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ABSTRACT

The objective of this work is to enable dynamic sharing of software-defined radio 

(SDR) transceivers through the concepts of hardware virtualization and real-time resource 

management. SDR is a way to build a digital radio that consists of a software back-end for 

digital signal processing (DSP) and an analog front-end transceiver for waveform generation 

and reception. This work proposes the use of a virtualization layer to decouple back-end 

SDR software from front-end transceivers. With this arrangement, front-ends are said to be 

virtualized, and it becomes possible to share a limited number of front-ends among many 

SDR back-ends through different multiplexing techniques.

In the first work, the hardware/software infrastructure needed for such a system is 

explored. An intelligent resource management algorithm is presented that demonstrates a 

potential increase in the number of supported SDR back-ends. The second work presents 

an exploration of this system's application to aircraft telemetry systems and the potential 

improvements to reliability. The work includes a reliability model for virtualized SDR 

aircraft telemetry systems as well as simulations demonstrating changes in performance as 

hardware fails. In the final work, an improved resource management algorithm based on 

Markov decision process (MDP) is proposed. This approach addresses concerns wireless 

regulatory agencies and standards bodies may raise regarding performance degradation 

caused by sharing transceivers. The process of sharing transceivers causes service disrup­

tions to occur whenever the instantaneous demand for front-ends exceeds capacity. This 

MDP approach provides a feasibility test and a guarantee that all SDRs can stay within their 

respective wireless specifications. The proposed technique guarantees Pareto efficient dis­

tribution of resources. To make this approach possible, a connection is established between 

dynamic transceiver sharing and equivalent interference.
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SECTION

1. INTRODUCTION

The combination of software-defined radio (SDR) and the modern mobile device 

(i.e., handheld computer) has the potential for extreme change in the way we interact with 

radio. If radio capabilities are implemented as software (i.e., software-defined radio), then 

the software management facilities of a mobile device can be used to add and remove 

wireless features at a whim. Just as the smartphone revolution put computing and software 

capabilities always at an arm’s reach, the SDR revolution could make a varied array of radio 

systems just as accessible. Since radio capabilities would no longer be fixed, they could 

grow and change with user need. With this increase in flexibility, there is also the potential 

to reduce electronic waste.

The motivation of this work is to extend the capabilities of a potential SDR based 

mobile device by enabling radio transceivers to be shared among several SDRs on a single 

device. There is potential for several concurrent transmissions and receptions from several 

SDRs to be managed on a small number of transceivers. It would be similar to the way 

modern computers manage hundreds of independent compute processes and thousands of 

compute threads with only a limited number of processors.

1.1. INTRODUCTION TO SDR

Software-defined radio (SDR) is a method to create digital radio wherein the back­

end digital signal processing is implemented with software rather than hardware. A digital 

radio can be partitioned into a front-end and a back-end. The front-end or transceiver is re­

sponsible for transmission/reception of the radio wave, analog signal processing, and digital
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signal synthesis/sampling. The back-end is responsible for the encoding or modulation of a 

signal as well as the decoding or demodulation of a digital signal to and from a data source 

[33]. The front-end typically utilizes analog signal processing, but may employ digital 

signal processing, depending on front-end architecture. The back-end is almost exclusively 

a digital process. Front-ends perform the same tasks regardless of architecture; it is the 

back-end of a digital radio that distinguishes one type of digital radio from another. In an 

SDR, the back-end is implemented via a software program rather than a specialized piece 

of digital processing hardware. Usually, software is more easily changed than hardware. 

When a software back-end is combined with a flexible radio front-end, it allows the radio to 

change between many different wireless protocols and functionalities. Since the back-end 

distinguishes between different types of digital radio, and it is a piece of software, the radio 

is said to be software-defined.

1.2. HISTORY AND ADVANCEMENTS IN SDR

SDR systems and architecture have seen slow advancements in contrast to the rapid 

evolution of modern digital wireless communication. The origins of SDR can be traced to 

the mid 1980s. Most of the earliest publications on this topic such as [30, 32] came in the 

1990s. In the next two decades, digital radio developed rapidly and became part of daily life. 

In the same period, the growth of SDR was impeded by the lack of both general-purpose 

processing power and sufficiently flexible front-ends. However, it did gain some traction 

as a research and development tool. As processing power has improved and better SDR 

front-ends have become available, [29, 43] the focus has shifted toward the software side of 

SDR.

While early SDR engineers saw the importance of being able to switch between 

different wireless protocols and functionalities [32], they likely never dreamed that modern 

devices would need to operate multiple wireless protocols concurrently. Modern smart­

phones and mobile devices support three or more different wireless protocols (e.g., Wi-Fi,
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Bluetooth, LTE, GPS, etc.) operating in parallel. While it would be possible to create a 

mobile device with each wireless protocol separately implemented as SDR, complications 

would arise. For example, an SDR based smartphone would consume more energy and 

require more processing capacity. However, improving software organization and manage­

ment, can mitigate some of the challenges and provide some advantages to SDR.

The European Telecommunications Standards Institute’s (ETSI) Reconfigurable Ra­

dio Systems (RRS) standard for SDR [2] manages to implement SDR’s promise of flexible, 

modular radio while reducing some of the drawbacks. RRS demonstrates how improved 

software organization can make an SDR based smartphone or mobile device not only feasi­

ble but advantageous. It allows for the management and operation of multiple SDRs. The 

standard describes the different components of an SDR and defines application program­

ming interfaces (API) between each component. This includes API between application 

software and host computer software. This API makes SDRs easy to install, remove, and 

change. It even describes the use of an app store for SDR applications. RRS defines API 

that makes it possible for these SDR apps to take advantage of hardware acceleration for 

both common and specialized radio signal processing tasks. This has the potential to reduce 

the processing overhead of SDR and reduce energy consumption.

However, an SDR based mobile device such as RRS would be fundamentally limited 

by the number of available front-ends (i.e., transceivers) unless creative solutions are de­

veloped. While a user would be free to install as many SDR apps as they desire, the device 

can enable, at best, one application per transceiver. If front-ends can be shared or multi­

plexed, then the number of SDR back-end applications can potentially exceed the number 

of front-ends. There are both economical and environmental motivations for pursing this 

area of research. Mobile device manufactures may be able to reduce the number of radio 

front-ends on each device, reducing costs and saving money. If the number of supported
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SDR applications has reduced dependency on the number of front-ends, wireless features 

and capabilities may be added more easily to existing wireless devices. This can extend 

their useful life, counter planned obsolescence, and reduce waste.

Time-division multiplexing (TDM) for SDR front-ends has been explored to a 

limited extent. In [5], many of the API and terminology for RRS were developed. In the 

follow up articles [6, 45], a TDM system for front-ends was presented. SDR applications 

communicated their intention to transmit or receive through an API called a spectrum 

access request. These requests were scheduled in real-time based on a fixed application 

priority. If the number of concurrent requests exceed the number of available front-ends, 

lower priority requests would be dropped. This presents the potential that high-priority 

SDRs are overserved while low-priority SDRs are underserved. In [50], an API to describe 

dependencies between spectrum access requests was presented. It allowed the scheduler 

to make more intelligent decisions, because entire groups of dependent requests could 

be served or dropped together. While these TDM based scheduling techniques improved 

hosting capacity, they did not consider the damage that dropped requests would have on 

the performance and reliability of wireless protocols. Additionally, these methods had no 

measure for system capacity. A user could cripple the wireless capability of their device by 

simply activating too many radios.

In [26, 27], a system similar to RRS was presented that featured frequency division 

multiplexing (FDM) of front-ends. In [26], the authors used the terminology virtualized 

SDR to describe the concept of front-end multiplexing. In [26, 27], the Nyquist bandwidth 

of a SDR front-end was partitioned by means of digital frequency filtering, similar to carrier 

aggregation in LTE. This allowed multiple radios signals to be extracted from the reception 

of a single front-end and distributed to the appropriate back-end. Additionally, multiple 

radio signals from multiple SDR back-ends could be merged and transmitted from a single 

SDR front-end. While innovative, this technique has limited use cases, since it requires 

SDRs to operate on channels within the Nyquist bandwidth of a single front-end.
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1.3. ORGANIZATION OF THE DISSERTATION

In this dissertation, a number of novel SDR front-end multiplexing schemes are 

presented to develop the topic and address concerns. Three papers are presented.

In the first paper, a novel SDR front-end multiplexing scheme was developed based 

on mixed-integer linear programming (MILP). First, a linear programming model was devel­

oped to build an optimized TDM schedule for spectrum access requests. Then, an improved 

model was presented that incorporates both TDM and FDM. A number of simulations were 

run comparing the two novel techniques with a fixed priority TDM scheduler and a variation 

of the fixed priority scheduler with FDM capabilities. These simulations tested the number 

of spectrum access requests that could be effectively scheduled given different numbers of 

front-ends and back-ends. The effectiveness of FDM was explored by varying the amount 

of Nyquist bandwidth available on each front-end.

In the second paper, the concept of SDR front-end multiplexing was applied to 

aircraft avionics and telemetry systems. The paper presented the idea of an aircraft where 

all radios systems have been replaced by a consolidated SDR system. In this application, 

front-ends were multiplexed using both TDM and FDM techniques. A simple reliability 

model for the proposed SDR was developed. It demonstrates how such a system can be 

very robust to hardware failures. Finally, a simulation was presented showing the gradual 

drop off in performance as the system suffers hardware failures. The scheduling strategy 

for this simulation is a hybrid of fixed priority scheduling and the MILP technique from the 

first paper.

The third paper presents an improved SDR front-end multiplexing scheme based 

in Markov decision process (MDP). This paper addressed many of the shortcomings of 

previous TDM schemes. A relationship was established between scheduling decisions, 

channel noise, and symbol error ratio (SER). This relationship was used in the decision 

process to consider the performance impact of each decision. This was used in combination 

with constraints to ensure each SDR stayed above a respective minimum SER. A component
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of this effort was a feasibility test that could be used to evaluate an SDR workload. This 

test enables the system to check that the number of active SDRs is not above the scheduling 

capacity of the system.
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PAPER

I. TRANSCEIVERS AS A RESOURCE : SCHEDULING TIME AND 
BANDWIDTH IN SOFTWARE-DEFINED RADIO

Nathan Daniel Price, Maciej J. Zawodniok, Ivan G. Guardiola 

Department of Computer Engineering 

Missouri University of Science and Technology 

Rolla, Missouri 65409-0050 

Tel: 573-341-6622 

Email: ndpr43@mst.edu

ABSTRACT

In the future, software-defined radio may enable a mobile device to support multiple 

wireless protocols implemented as software applications. These applications, often referred 

to as waveform applications, could be added, updated, or removed from a software-radio 

device to meet changing demands. Current software-defined radio solutions grant an 

active waveform exclusive ownership of a specific transceiver or analog front-end. Since a 

wireless device has a limited number of front-ends, this approach puts a hard constraint on 

the number of concurrent waveform applications a device can support. A growing trend in 

software-defined radio research is to virtualize front-ends to allow sharing and reuse among 

active waveform applications. This poses a difficult scheduling challenge. This article 

proposes a new approach in which shared access to front-ends is managed by a mixed- 

integer linear programming model. This model ties together the technique of time-division 

sharing and front-end bandwidth channelization. This scheduling model is evaluated in

mailto:ndpr43@mst.edu
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simulation under several different scenarios and workloads. Simulation results show that 

the proposed approach reduces hardware contention and missed radio accesses compared 

to existing techniques.

Keywords: Communication systems, Resource management, Scheduling algorithms, Soft­

ware radio, Wireless communication

1. INTRODUCTION

The growing number of wireless standards and protocols operated concurrently on 

today's devices is unsustainable. Wireless applications such as aircraft avionic systems 

[4, 14], conventional cellular base stations [10], multiple radio access technology (multi­

RAT) cellular base stations [5], Internet of things (IoT) hubs, and mobile devices support the 

concurrent operation of multiple wireless standards and protocols and could benefit from 

software-defined radio (SDR). Cellular modems support a growing number of wireless 

bands and protocols in an effort to globalize mobile devices and increase network capacity 

and performance. Modern mobile devices feature hardware for current generation cellular, 

legacy cellular, Bluetooth, Wi-Fi, global positioning system (GPS), near-field communica­

tion (NFC), and occasionally more. Currently, wireless protocols are supported by discrete 

transmitter/receiver chains encapsulated in discrete application-specific integrated circuits 

(ASIC). This approach is inflexible, scales poorly, and represents a missed opportunity for 

component reuse.

SDR offers a solution to the increasing number of standards, protocols, and modu­

lations in today’s wireless devices. Usually accredited to Joseph Mitola [12], the “software- 

radio” architecture provides flexibility by replacing fixed function hardware with software. 

A software-defined radio consists of a very generic radio frequency (RF) front-end built in 

analog hardware and an application-specific digital back-end built in software as illustrated 

in Figure 1. It is the use of a software back-end that distinguishes software-defined radio 

from traditional digital radio. Using the same front-end, a developer could make a software-
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Digital Front-End/RF Front-End/
ChannelizerTransceiver Waveform

DDC

DUC

Passband Digital IF Baseband

Figure 1. Simplified diagram of a typical direct conversion front-end based SDR architec­
ture featured in many systems. The RF front-end converts signals between passband and 
baseband. Optionally, signals are digitally mixed to and from an intermediate frequency 
using a digital front-end or channelizer. Additional filtering and sample rate conversion can 
also be performed by the channelizer depending on waveform requirements.

defined GPS receiver, a software-defined garage door opener, etc., simply by changing the 

back-end software. In this way, wireless protocols are no longer an intrinsic feature of a 

device; rather, they are software applications often referred to as waveform applications 

[15,22].

Front-end sharing and the coordination of waveform applications in multi-protocol, 

multi-radio communications systems provides a particularly interesting challenge. Typi­

cally, the maximum supported number of concurrent waveform applications is limited to the 

number of RF front-ends attached to the system since each application requires exclusive 

access to at least one. The key to supporting greater concurrency in SDR systems is to 

effectively multiplex or share RF front-ends among multiple waveform applications such 

that the number of applications is no longer bound to the number of front-ends.
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The hardware/software interface is an ongoing challenge for software-defined radio 

developers. An interface solution is needed that abstracts front-end manufacturer specifics 

away from waveform developers and cuts down the massive amount of sample data transfer­

ring between front-ends and back-end applications. In [11], researchers identify software 

and driver limitations as one of the key barriers to general accessibility of SDR by the 

wireless community. Their reasons include the lack of standardization between different 

front-ends from different manufacturers. Furthermore, they identify the interface between 

the computing device and the front-end as the bottleneck for current SDR technology. Here, 

they are specifically referring to the massive amount sample data from each front-end. In 

[19], the hardware interface and hardware abstraction is also identified as a major challenge.

We advocate for hardware abstraction via the virtualization of RF front-ends using 

a hypervisor as the solution to the SDR interface problem. Originally proposed in [10], 

the concept is to present each waveform application with a virtual radio interface (VRI) 

in place of the RF front-end's actual driver interface. This benefits waveform applications 

by providing a common interface to all applications regardless of underlying front-end 

hardware or manufacturer. Front-ends are shared and managed by a hypervisor. Resource 

sharing conducted by the hypervisor cuts down on the number of required front-ends. This 

is heavily dependent on effective resource-sharing techniques.

We propose virtualization be achieved with the combination of dynamically time- 

division multiplexing (TDM) [2] and dynamic front-end bandwidth channelization [10], 

a form of frequency-division multiplexing (FDM). Waveform applications produce trans­

mission sample streams and consume reception sample streams. Ordinarily, a front-end 

would be required for each application at all times to either supply or sink these sample 

streams. However, radios in many modern wireless protocols spend significant periods of 

time idle where they are neither transmitting nor receiving. These idle periods may be the 

result of a medium access technology such as time division duplexing (TDD), the result of 

energy saving techniques such as burst transmissions in IoT, or other technologies. During
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these idle periods it is possible to let a different waveform application make use of an idle 

front-end as highlighted in Figure 2. A single front-end has been shown to be able to 

effectively service multiple active waveform applications by time division multiplexing in 

[8]. Off-the-shelf SDR front-ends are often designed to have a large amount of transceiver 

bandwidth to accommodate a range of different applications. By strategically tuning the 

center frequency of a wideband front-end, multiple target signals can be band-pass filtered 

out or channelized [10]. Figure 3 illustrates how four target signals could be isolated from 

two different passband segments. Ideally, this would require only two front-ends and can 

service four waveform applications.

The combination of these multiplexing techniques provides a difficult scheduling 

challenge for SDR platforms. Dynamic channelization is subject to the bandwidth of 

available front-ends and also the spectrum requirements of concurrent spectrum access 

requests [3]. At one instance, we may find multiple requests that are adjacent in frequency 

and, therefore, favorable for bandwidth channelization. At another instance, spectrum 

requests may be spread out across multiple bands or simply spread wider than the bandwidth 

of a single front-end, preventing any kind of channelization. An effective scheduler should 

be able to adapt to these changing conditions.

In this article, we propose the use of a constraint-based scheduling model based in 

mixed-integer linear programming (MILP). This approach allows us to accurately model the 

complicated conditional nature of dynamic channelization. It also allows for time constraint 

modeling, making it effective for combining the two mentioned multiplexing techniques. 

In this article we make the following contributions:

• We describe the details of our version of a virtualized RF front-end. This includes 

a discussion of the hypervisor, the virtual radio interfaces, and associated API. Ad­

ditionally, we include a discussion of what scheduling considerations are needed for 

such a system.
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• We introduce two MILP models for scheduling front-end access. We present a 

basic TDM model as well as model featuring both TDM and FDM in the form of 

channelization.

• We evaluate two schedulers based on a MILP models as well as two variations of a first- 

come first-served (FCFS) scheduler under different criteria to test their effectiveness 

and scalability. Simulation parameters include the number of request-generating 

applications, the number of available RF front-ends, and front-end bandwidth.

2. PROPOSED NOMENCLATURE

To better distinguish between different capabilities and features on parallel SDR 

hosting platforms and to better distinguish our work from existing research, we propose 

a naming convention. This naming convention describes a mapping relationship between 

waveform generating applications and the RF front-ends. We limit our discussion to single­

in, single-out (SISO) radio techniques. For our purposes, an RF front-end can include 

any architecture of front-end (i.e., RF ADC/DAC, direct conversion, heterodyne, etc.). 

We categorize the different relationships between front-ends and waveform applications as 

follows:

1. Single waveform, single front-end (SWSF) includes conventional SDR waveform 

applications wherein an application has exclusive control over a front-end (i.e., a 1:1 

relationship). Nearly all current waveform applications written fall into this category.

2. Single waveform, multiple front-end (SWMF) describes mapping schemes in which 

the transmission/reception stream of a single waveform application is simultaneously 

mapped to multiple front-ends (i.e., a 1:M relationship). This classification is included 

for completeness. The authors can only speculate at reasons why a scheduler would 

duplicate a SISO signal across multiple front-ends.
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3. Multiple waveform, single front-end (MWSF) includes the schemes proposed in this 

article and similar research. A front-end is shared among several waveform applica­

tions (i.e., an N:1 relationship). This can be achieved through different techniques 

including time-division multiplexing [22] and channelization of front-end bandwidth 

[10].

4. Multiple waveform, multiple front-end (MWMF), describes a relationship that is a 

composition of MWSF and SWMF techniques (i.e., an N:M relationship). This im­

plies that unique transmission/reception streams are aggregated, blended, and repar­

titioned.

Each of these classifications can be further categorized as a static or dynamic 

assignment. Static assignments occur before run-time as early as the design phase and as 

late as application initialization. Dynamic assignments occur during run-time. Dynamic 

assignments can better adapt to changing circumstances. For example, if a user were to 

launch an additional waveform application on a congested system, an SDR hypervisor 

could respond by reassigning active applications to make room for the new one. Without 

dynamic assignment capability, the user's new waveform application might be prevented 

from running.

3. LITERATURE REVIEW

In this section, we look at existing research endeavors and the techniques used to 

create a parallel SDR hosting platform. Much of the existing research involving software- 

defined radio has used SDR as a means to an end for other wireless research. For example, 

SDR has been used as a prototyping platform, a foundation for cognitive radio [13], etc. 

However, the goal of this article is to develop SDR systems that support the operation 

of multiple waveform applications in parallel. Some research groups have proposed and
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implemented a parallel SDR systems of the dynamic MWSF type using TDM. These TDM 

systems use a policy-based scheduler. A few groups have also explored both static and 

dynamic MWSF using a channelizer.

Typically software-defined radio implementations fall into the category of static 

SWSF. No common SDR programming framework yet provides front-end multiplexing 

capability. Typical, waveform applications are written on programming frameworks such 

as GNU Radio, LabVIEW, and MATLAB/Simulink. These frameworks provide libraries 

for signal processing but provide no front-end multiplexing capabilities. A developer using 

any of these frameworks typically connects their application directly with a device driver 

and obtains exclusive ownership over the device (i.e., a static SWSF design). Another 

SDR platform, REDHAWK, acts as both a programming framework as well as a hardware 

abstraction layer [1]. However, REDHAWK does not multiplex RF front-ends. It simply 

connects waveform applications in a static SWSF manner.

As far as the authors are aware, the earliest research into dynamic MWSF platforms 

was conducted by a joint venture between Nokia and NXP. The group’s research focused 

mostly on SDR application structure and support infrastructure. The group suggested 

using an abstraction layer to make SDR applications independent of specific hardware 

[2]. They used the time-division multiplexing of hardware to create a dynamic MWSF 

system [3]. Their minimum unit of scheduling was a spectrum access request, or a finite- 

duration transmission or reception event. These spectrum access requests dictated when a 

transmission or reception should take place. They used FCFS scheduling combined with a a 

static priority system (i.e., requests from certain applications were preferred) [3, 20]. When 

two or more waveform applications requested a front-end during the same time period, 

the request from the higher priority waveform would be chosen while the other would be 

dropped. To avoid interference between waveform applications, no transmission request 

could ever be scheduled during a reception request. In [22], the group worked to mitigate 

dropped requests due to scheduling conflicts by adding support for conditional scheduling.
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Figure 2. Time division multiplexing (TDM) implementation of multiple waveform, single 
front end (MWSF) software-defined radio (SDR) platform. The time scale is exaggerated 
for clarity. Time conflict between waveform applications A and C are resolved by migrating 
their respective signals to a different front-end. When all front-ends are busy and a conflict 
occurs, signals will be dropped.

This allowed applications to submit alternate timings for the same request. The scheduler 

could also be made aware of dependency between requests allowing it to schedule or drop 

such requests as a group.

Research efforts including [3, 20, 22] contributed to the European Telecommunica­

tions Standards Institute’s (ETSI) reconfigurable radios systems (RRS) [16-18] and other 

emerging standards. RRS adopted the same organization and nomenclature as [3, 20, 22]; 

however, it curiously lack MWSF capabilities. Many of the software constructs in the 

RRS standard have even been adopted by the IEEE 1900 (DySpan) working group, which 

focuses on Cognitive Radio (CR) and dynamic spectrum sharing. Despite suggestions in 

contributing research [22], the RRS specification does not define a scheduling strategy and 

lacks any serious discussion of front-end multiplexing.

The Canadian research group LASSENA has demonstrated the use of a MWSF 

platform in software-defined avionics applications[4]. LASSENA’s research proposed an 

avionics platform supporting five different avionics systems implemented as waveform 

applications [21]. Similarly, this system could be considered dynamic MWSF. LASSENA 

also implemented a FCFS scheduler with a static prioritization policy. There is also some 

discussion of channelization receiver bandwidth in [21], but this channelization was to be
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statically assigned. The final implementation used a different transceiver architecture and 

did not feature a channelized receiver [4]. Their demonstrator unit was also limited to 

operating only two waveform applications concurrently.

In [9, 10], researchers introduced the concept of virtualized radio for SDR interfaces. 

Their platform, named Hypervisor for Software-Defined Radio (HyDRA), uses the concept 

of virtual radios. In HyDRA, each waveform application runs inside a software abstraction 

called a virtual radio while a hypervisor multiplexed access to the front-ends using front-end 

bandwidth channelization. A configuration API allowed applications to initialize a virtual 

radio interface by specifying their center frequency and bandwidth. HyDRA uses these 

specifications to channelize out a segment of the bandwidth from a front-end. It performed 

its channelization using a frequency domain implementation of band-pass filtering to reduce 

computation complexity. HyDRA prevents the creation of virtual radios with overlapping 

spectrum requirements to prevent interference. HyDRA can be considered a dynamic 

MWSF system since it allowed applications to share a front-end through channelization, 

and it could even reconfigure the channelization on-the-fly. Dynamic channelization alone 

shows small benefits outside of very particular use cases as will be shown later.

As far as the authors are aware, the research presented in this literature review 

represents the only efforts to develop front-end sharing techniques. All dynamic MWSF 

efforts can be reduced to two approaches at dynamic MWSF mapping: time-division 

multiplexing and front-end bandwidth channelization. It is the goal of this paper to develop 

an improved method using both techniques.

4. FRAMEWORK OVERVIEW

In the proposed architecture, a hypervisor similar to HyDRA acts as a middle-man 

between waveform applications and RF front-ends for the purpose of sharing hardware. 

Waveform applications communicate their transmission and reception requests to the hy­
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pervisor through a software abstraction called a VRI. VRIs feature specialized API tailored 

to describing dynamic spectrum requirements. The hypervisor accepts these spectrum 

requests and builds an optimized access schedule.

4.1. VIRTUAL RADIO INTERFACE

Our proposed solution makes use of VRIs to simplify interactions between wave­

form applications and front-ends while enabling front-end sharing. The VRI is a software 

abstraction that emulates a front-end device driver interface to provide communication be­

tween waveform applications and the hypervisor[10]. In an initialization phase, a waveform 

application can request access to the system’s radio front-ends. This initial request includes 

specific RF requirements needed by the application. These requirements include RF band, 

transmitter power, receiver sensitivity, quality of service, and other details. The hypervisor 

uses the requirements in this initial request to screen out waveform applications it cannot 

service. If granted access, the hypervisor returns a VRI to the requesting application. The 

application can use this interface to request transmissions and receptions as if it were the 

interface to a real radio front-end. Through this anonymized interface, an application is 

shielded from hardware specifics. This helps to make waveform applications portable. 

Behind the scenes, the hypervisor can dynamically route sample streams to front-ends or 

drop traffic as it deems necessary.

Waveform applications communicate spectrum requests through a VRI using a 

control API for signaling transmission and reception. Each spectrum request consists of 

a sample buffer and control arguments. For transmissions, this sample buffer contains the 

base-band samples to be transmitted. For receptions, this sample buffer would initially 

be empty, and would be filled by the hypervisor after the reception has taken place. The 

control arguments indicate when, where, and how transmissions and receptions should take 

place. At minimum, these arguments indicate whether the request is a transmission or 

reception, frequency requirements, and timing requirements. Frequency requirements can
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be indicated by a low-frequency cutoff and high-frequency cutoff. For example, Wi-Fi 

channel 6 is indicated by the frequency pair [2426, 2437] MHz. Timing requirements must 

indicate exactly when a transmission or reception must take place and for how long. This 

can be indicated using two of the following variables: start time, stop time, and duration. 

Additional control arguments should be added for an actual implementation; however, 

timing and frequency are the only arguments required for the optimization model proposed 

in this paper.

A simple way to implement a VRI would be to use an existing front-end control API 

for spectrum requests. This gives client applications the illusion that they are communicating 

directly with a real front-end and makes for universal software adoption. Many existing 

front-end control APIs including VME bus International Trade Association (VITA) 49, 

open base station architecture initiative (OBSAI), DigRF, and the common public radio 

interface (CPRI) have already implemented a complete API for spectrum requests. The 

authors prefer VITA 49 for many reasons including its growing industry adoption and its 

time synchronization capabilities [6].

Given a stream of spectrum requests from a VRI, the hypervisor must translate 

and pre-process the contained samples. The sample format (i.e., sample scaling, sample 

representation, etc.) and sampling rate must be converted from the waveform application’s 

format to the front-end end format. Sample rate matching is easily one of the most 

computationally expensive parts of the SDR process as it must operate at the front-end’s 

native sample rate. Fortunately, sample rate matching is often partially accelerated by 

the the front-end itself [11]. This is also the stage where channelization and front-end 

linearization are performed. Additional waveform processing could also be performed 

by the hypervisor here, enabling features such as adaptive gain control, coherent phase 

matching, and spectrum sensing.
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(a) Passband (b) Digital IF Bands (c) Isolated IF Signals (d) Baseband Signals

Figure 3. When read left to write the figure demonstrates channelized reception. Figure 
(3a) shows three signals received by a single front-end in one band (indicated by the two 
slash marks on the axis), and a single signal received by a second front-end in a different 
band (indicated by three slash marks on the axis). Figure (3b) shows the signals after they 
have been shifted to a digital intermediate frequency by their respective analog front-ends. 
Figure (3c) shows the signals isolated by means of band-pass filtering. Fig (3d) shows the 
isolated signals shifted to baseband by means of a digital mixer.

4.2. SCHEDULING

Waveform scheduling with spectrum requests is an interval scheduling problem. 

Every spectrum request contains a start time and a stop time. The hypervisor must strictly 

honor these timings by transmitting and receiving spectrum requests during their respective 

intervals. Ignoring these timings means potentially interfering with a waveform’s multiple 

access scheme. When multiple requests arrive with overlapping intervals, the hypervisor 

must dynamically map the requests to different front-ends. When the number of overlapping 

request intervals exceeds the number of front-ends, the hypervisor must drop excess requests.

4.3. CHANNELIZATION

The process of channelization of front-end bandwidth provides a means to increase 

front-end utilization in an SDR hosting platform. By incorporating channelization into 

waveform scheduling, the hypervisor now has the option to combine a set of requests if 

their intervals overlap in time and spectrum. The usefulness of channelization is subject to
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the mixture of spectrum requests and the bandwidth of available front-ends. At minimum, 

channelization provides no benefit but also does not degrade capacity. A best case scenario 

is one in which multiple requests overlap in time and are adjacent in frequency. For example, 

a front-end with 20 MHz of bandwidth tuned to 98.1 MHz would receive the entire US FM 

radio band (i.e., 88.1-108.1 MHz). By breaking down this 20 MHz block, all one hundred 

FM channels could be received simultaneously using only a single front-end combined with 

one hundred instances of a software-defined FM receiver back-end. A similar technique 

could be used to simultaneously transmit over multiple channels.

5. FORMULATION

In this section, we propose MILP model for the scheduling of spectrum requests on 

an array of heterogeneous transceivers. The objective of our model is to build a feasible 

assignment schedule in which the greatest number of requests are serviced.

Here we present two variants of the proposed MILP model for scheduling spectrum 

demands. First, a MILP model is derived that allows for optimized dynamic MWSF 

operation in time. Next, a modified model that incorporates dynamic channelization into 

the scheduler is derived. The proposed models schedule over a finite horizon. Both models 

assume perfect knowledge of all requests in that horizon.

5.1. MILP FORMULATION

Each front-end has a single controllable element where the scheduler is concerned, 

that is, the carrier frequency oscillator. From recent SDR surveys [19] and [11] we find 

that most common SDR transceivers are direct conversion, which is also called zero inter­

mediate frequency (IF). Direct conversion transceivers convert between passband signals 

and baseband signals with a single oscillator. More traditional heterodyning architectures, 

convert signals in two or more steps, requiring the tuning of multiple oscillators and the
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Table 1. Description of input variables.

Spectrum Requests
Request j ’s hard start time / j )

Ls

Request j ’s hard deadline t(j ) 
ld

The lower edge of request j ’s spectrum A j )
*m\n

The upper edge of request j ’s spectrum f  (j
Jmax

Front-End
FE i’s lowest carrier freq. (i)

Cmin
FE i’s highest carrier freq. c(i)max

FE i’s bandwidth b(l)

coordinating of image frequencies to avoid interference. To simplify matters, most SDR 

transceivers are designed as direct conversion. Having only a single controllable element 

also simplifies control for the proposed scheduler. Additional mixing and filtering can 

be performed by a digital front-end. When used in conjunction with a direct conversion 

front-end, this setup is sometimes referred to as a digital IF transceiver. A diagram can bee 

seen in Figure 1. The digital IF architecture will be used in the second formulation.

Using the parameters of each spectrum request, we construct the constraints of 

our optimization model. From the parameters, the scheduler must know all start times 

given as the vector t s and stop times given as the vector td to meet time dependencies. 

It must know the lower frequency edge of each spectrum given as the vector f mi„ and 

the upper edge of each spectrum given as the set f max. Using the timing parameters, 

we construct constraints regarding the assignment of requests to front-ends. Using the 

frequency parameters, constraints can be made to ensure requests are assigned to front-ends 

with appropriate tuning capabilities.

Consider a software defined radio system containing m front-ends and a number 

of waveform applications. Let the ith front-end have a tunable carrier frequency limited 

to the range [ c ^ , c£w] where i e {1,...,m} and cJjL,Cmix e R>o. Additionally, let the 

ith front-end have a fixed bandwidth b(i). During runtime, waveform applications create a
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combined total of n spectrum requests, each representing either transmission or reception. 

Let the j th request have a hard start time tj  and a hard deadline t j j where j  e {1,...,n}. 

As previously mentioned, the j th request requires a finite amount of spectrum defined by 

the range [/ j , f j ] where e R>o.

The objective is to assign a maximal subset of n spectrum requests to m  RF front- 

ends. We denote the assignment pair of the ith front end and the j th request with the Boolean 

assignment variable xij , and thus

1
xij = i

0

if the ith front-end is assigned the jth request 

otherwise.

Similarly we denote cij to be the carrier frequency selected while the ith front- 

end serves the j th request. Carrier frequency selections are subject to front-end carrier 

capabilities:

CMn ^  Cij ^  C™ax V i,j . (1)

Assignments are subject to the tuning capabilities of the front-end(s). The lower 

edge of a front-end’s bandwidth envelope cij -  2̂  must be less than or equal to the lowest 

frequency in an assigned request f j  . The reciprocal also applies; ci7- + ^2- must be greater 

than or equal to the highest frequency in the request f i j2x.

For an assignment xij = 1, it is implied that the ith front-end will remain in a fixed 

configuration for the entire period tj  to tjj). Spectrum request durations may overlap in 

time making many assignments mutually exclusive (i.e., a front-end cannot be tuned to two 

different carrier frequencies at the same time). We denote the time overlap of spectrum 

request j  with spectrum request k using the constant variable j
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1
Sjk = '

0

if the j th request overlaps the kth request in time 

otherwise,

where 8jk can be assumed to be known a priori, since ts and td are known for each request. 

Given a set of n requests and m front-ends, our complete problem can be stated as follows:

Maximize ^  xij (2)
i,j

Subject to:

Z Xij -  1 V j (3)

b(i) <
Cij -  — f min + (1 -  Xij )M v i, j (4)

b(i) (
cij + 2  — fm ax — (1 — Xij)M V i, j (5)

Xij + Xik — 2 — &jk V i, j , k (6)

Xij 6 {0, 1} V i, j (7)

Cmin — Cij — cmax V i, j . (8)

The objective function (2), which is the double sum of x ij , maximizes the number 

of assignments. Variations of this objective may include a weighted sum that gives priority 

to certain applications and/or certain requests. Prioritized demand schedulers are left for 

subsequent work.

The first constraint (3) ensures that no request is serviced by more than one front- 

end. That is to say that the row sum of the assignment Xij must be less than or equal to 

one. This leaves two possibilities for each request: a request may be serviced by exactly 

one front-end (i.e., x ij  = 1), or it may not be serviced at all (i.e., x ij  = 0).
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Equations (4) and (5) enforce the frequency tuning limitations of the front-ends. For 

a front-end i to service a request j , it must be tuned to an appropriate carrier frequency such 

that the radio’s front-end bandwidth can completely cover the request’s entire bandwidth. 

Equation (4) enforces the lower bound while (5) enforces the upper bound. These two 

constraints are enforced conditionally using the Big M method [7]. When front-end i is 

not assigned to demand j  (i.e., xij = 0), a large constant M on the right-hand side of the 

equation m ensures (4) and (5) always evaluate true regardless of the left-hand side of the 

equation. If transceiver i is assigned to request j  (i.e., xij = 1), then the second term on the 

right-hand side of (4) and (5) is reduced to zero, and the constraint must be considered.

Equation (6) ensures that no radio i services more than one request concurrently. 

When there is overlap in time between a pair of requests j  and k, (i.e., j  = 1), the right- 

hand side of (6) evaluates to one meaning front-end i can serve demand j  or demand k, but 

not both. When time overlap is not indicated (i.e., Sjk = 0), both requests may be serviced 

by the same front-end.

This formulation models the control parameters and constraints of an optimal TDM 

scheduler for spectrum requests. Using this model, a TDM scheduler can ensure the a 

maximal amount of spectrum requests are serviced. This helps to increase the number of 

waveform applications supported by an SDR hypervisor.

5.2. MILP WITH CHANNELIZATION

Our MILP formulation can be further optimized by leveraging channelization. If 

two signals are adjacent in frequency such that the combined bandwidth of both signals is 

less than the bandwidth of a single front-end, then both signals can be served simultaneously 

by that front-end. This technique is used for both receiving and transmitting. In this article, 

we assume half-duplex front-ends that either transmit or receive, but not both concurrently. 

With modification, this formulation could also be used for independent transmitters and 

receivers or even full-duplex front-ends.
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We must add a constraint to prevent transmissions and receptions from being com­

bined. In the previous model, one request was permitted per front-end at any time thanks to 

constraint (7). This made it unnecessary to distinguish between request types. Transmission 

and reception requests are ineligible to be served by the same front-end at the same time. We 

introduce the constant y (j) to indicate if a spectrum request is a transmission or reception, 

where

y (j ) =
1 if the j th request is a transmission 

0 if the j th request is a reception.

Given a set of n requests and m front-ends, our complete problem can be stated as 

follows:

Maximize I  xij (9)
i,j

Subject to:

Z x 'j  - 1 v  j (10)

b(i) ,
Ci j -------< f  . + (1 -  Xi j )MlJ 2 Jmin v i j / V i, j (11)

b(i) ( '\
cij + 2  — f m ax — (1 — xi j ) M V i, j (12)

ci j  — cik < (3 — (xi j  + x ik + dj k ))M v i, j ,  k (13)

ci j  — cik — -(3  — (xi j  + xik + dj k ))M V i, j ,  k (14)

xi j  + xik < 2 -  8j k (y(j ) + y(k) -  2y ( )y(k)) V i, j ,  k (15)

xi j  6 {0, 1} V i, j (16)

(i) (i)
min < i j  < max V i, j (17)
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The MILP model for spectrum request scheduling with front-end channelization 

shares the basics of the previous scheduling model but with added constraints. The objective 

function and the first three constraints, (10), (11), and (12), remain the same. By doing 

away with constraint (6), this model allows multiple requests to be concurrently scheduled 

on the same front-end.

When a single front-end supports multiple requests using channelization, a common 

carrier frequency must be used. Since a front-end can be tuned to only one carrier frequency 

at a time and cannot be reconfigured while servicing a request, this frequency must satisfy 

all requests simultaneously. Constraints (13) and (14) conditionally enforce this through the 

use of the Big M method. Channelization occurs when two requests j  and k are assigned 

to the same front-end (xij = 1 & xik = 1) and they overlap in time ( j  = 1). This requires 

request j  and k use a common carrier frequency (cij = cik). When xij = xik = 5jk = 1, 

the right-hand-side term in both (13) and (14) reduces to zero. Therefore, c/  -  cik > 0 and 

cij -  cik < 0. This is only true if cij -  cik = 0 or cij = cik. Under all other circumstances, 

constraints (13) and (14) always evaluate true due to the large constant M .

Constraint (15) ensures transmissions and receptions are not combined on the same 

front-end. Should two requests have no overlap in time ( j  = 0), the right hand side reduces 

to two allowing both requests j  and k to be serviced. When an overlap in time is indicated 

( j  = 1), the right-hand side of the equation can be approximated as 2 -  XOR( y j, y k). 

When there is a type mismatch the right-hand side, (15) reduces to one forcing mutual 

exclusion of the two requests.

With these modifications, our scheduler can potentially service more waveform 

applications than the previous MILP model. Capacity increases are subject to the number 

of spectrum requests adjacent in frequency and the bandwidth of available front-ends.
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Table 2. Simulation parameters.

Parameter Value
Number of Waveforms n 
Number of Front-Ends m 
Front-End Bandwidth b 

Simulation Time t
Request Generation Rate per App. A 

Mean Idle time per App 
Request Generation Rate overall 

Mean Spectrum Request Duration

1-10
1-4

40, 80, 160, 240 MHz 
1s

4 x 10-6 
50 ms 

mA 
1

__________y__________

6. SIMULATION SETUP

In this section, we discuss the simulation setup used to evaluate the different spectrum 

request scheduling optimization techniques presented in this paper. Included is a discussion 

of simulation parameters and random scenario building. All simulations were conducted 

using MATLAB. The objective of these simulations is to evaluate which criteria most affect 

the performance of MWSF schedulers. The number of front-ends, maximum front-end 

bandwidth, and the number of waveform applications were varied for each simulation. We 

predicted the number of front-ends would have the largest effect on TDM only scheduling 

techniques. We also predicted that greater front-end bandwidth would lead to a proportional 

increase in performance in scheduling techniques that feature channelization.

This simulation attempts to translate the behavior of modern digital protocols such 

as Wi-Fi and LTE to spectrum requests. The simulated waveform applications generated 

spectrum requests that were finite duration and relatively short. Both transmission and 

reception requests were allowed. Each waveform application had a fixed carrier frequency 

and fixed channel bandwidth for the duration of simulation. These were chosen at random 

before the beginning of the simulation. Carrier frequencies were chosen at random over 

a range of 500 MHz. Likewise, bandwidth requirements for each waveform were chosen
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at random over and ranged 1-40 MHz. Bandwidth and carrier frequency were chosen 

randomly according to a uniform distribution to avoid biasing the results to favor schedulers 

with channelization that they benefit from tightly packed channels. All requests created for 

a waveform application had that application’s carrier frequency and bandwidth.

A series of scenarios were randomly generated each featuring a unique set of wave­

form applications and that produced a list of spectrum requests. Once the simulation 

variables were fixed, we generated 500 unique scenarios. For each waveform application, a 

list of spectrum requests were generated randomly according to a Poisson process. A series 

of spectrum request start and stop times were generated as a Poisson arrival process with 

parameter A and were therefore exponentially spaced. The duration of each spectrum re­

quest was exponentially distributed with mean j . A uniform random variable determines if 

each request is a transmission or reception. Requests were generated for a simulated period 

of one second. Due to the nature of the Poisson process, there exist idle period between 

requests. Many wireless protocols are never actually idle. They are always transmitting or 

receiving. Some protocols, however, feature a power saving state where they do neither. 

In this simulation, all applications feature idle periods. The collection of all spectrum 

requests from all waveform applications constitute a single common Poisson process with 

parameter nA where n is the number of waveform applications. A complete list of all 

simulation variables are listed in 2.

Each scenario was simulated and processed using a number of different scheduling 

techniques including both proposed MILP schedulers. The following scheduling methods 

were simulated: SWSF, unprioritized FCFS (MWSF), unprioritized FCFS with dynamic 

channelization (MWSF), the proposed MILP (MWSF), and the proposed MILP with dy­

namic channelization (MWSF). All MILP models were solved using MATLAB’s built-in 

MILP solver. Each of the 80 combinations of simulation variables were simulated 500 

times. This number of simulations allowed for a tight error bound for all schedulers on a

95% confidence interval.
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Any MWSF scheduler should attempt to maintain a minimum performance. When 

operating a MWSF scheduler there will naturally be timing conflicts between spectrum 

requests that cannot be resolved except by dropping requests. These dropped requests are 

equivalent to corrupted transmissions or receptions. Fortunately, most wireless protocols 

feature retransmission schemes and tolerate a certain percentage of dropped frames. For 

example, a wireless protocol may allow 10% of transmitted frames to be corrupted due 

to channel noise and interference. For MWSF systems, the total percentage of dropped 

frames due to interference and due to timing conflicts in the schedule should be less than 

the protocol’s tolerance. If we assume a very clear channel, we can use all of this tolerance 

for scheduling conflicts. Using a 10% figure as a guide, we targeted a threshold of 90% 

requests serviced.

In this simulation, MILP schedulers had complete knowledge of all requests. There­

fore, MILP based schedulers should always return schedules servicing a maximal number 

of requests. In a real-time scenario with limited knowledge of upcoming requests, MILP 

schedulers will likely make decisions that are suboptimal.

7. RESULTS

In this section, we discuss the numerical results from the simulation. Results are 

presented as the average of 500 unique simulations. Plots include error bars for 95% 

confidence interval. Given that there are three different variables (i.e., number of waveform 

applications, number of front-ends, and front-end bandwidth), we evaluate the results 

by holding the other two parameters constant and evaluating the percentage of spectrum 

requests served. Performance results were returned in terms of percentage of requests 

served since the exact number of requests varied slightly in each simulated scenario.
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Spectrum Requests Served

Figure 4. These graphs show the results of operating a parallel SDR hosting platform 
using different scheduling techniques. This setup featured two 40 MHz front-ends. Load 
was increased by upping the number of concurrent waveform applications. Notice that all 
MWSF schedulers allowed up to four applications to operate while servicing 90% of the 
requests.

7.1. THE BENEFITS OF MWSF SCHEDULING

We found that both MILP and FCFS schedulers improved the number of supported 

waveform applications on SDR hosting platforms when compared to SWSF based SDR. 

Figure 4 demonstrates a SDR setup that is typical of what can be found in a research 

lab. It features two front-ends each with 40 MHz of front-end bandwidth. Since all 

waveform applications generated requests according to identical distributions, they generate 

approximately the same number of requests. SWSF assigns each application to a single 

front-end. It therefore scales at a predictable rate of

No. ofFE
No. of waveform apps. (18)

All MWSF schedulers maintained the 90% target threshold for up to four waveform appli­

cations using only two front-ends. The SWSF scheduler maintained the threshold for only 

two waveforms.
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Spectrum Requests Served

Figure 5. These graphs show the results of operating a parallel SDR hosting platform using 
different scheduling techniques. This setup featured three 40 MHz front-ends while the 
second featured three. Load was increased by upping the number of concurrent waveform 
applications. Notice that all MWSF schedulers allowed up to four applications to operate 
while servicing 90% of the requests.

As hardware specifications were increased, MWSF scheduling performance scaled 

as a factor of both front-end count and front-end bandwidth. In Figure 4, MWSF scheduled 

four applications while maintaining the target 90% service threshold. In Figure 5, FCFS 

and MILP schedulers maintained the target performance threshold for seven applications 

using three front-end while their variants with channelization supported an additional eighth 

application. In Figure 6 we observed that by quadrupling the bandwidth to 160 MHz, the 

bandwidth channelization variants of FCFS and MILP both increased capacity enough for 

an additional two waveform applications. This brought the total support to ten applications 

using three front-ends while maintain the 90% target service threshold.

FCFS and MILP schedulers represent the performance bounds for all MWSF sched­

ulers. Since the proposed MILP scheduler had perfect knowledge of all requests it should 

always return a schedule serving the maximum number of requests. MILP, therefore,
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Spectrum Requests Served

Figure 6. This graph shows the results of operating a parallel SDR hosting platform using 
multiple scheduling techniques. This setup featured three front-ends each with 160 MHz 
front-end bandwidth. Load was increased by upping the number of concurrent waveform 
applications. Each waveform application required up to 40 MHz of bandwidth.

represents the ceiling for MWSF performance. The simulated FCFS scheduling is compu­

tationally cheap but returns suboptimal results. Any MWSF scheduling technique represents 

a trade-off between the low computational cost of FCFS and maximal results of MILP.

7.2. PERFORMANCE EFFECTS

When tested in isolation, dynamic channelization of front-end bandwidth showed 

modest improvements that were subject to front-end bandwidth. In Figure 7, the number 

of waveform applications and the number of front-ends were held constant at ten and 

one respectively while the bandwidth was increased. This best demonstrates dynamic 

channelization's dependency on bandwith. Improvements can be as a small as 1-2% for 

FCFS and 2-3% for MILP at minimum bandwidth and as large as 10% for FCFS and 12% 

for MILP when bandwidth is increased to 240 MHz. Spectrum demands were limited to a
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Spectrum Requests Served
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Figure 7. This graph shows demonstrates performance improvements had by increasing 
front-end bandwidth. This platform featured a single front-end with an increasing amount 
of front-end bandwidth. Load was held high at a constant 10 waveform applications. Each 
waveform application used up to 40 MHz of bandwidth. Schedulers using bandwidth 
dependent multiplexing techniques, channelization in this case, benefited as bandwidth was 
increased.

500 MHz range. Thus, a single front-end with 240 MHz represents 48% coverage over all of 

the accessible spectrum. Increased coverage improves the chances that multiple spectrum 

requests fall withing the bandwidth of a single front-end.

Unlike front-end bandwidth, increasing the number of front-ends in greatly improved 

performance. Figure 8 best demonstrates the benefit of additional front-ends. Three front- 

ends ensured that at least 80% of requests were served for all ten applications using any of 

the dynamic allocation techniques. The largest single improvement was made by moving 

from one to two front-ends for FCFS, resulting in a performance difference of 28%. There 

was little to no benefit from dynamic channelization in this figure since each front-end 

was limited to 40 MHz (i.e., the minimum). Three front-ends with 40 MHz of bandwidth 

represent 120 MHz of bandwidth or 24% coverage of the range when tuned with no overlap. 

Having multiple independent tuners with less bandwidth was a more effective strategy than 

a single wideband tuner.
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Figure 8. This graph shows demonstrates performance improvements had by increasing the 
number of front-ends. This platform featured an increasing number of front-ends each with 
a fixed 40 MHz bandwidth. Load was held high at a constant 10 waveform applications.

8. CONCLUSION

In our testing, we found that front-end count had the most significant performance 

impact on MWSF scheduling’s performance. In all given examples, MWSF scheduling 

based on TDM at least doubled the number of supported waveform applications while 

servicing at least 90% of requests when compared to SWSF. The addition of dynamic 

front-end channelization to both presented MWSF schedulers increased performance to a 

lesser extent. By quadrupling the starting bandwidth, channelization added support for 

an additional one to two applications in the presented scenarios. Our presented MILP 

scheduling model returned an optimized schedule and represents the performance bound 

for MWSF scheduling.

Future work, should address the topic of quality of service and fairness. Scheduling 

methods in this article featured no prioritization for individual spectrum requests or wave­

form applications. The presented techniques weighted the number of requests serviced 

regardless of quality, type, or origin. A rogue application could manipulate its own priority 

in such a system by simply generating a great number of requests. Unlike existing research,
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no effort was made to prevent transmission/reception collisions. In the authors’ opinion it is 

the responsibility of the individual applications to avoid causing interference. Nevertheless, 

the hosting platform is in the best position to prevent interference before it happens.
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ABSTRACT

Prior work has shown that software defined radio has the ability to reduce the size, 

weight, power and cost of telemetry and avionics. We propose a virtualized transceiver 

architecture that supports multiple concurrent software defined radio (SDR) applications 

running on shared SDR hardware. This paper applies the concept of virtual transceivers to 

SDR for telemetry and avionics. The proposed design allows for transceivers to be shared 

between different SDR applications by taking advantage of time separation and frequency 

adjacency. This paper addresses the system layout, hardware selection, and software or­

ganization. Improvements include a scalable and considerations for both redundancy and 

upgradability.

1. INTRODUCTION

Software defined radio (SDR) systems have begun to make an impact in military and 

space applications. Examples include the Joint Tactical Radio System (JTRS) and NASA’s 

Space Telecommunications Radio System (STRS). Software defined radio is an excellent

mailto:ndpr43@mst.edu
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Figure 1. Conceptual block diagram of a software defined radio.

fit for avionics and telemetry as it makes it possible to support multiple radio bands and 

protocols with the versatility of software. SDR systems have the potential to reduce the 

size, weight, power, and cost (SWaP-C) in aeronautical radio equipment as well[1, 1, 3, 6].

Software defined radio systems support waveform-generating applications some­

times abbreviated as waveforms. These waveform-generating applications use digital signal 

processing to both produce and consume streams of digital samples representing baseband 

radio waves. It is the responsibility of transceiver hardware to realize these baseband sample 

streams into analog signals and to translate these signals to RF frequencies and vice versa. 

Key components of an SDR are shown in Figure 1.

1.1. PROBLEMS ADDRESSED

The trend of tight coupling of waveform-generating applications and transceivers in 

SDR platforms can lead to inflexibility in SDR systems as a whole. For example, statically 

offload DSP onto FPGAs integrated into SDR transceivers [3] can cause extremely tight 

coupling between waveforms and transceivers. This becomes a problem when the waveform-
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Figure 2. Software organization of classic SDR applications.

generating application is no longer distinguishable from the hardware it runs on. At this 

point the platform is better described as a firmware defined radio. When it come times to 

upgrade such a system, developers may find it difficult to add or change functionality. It 

could then be more economical to replace the entire system, which is the antithesis of a 

well-designed software defined radio system.

We propose the introduction of a hardware abstraction layer between waveform­

generating applications and transceiver hardware. This separation leads to modularity 

between transceiver and computational hardware in a plug and play architecture. SDR 

applications communicate with the abstraction layer through a common API. The abstraction 

layer handles the timing, format, and delivery of signals as well as the configuration and 

control of transceivers. Additionally, it facilitates time division sharing of transceivers 

between different applications. Primary benefits of this abstraction layer include scalable 

performance overhead and a scalable increase in system reliability. The performance of 

a waveform measured in terms of contention-free accesses free accesses of transceivers
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increases with the number of system wide transceivers. Likewise, reliability of waveforms 

measured in terms tolerance of failed transceivers increases with the number of system wide 

transceivers.

In this paper, we present the design and characteristics of the proposed software 

defined radio architecture. Described are design details in both hardware and software 

organization. Features of this architecture include transceiver multiplexing and resilience 

to device failure. The proposed architecture is simulated in a number of scenarios to 

demonstrate the performance and reliability scaling for ARNS and telemetry applications.

2. PROPOSED ARCHITECTURE

This section describes the hardware and software design of the proposed SDR 

architecture. First, we give an overview of the design and its functionality. We present 

software changes that serve to separate hardware and software development concerns. This 

includes a discussion of the responsibilities, features, and benefits of the proposed radio 

transceiver abstraction layer and a discussion of interlayer API. This is followed by a 

discussion about alterations to hardware that increase system flexibility.

2.1. SOFTWARE

The fundamental principle of this architecture is the abstraction of individual 

transceivers from waveform generating applications. Figure 2 illustrates the software 

organization of a classic SDR. Included are both network-centric applications featuring 

integration into the host operating system TCP/IP stack, as well as stand-along, mono­

lithic applications. The waveforms are interacting directly with hardware drivers to control 

transceivers directly. We propose they interact with a common abstraction layer, as illus-
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Figure 3. Software organization of SDR applications using virtualized transceivers.

trated in Figure 3. Gray layers in this figure are fully abstracted from SDR applications. 

We envision these interactions take place over a network socket-like API. We refer to each 

unique interaction, either a transmission or reception, as a spectrum demand.

2.1.1. Application Programming Interface. The API for each spectrum demand 

contains a sample buffer and minimal set of descriptors. For transmission demands, the 

sample buffer would contain samples to be sent, however for reception demands the buffer 

would be empty. For all spectrum demands, a waveform generating application would 

submit the following descriptors:

• Start Time: When the spectrum demand is to take place

• End Time: When the spectrum demand is to conclude

• Sample Rate: Sample rate of the submitted or requested samples in samples/second

• Lower frequency bound: The lower frequency edge of the requested or submitted 

spectrum in hertz.

• Upper frequency bound: The upper frequency edge of the requested or submitted 

spectrum in hertz.
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• Reference power level: Relates samples with magnitude 1 to equivalent passband 

power level in dBm or Watts.

These descriptors, are inspired from low-level SDR peripheral interface protocols 

such as Vita 49 [2], however device specifics have been removed.

In a full implementation, supplementary descriptors could be added to spectrum 

demands to suite additional needs. Regulatory considerations would likely dictate additional 

mandatory fields. For example, transmission demands would likely need to specify emission 

specifics in the form of maximum total radiated power (TRP), maximum antenna gain, 

maximum out-of-band emissions, etc. Other practical considerations would likely dictate 

additional fields. For example, reception demands would likely need to specify a minimum 

signal quality metric in the form of spurious free dynamic range (SFDR), noise spectral 

density (NSD), or some other quality metric.

This abstract API allows for both transmissions and receptions to be handled asyn­

chronously and optionally be event driven. For transmission demands, SDR application 

are free to generate a complete transmission demand and submit it for future transmission 

indicated in by the descriptors (i.e. asynchronous operation). Alternatively, the application 

could submit a transmission demand with an empty sample buffer and wait for a notification 

to begin start writing samples. This event notification would trigger before the actual start 

time of demand to compensate for transmission path delays. Once notified, the application 

must produce samples at least as fast the sample rate configured in the request to avoid 

underflow. Similarly, an application can submit a reception demand and check the sample 

buffer at its convenience, asynchronously. As with transmissions, the application can wait 

for an event indicating the first sample has arrived. This event would naturally occur after 

the start time in the reception request due to latency in the receive path. The application 

can read samples from the sample buffer no faster than the specified sample rate.
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Much like a spectrum demand describes an individual transaction, each SDR 

transceiver must be registered with a complete set of the devices capabilities and de­

scriptors. With a complete description of the device the abstraction layer can use this 

information to route spectrum demands to compatible transceivers. Tuning capabilities, 

front-end bandwidth, output gain, input gain, and duplex configuration are a just few exam­

ples of essential descriptors. This can also be extended to include any additional information 

the manufacture wishes to include.

2.1.2. Scheduling. The abstraction of spectrum demands allows the sharing of 

transceiver resources and hardware. We envision the abstraction layer containing a full 

scheduler to manage resource sharing. In the simplest case, an SDR system would contain 

a single transceiver. A user may run multiple SDR applications that each generate spectrum 

demands. The scheduler can then time share the transceiver by quickly reconfiguring the 

transceiver between different demands. Reconfiguring includes tuning to a different fre­

quency, switching between transmission and reception, changing amplifier gain, switching 

between antennas, etc. When there is contention, demands occurring at the same time with 

conflicting requirements, the scheduler must pick a single demand to serve based on some 

preestablished priority system.

The scheduler may use a static or dynamic prioritization of spectrum demands to 

handle resource contention. A static priority system would choose demands based on known 

static properties. For example, it may favor demands from a specific application, demands 

that are short, etc. Alternatively, a scheduler may use a dynamic priority system in which 

priorities change. For, example a scheduler may attempt to ensure that at least 90% of 

spectrum demands are executed from a specific application.
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Figure 4. Conceptual block diagram for SDR system supporting multiple applications.

2.2. HARDWARE

Hardware considerations for the proposed design are largely the same as conven­

tional SDR, however the flexibility of the system makes certain aspects easier. Analog 

transmission/receptions path components must be chosen to support desired frequency 

bands and front-end bandwidth. ADC/DAC sampling frequencies and bit precision must be 

selected by considering the needs of every radio application. Should no single radio support 

the needs of all radio applications, an array of receivers can be assembled. Figure4 illus­

trates a conceptual block diagram for an SDR system supporting multiple applications. This 

configuration allows for applications to be dynamically assigned to transmission/reception 

paths. Each applicatoin is facilitated by a dedicated, digital channelizer implemented in 

either software or hardware. The scheduler will automatically assign the correct transceiver 

to the correct application. Alternatively, duplicate transceivers can be added should many 

applications have similar requirements and large duty cycles.

The proposed design generally calls for a channelizer for each application, which 

has several benefits. Signals of interest can be extracted from incoming sample streams by 

digitally mixing and bandpass filtering (channelizing) out the respective blocks of spectrum.
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The resultant sample streams can then be routed to the appropriate SDR applications. Sam­

ple rate conversion, sample precision conversion, sample format should also be integrated 

into this step. By reconfiguring the channelizers, SDR applications can easily be migrated 

between different transceivers.

In certain scenarios, it may be possible to tune a transceiver such that it may receive 

several signals at once. By carefully steering the front-end bandwidth of a receiver, multiple 

spectrum demands can be targeted with a single transceiver. This is subject to the dynamic 

range of ADC and the amplitude of incoming signals [1]. Spectrum demand descriptors 

should be extended to include such considerations if this operation is to be perform these 

operations dynamically by the scheduler.

Digital channelizers for each application comes at high computational cost. As 

samples enter and exit the DAC and ADC they must be stepped-down and stepped-up in 

real-time respectively. This process must be repeated for each application. Commercial 

SDR transceivers typically integrate a digital channelizer to save the host computer from 

performing this operation, however this makes channelizing out multiple signals for different 

applications[4]. Ideally, commercial SDR transceivers would include multiple hardware 

channelizers.

2.2.1. Reliability. In this section, we provide a simple model for the reliability 

of an SDR applications using our proposed architecture. Consolidating multiple avionics 

systems together can increase the risk of multiple systems failure, however the modularity 

of the proposed architecture can help mitigate the risk.

Given an implementation of our architecture supporting multiple SDR applications, 

we can model the reliability of an SDR application as a series-parallel system[5]. The system 

is comprised of a host computer running our applications with reliability Rc connected to 

m transceivers each with reliability Rxcvr. The reliability of an individual application RSDRi 

can the be modeled as

R sDRi =  R c [1 -  (1 -  R xcvr H (1)
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if we assume all transceivers are compatible with the application. This is a worst case 

scenario as it features a single point of failure, the host computer. The system reliability is 

no greater than RC

By including additional host computers as warm spares with reliability Rw we can 

improve the reliability to

RsDRi = [1 -  (1 -  Rc)(1 -  Rw)k-1][1 -  (1 -  RxcvrT ] (2)

where k is the total number of host computers. In this way reliability can scailed in 

accordance with requirements.

3. SIMULATION

This section provides a simulation to demonstrate the performance of an abstracted 

multi-radio SDR system for avionics and telemetry. As previously discussed, each SDR 

application generates transmission and reception requests and it is the scheduler's duty to 

dynamically assign the requests to the available transceivers.

3.1. SETUP

This simulation will feature four avionics protocols as well and one telemetry proto­

col. In this simulation we will support the following avionics systems: distance measuring 

equipment (DME), air traffic control radar beacon system (ATCRBS), automatic dependent 

surveillance — broadcast transmitting (ADS-B Out) and receiving (ADS-B IN), a Mode 

S transponder. This part of the simulation is identical to that given by [6]. Additionally, 

we support a single serial streaming telemetry (SST) transmitter to be representative of 

telemetry needs.
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Table 1. Transmitting and receiving characteristics as they pertain to scheduling.

Summary of Avionics Protocols and Spectrum Demands
Protocol Name Transmission Duration (Periodicity) Reception Duration (Periodicity)

DME 
ATCRBS 

ADS-B Out 
ADS-B In 

M odeS 
SST

15.5 (125-150 Hz)
20.3 (following each RX) 
120 ^s (5-10 Hz)
N/A
120 ^s (following each RX) 
Continuous

150 ^s (following each TX) 
Continuous 
N/A
Continuous
Continuous
N/A

Our scheduler prioritizes spectrum demands based on their time duration. Finite 

duration transmission and receptions are the highest priority. SDR applications requiring 

constant reception will be assigned any time reaming up to an entire dedicated radio per 

application if available. Applications requiring constant transmission are the lowest priority 

and will receive any time after constant reception applications are assigned up to an entire 

dedicated radio available. Time duration requirements for each protocol in our simulation 

are summarized in Table 1.

3.1.1. Assumptions. We will assume that ATCRBS, ADS-B In, and Mode S re­

ception demands can be met by the same transceiver. ATCRBS and Mode S ground stations 

both interrogate aircraft on 1030 MHz while ADS-B In arrives on 1090 MHz. All three of 

these demands are on-going. We will make use of the channelization technique mentioned 

earlier to receive all three protocols using one transceiver.

We will assume that ATCRBS replies, ADS-B Out, and Mode S replies will block 

the reception of other each other's reception. The transmissions made by these protocols 

are in the 100-500w range. Like [6] we assume that these in-band transmissions will cause 

saturation in our own receiver(s). Though we are not specifying which DME channel we 

are using, we will also assume that transmission made by DME will block in this band as 

well.
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Table 2. Portion of transmission and reception demands met per application.

Summary of Spectrum Demands Met (%)
Radio Count 1 2 3

TX RX TX RX TX RX
DME 98.2 28.1 100 55.5 100 82.5

ATCRBS 68.2 98.2 69.6 97.9 70.2 97.4
ADS-B Out 100 N/A 100 N/A 100 N/A
ADS-B In N/A 90.7 N/A 92.3 N/A 93.2

M odeS 91.7 95.9 84.9 95.1 83.7 96.7
SST N/A N/A 97.6 N/A 100 N/A

3.2. RESULTS

Table 2 summarizes the portion of transmission and reception demands that were 

met per application. Results are given for three different simulations featuring an increasing 

number of shared tranceivers. We see that transmission performance for finite duration 

demands initiated by the aircraft are excellent. The performance improved slightly with a 

greater number of transceivers available.

Mode S and ATCRBS show what appear to be contradicting trends. For Mode S, as 

the radio count increased the transmission performance degraded while ATCRBS showed 

the opposite trend. These protocols likely are approaching an equilibrium performance.

Reception demands tended to increase in performance as the radio count increased. 

DME's finite duration reception cycle improved drastically as the radio count went up 

indicating it was likely suffering from resource contention.

Continuous transmission reception demands stayed relatively constant showing only 

a slight increase or decrease in performance with exception of the SST. This was expected 

for continuous reception demands as the total scheduled time for finite duration demands 

compromised only 3%-4% of the entire simulation. Due to scheduling priorities already 

mentioned it is impossible for the SST to run with fewer than 2 radios on the system.
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4. CONCLUSION

In this paper we proposed a new architecture for hosting multiple SDR programs 

using shared hardware. We detailed what software and hardware changes as well as 

benefits to SDR application programmers. Additionally, we demonstrated how the improved 

modularity can lead to an increase in radio system reliability and demonstrated performance 

scaling in a resource bound system.
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ABSTRACT

This paper proposes a real-time control scheme for a software-defined radio (SDR) 

transceiver multiplexing system that provides service guarantees. Developing standards 

have detailed a well-organized system for hosting multiple SDR applications. Prior work 

has shown a potential to increase the number of hosted SDR applications by sharing or 

multiplexing radio front-end transceivers. Time sharing techniques have shown the most 

potential. However, service disruptions caused by over budgeting can lead to serious 

wireless performance degradation. This paper proposes a real-time scheduling technique 

based on a randomized, multi-objective Markov decision process to overcome this issue. 

First, a relationship is developed between service disruptions and channel interference. 

Next, this relationship is put to use in a flexible multi-objective Markov model. The 

wireless performance of each SDR application is modeled as a unique objective. An 

advanced solution technique is applied that provides unique satisfaction constraints for 

each objective. Simulations of the control scheme in operation are provided for multiple

scenarios.
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52

1. INTRODUCTION

Future software-defined radio (SDR) systems [24] will incorporate incredible flexi­

bility. Developing standards [2] look to make adding and changing wireless capabilities in 

smartphones and mobile devices the same as installing new applications from an app store. 

These SDR apps will be managed by an abstraction layer that sits between the SDR app 

and the mobile device’s radio hardware resources (i.e. radio front-ends or transceivers). 

With this next generation of SDR, users could pick and choose wireless capabilities as 

desired. The number of supported SDR apps would be limited only by the number of radio 

front-ends. However, several works [4, 5, 26, 28, 32] propose that this limitation could be 

partially overcome by dynamically sharing radio front-ends among SDR applications. In 

some literature [20, 21], this system architecture is even referred to as a virtualized SDR 

since it resembles virtual machines running on a hypervisor.

Operating SDR applications on shared radio front-ends introduces new challenges 

and concerns. Ordinarily, wireless devices must undergo testing, evaluation, and certi­

fication with wireless standards bodies and regulatory agencies. Testing ensures devices 

operate correctly and do not cause harmful interference. Conventional testing becomes im­

possible when users can add new wireless capabilities in unique, untested combinations to 

SDR based mobile devices. Inevitably, certain combinations of demanding SDR apps will 

contend for radio resources resulting in performance losses. Radio resource management 

systems for this new type of SDR must, therefore, have the capability to independently 

verifying that SDR apps operate within their respective specifications despite the presence 

of resource contention.

Virtualized SDR radio systems have many applications. Aircraft avionics systems 

operate multiple radio communication and radio navigation systems[16]. Virtualized SDR 

allows for the consolidation and potentially a reduction in radio equipment. Mobile devices 

such as laptops, tablets, and phones regularly operate multiple wireless protocols simultane­

ously. Virtualized SDR can add tremendous amount of flexibility and upgradability to these
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devices. Wireless network infrastructure can also benefit from virtualized SDR systems. 

It enables cellular networks to more easily role out support for new wireless protocols via 

software updates. It can provide a foundation for multiple radio access technology (Multi 

RAT) based networks [11]. Virtualized SDR systems also benefit small scale wireless 

network infrastructure. It enables wireless local area network (WLAN) access points to 

become convergence devices that support multiple wireless protocols simultaneously.

In this article, the focus is on a novel dynamic decision making strategy for managing 

radio front-ends. The proposed solution is based on Markov decision process (MDP). We 

develop a Markov model that considers the RF performance requirements of each SDR 

application and considers the impact each resource assignment decision has on overall 

performance. We applied a well-developed MDP decision strategy [8 , 9] that identifies 

feasible goals, guarantees a respective performance minimum for each SDR app, and 

ensures the solution is approximately Pareto efficient. Contributions of this article are as 

follows:

1. We propose a MDP model for dynamic front-end sharing in virtualized SDR systems. 

The state space of the model can be adapted to model wireless protocol behavior at 

varying levels of detail. The cost function considers the performance impact on phys­

ical layer performance caused by sharing radio front-ends. It ties together physical 

layer performance, the wireless channel model, and front-end assignment decisions. 

Most importantly, it considers the impact of overbooking front-end resources.

2. The proposed method identifies feasible workloads and can guarantee performance 

minimums. The methods applied from [8 , 9] allow us to test an SDR workload (i.e., a 

unique combination of SDR apps) against physical layer performance requirements. 

Workloads deemed feasible come with the guarantee that a two-mode, stochastic 

control strategy can be used. It ensures all virtualized SDRs will meet or exceed their
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respective minimum performance requirements. This type of performance guarantee 

provides a first-step in the exploration of achieving wireless certification for a true 

software-only radio.

3. The MDP strategy proposed for solving the Markov model produces a simple, approx­

imately Pareto efficient, real-time stochastic control strategy for feasible workloads. 

This control strategy can easily be run in real-time. Decisions made at each epoch 

are chosen according to a custom, multinomial random distribution. The solution is 

approximately Pareto efficient which ensures the Hypervisor makes the most utility 

out of the available radio front-ends.

Following this introduction is a literature survey in Sec. II. A relationship is 

developed between channel interference and service disruptions in Sec. III. The Markov 

model is constructed in Sec. IV. The simulation setup is discussed in Sec. V. Results are 

discussed in Sec. VI, and the paper is concluded in Sec. VII.

2. LITERATURE SURVEY

The reconfigurable radio systems (RRS) set of standards [2] in development by 

ETSI for SDR systems, propose an app store model for SDR. In the app store model, a user 

purchases a wireless computer, such as mobile device, that is intrinsically void of wireless 

capability without software. This SDR mobile device would feature an array of generic 

radio front-ends. These front-ends may be suitable for multiple wireless protocols or may 

be specialized to a particular use case or wireless band. This wireless computer acquires 

wireless functionality once the user installs an SDR application from the app store.

Several existing works [4, 5, 28, 32] propose the abstraction layer connect SDR 

applications to radio front-ends dynamically on an as needed basis. In [20, 21], software- 

defined radios are said to be virtualized when they interact with shared radio front-ends 

through an abstraction layer as it is similar to the way virtual machines interact with a shared
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processor. This type of radio front-end abstraction is even referred to as an SDR hypervisor. 

This approach has the advantage of making the number of concurrent SDRs less dependent 

on the number of front-ends.

In [5, 28, 32], radio front-ends were shared using time division multiplexing (TDM) 

of radio front-ends. Specifically these works used an on-demand fixed priority scheduler. 

When an SDR application initiated a transmission or reception event, the abstraction layer 

(i.e., hypervisor) would dynamically connect the SDR application to the first available 

front-end. When the event concluded, the front-end would become available again. If 

the supply of front-ends was exhausted, new transmission or reception events would be 

handled according to application priority. Thus, upcoming radio events from high-priority 

SDR applications may interrupt and preempt active low-priority radio events from low- 

priority SDR applications. Upcoming low-priority transmission and reception events may 

be dropped entirely if no front-end is available.

In our previous work [26], we worked to increase the capacity of virtualized SDR 

systems through the use of mixed-integer linear programming. We presented a linear 

programming model that could build an optimized front-end assignment schedule, given 

a finite list of transmission and reception events. This method showed improved capacity 

over the type of fixed priority scheduler in [32] and related works. However, since it could 

only optimize over a finite list of upcoming radio events, its assignment decisions could be 

somewhat myopic. For this reason and the required computational complexity, it could not 

be considered for use in real-time.

Like previous methods [5, 28, 32], our linear programming method [26] did not 

consider the impact sharing radio front-ends would have on the performance of wireless 

protocols. In [19], the impact of shared radio front-ends between Wi-Fi and the Long Term 

Evolution (LTE) cellular protocol was studied. This work focused mostly on multi-radio 

assignment trade-offs for MIMO systems and the impact of in-band interference.
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We were drawn to a MDP after seeing a the behavior of wireless protocols modeled 

as Markov chains and MDPs. A number of works such as [7, 22] have modeled wireless 

retransmission schemes using a Markov model. This type of research was extended in works 

such as[23, 25] to model complex retransmission interactions between different wireless 

protocols. In section 5, we leverage the existence of such models for use in construction of 

a front-end utilization model. A number of these are simplified and composited to model 

the collective front-end utilization of the system. Thus, the collective front-end utilization 

model forms the state space for our system, and resouce allocation decisions form the actions 

space.

We arrived at the unique MDP decision policy developed in [8 , 9] after a long search 

through MDP literature. Classical approaches to MDP include dynamic programming 

solutions (e.g., value iteration and policy iteration) and linear programming solutions [6 , 

27]. Our problem resembled a restless multi-armed bandit problem. Classic approaches 

include index policies such as those found in [14, 30]. Complications arose in adapting 

index techniques. The multi-objective nature of our problem and the K-out-of-M resource 

rationing nature of problem were the most problematic issues. Furthermore, our goal was 

to include performance guarantees for each objective. This lead to interest in works such 

as [13]. However, in our research, we found dynamic programming solutions came with a 

number of restrictions that we couldn’t be sure our model could satisfy as it was still being 

developed. Additionally, we were concerned with long-term averages of radio metrics 

rather than discounted stochastic estimates. We found dynamic programming solutions 

to long-term average problems were a less developed area of research. This led us to 

linear programming solutions such as those found in [8 , 9]. This solution met with our 

requirements for a decision policy concerned with the long-term averages of multi-objectives 

with constraints.
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3. MODEL OF OPERATION

In this section, we describe the general operation of a multi-radio SDR system and 

the operation of the new elements proposed in this article. General operation is similar to 

that of RRS from [2] and HyDRA from [21]. New elements include an SDR workload 

feasibility test and an SDR application gating mechanism.

3.1. USER INTERACTION

Multi-radio SDR devices as described by [2] will install SDR apps like conventional 

mobile apps and operate them like convention digital radios. Users will be able to install 

and manage SDR applications using the same types of app stores and package management 

facilities already found in smartphones and mobile devices. Once installed, SDR appli­

cations can be toggled on and off like conventional digital radios already found in mobile 

devices. Traditional thinking would limit the number of SDR applications that the user may 

enable to the number of available front-ends. However, in a virtualized multi-radio SDR 

device such the system in [21, 26, 32] the user may continue to enable SDR applications 

since front-ends are shared among all applications. As the available front-ends are shared 

across more and more applications, radio performance will drop.

We propose the addition of an SDR application gating mechanism that works with 

the virtualization layer to limit the user to feasible SDR workloads only. In our proposed 

approach, when the user enables an additional SDR application, it is first placed into a 

proposed workload with all other enabled SDR applications. This proposed workload 

is tested to ensure all SDR apps meet their respective radio performance metrics. If 

the workload passes the feasibility test, a new control policy is generated and sent to 

virtualization layer. The additional SDR application is then launched. If the proposed



58

Figure 1. Overview of SDR hypervisor systems: (1) SDR applications (Wi-Fi, LTE, 
Bluetooth) issue spectrum requests to SDR hypervisor (2) SDR hypervisor converts requests 
into discrete time slot reservations and resolves scheduling conflicts (3) Sample streams are 
sent to/from front-ends

workload is infeasible, the user receives an error message and the SDR application remains 

disabled. Feasibility tests may be conducted in advanced for any combination of SDR 

applications installed the device. The results may be saved for future use.

3.2. GENERAL OPERATION

Each enabled SDR application is expected to generate and consume baseband sample 

streams, and in turn, the applications expect the hypervisor (i.e., virtualization layer) to 

route these streams to and from front-ends. Existing works [28, 32] describe an application 

programming interface (API) and a model of operation where discrete transmission and 

reception events are encapsulated into spectrum access requests. In this API, these spectrum 

access requests are containers for baseband sample streams and descriptive meta data. SDR 

applications issue spectrum requests to the SDR Hypervisor as illustrated in Figure 1 (1). 

Spectrum request meta data includes details such as carrier frequency, bandwidth, sampling 

rate, timing reference, etc. As the spectrum requests arrive from SDR applications, the
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Figure 2. SDR spectrum access requests translate into discrete time slot reservations.

hypervisor buffers them and builds a schedule illustrated in Figure 1 (2). At the appropriate 

time, the hypervisor services or drops each request Figure 1 (3). To service a transmission 

request, the hypervisor delivers the sample stream contained in the request to an available 

front-end transmitter where it is synthesized into an actual radio waveform and sent. To 

service a reception request, the hypervisor retrieves a sample stream generated from an 

available front-end receiver and delivers it to the corresponding SDR application. Each 

front-end can service a single request at a time.

In this article, we modify the spectrum request model to make it more convenient for 

use with MDP. Our hypervisor uses a discrete-slotted-time approach. Each radio front-end 

is assigned to an SDR application for a fixed interval or time slot. Assignment decisions 

are made just prior to the start of each interval and are held constant for the entire duration. 

Timing is synchronized across all front-ends. Thus, an assignment decision is made for 

all front-ends at each interval. Spectrum requests may span multiple time slots. Request 

duration will need be rounded up to the nearest whole time-slot to avoid cutting off a request. 

This rounding is illustrated in 2. Notice, that both of SDR 1’s requests are the same duration, 

but they require different numbers of slots depending on where they align in time. Though 

a spectrum request may be known to span multiple time slots, assignments are never made 

more than a single time slot into future.
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4. SER ESTIMATION

W i r e l e s s  p r o t o c o l s  o f t e n  u s e  s e n s i t i v i t y  a n d  f r a m e  e r r o r  r a t i o  ( F E R )  a s  s t a n d a r d s  

f o r  p h y s i c a l  l a y e r  r e c e i v e r  p e r f o r m a n c e .  S e n s i t i v i t y  r e f e r s  t o  t h e  m i n i m u m  s i g n a l  p o w e r  f o r  

w h i c h  a  r e c e i v e r  s h o u l d  p r o p e r l y  d e c o d e  a  s i g n a l .  F E R  i s  t h e  r a t i o  o f  c o r r u p t e d  d a t a  f r a m e s  

( i . e . ,  p a c k e t s )  t o  t o t a l  n u m b e r  o f  d a t a  f r a m e s .  A  r e c e i v e r  i s  e x p e c t e d  t o  d e c o d e  a  s i g n a l  w i t h  

a  s p e c i f i e d  m i n i m u m  s i g n a l  p o w e r  ( i . e . ,  t h e  s e n s i t i v i t y )  w i t h  a n  F E R  l e s s  t h a n  o r  e q u a l  t o  a  

s p e c i f i e d  m a x i m u m  F E R .

T h e r e  i s  a  d i r e c t  r e l a t i o n s h i p  b e t w e e n  t h e  s c h e d u l i n g  d e c i s i o n s  m a d e  b y  o u r  S D R  

h y p e r v i s o r  a n d  p e r c e i v e d  s i g n a l - t o - n o i s e  r a t i o  ( S N R ) .  W h e n  t h e  S D R  h y p e r v i s o r  c o n s i s ­

t e n t l y  p r o v i d e s  a  f r o n t - e n d  t o  a n  S D R  a p p l i c a t i o n ,  t h e  h y p e r v i s o r  a n d  f r o n t - e n d  s h a r i n g  i s  

e s s e n t i a l l y  t r a n s p a r e n t .  T h u s ,  t h e  c h a n n e l  h a s  t h e  g r e a t e s t  e f f e c t  o n  c o m m u n i c a t i o n s .  I f  

t h e  S D R  h y p e r v i s o r  f a i l s  t o  m a k e  a n  a s s i g n m e n t  d u r i n g  a  t i m e  s l o t ,  i t  i s  a s  i f  t h e r e  i s  n o  

s i g n a l  p o w e r  p r e s e n t  a n d  o n l y  n o i s e .  T h e  r e s u l t a n t  S N R  c o u l d  b e  c a l l e d  0  o r  - to  d B  f o r  t h e  

d u r a t i o n  o f  a n y  m i s s e d  a s s i g n m e n t .  A d d i t i o n a l l y ,  t h e  s e l e c t i o n  o f  f r o n t - e n d  m a y  i n f l u e n c e  

S N R .  F r o n t - e n d s  c o n t r i b u t e  n o i s e  a n d  i n t e r f e r e n c e  i n  a d d i t i o n  t o  t h e  e n v i r o n m e n t a l  n o i s e .  

D i f f e r e n t  m a k e s  a n d  m o d e l s  o f  f r o n t - e n d s  c o n t r i b u t e  d i f f e r e n t  a m o u n t s  o f  n o i s e  a n d  i n t e r ­

f e r e n c e .  T h e r e f o r e ,  t h e  S D R  h y p e r v i s o r  m u s t  a l s o  c o n s i d e r  w h i c h  f r o n t - e n d  i s  a s s i g n e d  

w h e n  t h e  a v a i l a b l e  f r o n t - e n d s  a r e  n o t  i d e n t i c a l .

T h e  S D R  h y p e r v i s o r  c a n  i n f l u e n c e  F E R  i n d i r e c t l y  w i t h  i t s  f r o n t - e n d  a s s i g n m e n t s .  

S i n c e  F E R  i s  a  f u n c t i o n  o f  t h e  S N R ,  t h e  S D R  h y p e r v i s o r  c a n  u s e  i t s  p e r - t i m e  s l o t  S N R  

i n f l u e n c e  t o  m a n i p u l a t e  t h e  o v e r a l l  F E R .  A s  p r e v i o u s l y  s t a t e d ,  a  f r a m e  m a y  s p a n  a  n u m b e r  

o f  t i m e  s l o t s  a n d  c o n t r o l  d e c i s i o n s  a r e  m a d e  e v e r y  s l o t  r a t h e r  t h a n  e v e r y  f r a m e .  T h i s  m a k e s  

d i r e c t  c o n t r o l  o v e r  F E R  d i f f i c u l t .  H o w e v e r ,  i t  i s  p o s s i b l e  t o  d i r e c t l y  m a n i p u l a t e  t h e  p e r  f r a m e  

s y m b o l  e r r o r  r a t i o  ( S E R )  a s  a  w a y  t o  c o n t r o l  t h e  F E R .  F o r  a  k n o w n  m o d u l a t i o n  a n d  c h a n n e l  

m o d e l ,  t h e r e  a r e  e s t a b l i s h e d  e q u a t i o n s  t o  r e l a t e  S N R  t o  S E R  [ 1 5 ] .  T h e s e  e q u a t i o n s  a r e  

t y p i c a l l y  g i v e n  a s  a  f u n c t i o n  o f  n o r m a l i z e d  c a r r i e r - t o - n o i s e  r a t i o  N . N o r m a l i z e d  c a r r i e r -
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to-noise ratio can be equated to SNR,

No N \ R j  ,

where R is the baud rate (i.e., symbol rate) and B is the signal bandwidth. By managing the 

mean SER, the SDR hypervisor can indirectly control the overall FER. If we assume the 

SNR is constant for the duration of a time slot, then mean SER per time slot SER^ can be 

defined as

SERU = lim -  V  SER ,,
i= 1

for n discrete time slots.

Details from a wireless specification can be used to determine the maximum overall 

SER allowable to maintain the specified FER for a wireless standard. We assume there is no 

more than a single frame per-time slot and that conditions are constant for the duration of the 

time slot. If a frame is composed of L  symbols and the symbols are assumed independent, 

a maximum acceptable SER (SERmax) can be determined,

FE R  « 1 - ( 1  -  Ps)L ,

where Ps is the probability of a symbol error. Then

SER max « P s « 1 -  (1 -  FE R max )1/L .

From this calculation, we can determine the SER max for any of the hosted SDR applications.

Rather than measure the SNR for each time slot, a worst case scenario SNR can be 

assumed. It would be difficult for a hypervisor to measure SNR for each hosted SDR, since 

this calculation is unique to each wireless protocol and modulation. A simple solution is 

to assume a worst-case SNR for each delivered time slot. Again, an SNR of 0 could be 

assumed when no assignment is made. Worst case SNR is when signal power is weakest
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and noise power is strongest. Sensitivity can be used for minimum signal power Pmin, since 

it is effectively worst case signal power. If the signal power is lower than the sensitivity, it 

is outside of the specification and is not expected to be decoded. Worst case noise power 

Nmax of a wireless receiver (i.e., the noise floor N f i o0r ) can be estimated as a function of 

intrinsic properties of a wireless front-end. Given Nmax, the delivered SNR for a particular 

time slot can be estimated (SNRest) as

P .
SN R est = .

Nmax

Several factors play a role in the calculation of the noise floor Nf i 00r. The major 

contributor of noise, thermal noise, is typically calculated as

N  = KTB,

where
_23 W

K  = Boltzmann’s constant = 1.38 x 10 ----------
K  -  Hz

T = temperature in kelvin, typically 290K 

B = bandwidth in Hz.

Noise bandwidth is usually the same as the signal bandwidth. Additional noise will be 

added by circuit components in the receiver’s wireless front-end. The noise contribution 

of a circuit component is normally given as a ratio of the device’s output noise power to 

the device’s input noise power. This is otherwise known as noise factor F  or noise figure 

N F  when given in dB. A composite noise factor Fcomp can be calculated for all circuit 

components in a wireless front-end using the Friis formula for noise:

Fccomp Fi + F2

Gi
1 F3+

G 1 G2
+ + F n ~  1

G 1 G2  • • • Gn - 1
1
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H e r e  F i a n d  G i r e f e r  t o  t h e  n o i s e  f a c t o r  a n d  g a i n  o f  a  c i r c u i t  c o m p o n e n t  i r e s p e c t i v e l y .  T h e  

s a m p l i n g  n o i s e  o f  t h e  a n a l o g - t o - d i g i t a l  c o n v e r t e r  ( A D C )  a l s o  c o n t r i b u t e s  t o  t h e  c o m p o s i t e  

n o i s e  f a c t o r  o f  a  f r o n t - e n d  a n d  s h o u l d  b e  i n c l u d e d  i n  Fcomp a s  w e l l .  T h e  Fcomp i s  u s u a l l y  

g i v e n  o n  d a t a s h e e t s  f o r  o f f - t h e - s h e l f  w i r e l e s s  f r o n t - e n d s .  F o r  a  w i r e l e s s  f r o n t - e n d  g i v e n  

b a n d w i d t h  B ,  n o i s e  f l o o r  N f i oor c a n  b e  c a l c u l a t e d ,

N floor =  ( K T B ) F comp.

A l t e r n a t i v e l y ,  d i s t o r t i o n  c a l c u l a t i o n s  m a y  b e  u s e d  i n  p l a c e  o f  n o i s e  f i g u r e .  N o n - l i n e a r  

d i s t o r t i o n  s u c h  a s  h a r m o n i c  d i s t o r t i o n  c o n t r i b u t e s  s i g n i f i c a n t  i n t e r f e r e n c e  i n  e l e c t r o n i c s .  

T h i s  i s  u s u a l l y  d e s c r i b e d  a s  s i g n a l - t o - n o i s e - a n d - d i s t o r t i o n  r a t i o  ( S I N A D )  [ 1 7 ]

S I N A D  =
S

N  +  D .

S I N A D  a p p e a r s  o n  d a t a  s h e e t s  f o r  m a n y  e l e c t r o n i c s  s u c h  a s  A D C s  a n d  f r o n t - e n d s .

I n t e r f e r e n c e  t o l e r a n c e  i s  o f t e n  l i s t e d  i n  a  w i r e l e s s  s p e c i f i c a t i o n  a n d  s h o u l d  a l s o  b e  

c o n s i d e r e d  i n  S N R  e s t i m a t i o n .  I n t e r f e r e n c e  t o l e r a n c e  i s  e x p r e s s e d  a s  a  m a x i m u m  a v e r a g e  

i n t e r f e r e n c e  p o w e r  I . T h i s  v a l u e  m a y  b e  s i g n i f i c a n t l y  l a r g e r  t h a n  t h e  N f l o o r . I n  s u c h  c a s e s ,  

e i t h e r  I  m a y  b e  s u b s t i t u t e d  f o r  N f loor o r  s i g n a l - t o - i n t e r f e r e n c e - p l u s - n o i s e  r a t i o  ( S I N R ) ,

S I N R  =
S

I  +  N  ’

m a y  b e  u s e d  i n  p l a c e  o f  S N R .

T h e  p r e v i o u s  o v e r a l l  s i g n a l  q u a l i t y  c o n c e r n s  c a n  b e  a p p l i e d  t o  t r a n s m i t t e r s  a s  w e l l .  

T r a n s m i t t e r  S N R  r e q u i r e m e n t s  a r e  u s u a l l y  m o r e  v a g u e l y  o u t l i n e d  i n  a  w i r e l e s s  s p e c i f i c a t i o n  

t h a n  r e c e i v e r  S N R .  T h e  t o p i c  o f  p h y s i c a l  l a y e r  t r a n s m i t t e r  s i g n a l  q u a l i t y  i s  u s u a l l y  d o m i n a t e d  

b y  c o n c e r n s  a b o u t  n o n - l i n e a r  d i s t o r t i o n .  N o n - l i n e a r  a m p l i f i e r s  u s e d  i n  m o d e r n  w i r e l e s s  

t r a n s m i t t e r s  g e n e r a t e  l a r g e  a m o u n t s  o f  s p u r i o u s  e m i s s i o n s  a n d  d i s t o r t i o n  i n  t h e  f o r m  o f
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intermodulation and harmonics. Wireless specifications and government regulatory bodies 

usually set bounds for total transmitter emissions in the form of a power spectral density 

mask. Wireless implementations must keep their emissions within these bounds to be 

certified.

Non-linear distortion effects can be mitigated using amplifier linearization tech­

niques [3, 18, 29, 31]. Ideally, amplifier linearization should be a standard responsibility 

of all multi-radio SDR systems. All transmissions from all SDR applications would, there­

fore, be linearlized. Receiver distortion can be mitigated by linearzation techniques as well. 

Non-linear distortion will not be considered as a part of the control scheme presented in 

this article.

5. MDP

The SDR hypervisor balances the overall utility with respective SER requirements. 

In the previous section, it was established how the hypervisor’s assignment decisions impact 

overall SER and why this indirectly impacts FER. In this section, we describe a MDP based 

decision making strategy. This strategy is developed a priori using the predicted SNR/SER 

methods from the previous section. This MDP works by considering the SER requirements 

of SDR applications and the impact each front-end assignment will have on the overall SER.

We now formulate the dynamic front-end assignment scheme using a MDP. A MDP 

consists of multiple elements: decision epochs, states, actions, transition probabilities, 

rewards, and an objective. The hypervisor constantly collects spectrum requests from 

SDR applications and translates them into corresponding discrete, fixed-duration time 

slots. Assignment decisions are made just prior to the start of a time slot. The sequence 

T  = {1,2,...} denotes successive discrete time slots and with them decision epochs. A 

wireless device may operate for days or weeks on end. Thus, the decision making process
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(a) 3-State Model
plified Model

Figure 3. State transition diagram for a single MDP sub-process (SDR application). (a) 
shows the 3-state model. (b) shows the simplified 2-state model.

considers an infinite horizon. Front-end assignments are constant for the entire duration 

of a slot. Assignments are mutually exclusive, meaning a front-end is assigned to a single 

SDR application during a time slot.

5.1. STATE SPACE

An SDR application requests access to a front-end depending on its state. The 

decision to transmit or receive is determined by the wireless protocol. It is common for 

wireless protocols to base the decision to transmit or receive on the success or failure of the 

previous transmission or reception. The probability of success or failure of a transmission 

or reception is influenced by channel conditions such as noise and overall channel busyness. 

Given fixed channel conditions, a highly detailed Markov model can be built for a wireless 

protocol [25]. Front-end assignment directly influences the amount of perceived noise by an 

SDR application. Therefore, front-end assignment influences the state transition probability 

function and forms the action space.
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The states in this MDP can be reduced into the superstates transmit and receive. 

States in the wireless protocol that require access to a front-end to transmit can be reduced 

into the transmit superstate. States in the wireless protocol that require access to front-end 

to receive can be reduced into the receive superstate. States that do not require a wireless 

front-end can be grouped into a superstate that we label as idle. This 3-state model can 

be seen in 3a. Since transmission and reception equally require access to a front-end, the 

3-state model can be further reduced by grouping the transmit and receive states into a 

superstate that we label as active as seen in 3b. The reduction in states may reduced the 

model’s accuracy, but will reduce the size of the state space. The state space for the ith 

application is therefore defined as

Si = {idle, activ e}.

The state transition probability function for the ith SDR application

P =: S x  A x S ^  [0,1]

denotes the probability P(s-|si, a) where si, s- e Si. This simplified MDP is illustrated in 3. 

State transition probability matrix for some action is defined as

P |A

/  \
Pii Pia

Ipai p aa J

where pu + pia = 1 and pai + Paa = 1 .
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5.2. ACTION SPACE

The action space A is formed by all possible permutations of front-end assignment 

in all possible states. The action space for a MDP is labeled as A = {a1,a 2 , ...,an}. Each 

action represents one possible assignment permutation. Front-end assignments last exactly 

one time slot and are mutually exclusive. An SDR application may be assigned to, at most, 

one front-end. Likewise, each front-end may be assigned to, at most, one SDR application. 

An SDR application may also go unassigned. If there are M SDR applications and N 

front-ends, then, at most, N out of M SDR applications can operate per-time slot. Fewer 

than N  SDR applications may also be assigned when there are idle SDR applications. 

The action space for two front-ends and two back-ends are depicted in 4. We follow the 

convention in [9] and assume that each action is enabled in exactly one state. In our 

model, generally all assignments are possible in all states making size of the action space 

A : S x  All Assignments. A function A ct(s) where s e S determines which actions are 

enabled in a given state s. Nonsensical assignments may be removed to reduce the size of 

the action space. For example, an SDR application should never be assigned to a front-end 

that cannot tune to the application's requested carrier frequency nor to a front-end with 

insufficient bandwidth.

Together the action space and the state space created for each SDR application form 

a set of weakly coupled MDPs. Generally speaking, a weakly (loosely in some literature) 

coupled MDP consists of a set of independent MDPs bound by constraints on the action 

space [12]. In our model, the constraints refer to the mutually exclusive assignments. The 

state spaces of Si of each SDR application are assumed independent. The composite state 

space is defined as S = (Si, S2, ..., Sm) with dimension Si x S2  x ... x Sm. The state transition 

probability function is defined as

P = [Pm] =: S x A x S ^  [0,1],
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Figure 4. The two SDR applications (i.e., back-ends) on the left are connected to two 
front-ends transceivers on the right in one of several possible permutations. This forms the 
action space of the MDP.

where the state transition probabilities take on the values

P (s ' | s, a) = PiCs'J si, a)P2(s'2\ S2 , a)...Pm(s'm | sm, a),

with s', s e S.

5.3. REWARD FUNCTION

The reward function R for each Markov sub-process (i.e. SDR application) is 

calculated in terms of SER. A reward function R(a, s) is typically defined as a function of 

state and action; however, each action is only available in a single state as per [9] the state 

may be dropped as an argument R(a). In this formulation, a reward is paid for performing 

an action in the current state. Rewards are paid in terms of estimated SER. Based on the 

previous discussion, an SER estimate can be made for each pairing of front-end and SDR 

application. Each SDR application forms an independent Markov sub-process with its own 

reward function that counts toward their respective overall SER calculation. Rewards are 

therefore returned as a vector. The overall reward function is defined R  = [Rm] =: A ^  Rm.
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Since overall SER is calculated as an average, we adopt an average expected total 

reward function. The objective of each Markov sub-process is to minimize their respective 

SER values. The expected total reward function is given in terms of the limit-average 

function I r (R) = limT ^ ro T  Z Tt=1 R(A t ). Since we wish to minimize SER, our objective is 

to minimize limit superior

1 t
lrSup(R ) = lim s u p - Y  R (A t)

T T
t= 1

as in [8 , 9].

5.4. DECISION POLICY

In a MDP the controller must make a decision to perform an action at each time 

epoch according a to decision policy made up of decision rules. A decision rule is a function 

that determines what action the controller should perform. There is a decision rule for each 

state. A decision policy is the set of all decision rules. Several different types of decision 

rule may be used by a controller in a MDP. In this article, we adopt a policy developed in 

[8 , 9]. By popular definition [27] all decision rules used in this strategy can all be said to 

be randomized. The policy maintains a memory that determines what decision rule should 

be used at each state. In [9], a policy a  is said to consist of three elements a  = (au,a n,a).

• a n is a function that determines the next action to be taken a n : S x  M  ^  Dist(A), 

and could be called a decision rule by [27]'s definition.

• a u is a randomized function that updates the state of the memory a u : A x S x M ^  

D ist(M ).

• a  is a function that determines the initial memory state.
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The policy a  switches between two memory states. The decision rule a n is a function of the 

memory state and therefore there are two possible decision rules for each state in the MDP. 

In [9], multiple implementations of the decision rules are given. Of these, we adopted a 

randomized decision rule for both policy memory states. The policy’s initial memory state 

determined by a  is a strictly a randomized function.

The decision policy in [8 , 9] is formed by using the concept of maximal end 

components (MEC). An end component is a union of a set of actions B and a set of states T 

where (1) P (s'| s, a) > 0 then s', s e T  and a e B and (2) there is a sequence of actions and 

states (i.e., a path) connecting any state in T to any other state in T via a sequence of actions 

and states that are also in the end component[9]. An end component is maximal when it 

is not fully or partially contained in another end component. The elements within an MEC 

are said to be strongly connected. The set of all MECs in an MDP are denoted M E C . We 

used a graph decomposition technique from [10] to break down the MDP into MECs.

The decision policy in [9] operates in two phases. In the initial phase, the policy 

navigates from one MEC to another with a specified probability of being in each MEC at 

any given time. This probability is controlled via a set of decision rules unique to phase one. 

Eventually, the policy transitions to the second phase based on a u. In the second phase, 

the policy navigates such that it remains in the current MEC forever. It visits the states in 

the final MEC with a specified probability. This probability is also controlled via a set of 

decision rules that are unique to phase two. The probability of performing any action or 

being in any state in phase two is then the probability of ending up in the relevant MEC after 

phase one and the probability of performing relevant actions given the phase two decision 

rules.
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5.5. REWARD EXPECTATIONS & GUARANTEES

The decision rules in [4, 8 ] ensure certain long-run reward expectations via con­

straint. In [9], an expectation constraint e xp  is set for each objective. It ensures that the 

average long-run reward of many runs is at least exp t for the ith objective respectively. That 

is to say, that the long-run reward vector of a single run of the policy may fall bellow the 

constraint vector exp . However, if the results of several runs are averaged, the value should 

be greater than or equal to e xp . The MEC arrived at in phase 2 is the largest influence 

on the average long-run reward. In [8 ], an additional constraint vector called a satisfaction 

constraint sa t was defined for each objective. This constraint ensures the long-run reward 

for the ith objective is greater than or equal to sati for all MECs and, therefore, all runs of 

the policy. We use both the e xp  and sa t constraints to ensure that mean SER for each SDR 

application is within specification.

5.6. FEASIBILITY

In [4], the decision policy was constructed using linear programming. The linear 

program contains variables ya , ys, xa.

• ya is the expected number of times an action is taken until phase two is reached.

• ys is the probability of transitioning to phase two upon reaching some state s.

• xa is expected frequency of performing action a.

To test the feasibility of an SDR workload, construct the MDP model developed 

in the previous section using application specific values. Solve the following set of linear 

programming constraints: equation 2-7. An SDR workload is feasibly if there exists a 

positive value solution vector for all variables.

min £  Xa • ri (a) (1)
1<i < k ae A
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1 so(s) + Z y a  ̂6(a)(s) = ys + Z ya Vs e S (2 )
a e  A a e  Act(s)

Z ys = 1 (3)
se C  e MEC

Z ys

II M X & VC e M E C (4)
se C a e C

J ^ X a  • S(a)(s) = Z xa Vs e S (5)
a e  A a e  Act(s)

Z Xa  • r < exp i V1 < i < k (6 )
a e  A

Z Xa  • r  (a) A M a VC e M E C , (7)
a e C a e C

V1 < i < k

xa , ya > 0 Va

0  < ys < 1 Vs

Equation 2 describes the transition probabilities in phase 1. The left-hand equation 

is the expected number of times a state is entered while the right is expected number of 

times the state is exited or phase 2 is reached ys. The function 1s0 (s) returns 1 if s is the 

initial state. Starting in a state is the same as entering a state, so it is included. Equation 3 

ensures the total probability of switching to phase 2 across all states in all MECs totals 1. 

Equation 4 makes the total probability of switching to phase 2 in an MEC (left-hand side) 

equal to the total frequency of using actions within that MEC. This equation is necessary 

to relate ys and xa variables. Equation 5 guarantees the conservation of flow when in phase 

2 . In other words, the probability of entering a state (left-hand side) must be equal to the 

probability of leaving a state (right-hand side). Equation 6  ensures the expectation goals. 

The left-hand side is an expectation of the ith reward across many runs while the right is the 

constraint [9]. Equation 7 is an added constraint that ensures the satisfaction goals are met 

regardless of the MEC that the strategy commits to in phase 2 [8 ].
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Additional modifications were made to Equation 7 for our specific application. In 

our application, sa t  is the SER max. The left-hand side of the Equation calculates the 

expected total reward by weighting the rewards against the frequency of performing each 

action xa in the respective MEC. There is a constraint for each MEC in the MDP to ensure 

sa t are met for any outcome. The right-hand side of Equation 7 is also weighted against 

the frequency of actions xa in the respective MEC. Both the left-hand and right-hand sides 

consider the frequency of actions xa tied to idle states. We removed these states as actions 

taken in idle states do not affect the expectation. Actions tied to active states Activ ei for the 

ith reward are used to reduce the scope of Equation 7.

^  Xa • ri (a) < ^  Xa • SER maxiVC G M E C , 1 < i < k
aeCnActivet aeCnActiv ei

This has the effect of tightening the sa t  bound in our application.

5.7. PARETO OPTIMALITY

The objective, Equation 1, was suggested in Lemma 4.6 of [9] to ensure Pareto 

optimality. The reward expectation for objective in this construction is

E [lrSup(ri)] ri (a) • Xa .
ae A

To produce a Pareto optimal solution:

1. Add the Equation 1 to the linear constraints Equations 2-7 to form a linear program­

ming problem.

2. Solve for a positive solution, and produce a reward expectation vector v.

3. Confirm v is Pareto optimal by substituting it for s a t  and e xp  and solve again. Ensure 

new reward expectation is on better than v.
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We added the weights w  where £  ki=1 wt = 1 to allow an implementation to pick 

different solutions from the Pareto curve. All solutions are guaranteed to meet SER re­

quirements (i.e., the satisfaction and expectations constraint), but the weights allow any 

excess reward potential to be directed toward a chosen objective. Effectively, it allows an 

implementer to add a static priority.

5.8. DECISION RULE

The solution variables to the linear program problem can be used to form a 2-stage 

randomized decision policy. When the policy is in phase 1, the memory m = m1, when the 

policy is phase 2 the memory m = m2. Next action behavior is determined by a multivariate 

random distribution constructed using xa and ya [9]:

&n(s, mi)(a) =
y a

a'eAct(s) ya'

a n(s, m2)(a) x a

a 'e Act(s) xa'

The memory update strategy is stochastic and determined by the variable ys . The decision 

policy transitions to phase 2 in state s with probability ys . Once in phase 2, the policy stays 

in phase 2 with probability 1 [9].

au (a, s, mi)(m2) = ys 

au (a, s, mi)(mi) = 1

The initial memory state is determined by function alpha. It is defined by ys0 that is, the 

probability of transitioning to phase 2 in the initial state s0  [9].
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a (a ,s ,mi) = ( 1  -  ySo)

a(a, s, m2) = yso

5.9. APPLICATION NOTES AND OPTIMIZATION

Our MDP often has only a single MEC which leaves room for some optimizations. 

The simplified 2-state state space used for each sub-process (i.e., SDR application) with only 

active and idle states can transition between both states unless a state transition probability is 

zero for some action. As the states are grouped into idle or active the transition probabilities 

are grouped by means of weighted sums. Recall the sub-processes are independent of 

each other. If for all sub-processes, there are no inaccessible states, then no state in the 

composite state space S is inaccessible P(s ' |s, a) ^  0. Thus, there is only a single MEC. 

With only a single MEC, phase 1 of the decision policy may not be necessary. Therefore 

the linear programming equation could be simplified. For instance, in the single MEC case, 

the expectation constraint serves the same purpose as the satisfaction constraint. Of course, 

many wireless protocols never go to an idle state (i.e. P (id le\s,a) = 0 for s e S) which 

could result in multiple MECs even with the simplified 2-state state space. Additionally, 

when more detailed state-spaces are used for the each sub-process the possibility of an 

inaccessible state increases.

6. SIMULATION AND RESULTS

In this section, we conduct simulations of the proposed SDR control system and 

discuss the results. We present two example scenarios representative of a simple multi-radio 

SDR system. This simulation used the simplified 2-state MDP model. Parameters were 

chosen arbitrarily to produce graphically interesting results that highlight different aspects 

of operation.
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Table 1. Parameters of the SDR Applications

Notation Parameter Definition Value
Modulation M-PSK

M-ary Constellation Points 4
Bd Baud Rate 1 0 e6

B Bandwidth 20 MHz
F E R1 L^l\max Maximum Frame Error Ratio 0 . 1

L Frame Length 8192 Symbols
P min Sensitivity -80 dBm
S E  R max Maximum Symbol Error Ratio 1.2861e-05

Table 2. Stochastic Parameters

Stochastic Parameter Scenario 1 Scenario 2
Pme M (id le \idle, a = An y) 0.95 0.95
Pme M (acti v e\activ e, a = 0) 0.05 0.05
PmeM(active\active, a = 1 : K ) 0.3 0.5

6.1. SIMULATION SETUP

In this simulation, we model a simple scenario typical of a smartphone or mobile 

device. The device features 5 SDR applications and with 4 front-ends. The 4 available front- 

ends each have a different noise figures as noted in Table 3. The first front-end has a 4 dBm 

noise figure. The remaining front-ends’ noise figures worsen by 3 dB sequentially. These 

values were chosen to highlight the proposed MDP’s ability to balance interference across all 

SDR applications. For simplicity, each SDR application has identical radio and stochastic 

parameters which can be seen in Table 1 and Table 2 respectively. The applications behave 

according to the 2-state Markov model from previous sections. Each scenario is tested for 

four million time epochs. For this simulation, we assumed no dependency between time 

slots. Each time slot, therefore, represents a complete transmission or reception event.
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T a b l e  3 .  S i m u l a t i o n  P a r a m e t e r s

N o t a t i o n P a r a m e t e r  D e f i n i t i o n V a l u e

M N o .  o f  A p p l i c a t i o n s 5

K N o .  o f  F r o n t - E n d s 4

N F N o i s e  F i g u r e 4 , 7 , 1 0 , 1 3  d B m

E a c h  a p p l i c a t i o n  i s  m o d e l e d  a s  a  s i m p l e  4 - P S K  m o d u l a t i o n  r a d i o  o n  a  G a u s s i a n  

w h i t e  n o i s e  c h a n n e l .  T h e  s e n s i t i v i t y  i s  s e t  a t  - 8 0  d B m ,  w i t h  a  c h a n n e l  b a n d w i d t h  o f  2 0  

M H z  a n d  a  f r a m e  l e n g t h  o f  8 1 9 2  s y m b o l s .  T h e s e  p a r a m e t e r s  w h e r e  d e r i v e d  f r o m  t h e  

s i m p l e r  m o d e s  i n  t h e  I E E E  8 0 2 . 1 1  s p e c i f i c a t i o n  [ 1 ] .  T h e  S E R max w a s  c a l c u l a t e d  b a s e d  o n  

e q u a t i o n s  f r o m  p r e v i o u s  s e c t i o n s .

T h e  2 - s t a t e  M a r k o v  m o d e l  t r a n s i t i o n  p a r a m e t e r s  w e r e  c h o s e n  t o  m o d e l  a n  a r b i t r a r y  

r a d i o  s t a n d a r d  a r e  l i s t e d  i n  T a b l e  2 .  I t  i s  a s s u m e d  t h a t  a s s i g n m e n t  a c t i o n s  t a k e n  w h i l e  a n  

S D R  a p p l i c a t i o n  i s  i d l e  w i l l  h a v e  n o  i n f l u e n c e  o n  t h e  p r o b a b i l i t y  t h a t  t h e  a p p l i c a t i o n  w i l l  

m o v e  i n t o  t h e  a c t i v e  s t a t e .  T h i s  i s  r e f l e c t e d  i n  t h e  i d l e - t o - i d l e  t r a n s i t i o n  p r o b a b i l i t y .  F u r t h e r ,  

i t  i s  a s s u m e d  t h a t  a s s i g n m e n t  a c t i o n s  t a k e n  w h i l e  a n  S D R  a p p l i c a t i o n  i s  a c t i v e  w i l l  h a v e  

t h e  m o s t  i n f l u e n c e  o n  i t s  b e h a v i o r .  I n  o u r  a r b i t r a r i l y  r a d i o  s t a n d a r d ,  i f  n o  a s s i g n m e n t  i s  

m a d e  ( i . e .  a  =  0 )  w h i l e  a n  S D R  a p p l i c a t i o n  i s  a c t i v e ,  i t  i s  a s s u m e d  t h a t  t h e  a p p l i c a t i o n  

w i l l  r e g i s t e r  a  f a i l u r e  a n d  r e t u r n  t o  t h e  i d l e  s t a t e  w i t h  h i g h  p r o b a b i l i t y .  L i k e w i s e ,  w h e n  a n  

a s s i g n m e n t  i s  m a d e  w h i l e  t h e  a p p l i c a t i o n  i s  i n  a n  a c t i v e  s t a t e ,  i t  i s  a s s u m e d  t h e  a p p l i c a t i o n  

w i l l  r e m a i n  i n  t h e  a c t i v e  s t a t e  w i t h  a  h i g h  p r o b a b i l i t y .  F o r  s i m p l i c i t y ,  a l l  r a d i o  a s s i g n m e n t s  

a r e  a s s u m e d  t o  h a v e  t h e  s a m e  i n f l u e n c e  o n  b e h a v i o r  d e s p i t e  t h e i r  d i f f e r e n t  n o i s e  f i g u r e s .  

T h e  d i f f e r e n c e  b e t w e e n  t h e  t w o  s c e n a r i o s  i s  t h e  a c t i v e - t o - a c t i v e  t r a n s i t i o n  p r o b a b i l i t y .

F o r  b o t h  s i m u l a t i o n  s c e n a r i o s ,  w e  t e s t  t h r e e  c o n t r o l  a l g o r i t h m s .  W h i l e  t h e  S D R  

a p p l i c a t i o n s  a r e  i d e n t i c a l ,  t h e y  a r e  n u m b e r e d  i n  a  d e s c e n d i n g  o r d e r  o f  p r i o r i t y .  T h e  f i r s t  

a l g o r i t h m  i s  s i m p l e  s t a t i c  a s s i g n m e n t .  T h i s  m e a n s  t h a t  e a c h  a p p l i c a t i o n  i s  c o n n e c t e d  t o  a  

f r o n t - e n d  f o r  t h e  d u r a t i o n  o f  t h e  s i m u l a t i o n .  A s s i g n m e n t s  a r e  m a d e  o n c e  i n  o r d e r  o f  p r i o r i t y  

u n t i l  t h e  f r o n t - e n d s  a r e  e x h a u s t e d .  A d d i t i o n a l l y ,  t h e  q u a l i t y  o f  t h e  f r o n t - e n d  a s s i g n e d  i s
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d e t e r m i n e d  b y  a p p l i c a t i o n  p r i o r i t y .  T h e  s t a t i c  a s s i g n m e n t  a l g o r i t h m  r e s u l t s  i n  t h e  f i r s t  

a p p l i c a t i o n  b e i n g  a s s i g n e d  t h e  b e s t  f r o n t - e n d  a n d  t h e  l a s t  a p p l i c a t i o n  n o t  b e i n g  a s s i g n e d  

a  f r o n t - e n d .  T h e  s e c o n d  a l g o r i t h m  i s  a  s t a t i c  p r i o r i t y  s y s t e m  s i m i l a r  t o  t h e  o n e  i n  [ 5 ] .  

A s s i g n m e n t s  a r e  m a d e  a t  e a c h  d e c i s i o n  e p o c h  a c c o r d i n g  t o  w h i c h  a p p l i c a t i o n s  a r e  a c t i v e  

a n d  a p p l i c a t i o n  p r i o r i t y .  T h e  q u a l i t y  o f  t h e  f r o n t - e n d  a s s i g n e d  i s  d e t e r m i n e d  b y  a p p l i c a t i o n  

p r i o r i t y .  T h e  f i n a l  a l g o r i t h m  i s  t h e  p r o p o s e d  M D P  w h i c h  m a k e s  a s s i g n m e n t s  s t o c h a s t i c a l l y  

b a s e d  o n  l o n g - t e r m  e x p e c t e d  r e w a r d s .

6.2. RESULTS AND DISCUSSION

I n  b o t h  s c e n a r i o s ,  w e  e x a m i n e  t h r e e  t e s t  r e s u l t s .  M o s t  i m p o r t a n t l y ,  t h e  S E R  o f  e a c h  

S D R  a p p l i c a t i o n  i s  m e a s u r e d  a g a i n s t  t h e  S E R m a x . T h i s  i s  t h e  m e a n  S E R  m e a s u r e m e n t  p e r  

t i m e  s l o t .  F o r  e a c h  a p p l i c a t i o n ,  w e  a l s o  m e a s u r e  t h e  m e a n  S N R  p e r  t i m e  s l o t  a s  w e l l  a s  t h e  

s a t i s f a c t i o n  r a t i o .  I t  i s  i m p o r t a n t  t o  n o t e  t h a t  t h e  m e a n  S N R  p e r  s l o t  h a s  s o m e  i n f l u e n c e  

o v e r  t h e  S E R ,  b u t  i t  a  w e a k  r e l a t i o n s h i p .  T h e  s a t i s f a c t i o n  r a t i o  i s  t h e  n u m b e r  o f  s e r v e d  t i m e  

s l o t s  d i v i d e d  b y  t h e  n u m b e r  o f  r e q u e s t e d  t i m e  s l o t s .  T e s t i n g  s h o w e d  s a t i s f a c t i o n  r a t i o  h a d  

t h e  h i g h e s t  i n f l u e n c e  o v e r  S E R .

6.3. SCENARIO 1

T h e  S E R  r e s u l t s  o f  t h e  f i r s t  s c e n a r i o  c a n  b e  s e e n  i n  F i g u r e  5 .  T h e  s t a t i c  a s s i g n m e n t  

a l g o r i t h m  s h o w e d  i n c r e a s i n g  S E R  w i t h  d e c r e a s i n g  p r i o r i t y  o f  a p p l i c a t i o n .  T h e  f i r s t  a p p l i ­

c a t i o n  w a s  h i g h l y  o v e r - s e r v e d  w i t h  t h e  l o w e s t  n o i s e  f r o n t - e n d  w h i l e  S D R 5  w a s  n o t  s e r v e d  

a t  a l l .  D e s p i t e  h a v i n g  a  d e d i c a t e d  f r o n t - e n d ,  S D R 4  s l i g h t l y  e x c e e d e d  t h e  S E R max t h r e s h o l d  

d u e  t o  t h e  r a d i o  p a r a m e t e r s  c h o s e n .  T h i s  s h o w s  t h a t  S D R  a p p l i c a t i o n s  c a n  e x c e e d  t h e i r  

S E R max t h r e s h o l d s  e v e n  w i t h  a  d e d i c a t e d  f r o n t - e n d .  F i g u r e  6  s h o w s  S N R  p e r f o r m a n c e  p e r  

t i m e  s l o t .  A s  e x p e c t e d  S N R  i s  p r o p o r t i o n a l  t o  a p p l i c a t i o n  p r i o r i t y .  B l i n d l y  m i x i n g  a n d  

m a t c h i n g  S D R  f r o n t - e n d s  a n d  b a c k - e n d s  c a n  l e a d  t o  s u b s t a n d a r d  p e r f o r m a n c e .
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F i g u r e  5 .  M e a n  S E R  p e r  s l o t  f o r  s i m u l a t i o n  1.

T a b l e  4 .  S a t i s f a c t i o n  R a t i o  : S i m u l a t i o n  1

M e t h o d S D R i S D R 2 S D R 3 S D R 4 S D R 5

S t a t i c  A s s i g n m e n t 1 1 1 1 0

S t a t i c  P r i o r i t y 1 1 1 1 0 . 9 9 9 9 8

M D P 0 . 9 9 9 9 8 1 0 . 9 9 9 9 9 1 0 . 9 9 9 9 9

T h e  s t a t i c  p r i o r i t y  s y s t e m  f a r e d  s u b s t a n t i a l l y  b e t t e r  t h a n  s t a t i c  a s s i g n m e n t  a l g o r i t h m .  

L i k e  t h e  s t a t i c  a s s i g n m e n t  a l g o r i t h m ,  h i g h e r  p r i o r i t y  a p p s  h a d  b e t t e r  S E R .  H o w e v e r  u n l i k e  

t h e  p r e v i o u s  r e s u l t s ,  a l l  a p p l i c a t i o n s  w e r e  w e l l  s e r v e d .  S D R  S D R 5  s l i g h t l y  e x c e e d e d  t h e  

S E R max t h r e s h o l d ,  b u t  t h i s  d i f f e r e n c e  w a s  w i t h i n  t h e  m a r g i n  o f  e r r o r  o f  t h e  s i m u l a t i o n .  T a b l e  

4  s h o w s  S D R 5  w a s  s l i g h t l y  u n d e r - s e r v e d  l i k e l y  l e a d i n g  t o  h i g h e r  S E R  v a l u e .  F i g u r e  8  s h o w s  

e x t r e m e l y  u n i f o r m  S N R .  W i t h  t h i s  a l g o r i t h m ,  l o w e r  p r i o r i t y  a p p l i c a t i o n s  w i l l  g e t  a c c e s s  

t o  h i g h e r  q u a l i t y  f r o n t - e n d s .  T h i s  h e l p s  t o  e v e n  o u t  p e r f o r m a n c e .  T h e  m a j o r  d r a w b a c k  t o  

t h i s  a p p r o a c h  i s  t h a t  i t  i s  s i m p l y  a  b e s t  e f f o r t  a l g o r i t h m  w i t h  n o  p e r f o r m a n c e  g u a r a n t e e .  

T h o u g h  t h e  p e r  t i m e  s l o t  S N R  s e e m s  t o  i n d i c a t e  g o o d  p e r f o r m a n c e ,  S D R 5  n e a r l y  f e l l  a b o v e  

t h e  t h r e s h o l d .
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SNR per SDR App.
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Figure 6 . Mean SNR per slot for simulation 1.

The proposed MDP algorithm resulted in extremely uniform SER performance. 

Most applications fell below the SER max threshold with the exception of SD R1. This 

difference was within the margin of error of the simulation. Overall SER was higher than 

the static priority algorithm; however, no static priority was set for the MDP. This is what 

likely resulted such uniform performance. SER performance of SDRi, SDR3, and SDR5 

were slightly higher than the rest. This corresponds to their slightly reduced satisfaction 

ratio seen in Table 4. SNR values were very close to that of the static priority algorithm 

with the exception of SDR3  and SDR4. SER performance was expected to be slightly 

better given that the solution was approximate Pareto optimal. However, a slight drop in 

performance is likely acceptable given the SER max performance guarantee.

Table 5. Satisfaction Ratio : Simulation 2

Method SDRi SDR2 SDR3 SDR4 SDR5

Static Assignment 1 1 1 1 0

Static Priority 1 1 1 1 0.99994
MDP 0.99999 0.99998 0.99997 0.99998 0.99999
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F i g u r e  7 .  M e a n  S E R  p e r  s l o t  f o r  s i m u l a t i o n  2 .

6.4. SCENARIO 2

I n  t h e  s e c o n d  s c e n a r i o ,  t h e  a c t i v e - t o - a c t i v e  p r o b a b i l i t y  w a s  i n c r e a s e d  r e s u l t i n g  i n  

i n c r e a s e d  d e m a n d  f o r  f r o n t - e n d  t i m e  s l o t s .  F i g u r e  7  s h o w s  s l i g h t l y  e x a g g e r a t e d  r e s u l t s  w h e n  

c o m p a r e d  t o  t h e  f i r s t  s c e n a r i o .  T h e  s t a t i c  a s s i g n m e n t  a l g o r i t h m ’s r e s u l t s  w e r e  i d e n t i c a l .  T h e  

s t a t i c  p r i o r i t y  a l g o r i t h m ’s r e s u l t s  a r e  v e r y  s i m i l a r ,  b u t  t h i s  t i m e  S D R 5 e x c e e d e d  S E R max 

b y  a  l a r g e r  m a r g i n .  T h e  p r o p o s e d  M D P  a l g o r i t h m  h a d  S E R  s c o r e s  t h a t  w e r e  a l l  b e l o w  

S E R m a x , b u t  w i t h  l e s s  r o o m  t o  s p a r e .  T a b l e  5  d e m o n s t r a t e s  t h e  M D P  a l g o r i t h m  d i s t r i b u t i n g  

s e r v i c e d  d i s r u p t i o n s  r e l a t i v e l y  e v e n l y  a c r o s s  t h e  S D R  a p p l i c a t i o n s  u n l i k e  t h e  s t a t i c  p r i o r i t y  

a l g o r i t h m .  S N R  p e r f o r m a n c e  i s  s h o w n  i n  8 .  I n t e r e s t i n g l y ,  t h e  s t a t i c  p r i o r i t y  a l g o r i t h m ’s 

S N R  s c o r e s  d e c a y  s l i g h t l y  w i t h  a p p l i c a t i o n  p r i o r i t y .  T h i s  t r e n d  w a s  n o t  a p p a r e n t  i n  t h e  

p r e v i o u s  s c e n a r i o .  G i v e n  m o r e  S D R  a p p l i c a t i o n s ,  o r  f e w e r  f r o n t - e n d s  t h i s  t r e n d  w o u l d  

l i k e l y  b e  e x a g g e r a t e d .  L i k e  t h e  p r e v i o u s  s c e n a r i o ,  t h e  p r o p o s e d  M D P  a l g o r i t h m  s h o w s  

r e l a t i v e l y  u n i f o r m  S N R  p e r f o r m a n c e .  T h i s  t i m e  4  o u t  o f  t h e  5  a p p l i c a t i o n s  s h o w e d  a  

r e d u c e d  S N R .
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Figure 8. Mean SNR per slot for simulation 2.

7. CONCLUSION

In this article we presented a MDP based control strategy for multi-radio, multi­

protocol SDR systems. This system provided a means to time-share a limited number 

front-ends among several concurrent SDR applications. Importantly, it guaranteed SNR 

be maintained for each SDR application’s unique requirements. We established a rela­

tionship between TDM time-slots and SNR. Through this relationship, we showed that by 

maintaining satisfaction ratio, we can maintain a long term SNR conducive with an SDR 

application’s requirements. We modeled this using a weakly coupled MDP and solved it 

using a 2-memory state randomized strategy solution method and decision strategy [8].

We demonstrated the complete implementation with a simulation that showed ex­

cellent results. All SDRs maintained a long-run average SER lower their respective re­

quirements. We observed from the results that satisfaction ratio had the greatest influence 

on SER performance. The traditional static priority system showed excellent SNR results 

exceeding those of the proposed MDP; however, it had a tendency to under serve the lowest
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priority application. This lead to lowest priority SDR application exceeding acceptable 

SER levels in the second simulation. By contrast, the proposed MDP evenly distributed 

serviced disruptions resulting in all applications operating within the SER threshold.

Future work can improve many aspects of the proposed solution. It could be 

improved with MDP techniques that require fewer a priori statistics such as Q-learning. In 

the simulation we assumed that each time slot was independent; however, this is not likely 

to be the case in a practical application. It would worth exploring extensions of the state 

space that consider radio events that span multiple time slots. This may also lead to more 

direct control of FER.
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SECTION

2. SUMMARY AND CONCLUSIONS

I n  t h i s  d i s s e r t a t i o n ,  n o v e l  S D R  f r o n t - e n d  m u l t i p l e x i n g  a n d  s c h e d u l i n g  s c h e m e s  a r e  

d e v e l o p e d  t o  i n c r e a s e  t h e  S D R  h o s t i n g  c a p a c i t y  o f  m u l t i - r a d i o  S D R  s y s t e m s .  F i r s t ,  a  

n o v e l  M I L P  t e c h n i q u e  i s  d e v e l o p e d  t h a t  c o m b i n e s  e x i s t i n g  T D M  a n d  F D M  t e c h n i q u e s  t o  

m a x i m i z e  t h e  u t i l i t y  o f  a v a i l a b l e  S D R  f r o n t - e n d s  o v e r  a  f i n i t e  h o r i z o n .  N e x t ,  S D R  f r o n t -  

e n d  m u l t i p l e x i n g  t e c h n i q u e s  a r e  a p p l i e d  i n  a  c a s e - s t u d y  o n  a i r c r a f t  t e l e m e t r y  a n d  a v i o n i c  

s y s t e m s .  E m p h a s i s  i s  o n  i m p r o v i n g  r e l i a b i l i t y  i n  t h e  e v e n t  o f  h a r d w a r e  f a i l u r e s .  F i n a l l y ,  a n  

i m p r o v e d  r e a l - t i m e  s c h e d u l i n g  t e c h n i q u e  b a s e d  i n  M D P  i s  p r e s e n t e d  t h a t  a d d r e s s e s  m a n y  o f  

t h e  c o n c e r n s  a n d  d e f i c i e n c i e s  o f  p r e v i o u s  t e c h n i q u e s .  S p e c i f i c a l l y  t h i s  t e c h n i q u e  c o n s i d e r s  

t h e  l o n g - t e r m  p e r f o r m a n c e  i m p a c t  f r o m  d y n a m i c  r e s o u r c e  a l l o c a t i o n  a n d  t h e  i n d i v i d u a l  

r a d i o  p e r f o r m a n c e  r e q u i r e m e n t s  o f  e a c h  h o s t e d  S D R .  I t  c a n  t e s t  t h e  f e a s i b i l i t y  o f  a  S D R  

w o r k l o a d  a n d ,  a s  a  r e s u l t ,  p r o v i d e  g u a r a n t e e s  f o r  m i n i m u m  p e r f o r m a n c e .  F e a s i b i l i t y  t e s t i n g  

l i k e  t h i s  m a y  o n e  d a y  b e  u s e d  t o  a p p e a s e  c o n c e r n s  o f  w i r e l e s s  r e g u l a t o r y  a g e n c i e s  a n d  

s t a n d a r d s  i n s t i t u t e s .

2.1. CONCLUSIONS

I n  t h e  f i r s t  p a p e r ,  a  M I L P  f i n i t e  h o r i z o n  s c h e d u l e r  w a s  d e v e l o p e d  t o  s h a r e  S D R  f r o n t -  

e n d s .  I n  s i m u l a t i o n ,  t h e  p r o p o s e d  t e c h n i q u e  d e m o n s t r a t e d  s e r v i c e  c a p a c i t y  i m p r o v e m e n t s  

o f  u p  t o  1 0 %  d e p e n d i n g  o n  s e v e r a l  v a r i a b l e s .  A  M I L P  s c h e d u l e r  w a s  d e m o n s t r a t e d  b o t h  

w i t h  a n d  w i t h o u t  F D M  c a p a b i l i t i e s .  I n  t h e  t e s t e d  s c e n a r i o s ,  t h e  a d d i t i o n  o f  F D M  d i d  n o t  

g r e a t l y  i m p r o v e  t h e  s y s t e m ’s h o s t i n g  c a p a c i t y  e x c e p t  i n  h i g h l y  f a v o r a b l e  c o n d i t i o n s .
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N e x t ,  t h e  S D R  f r o n t - e n d  s h a r i n g  t e c h n i q u e s  w e r e  a p p l i e d  i n  a  c a s e  s t u d y  t o  a i r c r a f t  

t e l e m e t r y  a n d  a v i o n i c s .  T h e  p r o p o s e d  S D R  a r c h i t e c t u r e  h a s  t h e  b e n e f i t  o f  i m p r o v e d  r e ­

l i a b i l i t y  i n  t h e  e v e n t  o f  m u l t i p l e  h a r d w a r e  f a i l u r e s .  A  s i m p l i f i e d  r e l i a b i l i t y  m o d e l  f o r  t h e  

s y s t e m  w a s  g i v e n .  A  s i m u l a t i o n  o f  t h e  p r o p o s e d  S D R  s y s t e m  w a s  c o n d u c t e d  f e a t u r i n g  s i x  

d i f f e r e n t  r a d i o  s y s t e m s .  A  h y b r i d  a p p r o a c h  u s i n g  b o t h  a  f i x e d  p r i o r i t y  s c h e d u l e r  a n d  a  l i n e a r  

p r o g r a m m i n g  m o d e l  w a s  u s e d .  T h e  r e s p e c t i v e  p e r f o r m a n c e  o f  e a c h  S D R  b a s e d  r a d i o  s y s t e m  

i s  g i v e n  a s  a  f u n c t i o n  o f  t h e  t o t a l  n u m b e r  o f  f r o n t - e n d s .  A s  t h e  n u m b e r  o f  S D R  f r o n t - e n d s  

i s  r e d u c e d ,  p e r f o r m a n c e  d e g r a d e s  g r a d u a l l y  f o r  e a c h  r a d i o  s y s t e m  r e s p e c t i v e l y .  T h i s  r e s u l t  

i s  c o n s i d e r a b l e  i m p r o v e m e n t  t o  c o n v e n t i o n a l  r a d i o s  s y s t e m s  i n  w h i c h  e a c h  h a r d w a r e  f a i l u r e  

w o u l d  r e s u l t  i n  t h e  c o m p l e t e  l o s s  o f  t h e  r e s p e c t i v e  r a d i o  s y s t e m .

I n  t h e  t h i r d  p a p e r ,  a  r e a l - t i m e  M D P  b a s e d  s c h e d u l e r  i s  b u i l t  f o r  s h a r e d  f r o n t - e n d  

S D R  s y s t e m s .  U n l i k e  a l l  o t h e r  e x i s t i n g  l i t e r a t u r e ,  t h i s  p r o c e s s  c a n  b e  u s e d  t o  e s t i m a t e  a n d  

c o n t r o l  a d d e d  e q u i v a l e n t  i n t e r f e r e n c e  f r o m  t h e  m u l t i p l e x i n g  p r o c e s s .  T h e  T D M  p r o c e s s  

a d d s  a  q u a n t i f i a b l e  a m o u n t  o f  p e r c e i v e d  i n t e r f e r e n c e  t o  S D R s  i n  i n s t a n c e s  w h e n  t h e  n u m b e r  

o f  t r a n s m i s s i o n s  a n d  r e c e p t i o n s  e x c e e d  t h e  n u m b e r  o f  a v a i l a b l e  f r o n t - e n d s .  T h e  s o l u t i o n  

p r o c e s s  f e a t u r e s  a  f e a s i b i l i t y  t e s t  t h a t  c a n  b e  u s e d  t o  e v a l u a t e  S D R  w o r k l o a d s .  T h i s  p r o c e s s  

i s  b e s t  u s e d  i n  a  s c e n a r i o  w h e r e  t h e  m i x t u r e  o f  S D R s  m a y  o f t e n  c h a n g e .  T h e  w o r k l o a d  c a n  

b e  i n s t a n t l y  c h e c k e d  t o  e i t h e r  c o n f i r m  o r  d e n y  t h a t  e a c h  S D R  w i t h i n  t h e  m i x t u r e  w i l l  m e e t  

i t s  r e s p e c t i v e  S E R  r e q u i r e m e n t .

2.2. FUTURE WORK

T h e  p r e s e n t e d  M D P  c o n t r o l  s c h e m e  r e p r e s e n t s  t h e  m o s t  v i a b l e  f r o n t - e n d  s h a r i n g  

s y s t e m  f o r  u s e  i n  t h e  r e a l  w o r l d ;  a l t h o u g h ,  i t  i s  s t i l l  l a c k i n g  i n  c e r t a i n  r e s p e c t s .  T h e  p r e s e n t e d  

M D P  s c h e m e  r e q u i r e s  a  s e t  o f  s t o c h a s t i c  p a r a m e t e r s  f o r  e a c h  S D R .  T h e s e  p a r a m e t e r s  m a y  

b e  d i f f i c u l t  t o  c o l l e c t  a n d  m a y  c h a n g e  w i t h  t i m e .  A  p a r t i a l l y  o b s e r v a b l e  M a r k o v  d e c i s i o n  

p r o c e s s  o r  a  v a r i a t i o n  o f  t h e  p r e s e n t e d  t e c h n i q u e  f e a t u r i n g  Q - l e a r n i n g  b e  m a y  m o r e  p r a c t i c a l .  

H o w e v e r ,  t h e s e  m e t h o d s  m a y  m a k e  p e r f o r m a n c e  g u a r a n t e e s  m o r e  d i f f i c u l t  t o  e n s u r e .  N o n e
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o f  t h e  p r e s e n t e d  s h a r i n g  t e c h n i q u e s  h a v e  p r o v i s i o n s  f o r  m u l t i - r a d i o  t e c h n i q u e s  s u c h  a s  b e a m  

f o r m i n g  o r  M I M O .  M a n y  c o m m o n  w i r e l e s s  p r o t o c o l s  s u c h  a s  W i - F i  a n d  L T E  m a k e  h e a v y  

u s e  o f  m u l t i - r a d i o  t e c h n i q u e s .  I t  m a y  a l s o  b e  p o s s i b l e  t o  o p p o r t u n i s t i c a l l y  a p p l y  m u l t i - r a d i o  

t e c h n i q u e s  t o  S D R s  t o  b o l s t e r  t h e i r  r e s p e c t i v e  s i g n a l  q u a l i t y  e v e n  w h e n  t h e y  d o  n o t  r e q u e s t  

i t  e x p l i c i t l y .
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