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ABSTRACT

Hot rolling is a manufacturing process that involves large material deformation, 

complicated geometries, contact conditions and non-uniform temperature gradients. Steel 

industries are motivated to prevent hot rolled steel products to be defect free and with 

desired shape and size. In order to simulate the process accurately, it is essential that the 

material model for steel accounts for the viscoplasticity and changes in properties that 

occur in steel at elevated temperatures as grain growth and recrystallization.

The healing of existing voids during hot rolling was investigated using finite 

element simulations. Voids are highly undesirable as they not only degrade the product 

quality but also serve to initiate cracks and fissures. During rolling most of the voids are 

expected to close due to deformation of the rolled material at high temperature. The 

influence of various rolling parameters on void closure were predicted using simulations.

During multi-pass hot rolling of steel microstructural changes occur due 

recrystallization and temperature. Elevated temperatures result in grain coarsening, while 

recrystallization triggers grain refinement. The parameters governing the static 

recrystallization kinetics were determined using the double hit compression test. Various 

steel grades were characterized to determine the change in grain size at elevated 

temperature. The effect of grain size on the flow stress was also found using a set of 

experiments. These findings helped to create a new plasticity model based on the 

classical Johnson-Cook model that included the influence of grain size on the flow stress 

and static softening due to recrystallization.
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SECTION

1. INTRODUCTION

Rolling is one of the main manufacturing processes for large products. Hot rolling 

is conducted at elevated temperatures, usually above the austenite recrystallization 

temperature for steel. It allows the advantage of being able to produce bulk products 

within a short time and at low costs. A modern hot strip mill can produce more than 6 

million tons of steel per annum [1]. However, hot rolling is a complex thermo­

mechanical process wherein non-uniform state of stress and strain develop along the 

rolled material due to rolling pressure, tool contact, non-uniform temperature distribution 

and changing mechanical properties of steel. The mechanical properties of the steel are 

dictated by the thermo-mechanical conditions, steel chemistry and microstructural 

changes.

In the past, many researchers have used analytical equations to describe the hot 

rolling process. However, the large deformation, friction due to contact and non linear 

boundary conditions make it extremely challenging to develop a comprehensive 

analytical relation for the process.

In addition, it is also necessary to correctly represent the viscoplastic behavior of 

the steel undergoing large deformation. Numerical models are best suited to adequately 

describe the non linear material behavior of steel as well as the complex hot rolling 

process.

Although there is a wide range of empirical as well as phenomenological models 

available in literature there is a dearth of microstructural based elastic-plastic models.



Most of the microstructural based models are empirical that depend on large number of 

physical parameters that cannot be easily converted in a numerical form. Furthermore, 

such models are developed at a microscale level and hence not practically implementable 

for large scale realistic rolling operation.

In this dissertation, the goal has been to develop a microstructural based material 

model for steel, that takes into account the affect of temperature and recrystallization on 

grain size. Further the model considers the influence of grain size on the work hardening 

response of the material. Using this novel model a non-linear finite element analysis 

(FEA) is conducted of the industrial hot rolling process to predict the final product 

geometry, plastic strain and stress condition. The model also predicted possibility of 

defects or crack initiation, as well as possibility of void closure after hot rolling.

2
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2. LITERATURE REVIEW

At room temperature steels exhibit elastic response until yield stress is reached 

and thereafter show plastic behavior. However, at elevated temperatures steels exhibit 

visco-plastic behavior. There is a marked decrease in yield strength and stiffness of the 

metal at elevated temperatures and an increase in ductility. This behavior is due to the 

ease in movement of dislocations by slip at elevated temperatures. Tensile tests are the 

best methodology to characterize the stress-strain behavior of steels [2]. These tests need 

to be conducted at a range of temperatures and strain rate inorder to accurately record the 

change in strain hardening and visco-pastic behavior with temperature change and 

varying rates of deformation.

Various empirical as well as physical models have been proposed in literature. 

Physical models depend on variables that represent the physical state of the material and 

are cumbersome to obtain. Zerilli-Armstrong (ZA) model [3] is a physical model based 

on dislocation mechanism. Empirical models have a closed mathematical form and 

generally use a smaller number of parameters that depend on simpler tests. The Johnson- 

Cook model [4] is an empirical model that considers the effect of strain hardening, strain 

rate as well as temperature on the visco-plastic behavior of metals. The Johnson-Cook 

model offers several advantages over other empirical models as Shida [5] and the Ludwig 

models [6].

In addition to strain hardening the visco-plastic behavior of metals at elevated 

temperatures is also governed by grain size coarsening and grain refinement due to 

recrystallization. Steels experience recrystallization when deformed at temperatures 

above the austenizing temperature [7]. On undergoing deformation during rolling at high
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temperatures the steel beam first undergoes dynamic recrystallization wherein new grains 

are formed at the grain boundaries. Thereafter when the beam leaves the rollers the 

process of grain nucleation continues, and this is known as static recrystallization. It is 

generally assumed that static recrystallization has a more profound effect than dynamic 

recrystallization for hot rolling process [8]. The physical properties of the steel are highly 

affected and the material softens due to loss of residual strain accumulated during rolling 

[9]. The avrami model is commonly used to describe the evolution of fraction of 

recrystallization with time [10]. The static recrystallization half time is predicted using 

Sellar’s model [7]. The effect of static softening has also been predicted using FEA by 

Jung et al. [11].

Recrystallization is often followed by temperature driven grain coarsening. The 

Sellars model has shown that at elevated temperatures the grain size of austenite, the 

holding time and the heating temperature can be related as [12].

dg = do + a t e x p ^ j ^ r )  (1)

where dg is the austenitic grain size at time t, d0 is the initial grain size, Qgg is the 

austenitic grain growth energy, T is the absolute temperature and a is constant.

For grains of small size the dislocations that pile up at the grain boundaries serve as a 

deterrent for slip to occur. Hence the stress has to be increased inorder to force 

dislocations to move. This phenomenon is known as grain size hardening. Contrarily, if 

the grain size is large it is easier for dislocations to move and hence the material softens. 

The Hall-Petch equation [13] relates the mechanical property of steel to the grain size at
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room temperature. The value of yield strength typically increases with the reciprocal root 

of the grain size.

Oy= a0 + Kyd05 (2)

where Oy is the yield strength for grains of size d, 00 is the initial grain size.

Similar relationships have been considered for predicting cleavage fracture stress and 

also strength at elevated temperatures.

The hot rolling process generally consists of a reheating furnace, roughing mill, 

finishing mill, and finally accelerated cooling. Although strip rolling is one of the most 

commonly rolled products, structural shape rolling of I-beam, H-beam, U-beam channels 

and railroads are also widely used. For complex shape rolling the effect of localized 

deformation and non-uniform temperature gradient are critical on final product quality 

[14]. The presence of pre-existing imperfections and defects can also have critical 

influence on creation of cracks and fissures. Finite element method is the best tool that 

can predict the rolled profile of such beams and also possibility of damage. Takashima 

and Hiruta [14] conducted FEA on U shaped channel and found that the strain gradient 

along the cross-section influenced the formation of bulge along the flange. Studies have 

also shown that loss of heat during rolling has an impact on rolling torque [15].

Finally, FEA has been importantly used to predict possibility of cracks developing 

in the rolled beam. Residual stress has been found to play a big role that influenced the 

fatigue behavior of rolled beams [16]. Pre-existing defects also have strong impact on the 

probability of developing cracks and surface fissures during hot rolling. The Johnson- 

Cook damage model [17] is an extremely powerful tool that helps determine final hot 

rolled product quality.
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The dissertation consists of four papers corresponding to the following problems.

The first paper is titled “Modeling and Simulation of Void Closure during Steckel 

Mill Rolling of Steel Plate”. In this paper the rate of void closure in steel plates during 

hot rolling was investigated. A comprehensive viscoplastic material model for steel was 

developed based on the Johnson-Cook equation. Influence of various rolling parameters 

as pass reduction, rolling temperature, and recrystallization on void closure was analyzed 

using FEA.

The second paper is titled “Modeling and Simulation of Mass Flow during Hot 

Rolling Low Carbon Steel I-Beam”. In this paper the influence of rolling gap on the 

creation of defect on the beam surface was examined using FEA. A depression was 

observed to form during industrial multi-pass breakdown mill rolling of I-beam on the 

middle of the flange. In addition, the effect of a pre-existing distortion on the beam 

surface on the shape of the depression was also predicted using simulations.

The third paper is titled “A Modified Johnson-Cook Model Incorporating the 

Effect of Grain Size on Flow Stress” . In this paper the influence of grain size changes on 

the flow stress of various steel grades was studied. The classical Johnson-Cook equation 

that relates flow stress with plastic strain, strain rate and temperature was modified to 

include the additional effect of grain size. Experiments were conducted to measure the 

influence of temperature on grain size of steel. Additional experiments were conducted to 

measure the effect of grain size on flow stress. An explicit subroutine was developed to 

include the modified Johnson-Cook model and implemented into a finite element model.

3. SCOPE AND OBJECTIVES
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The fourth paper is titled “Modeling of static recrystallization kinetics of high 

strength steel during multi-pass hot rolling”. In this work the extent of static 

recrystallization occurring in steel beam during multi-pass rolling was determined. 

Double hit test experiments were conducted to determine the fraction of static 

recrystallization at elevated temperatures. Parameters relevant to static recrystallization 

kinetics were determined as per the avrami equation. The model was coded in an explicit 

subroutine and implemented into a three dimensional finite element model for hot rolling. 

The static softening process was also simulated.
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PAPER

I. MODELING AND SIMULATION OF VOID CLOSURE DURING STECKEL 
MILL ROLLING FOR STEEL PLATE

S. Ganguly1, X. Wang1, K. Chandrashekharal1, M. F. Buchely2, S. Lekakh2, and R. J.
O’Malley2

1. Department of Mechanical and Aerospace Engineering
2. Department of Materials Science and Engineering 

Missouri University of Science and Technology, Rolla, MO 65409
D. Bai and Y. Wang 

SSAB Americas, Muscatine, IA 52761

ABSTRACT

Internal void defects as shrinkage porosity, gas bubble and thermo-mechanical 

cracks are usually formed during steel casting processes. These defects have critical 

impact on the quality and service life of hot rolled products. Study of the possibility of 

self-healing of existing internal defects during hot rolling process has been of interest to 

industry and researchers. Prediction of void closure is extremely useful in relation to 

better product design and manufacturing process optimization. In this work, a three­

dimensional finite element model of the slab hot rolling process was developed to 

simulate and analyze the healing of internal voids in hot rolled steel plate. The material 

model for the steel plate was developed based on Johnson-Cook constitutive relation to 

accurately represent its viscoplastic behavior at high temperatures as well as account for 

strain rate sensitivity. The study evaluated the thermal and mechanical response of low 

carbon steel slabs having pre-existing voids during multi pass strands reverse hot rolling 

process. Through thickness plastic strains within the slab are found to influence void



closure. Results show that variation in void size and locations also affect the healing 

possibilities. Finally, the effect of thermal history and thermo-mechanical stresses on 

void closure was studied.

9

1. INTRODUCTION

Hot rolling is an important deformation process in steel manufacturing. In hot 

rolling, the rolls are subjected to cyclic thermal and mechanical loadings to reduce the 

thickness of the part. Among the various forms of rolling, flat rolling has been 

conventionally used [1]. A complicated state of stress and strain occurs in the steel 

product due to rolling pressure, tool contact, and non-uniform temperature distribution 

[2]. Final product quality is highly dependent on the thermal-mechanical deformation 

and mass flow behavior during hot rolling.

The Steckel mill employs a type of hot rolling process wherein the plate goes 

back and forth between one pair of rolls [3]. This process is also known as reverse 

rolling. In this process, a coiler is placed at the entry and exit of the mill to feed and pull 

the steel material. Each pass contributes a small deformation of the plate. Finite element 

method (FEM) provides an effective and economical way to predict the final product 

quality and shape during rolling [4] eliminating the need for cumbersome experimental 

process.

The rolling process involves large deformation and non-linear boundary 

conditions that are impossible to solve using analytical equations. Hence numerical 

analysis is the preferred means to predict mass flow and stresses during hot rolling. FEM, 

meshless methods, finite difference and finite volume methods are some of the most



suitable numerical analysis tool that are used in obtaining solutions to the differential 

equations of thermal and mechanical equilibrium involved in complex manufacturing 

processes. Hanoglu and Sarler [5] used the meshless method based on radial basis 

function collocation method to solve hot rolling thermo-mechanical problem considering 

elastic material properties. The meshless solution was also extended to consider elastic 

and ideal plastic material properties of hot rolled steel[6][7]. The solutions obtained were 

compared with FEM and were found to be highly accurate.

Many researchers have developed finite element models to study the plastic 

strains and mass flow during hot rolling process. Cao et al [8] used FEM to analyze roll 

wear and flatness control during hot strip rolling. Kim and Im [9] provided a finite 

element simulation of non-isothermal hot rolling analysis, showing temperature gradients 

during the rolling process. Duan and Sheppard [10] used FEM to simulate thermo­

mechanical properties of an aluminum alloy during hot rolling processes. Galantucci and 

Tricarico [11] studied the effect of heat loss along strip roll interface on temperature 

gradient using FEM. Montmitonnet [12] used one-dimensional, two-dimensional as well 

as three-dimensional finite element models to simulate strip rolling. Kim et al [13] 

developed a finite element model to analyze the roll-strip interface during hot rolling. Li 

et al [14] studied the effect of bending force during hot rolling on strip profile and roll 

gap profile. Ding et al [15] developed finite element numerical simulation for 

microstructure evolution during hot rolling of a Mg-alloy, and showed temperature had a 

more significant effect on recrystallization than roll speed. Wang et al [16] developed a 

finite element model to simulate strip temperature during hot strip rolling. Benasciuttiet 

al [17] provided a finite element model to predict product thermal stresses during hot

10
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rolling. Additionally, Nalawade et al [18] studied multi-pass hot rolling of micro-alloyed 

38MnVS6 steel.

In order, to simulate the hot rolling process, it is essential to develop a robust 

material model for the steel. Various material models have been developed to describe 

mass flow behavior during hot rolling process in FEM. The Johnson-Cook model [19] is 

one of the most widely used phenomenological constitutive models considering effects of 

strain hardening, strain rate hardening and temperature softening. Another widely used 

model, the Zerilli-Armstrong model [20], is based on dislocation mechanisms including 

models for body centered cubic and face centered cubic structures. Wang et al [21] used a 

combined Johnson-Cook and Zerilli-Armstrong material model to simulate hot rolling 

processes for steel. The Shida model [22] provides an empirical constitutive model 

considering the effects of carbon content, strain, strain rate and temperature on plain 

carbon steels. Montmitonnet et al [23] developed an anisotropic viscoelastic material 

model for material undergoing hot rolling. Chen et al [24] used the Shida model to study 

void closure of a hot radial forging process.

It has been noted by previous researchers that the plastic strains vary not only 

along the thickness of the slab but also across the width during rolling [25]. Similarly, 

stresses also vary along the thickness and the width of the slab. It is critical for the 

numerical model to be able to predict the correct gradient of stress and strain along the 

cross-section of material being rolled.

Temperature has a tremendous impact on the mass flow behavior and 

microstructure of slab material. The effect of temperature has to be taken into 

consideration to adjust the rolling torques and loads in order to ensure desired final



product quality [26]. During rolling, thermal stresses are generated due to non-uniform 

temperature gradients in the slab, whereas mechanical stresses are a product of rolling 

pressure [17]. These combined stresses play a crucial role in determining the residual 

stresses and mass flow within the slab material. The overall intention of hot rolling is not 

only to obtain the desired thickness of material but also the right microstructure.

The presence of cracks or voids in a steel product is highly undesirable with 

reference to final product quality as they affect the service life of the material. Saby et al 

[27] evaluated the effect of voids of varying geometries and orientation on closure using 

finite element analysis of hot rolling. Nalawade et al [28] studied the effect of 

temperature, rolling torque and void volume fraction on void closure during hot rolling. 

Faini et al [29] also studied void closure using hot rolling simulations for steel material 

and obtained a correlation with percentage reduction, cooling time and location of void.

It is observed that high temperatures, compressive stresses and diffusion help in crack 

healing and induce closure [30]. It has also been noted that reduction of material per pass 

has an important influence on depth penetration and hence void closure [31].

Finally, hot rolling involves temperatures at which dynamic and static 

recrystallization occurs within the rolled material. The recrystallized material exhibits a 

regenerated microstructure and complete strain recovery on unloading. In the absence of 

recrystallization, the material recovers only the elastic strain on unloading. Thereafter on 

reloading the material yields at a new yield point, higher than the previous one. Hence if 

recrystallization is accounted for during simulation, it is expected to dynamically 

influence the mass flow [32]. As a result, it is expected that void healing is also affected 

due to recrystallization. However, there is a lack of study to correlate the effect of

12



temperature profile and microstructural evolution within the rolled material and void 

closure.

The overall objective of the current work is to simulate the complete steel reverse 

hot rolling process. A three-dimensional nonlinear finite element model was built to 

simulate plate hot rolling. The effects of void size, location and temperature on void 

healing were analyzed by the numerical model. Voids were assumed to be cylindrical 

with its axis aligned along the width of the slab. The relation between plastic strains and 

void constriction during hot rolling was also analyzed. Furthermore, the effect of 

recrystallization dependent strain recovery on void healing was compared. The present 

work intends to determine the critical conditions that influence void closure within a slab 

undergoing hot rolling process.

2. MATERIALS AND METHODS

2.1. MATERIAL CHARACTERIZATION AND MATERIAL MODEL

Gleeble thermal simulator has been commonly used to obtain compression 

experiment data used to model the constitutive relationship between flow stress, true 

strain, strain rate and temperature.

Sun et al [33] have described the methodology in detail. In this paper, hot 

compression tests were conducted on a medium carbon steel using the Gleeble system at 

different temperatures (900°C, 1000°C, 1100°C, and 1200°C) and strain rates (1s-1, 10s- 

1 and 20s-1) to obtain the stress-strain curves for the hot rolled material. Stress-strain 

curves are shown in Figure 1.

13
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Figure 1. Example of experimental stress-strain curves for the studied steel plate. Flow 
stress: a) at different strain rates at 900 °C and b) at different temperatures and at strain

rate of 10 /s [34].

In this study, the Johnson-Cook (JC) strength model is presented in the following 

equation:

a = (A + Ben)(1 + C ln £*)(1 -  T *m) (1)
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where: a is equivalent flow stress, £ is equivalent plastic strain, e* is dimensionless strain 

rate given by i* = e/ e0, e is strain rate and e0 is reference strain rate, T* is homologous 

temperature given by:

T* = T-Tr (2)
Tm- Tr

where: Tis the material temperature,Tr is a reference temperature and Tm is metal melting 

temperature, A, B, C, m and n are material parameters.

The constants A, B and n describe the strain hardening effect, C describes the 

strain rate effect, and m describes the thermal softening effect of the material. JC material 

parameters were calibrated using the experimental compression data by a non-linear 

regression method. The sum of squares error between experimental data and prediction of 

JC equation was minimized, as follows:

min f ( x )  = min £;■= 1(^[xp — a/c(X))2, with X = [A, B, n, C, m] (3)

where: N is number of experimental data points, a^xp is experimental stress value at data 

point i, and a(- (X) is Johnson-Cook model prediction based on constant set Xat data 

point i. Using the previous approach, the JC material parameters were determined for the 

studied material, and they are shown in Table 1 for a reference strain rate of magnitude 1 

and reference temperature 1000 °C for the studied steel material.

Table 1. Johnson-Cook JC parameters for studied steel
A (MPa) B (MPa) C n m Tref (°C) ^ref

20 155 0.136 0.340 0.912 1000 1



16

2.2. FINITE ELEMENT MODEL

Two separate rolling schedules of the reverse rolling process, for the studied steel 

plate is shown in Table 2. Three-dimensional nonlinear finite element model for 

reversible plate hot rolling process was developed using commercial code Abaqus 6.16 

[35].

b)
Figure 2. Full scale modeling of reversible Steckel mill plate hot rolling: a) isometric 

view of rolls and b) side view of rolls and slab.
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A single pair of rolls was used to deform the steel plate having rectangular cross­

section 97 in x 6 in (2460 mm x 152.4 mm) as shown in Figure 2. The plate was moved 

back and forth between the rolls according to the schedule in Table 2, until the final 

shape was obtained in order to simulate the reversible rolling process of Steckel mill. The 

gap between the rolls decreases for each new rolling pass, and the final thickness of the 

slab was 3.088 in (78.43 mm) at the end of the rolling process.

Table 2. Studied rolling schedules of slab rolling
"hickness Reduction%

Schedule 1 
Seven Pass Rolling

Schedule 2 
Five Pass Rolling

Roll velocity (m/s)

1 5.97 11.58 1.799
2 5.78 11.95 2.04
3 13.41 14.53 2.56
4 14.49 12.65 2.106
5 10.62 11.39 2.98
6 6.57 - 2.53
7 6.05 - 1.51

Total
Reduction

50 50

A series of three-dimensional finite element analysis using the non-linear material 

model (Eq 1,2) were conducted to simulate plate hot rolling with varying process 

parameters. Formulation of three-dimensional dynamic analysis is expressed as follows:

[Me][Ae} + [Ke]{ Ae) = (Fe) + [F^  (4)

where: [Me] and [Ke] are mass matrix and stiffness matrix respectively, {Fe} is the 

loading vector, {Ft} is the thermal loading, [Ae] and [Ae ] are the acceleration and

displacement vectors.
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The mechanical model was coupled to a thermal model using the following heat transfer 

formulation:

[CY]{s} + [KTm  = {«} (5)

where: [CT] is the heat capacitance matrix, [KT] is the conductivity matrix, {Q} is total 

heat flow, 0  is the temperature. The conductivity of the material is obtained from Table 3 

and assumed to be uniform along all directions. Q consists of the sum of heat generated 

due to surface loads Qs, internal heat generation rate Qi and heat flux across boundaries 

Qb.

Qs = ppS(vr -  v) (6)

where: p is the coefficient of friction, p is the contact pressure, S is the contact area, and 

vr -  v is the roll plate relative speed.

Qb = h(T -  Tatm) + Ogt .e . (T -  Tatm )4 (7)

where: h is the coefficient of convection, T is the slab temperature, Tatm is the ambient 

temperature, ost is Stefan-Boltzman constant, e is the emissivity coefficient provided in 

Table 3.

d f
Q‘ = ” s iJ

ade
(8)

where: ^ is the Taylor-Quinney parameter that gives the ration of deformation turning 

into heat, o is the effective stress and s is the effective strain [6]. Using equation 5 the 

temperature at each node in the finite element model is calculated.

The geometrical void was modeled as a cylindrical hole, cut in the center of the 

slab. The initial diameter of the hole was varied from 10 to 25 mm, and its initial length 

was kept constant at 40 mm. The cylindrical hole was located along the midplane with its
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longitudinal axis along the width direction of the slab as schematically shown in Figure 3. 

The symmetry model was used for conducting the simulations in order to save 

computational time and cost. The void interface was modelled as a free geometric 

surface.

Figure 3. Symmetry model of rolled slab about the vertical plane with void at the center.

The refinement of the mesh along the void in comparison to the bulk of the slab is 

shown in Figure 4 as high stress concentration is expected around the hole.

Figure 4. Mesh along the vertical plane of symmetry and around the void.



The bulk of the slab was meshed with eight node thermally coupled hexahedral 

elements (C3D8RT), while the rolls were modeled as rigid and meshed with the same 

element type. The slab was meshed with a total of 56800 elements, while the rolls had 

7650 elements. A velocity in the range of 91.13 m/min -  178.91 m/min varying for each 

rolling step was applied to the rolls. The velocity of the slab was adjusted to match the 

rolling speed. The slab was initially held at 1200oC and then allowed to experience heat 

loss to the surrounding (room temperature) under the effect of convection and radiation. 

The rolls were kept at a constant temperature of 150 oc. The coefficient of friction 

between the rolls and slab was set as 0.3 and governed by coulomb friction law [36] . The 

heat transfer coefficient and thermal conductivity are obtained from literature [37][38]. 

Other physical and thermal properties related to the slab and the rolls used in the 

simulation are listed in Table 3.

20

Table 3. Thermal and mechanical properties used in simu
Property Value
Density 7450 kg/m3

Poisson’s ratio 0.33
Young’s modulus 100 MPa

Specific heat capacity 600 J/kg K
Coefficient of friction 0.3

Conductivity 50 W/m K
Heat transfer coefficient 100 W/(m2 K)

Emissivity 0.9

ation
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2.3. ROLLING PROCESS PARAMETERS

The effect of void location and thermo-mechanical changes on void closure was 

studied. In addition, the effect of extent of reduction in plate thickness on void closure 

was analyzed. The extent of void closure was quantified using the constriction ratio. 

Figure 5 shows the sectioned view of the initial shape of a 25 mm diameter void prior to 

rolling and the shape of void after second pass. The constriction ratio was defined as the 

ratio of the final depth of void Df to the initial void diameter D0 (Figure 5). The 

constriction ratio has been considered as a void closure parameter in this paper, on 

similar lines as Qin et al [39].

Constriction ratio = (D0 -  Df)/D0 (9)

The normal strain is expected to affect the mass flow in the thickness direction and hence 

considered to be the primary influencing factor for void constriction.

a) b)

Figure 5. Change in shape of void due to rolling showing the parameters to calculate the 
constriction ratio a) initial shape of void before rolling b) final shape of void after second

pass rolling.

The following parameters were studied with reference to void closure.
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Void location: The state of material at the center is plane strain due to symmetric 

conditions and hence the transverse flow of the material is restricted. In contrast, plane 

stress conditions exist along the edges as material is free to flow along the sides. This 

causes a variation in flow stress along the width of the plate, with higher stresses at the 

central region than the edges. Additionally, normal or compressive strain is observed to 

be lower along the sides and higher at the central region. Prior studies by Chen et al [40] 

have determined using analytical methods that void closure is increased with higher 

compressive strains. Therefore, the constriction of voids was studied at different 

distances from the centerline along the width of the rolled slab. Figure 6 shows the 

position of the considered centerline.

Roll

Figure 6. Schematic view of the void location in the slab.

Case 1

Case 3 
Case 2Centerline

Simulations were conducted for 25 mm diameter and 40 mm long voids located at

the midplane of the rolled slab but at three different distances from the centerline. A
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thermally sensitive elasto-plastic material model was used for the steel slab assuming no 

change in microstructure during the entire process. The different studied cases are shown 

in Table 4.

Table 4. Varying distances for void considered for rolling simulations
Case Distance from the slab side

1 At centerline
2 At 40 mm from the side
3 Along side

Temperature: An increase in temperature is expected to result in an increase in 

mass flow and ductility of the material. Hence in order to verify the sensitivity of the 

model to temperature, four different temperature gradients were considered in this work. 

Hot rolling was conducted for plates having the same dimensions (25 mm void diameter 

and 40 mm length located at the center of the slab) with all rolling parameters kept same 

except for the slab temperature. The effect of increase in overall slab temperature on void 

closure was studied. The seven pass rolling schedule was conducted with the initial slab 

temperature kept uniformly at 1100°C, 1200°C and 1300°C respectively. An increase in 

material temperature is observed to result in an increase in compressive (normal) strain as 

well as equivalent plastic strain. Experimental studies conducted by Kukuryk [41] have 

confirmed that an increase in equivalent plastic strain increases the void closure state 

during compression.

Depth of plate reduction: Hot rolling simulations were conducted under identical 

conditions for plates having holes of diameters 10mm, 15mm, 20 mm and 25 mm 

respectively along the mid plane. The complete rolling schedules (Table 2) were



simulated at an initial temperature of 1100 °C for the two rolling schedules shown in 

Table 2. The effect of varying thickness reduction of slab on void closure was analyzed. 

Previous studies by SSAB have suggested that heavy reduction per pass is more 

beneficial for void closure than low reduction per pass [31]. The deformation penetration 

has been predicted to be dependent on pass reduction and work roll diameter.

Strain recovery: During hot rolling, when the hot deformed metal experiences 

plastic strains greater than a critical strain, dynamic recrystallization occurs. Thereafter, 

when the material is not experiencing deformation, it undergoes static recrystallization. 

During this process, the microstructure evolution takes place due to recrystallization. The 

process of recrystallization involves nucleation of new grains that grow by usurping 

adjacent grain boundaries [42].

On full recrystallization, the complete material consists of new recrystallized 

grains. The rolling schedule considered in this work involves an inter-pass time that is 

enough to induce 100% static recrystallization. As a result of recrystallization, the 

metallurgical memory of the material is lost, and the strain is removed. Due to the strain 

relaxation the material shows plastic flow from the original yield point and hence no 

change in flow stress is expected. This should enable greater mass flow and void closure. 

This phenomenon is referred to as non-accumulated model and was incorporated in the 

simulation.

As an effect of removal of metallurgical memory at the end of each rolling pass, 

back stress is removed, and material is more ductile. Non-uniform material deformation 

in the strip during rolling also gives rise to residual stresses. In the absence of 

recrystallization (accumulated model), the material experiences an increase in the yield
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strength. After each rolling pass, the material undergoes unloading of the elastic strain 

and is again reloaded during which it yields at a higher stress (shown by point 1 in Figure 

7). This phenomenon leads to strengthening and increase in stress for the same plastic 

strain. The material with accumulated strain behaves similar to one with prestrain during 

multi-pass rolling. Madi et al [43] have shown that prestrained alloy steel experiences a 

loss of ductility. In comparison the non-accumulated model makes the material less rigid 

and more deformable as the material loses all its strain after each rolling pass.

25

True Strain

a)

b)
Figure 7. Schematic of flow curve for material showing loading, unloading and 

reloading paths a) accumulated model b) non-accumulated model
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On reloading, the material will yield at the original stress as shown by point 2 in 

Figure 7. Hence, greater ductility and higher geometric strains are achieved in the case of 

the non-accumulated strain case. This work studies the influence of non-accumulated 

strain model on strain and void closure. The difference in material properties for the two 

discrete states and their influence on void closure has been studied in this work.Although 

the material model used in this work does not include the grain growth dynamics, this 

loss of stresses and plastic strains has been incorporated in the non-accumulated strain 

model and compared with the accumulated strain model.

The non-accumulated model was verified using a simplistic compression test, 

prior to the rolling simulation. In this numerical test, a cylindrical piece of material 100 

mm in length and 50 mm in diameter was compressed until 25% strain and then left to 

relax. The material models were simulated representing the accumulated model (non- 

recrystallized) and the non-accumulated (recrystallized) model. The non-accumulated 

model was calibrated to completely recover its plastic strain on unloading using a 

customized subroutine VUMAT available in commercial code Abaqus Finite element 

code Abaqus was used to perform the compression test in two steps (Figure 8a). In the 

first step, the cylindrical specimen is compressed till 25% strain at a temperature of 1200 

0C. Thereafter in step 2, the specimen is released and allowed to unload while the 

temperature of the sample is maintained at 1200 0C. As soon as the step 2 begins the 

plastic strains are completely recovered and a major part of stresses in the material is 

released. The loading and unloading process of the non-accumulated model incorporating 

strain removal was compared with that of the accumulated model (Figure 8b). The stress- 

strain state of recrystallized material was compared with non-recrystallized material.
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Figure 8. a) Compression test on bar sample b) Effect of strain recovery on the 
stress-strain for accumulated and non-accumulated model
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Discrete hot rolling simulations were conducted for slabs having 30 mm diameter 

voids for five and seven pass schedules using both the material models. The void 

constriction was compared for the two models.

3. RESULT AND DISCUSSION

The effect of plastic strain and temperature in the rolled slab on void constriction 

is discussed in this section. A fine mesh was considered adjoining the void for greater 

accuracy. The size of the elements were gradually reduced until mesh independence was 

obtained. Elements with sizes around the cylindrical void were tested for the simulation
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as enumerated in Table 5. A coarse mesh consisted of 25 elements along the void 

circumference and 9 elements along the axis of the cylindrical void. Figure 9 shows the 

effect on mesh constriction during seven pass rolling for varying element sizes around the 

void. It was observed that using finer elements and smaller the mesh did not influence the 

void constriction.

Table 5. Different sizes of elements used around the void
Mesh Number of 

axial 
elements

Number of 
circumferential 

elements
Coarse mesh 9 25
Finer mesh 15 40
Fine mesh 21 60

---------Coarse mesh

---------Finer mesh

---------Finest mesh

Figure 9. Effect of varying element size around void on mesh constriction

Subsections 3.1 to 3.4 present results of hot rolling simulation with accumulated

strain. In accumulated strain models, the material model does not account for the strain



recovery due to recrystallization at the end of each rolling pass. Subsections 3.1 to 3.3 

consider seven pass rolling, while subsection 3.4 compares effect of difference in plate 

reduction using seven pass versus five pass rolling. Finally, subsection 3.5 considers 

strain recovery during hot rolling and effect on void closure, assuming 100% 

recrystallization at the end of each rolling pass.

3.1. MULTI-PASS ROLLING AND VOID CLOSURE

For the seven pass rolling with centrally located void the constriction during each 

pass until void closure is shown in Figure 10.
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a) b)

c) d)

Figure 10. Shape change of void during simulation a) first pass b) second pass c) third
pass d) fourth pass
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Figure 11. Variation of a) normal plastic strain b) stress and c) temperature along the slab
thickness during simulation.

The variation of normal plastic strain, stresses and temperature during each rolling 

pass is compared in Figure 11. The normal strain increases for each rolling pass and is 

slightly higher at the surface in comparison to the center. Stress is also observed to 

increase for each rolling pass. The simulation results are considered for initial slab 

temperature at 1200 °C. The surface of the slab shows lower temperature due to contact 

with the rolls that are at lower temperature.
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3.2. EFFECT OF VOID LOCATION ON VOID CLOSURE

The void constriction was studied on simulating seven pass hot rolling. The effect 

of change in void position on void constriction is shown in Figure 12. The 25 mm 

diameter void at the center (Case 1) closes completely during the fourth pass, but the 

same void at the edge (Case 3) is found to close 90% at the end of seventh pass. Hence a 

void located along the edge of the slab does not close using the seven pass rolling 

schedule. A void located at a distance of 40 mm from the edge towards the centerline 

(Case 2) closes almost completely up to 99% at the end of seventh pass. This shows that 

25 mm voids at this location could be closed using this schedule.

7

------ Case 1
-  • -  Case 2 
------ Case 3

Rolling pass
Figure 12. Constriction ratio of voids located at varying distances from the 

centerline for seven pass rolling

Hence a definite trend is observed for voids located away from the centerline 

towards the edge. For locations closer to the edge of the slab, greater deformation is 

needed to obtain closure. The normal strains at the centerline are compressive throughout



32

the slab, though decreasing from midplane towards the surface. The strains along the side 

surfaces are also compressive but lower at the midplane and increasing towards the side 

surfaces. Overall, the compressive strains at the midplane are lower at the sides in 

comparison to the centerline shown in Figure 13.

0 0.5 1
Distance from midplane to surface 

(normalized)
Figure 13. Variation of normal strains along the plate thickness at the side and centerline

during the third pass rolling

The variation of equivalent plastic strains is plotted from the center towards the 

sides in Figure 14.
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Figure 14. Variation of equivalent plastic strain along midplane from centerline to sides

at the end of seven pass rolling schedule



It is evident that the strain is lower along the sides. Therefore, void closure is 

expected to be reduced at the sides and greater along the centerline as observed using 

seven pass hot rolling simulations as well.

3.3. EFFECT OF TEMPERATURE ON VOID CLOSURE

The effect of increase in slab temperature on void constriction was simulated using 

seven pass hot rolling schedule is shown in Figure 15.
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-• 1100 °C 

-  1200 °C 

1300 °C

Figure 15. Constriction ratio of void at different rolling temperatures for void with 25 
mm initial diameter for seven pass rolling

The 25 mm void closes after the third pass itself at 1300°C, while it takes four 

passes to close the same void at 1200°C and 1100°C. The maximum thickness reduction 

is observed during the third pass and hence the strain profile along the thickness of the 

slab was studied at the end of the third pass rolling for the varying cases. Plastic strain, 

compressive in nature is observed to decrease along the thickness from the central region 

towards the surface. It is found that an increase in the overall temperature results in a
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slight increase in the compressive plastic strain and major increase in equivalent plastic 

strain (Table 6). It is therefore expected that void closure is accelerated at higher 

temperatures.

Table 6. Variation of plastic strain for different rolling temperatures during third pass 
______________________________rolling______________________________

Temperature Normal plastic strain at Equivalent plastic

1300 0.27 0.45

1200 0.265 0.42

1100 0.25 0.3

3.4. DEPTH OF PLATE REDUCTION AND RATE OF VOID CLOSURE

The effect of plate thickness reduction on void closure was studied using the five 

and seven pass rolling schedules. The five pass rolling accomplishes the same overall 

thickness reduction as the seven pass rolling. The same reduction at the end of rolling 

schedule is obtained by utilizing higher reduction during each individual pass for the five 

pass rolling. The constriction of voids ranging from 10 mm -  25 mm is plotted in Figure 

16 (a) for seven pass rolling. For each rolling pass the slab experiences reduction in 

thickness and accompanied by constriction of the void. It was found that for holes of 10 

mm, 15 mm, 20 mm and 25 mm diameter, complete closure is obtained during the fourth 

pass of rolling. In comparison the five pass rolling achieves greater pass reduction after 

each pass and is found to increase the rate of void closure. All voids ranging from 10 mm 

-  25 mm are found to closewithin two pass rolling.
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Rolling passes

a)

b)
Figure 16. Constriction ratio of voids of varying sizes a) seven pass rolling b) five pass

rolling

By the end of the third pass 71.25 % constriction is obtained for the 15 mm 

diameter void and 73.5% constriction for the 10 mm void. Whereas almost 84% 

reduction was obtained for 25 mm and 91 % for 20 mm void by the end of the third pass 

for seven pass rolling.
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In comparison, voids of all sizes from 10 mm -  25 mm close within the second pass itself 

for five pass rolling (Figure 16 (b)).

Since the five pass rolling accomplishes the same final thickness reduction (50%) 

of the plate in fewer rolling passes, the reduction of thickness per pass is much greater. 

Hence it is noted that as the extent of plate thickness reduction is increased the rate of 

void closure also increases. This is in agreement with prior studies done that 

experimentally determine the change in void closure with heavier pass reductions [31].

In summary a void of diameter 25 mm closes if a cumulative 23.5% pass 

reduction is applied for five pass rolling. Whereas the same void closes within 39.6% 

pass reduction for seven pass rolling as shown in Figure 17.
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Figure 17. Lower cumulative pass reduction sufficient to close 25 mm diameter
void

In order to analyze the influence of material properties on void closure, the stress 

and plastic strain gradients were determined along the thickness of the slab. Figure 18 

shows the variation of normal plastic strains along the thickness of the slab during the
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third pass rolling. The strain gradients obtained corresponds well with prior studies [25]. 

The normal plastic strain, compressive in nature is observed to decrease along the 

thickness from the midplane towards the surface. Similarly, the normal compressive 

stress is noted to also decrease from the midplane towards the surface.
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Figure 18. Variation of normal plastic strain along the thickness at 1100 °C
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The effect of normal strain is considered to be the primary influencing factor for 

void constriction in the thickness direction. Since the largest compressive strains are at 

the midplane the present work focuses on voids in this region and the critical void size is 

determined along this plane. The variation of the normal compressive stress along the 

thickness of the plate is shown in Figure 19. The stress is largest at the midplane and 

decreases towards the outer surface.

3.5. EFFECT OF RECRYSTALLIZATION

The influence of the accumulated and non-accumulated models on void closure 

was analyzed by conducting hot rolling simulation of slab with 30 mm diameter hole. 

Figure 20 a) shows the constriction of a 30 mm diameter void during the seven pass hot 

rolling process for both the accumulated and non-accumulated models. It was observed 

that in the case of non-accumulated model, the material shows faster void closure 

signifying the greater deformability of the material. The void closes during the fourth 

pass for non-accumulated strain model whereas the closure occurs during the fifth pass 

for the accumulated strain model. Similarly, for five pass rolling also void closure is 

accentuated for the non-accumulated model as shown in Figure 20 b).

During the rolling process, the slab experiences compressive stresses that are 

removed during the inter-pass period. Overall, the recrystallized material experiences 

greater mass flow and ductility at the center of the slab, and this is expected to influence 

the void closure to a greater extent in comparison to the non-recrystallized material. 

Strains along the midplane of the rolled slab are noted in Table 7 for the third rolling pass 

that has the highest thickness reduction.
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Figure 20. Effect of accumulated versus non-accumulated strain during 

a) seven pass rolling and b) five pass rolling on void closure.

It was observed that the non-accumulated model showed higher normal strains in 

comparison to the accumulated model during each rolling pass. Hence, it is expected that 

void closure be higher for non-accumulated model as confirmed using hot rolling

simulations.
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Table 7. Comparison of strain during the third pass for both models
Normal plastic 

strain
Accumulated strain 

model
0.25

Non-accumulated 
strain model

0.27

The Table 8 summarizes the influence of individual parameters on void healing. 

The effect of pass reduction was found to be the most paramount in influencing void 

closure.

Table 8. Effect of different parameters on void closure
Parameter Effect on void 

closure
Pass

reduction
High

Void location Medium
Temperature Low

Strain
recovery

Medium

4. CONCLUSION

A thermally sensitive elasto-plastic material model was considered to study void 

closure during hot rolling process. The study evaluated the influence of critical rolling 

parameters as thickness reduction, slab temperature, recrystallization as well as location 

of void on plastic strains and void constriction using finite element simulations. Prior 

experimental studies have determined that increase in compressive strains as well as 

effective strains experienced within the material increase void closure. The present work



considered 6-inch thick slabs reversibly rolled to 50% reduction using five and seven 

pass rolling schedules. Voids 10mm, 15 mm, 20 mm and 25 mm in diameter closed after 

the fourth pass during the seven pass rolling employed in this study. In comparison, each 

of the voids closed after the second pass for the five pass rolling. Hence, larger pass 

reductions have bigger impact on void closure.

The closure is reduced near the slab sides. The 25 mm diameter void closes up to 

90% when it is located along the edges of the slab. The extent of void closure increases 

progressively towards the interior of the slab, with voids located at a distance more than 

40 mm from the sides close entirely. From the point of view of industrial rolling, it would 

be beneficial to scale off 40 mm of material from the sides to prevent presence of voids. 

The compressive strains are lower along the edges than the centerline. Hence, an increase 

in compressive strain enhances the void closure for plate hot rolling.

Simulations of slab rolling at different temperatures showed that compressive as 

well as equivalent plastic strain increases with increasing deformation temperature. This 

will increase the mass flow, resulting in an acceleration of void closure. Finally, the 

effect of slab rolling with recrystallization induced stress-strain relaxation during inter­

pass was studied with reference to void closure. Effect of recrystallization or strain 

removal on slab rolling was found to increase the rate of void closure to a small extent. 

This is due to the greater ductility achieved as a result of lowering the yield criterion in 

comparison to accumulated strain model. The study was able to correlate that rolling 

process parameters that contributed to an increase in plastic strains within the material 

also resulted in an increase in void closure during hot rolling.
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ABSTRACT

Continuously cast near net shape blanks have been widely used in industry owing 

to the benefit of producing items close to final shape. However, for complicated shaped 

blanks, such as I and H beams, using near net shape blanks is not enough to prevent 

unwanted mass flow and deformation during hot rolling. The strength of the rolled 

material, pre-existing defects, and hot rolling parameters all have a major influence on 

the final shape of the rolled beam. In this study, the shaping of a low carbon steel during 

the breakdown mill hot rolling process was investigated using finite element analysis.

The geometry of the as cast beam blank, mill roll profiles and hot rolling pass schedule 

were modeled identically to that used during the production hot rolling operation. The 

results showed that the I-beam has more deformation in the flange than in the web for 

breakdown mill rolling. A small depression or waviness was found to develop along the 

beam flange during the simulation. A parametric study of the effect of the roll gap on 

mass flow and beam blank surface depressions was performed. It was observed that for a



larger roll gap, the surface depression increased in size. In contrast, the depression was 

found to decrease with a smaller rolling gap due to greater mass flow. These results 

agreed with the industrial produced I-beam. It was also predicted that the presence of a 

pre-existing surface defect on the beam blank flange has a significant influence on final 

size of the depression.
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1. INTRODUCTION

Deformation and mass flow behavior of steel during hot rolling is a complex 

phenomenon and its analysis is important to improve final product quality. Viscoplastic 

deformation results in plastic strain and the corresponding strain energy contributes to 

microstructural development in the steel product. During hot rolling, the geometry of the 

as cast steel blank strongly influences the mass flow behavior. Compared to round billet 

hot rolling, near net shape beam blanks have more complex stress and strain distributions. 

It is hard to employ traditional analytical methods to investigate this highly nonlinear 

material deformation process during hot rolling. Numerical analysis has been used to 

improve the product design and optimization since the 1980s [1]. Finite element analysis 

(FEA) has an advantage over other numerical methods to simulate and analyze the hot 

rolling manufacturing process involving complicated geometries and non-linear boundary 

conditions. Using a calibrated constitutive model, FEA provides an effective and 

successful way to study mass flow behavior, optimize rolling designs, and enhance final 

steel quality and productivity.

It is important for the numerical analysis to be equipped with a robust material 

model to provide accurate results. Material models can be broadly categorized as



empirical and physical based models. The physical models are based on the physics of 

the deformation process and utilize variables that represent the physical state of the 

material. However, such models are much more complex to develop. Empirical models 

have a closed mathematical form and need very few tests to identify their coefficients. 

Empirical models are usually preferred over physical models due to their low 

computation and experimental costs. In order to describe the viscoplastic behavior of 

steel, a number of constitutive empirical models and physical models have been proposed 

in the recent decade as reviewed by Lin and Chen [2]. The Johnson-Cook (JC) model [3] 

is one of the most widely used empirical based phenomenological constitutive models 

and considers the effects of strain hardening, strain rate hardening, and temperature 

softening on flow stress. The Ludwig empirical model [4] is similar to the JC model with 

the limitation of the temperature range (maximum 100 °C). The empirical model 

developed by Shida [5] was also found to be effective at low strain rates (< 0.7 /s).

Physical constitutive models differ from phenomenological models as they are 

based on complex mathematical theories obtained from the kinetic models of the 

metallurgical processes to derive flow stress-based equations. Zerilli-Armstrong (ZA) 

model [6] is one of the widely used physical models based on dislocation mechanisms. 

The ZA model considers the coupled effect of temperature and strain rate and exhibits 

more flexibility than the JC model in predicting material properties. However, the 

coupled effect of temperature and strain rate in the ZA model is limited, and numerous 

modified versions have been proposed. Similar physical models have been independently 

considered by Bergstrom [7]. The model compared well with the JC model but was 

unable to predict the strain jumps. The simplified expression and easy implementation
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contribute to the extensive use of the JC model. Furthermore, the JC model is effective 

for strain rates varying between 0.002 -  600 /s and hence ideal for modeling an 

exhaustive range of manufacturing operations over a wide temperature range.

Hot rolling has been investigated for many years by means of numerical 

simulation. The hot rolling process simulation involves large deformations, coupled 

thermomechanical analysis, non-linear boundary conditions and non-linear material 

behavior. Kim and Im [8] proposed a finite element model to simulate shape rolling for a 

non-uniform temperature distribution. Finite element method (FEM) has been used to 

study roll wear and flatness control by Cao et al [9]. Relationship between roll gap profile 

and bending force on strip profile was analyzed using FEM by Li et al. [10]. Yang et al. 

[11] investigated the blank size effect on strain and temperature distribution during hot 

rolling of titanium alloy ring using FEM. Nalawade et al. [12] investigated mass flow 

behavior of micro-alloyed 38MnVS6 steel during multi-pass hot rolling. Detailed strain 

distributions on a regular cross section showed that both tension and compression existed 

during hot rolling of the 38MnVS6 steel.

Structural shape rolling is widely used in industry to obtain final shapes such as I- 

beam, H-beam, U-beam channels and railroad rails. These types of beams have wide 

applications in bridges, architectural applications, railroads and the arts. As per the 

author’s observations, studies regarding mass flow during hot rolling for such 

complicated shapes have been sparse. For complex shaped cast sections, the effect of a 

non-uniform temperature gradient is of greater importance when compared to round or 

square billets and slabs and needs to be taken into consideration. Thermal stresses usually 

develop due to the presence of non-uniform temperature gradients and influence final
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product quality. Bulging and overfill along the flange [13] as well as edge waviness [14] 

are some common defects that are observed on rolling channel sections. The initial 

contact region for a beam blank is a cambered surface with non-uniform compressive 

forces. Takashima and Hiruta [13] conducted FEA of a U shaped channel and determined 

that the strain gradient between the flange and the web regions influenced the creation of 

bulge at the channel corners. Hence it was important to calibrate the roll gap accordingly 

to avoid the creation of deformities. Li et al. [15] studied nonlinear deformation during 

H-beam hot rolling using a finite element method and the proposed FEM was verified by 

comparing the simulated temperature with experimental data. In addition, for complicated 

as-cast and rolled shapes, the geometry of the free surface changes drastically and hence 

it is critical to develop a realistic finite element model to simulate the manufacturing 

process. Chenot et al. [16] studied the material flow for square to oval bar during hot 

rolling using a three dimensional finite element model. Liu et al. [17] made a detailed 

analysis of slab rolling by taking into consideration the change in width of the workpiece. 

Shin et al. [18] studied I-beam rolling using finite element simulations limited to cold 

rolling. The cross-sectional area changes significantly during rolling and this further 

influence rolling torque and mass flow. The study showed that in addition to the 

generation and loss of heat that affects the rolling torque [19], the specific geometrical 

factors need to be taken into consideration by adjusting the rolling parameters to improve 

product quality. However, literature on FEA that involves highly nonlinear geometries 

and elevated thermal conditions for three-dimensional I-beam hot rolling is limited.

Presence of metallic inclusions or shrinkage during the casting process may result 

in a pre-existing defect. The presence of existing as cast distortions on the profile of the
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hot rolled beams also has a critical effect on its final shape. It has been found that the size 

of such defects have a direct correlation with the fatigue life of the rolled products [20]. 

Studies have shown that when the defects arising from rolling are critical they later lead 

to development of cracks [21]. Few studies have been conducted to verify the stress strain 

response of beams with distortions. Seo et al. [22] conducted fatigue analysis of rail 

beams with surface defects. The study found that residual stress distribution occurs due to 

the presence of indentation. This residual stress influenced the fatigue behavior of the 

material under contact stresses. Yu [23] used FEA to model the effect of existing cracks 

during slab rolling and observed that the friction and crack length were critical 

parameters that influenced the hot rolled slab profile.

In the current study, hot tensile tests were conducted to generate experimental 

data and develop an accurate JC material model for a low carbon steel. A three­

dimensional nonlinear finite element model incorporating the developed material model 

was created to simulate the hot rolling of an I-Beam from the as-cast beam blank. It has 

been observed during the industrial rolling process that roll gap has a critical influence on 

the formation of deformities during hot rolling. The influence of roll gap on defect 

formation was studied. In addition, the effect of an existing deformity in the I-Beam on 

the final rolled shape was also analyzed.

2. MATERIALS AND METHODS

2.1. HOT TENSILE TESTS

A low carbon steel grade (0.075 wt.% C, 0.26 wt.% Si, 0.9 wt.% Mn and 0.016 

wt.% Nb) was investigated in this study. Hot tensile tests were done using an MTS load



frame to perform thermomechanical testing at varying temperatures and strain rates to 

determine the material flow behavior. Cylindrical specimens of 15 mm height and 10 mm 

diameter were machined from an as-cast beam blank (Figure 1). The specimens were 

heated by an induction coil to 1300 °C at a heating rate of 260 °C/min , held for 3 

minutes, and cooled to the desired test temperature. An additional hold of 2 minutes was 

included in the test schedule to minimize temperature gradients and establish a fully 

austenitic microstructure. After that the tensile test was performed at the selected 

temperatures and strain rates. Three temperatures (1000°C, 1100°C, and 1200°C) and 

four strain rates (0.01 s-1, 1 s-1, 5 s-1, and 10 s-1) were selected for hot tensile tests based 

on the actual hot rolling conditions. Each test parameter combination was replicated three 

times and a total of 48 specimens were tested.
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(a) (b)

Figure 1. Schematic view of testing samples utilized in the study: (a) initial as-cast beam 
blank, specimens were cut along the rolling direction and (b) final shape of tensile 
samples having gauge section (shaded) with 15 mm height and 10 mm diameter.
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2.2. MATERIAL MODELING

The JC model is expressed as follows:

a  =  (A +  BEn) ( 1  +  C \ n i * ) ( 1 - T * m ) (1)

where: a  is equivalent stress, e is equivalent plastic strain, e * =  e/ e0 is dimensionless 

strain rate, i  is strain rate, i 0 is reference strain rate, T is current temperature, and T* is 

homologous temperature given by:

T* = T T- 
Tm-Tr (2)

where Tr is reference temperature and Tm is metal melting temperature, A  is a yield stress 

at a user defined reference temperature and reference strain rate (1000°C and 1s-1), B  and 

n are the strain hardening parameters, C  is a strain rate hardening parameter, and m  is a 

temperature softening parameter.

2.3. FINITE ELEMENT MODELING

A nonlinear three-dimensional finite element model was developed to study the 

beam blank hot rolling deformation process.

The matrix equation for dynamic analysis is given by equation 3.

[Me] { Ae} +  [ K e] [ Ae]  =  [ F e]  +  [ F t ]  (3)

where [Me] and [Ke] are mass matrix and stiffness matrix respectively, {Fe}  is the 

mechanical loading vector, {F1} is the thermal loading, [Ae] and [Ae] are the acceleration 

and displacement vectors.The mechanical model was coupled to a thermal model using 

the following heat transfer formulation:
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[cr ]{0) + [KTm  = w ) (4)

where [Ct] is the heat capacitance matrix, [Kt] is the conductivity matrix, {0} is total 

heat flow, 0  is the temperature. Q consists of the sum of internal heat generation by 

plastic deformation and heat flux across boundaries.

The explicit method in Abaqus [24] is used to solve the finite element formulation 

as it is more efficient to solve problems that include large deformation, complicated 

geometry and discontinuous contact. The explicit method obtains the solution by 

inverting the mass matrix and solving for the acceleration from the previous increment. 

Thereafter the kinematic state is advanced using the accelerations.

The equations of mechanical motion are integrated using the explicit central difference 

integration rule [25].

{ 0 } .  =  ( M ) - 1 ( { F ) i +  {FT) i - { I ) i) 

{ U ) i+1 =  { U ) i +  Atj+1 { U}.+1

(5)

(6)

(7)

where U is the acceleration, U is the velocity, U is the displacement, subscript i refers to 

the increment number in an explicit dynamic step, and I is the internal force vector given

by {I) i  =  [K] { U ) i .

The beam blank breakdown mill hot rolling process of reheated continuous cast 

beam blanks was simulated. The initial flange and web widths of near net shape cast I- 

beam blank were measured as 0.412 m and 0.123 m respectively. Large deformations and 

significant mass flow were expected during the breakdown mill hot rolling process. There 

are three grooves in breakdown mill with multiple passes for reverse rolling. P1-P7 are in
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the first groove, P8-P11 are in the second groove, and P12 and P13 are in the third 

groove. The schematic model of the breakdown mill roller profile is shown in Figure 2. A 

fixed roll gap was used in the simulation to deform the I-beam assuming no significant 

elastic deformation of the rollers.

a) b) c)

Figure 2. Schematic of I-beam production: (a) near net shape cast blank, (b) breakdown 
mill, and (c) detail of the roller profile for Pass 1 to Pass 7 (Groove 1), Pass 8 to Pass P11 

(Groove 2), and Pass 12 to Pass 13 (Groove 3).

The steel blank and roller geometries were modeled using ABAQUS 

software[24], as shown in Figure 3. Surface to surface hard contact was used to model the 

contact behavior between the steel bar and rollers. The friction behavior between contact 

pairs was defined by Coulomb’s law of friction with a friction coefficient of 0.5 [26]. The 

I-beam was built as a three-dimensional deformable part using 8-node brick elements 

(C3D8RT) and rolls were modeled as rigid parts using 4-node rigid quadrilateral elements 

(R3D4) as shown in Figure 3.
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Figure 3. Mesh of I-beam hot rolling process

Since the I-beam has a large, highly complicated shape, using a very fine mesh 

results in high usage of computational space and time. Hence an appropriate mesh size 

was used for the I-beam. Similar mesh has also been used in prior hot rolling simulations 

[27][28]. The I-beam was meshed with brick elements having cross-section (15 mm X 15 

mm), while a coarse mesh of quadrilateral elements having cross-section (300 mm X 300 

mm) was enough for the rollers.

3. RESULTS AND DISCUSSION

3.1. TENSILE TEST AND MATERAL MODEL

The experimental results from the tensile tests are shown in Figure 4. Both 

engineering and true stress-strain curves are shown in these figures. The maximum true 

strain is observed to be within 0.4 in accordance with practical rolling conditions. 

However, the engineering stress-strain curves extend beyond 0.4 strain.
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(a)

Figure 4. Experimental engineering and true stress-strain curves from hot tensile tests: (a) 
at different strain rates and constant 1000°C and (b) at different temperatures and constant

strain rate of 1s-1.
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Note that as temperature decreases (Figure 4b) and strain rate increases (Figure 

4a), the flow stress increases as expected for this steel. Two different methods are 

frequently used to determine the JC parameters [29]. One approach uses curve fitting to 

determine the parameters individually. Another approach determines all five parameters 

simultaneously by an optimization method [30]. In the current study, initial parameters 

were determined by curve fitting optimization using nonlinear least-square method. JC 

model parameters built based on experimental stress-strain curves (Table 1) were 

implemented in the finite element model.

Table 1. Calibrated JC model parameters for the studied steel.
A B C n m

10.64 69.69 0.41 0.42 0.56

3.2. SIMULATION RESULTS OF BREAKDOWN MILL

During the first pass P1, the flange was deformed significantly along the area 

designated by red color in Figure 5. At the same time, there was no deformation along the 

web since the rolling gap is larger than the web thickness. During the second pass P2, 

there was greater contact between the flange and the rollers, resulting in deformation 

along the flange sides. Material flows from the flange sides into the center of the flange 

and then towards the web. The masss\ flow after each rolling pass was studied in detail. 

The effect of roll gap on the height of the depression was predicted after each roll pass. 

Hence a relationship between roll gap and depth of depression was obtained. Therefore, 

during the third pass P3, two peaks develop on the flange surface.
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Figure 5. Deformation process and plastic strain of the beam blank from passes P1 to P3.

During the passes P4 to P7 (Figure 6), further deformation occurs along the 

thickness of the web and flange. The mass flow behavior from passes P4 to P7 is similar 

to pass P3 and the two peak regions increase in prominence on the surface of the flange. 

The distance between the two peaks decreases due to deformation.

Distance of

Plastic strain
+2 ~i7e-0l 
-2  2156-0; 
+ 2 0 1^ -0 .
■H8l3«-0i +1 6r.6-oi •l i:oc-o;
* 1 208c o:
• i oo7c-o:
+8 05Ge-02t-6 0-126-02+4 02fl«-0?+2 0146-02 
+0 OOOe+OC

P4

Distance o f

two peak

Figure 6. The deformation process form passes P4 to P7.

The I-beam was deformed using groove 2 from pass P8 to P11. Due to the change

in rolling profile, the rolling gap for pass P8 was larger than the web thickness. The



material flows from the flange towards the web area during pass P8. As the rolling 

progresses, a further decrease in thickness of flange is observed. The deformations of I-
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beam during passes P8 - P11 was similar to that during pass P8 (Figure 7).

Plastic strain

i
+2.698e+00 
+2.57le+00 
+2-444«+00 
+2.317e+00 
+2.190e+00 
+2.062e+00 
+1 935e+00 
+ l.B08e+00

+1 681C+00 
+1.554C+00 
+1 427e+00 
+1.300e+00 
+ 1 173e+00

Figure 7. The I-beam shape and plastic strain for passes P8 and P11.

Finally, the I-beam was deformed using groove 3 during passes P12 and P13 

using a very small pass reduction (not shown). Figure 8 shows the results of the hot 

rolling simulation after all 13 passes in the breakdown mill. During hot rolling, the web 

and the flange were deformed in the thickness direction and two peak regions were 

generated on the top surface of flange. The maximum stress is observed at the connection 

area between the flange and the web. After 13 passes, the flange and the web widths were 

reduced from 0.412 m to 0.182 m and from 0.123 m to 0.05 m, respectively. The 

maximum plastic strain and deformation were found in the center of web, while the 

center of the flange had minimal plastic strain due to material being able to flow freely 

towards the web region.
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Plastic strain
+2,884-6+00 
+2.7636+00 
+2.6436+00 
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+2.403e+00 
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+2.042e+00 
+ l,922e+00 
+ 1.80le+00 
+1.681e+00 
+ 1.561e+00 
+1.4416+00

Figure 8. Simulated accumulated strain during hot rolling and changes in beam shape
after 13 passes in the breakdown mill.

Experimental I-beam shapes after breakdown mill rolling at three different 

positions (head, middle, and tail) were compared to the final simulation results, as shown 

in Figure 9. The simulation results predicted a small depression on the flange surface 

along the head and tail regions, while the middle of I-beam showed a larger depression. 

The simulation correctly predicted the variation of I-beam cross-sectional shape along the 

longitudinal direction and compared well with the production hot rolled sample shapes.

3.3. EFFECT OF ROLLING GAP ON FINAL BEAM PROFILE

During hot rolling in the industrial setting, the roll gap generally varies within 

some amount from the designed roll gap due to rolling loads. Also, cast blanks have some 

degree of surface distortion related to solidification shrinkage.
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E x p e r im e n t a l

results

M id d le  o f  I -b e a m T a i l  o f  I -b e a m H e a d  o f  I -b e a m

Figure 9. Comparison of I-beam shapes of simulation and experimental results.

The effect of rolling gap and as cast blank surface distortion on mass flow and 

surface geometry of hot rolled beam after breakdown mill were simulated and compared 

to industrial beams. Three different configurations, as designed, maximum and minimum 

gap profiles were investigated to perform a sensitivity analysis. The flange depression 

and peaks were measured for the maximum, minimum, and ideal (designed) roll gaps, as 

shown schematically in Fig 10 a. The simulated I-beam shapes for the three cases are 

shown in Fig 10 b. The gap between the peaks and the depressions for the simulated 

beam and the industrially rolled beam are enumerated in Table 2. It is evident that with a 

larger rolling gap, the predicted size of the depression on the surface of the flange is 

found to increase, while for smaller gaps the depression is reduced. A smaller roling gap 

is more conducive to disallow the mass flow of the material from the center of the flange 

towards the web and hence prevent increase in the depth of the depression.
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(a)

Plastic strain
4Z.384e+0O 

■ -  4Z ,7636+00 42, 6436+00 \—\- 4-7.=:?3ft+no 
\— \- +2.'1036+00 
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U  + 1.3016+00 ■- +1.6816+00 
■ -  41 .5616+00 

41.4416+00
Maximum gap Designed gap Minimum gap

(b)
Figure 10. (a) Actual deformed shape of I-beam flange after rolling in industrial set up

and (b) simulation results for maximum, designed and minimum gaps.

Table 2. Measurements of the flange depression after hot rolling (see Figure 10a for 
______________ ________ measuring. details in mm).____________ __________

P aram eter E xperim en ta l Max. g a p D es ig n ed  g a p Min. g a p

0.5(H1+H2)-D 7.45 10.25 8.37 7.23

3.4. EFFECT OF AS CAST BLANK DISTORTION ON FINAL BEAM PROFILE

Based on practical observations from industrial trials, a small surface as cast 

distortion was created in the I-beam model as shown in Figure 11. Such distortions 

develop due to solidification shrinkage and are often found along the flange surface of the 

beam blank. It is assumed that the presence of this surface dent is one of the most 

important factors that influences the mass flow behavior of the I-beam during hot rolling. 

Therefore, a surface dent similar to a realistic defect observed in industry was modeled
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on the initial beam blank. The dent had a width of 3-inches and a depth of 0.25 inches in 

depth.

Figure 11. Flange surface distortion observed in as cast I beam (left) and used in model
(right).

Full scale breakdown mill hot rolling simulations were conducted on the I-beam 

with this surface distortion. The simulation results showed that the distortion in the 

middle of flange surface has a significant influence on the deformed I-beam shape, as 

shown in Figure 12. The final shape of the rolled I-beam shows a much deeper depression 

on the flange surface in comparison to an I-beam without distortion. The detailed 

dimensions of the flange depression are enumerated in Table 3. The presence of an initial 

as cast distortion on the beam blank results in increasing the depth of the depression in 

hot rolled beam from 8.37 mm to 16.68 mm. Hence it is imperative to study the influence 

of as cast distortion on multi pass rolling and predict how the rolling parameters can be 

optimized to improve product quality.
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Plastic strain
42 884*400 ♦ 2 7$3**00
42 525*400 
>2 403*400 
42 282*400 
42 I62e400 
42 042*400 
41 922*400 
41 60le400  
41 f81*400 
41 541*400 
41 441*400

I-beam with Ideal case (no
distortion distortion)

Figure 12. Comparison of accumulated plastic strain and simulated hot rolled I beam 
geometry for ideal shape of cast blank with cast blank having surface distortion.

Table 3. Effect of dent in the flange depression (mm) after hot rolling (see Figure 10a for 
______________________ measurement details). _________________________

P aram eter With den t W ithout den t

0.5(H1+H2) - D 16.68 8.37

Hence the presence of an existing distortion on the beam blank results in an 

increase of almost 99% in the depth of depression in a hot rolled beam after breakdown 

mill. In addition, the combined effects of a surface distortion and roll gap setting were 

investigated. Discrete hot rolling simulations were conducted for an I-beam with a dent in 

combination with the designed roll gap (case 1) and a minimal roll gap (case 2) to 

investigate the mass flow behavior. Using a small rolling gap, greater material flowed 

towards the rolling gap resulting in a decrease in the depth of depression (Figure 13).
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Plastic strain
_  +2.8846+00 
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Distortion at the center Distortion at the center
with designed gap with minimum gap

Figure 13. Simulation results of coupled effect of surface distortion and rolling gap on 
accumulated strain for designed gap and minimum gap.

It was noted that the depth of the depression decreased from 16.68 mm to 13.07

mm for case 2 by using a smaller roll gap as enumerated in Table 4.

Table 4. Coupled effect of dent and rolling gap in the flange depression (mm) after hot 
________________ rolling (see Figure 10a for measuring details).________________

Parameter C ase  1 C ase  2

0.5(H1+H2) - D 16.68 13.07

Thus, it can be predicted using the hot rolling simulations that the depression is 

reduced by using a smaller roll gap for the case of a beam blank with as cast flange 

distortion. Further, although the decrease in depth of depression is 13.6% for a normal I- 

beam, the decrease in depth is significantly higher (21.6%) in the case of a beam blank 

with a flange distortion.
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In this study, the mass flow behavior and defect formation of a low carbon steel 

during hot rolling I-beam was investigated. High temperature tensile tests were 

performed to obtain the thermo-mechanical properties of steel at varying temperatures 

and strain rates. A Johnson-Cook model was developed using experimental results and 

was incorporated into a finite element model. A three-dimensional dynamic finite 

element model was built to study the I-beam hot rolling process. The influence of roll gap 

on defect formation and evolution of existing defects was predicted. The simulated shape 

of the hot rolled I-beam sample and the final size of the defect were compared with that 

observed during industrial plant rolling trials.

Based on simulation results, the I-beam was found to be deformed largely along 

the flange region during the initial passes P1 to P4. It is further observed that formation 

of a depression on the flange surface began from pass P4. On further rolling the thickness 

of the web and flange further reduced between passes P5 to P7. The rolling profile 

changed from groove 2 onwards (passes P8-P11) and the I-beam was considerably 

elongated. During rolling under groove 3, the size of the surface depression on the flange 

surface grew rapidly and was highly noticeable. Such waviness in the I-beam profile has 

been observed during industrial plant rolling as well. The effect of varying rolling gap on 

the flange profile was investigated using finite element simulation. The results showed 

that with a small rolling gap, more material flows towards the roll gap and the size of the 

formed flange depression is reduced.

The presence of metallic inclusions or occurrence of solidification shrinkage in 

the rolled material often leads to a condition similar to that of a pre-existing defect. A

4. CONCLUSION
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surface distortion was introduced in the as-cast I-beam to represent a pre-existing defect. 

The effect of breakdown mill hot rolling on the I-beam profile having surface distortion 

was investigated. The simulation results showed that the central distortion on the as cast 

flange surface had a significant influence on the final shape of the I-beam. The presence 

of distortion on the as-cast shape can increase the depression and waviness at the flange 

center dramatically. Finally, it was predicted using simulations that the depth of the 

formed depression in the hot rolled beam with an existing dent was reduced considerably 

when a reduced rolling gap was used. This suggests that the roll gap is a very critical 

parameter that can be utilized to control the shape evolution in I-beams with an existing 

as cast surface irregularity.
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ABSTRACT

The mechanical properties of steel are influenced by grain size, which can change 

through mechanisms such as nucleation and growth at elevated temperatures. However, 

the classic Johnson-Cook model that is widely used in hot deformation simulations does 

not consider the effect of grain size on flow stress. In this study, the Johnson-Cook model 

was modified to incorporate the effects of austenite grain size on flow stress. A finite 

element model was employed to characterize the effects of grain size on the flow stress 

for different steel grades over a range of temperatures (900°C to 1300°C). Simulation 

results show good agreement with experimental observations.

1. INTRODUCTION

Finite element analysis is the most widely used numerical methodology for 

simulating complex manufacturing processes for metals, such as forming, rolling, 

machining, molding or forging. In order to develop an accurate finite element model, it is 

essential to accurately describe the material flow behavior using a constitutive model.

The Johnson-Cook (JC) plasticity model has been widely used to describe the strain
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hardening and temperature dependent behavior for metals undergoing large deformation 

[1]. The JC model is a phenomenological constitutive model that is derived by fitting 

experimental data using regression analysis or other curve fitting methods. The JC model 

assumes isotropic behavior and is reasonably accurate for most metallic alloys but is not 

very accurate in describing strain hardening behavior. In comparison, physics-based 

models utilize complex mathematical theories based on thermodynamics and kinetics to 

derive the flow stress-based equations. Other phenomenological models include the 

Arrhenius constitutive model [2] used for metals that takes in account the activation 

energy for deformation. . and the Durrenberger model [3], which predictes the flow 

stress as a function of a long range internal stress component and a thermally activated 

thermal stress component. The Zerrili-Armstrong model [4] relates the flow stress to the 

dislocation density. However, none of the models account for the effect of grain size on 

flow stress. Although grain size does not change significantly at room temperature for 

metals, it can change at elevated temperatures and the plastic deformation can have an 

effect on it [5].

In order, to model an accurate material behavior, it is essential to include the 

effect of grain size evolution as well. The classic Hall Petch equation [6] has shown that 

the coarsening of grains results in loss of material strength [7]. There have been some 

phenomenological models that have accounted for grain size. The KLH model [8] 

introduced the effect of grain size on yield stress. The recently proposed the Molinari- 

Ravichandran model simulates a flow stress as a function of the intrinsic resistance of the

material, temperature, strain rate as well as grain size. However, most of these models
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only incorporate the effect of grain size at room temperature. Hence these models are not 

suitable to be used to simulate manufacturing process at elevated temperatures.

In this work a modified version of the JC model was introduced that includes the 

effect of grain size evolution at high temperatures. The aim of the study was to determine 

the evolution of grain size in steel grades at elevated temperatures. In addition, the 

dependence of strength of the material from grain size was also obtained using 

experimental techniques. Finally, a new material model was developed based on the 

classical JC equation that modified to include the effect of grain size on flow stress.

2. EXPERIMENTAL PROCEDURE

2.1. JC STRENGTH MODEL

In this work, the isotropic thermomechanical behavior of steel was modeled using 

the Johnson-Cook (JC) strength model [1], which constitutive equation is given in Eq.1. 

An explanation of different JC parameters can be found in [9], [10]:

a  =  (A  +  B e n) ( 1  +  C l n e * ) ( 1 - T * m ) (1)

An MTS load frame was modified to performed hot tensile tests on AISI/SAE 

15V38, ASTM A572, ASTM A690 and AISI/SAE 1018 grade steels. Details of this 

experiment were described in [11]. The stress-strain data was further processed to 

calibrate the material JC parameters. This calibration was done by global optimization 

methods using a Genetic Algorithm approach, as detailed explained in [12].
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2.2. GRAIN GROWTH MODEL

The normal grain growth model relates the effect of temperature on grain size as 

given by the general grain growth law [13], as follows:

) t  (2)

where: d  a n d  d 0 are the final and initial grain diameters, , A G and n G are material 

parameters, QG is the activation energy of grain growth, R  is the gas constant, T is 

absolute temperature and t is the time.

The effect of temperature and time on grain size was measured using an 

experiment that involved heating a cylindrical steel sample above the austenization 

temperature, and then holding it for a time intervals ranging from 5 s to 600 s. Thereafter 

the sample was cooled below 750 °C for a short time to allow some ferrite to form along 

the austenite grain boundaries and then freeze the grain size by quenching in water, as 

shown in Figure 1a. After that, sample was cut and prepared 75ndependently75ally. The 

prior austenitic grain size was measured using an optical microscope for each temperature 

and time combination (Figure 1b), and then the experimental data was used to obtain the 

grain growth parameters in Eq.2.

2.3. MEASUREMENT OF FLOW STRESS

Another set of experiments were conducted to measure the effect of grain size on 

flow stress. In this test, cylindrical samples (0.5” diameter x 0.5” long) were subjected to 

compression using a MTS frame with induction heating. The sample was heated and 

soaked at 1200°C for 60s using an induction coil. Then, the temperature was decreased to

d n° =  d o C + A G exp ( - f ^



the desired test temperature (1200°C, 1100°C or 1000°C), and held for different times 

before compression testing.
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Figure 1. (a) Steps during grain size measurement, and (b) metallographic observation of 
the prior austenitic grain size in A572 steel grade, after austenitization at 1100 °C

per 600 s.

Boron nitride compression plates were used to isolate the induction heated sample 

from the MTS system. Figure 2b shows an example of this test for the case of a holding 

times of 120 s. Compression test was performed at a constant 1 s-1 strain rate and 15% 

deformation (to avoid fracture of boron nitride plates).

After compression tests, the stress-strain data was used to evaluate the effect of the grain 

size on the flow stress, a  using the Eq3.

The effect of grain diameter on the flow stress can be expressed in the form of the 

following additional terms in the modified JC (JCM) model:
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a  =  (A +  B e n) ( d / d r e f ) - n d ( 1  +  C ln£*)(1 — T m) (3)

where: all parameters are the same of the previous JC model (Eq.1) while extra term 

(second bracket) was added to account for the effect of the grain size. In this model, d  

and d ref  are the actual and the reference grain sizes., In this study, the maximum 

experimentally measured grain size was used for d ref  and grain size exponent ( n d ) was 

measured 77ndependently for each material.

(a) (b)

Figure 2. Compression test: (a) schematic view of the system, and (b) steps during flow
stress measurement.

2.4. FINITE ELEMENT MODEL

The JCM model (Eq.3) was used to represent the material behavior for the various 

steel grades in the three-dimensional finite element model. The JC model is extremely 

effective in describing materials undergoing large plastic deformation at high 

temperatures. The JCM model used in this work is more accurate in that it accounts for



the change in grain size that affects the flow stress. This effect is highly pronounced at 

elevated temperatures where the grain growth is large.

Commercial code Abaqus 6.13 [14] was used to conduct the finite element 

simulation. A coupled thermal displacement analysis type in Abaqus explicit module was 

used to determine the finite element stiffness matrix. The JCM material model was 

coded in a user defined subroutine VUMAT [14] to update the flow stress varying with 

the strain. A rectangular shaped sample of size (100 mm X 100 mm X 400 mm) was 

created and meshed with three dimensional thermally coupled brick elements. The 

bottom surface of the sample was fixed while deformation was applied along the top 

surface as shown in Figure 3. The steel samples were compressed for 5% strain for 10 s 

and then the strain was held for 10 min at 1200 °C. The grain size is expected to increase 

during this time. As the sample is held at constant deformation the stress should not vary 

unless the grain size changes. The flow stress and grain size were recorded with the 

progress of time during the simulation.
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Figure 3. Boundary conditions applied to finite element model of rectangular sample used
to simulate compression and relaxation.
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3.1. JC STRENGTH PARAMETERS

The Johnson-Cook (JC) material parameters were determined for the studied 

material and they are shown in Table 1. Notice that £ref  was including as a material 

parameter, as discussed by Schwer [15].

3. RESULTS AND DISCUSSION

Table 1. Calibrated Johnson-Cook parameters for studied steel grades.
Steel grade A (MPa) B (MPa) C n m ^ref

A690 14.4 107.49 0.2494 0.38 0.68 0.0399

A572 10.8 86.38 0.24 0.37 0.69 0.0163

1018 8.9 84.2 0.28 0.4 0.75 0.0291

15V38 16.94 45.91 0.62 0.55 0.64 0.0299

3.2. GRAIN SIZE EVOLUTION

Using the grain size data obtained for varying holding times, the grain diameter 

versus time relationships were determined for different steels studied at a temperature of 

1100 °C. Similar plots were also obtained using experiments conducted at 1000 °C and 

1200 °C. The grain growth Eq. 2 was written in the following format:

ln k  =  ln A l! — ( ^ )  (4)

where: k  = (d nc — d^G) / t .

Hence, it is possible to obtain the range of values for constants A G and n G by 

plotting ln k  versus 1/T as depicted in Figure 4. The intercept of the line along the 

ordinate axis provides the A G parameter, while the slope of the line provides the QG



parameter. A large set of grain size for varying holding times was determined, thus 

enabling to obtain large number of k values at varying temperatures. A genetic algorithm 

was used to narrow down the results to realistic output. Using this process, the grain 

growth parameters were determined for the steel grades A690, A572, 1018 and 15V38, as 

shown in Table 2.
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Figure 4. Grain growth parameter plot for (a) A572 steel and (b) A690 steel.

Table 2. Grain growth parameters for the studied steel grades.

Steel grade n G Qc  (J/mol)

A690 4.092 645,200 1.34E30

A572 4.39 559,900 8.33E27

1018 2.58 169,400 6.91E9

15V38 5.006 956,900 1.09E44
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The compression tests carried out after holding the steel grades for times varying 

from 30 s to 300 s provided the stress-strain plots shown in Figure 5 for the different 

steels studied.

An average flow stress was calculated using the flow curves and further utilized 

to plot the average flow stress versus grain size, as shown in Figure 6. A line joining the 

data points allows us to determine the JCM parameter n d using the slope.

3.3. FLOW  STRESS EVALUATION

(a) (b)

(c) (d)

Figure 5. Stress strain curves after compression tests at 1100 °C and 1s-1: (a) A690, (b) 
A572, (c) 15V38, and (d) 1018 steel grades.



As mentioned before, the reference grain size d ref  was taken as the maximum 

grain size measured experimentally. In this manner the JCM parameters were determined 

using this experimental procedure, which are listed in Table 3. All the material 

parameters (Table 1, Table 2, and Table 3) were further utilized in developing the 

numerical material model for the steel grades.
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Figure 6. The maximum flow stress with varying grain size for the studied steel grades

Table 3. Modified JC model grain size parameter.
1018 A572 A690 15V38

n d 0 . 2 3 9 1 0 . 1 4 4 3 0 . 2 4 3 0 0 . 4 9 5 8

d r e f  [̂ m] 5 0 1 3 2 2 1 2 5 1 3 3
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3.4. NUMERICAL ANALYSIS

To start the simulations, the initial grain size of all steel grades was assumed to be 

20 gm. The sample was then compressed up to 5% strain and thereafter left to relax. The 

loss in stress during the relaxation stage was recorded as the stress relaxation. It is 

observed from the simulations that the steel grade 1018 has largest grain growth whereas 

A690 steel grade has the lowest. 15V38 steel grade shows grain diameter increases 18.3 

times, while A572 steel grade shows an increase of 14.5 times.

(a)

(b)
Figure 7. Comparison of varying steel grades: (a) evolution of grain size with time and 

(b) change in flow stress with time for modified JC model and classical JC model.
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The numerical result agrees with the experimental data collection of grain size for 

the respective steel grades. Correspondingly it is also observed that considerably larger 

loss of flow stress is obtained for 1018 steel grade in comparison to the other steel grades. 

Figure 7 shows the drop in flow stress with time for steel grades A690, 1018, 15V38 and 

A572. Results have been compared with classical JC model. In the case of steel grade 

A690 the loss of flow stress is 18% while in the case of steel grade 1018 the loss is 27% 

(Table 4). Steel grades A 572 and 15V38 also show stress relaxation lower than steel 

grade 1018. Hence the new material model shows that the finer the grain size increases 

the strength of the material. The model effectively shows that as temperature driven grain 

coarsening results in stress relaxation and hence heating the material results in loss of 

residual stress as has been observed by prior studies as well. The material 15V38 shows 

the largest extent of stress relaxation.

Table 4. Comparison of stress re
Stress relaxation

%

A690 18

A572 10.8

1018 27

15V38 24.2

axation for varying steel grades
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4. CONCLUSIONS

In this study a modified version of the classical JC model has been introduced that 

accounts for the influence of grain size evolution on flow stress. This model is expected 

to be highly useful in simulating manufacturing processes at very high temperatures, such 

as forming, rolling etc. A novel experimental methodology has been used to study the 

evolution of grain size, as well as its effect on grain size at elevated temperatures in four 

different varieties of steel. The experimental study showed that all the steel grades 

showed significant grain size increase between temperatures of 1100 °C and 1300 °C. The 

study also showed a substantial decrease in flow stress with increasing grain size. The 

modified JC model was implemented using a user subroutine in commercial code Abaqus 

and compression test simulations were conducted to validate the effect of grain size on 

flow stress. The study showed that the modified JC model predicted the influence of 

grain size evolution on flow stress accurately. This model can be used in the future to 

simulate manufacturing processes involving the steel grades studied to obtain more 

realistic flow stress and mass flow influenced by grain size variations in comparison to 

the classical JC model.
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ABSTRACT

Static recrystallization is a microstructural change occurring when metals 

experience thermo-mechanical deformation that has a critical influence on its mechanical 

properties. Static softening occurs during static recrystallization and results in greater 

ductility in metals during hot rolling. In this study the extent of static recrystallization 

was measured using double hit tests performed on the Greeble machine and kinetics of 

static softening developed. Based on the experimental results the kinetics of static 

recrystallization was modeled. A finite element model of multi-pass rolling process was 

developed that calculated the fraction of recrystallization and static softening using 

explicit subroutines. Simulation results showed that the fraction of recrystallization was 

very much dependent on the extent of thickness reduction during rolling. Additionally, an 

increase in temperature greatly increased the degree of recrystallization and also the static 

softening.
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1. INTRODUCTION

In metals undergoing deformation, the presence of dislocation density results in 

nucleation of new grains. This phenomenon is known as recrystallization and can be 

distinguished as dynamic and static. Recrystallization involves both grain nucleation due 

to subgrain coalescence and growth [1]. Dynamic recrystallization is the stage wherein its 

grain structure changes while the material undergoes deformation. While static 

recrystallization refers to the stage of grain refinement under high temperature after the 

deformation has occurred. Static recrystallization is a critical physical process that occurs 

in metallic materials at high temperature and deformation that influences microstructural 

changes as well as affects the properties. As a result of static recrystallization nucleation, 

new grains areinitiated within the material. Depending on the extent of static 

recrystallization, the entire or a portion of the material is replaced with new grains. The 

material experiences loss in residual stress and strain due to static softening during static 

recrystallization [2]. Consequently, the physical properties are highly affected due to the 

loss of residual strainThe driving force for static recrystallization is deformation. Various 

analytical models have been proposed to represent the recrystallization kinetics. Zurob 

[3] proposed a recrystallization model that considered the effect of precipitation in 

addition to nucleation and growth. Najafizadeh et al. [4] found that uptil a critical value 

strain influenced static recrystallization.

Multi-pass hot rolling process involves high deformation at elevated temperatures 

and hence is usually accompanied by static recrystallization during the rolling interpass. 

Usually for static recrystallization to occur, the strain showed exceed the critical strain 

wherein the stored energy is sufficient to initiate the process of nucleation and growth
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[5]. The critical strain has been determined to be around 0.05 % -  0.1% for most metals 

[5]. Various factors such as rolling speed, rolling deformation, temperature, as well as 

interpass duration influence kinetics of static recrystallization. Static softening is 

expected to occur as a result of static recrystallization during rolling interpass. The 

influence of static recrystallization is expected to be much greater during hot strip rolling 

in comparison to dynamic recrystallization [6]. However, it is not easy to analytically 

determine the extent of static recrystallization during hot rolling for beams. Hodgson’s 

model [7] predicted the recrystallization kinetics for hot strip rolling and also the effect 

on grain growth and strain. Jung et al. [8] modeled hot rolling with static softening and 

microstructural evolution. He et al. [9] simulated H beam rolling using a finite element 

model and static recrystallization. Although various models have been developed to study 

recrystallization kinetics, it is challenging to predict the effect on beams rolled in a hot 

mill. Finite element method remains the best way to study the evolution of 

recrystallization during hot rolling and influence of the various rolling parameters on 

static recrystallization.

In this work, a static recrystallization model was introduced influenced by strain, 

strain rate, and temperatures. A modified version of the traditional static recrystallization 

kinetics is suggested. The aim of the study was to determine the fraction of static 

recrystallization and strain recovery during multi-passhot rolling. The study determined 

that temperature and strain had critical effect on fraction of static recrystallization in 

comparison with rolling speed.
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2. EXPERIMENTAL PROCEDURE

2.1. JC STRENGTH MODEL

In this work, the isotropic thermomechanical behavior of steel was modeled using 

the Johnson-Cook (JC) strength model [10], which constitutive equation is given in 

Equation 1.

where A, B, C, n, m are material parameter, s is strain, s is strain rate, and T is 

temperature. An MTS load frame was modified to perform hot tensile tests on US Steel 

AHSS (austenitic high strength steel). Details of this experiment were described in [11].

a  =  (A  +  B e n) ( 1  +  C ln £*)(1 -  T*m ) (1)

Strain rate 1 /s
250

200

1000 C

—• — 1100 C

1200 C

—• — 1300 C

0 0.5 1 1.5
Strain

Figure 1. Experimental stress-strain curves for hot tensile tests for strain rate 1 and
varying temperatures.
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The stress-strain data (Figure 1) was further processed to calibrate the material JC 

parameters. This calibration was done by global optimization methods using a genetic 

algorithm approach, as detailed and explained in [12].

2.2. STATIC RECRYSTALLIZATION

The phenomenon of static recrystallization is dependent on strain, strain rate, and 

temperature experienced by the material under deformation. The half time for static 

recrystallization was determined by Sellars as [13]

(2)Qsto.5 = A * d̂  * sp * sc * exp (— )

where t0 5 is the time required for the fraction of static softening reaches 50%, d 0 is the 

initial grain size, Q is activation energy for static recrystallization, R is the gas constant 

8.314 J/(mol K), T is temperature, and A, S, p, and c are constants. The double hit 

compression experiment was performed to obtain the parameters influencing static 

recrystallization for AHSS (austenitic high strength steel) material. The specimen was 

heated up to an austenitization temperature of 1150 °C and held for around 5 min. Then 

the specimen was then cooled down to deformation temperatures of either 1000 °C or 

1100 °C. Another hold time of around 5 min was applied at the deformation temperature 

before the first hit. Interpass delay time ranging from 1 -  100 s was held between the first 

and the second hit. Figure 2 shows the time frame of the performed double hit test. The 

hold time allows the material to undergo static recrystallization and soften. The degree of 

softening is measured to obtain the degree of static recrystallization.
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Figure 2. Steps during double hit test using the Gleeble machine.

2.3. DETERMINATION OF FRACTION OF RECRYSTALLIZATION

The softening behavior was investigated by analyzing the flow curves of the 

double hit test. First, the experimental stress and strain data were converted into their 

equivalent true values [14, 15]. For each deformation temperature, the stress-strain curves 

were obtained at pre-strain of 0.1 with strain rate varied as 1 s-1, 5 s-1, an^ 10 s-1. The 

procedure was repeated for varying interpass delay times as 1 s, 5 s, 20 s, 50 s, and 100 s.

An offset method with an offset value of 0.2% was considered to obtain the yield 

stresses for the first and second compression hits as a 0 and ar respectively. The 

maximum value of flow stress was determined as am. Figure 3 shows the stress values 

obtained from a true stress-strain flow curve at different testing conditions. The value of 

fraction of static recrystallization (Xsrx) was obtained using the following expression.

°m  — ° r  (3)
^srx  _

®0
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a)

b)
Figure 3. Stress-strain curves obtained from double hit compression test at a strain rate of 

5 /s, pre-strain of 0.4, and interpass time of 5s for temperatures of a) 1100 °C and
b) 1000 °C.

2.4. MODELING THE KINETICS OF STATIC RECRYSTALLIZATION

A parametric study was conducted to investigate the effects of strain rate, pre­

strain, temperature, and interpass delay time on the softening behavior. The values of Xsrx 

were plotted against interpass times obtained for varying pre-strains, for a constant 

deformation temperature and strain rate varied as 1 s-1, 5 s-1, and 10 s-1.
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The following Figure 4 shows the effect of varying pre-strain on Xsrx vs. time at 

1100 °C. While Figure 5 shows the effect of varying pre-strain on Xsrx vs. time at 1000 

°C. A range of such data providing the change in degree of static recrystallization with 

time for varying temperature, strain and strain rate was obtained so that the half time or 

time taken to achieve 50% of recrystallization can be determined.

Figure 4. Experimentally obtained fraction of static recrystallization at 1100 °C and strain
rate 5 /s

Figure 5. Experimentally obtained fraction of static recrystallization at 1000 °C and strain
rate 5 /s
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The expression used to define to.5 (Equation 1) can be written in a logarithmic

form as

ln to .5
Q

=  lnA + slnd0 + qlns + cln i  +  —
R l

(4)

Using the relationship between Xsrx and time, values of to.5 under different 

conditions can be derived. Substituting the values of to.5 and pre-strain in Equation 3 the 

relationship between to.5 and s can be obtained by power fitting and regression analysis. 

This is used to obtain the constant p as shown in Figure 6a.

Relationships between to.5 and strain rate (Figures 6b) is used to obtain the 

parameters for static recrystallization kinetics as c. The initial grain size is assumed to be 

4oo pm as obtained using optical microscopy of etched AHSS material. A range of half 

time values for static recrystallization was required to obtain relationship of half time 

with strain, strain rate and temperature. Curve fitting plots of half time for static 

recrystallization versus strain helped determine the parameter p. Similar curve fitting 

procedures were used to obtain parameter c and Q by plotting half time versus strain rate 

and temperature respectively. In this manner the static recrystallization kinetic parameters 

given by the Sellars equation were obtained.

The parameters defining the to.5 using Equation 1 were obtained and reported in 

Table 1.

Table 1. Static recrystallization kinetic parameters determined

n k P c
Q

(J/mol) A s

AHSS o.26 o.7 -o.47 -o.413 2ioooo 3.6xio-4 1
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Thereafter the Avrami equation was used to model the kinetics of static 

recrystallization. The Avrami equation relates Xsrx to the half time of static 

recrystallization (t0.5) as

t \ n \  (5)
Xs„  = :L-exp ( - k , ( — ) )

where k and n are material dependent parameters, t is time and t0.5 is the half time for 

static recrystallization. Taking logarithm on both sides the following expression is 

obtained.

ln(ln(1/(1-X srx)))  =  ln(k) +  n. ln( t/to.5 ) (6)
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The parameters k and n are obtained by linear fitting and regression analysis of a 

large range of Xsrx for varying pre-strains and interpass times. Based on the above 

relationship the parameters k and n were determined as 0.7 and 0.26 respectively. 

However, it is found that the parameters of static recrystallization kinetics determined 

using the traditional model is unable to describe the evolution of Xsrx accurately when the 

temperatures changed. Hence the model was modified wherein the energy for static 

recrystallization (Q) was related with the temperature (T) as

Q =  442000 -  175T  (7)

Using this model, the evolution of Xsrx with time is compared with the traditional 

model in Figure 7. The modified model was found to be more coincident with 

experimental values in comparison to the traditional model.

Figure 7. Comparison between the traditional and modified model for strain 0.1 at 1100
C and strain rate 5 /s
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The Johnson-Cook (JC) model (Equation 3) was used to represent the material 

behavior for the high stress austenitic steel grade in the three-dimensional finite element 

model. The JC material parameters were determined for the studied material and they are 

listed in Table 2. Notice that £ref  was included as a material parameter, as discussed by 

Schwer [16].

3. FINITE ELEM ENT M ODEL

Talble 2. Calibrated Johnson-Cook parameters for studied steel grades.
Steel

grade A  (MPa) B  (MPa) C n m ^ref

AHSS 40 333 0.07 0.3 0.68 1

Commercial code Abaqus 6.18 [17] was used to conduct the fin121ite element 

simulation. A coupled thermal displacement analysis type in Abaqus explicit module was 

used to determine the finite element stiffness matrix. The industrial hot rolling process 

consisted of consecutive edger (vertical) and roughing (horizontal) rollers. A similar hot 

rolling model was created for the simulation is shown in Figure 8. The horizontal rollers 

have a diameter of 1102.5 mm, while the edger rollers have a diameter of 742.5 mm. The 

rolled slab was created with an initial dimension of size (200 mm x 1m x 2 m) and 

meshed with three dimensional thermally coupled brick elements (C3D8RT). Whereas 

the rollers were meshed with 4 node rigid elements (R3D4). The user defined subroutine 

VUSDFLD [17] was used to determine the fraction of recrystallization Xsrx based on the 

strain, strain rate, and temperature experienced by the slab during hot rolling. The static



softening was determined based on the Xsrx that was assumed to be initiated after 

deformations were experienced due to hot rolling by a set of vertical and horizontal 

rollers.

100

Figure 8. Finite element model of the rectangular slab and rollers used to simulate the hot
rolling process.

For each time step during the interpass, the Xsrx is updated by adding the 

increment of the fraction of static recrystallization as given by Equation 8.

d X srx _ expM ; 0j ) )
—k n

n - 1 1

f0.5
d t

(8)

Due to grain refinement, the residual strain is lost within the material. The extent 

of loss of strain depends on the extent of recrystallized grains and is defined by

=  Ĉ1 Xsrx') (9)
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4. RESULTS AND DISCUSSION

Hot rolling simulations were conducted for three edger and horizontal strands 

using the same rolling parameters considered in industrial trials. The initial slab 

temperature was kept at 1000 °C and roller speed set to 1.11 m/s. The edger rollers and 

horizontal rollers are kept in proximity such that as soon as the slab passes through the 

edgers it reaches the adjacent horizontal roller. Static recrystallization is expected to be 

initiated after the slab transits the horizontal roller. The thickness reduction experienced 

during the first horizontal roller is 25%, for the second roller set is 13% and for the final 

roller set is 44.3%.

4.1. EVOLUTION OF STATIC RECRYSTALLIZATION AND SOFTENING

The evolution of static recrystallization and plastic softening during the first 

interpass was studied using the simulation results. Figure 9 shows the progression of the 

fraction of recrystallization after the first rolling pass. The degree of static 

recrystallization is observed to be 0.3 after 5 s and slowly increases to 0.6 in 25 s case. 

The degree of static recrystallization is slightly higher at the surface (0.34) than at the 

center(0.33) after 5 s. This gradient decreases as recrystallization progresses with time.

At the end of the interpass, the degree of static recrystallization is almost uniformly and is 

about 0.6 along the thickness.

The extent to which the material undergoes static recrystallization, till that extent 

the material looses its stored strain energy and relaxes. This phenomenon is due to the 

formation of new grains that eat up the old grains. Hence it is highly critical to study the 

effect of rolling parameters as pass reduction, temperature and rolling speed on the extent



of recrystallization and hence in turn on the residual strain in the material. Overall, the 

final material properties are highly influenced by the rolling parameters that influence the 

extent of recrystallization and inturn effect the strain energy. The lower the strain energy 

in the material the greater the softening of the material and hence more the ductility.

The state of recrystallization of the slab at the end of each horizontal rolling pass 

showed that the rate of recrystallization is highly sensitive to the deformation. The greater 

the pass reduction the greater the strain the material experiences. Hence although high 

deformation results in large strains it also results in large strain removal and material 

softening. The fraction of static recrystallization is observed to be higher along the edges 

and the surfaces and slightly lower at the center. The surface and edges hence undergo 

greater strain softening and hence results in a strain gradient within the material.
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Figure 9. Fraction of static recrystallization after a) 10 s b) 15 s c) 20 s, and d) 25 s
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The corresponding plastic strains after the same interim time duration are shown 

in Figure 10. The strain concentrations are observed along the edges of the slab. The 

strain is higher at the top and bottom surfaces and decreases towards the center region. 

This different decreases as recrystallization progresses with time.

4.2. EFFECT OF PASS REDUCTION ON STATIC RECRYSTALLIZATION

As the thickness reduction is highest for the third rolling pass (44.3%), the degree 

of static recrystallization Xsrx is observed to be highest for the third set of rollers (0.78) 

and lowest for the second set (0.32). Figure 11 shows the increase/decrease in fraction of 

static recrystallization after each rolling pass.

a)

b)

c)

Figure 10. Plastic strain after a) 10 s b) 15 s c) 20 s and d) 25 s
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Figure 11. Variation of degree of static recrystallization during the first three rolling
passes at 1000 °C

The residual strain at the slab surface at the end of each rolling pass is seen in 

Figure 12. The loss in residual strain is found to be 21.4%, 17.1%, and 29.2% for the 

first, second, and third passes respectively.

Figure 12. Static softening for different rolling passes for classical JC model and
modified JC model
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The state of recrystallization of the slab at the end of each horizontal rolling pass 

was studied. The fraction of static recrystallization is observed to be higher along the 

edges and the surfaces and slightly lower at the center. The fraction of static 

recrystallization is observed to be highest for pass 3 and lowest for pass 2 as observed in 

Figure 13.

a)

b)
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+ 7 .44£*-O I 
+ 7.4S7&.0I +7.368*01 +7 353e-0i 
+ 7 .3 J9 e -O I 
+ 7.3MC-01 
+ 6.331e-ai

I); 75%

c)

Figure 13. Simulation results for degree of recrystallization for a) pass 1, b) pass 2, and
c) pass 3
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It is evident from the study that pass 3 that has the highest pass reduction results 

in extremely high degree of recrystallization. While pass 2 that has the lowest pass 

reduction shows lowest degree of recrystallization. The material residual strain at the end 

of each interpass was compared (Figure 14). The strain is noted to be higher at the 

surface and comparatively less at the midplane. The strain is observed to be highest for 

the pass 3 rolling and lowest for pass 2.

b)

c)

Figure 14. Simulation results for static softening during a) pass 1, b) pass 2, and c) pass 3.
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On the other hand, the loss in strain across the thickness of the slab as the 

interpass time increased from 5 s to 25 s during the 1st pass is about 50% (Figure 16a) 

whereas the loss in strain across the thickness under the same conditions during the 3rd 

pass is about 25% (Figure 16b).

Pass 1 Pass 2

a) b)

Pass 3

Distance from midplane (normalized)

c)

Figure 15. Increase in static recrystallization with time for a) pass 1, b) pass 2, and
c) pass 3.
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The fraction of static recrystallization is noted to be approximately 0.31 after 5 s 

and 0.61 after 25 s of interpass period after the first rolling pass. The corresponding 

plastic strain is observed to be 0.19 at the end of 5 s and decreases to 0.1 at the end of 25 

s. The variation in both fraction of static recrystallization and plastic strain is found to be 

minimal along the thickness.

P a s s  1 Pass 2

D istance from m idplane (norm alized)

a)
b)

Pass 3

c)

Figure 16. Increase in static softening with time for a) pass 1, b) pass 2, c) pass 3.
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4.3. INFLUENCE OF TEMPERATURE ON RECRYSTALLIZATION

The first rolling pass was simulated for varying temperature profile of the rolled 

slab. The temperature has a critical influence on Xsrx and varying the initial slab 

temperature can be used to reduce or increase the fraction of recrystallized grains. 

Simulations were conducted for three different temperatures 900 °C, 1000 °C and 1100 

°C and an interpass time of 25 seconds. Almost fully recrystallized material was obtained 

for 1100 °C. While at 1000 °C, 47% and at 900 °C, 8.7% recrystallization was achieved 

(Figure 17).

0  1 0  2 0  3 0

Time (s)

Figure 17. Variation of degree of static recrystallization during first rolling pass for
different temperatures.

The extent of recrystallization at the end of the first rolling pass is shown in

Figure 18 for the different temperatures. For temperature 900 °C, the fraction of static
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recrystallization is observed to vary between 0.55 (at center) to 0.6 at the surface. The 

extent of recrystallization is observed to be highest when slab temperature maintained at 

1100 °C wherein the fraction of recrystallization is observed to be 0.6 at the center and

0.65 at the surface.
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Figure 18. Simulation results for static recrystallization for a) 900 °C, b) 1000 °C, and c)
1100°C.

The corresponding loss of residual strain due to recrystallization is plotted in 

Figure 19. The loss in plastic strain is highest at 1100 °C (32%) and as the temperature of



slab decreases the strain relaxation is lower (7% at 900 °C). Hence, higher static 

softening and ductility is achieved at elevated temperatures.
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Figure 19. Static softening during the first rolling pass.

The plastic strain along the thickness of the rolled slab at the end of the first 

interpass for the simulations at varying temperature is shown in Figure 20. As the 

temperatures are higher along the surfaces the degree of static recrystallization is higher. 

Due to this the strain loss is lower along the center and higher along the surface for 

elevated temperatures.
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4.4. INFLUENCE OF ROLLING SPEED ON RECRYSTALLIZATION

The speed of revolution of the rollers also influences the mass flow during hot 

rolling. The higher the speed of rolling the greater the strain rate in the rolled slab.

SDV10 
(Avg: 75%)

■

I

+4,756e-01 
+3,000e-01 
+2,933e-01 
+2,867e-01 
+2.800e-01 
+2,733e-01 
+2,667e-01 
+2,500e-01 
+2,533e-01 
+2,467e-01 
+2,400e-01 
+2,333e-01 
+2,267e-01 
+2,200e-01 
+ 1.916e-01

SDV10 
(Avg: 75%)

I

+4,969e-01 
+3,000e-01 
+2,933e-01 
+2.867e-01 
+2,800e-01 
+2,733e-01 
+2.667e-01 
+2,600e-01 
+2,533e-01 
+2.467G-01 
+2,400e-01 
+2.3336-01 
+2,2676-01 
+ 2 .2006-01 
+ l,948e-01

b)

SDV10 
(Avg: 75%)

I

+ 4,853e-01 
+3.000e-01 
+ 2,917e-01 
+2.833e-01 
+ 2,750e-01 
+2.667e-01 
+ 2,583e-01 
+2.500e-01 
+ 2,417e-01 
+2.333e-01 
+ 2,250e-01 
+2.167e-01 
+ 2,083e-01 
+2.000e-01 
+ l,972e-01 C)

Figure 20. Simulation results of static softening at different temperatures a) 900 °C, b)
1000 °C, and c) 1100 °C.



113

Hence, the speed of rolling is expected to influence the fraction of 

recrystallization Xsrx. Hot rolling simulation for the first pass was conducted at 1000 °C 

for three different rolling speeds 2 m/s, 2.5 m/s, and 3 m/s respectively. As the rolling 

speed was increased from 2 m/s to 2.5 m/s, the fraction of static recrystallization was 

found to increase 5% (Figure 21). Further increase in rolling speed was found to 

marginally increase X srx.

Figure 21. Variation of degree of static recrystallization for varying rolling speeds.

5. CONCLUSIONS

In this study, a new model to predict the degree of static recrystallization and static 

softening in high strength steel was developed. The classical JC model was used to model 

the plastic hardening of the material based on high temperature tensile tests at varying



strain rates. Static recrystallization kinetic parameters were determined by calibrating 

double hit compression test stress-strain curves. The evolution of fraction of static 

recrystallization and static softening was based on the strain, strain rate, and temperature 

during hot rolling. Hot rolling simulations were conducted representing the actual 

industrial runs and identical rolling parameters.

The rolling simulations predicted that the degree of static recrystallization and static 

softening was higher for third rolling pass wherein the extent of deformation was the 

highest. The static softening and recrystallization almost increases linearly with 

deformation.

The effect of increasing the temperature of the rolled slab was observed to result 

in a huge increase in the degree of static recrystallization. Almost full recrystallization 

was achieved at 1100 °C, while recrystallization was 47% at 1000 °C. At lower 

temperatures as 900 °C, the degree of recrystallization was minimal 8.7%. 

Correspondingly the extent of static softening was minimal at 900 °C, while as 

temperature increased, the softening was substantial. Finally, the effect of rolling speed 

was observed to marginally increase the degree of static recrystallization. The effect is 

more pronounced at lower rolling speeds, while at higher rolling speeds the difference in 

recrystallization is marginal.
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SECTION 

4. CONCLUSIONS

The first paper of this work deals with the healing of internal voids in rolled steel 

slab during reversible hot rolling process. Hot compression tests were conducted for the 

steel at varying temperatures and strain rates to obtain a range of stress-strain curves. 

Based on the stress-strain relationship of the steel and using a genetic algorithm the 

hardening behavior of the material was evaluated and Johnson-Cook parameters 

determined. Thereafter a three-dimensional finite element model was constructed for 

reversible hot rolling process for steel slab with existing cylindrical voids. The influence 

of rolling pass reduction, temperature, void location and recrystallization on void closure 

was predicted using simulations. Pass reduction was observed to increase the rate of void 

closure drastically, while increase in temperature and recrystallization increased the rate 

of void closure marginally.

In the second paper the kinetics of static recrystallization of steel during hot 

rolling was studied. Using the double hit compression test the fraction of static 

recrystallization was determined for a range of varying temperatures above the 

austenizing temperature of steel, pre-strains and strain rates. The parameters defining the 

half time for static recrystallization were calibrated as per the Sellars model. The kinetics 

of static recrystallization was modeled as per the Avrami equation and the effect on 

softening of steel determined. The model was implemented in a program and 

incorporated into a finite element model. Three dimensional FEA analysis of industrial 

hot rolling process was conducted to determine the influence of pass reduction,



temperature and rolling speed on extent of static recrystallization and static softening.

The analysis showed that with increasing pass reduction the extent of static 

recrystallization increased as well as static softening. Temperature also had a critical 

influence, dramatically increasing static recrystallization. Rolling speed was found to 

have minimum effect on static recrystallization.

The effect of defect formation during hot rolling of I-beam was studied using 

FEA. Breakdown mill rolling of I-beam was investigated that had thirteen rolling passes. 

After the fourth rolling pass a small depression is observed to form along the middle of 

the flange. The depth of the depression is predicted to decrease if a smaller rolling gap is 

used. Further, influence of a pre-existing surface distortion on the shape of the depression 

after rolling was studied using simulation. It was found that the distortion increases the 

depth of the depression.

In the fourth paper a modified version of JC model was proposed that accounted 

for the influence of grain size on flow stress. Four different grades of steel were 

considered and experiments were conducted at elevated temperatures to measure the 

increase in grain size with time. This enabled to obtain the relationship between grain 

size with temperature and time for each of the steel grades. Experiments were also carried 

out to measure the change in strength of the steel at elevated temperatures for different 

grain size. A modified JC model was introduced that considered the material stress was 

sensitive to its grain size. Compression test simulations were carried out and the change 

in flow stress was determined for the different steel grades. The steel grades showed an 

increase in grain size with time. The grades that showed larger increase in grain size also 

showed considerably higher drop in flow stress.
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