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ABSTRACT

Fiber optic sensors (FOSs) have been widely used for measuring various physical 

and chemical measurands owing to their unique advantages over traditional sensors such 

as small size, high resolution, distributed sensing capabilities, and immunity to 

electromagnetic interference. This dissertation focuses on the development of robust FOSs 

with ultrahigh sensitivity and their applications in industry and military areas.

Firstly, novel fiber-optic extrinsic Fabry-Perot interferometer (EFPI) inclinometers 

for one- and two-dimensional tilt measurements with 20 nrad resolution were 

demonstrated. Compared to in-line fiber optic inclinometers, an extrinsic sensing motif was 

used in our prototype inclinometer. The variations in tilt angle o f  the inclinometer was 

converted into the cavity length changes of the EFPI which can be accurately measured 

with high resolution. The developed fiber optic inclinometers showed high resolution and 

great temperature stability in both experiments and practical applications. Secondly, a 

smart helmet was developed with a single embedded fiber Bragg grating (FBG) sensor for 

real-time sensing of blunt-force impact events to helmets. The combination of the transient 

impact data from FBG and the analyses using machine-learning model provides accurate 

predictions of the magnitudes, the directions and the types of the impact events. The use of 

the developed smart helmet system can serve as an early-stage intervention strategy for 

mitigating and managing traumatic brain injuries within the Golden Hour.
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1. INTRODUCTION

1.1. BACKGROUND

A fiber optic sensor (FOS) is a sensor that either utilize optical fiber as a sensing 

element or communication path of the signal from an external sensing head [1, 2]. 

Comparing with traditional electric sensors, FOS provides a promising solution for various 

applications owing to its unique advantages such as light weight, compact size, low cost, 

low transmission losses, electromagnetic interference immunity, capability for 

multiplexing and distributed sensing, etc. [3]. In recent years, FOSs have attracted 

increased attentions from researchers and numerous FOSs have been studied, designed, 

developed and even commercialized for appications in different areas including structural 

health monitoring [4-7], aerospace [8-12], military [13, 14], industry [15-17], etc..

Among all the developed FOSs, fiber Bragg gratings (FBGs) have attracted many 

interest in various sensing applications such as strain [18-21], temperature [22-24], 

vibration [25-27], etc.. An FBG is formed by creating a periodic refractive index variation 

along with the core of an optical fiber. The periodic pattern along the core can function as 

a notch filter that reflects the light with a particular wavelength and transmit others [28]. 

In comparison with other FOSs, FBG is suitable for mass-production due to its fabrication 

method. Meanwhile, the demodulation method of the FBG signals is relatively simple and 

fast (e.g., tens of kHz), which is capable of dynamic sensing scenarios like acoustic sensing 

or impact wave sensing. In addition, it is feasible to cascade multiple FBGs (typically up 

to several hundred) in one piece of optical fiber without influencing their sensing 

functionalities, which significantly decreases the installation complexities of the sensor



2

array. The aforementioned features lead to the result that FBG is currently one of the most 

widely used and most successfully commercialized FOS.

Meanwhile, fiber optic interferometric sensor is also a promising candidate in 

various sensing applications [29-37]. The sensing principle of the fiber optic 

interferometric sensor is based on the demodulation of the interference pattern generated 

by two or multiple lights. The features of the interference pattern such as frequency, phase 

and amplitude can be used to calculate the optical path difference variation of the 

interferometer introduced by desired measurands like temperature, strain, etc. Nowadays, 

fiber optic interferometric sensors consist of four typical structures: Fabry-Perot (F-P), 

Michelson, Mach-Zehnder (M-Z), and Sagnac [38]. With the advantages of simple 

structure, small size, and easy in-line fabrication, a variety of fiber optic Fabry-Perot 

interferometer (FPI) sensors have been developed for measuring various parameters such 

as strain [39-42]and displacement [43, 44]. An FPI is usually formed by two parallel- 

arranged relectors. In the FPI sensor, the injected light along the fiber is partially reflected 

by two reflectors, respectively. And the interference pattern is generated by the lights 

reflected by two reflectors. For better signal-to-noise (SNR), the two reflectors of FPI are 

typically separated by 1 mm. Based on the cavity, the FPI sensors can be divided into two 

categories: intrinsic FPI (IFPI) sensors and extrinsic FPI (EFPI) sensors. For an EFPI 

sensor, a cleaved end of the optical fiber usually serves as one reflector, while the other 

reflector of EFPI can be a flat surface made by different materials such as metal and glass. 

Thus, the FPI is formed outside of the optical fiber. On the other hand, in an IFPI sensor, 

the two parallel reflectors are inscribed inside the core of the optical fiber. Therefore, the 

FPI cavity is inside the optical fiber. These two types have their respective advantages and
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disadvantages in practical applications. For the EFPI sensor, since the cavity of FPI is not 

limited inside the optical fiber, the structure design of the sensor is more flexible. In 

addition, the optical property of the cavity can be easily modified to fulfill the specific 

sensing application, especially in refractive index (RI)-related chemical or gas sensing. But 

the alignment of two reflectors with high precision during sensor fabrication is required, 

which increases the complexity of sensor fabrication. Meanwhile, it is hard to cascade 

multiple EFPI sensors on a single optical fiber. On the other hand, a series of IFPI sensors 

can be cascaded on an optical fiber, which is feasible for quasi-distributed sensing. But 

high-cost equipment such as femtosecond laser [45] or chemicals for etching [46] is 

required for reflector fabrication. The low-reflectivity reflector of the IFPI sensor is a factor 

that may influence its SNR in sensing application.

1.2. MOTIVATION IN THE DEVELOPMENT OF FIBER OPTIC SENSORS

Over the past decades, it is doubtless that the progress in the development of FOSs 

has greatly expanded their application scopes in the industry and military. However, there 

still remains several challenges in the development of FOS.

Firstly, despite the aforementioned advantages of FOSs over traditional sensors, the 

optical fiber itself is still fragile. Thus, for the applications in the the military and industry, 

the packaging of FOS is significant. The function of the packaging is not only to protect 

the FOS from the harsh environment, but also to minimize the debonding between FOS 

and its corresponding transducer. For example, in the sensing applications with FBGs, 

normally the deployed FBG is attached to the transducer with adhesives like epoxy. This 

may have longevity issues such as the debonding between FBG and the transducer.
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Meanwhile, the transfer of the measurands between the transducer and FOS can vary with 

different packaging methods, which requires extra calibration to the FOS. An alternate 

method to avoid these issues is to develop extrinsic FOSs. Since in extrinsic FOSs the 

optical fiber only acts as the relay of the optical signal, commercialized optical fiber cable 

can be used in sensor fabrication, which is much more robust than bare optical fiber. With 

the proper structure design, the robustness o f the FOS can be significantly enhanced while 

the essential functions and properties of the FOS, such as remote sensing capabilities and 

high resolution, remain.

Secondly, a FOS system with ultra-high sensitivity, high resolution, fast response 

time, and high-signal to-noise ratio produces raw data that is exceedingly rich in 

information, including signals corresponding to apparent “noises” [47]. The hidden 

correlation between the measurands and the sophisticated phenomenon might be revealed 

from these “noises”, which could greatly expand the application scopes of FOS. However, 

it is extremely hard to figure out the correlation with traditional data analysis methods such 

as modeling-based finite element analysis. Plus, traditional data analysis methods only aim 

to a specific case, which is inefficient to serve as a general approach in the application o f 

FOS. The aforementioned factors limit the broadening of the sensing capabilities of the 

FOS. To overcome this limitation, very recently, machine-learning (ML) method is 

introduced as a combination with FOSs to enhance analytical capabilities for the complex 

transient signals [28]. As one of the most rapidly growing technical fields, the development 

of ML has dramatically influenced both science and industry areas since ML provides a 

novel and efficient way to analyze the high-throughput data and the desired input-outpout 

behavior [27, 48-51]. The ML models befits for FOS signal analysis because such models
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trained rigorously by a high-quality database are able to not only indicate the hidden 

linkage between sensor signal and monitored properties but also predict those properties in 

new signal data-domains.

1.3. CURRENT ACHIEVEMENT AND FUTURE WORK

Recently, we have proposed a novel optical fiber extrinsic Fabry-Perot 

interferometer (EFPI) for tilt measurements with 20 nrad resolution [52]. Compared to in­

line fiber optic inclinometers, an extrinsic sensing m otif was used in our prototype 

inclinometer. With a special design, the variation in the tilt angle of the inclinometer was 

converted into the cavity length change of EFPI, which can be accurately measured with 

high resolution. An EFPI-based two-dimensional (2-D) inclinometer with a similar 

structure was also demonstrated [53]. The designed EFPI-based inclinometers showed a 

high resolution, great temperature stability and excellent practicability in long-term test. In 

addition, we also developed a series of EFPI-based FOSs for different sensing applications 

such as strain, displacement, and pressure [40, 43, 44, 54].

Moreover, we exploited the combination of FOSs with ML to enhance our 

analytical capabilities for multifaceted analyses o f  complex transient signals. A smart 

helmet was developed with a single embedded fiber Bragg grating (FBG) sensor for real­

time sensing of blunt-force impact events to helmets [28]. The combination of the transient 

impact data from FBG and the analyses using the machine-learning model provides 

accurate predictions of the magnitudes, the directions, and the types of the impact events. 

The use o f  the developed smart helmet system can serve as an early-stage intervention 

strategy for mitigating and managing traumatic brain injuries within the Golden Hour.
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In the future, with the information-riched signals provided by the novel fiber optic 

inclinometers and the combination of ML models, we will continuously explore new 

capabilities for the devices we developed. We anticipate that in the near future, it will be 

possible to sense the movements of large objects such as submarines and trucks due to the 

modulation of gravity. We are looking forward that our work will inspire researchers with 

new possibilities of the sensing system design and it will have a significant impact on the 

sensing field.
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PAPER

I. PROBING CHANGES IN TILT ANGLE WITH 20 NANORADIAN 
RESOLUTION USING AN EXTRINSIC FABRY-PEROT INTERFEROMETER- 

BASED OPTICAL FIBER INCLINOMETER

YIYANG ZHUANG,13 YIZHENG CHEN,13 CHEN ZHU,1 REX E. GERALD II,2
JIE HUANG,1*

1 Department of Electrical and Computer Engineering, Missouri University of Science and
Technology, Rolla, MO 65409

2 American Inventor Institute, Willow Spring, IL 60480, USA 
3 These authors contributed equally to this work.

*jieh@mst.edu

ABSTRACT

In this paper, we introduce and demonstrate a novel optical fiber extrinsic Fabry- 

Perot interferometer (EFPI) for tilt measurements with 20 nrad resolution. Compared with 

in-line optical fiber inclinometers, an extrinsic sensing structure is used in the inclinometers 

reported herein. Our design greatly improves on the tilt angle resolution, the temperature 

stability, and the mechanical robustness of inclinometers with advanced designs. An EFPI 

cavity, which is formed between endfaces of a suspended rectangular mass block and a 

fixed optical fiber, is packaged inside a rectangular container box with an oscillation 

dampening mechanism. Importantly, the two reflectors of the EFPI sensor remain parallel 

while the cavity length of the EFPI sensor meters a change in tilt. According to the Fabry- 

Perot principle, the change in the cavity length can be determined, and the tilt angle of the 

inclinometer can be calculated. The sensor design and the measurement principle are 

discussed. An experiment based on measuring the tilt angle of a simply supported beam 

induced by a small load is presented to verify the resolution of our prototype inclinometer.

mailto:jieh@mst.edu
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The experimental results demonstrate significantly higher resolution (ca. 20 nrad) 

compared to commercial devices. The temperature cross-talk of the inclinometer was also 

investigated in a separate experiment and found to be 0.0041 p,rad /°C. Our inclinometer 

was also employed for monitoring the daily periodic variations in the tilt angle of a 

windowsill in a cement building caused by local temperature changes during a five-day 

period. The multi-day study demonstrated excellent stability and practicability for the 

novel device. The significant inclinometer improvements in differential tilt angle 

resolution, temperature compensation, and mechanical robustness also provide unique 

opportunities for investigating spatial-temporal modulations of gravitational fields. 

Keywords: Fabry-Perot, Fiber Optic Sensors, Gravity

1. INTRODUCTION

The inclinometers purposed for tilt measurements have attracted considerable 

attention for structural health monitoring and warning of impending natural disasters such 

as landslides and earthquakes [1-3]. The concept behind a typical inclinometer is that it 

measures variations in tilt angle generated by the behavior of a pendulum subject to a 

gravitational field [4].

For applications in harsh environments, modern inclinometers require high 

resolution and long measurement times to precisely and continuously measure variations 

in the tilt angle. Advanced applications require that inclinometers function in remote and 

unreachable places, requiring capabilities such as long distance transmission without loss 

and interference from electromagnetic sources, resistance to hazardous environments, etc.
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[5]. The conventional electrolytic inclinometers, which have been widely used in practical 

applications, suffer from large transmission loss and electromagnetic interferences. 

However, fiber optic sensors could be promising candidates for inclinometers owing to 

their unique advantages such as immunity to electromagnetic fields, low transmission 

losses, high accuracy, the possibility of remote operation, robustness, etc. [6]. In recent 

years, a variety of fiber optic inclinometers have been reported and developed [7-16]. The 

majority of the previously reported fiber optic inclinometers are fabricated in-line (i.e., the 

sensor is fabricated using a piece of optical fiber), and the principles of sensing are based 

on wavelength or intensity modulation of the input signal caused by bending the fiber optic 

sensors as demonstrated for fiber tapers [7-11], fiber Bragg gratings (FBG) [12-14] and 

photonic crystal fibers [15, 16].

Although the inclinometers mentioned above show great capability in tilt 

measurement, there exist several drawbacks. For fiber taper-based fiber optic 

inclinometers, using a fiber taper can greatly reduce the mechanical strength of the sensor 

structure, which is too delicate for harsh environment. For FBG-based fiber optic 

inclinometers, one or more FBGs will be attached to a vertical cantilever-based pendulum 

and used to measure the strain variations of the cantilever caused by gravity-induced 

bending [12-14]. However, FBG-based inclinometers suffer from unwanted mechanical 

frictions, rotations, and instabilities because the force transfer from the cantilever to the 

FBGs is complicated. Furthermore, the accuracy of the FBG-based inclinometers will 

diminish in a vibrationally-unstable environment because the cantilever will experience a 

mechanical resonance [14]. Also, the resolution for all the aforementioned fiber optic 

inclinometers is less than 0.001° (17.5 p,rad) [7-16], which is not sufficient for some
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applications like gravitational field measurement, which requires an extremely high 

precision tilt measurement [17].

Compared to the in-line structure fiber optic sensors, the extrinsic optical fiber 

sensors can overcome the disadvantage of low mechanical strength because the optical 

fiber only served as a transceiver of light signals. Recently, Lee et al. reported a packaged 

fiber optic inclinometer using a moveable transmissive grating panel, reflective mirror, and 

optical fibers as transceivers [5]. Their reported inclinometer achieved a full-scale 

measurement range from -90° to 90°. But the fabrication process for the transmissive 

grating panel is complicated. Meanwhile, a widely used interferometric sensor, the 

extrinsic Fabry-Perot interferometer (EFPI), has the merit for displacement and strain 

measurements [18-24]. An EFPI is formed by the endface of an optical fiber and an external 

reflecting surface. The cavity length of the EFPI (i.e., the distance between the two 

reflecting surfaces) can be accurately measured from the reflection spectrum [18]. 

Therefore, with proper structure design and packaging, an inclinometer based on EFPI 

displacement measurements will be able to take advantage of high resolution and could be 

considered as a good candidate for tilt measurements.

In this paper, we report a high resolution EFPI-based optical fiber inclinometer for 

tilt measurements. The reported inclinometer consists of an EFPI sensor packaged inside a 

rectangular metal container box. The sensor design and the measurement principles are 

discussed in Section 2. An example application experiment based on measuring the tilt 

angle of a cantilever, induced by small incremental loads (2.000g), is presented in Section 

3 to verify the resolution of the novel inclinometer. Our results demonstrate high resolution
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16.7 nrad. The novel inclinometer was also employed throughout five days to monitor the 

variations in the tilt angle of a windowsill caused by daily (cyclic) temperature changes.

2. SENSOR DESIGN AND MEASUREMENT PRINCIPLES

A schematic diagram of a partial side view of the inclinometer is illustrated in 

Figure 1(a). The EFPI sensor is fabricated and packaged in a rectangular metal container 

box. The EFPI sensor consists of two parts: the mass block part and the optical fiber 

module. The rectangular mass block is flexibly connected to the top plate of the rectangular 

container box by two stainless steel strand ropes of the same length. The distance between 

two connection points on the mass block and the corresponding connection points on the 

top plate are identical. The four connection points are contained in a common plane, and 

the stainless steel strand ropes are perpendicular to the horizontal plane of the inclinometer. 

As for the optical fiber module, a segment of the optical fiber is rigidly connected to the 

top plate of the rectangular box by a supporting rod. The supporting rod is perpendicular 

to the top plate, and the endface of the optical fiber is precisely adjusted to be parallel with 

the adjacent end face of the mass block. Therefore, the endface of the optical fiber and the 

adjacent endface of the mass block form an EFPI sensor. A thin layer of gold was sputtered 

onto the endface of the mass block to increase the reflectivity. When the inclinometer is 

tilted at an angle 0 the two supporting ropes will remain perpendicular to the virtual 

horizontal Earth’s ground plane as required by the Earth’s gravitational field. 

Synchronously, the supporting rod will be tilted with the inclinometer, and the angle 

between the supporting rod and the ropes is the tilt angle of the inclinometer as illustrated
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in Figure 1(b). The mass block will remain parallel to the top plate because the four 

connection points define a parallelogram. As a result, the two reflectors of the EFPI sensor 

will remain parallel, but the distance between the two reflector surfaces will change. The 

change in the tilt angle of the inclinometer can be described as follow:

Ad = arcsin

where Ad is the change in the cavity length of the EFPI sensor and l specifies the lengths 

of the ropes. When the change in the tilt angle is small, Eq. (1) can be described as:

. ( Ad ) Ad
Ad = arcsinl —  I «  —

l  l  J l (2)

Equation (2) shows that when the change in the tilt angle is small, the sensitivity of 

the inclinometer, which is defined as the ratio between the change in the cavity length and 

the corresponding change in the tilt angle (unit: nm/nrad), is uniquely determined by the 

rope length. Figure 1(c) is a partial schematic diagram of the inclinometer equipped with 

an oscillation dampening device. A cross paddle is connected to the bottom of the mass 

block, and it is immersed in a damping fluid. This arrangement can physically reduce 

oscillations from environment-induced vibrations and thereby increase the stability of the 

inclinometer. The oscillation reduction can also be achieved by a magnetic dampening 

device. A photograph of one prototype of the inclinometer is illustrated in Figure 1(d). To 

reduce the temperature cross-sensitivity of the inclinometer, during the fabrication of our 

inclinometer, the container box was initially backflushed with helium gas and then 

evacuated. Furthermore, all of the rigid components of the inclinometer, including the mass 

block, the supporting rod, and the rectangular box package, are made of Invar whose 

coefficient of thermal expansion, a c m , is low (1.2x10'6/°C). As revealed in Figure 1(a),
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when the temperature of the environment fluctuates, thermal expansions/contractions will 

affect the size of the mass block, the container box and the ropes; these size changes will

SupportingRope
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EFPI

plate
4

Supporting
^ R o p e -^ rod rod
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block Optical fiber

Optical fiber

N EFPIGold Goldcavity cavitymirrormirror
plate

in* H <
Optical fiber

Container boxSupportingitR o p e^
Mass
block

rod
Go Id

mirror
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Cross
EFPIpaddle

cavity Damning
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Figure 1. (a) Partial schematic diagram of the inclinometer. A rectangular mass block is 
flexibly connected to the top plate of the rectangular metal container box by two ropes 

with the same length. An optical fiber is rigidly connected to the top plate of the 
container box using a supporting rod. The EFPI sensor is formed by the combined 

endface of the optical fiber and the adjacent endface of the mass block. The endface of 
the mass block is sputtered with gold to form a highly reflective mirror surface. (b) 
Partial schematic diagram of the inclinometer tilted to an angle 9. The two endface 

reflectors of the EFPI sensor always maintain a mutual parallel disposition. (c) Partial 
schematic diagram of the inclinometer including an oscillation dampening device. The 
mass block is connected to a cross paddle which is immersed into a damping fluid. (d) 

Photograph of a prototype inclinometer. The inclinometer is made of Invar to reduce the
temperature cross-sensitivity.

cause variations of the EFPI cavity length. The three effects result in a temperature cross­

talk for the cavity length measurement. However, the contributing effects from mass block
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and container box will partially or completely offset each other. The result of geometrical 

considerations and analyses indicate that the change in the EFPI cavity length caused by a 

change in temperature can be described as:

Ad, — d̂^cjE! ^ 16(̂ CTE2 ) AT (3)

where d  is the initial cavity length of the EFPI; AT  is the temperature change experienced 

by the inclinometer; 6 is the tilt angle of the inclinometer to the perpendicular line and 

acTE2 is the coefficient of thermal expansion of stainless steel.

As mentioned above, the endface of the optical fiber together with the adjacent 

reflective endface of the mass block form the EFPI sensor with a cavity length of d. The 

interference signal (1o) is given by

h - 1  + ̂ 2+ 2V i / 2 cos( ^ h 9)
(4)

where h  and I2 are the light intensities reflected from the endface of the optical fiber and 

the adjacent gold-sputtered mirror endface of the mass block, respectively; ^ is the initial 

phase difference between the light waves reflected from the two reflectors; n is the 

refractive index of the cavity which is about 1 and X is the wavelength of the incident light. 

When the variables inside the cosine function of Eq. (4) are equal to a multiple of 2n, a 

constructive interference results. In the wavelength spectrum of the interference signal, the 

space between two adjacent peaks, defined as the free spectrum range (FSR), can be 

expressed as:

0 2
FSR - ~ ° -  

2d (5)
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where Xc is the center wavelength of the interference spectrum. So, the cavity length can be 

demodulated by determining the FSR of the interference spectrum. When the inclinometer 

is tilted, the cavity length of the EFPI will experience a change. The change in cavity length 

can be evaluated by:

R 2 AFSR 
2FSR0 FSR (6)

where FSRo and FSRi are the values of FSR before and after the tilt, respectively; and, 

AFSR is the difference between FSRo and FSRi. If the mass block module tilts clockwise, 

the cavity length of the EFPI will decrease. And, if  the mass block module tilts 

counterclockwise, the cavity length of the EFPI will increase. Hence, the sign of AFSR can 

be used to determine the direction of tilt.

Concerning the demodulation principle shown above, variations of the cavity 

length of the EFPI can be determined. It should be noted that no matter how great the tilt 

angle is, the endface of the optical fiber will always be parallel to the adjacent reflective 

endface of the mass block. So, the tilt angle can be measured if the cavity length change is 

within a proper range (i.e., the cavity length of the EFPI is within 0 to 1 mm). More 

significantly, the measurement range and sensitivity of the inclinometer can be adjusted by 

simply changing the lengths of the stainless steel strand ropes, and adjusting the initial 

cavity length of the EFPI during the fabrication of the inclinometer. For example, if the 

lengths of the stainless steel strand ropes are 1.000 cm and the initial cavity length of the 

EFPI is 500.000 ^m, the measurement range and sensitivity of the inclinometer are 

calculated to be -50 mrad to 50 mrad and 0.01 nm/nrad (cavity length change/tilt angle
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change), respectively. This adjustability feature expands the capability of our inclinometer 

for different tilt measurement applications.

3. EXPERIMENTAL RESULTS AND DISCUSSIONS

To verify the resolution of the prototype inclinometer, a calibration experiment 

based on measuring the tilt angle of a simply-supported beam under external load was 

designed and tested. The schematic diagram of the test experiment setup is illustrated in 

Figure 2(a). The beam is made of stainless steel. The size of the beam is 700.0 mm*50.0 

mm*8.0 mm. The distance between each support point and the respective end of the beam 

is 100.0 mm, so the effective length of the beam is 500.0 mm. The inclinometer is placed 

at the same position as one of the support points. Several copper washers were placed on 

the center of the beam to provide the necessary load to cause the beam to bend and, 

therefore, tilt the beam at both support points. To prevent the copper plates from sliding, a 

node was soldered to the center of the beam, and each copper plate was fabricated with a 

small hole so they could be fixed on the node.

At the support points, the tilt angle can be expressed as:

e = fi;
16EI (7)

where F  is the load applied to the center of the beam; ls is the length between the two 

support points; E  is Young’s modulus for the stainless steel beam material used in the 

experiment (about 200 GPa), and I  is the moment of inertia. The test measurement setup
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for the inclinometer apparatus is illustrated in Figure 2(b). A wavelength interrogator 

(Micron Optics SM125) which integrates a swept laser, a photodetector, and an optical

Figure 2. (a) Schematic cross-section diagram of the tilt angle calibration experiment 
based on a simply-supported beam. The inclinometer is placed at the location of a support 
point. Copper plates were used to provide the load for tilting the beam. (b) A photograph 
of the experimental test setup and the measurement equipment. Schematic diagram of the 

test measurement setup for the inclinometer. A Micron Optics SM125 was used as the 
source and demodulation device. A personal computer was used to analyze the

interference spectra.

fiber coupler was used as the source and demodulation device. The incident light was 

directed into the inclinometer then reflected back to the interrogator through the single­

mode fiber. The reflected spectrum was obtained by sweeping the wavelength of the laser 

(from 1510 nm to 1590 nm) and recording the corresponding intensities of the reflected 

signals. A personal computer was connected to the SM125 to record and analyze the
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interference spectra using a LabVIEW program developed in our lab. Detailed descriptions 

of the measurement apparatus can be found in our recent work [21-24].

Figure 3 (a) shows the interference spectrum of the EFPI based inclinometer without 

a load applied to the beam. The averaged FSR of the spectrum is 5.071 nm, corresponding 

to the initial cavity length of 236.871 |im. In our calibration experiment, the cavity length 

was measured for 55 minutes. During the experiment, a copper plate was placed on the 

node of the beam every five minutes, and every minute the interference spectrum was 

recorded. Hence, for each load, five interference spectra were recorded to calculate the 

cavity length of the EFPI sensor. The weight of each copper plate is 2.000 g. The lengths 

of the ropes were set to 6.000 cm in the prototype inclinometer and the dynamic range of 

the inclinometer was calculated to be -8.333 mrad to 8.333 mrad. The silicone fluid with 

500000 cSt was used as the damper fluid. The size for each paddle is 33 mm*11 mm*1 

mm in the prototype inclinometer. According to Eq. (6), when a copper plate was placed 

on the center of the beam, it would induce a tilt angle of magnitude 0.717 ^rad to the beam 

at each support point. The total load ranged from 0 to 20.000 g, corresponding to a tilt angle 

range from 0 to 7.170 p,rad. The calibration results for the inclinometer are shown in Figure 

3(b). The left vertical axis represents the measured cavity length of the EFPI sensor, and 

the right vertical axis represents the measured tilt angle, which was calculated from Eq. 

(2). In Figure 3(b), 0.717 p,rad steps increments of the tilt angle can be easily distinguished. 

The measurement setup based on the SM125 can achieve a resolution of 1.0 nm for the 

cavity length. Thus, the EFPI based inclinometer can achieve a measurement resolution of 

16.7 nrad according to Eq. (2). Multiple measurements of the cavity length and the
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corresponding tilt angle recorded when the applied load was 16.000 g are presented as an 

inset in Figure 3(b). We calculated that the standard deviation of the tilt angle measurement
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Figure 3. (a) Interference spectrum of the EFPI-based inclinometer without a load 
applied to the beam. The spectrum was recorded from 1510 nm to 1590 nm. (b)The 

calibration result of the EFPI-based inclinometer. The measured change in the cavity 
length and the calculated tilt angle are shown as a function of time. Every five minutes, 

the load was increased by 2.000 g, and every minute the interference spectrum was 
recorded. The inset shows the change in the cavity length and the measured tilt angle 

from 41 to 45 minutes. (c) The average calculated tilt angle correlated to the calculated 
applied tilt angle and a linear fit was the result. The equation for the linear fit is 

y=1.03495*x-0.00107, where y represents average calculated tilt angle and x represents
calculated applied tilt angle.

uncertainty is 11.2 nrad. The measured variations are due to environmental perturbations 

such as temperature fluctuations, experimental setup vibration, etc. The measured tilt angle
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as a function of applied theoretical tilt angle is shown in Figure 3(c). The linear fit (red 

line) produced an R-square of 1.000, indicating an excellent correlation and linearity 

between the applied tilt angle and measured tilt angle. The slope and the intercept of the 

linear fit result reveal the difference between the applied tilt angle and measured tilt angle. 

The reason for the difference was that we use the angle calculated from Eq. (7) as the 

applied tilt angle, but the calculation was based on the assumptions that the tilt angle of our 

inclinometer was equal to the tilt angle of the beam at the support point, and the load was 

concentrated at the center of the beam. The error introduced by the mathematical 

approximation in Eq. (2) is much smaller than the deviation of the measured angle, which 

can be neglected.

The response of our prototype inclinometer to variations in temperature was 

investigated in a separate experiment. The experimental setup is illustrated in Figure 4(a). 

The inclinometer was placed inside a temperature-controlled box. Each side of the box was 

filled with insulating foam. A cylindrical fused silica base was used at the bottom of the 

box, and the prototype inclinometer was fixed on the top of the base because the fused 

silica has a more uniform thermal expansion effect than the insulation foam. Every hour, 

the temperature inside the box was increased by 10 °C. After 50 minutes of temperature 

stabilizing, the interference signal was recorded ten times in 10 minutes. The total 

temperature range is from 0-50 °C. The experimental results are demonstrated in Figure 

4(b) and Figure 4(c).

Figure 4(b) illustrates the change in cavity length derived from all o f  the recorded 

interference signals recorded for the experiment and the corresponding equivalent tilt
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angles as a function of temperature. As shown in Figure 4(b) the change in the cavity length 

has a positive correlation with temperature. The standard deviation of the equivalent tilt
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Figure 4. (a) Experimental setup for testing the response of the prototype inclinometer to 
variations in temperature. The inclinometer was placed inside a temperature-controlled 

box filling with insulating foam. The inclinometer was placed on a cylindrical fused silica 
base positioned at the bottom of the box. (b) EFPI cavity length change derived from all 
o f  the recorded interference signals as a function o f temperature. The temperature in the 
temperature-controlled box was increased from 0 to 50 °C with a step size of 10 °C. (c) 
Average equivalent tilt angle change as a function o f temperature. The linear fit result is 
shown as a red line. The slope of the linear fit result indicates that the temperature cross­

talk for tilt angle measurements is 0.0041 grad/°C.

angle at a constant temperature was about 9.3 nrad, which nearly matches the value 

presented in the inset of Figure 3(b). The average change in the cavity length as a function
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of temperature is illustrated in Figure 4(c). The slope of the linear fit result indicates that 

the temperature cross-talk for the cavity length measurement is 0.258 nm/°C, 

corresponding to a 0.0041 p,rad /°C change in tilt angle according to Eq. (2). The measured 

temperature cross-talk result matches well with the theoretical result, which is calculated 

to be 0.279 nm/°C (or 0.0044 p,rad/°C) according to Eq. (3) using the initial cavity length 

of 232.667 ^m. The influence of the temperature cross-talk is small, and it can be limited 

by recording the temperature data for compensation or using a proper thermal insulation 

device. Furthermore, a combination of the inclinometer design and a judicious choice of 

structural materials for the top plate and the mass block (see Figure 1(a)) will reduce the 

temperature cross-talk to a negligible value. For example, a thin layer of metal with larger 

coefficient of thermal expansion than Invar, like copper, can be electroplated on the side 

of the mass block before gold sputtering process. In this way, the temperature cross-talk 

sensitivity o f  the inclinometer can be further reduced.

To verify the practicability o f  our prototype inclinometer, an experiment was 

conducted for monitoring variations in the tilt angle of a windowsill caused by periodic 

temperature changes. The experimental setup is illustrated in Figure 5(a). The inclinometer 

was placed on a marble windowsill inside a room, and it was sealed in a foam box, which 

kept the inside temperature constant and reduced the temperature influences on the 

inclinometer. The window is facing south. The interference signal of the EFPI sensor was 

recorded every ten minutes during a five-day period to calculate the tilt angle as a function 

of time (8:00 AM March 8th, 2017 -  8:00 AM March 13th, 2017).

Figure 5(b) shows the experimental results for monitoring variations in the tilt angle of the 

windowsill and the local temperature during five days versus the experiment time. The
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local area temperature data was obtained from [55]. As shown in Figure 5(b), the measured 

tilt angle and temperature curves map similar patterns, showing a strong correlation. Five

peaks and five valleys can be observed in both plots presented in Figure 5(b). The
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Figure 5. (a) The experimental setup for monitoring variations in the tilt angle of a 
windowsill caused by periodic changes in temperature. The inclinometer was placed on a 

marble windowsill, and it was sealed in a foam box, which kept the temperature inside 
constant and reduced the influence of temperature on the inclinometer. The window is 

facing south. (b) The measured tilt angle of a windowsill and local temperature change as 
a function of time during a five-day measurement period (from 8:00 AM on March 8th, 
2017 to 8:00 AM on March 13th, 2017). An interference spectrum was recorded every 

ten minutes, and the cavity length was measured to calculate the tilt angle. The measured 
tilt angle and the published local area temperature curve follow a similar trend, showing 

that they are correlated. Five peaks and five valleys can be observed in both curves, 
corresponding approximately to 2 PM and 3 AM every day, respectively.

corresponding times for the peaks were similar, approximately 2 PM each day during the 

five days, while the corresponding times for the valleys occurred at approximately 3 AM 

each day during the five days. The results show that the tilt angles of the windowsill caused 

by temperature changes reached maxima in the afternoons. Interestingly, the passage of 

clouds during the day was also noticed by measurable changes in the tilt angle of the 

windowsill because the sunlight was blocked which resulted in small temperature changes
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of the building and concomitant deformation in the building structure. This experiment 

demonstrates that our inclinometer shows high resolution and excellent stability.

4. CONCLUSIONS

In this paper, we report and demonstrate an EFPI-based fiber optic inclinometer for 

tilt measurements with high-resolution capability, 20 nrad, a resolution that is much higher 

than the resolution capabilities reported for all of the previously published fiber optic 

inclinometers and commercially available inclinometers. Compared to in-line fiber optic 

inclinometers, the extrinsic sensing motif was used in our prototype inclinometer. Our 

inclinometer consists of an EFPI-based sensor packaged inside a rectangular container box. 

A rectangular mass block is flexibly connected to the top plate of the rectangular container 

box by two Stainless steel strand ropes of the same lengths. An optical fiber is rigidly 

connected to the top plate of the rectangular container box by a supporting rod. Therefore, 

the endface of the optical fiber and the adjacent mirror endface of the mass block serve as 

the two reflectors of an EFPI sensor. To reduce the effects of oscillations, the rectangular 

mass block is connected to a cross paddle, which is immersed in a damping fluid. After 

tilting, the two endface reflectors of the EFPI sensor will remain parallel while the cavity 

length of the EFPI sensor will experience a change. According to the Fabry-Perot principle, 

the change in the cavity length can be determined, and the tilt angle of the inclinometer can 

be calculated. The sensor design and the measurement principles are discussed. An 

experiment based on measuring the tilt angle of a simply-supported beam induced by a 

small load is presented to verify the resolution of the prototype inclinometer, demonstrating
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high resolution. The temperature cross-talk for tilt angle measurements is 4.08 nrad /°C, 

which is small compared with the resolution of the inclinometer. The prototype 

inclinometer was also used for monitoring variations in the tilt angle of a windowsill caused 

by temperature changes during a five-day period, and it demonstrated excellent robustness, 

stability, and practicality. The sensitivity and dynamic range of the inclinometer can be 

flexibly configured by simply changing the length of the rope. The resolution of 20 nrad 

that we achieved with our inclinometer provides opportunities to use the novel device for 

investigating subtle distortions in gravitational fields.
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ABSTRACT

We report and demonstrate a high-resolution extrinsic Fabry-Perot interferometer 

(EFPI)-based two-dimensional (2-D) fiber optic inclinometer for tilt measurements in two 

orthogonal dimensions. The inclinometer consists of a pair of perpendicularly-arranged 

EFPI sensors packaged inside a rectangular container box. A triangular-shaped metal prism 

is attached to the top plate of the container box by three ropes with identical lengths. Two 

optical fibers are rigidly connected to the top plate o f  the container box by two supporting 

rods, respectively. Therefore, two EFPI sensors are formed between the endfaces of two 

optical fibers and their corresponding side face mirrors. The prism is connected to a cross 

paddle, which is immersed in a damping fluid to reduce the influence o f deleterious 

vibrations. After tilting, the two reflectors of each EFPI sensor will remain parallel while 

the cavity lengths o f  the EFPI sensors change. Changes in the cavity lengths can be 

calculated, and the 2-D tilt angles of the inclinometer can be calculated according to the 

Fabry-Perot principle. The design of the sensor and the measurement principles are 

discussed. Measurements of the tilt angles of a simply-supported beam induced by small

mailto:jieh@mst.edu
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loads are presented to verify the tip-angle resolution and uncertainty of the two EFPI 

sensors in our 2-D inclinometer. The results show the capability for metering tilt angles 

with high resolution. The 2-D inclinometer was used to continuously monitor the tilt angle 

of a gravity dam for a one-year period, showing excellent stability and practicability. 

Keywords: Two-dimensional inclinometer, Fiber optic sensor, Fabry-Perot 

interferometer, Structural health monitoring, Pendulum

1. INTRODUCTION

Inclinometers purposed for tilt measurements have attracted considerable attention 

for structural health monitoring and warning of impending natural disasters such as 

landslides and earthquakes [1-3]. The concept behind a typical inclinometer is that it 

measures variations in tilt angles generated by the behavior of a pendulum subject to a 

gravitational field [4].

For several applications in harsh environments, the inclinometers require high 

resolution and long durations of continuous operation to precisely monitor the variations 

in the tilt. Furthermore, for certain applications, inclinometers must function in dangerous 

and isolated places, requiring capabilities such as long-distance lossless transmission, non­

electromagnetic interference, resistance to hazardous environments, etc.[5].

Fiber optic sensors are promising candidates for inclinometers owing to their 

unique advantages such as immunity to electromagnetic interference, low transmission 

loss, high accuracy, the possibility of remote operation, and robustness when compared 

with conventional electrolytic inclinometers [6]. In recent years, a variety of fiber optic
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inclinometers have been reported and developed [7-21]. The sensing principles of the 

majority of the reported fiber-optic inclinometers are based on wavelength or intensity 

modulations of the input signals caused by bending the fiber optic sensors. Examples 

include fiber tapers [7-11], fiber Bragg gratings (FBG) [13], photonic crystal fiber-based 

devices [16-18] and grating-based devices [5, 19]. However, most of the reported fiber­

optic inclinometers can only distinguish the magnitude, but not the direction of inclination. 

A common solution for two-dimensional (2-D) inclination measurements is to combine 

two or more inclinometers to independently measure the inclination in two orthogonal 

directions [12, 14, 15]. Recently, a few 2-D fiber-optic inclinometers were reported. Au et 

al. demonstrated a large dynamic range tilt sensor consisting of four FBGs inscribed on a 

fiber-cross and a central mass, which achieved a ±30° dynamic range and a 0.013° 

resolution [14]. Bao et al. proposed a temperature-insensitive 2-D inclinometer by 

attaching two FBGs, orthogonally, on a tapered cylindrical beam, which achieved a 2-D 

tilt measurement of over a ±4° dynamic range and a 0.027° resolution [15]. Chang et al. 

developed their 2-D inclinometer with a 0.003° tilt angle resolution based on two etched 

chirped-FBG arrays installed in close proximity and placed in a container filled with 

diethyl-ether and an air bubble [20]. Chen et al. reported a 2-D inclinometer with a 2.5° 

dynamic range in which three ultraweak FBGs were interrogated with coherent optical 

frequency-domain reflectometry and were bound together using a thermoformed plastic

[21]. However, all of the aforementioned fiber-optic 2-D inclinometers suffer from 

debonding between the fiber-optic sensors and the corresponding tilt-angle transducers, 

which affected the long-term stability of the inclinometers. Also, the specified resolutions 

for all of the aforementioned fiber-optic inclinometers are in the range of microradians to
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milliradians [7-21], which is not sufficient for some applications in aerospace engineering 

and gravitational field measurements, where extremely small-angle tilt measurements are 

required [22].

A widely used interferometric sensor, the extrinsic Fabry-Perot interferometer 

(EFPI), has the merits of displacement and strain measurements [23-28]. An EFPI is 

generally formed by the endface of an optical fiber and an external reflecting surface, which 

enhances the flexibility of sensor designs. Moreover, the cavity length of the EFPI (i.e., the 

distance between the two reflecting surfaces) can be precisely measured from the reflection 

spectrum [25]. Therefore, with proper structure designs and packaging, EFPI sensors could 

be used for tilt measurements. Recently, we reported a 1-D high-resolution EFPI-based 

fiber optic inclinometer [29]. And, Yang et al. also reported a fiber-optic Fabry-Perot 

sensor for tilt-angle and vibration measurements with a similar structure [30]. However, 

simply combining any two 1-D inclinometers presents significant challenges such as cross­

talk that arises from inaccurate assembly.

In this paper, we report and demonstrate a high resolution EFPI-based 2-D fiber 

optic inclinometer for simultaneous tilt angle measurements in two orthogonal dimensions 

that minimizes cross-talk errors by an integrated orthogonal design. The demonstrated 

inclinometer consists of a pair of perpendicularly-arranged EFPI sensors packaged inside 

a rectangular metal container box. The sensor design and the measurement principle are 

discussed. An experiment based on measuring the mutually-orthogonal tilt angles of a 

simply-supported beam caused by small load increments (2.000g) is presented to verify the

resolution of the 2-D inclinometer. A resolution of 20 nrad was achieved. The 2-D
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inclinometer was also used to continuously monitor orthogonal tilt angles of a gravity dam 

throughout one year.

2. SENSOR DESIGN AND MEASUREMENT PRINCIPLE

A schematic diagram of the 2-D inclinometer is illustrated in Figure 1(a). A pair of 

perpendicularly arranged EFPI sensors are assembled and packaged in a rectangular 

container box fabricated of Invar metal (Figure 1(b)). The EFPI sensors consist of two 

parts: the metal prism part and the optical fiber part. As for the metal prism part, a right 

triangle metal prism is flexibly connected to the top plate of the container box by three steel 

strand ropes of the same length. Two side face mirrors of the prism are perpendicular to 

each other, which are defined as S1 and S2 in Figure 1(a). The three connection ropes are 

shown in Figure 1(a) and labeled AA’, BB’, and CC’, where A, B, and C are the connection 

points on the top plate of the container box and A ’, B ’, and C’ are the connection points on 

the top face of the metal prism. The distance between the connection points of any two 

ropes on the top plate of the container box and the corresponding top face of the metal 

prism are equal (i.e., AB=A’B ’, BC=B’C’, and AC=A’C’). Thus, the top plate of the 

container box will always be parallel to the top face of the metal prism. For convenience, 

we define the coordinate system where the x, y, and z-axes are perpendicular to S2, S1, and 

the top face of the metal prism, respectively. As for the optical fiber components, two 

optical fibers are rigidly connected to the top plate of the container box by two supporting 

rods. The supporting rods are perpendicular to the top plate of the container box. And, the 

endfaces of the two optical fibers OF1 and OF2 are precisely adjusted to be parallel to S1
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and S2, respectively. Therefore, two EFPI sensors (EFPI1 and EFPI2) with air-gap cavities 

are formed by S1, S2, and the two corresponding endfaces of the two optical fibers OF1 and 

OF2, respectively. Also, both S1 and S2 are coated with a thin layer of gold to increase the 

reflectivity of the respective mirror surfaces. The 2-D inclinometer is equipped with a 

vibration reduction device. A cross paddle is rigidly connected to the bottom of the metal 

prism by a metal rod and it is immersed into a damping fluid. When the inclinometer 

experience a vibration, the moving of the cross paddle will be damped by the damping 

fluid, which can physically reduce vibrations of the metal prism. Alternatively, vibration 

reduction can also be achieved by a magnetic mechanism (e.g., a combination of 

electromagnets and/or magnets). And the perspective view of the assembly figure of the 

inclinometer is shown in Figure 1(b). Two optical fiber connectors were fixed inside the 

through holes which were drilled through each supporting rod. The lead-out optical fibers, 

via the channels on the top of the container box, were connected to the interrogation system. 

After assembly of the inclinometer, the damping fluid was filled into the 2-D inclinometer 

fluid reservoir through a small porthole located on the top of the container box. Figure 1(c) 

is a photograph of a prototype 2-D inclinometer.

The yz-plane side views of the 2-D inclinometer before and after tilting are 

illustrated in Figure 2(a) and Figure 2(b), respectively, to explicitly demonstrate the 

measurement principle. S1 and the endface of the corresponding optical fiber OF1 serve as 

the two reflectors of EFPI1 . When the inclinometer is tilted at an angle 0 (see Figure 2(b)), 

the two ropes (AA’ and BB’) will remain perpendicular to the horizontal ground plane due 

to the gravitational field. Meanwhile, the OF supporting rod will be tilted with the 

inclinometer, and the angle between the OF supporting rod and the ropes is the tilt angle
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(c)

Figure. 1. Schematic diagram and photograph of the 2-D inclinometer described in this 
work. (a) Schematic diagram of the inclinometer. A triangular metal prism is flexibly 
connected to the top plate of the rectangular metal container box by three ropes of the 
same length (AA’, BB’, and CC’). Two optical fibers are rigidly connected to the top 

plate of the container box using supporting rods. Two EFPI sensors are formed between 
the endfaces of the optical fibers (OFi and OF2) and two corresponding side face mirrors 

(Si and S2) of the metal prism. Si and S2 are coated with gold to form highly reflective 
mirror surfaces. The vibration reduction device consists of a cross paddle connected to 

the metal prism, which is immersed in a damping fluid. The cross paddle remains 
submerged in the damping fluid for the range o f tilt angles metered by the inclinometer. 
(b) Perspective view of the assembly figure of the 2-D inclinometer. (c) Photograph of a 
prototype 2-D inclinometer. Two optical fiber connectors were fixed inside the through 

holes which were drilled through each supporting rod. The lead-out optical fibers via the 
channels on the top o f the container box will be connected to the interrogation system. 

After inclinometer assembling, the damping fluid will be filled into the 2-D inclinometer 
through a small hole on the top of the container box.
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of the inclinometer. The metal prism will remain parallel to the top plate of the container 

box because the four connection points (A, A ’, B, and B ’) form a parallelogram. As a result, 

the two reflectors of EFPIi will remain parallel, but the distance between the two reflectors, 

the cavity length of EFPIi, will change. The relative position of the 2-D inclinometer before 

tilting is shown in Figure 2(b) with a dashed outline, while the position of the 2-D 

inclinometer after tilting is represented with a solid outline. Figure 2(b) clearly shows the 

change in the position of Si.

EFPI2 shares a common measurement principle with EFPIi. Since Si and S2 are 

perpendicular to each other, the cavity length of EFPIi will only be influenced by the tilt 

in the yz-plane, or the y-dimension, while the cavity length of EFPI2 will only be influenced 

by the tilt in the xz-plane, or the x-dimension. The tilt angle of the 2-D inclinometer in the 

yz-plane, A6 1 , can be described as follows:

AS = arcsin Ad­
i l (8)

where Adi is the change in the cavity length of EFPIi and l is the length of each of the steel 

strand ropes. When the tilt angle is small, ( i)  can be described as:

. a d  adAS = arcsin— i « — L 
i l l (9)

Similarly, the tilt angle of the 2-D inclinometer in the xz-plane, A 6 2 , (the x- 

dimension) can be described as follow:

. . A d2AS, = arcsin— 2

And,

(i0)

AS A d2
~ T ( i i )
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when the tilt angle is small, where Ad2 is the change in the cavity length of EFPI2. Here, 

both AOi and A 6 2 can be positive or negative corresponding to counterclockwise or 

clockwise tilts, respectively. When the applied tilt angle is relatively small (i.e., under 

mrad), the difference between tilt angle calculations using (1) and (2) (or (3) and (4)) is 

less than 0.001%. And the relationship between tilt angle change and cavity length change 

can be considered as linear, which indicates that the 2-D inclinometer is able to keep the 

same sensitivity in a small measurement range.

As mentioned above, the endfaces of the corresponding optical fibers, together with 

S1 and S2 form two EFPI sensors with a cavity length of di and d2 , respectively. Considering 

EFPI1 as an example, the interference signal (h i)  of EFPI1 is given by

,4nndI-------- 4 7 c n d
I E1 = 1  + 1 2  +  2 ^ I 1I 2  c o s (  ■ +

A (12)

where Ii and I2 are the light intensities reflected from the endface of the optical fiber and 

the corresponding mirror endface of the metal prism, respectively, ^ is the initial phase 

difference between two reflected waves, n is the refractive index of air, which is about 1, 

and X is the wavelength of the incident light. When the variables inside the cosine function 

of (5) are equal to a multiple of 2n, constructive interferences result. In the wavelength 

spectrum of the interference signal, the separation between two adjacent peaks, defined as 

the free spectrum range (FSR), can be expressed as:

a 2

FSR = a  
2d1 (13)

where Xc is the center wavelength of the interference spectrum. So, the cavity length can be 

demodulated by determining the FSR of the interference spectrum. When the inclinometer
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is tilted, the cavity lengths of the EFPIs will change. The change in cavity length for EFPIi 

can be determined by:

Top plate
A JB

z

o y

Rope - 
Metal 
prism

Si
S2 “ r

EFPI1

Supporting
rod

Optical fiber

(a)
Top plate

Figure 2. The yz-plane side views of the 2-D inclinometer depicting the relationship 
between the tilt angle 9 and the length of the cavity of EFPI1 . (a) The yz-plane side view 

of the 2-D inclinometer before tilting. EFPI1 is formed by S1 and the endface of the 
corresponding optical fiber. (b) The side view of the 2-D inclinometer after tilting to an 

angle 6. The figure with the dashed outline shows the relative position of the 2-D 
inclinometer before tilting, while the figure with a solid outline shows the position of the 

2-D inclinometer after tilting. S1 remains parallel to the endface of the corresponding 
optical fiber, but the distance between S1 and the endface of the optical fiber (i.e., the 

cavity length of EFPI1) changes upon tilting.

A d1 V  AFSRe!
2FSReio FSReu (14)
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where FSReio and FSRe ii are the values of FSR for EFPIi before and after tilting, 

respectively; AFSRei is the difference between FSReio and FSRe i i . The sign of AFSRei can 

be used to determine the direction of tilt. For example, in Figure 2(b), if  the metal prism 

part tilts clockwise, then the cavity length of EFPI1 experiences a decrease. And, if  the 

metal prism part tilts counterclockwise, then the cavity length of EFPI1 experiences an 

increase.

Similarly, for EFPI2, the cavity length change Ad2 can be determined by:

A d 2
A 2 A F S R e  2

2 F S R e  20 F S R e  21 (15)

where FSRe2o, FSRe 2i , and AFSRe 2 are the values of FSR for EFPI2 before tilting, after 

tilting, and the difference between FSRe 2o and FSRe2i , respectively.

With reference to the demodulation principle shown above, changes of the cavity 

lengths of the two EFPIs can be determined. It should be noted that no matter how much 

the tilt angle is (within the operational range of the inclinometer), the endfaces of the two 

optical fibers will always be parallel to the corresponding reflective side face mirrors of 

the metal prism. Thus, the tilt angles can be measured if the cavity length is within a proper 

range (i.e., the cavity lengths of both EFPIs are less than 1 mm). More significantly, the 

sensitivity and the measurement range of the inclinometer are user-configurable by 

adjusting the rope lengths. Thus, the requirements for different practical applications can 

be satisfied using appropriate design parameters. For example, with a 500 p,m initial cavity 

length and 6 cm rope lengths, the theoretical sensitivity and measurement range can be 

calculated to be 60 nm/^rad (cavity length change/tilt angle change) and -8.333 mrad to 

8.333 mrad, respectively.
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In addition, to reduce the temperature cross-sensitivity of the inclinometer, all of 

the rigid components of the inclinometer, including the metal prism, the supporting rods, 

and the container box, were made of Invar metal, which has a low coefficient of thermal 

expansion. Sharing a similar sensor structure with our previously proposed 1-D 

inclinometer, the temperature cross-talks of the 2-D inclinometer can be described as [29]

A =  ( d C  CTE1 +  l d ( X c T E 2 )  A T

Adt 2 ( d2&CTE1 + WcCcte 2 ) AT

(9)

(10)

where AT  is the temperature change experienced by the inclinometer; 0 is the tilt angle of 

the inclinometer from the perpendicular line; acTEi and octe2 are the coefficients of thermal 

expansion of Invar and Nylon, respectively. The sensitivity to temperature cross-talk can 

be further reduced by selecting different materials for the metal prism and top plate so that 

the thermal-induced mechanical changes can be canceled out completely.

3. EXPERIMENTAL RESULTS AND DISCUSSIONS

To verify the resolution of the prototype 2-D inclinometer, an experiment based on 

measuring the tilt angle at the support line of a simply-supported beam under external load 

was designed and demonstrated. The schematic diagram of the test experiment setup is 

illustrated in figure 3(a). The beam was made of stainless steel. The size of the beam was 

700 mm* 50 mm*8 mm. The distance between each support line and the corresponding 

end of the beam was 100 mm. Thus, the effective length of the beam (i.e., the distance 

between the support lines) was 500 mm. The 2-D inclinometer was placed at the position



40
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Figure 3. Schematic diagram and photographs of the 2-D inclinometer tilt angle 
measurement experiment apparatus, which is based on a simply-supported beam. (a) The 
inclinometer is placed above the position of the left-side support line. Copper washers are 
used to provide the load for (bending) tilting the beam. Two EFPI sensors inside the 2-D 

inclinometer are separately tested by rotating the 2-D inclinometer by 90 degrees between 
test experiments. (b) A photograph of the experiment setup when testing EFPI1 . (c) A 

photograph of the experiment setup when testing EFPI2.

above one of the support lines. Several copper washers were placed on the center point of 

the beam to provide the necessary load to bend the beam and thereby tilt the beam at the
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support lines. To prevent the copper washers from sliding, a peg was soldered at the center 

point of the beam, and each copper washer was fabricated with a small center hole so it 

could be fixed on the peg. To calibrate the responses for two EFPI sensors separately, the 

2-D inclinometer was rotated and adjusted so that only one EFPI was parallel to the tilt 

direction for each test. Photographs of the experiment setup used for calibrating EFPI1 and 

EFPI2 are shown in Figure 3(b) and Figure 3(c), respectively.

At the support line, the tilt angle can be expressed as [31]:

F I 2e =
16 E l (11)

where F  is the load applied to the center of the beam; ls is the distance between the two 

support lines; E  is Young’s modulus for stainless steel (about 200 GPa); and, I  is the 

moment of inertia. Note that the change in the angle calculated using (9) has uncertainty 

due only to the uncertainty in the change in mass that is added onto the center of the simply- 

supported beam (±0.001 g). Uncertainties in the other variables in (9) result in an offset 

angle that can be arbitrarily adjusted to zero.

The schematic test measurement setup of the 2-D interferometer apparatus for 

operating the 2-D inclinometer and a photograph of the 2-D inclinometer are shown in 

Figure 4. A wavelength interrogator (Micron Optics SM125) served as the light source and 

demodulation device for the 2-D interferometer apparatus. The interference spectra of both 

EFPI sensors were recorded separately using an optical switch. A detailed description of 

the measurement apparatus can be found in our recent work [32].
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Figure 4. Schematic diagram of the test measurement setup for operating the 2-D 
inclinometer and a photograph of the 2-D inclinometer. A computer-controlled optical 

switch was used to switch between the two tilt sensors.

Figure 5(a) and Figure 5(b) shows the interference spectrum of EFPI1 and EFPI2, 

respectively without tilting the inclinometer. The averaged FSR of the EFPI1 and the EFPI2 

spectrum is 4.205 nm and 5.030 nm, corresponding to the initial cavity length of 285.680 

pm and 238.825 pm, respectively. And, the dynamic range boundaries of EFPI1 and EFPI2 

were calculated to be -4.761 mrad to 11.905 mrad (-0.273° to 0.682°) and -3.980 mrad to 

12.686 mrad (-0.228° to 0.727°), respectively. It should be noted that the differences in 

FSR values of both EFPIs will only result in different initial cavity lengths instead of 

different coupling efficiencies or sensitivities. In our experiments, the cavity lengths for 

both EFPI sensors were measured for 55 minutes. During the measurements, for each load, 

five interference spectra were recorded to calculate the cavity length of each EFPI sensor. 

During the experiment, each EFPI sensor of the inclinometer was interrogated separately 

by switching channels, and the spectra from the EFPI sensor, which was not under test, 

were also recorded to investigate the error introduced by the orthogonal fabrication of the 

2-D inclinometer and the configuration of the experimental setup. The weight of each
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copper washer was 2.000±0.001g. According to (2) and (4), when a copper washer was 

placed on the center point of the beam, it would cause a tilt angle to the beam of 0.757 

p,rad. The total load ranged from 0 to 20.000 g corresponded to the range in tilt angle from 

0 to 7.570 p,rad.

For the test experiment of EFPIi, the changes in the cavity lengths of EFPIi as a 

function of applied loads (parameterized with a time variable) are shown in Figure 6(a). 

The left vertical axis represents the changes in the measured cavity lengths of the EFPIi 

sensor, and the right vertical axis represents the corresponding measured tilt angle changes, 

which were calculated from (2) with the length of the rope set to 6.000 cm in the prototype 

2-D inclinometer. In Figure 6(a), a load increment of 2.000 g placed on the center point of 

the simply-supported beam, corresponding to an increment of 0.757 ^rad in the tilt angles, 

can be easily metered by EFPIi. The measurement setup, based on the SM125, can achieve 

a resolution of 1.0 nm for changes in lengths of the EFPI cavity.

Thus, the EFPI-based inclinometer described here can achieve a theoretical 

resolution of 16.7 nrad according to (2). The deviations of the changes of the measured 

cavity lengths from the average change and the corresponding deviations of the changes of 

the tilt angles form the average change during the measurement period 35-40 min are 

presented as an inset in Figure 6(a), showing a standard deviation of 0.008 p,rad. The 

changes in the cavity lengths of EFPI2 as a function of applied loads (parameterized with a 

time variable) are shown in Figure 6(b). The changes in the cavity lengths follow an 

increasing trend with load increments. An inset showing the changes in the cavity lengths 

measured during the measurement period 31-35 min is also presented in Figure 6(b) to
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Figure 5. Initial interference spectra from two orthogonal EFPI sensors. (a) Initial 
interference spectrum from EFPI1 . The spectrum was recorded from 1510 nm to 1590 

nm. The average FSR of EFPI1 is 4.205 nm, corresponding to a cavity length of 285.680 
|im. (b) Initial interference spectrum from EFPI2. The spectrum was recorded from 1510 
nm to 1590 nm. The average FSR of EFPI2 is 5.030 nm, corresponding to a cavity length

of 238.825 |im.

show the standard deviation of the corresponding measured cross-talk angles, which is 

0.010 p,rad. The measured tilt angles from EFPI1 and the cross-talk angles from EFPI2 

plotted as a function of applied tilt angles, calculated according to (2) and (4), are shown
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Figure 6. Tilt and cross-talk angle measurement results for a simply-supported steel beam 
using the 2-D inclinometer. (a) Plot of the changes in cavity lengths and the 

corresponding changes in the measured tilt angles as a function of applied loads from 
EFPI1 . Every five minutes the load was increased by 2.000 g and every minute the 

interference spectrum was recorded. The inset shows the changes in the cavity lengths 
and the corresponding measured tilt angles for measurement times that spanned from 36 
to 40 minutes. (b) Plot of the cross-talk angle experimental results obtained from EFPI2. 
The changes in the cavity lengths and the corresponding measured changes in the cross­

talk angles of EFPI2 are plotted as a function of applied loads. The inset shows the 
changes in cavity lengths and the corresponding measured changes in the cross-talk 
angles for measurement times that spanned from 31 to 35 minutes. (c) The average 

changes in the measured tilt angles from EFPI1 and the average changes in the measured 
cross-talk angles from EFPI2 as a function of the applied angles. The linear fit result of 
EFPI1 indicates good linearity between the changes in the measured tilt angles of EFPI1 

and the changes in the applied tilt angles. The linearity between the changes in the 
measured cross-talk angles of EFPI2 and the changes in the applied tilt angles is an 
indication that EFPI2 is not perfectly orthogonal to the tilt direction of the simply- 

supported beam, or that the mirrors S1 and S2 are not perfectly orthogonal, or that the 
beam experiences a twist under load, or a combination of these reasons.
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in Figure 6(c). The linear fit (black line) of the data collected with EFPIi produces an R- 

square of 1, indicating the excellent linearity between the applied tilt angles (derived from 

the placement of the copper washers on the center point of the beam) and measured tilt 

angles. The slope and the intercept of the linear fit result reveal the differences between the 

applied tilt angles and measured tilt angles. The reason for the small differences could be 

ascribed to the parameters used to calculate the tilt angles of the beam (e.g., Young’s 

modulus of steel, the length of the steel beam, etc.). However, the differences can be 

compensated using the linear fit results. On the other hand, the linear fit (red line) of the 

data collected with EFPI2 resulted in an R-square of only 0.90994 because the small 

alignment errors introduced by the fabrication of the inclinometer and the geometrical 

configuration of the experimental setup are of the same order of magnitude as the 

deviations in tilt angle measurements. The slope of the EFPI2 linear fit result indicates that 

the coordinate not under test also experienced small cross-talk angle changes (1.1% 

compared with the side under test) because of the uncertainties in the inclinometer 

fabrication and installation. It is also possible that the beam experiences a twist under load, 

which is metered as a cross-talk angle change.

The test experiment of EFPI2 followed similar steps as the test experiment of EFPIi. 

The changes of the cavity lengths of EFPI2 as a function of applied loads (parameterized 

with a time variable) are shown in Figure 7(a). The left vertical axis represents the changes 

in the measured cavity lengths of EFPI2, and the right vertical axis represents the 

corresponding measured tilt angle changes. In Figure 7(a), 0.757 grad angle increments of 

the simply-supported beam can also be easily distinguished by EFPI2. Using a similar 

measurement setup, the tilt angle measurement resolution of EFPI2 is the same as for EFPIi.
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The deviations of the changes of the measured cavity lengths from the average change and 

the corresponding deviations of the changes of the tilt angles form the average change 

during the measurement period 31-35 min are presented as an inset in Figure 7(a), showing 

a standard deviation of 0.013 ^rad. The changes in the cavity lengths of EFPIi as a function 

of applied loads (parameterized with a time variable) is shown in Figure 7(b). The changes 

in the cavity lengths follow a decreasing trend with load increments. An inset of the 

changes in the cavity lengths measured during the measurement period 36-40 min is also 

presented in Figure 7(b), showing a standard deviation of 0.013 ^rad. The changes in the 

measured tilt angles of EFPI2 and the changes in the measured cross-talk angles of EFPIi 

in the EFPI2 test experiment as a function of the applied tilt angles are shown in Figure 

7(c). The linear fit (red line) of EFPI2 produced an R-square of 1, indicating the excellent 

linearity between the changes in the applied tilt angles and the changes in the measured tilt 

angles of EFPI2. Meanwhile, the linear fit (black line) of EFPI1 produced an R-square of 

0.9813 because the alignment errors introduced by the fabrication of the inclinometer and 

the geometrical configuration of the experimental setup are of the same order of magnitude 

as the deviations in tilt angle measurements. The slope of the EFPI1 linear fit also shows 

that a small tilt angle was detected by EFPI1 due to uncertainties in the inclinometer 

installation. It is also possible that the beam experiences a twist under load, which is 

metered as a cross-talk angle change.

The stability of the proposed 2-D inclinometer was also investigated. The 2-D 

inclinometer was placed on the same simply-supported beam while no load was applied on 

the center of the beam. The interference spectra of both EFPIs was recorded by the
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Figure 7. Tilt and cross-talk angle measurement results for a simply-supported steel beam 
using the 2-D inclinometer. (a) Plot of the changes in cavity lengths and the 

corresponding changes in the measured tilt angles as a function of applied loads from 
EFPI2. Every five minutes the load was increased by 2.000 g and every minute the 

interference spectrum was recorded. The inset shows the changes in the cavity lengths 
and the corresponding measured tilt angles for measurement times that spanned from 31 
to 35 minutes. (b) Plot of the cross-talk angle experimental results obtained from EFPI1 . 
The changes in the cavity lengths and the corresponding measured changes in the cross­

talk angles of EFPI1 are plotted as a function of applied loads. The inset shows the 
changes in cavity lengths and the corresponding measured changes in the cross-talk 
angles for measurement times that spanned from 36 to 40 minutes. (c) The average 

changes in the measured tilt angles from EFPI2 and the average changes in the measured 
cross-talk angles from EFPI1 as a function of the applied angles. The linear fit result of 
EFPI2 indicates good linearity between the changes in the measured tilt angles of EFPI2 

and the changes in the applied tilt angles. The linearity between the changes in the 
measured cross-talk angles of EFPI1 and the changes in the applied tilt angles is an 
indication that EFPI1 is not perfectly orthogonal to the tilt direction of the simply- 

supported beam, or that the mirrors S1 and S2 are not perfectly orthogonal, or that the 
beam experiences a twist under load, or a combination of these reasons.
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interrogator every 5 minutes. The total experiment time was 1000 minutes. The cavity 

length changes and their corresponding equivalent tilt angle were calculated for both EFPIs 

for 1000 minutes; the results are shown in Figure 8(a) and Figure 8(b). Figure 8(a) shows 

the recorded cavity length changes and equivalent tilt angle changes of EFPI1 and Figure 

8(b) shows the recorded cavity length changes and equivalent tilt angle changes of EFPI2. 

The average and standard deviation of the cavity length change of EFPI1 are calculated to 

be 0.03316 nm and 1.4284 nm, respectively, corresponding to a 0.55267 nrad and 23.8060 

nrad equivalent change in tilt angle, respectively. The average and standard deviation of 

EFPI2 cavity length change are calculated to be -0.20107 nm and 1.9305 nm, respectively, 

corresponding to -3.3511 nrad and 32.1705 nrad equivalent tilt angle change, respectively. 

Compared to the uncertainties in previous small tilt angle measurement, it is obvious that 

both EFPIs experienced larger uncertainties. The reason lies within much longer 

experiment time which may introduce larger environmental uncertainties. But both EFPIs 

still show tilting measurement standard deviations within tens of nanoradians, indicating 

good stability.

The temperature cross-talk of the 2-D inclinometer was investigated in a separate 

experiment. The experimental setup is illustrated in Figure 9(a). The inclinometer was 

placed inside a temperature-controlled box filled with insulation foam. To reduce the 

influence of the thermal expansion effect on the experimental setup, the 2-D inclinometer 

was placed on the top o f  a cylindrical fused silica base. Every hour, the temperature inside 

the box was increased by 10 °C. After 50 minutes for temperature stabilization, the 

interference signal was recorded ten times in 10 minutes. The total temperature range was
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Figure 8. The stability test result for the 2D inclinometer. Every 5 minutes the 
interference spectra from each EFPI was recorded by the interrogator. The total 
experiment time was 1000 minutes. (a) The recorded cavity length changes and 

equivalent tilt angle changes of EFPI1 . (b) The recorded cavity length changes and 
equivalent tilt angle changes of EFPI2.

0-50 °C. The initial cavity lengths of EFPI1 and EFPI2 were 498.376p,m and 472.115 p,m, 

corresponding to theoretical temperature cross-talks of 9.96 nrad/°C and 9.44 nrad/°C 

calculated from (9) and (10), respectively.
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The measured EFPIi and EFPI2 cavity length changes and the equivalent tilt angles 

as a function of temperature are shown in Figure 9(b) and Figure 9(c). Figure 9(b) and 

Figure 9(c) indicate that the cavity lengths of both EFPIs have a positive correlation to the 

temperature. The insets in Figure 9(b) and Figure 9(c) show the expanded cavity length 

changes and the corresponding equivalent tilt angles at a constant temperature. The 

standard deviations of the equivalent tilt angles derived from EFPI1 and EFPI2 were 40.1 

nrad and 35.6 nrad, which are higher than for the previous experiments because of the 

larger environmental perturbations. Figure 9(d) illustrates the average equivalent tilt angles 

derived from EFPI1 and EFPI2 as a function of temperature. Based on the linear fit results 

of the average equivalent tilt angles derived from EFPI1 and EFPI2, the measured 

temperature cross-talks for EFPI1 and EFPI2 were 11.2 nrad/°C and 13.4 nrad/°C, which 

are close to the theoretical temperature cross-talk values. The temperature experiment 

results indicate that the temperature cross-talks of the inclinometer are small, and they can 

be reduced or compensated for by recording the effects of the temperature variations or by 

using proper materials for insulation from heat.

To verify the practicability of our prototype 2-D inclinometer, an experiment was 

conducted to monitor the tilt angle of a gravity dam (Fengman Dam, Jilin City, Jilin, 

China). A photograph of the gravity dam is shown in Figure 10(a). Wedefine a Cartesian 

coordinate system for the gravity dam where the x-direction is towards the upper reach of 

the river, the y-direction is along the gravity dam, and the z-direction is perpendicular to 

the earth. The 2-D inclinometer was located inside a vertical shaft in the 32nd section of the 

dam at an elevation of 258 meters above the Earth’s sea level (see Figure 10(b)). The 

coordinate systems of the gravity dam and the 2-D inclinometer are coincident. Interference
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Figure 9. An experiment apparatus used to investigate the temperature cross-talk of the 
inclinometer and experimental results. (a) A diagram of the experimental apparatus used 

to quantify temperature cross-talk. The inclinometer was placed inside a temperature- 
controlled box surrounded with three-inch-thick insulation foam. To reduce the influence 

of the thermal expansion effect on the experimental setup for accurately measuring tilt 
angles, the 2-D inclinometer was placed on top of a cylindrical fused silica base. (b) The 
measured changes in the EFPI1 cavity length and the corresponding equivalent tilt angles 

as a function of temperature. The inset shows the expanded view of the repeatedly- 
measured cavity length changes and the corresponding equivalent tilt angles at 30 °C. (c) 

The measured changes in the EFPI2 cavity length and the corresponding equivalent tilt 
angles as a function of temperature. The inset shows the expanded view of the 

repeatedly-measured cavity length changes and the corresponding equivalent tilt angles at 
50 °C. (d) The average equivalent tilt angles derived from EFPI1 and EFPI2 as a function 

of temperature. The measured temperature cross-talks of EFPI1 and EFPI2 were 11.2 
nrad/°C and 13.4 nrad/°C, respectively.
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spectra from the two EFPI sensors were acquired every hour and the daily average 

orthogonal tilt angles of the gravity dam structure perpendicular and parallel to the gravity 

dam were recorded for a period of one year (January 1st, 2017 to December 31st, 2017).

The changes in the orthogonal tilt angles of the gravity dam structure perpendicular 

and parallel to the gravity dam, measured over a period of one year, are shown in Figure 

11(a) and Figure 11(b), respectively. As shown by the positive changes in the tilt angles 

calculated from the positive changes in the lengths of the cavity measured by EFPI2 in 

Figure 11(a), we can conclude that the top of the gravity dam continuously tilted towards 

the upper reach of the river in the first 200 days of the measurement period. After that, the 

top of the gravity dam began to tilt towards the lower reach of the river. The latter two 

results are counterintuitive. Figure 11(b) shows the positive changes in the tilt angles 

calculated from the positive changes in the lengths of the cavity measured by EFPI1, 

corresponding to the tilting towards the far side of the dam (where the village is located, 

see Figure 10(a)), as a function of time. A comparison of Figure 11(a) and Figure 11(b) 

indicates that the changes in the tilt angles along the river were about ten times larger than 

the changes in the tilt angles along the gravity dam, a reasonable result. Some relevant data 

of the Fengman Dam, including the average daily temperature of the dam surroundings and 

the water levels of the upper reach of the river and the lower reach of the river, are plotted 

in Figure 11(c), Figure 11(d), and Figure 11(e), respectively. Figure 11(c) shows that the 

average daily outdoor temperatures at the dam follow a trend similar to the curve of the 

changes in the measured tilt angles along the river, revealing an unexpected and strong 

correlation. Our hypothesis is that this phenomenon is caused by the uneven thermal 

expansion/contraction between two sides of the dam. The side of the dam towards the upper
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Figure 10. The photographs of the Fengman Dam, a schematic drawing of the dam, and 
the installed 2-D inclinometer. (a) A photograph of the Fengman Dam. The Cartesian 
coordinate system for the Fengman Dam is shown in the figure, which is defined such 
that the x-direction is towards the upper reach of the river, the y-direction is along the 

gravity dam, and the z-direction is perpendicular to the earth. The 2-D inclinometer was 
placed near the top of the dam such that the coordinate systems of the dam and the 2-D 
inclinometer were made coincident. (b) A cross-section schematic drawing of the 32nd 

dam section of the Fengman Dam. The 2-D inclinometer was located inside the 
horizontal aisle near the vertical shaft (yellow indicator). (c) A photograph of the 2-D 
inclinometer and relevant coordinate system. The 2-D inclinometer was set inside the 

Fengman Dam and measured the changes in orthogonal tilt angles of the Fengman Dam 
for one year. The Cartesian coordinate systems shown in Figure 8(a), Figure 8(b) and

Figure 8(c) are the same.

reach of the river is mostly immersed in the river water, while the side of the dam towards 

the lower reach of the river is mostly exposed to the ambient air. Therefore, the side of the
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dam towards the lower reach of the river tends to experience larger temperature changes 

compared with the side o f the dam towards the upper reach of the river, which could result 

in uneven thermal expansion/contraction between two sides of the dam. When the 

environmental temperature increases, the side of the dam towards the lower reach of the

(a) (b)

Time (day)

(e)

Figure 11. Plots of the daily changes in the orthogonal tilt angles of the gravity dam 
structure along the river and along the gravity dam compared with plots of the daily 

temperatures and water levels on both sides of the dam for a one-year period. (a) The 
daily changes in the tilt angles measured by EFPI2, corresponding to tilt angles along the 

river. (b) The daily changes in the tilt angles measured by EFPI1, corresponding to tilt 
angles perpendicular to the direction of the river. (c) The average daily outdoor 

temperatures at the Fengman Dam. (d) The daily water levels on the upper reach side of 
the river. (e) The daily water levels on the lower reach side of the river.
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dam experiences larger thermal expansions, which makes the dam tilt towards the upper 

reach of the river. On the contrary, when the environmental temperature decreases, the dam 

tends to tilt towards the lower reach of the river. Meanwhile, the plot of the water levels of 

the upper reach of the river, shown in Figure 11(d), also follows a similar trend. 

Interestingly, the water level of the upper reach of the river was expected to have a negative 

correlation to the changes in the measured tilt angles of the gravity dam along the river 

according to the orientation of the mounted 2-D inclinometer. Our intuitive expectation is 

that when the water level of the upper reach of the river increases, the river water would 

apply a greater force to the upper reach side of the gravity dam, which would result in 

positive changes in the tilt angles of the top of the gravity dam towards the lower reach of 

the river. Surprisingly, our results indicate that the outdoor temperature changes at the 

gravity dam dominate the changes in the tilt angles of the gravity dam along the river. 

Figure 11(e) shows the water level of the lower reach of the river. Compared with the 

maximum change in the water level of the upper reach of the river (~15 m), the maximum 

change in the water level of the lower reach of the river (~2 m) is considerably smaller and 

sensitivity for measuring the changes in the tilt angles of a large structure over a long period 

of time. With a robust and easy-to-manufacture structure, our 2-D inclinometer shows 

significant potential for structural health monitoring, natural disaster monitoring, and other 

applications that require metering changes in tilt angle with high resolution, long duration,

and robust instrumentation.
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4. CONCLUSIONS

In this paper, we reported and demonstrated a high resolution EFPI-based 2-D 

optical fiber inclinometer for measuring changes in tilt angles. The 2-D inclinometer 

consists of a pair of perpendicularly-arranged EFPI sensors packaged inside a rectangular 

container box. To reduce the oscillatory effects caused by mechanical vibrations, the 

rectangular metal prism was connected to a cross paddle, which was immersed in a 

damping fluid. According to the Fabry-Perot principle, the changes in the cavity lengths of 

the two EFPI sensors can be calculated, and the tilt angles in the two directions of the 2-D 

inclinometer can be determined. The sensor design and the measurement principle were 

discussed. The sensitivity and measurement range of the inclinometer can be adjusted to 

satisfy the requirement for different practical applications. The test experiments for the two 

EFPI sensors, based on measuring the changes in the tilt angles of a simply-supported beam 

caused by a series o f  small loads, were presented to verify the resolution and accuracy o f 

the prototype 2-D inclinometer. Our 2-D inclinometer shows capabilities for high- 

resolution measurements (~20 nrad), which exceed the resolution specifications of all 

optical fiber inclinometers reported to date. The 2-D inclinometer was also employed for 

monitoring the changes in the tilt angles o f  a gravity dam during a one-year period, 

demonstrating excellent stability and practicability. With a robust and easy-to-manufacture 

design, our 2-D inclinometer can be commercialized, and it shows great potential for 

structural health monitoring, natural disaster monitoring, and other monitoring applications

conducted in harsh environments.
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ABSTRACT

Background: Mild traumatic brain injury (mTBI) strongly associates with chronic 

neurodegenerative impairments such as post-traumatic stress disorder (PTSD) and mild 

cognitive impairment. Early detection of concussive events would significantly enhance 

the understanding of head injuries and provide better guidance for urgent diagnoses and 

the best clinical practices for achieving full recovery.

New method: A smart helmet was developed with a single embedded fiber Bragg 

grating (FBG) sensor for realtime sensing of blunt-force impact events to helmets. The 

transient signals provide both magnitude and directional information about the impact 

event, and the data can be used for training machine learning (ML) models.

Results: The FBG-embedded smart helmet prototype successfully achieved real­

time sensing of concussive events. Transient data “fingerprints” consisting of both 

magnitude and direction o f impact, were found to correlate with types o f  blunt-force

mailto:jieh@mst.edu
mailto:geraldr@mst.edu
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impactors. Trained ML models were able to accurately predict (R2 ~ 0.90) the magnitudes 

and directions of blunt-force impact events from data not used for model training.

Comparison with existing methods: The combination of the smart helmet data with 

analyses using ML models provides accurate predictions of the types of impactors that 

caused the events, as well as the magnitudes and the directions of the impact forces, which 

are unavailable using existing devices.

Conclusion: This work resulted in an ML-assisted, FBG-embedded smart helmet 

for real-time identification ofconcussive events using a highly accurate multi-metric 

strategy. The use of ML-FBG smart helmet systems canserve as an early-stage intervention 

strategy during and immediately following a concussive event.

Keywords: Mild traumatic brain injury; Fiber-optic sensor; Fiber Bragg grating; Machine 

learning; Concussive events; Blunt-force impact-induced brain injury

1. INTRODUCTION

Post-traumatic stress disorder (PTSD), physical health problems, mild cognitive 

impairment, dementia, and depression are strongly associated with mild traumatic brain 

injury (mTBI), as frequently re- ported in military-, sport-, and other source-induced head 

injuries (Faul et al., 2010; Guskiewicz et al., 2007; Hoge et al., 2008). Although post­

traumatic brain injury assessments and interventions have been discussed and practiced for 

decades, the importance of immediate detection and early diagnosis cannot be over­

emphasized (Brenner et al., 2009). Unfortunately, the lack of practical early detection tools 

weakens the predictive measures for mTBIs.
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Early detection of blunt-force impact events by advanced commercially-available 

hardware, such as the Reebok Checklight skullcap module (Harper et al., 2018), relies 

heavily on the devices’portability and robustness to ensure high fidelity capture of 

concussion-causing events in vivo. Another reason to use sensor-integrated wearable 

devices for early-stage intervention during blunt-force impact events is that wearable 

devices can, apparently, serve as dynamic platforms for instantaneous sensing. In 

particular, for pro- tective head equipment, a helmet’s original purpose was to redistribute 

and limit the forces directed at the head to levels that are below the skull fracture tolerances. 

Advanced helmets were designed to increase the duration o f  strikes to the head and thereby 

limit peak head acceleration, which ultimately protects the underlying bone and 

neurovascular structures (Butz and Dennison, 2015). In the present work, the direct 

embedment of a fiber-optic sensor in a thin surface layer of the shell of a helmet could 

further expand the helmet’s functionality in two important aspects: (1) Sensing and 

analyzing blunt-force impact events could provide direct avenues for evaluating the 

capabilities of helmets for head protection, which may inspire better ways to design and 

construct helmets; and (2) Evaluating the potential physiological effects of blunt-force 

impact events in real-time using ML models will identify a range of concussive events that 

should be treated within the Golden Hour, leading to best practices and positive long-term 

health outcomes. Fiber-optic sensors -  as thin as human hairs -  have been employed in 

wearable sensing devices without compromising the devices’ protective structure and 

functionality (Grattan and Sun, 2000; Lee, 2003; Rao, 2006). The fiber Bragg grating 

(FBG) sensing principle has been widely adopted for monitoring impact-induced strain 

changes (Guan et al., 2000; Ho et al., 2006). By creating periodic variations in the refractive
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index along the length of the core of the optical fiber, subtle wavelength changes due to 

variations in strain can be pinpointed. This simple sensing method enables signal 

demodulation that is facile and rapid (~kHz sampling rates), hence making it possible to 

sense high-speed mechanical events in real-time. Butz et al. fabricated the first-of-its-kind 

force transducer based on the FBG principle and successfully integrated the device into a 

helmet for measuring transient forces that resulted from impacts to a dummy head (Butz 

and Dennison, 2015). A single FBG fiber was immobilized on a fixed-fixed beam of an 

aluminum superstructure that was embedded into the contoured surface of a helmet. Under 

computer-programmed externally-applied impacts, the deformation of the fixed-fixed 

beam resulted in the changes in the strain of the FBG section of the embedded fiber. The 

magnitudes of the strain changes were found to be proportional to the applied impact 

forces. The requirements of ample space on the surface of the helmet shell for multiple 

FBG transducers embedment severely limited the feasibility of this method when sensing 

at a multitude of points is needed across the surface of the helmet. Such limitations on the 

number of embeddable sensors in the helmet shell will inevitably limit the quantity of the 

data retrieved from the blunt-force impact events, in turn limiting the overall efficacy of 

mTBI detection, and subsequent capabilities for mitigation of adverse long-term 

physiological effects.

The present study focused on the application of single fiber FBGs, without 

mechanical superstructures (Butz and Dennison, 2015), to maximize their advantages in 

terms of unconstrained degrees of freedom, small size, and light weight for wearable and 

robust sensing under dynamic conditions. Moreover, the study exploited the combination 

of FBG sensors with machine learning (ML) models to enhance analytical capabilities for
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multifaceted analyses of complex transient signals. The ML models have been introduced 

to many areas of funda- mental and applied research to extract complicated and important 

at- tributes from high-value data. The utilization of ML models for fiber-optic 

communicating, sensing, and predicting has also been re- ported previously (Jarajreh et al., 

2014; Karanov et al., 2018; Makar- enko, 2016; Mazid and Ali, 2008; Tejedor et al., 2017; 

Wang et al., 2015). For instance, Mazid et al. applied the Support Vector Machine (SVM) 

model to a database from an opto-tactile sensor and successfully identified patterns of 

different surface textures (Mazid and Ali, 2008). Makarenko et al. demonstrated an 

approach to building deep learning models for a fiber-optic distributed sensing system, 

which could function with high degrees of adaptability under intensive signal-jamming en­

vironments (Makarenko, 2016).

Thus, the combination of a specific fiber-optic FBG sensing principle with carefully 

selected and rigorously trained ML models may fulfill the studies stated goals due to the 

following reasons: (1) The combined utilization of fiber-optic sensing data with ML 

models will avoid the tedious modeling and calibration approaches that are required by 

traditional data-handling tools, such as finite element analysis (FEA); (2) ML analysis can 

substantially enhance pattern recognition abilities, thereby helping to reveal and identify 

hidden linkages between transient signals from fiber-optic sensors and various impact 

parameters, such as the impact sources, magnitudes, directions, and so forth, that are 

monitored and recorded; and (3) Well-trained and fully-validated ML models may thus 

provide accurate predictions for the blunt-force impact events such that mitigating actions 

can be taken within that first hour after the occurrence of an injury -  or the Golden Hour -  

which can go a long way in protecting the long-term mental health of the individual.



66

Presented in this study are an FBG sensor-embedded smart helmet, ML-models for sensing, 

and subsequent multifaceted analyses of tran- sient concussive events. A bowling ball 

Pendulum Impactor System (PIS) was constructed and employed for simulating concussive 

events on a dummy head equipped with the fiber-optic sensor-embedded smart helmet. 

Multiple impact kinetic energy levels and directions were tested to validate the system’s 

robustness for sensing blunt-force impact events. A LabVIEW program was coded to 

autonomously output a real- time display of the Bragg wavelength shifts caused by changes 

in strains of the FBG sensor. The resultant datasets were utilized for training several ML 

models, and to subsequently conduct performance tests. Finally, the prediction accuracies 

of these ML models were compared and discussed.

2. MATERIALS AND METHODS

2.1. FBG SENSING PRINCIPLE AND SENSOR FABRICATION

An illuminated coil of optical fiber with an expanded view depicting the structure 

of a Fiber Bragg Grating (FBG)—including the external space (air), cladding, core, grating, 

respective indicators for refractive indices, and grating period—is shown in Figure 1. The 

FBG is formed by creating a periodic variation in the refractive index along the core of the 

optical fiber. The periodic pattern functions as a notch filter. It reflects the incident light at 

a particular wavelength and transmits light of all other wavelengths. The periodic pattern 

can be created using various methods, such as interference lithography, phase mask 

writing, and point-by-point writing. The wavelength of the reflected light (Ab ), which is 

called the Bragg wavelength, is defined as follows:
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A  =  2n# A (16)

where «ejf  is the effective refractive index of the core of the optical fiber and A is the 

grating period. When an FBG sensor is subjected to an applied strain or a temperature

Figure 1. A coil of optical fiber with an expanded view depicting the fiber Bragg grating 
(FBG) structure in the core of a single-mode optical fiber. The labels, no, ni, n2 and n3 

represent the refractive index of the air, fiber cladding, fiber core and the fabricated 
grating, respectively. A represents the grating period. The optical fiber also serves the 

dual purpose of a low-loss conduit for transferring the information from the FBG sensor 
to a remote location where the interrogator is located.

change, the refractive index of the fiber core and the grating period will experience 

variations, resulting in shifts of the Bragg wavelength. Assuming the applied strain or 

temperature change is uniform, the Bragg wavelength shift AAb is described as:

A A  = (1 -  pe )AS + (acte + acto )AT (2)
Ab

where pe, As, acte, acto, and AT  are the strain-optic coefficient, the strain variation, the 

thermal expansion coefficient, the thermo-optic coefficient, and the change in temperature,
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respectively. Therefore, by continuously monitoring the wavelength of the reflected light, 

the shift of the Bragg wavelength can be determined, and the applied strain or temperature 

change can be calculated. Although both strain and temperature perturbations will 

simultaneously influence FBG wavelength shifts, the timescales of changes in strain 

induced by blunt-force impact events typically range from one to tens of milliseconds (ms), 

which are much shorter than the timescales of FBG signal fluctuations induced by 

variations in temperature. Therefore, the temperature factors can be neglected from the Eq. 

(2) [56]. The shift in wavelength of the FBG caused by an axial strain on an SMF-28 fiber 

can be written as:

A K  = 0.79Ae (3)
K

2.2. INTEGRATION OF AN FBG SENSOR IN A HELMET

Figure 2 shows a photograph of a prototype smart helmet used in this study with an 

embedded FBG sensor and a schematic diagram of the interrogation system. The FBG 

sensors were fabricated from a single-mode optical fiber (SMF-28) employing a 

femtosecond fabrication system (Newport femtoFBG) and were embedded inside shallow 

grooves on the top surfaces of football helmets (Schutt kids’ AiR standard VI football 

helmet) as shown in Figure 2a. The groove was made on the outer surface of the helmet 

using a momentary-contact wire heater, which resulted in a groove depth of 1 mm and a 

groove length of 25 mm. An optical fiber (length, ~ 1 m) with an FBG sensor (length, ~ 

1 cm) was placed inside the groove (red arrow), and the groove was filled with epoxy. After 

the epoxy solidified, the free end of the optical fiber on the backside of the helmet was 

spliced to an extension optical fiber and connected to the interrogation system. It should be
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Figure 2. The first prototype Missouri S&T smart helmet equipped with an FBG sensor 
embedded in a shallow groove on the top surface. (a) A photograph of the upper side of 
the helmet where the FBG fiber was embedded (red arrow). (b) A schematic diagram of 

the interrogation system for the smart helmet.

noted that in a preliminary approach, FBG sensors were embedded into shallow grooves 

created by applying a heated wire on the outer surfaces of the helmets. Due to the small 

size of SMFs, the fibers, including the FBG sensor section, could be embedded into the 

helmets during the manufacturing process so that the smart helmet can function without a 

compromised mechanical integrity of the plastic shell. When a blunt-force impact is 

applied to the helmet, a transient material deformation around the impact spot will 

generate momentary stresses. Based on the directions of force propagations, such stresses 

will stretch and compress the embedded FBG sensor along the axial direction, cause 

variations of strain to the fiber, and finally induce a transient shift of the FBG wavelength 

that can be determined by Eq. (3).

2.3. DATA COLLECTION AND INTERROGATION

A schematic diagram of the interrogation system for the FBG-equipped smart 

helmet is illustrated in Figure 2(b). The incident light from the broadband light source
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Figure 3. Testing a prototype wireless smart helmet for recording blunt-force impact 
events in the field. (a) A top view of the smart helmet with the wireless Redondo FBG 

transceiver mounted to the rear of the helmet. Both the FBG sensor location (red arrow) 
and the wireless FBG Transceiver module (yellow arrow) are indicated in the 

photograph. The fiber-optic FBG sensor is connected to the Redondo module via the 
yellow-green connector. (b) Photograph of the wall-impact scene, where a student tester 

is wearing the helmet and impacting the wall at a mild level. (c) Signals that were 
immediately transmitted from the Redondo module to a remote laptop located at a 

distance of 10 meters. The plot in (c) shows five consecutive events generated by five 
corresponding impacts of the helmet on a brick wall. (d) The expanded view of the first 
event in (c) shows two peaks, the first from the initial contact and the second from the

rebound contact.

(Thorlabs ASE-FL7002-C4 ASE Source) was directed into the FBG fiber sensor through 

an optical fiber circulator (from Port 1 to Port 2). Then a portion of the incident light with 

wavelength satisfying the Bragg wavelength (Eq. (1)) was reflected and redirected to the 

circulator (from Port 2 to Port 3) and detected by the interrogator (BaySpec FBGA-F-1510- 

1590-FA). To readily detect and reconstruct the blunt-force impact events, the acquisition 

speed of the interrogator was set to a sampling rate of 5 kHz, corresponding to a 0.2 ms
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time interval between sampled signals. The recorded signals were then uploaded to the 

computer for further processing.

2.4. IMPLEMENTATION OF A WIRELESS DATA TRANSMISSION MODULE

Figure 3 shows a prototype smart helmet configured with a wireless FBG 

transceiver for field tests. The wireless FBG transceiver (Redondo Optics MOFIS FBG 

Transceiver) was employed to enable detection and interrogation of blunt-force impact 

events and the wireless transmission of the collected and processed FBG data. The 

Redondo device is a miniaturized transceiver with a built-in light source, a wireless 

communication module, and an on-board power source. It can monitor signals from two 

FBG sensors fabricated in one single fiber with a high sampling rate (up to 20 kHz). To 

prepare the smart helmet, a groove with 0.5 mm depth was heat-carved into the top surface 

of the football helmet. One FBG sensor was placed inside the groove and fixed in place 

using epoxy. The Redondo FBG transceiver was mounted on the rear of the football helmet 

and connected to the embedded FBG sensor. The final layout of the smart helmet is shown 

in Figure 3 (a).

The functionality of the smart helmet was tested outside the lab building to simulate 

a basic field test condition. During the test, a student tester impacted a brick wall while 

wearing the helmet at force levels that were mild enough to avoid any head injuries, as 

illustrated in the photograph in Figure 3 (b). The helmet was equipped with full internal 

cushion protection and no initial external force was applied to the tester’s body to ensure 

that he had full control over the force being used to impact the brick wall. The signals 

recorded from the embedded FBG sensor were transmitted in real-time to a nearby laptop
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via Redondo. The distance between the student tester and the laptop was 10 meters. An 

example of FBG sensor data from five rapid, consecutive impacts (with a total test 

sequence duration of fewer than 20 seconds) is shown in Figure 3 (c). The expanded view 

of the first impact event in the sequence, shown in Figure 3 (d), reveals a double-peak 

signal output by the FBG sensor over approximately 0.2 seconds.

2.5. SIMULATION OF BLUNT-FORCE IMPACT EVENTS USING A 
PENDULUM IMPACTOR SYSTEM

To demonstrate the functionality of the FBG-embedded smart helmet, a home-built 

bowling ball Pendulum Impactor System (PIS) was utilized to simulate blunt-force impact 

events on a dummy head wearing a smart helmet prototype. A photograph of the system is 

shown in Figure 4 (a). A manikin was placed in the center of a metal support frame. A 

bowling ball was suspended from the frame using A-in weldless silver steel cable, such 

that it was barely contacting the test helmet while at rest. The goal of this setup is to emulate 

a perfectly elastic collision, meaning all the potential energy of the bowling ball release 

height is imparted to the manikin/helmet prototype upon impact. This setup provides a 

good approximation of the kinetic energy of the impact event, but it does ignore energy 

lost to sound, and helmet deformation. The test included impacts of five magnitudes, 

simulated by adjusting the initial height from which the bowling ball was released (0.04 m, 

0.14 m, 0.24 m, 0.34 m and 0.44 m). The five impacts were administered to the helmet at 

four angles: 0°, 90°, 180°, and 270° (Figure 4 (b)). The procedure was repeated a total of 

three times. By assuming the impact is elastic, the amount of kinetic energy for each impact 

is equal to the potential energy. The weight of the bowling ball was 4.9 kg. The potential 

energies of the impacts correspond to the release heights of the bowling ball. The impact
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Figure 4. A Pendulum Impactor System (PIS) that employs a bowling ball to simulate 
blunt-force impact events. (a) A photograph of the PIS consisting of a rigid metal frame 

and a separate steady base to hold the manikin and helmet in place. A bowling ball is 
suspended in front of the dummy head and released from a designated height to cause the 

impact. (b) A schematic diagram illustrating how the PIS functions. The suspended 
bowling ball is released from a designated height and impacts the FBG-embedded helmet 

at the lowest position of its arc trajectory. The top view of the helmet shown in the 
photograph in (b) illustrates the four angles of impact used in the test: 0°, 90°, 180°, and

270°.

energies used in the investigation were 1.80 J, 6.31 J, 10.82 J, 15.33 J, and 19.84 J for the 

list of heights mentioned previously. The helmet was positioned such that the bowling ball 

made contact with the helmet at the lowest point in its trajectory so that the calculated 

potential energy was completely converted to kinetic energy upon impact. In most tests, 

the kinetic energy was efficiently transferred to the helmet. However, it is known that this 

is not a perfectly elastic collision, and in some cases the bowling ball was observed 

bouncing back slightly with low speed, indicating the true inelastic nature of the impact 

setup. This is most likely due to helmet deformation or manikin natural frequency response 

to the impact energy. Given these known losses the calculated potential energy is assumed
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to provide a good approximation of the initial source energy. Both impact heights and 

directions were recorded for all impact events.

2.6. MACHINE LEARNING (ML) MODEL SELECTION

To avoid tedious and complicated unsupervised statistical modeling when dealing 

with the raw transient signal datasets, the strong pattern recognition ability of machine 

learning (ML) was utilized. Five standalone ML models and two ensemble ML models 

were used in this study: Support Vector Machine (SVM), Gaussian Process Regression 

(GPR), Random Forest (RF), K-Nearest Neighbor Instance-Based Learner (IBK), Elastic 

Net Regression (ENR), Voting, and Additive Regression-Random Forest (AR-RF). These 

seven ML models are commonly used for similar types of datasets and tend to produce 

more accurate predictions compared to other ML models [57-59].

2.7. ML MODEL TRAINING AND PREDICTION

To determine which ML model performed best with the FBG sensor-embedded 

helmet, each of the selected models was trained and their prediction performances were 

benchmarked against new (raw) transient signals. The aforesaid assessment of prediction 

performance is based on the model’s prediction accuracy, where 75% of the raw signals 

with known impact heights and directions were used to train the models, then the remaining 

25% of the raw signals were treated as unknown domain for models to make predictions 

about impact height and direction. The more untrained raw signal data-records that fall into 

the model predicted area, the better the performance of the selected ML model, as indicated 

by a lower data-prediction deviation and a higher coefficient of determination (R2). The
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75%-25% data split ratio has widely been adopted in ML model training and has shown 

good performance results [57-62]. Here, a random data selection is crucial to ensure that 

the training data is representative of the original (parent) set and to guarantee that the input 

values are inclusive through the entire range.

3. RESULTS

3.1. DISTINGUISH TYPES OF IMPLEMENTS USED TO SIMULATE THE 
BLUNT-FORCE IMPACT EVENTS

A series of preliminary impact events were carried out using different impactors to 

validate the functionality of the FBG-embedded smart helmet and interrogation system. 

The impactors included an Allen wrench, a hammer, and a padded PVC pipe (simulating a 

“pugil stick” used in military training), which were chosen to cause distinguishable blunt- 

force impact events to the smart helmet prototype. Here, the immediate signal received 

from the interrogator was displayed as the magnitude of a blunt-force impact metric versus 

time. Distinctive peak-and-valley patterns were observed along the time axis, as 

demonstrated in Figure 5. The blunt-force impact by an Allen wrench resulted in an initial 

sharp and rapid signal oscillation, followed by a similar oscillatory pattern with reduced 

intensity. The blunt-force impact caused by the hammer resulted in a sharp, but broader 

peak when compared to the impact of the Allen wrench. Interestingly, the blunt-force 

impact caused by the simulated “pugil stick” resulted in an initial transient oscillatory 

signal that was somewhat similar to that of the Allen wrench, but extended to multiple 

periodic signal peaks with gradually broadened peak shapes.
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Figure 5. Plots of blunt-force impact (uniform scale, au) versus impact time (ms) showing 
distinguishable signal oscillation traces caused by an Allen wrench (top), a hammer 
(middle) and a “pugil stick” (bottom). Each blunt-force impact event resulted in a 

transient deformation of the smart helmet that was metered by a single FBG sensor
embedded in the smart helmet.

3.2. RAW TRANSIENT SIGNAL RESULTS GENERATED BY CONTROLLED 
BLUNT-FORCE IMPACT EVENTS

The FBG-embedded smart helmet prototype was quantitatively evaluated using a 

home-built bowling ball PIS. Controlled blunt-force impact events were created by 

adjusting impact magnitudes (controlled by the bowling ball’s release height) and 

directions (controlled by the bowling ball’s angle of impact). Results are shown as the 

relative wavelength shift vs. time within the first 200 ms. Distinguishable patterns of peaks 

and valleys were observed as exemplified in Figure 6. Most peaks and valleys were
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distributed within the first 80 -  100 ms, where 5 -  10 signal features repeatedly appeared 

at the same or similar time points (black arrows), though their magnitudes varied due to 

the different levels of impact energy that were applied. Such pattern repetition is uniquely 

correlated with each impact direction. When impact direction changed from the front 

(Figure 6 (a)), left side (Figure 6 (b)) to the rear (Figure 6 (c)) and the right side (Figure 6 

(d)), the peak-and-valley pattern also changed accordingly. All transient oscillatory signals 

recorded during the tests were used for ML model training or prediction.

Figure 6. First 200 ms of the transient oscillatory signals resulting from impacts using the 
PIS at four different directions (0°, 90°, 180°, and 270°) and five different kinetic energy 
levels (1.80J, 6.31J, 10.82J, 15.33J, and 19.84J). The directions of the blunt-force impact 

include (see Figure 4 (b)): (a) Head-on, (b) left side, (c) Rear and (d) right side. Black 
arrows indicate typical spectral peaks and/or valleys that may potentially serve as a 

“fingerprint” for a specific impact direction.
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3.3. RAW TRANSIENT SIGNAL RESULTS GENERATED BY CONTROLLED 
BLUNT-FORCE IMPACT EVENTS

Five standalone and two ensemble ML models were trained using 75% of the 

transient oscillatory signals collected from the basic test and evaluated using the remaining 

25% of the transient oscillatory signals. The results indicate that the combined use of the 

FBG sensor embedded on the smart helmet and the ML models can predict the initial 

kinetic energy (i.e., ball release heights, Figure 7) and direction (Figure 8) of an impact. 

Although most ML models produced predictions with reasonable accuracies, their

: 40 ■

■20 ■

. 1 , 1 , 1 .  
SVM

-  80 - , i . i . i .
gpr /  y

-  80 - . i . i . i ,
RF /  /

O R2 = 0.91 c / y  / • - o  r2 = o.92 y y / ■ ■ o  R2 = 0.91 / /  /yyy -  60 - -  * ^60 - 
o

o / M f  ® ' C ■ 05 ■ — "05
/ | / o

/ y V  ©
/ ! /  o -  x  40 -

/ • ' i f  °
-  x  40 - O/Vflf

■ |  ■ A t / ® ■ 1  ■ o / f i x
©

-  £ 2 0 -
g V ’o ©

-  £ 2 0 -

'o
T

o\

- - X  (b) - ■X (C)
1 I 1 I I I 1 -  0 - i 1 1 1 l 1 l -  0 - 1 I 1 I I I 1

Measured Height (cm) 

80 *

20 40 60
Measured Height (cm)

20 40 60 80
Measured Height (cm)

p-60 -

: 40 -

■20 -

IBK /  /
-  8 0 -

Voting (RF + GPR) /  /
O R2 = 0.88 / y  > * ' O R2= 0.94 / y  y

-  *^60- 
o

o /  c f  / o ' JI ■

/ j / o  o
05

-  x  40 -
o

" 1  -•o©

o',* BK o

/ s '  ° Pr £
 

_L

X  <d>
i 1 i 1 i 1 i -  0 -

X < e )  
1 1 1 1 1 1 1

20 40 60 80
Measured Height (cm)

20 40 60 80
Measured Height (cm)

Figure 7. Graphs of Predicted Height versus Measured Height derived from several ML 
models. The ML models employed include: (a) Support Vector Machine (SVM), (b) 

Gaussian Process Regression (GPR), (c) Random Forest (RF), (d) K-Nearest Neighbor 
Instance-Based Learner (IBK), and (e) Voting (RF+GPR). The plotted data represent 

25% of the parent database that was not previously included in the training process of the 
ML models. The dashed line represents the line of ideality and the solid lines represent

±10% boundaries.
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prediction performances (assessed in terms of R2 values) were slightly different from one 

another. Overall, based on R2 assessments for predictions of the initial energies of the 

impacts, the ML models were ranked as voting > GPR > SVM > RF > IBK, with R2 values 

ranging from 0.88 to 0.94. Based on R2 for predictions of impact directions, the ML models 

can be ranked as AR-RF > RF > ENR > GPR > SVM, with R2 values ranging from 0.91 to 

0.99.
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Figure 8. Graphs of predicted impact directions (positions) versus measured directions 
(positions) derived from several ML models. The ML models employed include: (a) 

Support Vector Machine (SVM), (b) Gaussian Process Regression (GPR), (c) Random 
Forest (RF), (d) Elastic Net Regression (ENR), and (e) Additive Regression-Random 
Forest (AR-RF). The plotted data represent 25% of the parent database that was not 

previously included in the training process of the ML models. The dashed line represents 
the line of ideality and the solid lines represent ±10% boundaries.
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Researchers have been pursuing the ability to immediately sense and evaluate head 

injuries induced by blunt-force impacts for decades. Despite medical advancements in 

recent years, individuals with head injuries caused by blunt-force impacts must often wait 

for hours or even days to have a thorough medical check via formal protocols such as 

magnetic resonance imaging (MRI) or positron emission tomography (PET). 

Unfortunately, this delay in assessment means that injured individuals often do not have 

access to the best medical/clinical practices for the treatment of blunt-force impacts, which 

are typically prescribed within the Golden Hour. In the future, the diagnosis of head injuries 

induced by blunt-force impacts should rely on in situ sensing devices to enable immediate 

assessment of critical parameters that may correlate with harmful effects on the individual.

In 2009, Cheriyan et al. attempted to achieve immediate sensing and evaluation of 

head injuries. The researchers combined electroencephalography (EEG) electrodes, 

accelerometers, pressure sensors, blood-oxygen saturation (SpO2) sensors, and remote 

communication/control devices, integrating them into the head pad of an Advanced 

Combat Helmet to monitor military personnel for physiological indicators of mTBI [63]. 

EEG is sensitive and accurate enough for mTBI diagnosis and has proven capable of 

detecting signal features that correlate with concussions in patients, but only under 

relatively static conditions. Highly unreliable signals appear when the electrodes have poor 

contact with wearers’ skin during constant or extreme body movements. The noise caused 

by less-than-ideal conditions profoundly limited the applicability of this technique in real- 

world use cases [64]. On the other hand, MEMS accelerometers and gyroscopes coped

4. DISCUSSION
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relatively well under rough testing conditions and were applied in numerous head impact 

sensing approaches in laboratory and commercial settings with different mounting 

locations such as headgear, teeth, skin, ear canal, etc. [65-67]. However, dislocations of the 

accelerometers and gyroscopes from their points of attachments to body parts may result 

in under- or over-estimation of the acceleration signals, which limit the head injury 

prediction accuracies. Fiber-optic sensors have become popular in wearable detection or 

sensing devices, and differ from conventional approaches in their small size, low mass, and 

multi-sensing capabilities. This study successfully demonstrated the feasibility of using a 

single FBG sensor-embedded smart helmet prototype for in situ detection of concussive 

events.

The measurement system presented herein has demonstrated the ability to 

distinguish between different types of impactors used to induce blunt-force impact events, 

as shown by the data in Figure 5. Clear peak and valley patterns were shown within the 

first 80 -  100 ms of the transient oscillatory signals, which are unique to the tools (Allen 

wrench, hammer, and simulated pugil stick) that were used to strike the helmet. Thus, the 

signal patterns can serve as specific “fingerprints” to identify these implements and can be 

further trained in ML for future automatic prediction. In some cases, the signals caused by 

blunt-force impacts were observed to repeat over time. For example, the Allen wrench 

impact signal was observed repeating at a lower amplitude after approximately 10 ms. 

When the pugil stick was used to strike the helmet, multiple repeats of the impact signals 

appeared. These repeating signals may be due to shockwaves that bounced back in the 

internal structures of the helmet, or due to the excitation of the resonance of the rigid helmet 

shell. Butz et al. noted similar effects and emphasized that signal resonance could interfere
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with the collection of useful data [56]. In order to eliminate noise, their fixed-fixed beam 

was specifically designed such that the FBG sensor was immobilized to avoid background 

resonance during impact-induced beam deformation [56]. Despite the appearance of 

repeating signals in this study, the unique blunt force impact transients detected by the FBG 

sensor embedded in a prototype smart helmet suggest that it is possible to identify the 

different types of implements that caused them. Wider examples may include sharp metal 

objects, cement debris, and rock materials that would be encountered from explosions on 

the battlefield.

It is noteworthy that Butz et al. experimented with an FBG sensor similar to the 

sensor employed in this study. However, while their use of a superstructure to immobilize 

the sensor helped them measure forces that were loaded perpendicular to the sensor beam 

[56, 68], it hindered their potentiality to detect multi-directional impact signals as 

exemplified in this study. The bare fiber sensor infrastructure’s ability to detect multi­

directional impact events with “fingerprint ” signal features in the proposed system may be 

due to the specific shear strains that arise within the fiber [69]. Signal peaks and valleys 

that occurred within 30-40 ms of impact repeatedly appeared at the same time points, even 

when the PIS was used to cause impacts at different magnitudes of force. Thus, the data 

can be used to refine the aforementioned transient data “fingerprints” for a specific impact 

direction. Limited linear correlation range between the peak height (or valley depth) and 

the kinetic impact energy was concluded from quantitative measurements (Figure 6). This 

is especially reflected in the early-stage major peaks or valleys, such as the first four 

peaks/valleys in the 0° and 270° plots, the first three peaks/valleys in the 90° plot, and the 

first five peaks/valleys in the 180° plots, respectively. Early-stage signals are less likely to
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be influenced by the structural resonance noise caused by the residue shockwaves, and 

therefore may better correlate with the initial impact energy levels at higher accuracy.

A combined ML model with an unsophisticated sensor design was demonstrated to 

produce a sensor system with high accuracy. (Figure 7 and 8). The synthesis of these 

elements allowed us to avoid tedious calibration as would otherwise be expected with the 

use of finite element analysis (FEA), as well as the difficulties associated with the inclusion 

of a superstructure to support the sensor. The SVM, GPR, and RF models outperformed 

other standalone models, and the following reasons explain their superior performances.

(1) The SVM model can make good predictions when trained with high dimensional 

datasets, which is the case in this study. The datasets collected from this research provided 

detailed information that correlates FBG signals with initial impact energies and directions, 

thus providing a plausible multi-dimensional data structure for the training of the SVM 

model. (2) The good Gaussian distribution between sensor signals and impact kinetic 

energy from the raw data supported the good performance of the GPR model. (3) The RF 

model performed well by keeping the bias and variance low via growing many unpruned 

trees that split the high dimensional datasets. Moreover, when combining standalone 

models together into ensemble models, even better performances are observed. The 

ensemble ML model “voting” generates the best result in Figure 7 because it combines the 

predictions of the RF and GPR model in a metaheuristic manner and compensates the errors 

made by standalone models. The ensemble model AR-RF performed the best (as shown in 

Figure 8) because of the “boosting” effect of the additive regression (AR) process that 

progressively finetunes the parameters of the RF model until the deviations between 

predictions and actual observations reach their global minima [57, 58]. On the contrary,
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the IBK model is ranked last (as shown in Figure 7) because it requires substantially more 

data and diversity in the database. The IBK, therefore, is not the right candidate model for 

predictions of impact directions.

Finally, it has been reported that the location of the impact could be a strong 

predictor of head injury risks [56]. The ability to localize the impact locations with 

corresponding temporal force distributions could substantially augment the understanding 

of the biomechanical mechanisms of the head injury. Conventional approaches, such as 

arrays of mechanical sensors, can theoretically be used to monitor a large area of interest, 

and thus help locate the impact positions. However, researchers may find it difficult or 

nearly impossible to acquire any viable data on portable equipment using this method due 

to the size and mass of the sensors and wiring. In the system presented herein, the 

combination of FBG with ML models enables wearable sensing and convenient data 

processing without sacrificing the helmet’s inner space. It also allows the detection of 

impact location based on the “fingerprint” signal features. Though more work is needed to 

further correlate these “fingerprints” with neurological or neuropathological traits, a vision 

of real-time sensing and analysis for immediate identification of blunt-force impact events 

with high spatiotemporal resolution is on the horizon.

5. CONCLUSION

In this work, a single FBG-embedded smart helmet prototype was presented as a 

neurological or neuropathological tool for immediate sensing of blunt-force impact events. 

High rate of data processing at 5 kHz enabled real-time sensing. Different types of
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impactors used to simulate blunt-force impact events were found to cause distinctive signal 

patterns. Impact magnitudes and directions were found to uniquely correlate with 

distinctive “fingerprint” patterns of peaks and valleys that appeared in the raw oscillatory 

signals. Standalone and ensemble ML models were employed for the accurate prediction 

of blunt force impact events. High prediction accuracy was achieved for both the impact 

energy levels and directions, especially with the ensemble ML models. The combination 

of the FBG sensor-embedded smart helmet prototype with ML models greatly simplified 

the data analysis process. This advantage may provide accurate guidance for in situ 

neuropathological diagnoses of blunt-force impact events in real-time. Future work will 

focus on the use of multi-FBG fiber-in-line configurations to aid high temporospatial 

resolution sensing, as well as the dual-monitoring of both blunt force impacts and blast 

shockwaves.
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SECTION 

2. CONCLUSIONS

In conclusion, the aim of this research is not only to design and develop robust FOS 

with promising sensing performances, but also to expand the functionality of FOS with the 

assist from ML. First, novel optical fiber EFPI for 1-D and 2-D tilt measurements with 

ultra-high resolution was demonstrated. Compared to in-line fiber optic inclinometers, an 

extrinsic sensing motif was used in our prototype inclinometer. With a special design, the 

variation in the tilt angle of the inclinometer was converted into the cavity length change 

o f EFPI. Owing to the capabilities o f EFPI sensors in high resolution displacement 

measurements, the proposed inclinometer can probe changes as small as 20 nanoradians. 

We have demonstrated that the prototype 1-D FOI can indirectly sense the inclination of a 

cement building (~1 micro-radian) due to the movement of clouds in the sky. The variations 

in tilt angle of the inclinometer was converted into the cavity length changes of the EFPI 

which can be accurately measured with high resolution. The developed fiber optic 

inclinometers showed high resolution and great temperature stability in both experiments 

and practical applications. Moreover, a smart helmet was developed with a single 

embedded FBG sensor for real-time sensing of blunt-force impact events to helmets. The 

FBG-embedded football helmet served as a force transducer and converted the impact 

events with different features into a unique transient strain variation on FBG. The 

combination o f the transient impact data from FBG and the analyses using machine­

learning model provides accurate predictions o f the magnitudes, the directions and the
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types of the impact events. The use of the developed smart helmet system can serve as an 

early-stage intervention strategy for mitigating and managing traumatic brain injuries 

within the Golden Hour.

It is forseeable that the completion of this research combinating ML with high 

performance FOS will inspire the researchers in the field of sensing with a new perspective 

in fiber optic sensing system design and boost the progress of developing new generation 

of FOS for sophisticated sensing application in industry and military area.
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