data repositories made available by USGS, NOAA, and USDA. The 

USGS provides the highest quality digital elevation models available from which other 

model inputs can be extracted by geographic information system techniques. Specifically, 

slope, curvature, elevation, stream power index, topographic wetness index, and 

normalized difference vegetation index. Figure 1 demonstrates 1-m digitial elevation 

model (DEM) coverage for the state of Missouri constructed from USGS data.

The hydrograph is separated into minor, moderate, and major flood categories. As 

the graph suggests, the Missouri River was in a state of major flooding at this location on 

26 May 2019 and was predicted to remain at least minorly flooded until Tuesday, 4 June 

2019, Lastly, USDA provides soil type through their web soil survey database. These 

data sets represent a wealth of available data that if used in concert could prove effective 

in developing a deep learning model to enhance flood prediction efforts.
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5. CONCLUSIONS AND FUTURE WORK

This study presented the findings of an integrated literature review and SAM 

analysis of 18 peer-reviewed flood prediction studies. A larger sample size of studies 

would markedly enhance the quality of the findings presented here which would provide 

a more reliable assessment of the literature and is the subject of future work. Nine of the 

articles used machine learning or deep learning techniques such as support vector 

machine, decision trees, random forest, and artificial neural networks. There were two 

observable trends among these articles. First, a relative commonality existed regarding 

model inputs detailed further in Table 2. Second, data quality was regularly identified as 

a limitation due to deep learning requiring a large amount of high-quality data. Data 

available from USGS, NOAA, and the USDA were then reviewed and shown to possess 

the data required to build a deep learning model capable of accurately predicting floods. 

Other models were also reviewed and useful frameworks such as that posited by 

Sampson et al. (2015) were observed. Overall, these findings demonstrate that machine 

learning and deep learning methods are an emerging and effective strategy for flood 

prediction dependent upon available data.

Using these findings, determination of one urban and one rural test site are 

underway. The St. Louis area has been chosen as the urban test site due to historic 

flooding events and the vast amounts of data available. The choice of rural location is still 

in progress but will be somewhere within the Meramec Basin subject to discussions with 

key stakeholders and subject matter experts. The difficulty in selecting a rural test site is
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due in large part to the lack of sufficient data to conduct a deep learning technique. 

Finally, a deep learning technique will be chosen based upon further consideration of the 

available options and comparison of performance from multiple models.

The findings presented here can be used two-fold. First, researchers can use these 

findings to inform future research direction by improving upon models reviewed here or 

enhancing the quality of available data. Second, emergency response managers can use 

the findings here as a starting point for incorporating machine learning and deep learning 

flood prediction models as part of their strategic management of resources when flooding 

events become highly probable. Ultimately, as data availability and quality improve the 

use of machine learning and deep learning methodologies will become commonplace 

resulting in dramatic reductions regarding the risk, cost, and time considerations regularly 

associated with flooding events.
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ABSTRACT

Effective management of flood events depends on a thorough understanding of 

regional geospatial characteristics, yet data visualization is rarely effectively integrated 

into the planning tools used by decision makers. This chapter considers publicly available 

data sets and data visualization techniques that can be adapted for use by all community 

planners and decision makers. A long short-term memory (LSTM) network is created to 

develop a univariate time series value for river stage prediction that improves the 

temporal resolution and accuracy of forecasts. This prediction is then tied to a 

corresponding spatial flood inundation profile in a geographic information system (GIS) 

setting. The intersection of flood profile and affected road segments can be easily 

visualized and extracted. Traffic decision makers can use these findings to proactively 

deploy re-routing measures and warnings to motorists to decrease travel-miles and risks 

such as loss of property or life.
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1. INTRODUCTION

Floods are the most frequently occurring natural disaster. A flood event occurs 

when stream flows exceed the natural or artificial confines at any point along a stream 

[1]. This is often due to heavy rainfall, ocean waves coming on shore, rapid snow 

melting, or failure of manmade structures such as dams or levees [2]. From 1998-2017, 

flood events affected more than two billion people globally [3]. Disasters of this 

frequency and magnitude are typified by extreme costs to governments. In 2019, historic 

flooding across Missouri, Arkansas, and the Mississippi River basin resulted in an 

estimated cost of 20 billion dollars [4]. These estimates typically do not reflect indirect 

costs such as added travel-miles and the subsequent loss of time. Further, floods are 

among the most deadly natural disasters. From 2010-2020, floods resulted in the fatalities 

of 1089 people in the United States [5]. A majority of these deaths were comprised of 

motorists. Therefore, urban planners such as traffic decision makers are tasked with 

proactively deploying resources that minimize motorist risk exposure. At present, traffic 

decision makers rely on static flash flood inundation profiles related to discrete rainfall 

events. These profiles are often created through multiagency cooperation efforts such as 

[6]. Some studies have begun to generate dynamic flood inundation data visualizations 

based on these profiles [7]. Additionally, integrated approaches that use machine learning 

and geographic information systems (GIS) to track changes in critical infrastructure over 

time are emerging as powerful decision support tools [8]. However, there is limited use of 

state-of-the-art time series prediction models to generate dynamic data visualizations in a
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GIS setting for improved flood management. This book chapter explores the integration 

of publicly available data and machine learning models to address this gap in the 

literature.

Precise determination of when and where to deploy re-routing measures is a 

complex task. One approach that improves planning effectiveness is to integrate time 

series characteristics of river behavior and corresponding spatial flood profile. In this 

chapter, a univariate time series prediction of river stage is conducted that improves the 

temporal resolution and accuracy of publicly available forecasts. This prediction is then 

tied to a corresponding spatial flood inundation profile in a GIS setting. The resulting 

geospatial deep learning model provides a data visualization tool that traffic decision 

makers can use to proactively manage road closures in the event that a flood is likely to 

occur. The first section provides an overview of relevant river behavior that causes 

flooding. State-of-the-art trend extraction and prediction techniques are then presented 

and tied to geospatial use cases. The methodology section presents the data used, time 

series prediction model selected, and geoprocessing procedures required for data 

visualization using GIS software. Next, an illustrative example is provided for a 

frequently flooded intersection in Missouri. A discussion section is provided that 

positions the findings in the context of improving traffic management in the event of a 

flood. Lastly, a conclusion is given that summarizes the key findings and outlines model

limitations and future work.
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2. A GEOSPATIAL DEEP LEARNING APPROACH

Two key characteristics of streams that relate to flood events are stream stage and 

streamflow. Stream stage refers to height (ft) of the stream and streamflow corresponds to 

discharge (ft3/s) or alternatively, volumetric flowrate. Typically, governmental 

organization such as the United States Geological Survey maintain a network of sensors 

that monitor these characteristics over time for various stream segments. The National 

Weather Service classifies flood categories into four groups based on stream stage:

Action Stage, Flood Stage, Moderate flood Stage, and Major Flood Stage [9]. These 

values vary for a given segment of stream based on analysis of previous floods, local 

topography, and underlying geological properties.

Given that stage is monitored over time, the use of time series forecasting 

methods to predict stage values is appropriate. There are two modelling approaches that 

are useful in this context: statistical and computational intelligence. Statistical models use 

historical data to identify underlying patterns to predict future values [10]. Some 

commonly used techniques for flood forecasting include simple exponential smoothing 

[11], autoregressive moving average [12], and autoregressive integrated moving average 

[13]. However, one shortcoming of these approaches is lack of scalability as the quantity 

and complexity of data increases [14]. An alternative approach that addresses these issues 

is computational intelligence. A key feature of computational intelligence approaches is 

the capacity to manage complexity and non-linearity without needing to understand 

underlying processes [15]. In summary, statistical methods rely on precise underlying
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relationships and exhibit decreased performance as the number of variables increases 

whereas computational intelligence approaches identify patterns using large amounts of 

training data to establish a model capable of accurate predictions [16]. Some commonly 

used flood forecasting computational intelligence models include support vector 

machines [17], artificial neural networks [18], and deep learning [19]. Further, they have 

demonstrated superior performance when compared to conventional statistical modelling 

approaches for flood prediction studies. LSTM models have explicitly shown promising 

results in time series contexts. Therefore, LSTM models provide a state-of-the-art trend 

extraction and prediction technique regarding stream stage values.

Stream stage values are categorized based on resulting flood severity. The 

physical reality of these categories is the spatial extent of the flooding event often 

referred to as a flood inundation map [20]. These maps provide decision makers with a 

useful visual reference to determine what specifically has been affected by a flood event. 

An area of research, data visualization, and practical application that has not been fully 

investigated is the integration of computational intelligence stream stage predictions with 

geospatial flood inundation maps. The methodology provided in the following section 

addresses this gap.

3. METHODOLOGY

This section consists of three parts: LSTM prediction of stream stage, data 

required, and geoprocessing procedures. First, a brief overview of LSTM will be given.
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This will include explanatory figures and relevant mathematical formulas. Second, data 

required to conduct the LSTM prediction of stream stage will be procured. Flood 

inundation imagery and road network data will also be obtained. Lastly, data will be 

uploaded to a GIS software and processed for end use by traffic decision makers. An 

illustrative example is presented in the next section.

3.1. LSTM PREDICTION OF STREAM STAGE

Stream stage prediction is a time series forecasting procedure that is dependent on 

previous data to predict future values. As the quantity and quality of data continues to 

increase, more powerful computational approaches can be applied to prediction problems. 

The results of the literature review demonstrated that deep learning approaches, namely 

LSTM networks, are increasingly being applied to these problems.

Deep learning is an extension of the conventional neural network by adding 

additional layers and layer types. Figure 1 provides a visual comparison of the two 

approaches [21]. The simple neural network (left) consists of a single input layer, hidden 

layer, and output layer. Alternatively, the deep learning neural network (right) has one 

input layer followed by three successive hidden layers that ultimately feed into a final 

output layer. This configuration has generated superior performance in capturing 

complex relationships.
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Simple Neural Network Deep Learning Neural Network

Figure 1. Simple Neural Network vs. Deep Learning Neural Network

However, neither approach retains previous time step information. Recurrent 

neural networks (RNNs) were introduced to address this limitation. LSTM networks are 

the deep learning variant of RNNs. All figures and mathematical formulation are 

borrowed from [15]. The primary benefit of LSTM networks is the capacity to retain 

longer term information. This is accomplished by removing and adding information 

determined by a series of ‘gates’ and vector operations. Figure 2 provides a visual 

representation of an LSTM cell. The first gate, illustrated in yellow, generates a value 

between 0 and 1 using the current input (xt) and output from the previous step (yt-1) that 

determines how much information is passed on (forget gate). A zero corresponds to no 

information transfer whereas a one represents a complete transfer.
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Figure 2. LSTM Network Cell

The result of this procedure (ft) is presented mathematically in equation (1) as a 

sigmoid neural network layer where U (weights) and W (recurrent connections) are 

matrices.

f t  = ° ( .x t Uf  + y t - i W f ) (1)

Next, a decision must be made regarding what information needs to be stored. 

This is accomplished by applying an additional sigmoid layer (red, it). New values are 

then added to the cell state (Ct) by using a tanh layer (green). Equations (2) and (3) 

present these procedures mathematically.
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it = a ( x t Ul + y t- i W l) (2)

Ct = tanh (x t U9 + y t - 1 W 9 ) (3)

The line at the top of the cell is known as the cell state (Ct) and has interactions 

with all components. Information has the opportunity of being forgotten when the old 

state (Ct-1) is multiplied by the result of the first forget gate (ft). The product of the 

second (red) and third (green) gates are then added which results in new information 

being provided to the cell state and is represented by equation (4).

Ct = f t ^ t - i  + h ^ t  (4)

Lastly, the output layer of the LSTM cell determines the forecast for the current 

time step. A sigmoid layer (blue) and tanh layer are multiplied to generate an output (yt). 

This final step is represented by equations (5) and (6).

ot = a ( x t U0 + y t- i W 0) (5)

y t = tanh (Ct ) x  ot (6)

The result of this computational procedure is a time series forecast of future 

values. However, a large amount of data must be gathered to use as a model input. This 

data is presented in the next section.
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3.2. DATA REQUIRED

Historic stream stage height for the location further explained in Section 4 must 

first be gathered. 113,994 data points were procured that correspond to 15-minute 

intervals from May 19, 2016 (5PM) -  September 1, 2019 (4PM). Stage height is herein 

referred to as ‘gauge height’ to account for the source of the data. This data is represented 

graphically in Figure 3 [22].

Using USGS’ flood inundation mapper (FIM), these gauge heights can be tied to a 

specific flood inundation profile [23]. The FIM is a publicly available tool that provides 

resulting flood inundation maps for one-foot gauge height increments in image format 

(.tif). A sliding bar that accomplishes this is available on the online user interface and is 

presented in Figure 4.

Figure 3. Stream Stage Height for Example Locations
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^  Flood Tools Hydrograph as Services and Data Q  More Info

Selected gage height: 11 feet

Current Conditions
Gage height: 8.99 feet 

Discharge: 616 cfs

USGS Site No: 07019130 
NWS Site ID: vllm7

Figure 4. FIM Sliding Gauge Height Tool

An example of a flash flood inundation profile being uploaded to a GIS software 

is provided in Figure 5. Purple lines correspond to road network data derived from the 

National Transportation Dataset [24]. Blue raster (grids of pixels) imagery denotes the 

depth of water at discrete locations where darker blue reflects deeper water. Useful 

geoprocessing techniques that generate actionable decision support tools are presented in 

the next section.

3.3. GEOPROCESSING PROCEDURES

Traffic decisions makers are tasked with identifying flood affected road segments. 

In Figure 5, it can be observed that the flood inundation profile does overlap certain road 

segments. Relying on visual inspection alone is time consuming and prone to 

inaccuracies due to human error. A solution to this issue is the application of a set of
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straightforward geoprocessing tools that are built-in to most GIS softwares: conversion 

and intersection.

Figure 5. Flood Inundation Profile Example

Some tools do not allow raster and vector data layer interoperability. Therefore, it 

is necessary to convert one of the data layers to establish a consistent data type. One 

approach is to convert the raster layer into a vector layer using the conversion tool within 

ArcGIS. Figure 6 illustrates the result of this operation. The flood inundation profile has 

been converted into several points at 1-m increments. This spatial resolution can be 

modified by the user. The road network has been changed from its previous color to 

improve readability.
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Figure 6. Raster Layer Conversion Example

Once the raster layer has been converted into vector format, it is eligible for use as 

an input layer for the intersection tool. The intersection tool generates a point at every 

location where there is an intersection between the input layers. In the next section, an 

illustrative example is provided to demonstrate the effectiveness of the methodology 

presented.

4. ILLUSTRATIVE EXAMPLE

Valley Park, Missouri is located at the intersection of I-44 and State Route 141. 

This location is the setting for the example figures presented previously. The Meramec 

River winds through this area and has regularly flooded in recent years. In 2017, the river 

exceeded its banks and caused significant damage to the surrounding area as seen in
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Figure 7. This location provides a suitable candidate to test the methodology presented 

given the extent of the flood event and data availability.

Meram'ejClH i v.erf (norma 11 V/)l

Eloocl fQ v.e r,t I owlO rit <53 I ̂ 4!4i

Figure 7. Meramec River Flood in 2017 [25]

First, data is gathered from a nearby stream gauge. Figure 8 provides a 

geographical point of reference for the gauge denoted by a green square with respect to I- 

44 and State Route 141. The data presented in Figure 5 is then procured and used as an 

input for the LSTM network. Figure 9 presents the prediction results of the LSTM model 

superimposed on the actual data for May 19, 2016-September 1, 2019.

The actual data (blue) can be observed deviating from the prediction results for 

the training (orange) and testing (green) results of the LSTM network. A lack of 

discrepancy between the actual data and predictions demonstrates the model’s 

effectiveness. Further, it is useful to determine how the prediction compares with publicly 

available forecasts for the same location. USGS provides a forecast every six hours.
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Alternatively, the LSTM network provides 24 predictions in the same period. Figure 10 

provides a comparison of the prediction provided by USGS and the LSTM model for 

September 1, 2019 (6PM) -  September 3, 2019 (6AM).

Figure 8. Gauge Location [9]

Figure 9. LSTM Training and Testing Results
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Figure 10. USGS and LSTM Prediction Comparison

The red line represents the original data. Gauge height is initially observed at just 

above six feet. From there, it trends in a downwardly direction until it reaches the end of 

the dataset at less than 3.5 feet. The green line corresponds to the USGS prediction. This 

prediction initially overshoots the original data before briefly correcting and then 

diverging significantly from the observed trend. Lastly, the blue line represents the 

LSTM prediction. At first, this prediction captures the downward trend missed by the 

USGS prediction. Ultimately, the prediction flattens out and diverges from the original 

observations but to a lesser extent when compared to the USGS prediction. Root Mean 

Squared Error (RMSE) values for each of the predictions are provided to further 

demonstrate the difference in model performance. The RMSE value of 0.453 reported by 

the LSTM model represents superior accuracy compared to the 1.065 value reported by 

the USGS prediction. Therefore, the LSTM model presented here improves on the
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accuracy of publicly available forecasts and can be used as an input for the flood 

inundation tool.

Valley Park has 43 flood inundation profiles available in one-foot increments 

from 11-54 feet. The highest stage value recorded at this location is 44.11 feet on 

December 31, 2015. Figure 11 provides the flood inundation profile for 45 feet to 

approximate this event. Note that 45 feet is used instead of 44. This is due to the flood 

inundation profile incremental limitation and opting for a rounding approach that 

provides a more conservative risk assessment. The inundation profile is then converted to 

point format and intersected with the road network as illustrated by Figure 12.

Figure 11. Flood Inundation Profile for 45ft. Stage Value for Valley Park, Missouri
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Figure 12. Flood Affected Road Segments for Flood Inundation Profile 
Corresponding to 45ft. Stage Value for Valley Park, Missouri

5. DISCUSSION

At present, urban planners such as traffic decision makers rely on static flood 

inundation maps and post hoc planning to reroute traffic if a flood occurs. This approach 

puts motorists already in-transit at risk to rapidly changing road conditions. To address 

these risks, a field of research has emerged to provide decision makers with real-time 

decision-making tools. However, using time series prediction models that capture river 

characteristics and integrating them with flood inundation profiles has receive limited 

attention. The methodology provided here addresses this gap.

Traffic decision makers can use the data visualization presented in Figure 12 as a 

powerful decision support tool. The flood affected road segments can be easily identified 

(orange) and rerouting measures can be promptly dispatched. With the improved



43

temporal resolution and accuracy of the LSTM prediction of stage height, traffic decision 

makers can deploy resources proactively to avoid unnecessary risk to motorists and 

improve traffic flow. Concluding remarks, limitations, and future work are presented in 

the next section.

6. CONCLUSION

Flash floods are a frequent and devastating natural disaster. The impetus to 

manage these events belongs to local decision makers that work in a resource constrained 

environment. To improve their decision-making effectiveness, a framework was 

presented that integrates machine learning and geospatial data to extract spatial and 

temporal trends using publicly available data. An illustrative example was provided to 

demonstrate the effectiveness of the framework provided. Valley Park, Missouri is 

located near the intersection I-44 and State Route 141. These roads represent major traffic 

throughputs and persistent flooding of the Meramec River has jeopardized the safety of 

motorists and the flow of commercial goods. Using 113, 994 river stage observations 

procured from a nearby sensor, an LSTM network was developed to improve the 

accuracy of publicly available forecasts. The result was an improvement in both the 

frequency and accuracy of forecasts provided. Once the stage value is predicted it can be 

tied to a spatial flood inundation profile using the publicly available FIM. Using the flood 

inundation profile for 45 feet observed at Valley Park as a proxy for the historic crest at 

this location, data visualization of flood affected road segments was generated in a GIS
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setting. The key benefit of this output is the ease with which traffic decision makers can 

use the results presented to inform urban planning and decision making. Traffic decision 

makers can use the resulting data visualization presented here to guide real-time decision 

making in the event that a river stage value is predicted to reach a flood event stage for a 

specified river segment. Despite the usefulness of the findings, there remain a number of 

model limitations that represent areas of future work.

Model limitations can be divided into two categories: data gathering and model 

extension. Deep learning models are dependent on large amounts of data. Therefore, 

sensors that collect data need to be installed and active for an extended period. The cost 

to install and maintain an enlarged sensor network might be prohibitive for some 

locations. Due to this fact, model implementation is limited to river locations where 

sensors are already installed. Additionally, FIM coverage is confined to a small number 

of locations nationwide. Similarly, to sensor coverage, if there are not already-available 

flood inundation maps, then the model cannot be applied to those locations. Model 

extension includes options to improve the model in a material way. One recommendation 

would be to determine the best locations for road signage that will provide optimal re

routing to motorists given a finite amount of signage. Another approach would involve 

working with local decision makers to determine re-routing effectiveness based on how 

quickly resources are deployed given model predictions. Areas of future work not related 

to model extensions include alternative prediction approaches in river networks with no 

sensors and refinement of the model to account for flash floods. Each of these
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components represent considerable opportunity for model enrichment that further 

improve the decision-making effectiveness for traffic management professionals.

The results presented here demonstrate the utility of using machine learning 

models and geospatial data to generate data visualization tools that key stakeholders can 

use to improve planning effectiveness. As data becomes increasingly available, use of 

comparably sophisticated methods can be applied to a suite of natural disaster 

phenomena. The outcome of such an undertaking will be the widespread use of data 

visualization tools that will reduce the risk motorists are exposed to and mitigate the 

accompanying economic fallout.
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ABSTRACT

Greenhouse gas emissions due to fossil fuel dependence are decimating 

ecosystems and communities. This is evidenced by increased frequency of extreme 

weather events, rising sea levels, and erratic weather patterns to name but a few. 

Therefore, it is imperative that an energy transition toward more renewable alternatives 

be conducted. Energy transitions are complex processes that involve several stakeholders 

and competing selection criteria. Further, criteria are usually comprised of ambiguous 

terms that make it difficult to reach consensus on decisions. This work presents a meta

architecture generation model that represents the primary value delivery path for an 

electricity supply system of systems. A potential meta-architecture is generated using 

fuzzy associative memory and single-objective genetic algorithm. This integrated 

procedure captures complexity and reduces ambiguity in the decision-making process.

The findings presented here include model representation, analysis of meta-architecture, a 

unique contribution to energy transition research, and an outline of future work. These
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results provide energy management professionals with improved information to better 

guide proposed transitions.

1. INTRODUCTION

Current energy generation is largely dependent on non-renewable fossil fuels that 

emit greenhouse gases when burned. Emissions contribute to the ever-growing 

consequences associated with climate change. Some of the commonly cited consequences 

include the increased frequency of extreme weather and climate events, damage to 

infrastructure, stress on water supply and quality, disruption to the agricultural industry, 

and overwhelming the capacity of ecosystems to buffer these effects. Unless a significant 

transition away from fossil fuel dependence can be completed, these consequences are 

expected to be exacerbated further as the global population continues to grow [1].

Climate change is a global problem that has, only recently, engendered a unified 

approach from the international community through the Paris Climate Agreement [2]. 

Member nation goals are defined by nationally determined contributions (NDC) that 

include post-2020 voluntary climate change mitigation and adaption strategies [3], [4],

[5].

Energy portfolio differences represent the presence of competing priorities among 

stakeholders and different weighting schemes being applied to decisions. Additionally, 

key performance criteria are often ambiguously defined leading to further complexity in 

the decision-making process. Therefore, multi-criteria decision making is an effective
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methodology to generate and assess alternative energy portfolio architectures. This paper 

develops an energy transition decision methodology through the use of computational 

intelligence as part of a systems software platform.

2. LITERATURE REVIEW

Most experts contend that a transition away from fossil fuel dependence and 

toward renewable energy generation is imperative. However, energy planning is a 

complex process that varies considerably and must be based on more than cost 

considerations. The process is comprised of multiple actors and criteria that are 

adversarial in nature. Georgopoulou et al. [6] presented a methodology that captured 

these dynamics by accounting for actors, selection criteria, alternative strategies, and 

subsequent analysis. Pohekar and Ramachandran [7] compiled one of the earliest reviews 

of state-of-the-art approaches and found common trends regarding methodologies used. 

The most commonly cited methods were multi-objective, multi-attribute utility theory 

(MAUT), analytical hierarchy process (AHP), preference ranking organization method 

for enrichment evaluation (PROMETHEE), elimination and choice translating reality 

(ELECTRE), and technique for order preference by similarity to ideal solutions 

(TOPSIS).

Each method has unique characteristics and strengths that make it more suitable 

than the others depending on the context. ELECTRE and PROMETHEE are outranking 

methods [8]. ELECTRE is based on the logic that alternatives should be comparably
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favorable when measured across all key performance criteria [8]-[10]. PROMETHEE 

conducts a pairwise comparison for each criterion and similar to ELECTRE provides an 

index value to determine the ranking of alternatives [8], [9], [11]. TOPSIS is a method 

that is based on the ranking of alternatives based on shortest distance from the positive 

ideal solution and longest distance from the negative ideal solution [8], [9], [12]. AHP 

decomposes a complex problem into a hierarchy with alternatives at the bottom and a 

goal at the top. Pair-wise comparison is then conducted for components at each level to 

determine preference based on components on the preceding level [7]-[9]. MAUT comes 

from utility theory where the derivation of a multi-attribute utility function is based on 

utility functions of individual attributes. This method accounts for decision maker 

preference in solution delivery [8]-[14]. Regardless of the methodology chosen, most 

multi-criteria decision-making methods follow a similar pattern [7]. Critical decisions are 

made regarding system boundary, model representation, and evaluation. Energy planning 

is seldom based on discrete, crisp values.

It is imperative to account for the “fuzziness” in the trade space for criteria based 

upon key stakeholder input. This is accomplished by enhancing the basic multi-criteria 

decision approach through inclusion of computational intelligence approaches, namely 

fuzzy sets and genetic algorithms, such as the methodology presented by Ashiku and 

Dagli [14]. Their approach is modified for the context described in this paper and is 

outlined in greater detail in the following section.
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3. METHODOLOGY

Formulation of options and selection of criteria constitute the initial steps for 

developing the model proposed for this work. The scope of this study is constrained to 

electricity supply and therefore excludes petroleum as it is responsible for only trace 

amounts of electricity generation. Options and criteria correspond to systems and key 

performance attributes, respectively. Systems provide necessary capabilities that result in 

the emergence of primary value delivery, namely electricity supply. The capabilities for 

this model are supply, generate, step up, transmit, step down, and distribute. Constituent 

systems were chosen to represent these capabilities and include natural resources, 

electricity generating technologies, step up transformers, transmission lines, step down 

transformers, and distribution lines. Key performance attributes were chosen in-line with 

triple-bottom-line criteria from the field of sustainable development in the context of 

energy planning. These attributes include efficiency, affordability, eco-friendly, 

reliability, and acceptability. Each system provides unique value to the system of systems 

that is measured by characteristic values that aggregate to compute key performance 

attributes and are represented by the following equations and descriptions.

System and Interfaces are represented by equation (1) and (2) where X denotes a 

candidate solution’s chromosomal form [14]. Chromosomes are explained further when 

representation is presented. Note that alpha, beta, gamma, and delta are constants. These 

values represent interface benefit (delta) and internal weighting schemes used for 

computing key performance attributes (alpha, beta, and gamma).
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s ( x ,  0  = {1 i f  t h e  i t h  s y s t e m  is s e l e c t e d  in  X  
0 o th e r w i s e

(1)

l ( X , i , j ) = {
1 i f  t h e  i t h  a n d  j t h  s y s t e m s  h a v e  a n  i n t e r f a c e  in  X  

0 o th e r w i s e
(2)

Efficiency: measure of efficiency lost in generation, transmission, and distribution 

processes [15][16].

Ns Ns

1 - ^ ,  S ( X ,  i ') C e f f i c i e n t , i  n i i + s s v j w j j ) ]

i j (3)

Affordability: measure of costs associated with system development, operation, and 

interface [17][18].

Ns Ns

1 -  ^^^S(X,i')[U CdevCost,i + PC0pscost,i +  ̂' I(X, i , j>) (CiFcostj')']
i=1 j= 1 ± i (4)

Eco-friendly: measure of environmental impact over life cycle (carbon, land, and water 

footprints) [8].

Ns

I
i

1 S (X., l ) ( aCGHG,i + PCw a te r C o n ser ve , i  +
Ns

Y ^ LandConserve , i) n [1 + 8 S ( X , j ) l ( X , i , j ) ]
j

(5)
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Reliability: measure of resource availability and subsequent dispatchable degree of 

electricity generating system [19].

Ns Ns

^  S(X ,  Q ( a C a v a i l a b l e i  + pcd i s p a t c h i + S S ( X , j ) I ( X , i , j ) ]

i j (6)

Acceptability: measure of jobs associated with system [20].

Ns Ns

^  S(X ,  i)Cj o b s  i n  + 5 S ( X , j ) l ( X ,  i , j ) ]  (7)
i j

Selection of decision process is modelled after the methodology presented by 

[14]. They utilize SoS Explorer, a publicly available systems architecting tool, to 

generate system of systems meta-architectures as a graph using computational 

intelligence [21]. Selected systems are colored nodes and interfaces between systems are 

represented by edges. The graphical user interface of the software includes specification 

of systems, system characteristics denoted by measured values, capabilities provided by 

the system, possible interfaces between systems, computed key performance attribute 

values, and the overall performance of the architecture displayed. Key performance 

attributes and overall value are determined using two computational intelligence
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techniques that are imbedded within the SoS Explorer Software: fuzzy logic and genetic 

algorithm.

Each key performance attribute is represented by a universe of discourse from 0 

to 100, where lower values correspond to undesirable performance. A key tenet of fuzzy 

logic is the allowance of overlapping membership functions and rules that result in 

multiple evaluation scoring regions. This procedure is conducted within MATLAB’s 

type-1 Fuzzy Logic toolbox where a fuzzy inference system is created. The membership 

function for eco-friendly is presented in Figure 1. A similar function exists for each of the 

other KPAs and overall architecture assessment.

Figure 1. Eco-friendly Membership Function

Discrete values for key performance attributes are sent to the fuzzy inference 

system to undergo “fuzzifying” in accordance with the membership functions and rules 

governed by linguistic relationships (AND or OR) between attributes. These rules are 

presented in an IF-THEN format that corresponds to stakeholder input. For example, if
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affordability is greatly compromised over eco-friendly, then overall is poor. Aggregation 

is then conducted based on the rules and then “defuzzified” using the centroid method to 

determine a discrete architecture fitness value. The fuzzy inference system is then 

integrated with a single objective genetic algorithm. A flow chart depicting this process 

can be found in Figure 3. Potential architectures are represented as chromosomes 

denoted by X in equation (1) and (2) and alphabet size of two (0 for not selected and 1 for 

selected). An example of chromosomal representation can be found in Figure 4.

Figure 2. Integrated Genetic Algorithm and Fuzzy Inference System Flow Chart [14]

Figure 3. Partial Representation of Chromosome [14]
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4. RESULTS AND DISCUSSION

SoS Explorer uses a single objective genetic algorithm coupled with fuzzy 

inference system to generate meta-architecture(s). Note that architecture is plural in that 

the potential for multiple architectures can be generated that have different KPA scores, 

but the same overall score. The potential solution with the highest overall score was 

chosen and will be discussed further in this section. Figure 5 presents the key 

performance attribute and overall performance objective values of the selected meta

architecture which is presented graphically in Figure 6. Parameters used for the single 

objective genetic algorithm can be found in the upper left-hand corner of Figure 6. The 

meta-architecture selected is the result of constituent systems and interfaces selected, key 

performance attribute selection, equation formulation, system characteristic values, and 

context-specific constraints. Multiple constraints governed the selection of this solution. 

First, two independent-of-context constraints were used that ensured feasibility of 

potential solutions (i.e. interfaces must be specified if they are to be represented) and 

added constituent systems and interfaces so that every identified capability was featured.

Additionally, constraints were developed that ensured upstream and downstream systems 

were active (i.e. if a hydropower system is chosen, then the water system must also be 

chosen and have an active interface).
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Figure 4. Key Performance Attribute and Overall Performance Score [21]

Figure 5. Electricity Supply System-of-Systems Meta-Architecture [21]

Performance across the key performance attributes demonstrates the trade space 

that exists for this specific use-context. Affordability achieves the highest score, 74.98. 

Further, reliability, eco-friendly, and efficiency all achieve scores greater than 50. Lastly,
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acceptability achieves the lowest score, 48.08. These composite scores aggregate further 

to an overall score of 74.56. These trade-offs are the result of the fuzzy inference system 

rules selected to represent the complex relationship between each of these attributes. As 

mentioned before, colored nodes represent chosen systems and edges represent an 

interface between two systems. Several systems and interfaces were not chosen because 

they did not add value to the meta-architecture. For example: lignite, subbituminous, and 

anthracite (different grades of coal) were not chosen because bituminous represented the 

greatest performance across the key performance attributes. The final solution is 

potentially representative of future state electricity portfolios. Natural gas and coal-fired 

power plants are active systems while Nuclear is not. Most coal-fired power plants are 

scheduled for decommissioning in the coming years and others are being converted to 

natural gas. Lastly, almost every renewable energy technology was chosen. This is 

largely due to the system boundary developed for the problem resulting in certain costs 

not being accounted for. In this instance, all power plants were taken “as-built” meaning 

the life cycles associated with the construction process is not reflected in model 

assessment. However, renewable energy systems are dependent on rare earth elements 

that possess complex supply systems that should be captured in future model 

development and improvement.
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5. CONCLUSION

Multi-criteria decision making was identified as a useful approach for handling 

the complexity in the energy planning and selection process. A review of commonly cited 

multi-criteria decision-making methods in the energy planning literature were reviewed 

and determined to be effective for ranking alternatives, but not for determining crisp 

values of complete system of systems architectures. To address this gap, computational 

intelligence techniques were presented, namely fuzzy logic and genetic algorithms. These 

techniques captured the ambiguity among and between key performance attributes and 

generated an optimal architecture. The findings presented here consist of a suite of useful 

information for energy decision makers and policy professionals. First, the optimal meta

architecture reviewed is potentially representative of future state-level electricity 

portfolios: coal, natural gas, hydro, solar, and wind are all present. However, geothermal 

is present and nuclear is not. This selection is representative of the shifting trends in 

energy portfolio management as nuclear is not often mentioned in future energy scenarios 

due to its tenuous relationship with the public. Second, decision makers can manipulate 

the systems and interfaces selected to determine how well their portfolio performs in 

comparison. Taken together, this methodology provides energy decision makers and 

policy professionals with a useful tool and subsequent findings to further inform their 

decision making.

Model findings are moderately reflective of actual energy portfolios at the state- 

level and deviations from reality can largely be attributed to limitations and addressing
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them constitutes future work as follows. Characteristic values for constituent systems 

were chosen that closely reflect the actual systems but are not based on any specific 

literature or governmental documents. Rules that govern the key performance attribute 

values were determined in response to the literature but may be changed to better fit a 

different context and generate different architectures as a result. Energy systems were 

considered post-construction. This distinction is relevant as supply challenges exist for 

the rare earth elements that several renewable energy systems depend on. Greenhouse 

gases were the only waste generated within the system boundary. Combustion by

products have unique life cycles that if represented would enrich the findings presented 

here. Policy disruptions, such as tax breaks or incentives, could be included to help 

determine the effects of their implementation. Lastly, time is not directly represented in 

the model. A dynamic architecture model could be formulated that captures the 

decommissioning of legacy systems and the selection, construction, and operation of 

replacements over their respective lifetimes. Addressing these limitations presents ample 

potential for future research that will improve the model’s effectiveness and the ability of 

energy planners and policy professionals to begin transitioning their energy portfolios 

toward a renewable and sustainable future.
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ABSTRACT

Energy portfolios are overwhelmingly dependent on fossil fuel resources that 

perpetuate the consequences associated with climate change. Therefore, it is imperative 

to transition to more renewable alternatives to limit further harm to the environment. This 

study presents a univariate time series prediction model that evaluates sustainability 

outcomes of partial energy transitions. Future electricity generation at the state-level is 

predicted using exponential smoothing and autoregressive integrated moving average 

(ARIMA). The best prediction results are then used as an input for a sustainability 

assessment of a proposed transition by calculating carbon, water, land, and cost 

footprints. Missouri, USA was selected as a model testbed due to its dependence on coal. 

Of the time series methods, ARIMA exhibited the best performance and was used to 

predict annual electricity generation over a 10-year period. The proposed transition 

consisted of a one-percent annual decrease of coal’s portfolio share to be replaced with an 

equal share of solar and wind supply. The sustainability outcomes of the transition 

demonstrate decreases in carbon and water footprints but increases in land and cost
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footprints. Decision makers can use the results presented here to better inform strategic 

provisioning of critical resources in the context of proposed energy transitions.

1. INTRODUCTION

Fossil fuel resources provide most of the world’s energy and subsequent carbon 

dioxide emissions [1,2]. In 1990, fossil fuels made up more than eighty-six percent of the 

total primary energy supply of the United States and its combustion resulted in more than 

four thousand eight hundred megatons of carbon dioxide emissions. By 2015, energy 

demands increased by almost an additional thirteen percent with carbon dioxide 

emissions increasing by more than an additional two and a half percent. During this time, 

renewables increased by less than two percent. When excluding biofuels and waste-to- 

energy sources, this increase is less than one percent. These findings demonstrate that 

portfolios are shifting, but not toward renewables resulting in an increase in already high 

carbon dioxide emissions. If this trend continues, the consequences associated with 

climate change will be further exacerbated [3]. To minimize further harm to the 

environment, fossil fuel dependent energy portfolios, especially those relying on coal, 

must be transitioned to renewable alternatives.

Modern energy transitions are defined by a timely shift toward energy systems 

that address global energy challenges [4]. Transitions have received widespread scholarly 

attention from several perspectives such as socio-technical [5-8], existing system 

considerations [9-11], and environmental reform and governance [12-14], among others.
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An effective approach in quantitative studies is the use of time series forecasting methods 

to inform transition decision making. Energy forecasts primarily consist of three temporal 

horizons: short-, medium-, and long-term [15]. Short-term forecasts encompass studies 

from an hour to a week [16,17]. Medium-term forecasts include a month to five years 

[18-20]. Long-term forecasts cover periods from five to 20 years [21-23]. Forecasting is 

a data-driven method that relies on statistical procedures to derive relationships between 

variables [24]. Standard data-driven forecasting models include moving and weighted- 

moving average, simple exponential smoothing, Holt’s Model, and Damped Holt’s 

Model [25]. More advanced methods include autoregressive moving average (ARMA) 

[26,27], autoregressive integrated moving average (ARIMA) [28,29], and artificial neural 

networks [30]. A commonality among these models is the ability to monitor change in 

variables between time steps. This is a useful feature for decision makers as it provides 

time-dependent information regarding the prediction variable and other performance 

characteristics.

This research extends the conventional assessment of energy transitions by 

providing a univariate time series prediction of annual electricity generation that monitors 

changes in life cycle sustainability performance using a footprint approach. This research 

addresses a gap in the literature with respect to standard analysis methods. Standard 

comparative analysis currently consists only of weighing cost against emission reductions 

over the life cycle of energy sources [31]. The work presented in this research addresses 

the gap by conducting an evaluation that provides a more thorough determination of the 

relationship between energy source selection and sustainability impact using a footprint
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approach [32]. A footprint approach can be conducted by accounting for carbon (g 

CO2/kWh), water (m3/kWh), land (m2/kWh), and levelized cost (cents/kWh) over the 

duration of the energy source life cycle in a time series transition context.

Missouri was selected as a model test bed to demonstrate methodological efficacy 

due to the state’s dependency on coal. The proposed model is a data-driven approach that 

uses annual state-level electricity portfolio data from 2001 to 2019 to build a time series 

prediction of electricity generation. This prediction is then used as an input for a 

sustainability assessment that monitors metric performance of a proposed transition. The 

scenario presented consists of a decrease of coal’s portfolio share that is subsequently 

replaced by renewable alternatives, solar and wind. By including life cycle measurements 

of sustainability performance, energy decision makers are providing socially responsible 

stewardship of transition outcomes. Further, these outcomes evaluate a proposed 

transition in the context of natural resource consumption and emissions production. 

Energy decision makers can use these results to better guide allocation of resources and 

to align energy transition strategies with sustainability goals beyond the "do no harm" 

threshold [33]. The following section presents the data used, time series methods applied, 

and mechanics of the energy transition.
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2. MATERIALS AND METHODS

2.1. DATA

Historical data is required to produce a time series prediction. The Energy 

Information Administration (EIA) maintains annual and monthly state-level energy 

portfolio data. Figure 1 displays annual electricity generation for Missouri from 2001 to 

2019 [34]. There are two features of the data that determinate the selection of an 

appropriate forecasting method. First, the data does not exhibit trend or seasonality. This 

eliminates methods such as Holt’s Model, Holt-Winter’s Model, and variations therein 

from consideration. Second, the sample size is small consisting of nineteen data points. 

Small sample sizes limit the application of more sophisticated methods that generally 

return results that are more accurate. However, exponential smoothing [35,36] and 

autoregressive integrated moving average (ARIMA) [37,38] are two effective approaches 

for generating time series predictions for energy datasets given these constraints. Table 1 

provides sustainability indicator values converted to kW-hr to be consistent with the time 

series prediction [32].

2.2. TIME SERIES PREDICTION OF ELECTRICITY GENERATION

Using historical data, a univariate time series prediction of annual electricity 

generation for Missouri was created. The Forecast Library in r was used to fit exponential 

smoothing and ARIMA models to the data [39]. Exponential smoothing models can be 

classified using a three-letter convention [40]. The letters denote error type, trend, and
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seasonality, respectively. There are three options for each of the cases: N (none), A 

(additive), and M (multiplicative). Similarly, ARIMA also follows a three-letter scheme. 

The nomenclature refers to autoregressive terms, non-seasonal differences required for 

stationarity, and lagged forecast errors in the prediction equation. In this instance, the 

exponential smoothing (A, N, N) and ARIMA models (1, 0, 0) were selected. This class 

of exponential smoothing is often referred to as the simple version.

Annual Electricity Generation, Missouri 
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Figure 1. Total Electricity Generation, Missouri 2001-2019
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Table 1. Sustainability Indicators of Various Energy Types

E n e rg y  T y p e
C a rb o n  F o o tp r in t  

(g  C O 2/k W h )
W a te r  F o o tp r in t  

(m 3/k W h )
L a n d  F o o tp r in t  

(m 2/k W h )
C o s t

(c e n ts /k W h )

C o a l 8.34 x 102 -  1.03 x 103 5.40 x 10-4 -  2.09 x 10-3 8.3 x 10-5 -  5.7 x 10-4 3.77-5.85

S o la r

P h o to v o l ta ic
1.25 x 101 -  1.04 x 102 1.51 x 10-4 7.04 x 10-4 -  1.76 x 10-3

1.09 x 101
2.34 x 101

W in d :
o n s h o r e

6.90 -  1.45 x 101 3.60 x 10-6 2.17 x 10-3 -  2.64 x 10-3 4.16-5.72

Simple exponential smoothing uses a smoothing constant, alpha, to attach a 

unique weight to each observation where weights decrease exponentially the further the 

data reference point is from the prediction. A smoothing constant of one was selected 

using the simplex method by minimizing the Corrected Akaike Information Criterion 

(AICc) which is presented later. This criterion is also used to select the ARIMA model. 

The component form of simple exponential Energies 2021, 14, 141 4 of 14 smoothing is 

given in Equations (1) and (2) [25]. Equation (1) presents the level forecast and Equation 

(2) provides the smoothing procedure.

yT+h — Yt

It — ayt + (1 -  a)!t- i

(1)

(2)

s.t. 0 < a  < 1
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Mathematical notation for ARIMA models is provided in Equation (3) [25]. The 

class of ARIMA model that minimized AICc is referred to as the first-order 

autoregressive model or ARIMA (1, 0, 0). In this case, predictions are calculated as a 

function of the previous value, slope coefficient phi, and constant mu. Slope coefficient 

and constant terms are provided in Table 2. It can be observed that the autoregressive 

term is 0.7932 and the constant term is 84,508. Theta corresponds to the moving average 

portion of the model. For this class of ARIMA models, there is no moving average 

component, and therefore it is not provided.

(1  -  -  •  0 pf l P ) ( l  -  B) d y t  = c + ( l  + 0 1B + -  0 q B^)e t  (3)

Where,

B = backshift operator, 

c = K  i - 0 i - --0 p) ,

p  =  ( i  -  B)d y  t

Equations for AIC and AICc for ARIMA models are provided in Equations (4) 

and (5) [25]. Similar equations for exponential triple smoothing models can be found at 

the accompanying reference. L is the likelihood of the data and k is a binary variable that 

equals one if there is an intercept. AICc is a modified version of AIC that provides a bias 

correction for smaller datasets as it corrects for the sample size with T.
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Table 2. ARIMA (1,0,0) COEFFICIENTS

0 p

ARIMA

(1,0,0) 0.7932 84,508

Standard

Error 0.1547 3,802

A I C  =  - 2  L o g ( L )  +  2(p +  q  +  k  +  1) (4)

2(p + a  +  k  +  l ) (p  +  q  +  k  +  2 )
A I C c =  A I C  +  — — \ 7 ^----------

c T - p - q - k - 2
(5)

The method with the best performance across these summary statistics is selected as the 

input for the sustainability assessment.

2.3. MECHANICS OF ENERGY TRANSITION

Equation 6 demonstrates how the total electricity generation prediction (Elt) is 

partitioned into fulfillment by a given electricity source. A coefficient (X) corresponds to 

the most recently reported portfolio share for that electricity source.
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E l i  — X i E l t  (6)

W here X represents initial portfolio share for electricity source i

The proposed transition will consist of decreasing coal’s portfolio share (Elc) and 

replacing it with a mix of wind (Elw) and solar energy (Els). Equations 7-9 provide 

transition mechanics. A proportional rate of change is provided to determine allocation of 

newly available portfolio between solar and wind.

E l c — E l c 0 -  r t E l t  (7)

W here r = annual rate of change, 

t = time

E l s — E l s ,o +  y r t E l t (8)

W here y  = proportional rate of change applied

E l w  — E l w 0  +  ( 1 -  y ) r t E l t  (9)

Sustainability of a proposed transition can be summarized by equation 10. A 

given energy source’s portfolio share is first determined using equation 6. Next, the 

electricity provided by a given source is then multiplied by the corresponding 

sustainability indicator value. A summation of each of these product operations is then 

conducted to determine the specific footprint value. The following section provides 

results generated using this methodology.
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3
F t  =  ^ F g ,i E l i

i =1

Where t = footprint type, 
g = footprint rate associated with energy source i

(10)

3. RESULTS

This research consists of three contributions: (1) Development and Comparison of 

Time Series Forecasting Methods, (2) Sustainability Evaluation of Proposed Electricity 

Portfolio Transition, and (3) Comparison of Different Fulfillment Strategies. Time series 

forecasting methods possess inherent uncertainty and measures therein are provided when 

appropriate.

3.1. DEVELOPMENT AND COMPARISON OF TIME SERIES FORECASTING 
METHODS

Using the Forecast Library in r, simple exponential smoothing and ARIMA 

models were fit to the annual state-level electricity generation dataset. The results of this 

procedure are presented graphically in Figure 2. Actual data is denoted in blue, simple 

exponential smoothing in orange, and ARIMA in grey. ETS stands for exponential triple 

smoothing of which simple exponential smoothing is a variant. It can be observed that the 

simple exponential smoothing forecast selects the most recent observation as the 

prediction for the current time step. The ARIMA model is governed by different
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equations, but ultimately yields similar results. However, superior performance is 

difficult to determine upon visual inspection alone.

AICc values for each of the models are presented in Table 3. A smaller value 

corresponds to a model that is better fit to the data. The ARIMA model slightly 

outperforms simple exponential smoothing for this dataset. Additional assessment is 

required before the optimal model can be determined.

Forecasting Model Comparison

70,000
r - i r \ i m ' 3 - L n c o r ' - o o c n o r - i r \ i m ' 3 - L n c o
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Figure 2. Forecasting Model Comparison

100.000

An alternative approach that augments visual inspection and summary statistical 

analysis is the evaluation of prediction intervals for each of the models. Figure 3 

illustrates a 10-year prediction using each of the models. One shortcoming of simple
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exponential smoothing is that the prediction is given as a ‘flat’ value. This behavior is 

unlikely to be representative of future energy generation scenarios. Alternatively, the 

ARIMA model trends upward before flattening out. Figures 4 and 5 investigate the 95% 

prediction interval for simple exponential smoothing and ARIMA, respectively. In Figure 

4, the prediction interval continuously expands as the forecast horizon increases. The 

prediction interval width at the final forecasted value is almost 50,000 (thousand MWh). 

Alternatively, ARIMA’s prediction interval provided in Figure 5 provides is greater than 

24,000 (thousand MWh). This represents a significant reduction in uncertainty when 

compared to the simple exponential smoothing model.

Table 3. AICc for Time Series Prediction Models

Model AICc

ETS (A,N,N) 375.56

ARIMA

(1,0,0) 373.64
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Forecasting Model Comparison with Predictions
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Figure 3. Forecasting Model Comparison with Predictions
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Actual Data vs. ARIMA with 95% Prediction 
Interval
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Figure 5. Actual Data vs. ARIMA with 95% Prediction Interval

To further demonstrate the difference between the two models, prediction interval 

width is plotted for the forecast horizon in Figure 6.

The ARIMA model is demonstrably superior when compared to the simple 

exponential smoothing model in terms of reduction in uncertainty. This observation 

coupled with the marginally better AICc value and non-flattening prediction behavior 

justifies the selection of the ARIMA model as an input for the sustainability assessment 

presented in the next section.
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95% Prediction Interval Comparison
60,000

50,000

40,000

30,000

20,000

10,000

Year

Upper 95% PI - Lower 95% PI (ETS) Upper 95% PI - Lower 95% PI (ARIMA)

0

Figure 6. 95% Prediction Interval Width Comparison

3.2. SUSTAINABILITY ASSESSMENT OF PROPOSED ELECTRICITY 
PORTFOLIO TRANSITION

Fitting a time series model to volatile data is a complex task. This is demonstrated 

by the summary statistic performance of both models and the uncertainty present denoted 

by the prediction interval widths. Initial electricity source portfolio shares are provided in 

Table 4. Sustainability assessment results are given for both prediction intervals and 

model predictions in Table 5.

The 10-year percentage change for each of the footprints is provided in a min- 

max format. This is due to the data being provided in range format. Minimum values 

correspond to best-case performance for each of the footprint categories. Alternatively, 

maximum values provide a worst-case scenario. The upper 95 percent prediction interval
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scenario reflects a substantive increase in electricity from 2020 to 2029. This increase in 

electricity generation offsets the sustainability improvements where only carbon footprint 

is reduced in both minimum and maximum cases. Except for water’s maximum case, 

each of the other footprints increases in this scenario. For the ARIMA prediction, carbon 

and water footprints decrease. Land and cost footprints increase significantly. This is due 

to the higher values reported for the renewable technologies. The best performance is 

achieved for the lower 95% prediction interval. As electricity generation is decreased, the 

sustainability improvement will be more pronounced. Similarly, to the ARIMA 

prediction performance, carbon and water decrease while land and cost increase. 

However, each of the footprints is decreased considerably from the model’s prediction. 

This finding suggests that the best sustainability performance will be achieved in the 

event that electricity generation decreases and a transition to renewable alternatives is 

conducted in a timely manner.

Table 4. Initial Model Configuration

Electricity Initial Portfolio Share

Source (Xi)

Coal 72.82%

Wind 3.76%

Solar 0.52%
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Table 5. Sustainability Assessment Results

Footprint Simulation Results

10-year % Change (Min, Max) Carbon Water Land Cost

Upper 95% PI (-1.83, -1.16) (0.07, -1.46) (97.82, 42.68) (24.70, 30.79)

Model (-6.12, -5.48) (-4.31, -5.77) (89.17, 36.44) (19.24, 25.07)

Lower 95% PI (-11.32, -10.71) (-9.61, -10.99) (78.69, 28.88) (12.64, 18.15)

The results presented in Table 5 correspond to the scenario where coal is replaced 

in equal measure by solar and wind. It is beneficial to investigate the outcomes of 

alternative fulfillment strategies in the context of sustainability assessment. A comparison 

is provided in the next section

3.3. COMPARISON OF DIFFERENT FULFILLMENT STRATEGIES

Table 6 provides sustainability assessment results for the model prediction using 

different fulfillment strategies. Gamma is the variable that determines the behavior of the 

loop used in the transition model. The solar-only scenario is denoted by gamma being 

equal to one. Alternatively, gamma equals zero for the wind-only strategy. Sustainability 

performance is provided in 0.2 increments for gamma. The broader implications of the 

results presented here are discussed in the next section.
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Table 6. Sustainability Evaluation for Different Fulfillment Strategies

C a r b o n  F o o tp r in t W a te r  F o o tp r in t

L a n d

F o o tp r in t

C o s t

F o o tp r in t

Y M in M a x M in M a x M in M a x M in M a x

1

(so la r -o n ly )
-6.07% -4.89% -2.46% -5.29% 46.61% 28.72% 29.84% 42.60%

0.8 -6.09% -5.12% -3.20% -5.48% 64.11% 31.82% 25.63% 35.67%

0.6 -6.11% -5.36% -3.94% -5.68% 80.97% 34.90% 21.38% 28.63%

0.5 -6.12% -5.48% -4.31% -5.77% 89.17% 36.44% 19.24% 25.07%

0 .4 -6.13% -5.60% -4.68% -5.87% 97.21% 37.97% 17.10% 21.49%

0.2 -6.15% -5.84% -5.42% -6.06% 112.87% 41.01% 12.77% 14.24%

0

(w in d -o n ly )
-6.16% -6.07% -6.16% -6.25% 127.98% 44.03% 8.41% 6.87%

4. DISCUSSION

Two time series prediction methods, ARIMA and exponential smoothing, were 

used to develop a prediction of Missouri’s annual electricity generation. ARIMA 

exhibited superior performance measured across key summary statistics. Given these 

findings, a 10-year prediction of electricity generation was generated. The result of this 

procedure was used as an input for the sustainability assessment model. Initial portfolio
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share values for coal, solar, and wind were determined and used for model initialization. 

Coal’s initial share (72.82%) was decreased at a rate of one percent per year. Therefore, 

at the end of the simulation coal accounted for ten percent less of the portfolio. Solar 

(0.52%) and wind (3.76%) accounted for this decrease in portfolio share in equal 

measure. A ten-percent decrease in coal’s portfolio share resulted in a carbon footprint 

decrease (-6.12, -5.48) and water footprint decrease (-4.31, -5.77). Alternatively, land 

footprint increased (89.17, 36.44) and levelized cost increased (19.24, 25.07). Note that 

change in footprint is presented as a range of percentages instead of a discrete value. This 

is due to the literature reporting the values as a range derived from longitudinal studies. 

As reported in Table 1, some energy sources possess a larger range of values for a given 

indicator. Table 5 was generated to demonstrate the proposed transition’s sensitivity to 

both the range of sustainability values used and the uncertainty inherent in the model 

prediction. Except for water footprint, each of the energy sources exhibit a range of 

values for each of the energy sources considered. Coal possesses a larger carbon and 

water footprint. However, coal has the smallest land footprint and a comparably low-cost 

footprint. The magnitude of these differences is best understood in the context of 

scenarios presented in Table 5. The upper prediction interval demonstrated marginal 

improvement in carbon and water footprints and large increases to both land and cost 

footprints. This can be attributed to the increase in generation required not effectively 

offsetting coal’s decreased portfolio share. It can be observed that as electricity 

generation decreased, sustainability outcomes improved. As less energy is generated, the 

gains from decreasing coal’s portfolio share will be more pronounced. Less electricity is
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generated in this case and more of it is being fulfilled by renewable sources. Therefore, 

the lowest prediction interval returns the best sustainability performance. For this 

research, an equal share of newly available portfolio was allocated to both wind and 

solar. Table 6 provides simulation results for different fulfillment strategies using the 

model prediction. The wind-only strategy achieves the best results for carbon, water, and 

cost footprints. Land footprint, however, is much larger and represents the worst 

performance. Alternatively, solar outperforms wind in land footprint performance alone. 

Intermediate gamma values demonstrate that sustainability performance improves as 

gamma is decreased. However, an optimal gamma value is not presented here as it is 

subject to derivation of a weighting scheme for each of the indicators consistent with 

stakeholder input. The sustainability assessment results presented here underscore a few 

key considerations for energy decision makers tasked with transitioning current 

fulfillment strategies. First, a transition to existing renewable energy alternatives is not a 

panacea for climate change mitigation. Where renewables demonstrate positive 

performance in carbon and water footprint results, they perform negatively for land and 

cost. This is important to capture as sustainability involves more than just the relationship 

between carbon emissions and cost. Second, the impact of the sustainability performance 

presented here is not confined to the state of Missouri. Energy supply systems for both 

fossil fuel and renewable sources are national, and in some cases, global. Therefore, local 

energy decision making has global consequences. Lastly, the lower ninety-five percent 

prediction interval exhibited the best sustainability performance. This finding 

demonstrates the effectiveness of a strategy that couples a transition to renewables and
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improvements in technological efficiency that reduce electricity generation. These 

findings are subject to some limitations that provide ample room for future research. The 

time series model predicts upward trending behavior that eventually flattens. Future 

values are unlikely to exhibit this behavior given the volatility of the historical data. 

Exploration of other prediction methods and use of higher resolution temporal data might 

generate more accurate and dependable results. Selection of an optimal gamma value 

should be determined with input from key stakeholders. This can be accomplished 

through the implementation of a Delphi Method and subsequent analysis. A similar 

stakeholder engagement procedure could also be followed to determine which scenario 

presented in Table 6 is chosen. If either of the upper intervals are used, then the outcome 

could be an increase in the net export of electricity or idle capacity installed. 

Alternatively, if the lower intervals are used then importing electricity might be required. 

The sustainability assessment model can be converted into a system dynamics model by 

incorporating additional feedback loops. At present, the rate of change constitutes the 

only feedback mechanism in the model. Candidate feedback loops include different 

policy effects, relationships between sustainability indicators, and response to system 

disruptions, among others. Further, the holistic sustainability approach could be extended 

to account for other metrics such as dispatchability, resilience, and job creation. The 

range of footprint values can be further specified by deploying state-specific data 

gathering efforts. If accomplished, the variability of findings would be decreased 

resulting in an improved model. Additionally, evaluation of other renewable energy 

technologies including distributed energy resources should be conducted. This would



87

include the analysis of alternative energy mix scenarios subject to data availability. Solar 

and wind power were selected here given their comparably large share of Missouri’s 

renewable electricity portfolio. Lastly, an optimal implementation plan should be 

provided given a proposed energy transition. In the following section, a summary of the 

research is provided with concluding remarks.

5. CONCLUSION

Global energy portfolios are dependent on fossil fuel resources. This dependence 

results in the continuous emission of greenhouse gases that harm the environment. 

Beyond these concerns, energy sources also have an impact on other natural resources 

such as land and water. Therefore, energy decision makers must transition current 

portfolios to renewable alternatives while monitoring unintended sustainability impacts. 

The model presented provides a univariate time series prediction of annual electricity 

generation using publicly available data. The method exhibiting the best performance, 

ARIMA, was then used as an input for the sustainability assessment model that monitors 

the performance of a proposed transition using a footprint approach. Using Missouri as a 

testbed, coal’s share of the portfolio was decreased by one percent annually and replaced 

with an equal share of wind and solar power over a ten-year period. Model findings 

demonstrate that such a transition would decrease carbon and water footprints while 

increasing land and cost footprints. However, the prediction intervals underscore the 

range of sustainability outcomes. The best performance occurs if annual electricity
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generation decreases. This finding affects several aspects of management and 

governance. Energy decision makers can change fulfillment strategies, but not antecedent 

demand behavior. Electricity and, more broadly, energy serve a crucial role in industrial 

processes. Therefore, sustainability performance like the approach provided here should 

guide product design and supply chain configuration. Practitioners can use these results 

to prioritize the sustainable procurement of raw materials through to more preferred end- 

of-life management techniques such as reuse [41]. Additionally, research and 

development efforts should design product architectures with improved efficiency. 

Governments can encourage such behavior through policy incentivization. Subsequently, 

energy use, and thus demand for electricity generation would decrease resulting in 

improved sustainability performance. Various decision makers are engaged in energy 

transitions and sustainability improvements. Policy professionals are tasked with passing 

laws that encourage the adoption of renewable energy technologies. Business entities 

should bring products to market that perform well on sustainability measures beyond 

profit. Lastly, energy decision makers must rapidly transition energy portfolios to 

renewable alternatives to limit further harm to the environment. The results presented 

here provide decision makers with a quantitative guide to evaluate the sustainability of 

proposed energy transition strategies more thoroughly.
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SECTION

2. CONCLUSION AND FUTURE WORK

The work in this dissertation focuses on the development of tools that improve 

infrastructure system planning effectiveness by using trend extraction and data 

visualization techniques. Transportation and energy infrastructures were considered due 

to their influence on the basic functioning of society. Transportation infrastructure, 

specifically road networks, are vulnerable to flood events. Traffic decision makers are 

tasked with deploying limited resources rapidly if a flood occurs. A necessary first step in 

effective modeling is investigating the relevant influencing factors for flood events.

These findings were then used to form the basis for a prediction and visualization model 

based on key river behavior characteristics. Energy infrastructure must be transitioned 

toward renewable alternatives to mitigate the consequences associated with climate 

change. Energy decision makers are tasked with replacing fossil fuel resources with 

renewable alternatives. Determining the optimal configuration of energy portfolios is a 

complex procedure that is dependent on several factors. The research in this dissertation 

uses fuzzy logic and a genetic algorithm to capture the trade space between competing 

objectives and stakeholder objectives. Energy transitions are a temporal process. Time 

series models and a sustainability assessment tool were developed to provide decision 

makers with a more thorough understanding of the results associacted with a proposed
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transition. Collectively, the tools developed can aid infrastructure decision makers in the 

transportation and energy domains.

Publication one in this dissertation developed a State-of-the-Art matrix to 

organize the results of a literature survey on flood influencing factors. Eighteen articles 

were reviewed and the results demonstrated that a consistent set of factors were regularly 

used as model inputs: slope, stream power index, topographic wetness index, digital 

elevation model, curvature, elevation, distance from river, soil type, rainfall, and 

normalized difference vegetation index. Further investigation of publicly available data 

sources such as the National Oceanic and Atmospheric Adminstration’s (NOAA) 

hydrograph data revealed that historic data on river behavior is monitored and tied to 

various flood event stages. These findings provide the basis to procure necessary data to 

begin modeling efforts. Additionally, if the data is not currently available it provides 

governmental agencies with guidance on data collection efforts required to develop data- 

driven decision-making tools.

Future work for paper one includes expansion of the literature review conducted 

and model development based on influencing factors identified. A literature review that 

consists of 18 articles does not constitute an exhaustive search. Inclusion of additional 

articles would markedly improve the utility of the findings presented. Model 

development based on the findings presented is an additional area of future work that is 

addressed in the second paper in this dissertation.

Publication two in this dissertation uses the flood influencing factors identified in 

paper one and develops a flood planning tool. The United States Geological Survey,
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among other state and federal agencies, maintains a network of stream gauges. These 

gauges monitor stream stage and discharge, typically in 15-minute increments. Stream 

stage values correspond to flood inundation profiles for discrete stream locations. 

Integrating this information resulted in the development of a time series prediction model 

that could be used as an input for flood inundation visualization. A long short-term 

memory (LSTM) network was developed using the 15-minute increment river stage data. 

The result was a stream stage prediction that improved on the accuracy and temporal 

resolution of publicly available forecasts. These predictions were then used to query the 

associated flood inundation profile for an area of interest. Using standard geoprocessing 

techniques, flood impacted road segments could be quickly identified. Traffic decision 

makers can use this tool to rapidly deploy resources such as signage and warning 

messages to motorists that minimize risk exposure.

The primary area of future work for paper two consists of extending modeling 

efforts to areas with limited or no gauge coverage. Findings presented in this paper are 

the collective result of integrating high resolution gauge readings and flood inundation 

shapefiles. Model extension to areas with a limited amount of data availability constitute 

a fertile research area that consists of alternative approaches to collecting historic 

information such as incorporating storm weather reports and integrating them with the 

geospatial variables identified in publication one.

Publication three in this dissertation used a system-of-systems approach to capture 

the relevant components if the delivery of electricity as an emergent property. A fuzzy 

inference system integrated with a genetic algorithm was used to model the ambiguity
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among and between key performance attributes. Using these tools an optimal energy 

portfolio architecture was developed and visualized. Energy decision makers and policy 

professionals can use the results presented to inform energy transition strategy 

development.

Future work for publication three consists of model improvement and extension. 

Model improvement includes further investigation of the literature to identify system and 

interface values that are not arbitrarily chosen. Additionally, a sector-specific approach 

would be beneficial as some sectors primarily rely on distinct energy sources. This 

dimension of future work is the basis for the work conducted in paper four. Lastly, there 

is need to benchmark data visualization tools against those currently being used to 

determine if there is measurable improvement in planning effectiveness. This could be 

accomplished by surveying energy decision makers and conducting subsequent analysis 

on survey findings.

Publication four in this dissertation extends the findings presented in paper three 

by conducting a sustainability assessment of a proposed transition for a specific sector at 

the state level. Using historical data, a 10-year prediction of annual electricity generation 

was developed using simple exponential smoothing and autoregressive integrated moving 

average (ARIMA) models. The proposed transition consisted of a 10% decrease in coal’s 

portfolio share to be replaced by solar and wind resources in equal measure. The ARIMA 

model demonstrated superior performance and was used as a model input for a 

sustainability assessment tool that measured changes in carbon, water, land, and cost 

footprints. Assessment results demonstrate a reduction in carbon and water footprints, but
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an increase in land and cost footprints. Energy decision makers can use the results 

presented here to inform the selection of alternative energy sources subject to overall 

sustainability performance instead of focusing solely on emissions goals.

Future work for publication four includes determining optimal renewable energy 

sites and accounting for the disruptive nature of distributed energy resources. Several 

renewable energy resources are geospatially dependent. For example, solar irradiance and 

wind speeds vary by location. Therefore, development of a geospatial optimization tool 

that is responsive to this fact in addition to existing regulatory policies and infrastructure 

present would be useful for decision makers. Further, renewable energy resources are 

unlikely to be installed at a linear pace. Instead they will be installed in large amounts in 

the form of wind and solar farms. Alternatively, residential users will continue to install 

smaller systems in a piece-meal approach. Modeling efforts that capture the probability 

of these events over the planning horizon will provide decision makers with robust 

findings to inform energy transition strategy development. Lastly, it can be observed that 

the time series prediction models do not fit to the actual data. Both models exhibit a 

latency of approximately one period. This finding limits the practical applicability of 

model findings. Prediction intervals for the forecast horizon were provided to augment 

the utility of each of the models. Further analysis of model latency causes and the 

integration of higher resolution data constitute areas of future work.

The data visualization and trend extraction tools developed and validated in this 

research integrate publicly available data with state-of-the art techniques that provide 

decision makers and federal agencies with foundational knowledge that will improve
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strategic infrastructure planning effectiveness. While the implementation of this research 

is specific to transportation and energy infrastructures, the frameworks developed can be 

applied to other infrastructure systems where data is sufficiently available.
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