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ABSTRACT

The two of the main formulations for modeling long range dependence in
volatilities associated with financial time series are fractionally integrated generalized
autoregressive conditional heteroscedastic (FIGARCH) and hyperbolic generalized
autoregressive conditional heteroscedastic (HY GARCH) models. The traditional methods
of constructing prediction intervals for volatility models, either employ a Gaussian error
assumption or are based on asymptotic theory. However, many empirical studies show that
the distribution of errors exhibit leptokurtic behavior. Therefore, the traditional prediction
intervals developed for conditional volatility models yield poor coverage. An alternative is
to employ residual bootstrap-based prediction intervals. One goal of this dissertation
research is to develop methods for constructing such prediction intervals for both returns
and volatilities under FIGARCH and HY GARCH model formulations.

In addition, this methodology is extended to obtain prediction intervals for
autoregressive moving average (ARMA) and fractionally integrated autoregressive moving
average (FARIMA) models with a FIGARCH error structure. The residual resampling is
done via a sieve bootstrap approach, which approximates the ARMA and FARIMA
portions of the models with an AR component. AIC criteria is used to find order of the
finite AR approximation on the conditional mean process. The advantage of the sieve
bootstrap method is that it does not require any knowledge of the order of the conditional
mean process. However, we assume that the order of the FIGARCH part is known. Monte-
Carlo simulation studies show that the proposed methods provide coverages closed to the

nominal values.
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1. INTRODUCTION

1.1. BACKGROUND

Time series analysis is a specialized area in Statistics which deals with data
observed over time. It has applications in the fields such as astronomy, economics,
engineering, environmental sciences, hydrology, and physics. Basically, there are two
major aspects of time series analysis, namely modelling and forecasting. Many statistical
approaches are utilized to both model and forecast empirical time series. However, the
major emphasis in this study is on time series forecasting.

The standard time series formulations developed to model the conditional mean of
a process, such as the autoregressive moving average (ARMA) models, and for the
conditional variance, such as the generalized conditional heteroscedastic (GARCH)
models, have autocorrelations that decay geometrically. These are sometimes known as
short-memory processes and cannot effectively approximate long-term dependance with a
parsimonious model. Time series with such long-term dependence are often termed long-
memory processes. In early 90s, many researchers not only found long memory behaviour
in the mean process of empirical time series, but also in squared residuals of empirical time
series in domains such as finance and economics (deLima et al. (1994), Ding et al. (1993)
and Harvey (1993)). This phenomenon necessitated the development of volatility models
with long range dependence. Some of the models that addressed this need are the integrated
GARCH (IGARCH, Engle & Bollerslev (1986)) and fractionally integrated GARCH
(FIGARCH, Baillie et al. (1996)) formulations. More recently, the hyperbolic GARCH

(HYGARCH, Davidson (2004)) models were introduced, that address some of the



2
shortcomings of the FIGARCH model. While such models are widely available, bootstrap-
based methodologies for obtaining prediction intervals for them is lacking. In this
dissertation, prediction intervals for FIGARCH and HY GARCH volatility models, as well
as for Autoregressive Fractionally Integrated Moving Average (FARIMA) processes
whose conditional volatility exhibits long memory behavior, will be discussed. Distribution
free bootstrap techniques are adapted in order to construct the prediction intervals.

It is important to discuss some key concepts and terminologies used in time series
analysis, before moving on to describing the methodologies used to obtain prediction
intervals.

L.1.1. Autocovariance Function. 1If {X,} ~ is a time series such that
Var(X,) <o for each ¢ €T, then the covariance function y, (-,-) of {X,}is defined by
Yy (r,s)=Cov(X,,X,)=E[(X, - EX )X, -EX,)], r,seT.
1.1.2. Stationary Time Series. A time series {X t}tezis said to be (covariance)
stationary if
(i) E|X,[ <o forall teZ,
(i) E[X,]=m forall 1€ 7,

(i) y,(r,s)=y,(r+t,s+1) forall r,s,1e7.

Further, the autocorrelation function of a stationary processes {X I}IEZ is defined as

Py (h) ::yX—(igforall helZ,where y, (h)=y,(t,t+h) for L,heZ.

Vx



1.1.3. White Noise Process. The process {.X, }is said to be white noise (WN) with
mean 0 and variance o, if the autocovariance function, 7, » satisfies

c’if h=0

yX(h)z{O Fheo

1.2. CONDITIONAL MEAN PROCESSES

Here we present the definitions of some conditional mean processes. These are
sometimes referred to as Box and Jenkins models. Autoregressive Moving Average
(ARMA) formulations are widely used to model time series that exhibit short term
dependence where the autocorrelation function decay to zero at an exponential rate.
Therefore, the memory of the past event decays fast and its impact becomes negligible after
short a period of time.

1.2.1. ARMA Process. A real valued process {X,} is said to be an

ARMA(p, q)process if {X,} is stationary and satisfies
OLYX, —p)=0(L)e,, teZ,

where @ and @ are the p™and ¢" degree polynomials with ®(z)=1-®z—...— 044
and 6(z) =1+6,z+...+ 6,z and having no common roots. The innovations are assumed to
be white noise, that is: {¢,} ~ WN(0,5%) .The mean of the process is x = E(X,) for all .
The lag operator, L is defined by I X, = X, , forke N .

The ARMA process becomes an Autoregressive process with order p (AR ( p))

when ¢ =0 and further, it becomes a Moving Average process with order g (MA ( p))



when p =0. Figure 1.1 shows the sample path of a simulated ARMA(1, 1) process with

length of 200. The sample autocorrelation function of it is given in the Figure 1.2.

Simulated ARMA(1,1) series

Figure 1.1. Simulated (1- 0.7L)Xt=(1- 0.5L)sttime series

1.2.2. FARIMA Process. A real valued process {Xt} is said to be an

Fractionally Integrated Autoregressive Moving Average (FARIMA(p,d,q)) process ifthe

process Yt=Vd(Xt- p)is a ARMA(p,q) process, where the difference parameter

d e (-0.5,0.5),(Vd=(1- L)d).



Autocorrelation of ARMA(1,1)

Figure 1.2. Sample ACF of (1-0.7L)Xt=(1-0.5L)st

The FARIMA model is widely used in many areas such as geophysics,
econometrics, and hydrology to model time series with a long memory property.
Autocorrelation function of FARIMA decays to zero in slow hyperbolic rate rather than a
fast-exponential rate and therefore, it is capable of modelling empirical time series with a
long memory property. Note that the stationarity ofa FAIRMA(p, d,q) process defined as
in 1.2.2 depends on the fractional difference parameter d. If d <0.5, then the process is
stationary and otherwise, it is not stationary. Furthermore, FARIMA(p, d,q)is said to be
an intermediate-memory process when -0.5 <d <0, and it is said to be a long-memory
process if 0<d <0.5, according to the definition given in Brockwell and Davis (2009).

Figure 1.3 shows the sample path of the FARIMA process with the fractional difference

parameter, d =0.3.



Figure 1.3. Simulated (1- 0.7L)(1- L)03Xt=(1- 0.5L)sttime series

Figure 1.4. Sample ACF of (1- 0.7L)(1- L)®@Xt = (1- 0.5L)st



The sample ACF of the simulated FARIMA process is given in the Figure 1.4. The
ACF exhibits a long dependence here, not like in the simulated ARMA process with same
AR and MA parameters.

In next section we will discuss time series whose variance change over time.

1.3. CONDITIONAL VARIANCE PROCESSES

Volatility (variance) of asset prices in financial markets often change over time.
However, the asset prices themselves are uncorrelated but are not independent.
Autoregressive Conditional Heteroscedastic (ARCH) model introduced by Engle (1982),

is one formulation that is widely used to model such behavior.

1.3.1. ARCH(g). Let{e[}tEZ be a real-valued discrete tim time series and let 3,
denote the sigma field generated by the collection of variables {e,:i <¢}. Then the time
series{et}tEZ is said to be an ARCH(g) process (Autoregressive Conditional
Heteroscedastic) if

E(e, |3,,)=0and Var(e, | 3, ,) = o] with

2
=i

ol =0+ Zq:ais
il
=o+a(l)e],
where ¢>0, >0, , 20,i=12,.,q. Here L is the lag operator, with
a(ly=l-aL-.-al".
Bollerlev (1986) introduced the generalized ARCH (GARCH) model which a

natural generalization of ARCH(g) formulation and is capable of modeling a wider class



of volatility processes with a limited number of lag terms when compared to ARCH
models.

1.3.2. GARCH (p, q) Process. Given areal valued discrete time stochastic process

{e,},,. with 3, defined as before, {g,} ,is said to be a GARCH(p,q) process

(Generalized Autoregressive Conditional Heteroscedastic) if it satisfies

E(e, 13,,)=0 and Var(e, |3,,) =0/,

ol=w +Zq:0{i8ii +Zp:,b’jaij
= -:1
=o+a(l)eg] + ,bj(L)af,
where p>0, ¢>0, ®>0, ,20,i=1,2,.,q and B, >0, =12,.., p. Here L is the lag
operator, with (L) =1~ L ~..~a L' and B(L)=BL+.. .+ B,L".
Note that when a(1)+ £(1)=1, the GARCH process defined above becomes an

Integrated GARCH (IGARCH) process, which was first introduced by Engle and

Bollerslev (1986). The GARCH (p, g) process reduces to the ARCH(g) process when
p =0 and becomes a white noise process when p=¢g=0.

As mentioned earlier, some studies show that the squared returns of some empirical
financial time series exhibit long-range dependence. The Fractionally Integrated GARCH
(FIGARCH) and Hyperbolic GARCH (HY GARCH) are introduced by Baillie et al. (1996)
and Davidson (2004), respectively, are often used in modelling long memory in squared
returns. The definition of the FIGARCH is given below based on the definitions given by

Baillie at el. (1996) and Tayefi & Ramanathan (2016).



1.3.3. FIGARCH (p, d, q) Process. A real valued discrete time stochastic process
{et}tEZ , with 3, defined as before, is said to be a FIGARCH(p,d, q) process (Fractionally
Integrated GARCH) if it satisfies

E(g, |3, ,)=0and Var(e, |3, ) =0/,
[1-B()]o} =0 +[1-BEL)-p(L)1-L)" |&]

where 0 <d <1, withg(L)=1-@L~..~ ¢4 ["and B(L)=BL+..+pB,L", where L is the
lag operator, and all roots of ¢(L)and [1- S(L)]lie outside the unit circle.

1.3.4. HYGARCH (p, d, q) Process. A real valued discrete time stochastic process
{et}tEZ , with 3, defined as before, is said to be a HYGARCH(p, d, q) process (Hyperbolic
GARCH) if it satisfies

g =20,
o =0 +{1- By - 1+a(0-1) 1) )5 + BL)o?

where 0 <d <1 and a >0 withg¢(L)=1-¢L~...~¢ L' and S(L)=BL+..+B,L" (Lis
the lag operator).

In addition to the above formulations, it is important to define an infinite order AR
process introduced by Robinson (1991). We employed the definition used by Giraitis et al.

(2009) to define this process.

1.3.5. ARCH () Process. A real valued discrete time stochastic process {et}tEZ ,
is said to be an ARCH(x) process if there exists a sequence of standard (zero mean and

unit variance) independent and identically distributed random variables {z,} and a

deterministic sequence b, >0, j = 0,1,..., such that
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Moreover, assume that {e,} is a causal, i.e for any #, &, has a representation as a

measurable function of the present and past values ¢, s <¢.
The GARCH(p,q)and HYGARCH(p,d,q)with o <1 can be represented as
ARCH(«) processes as defined above. Coefticients of the ARCH() representation for

GARCH(p, q) processes decay exponentially. For the GARCH representation, the weights

b, are defined by the generating function a(z)/(l—,b’(z))=zbj; b,=(1-pD) " a,,

=1
where «(z) and B(z)are the polynominals associated with the GARCH process.

Similarly, both IGARCH(p,q) and FIGARCH(p,d, q) processes can be represented as

an integrated ARCH(o) process with Z b, =1. Therefore, both IGARCH and FIGARCH

j=1

possesses have infinite unconditional variance. This is not the case with HYGARCH

process, which is one reason why these processes are sometimes preferred over IGARCH
and FIGARCH formulations.

The focus of this dissertation are the volatility models with long range dependence.

Therefore, it is useful to examine the behavior of the autocovariance function of the squared

returns {ef} for such processes and compare that with the behavior associated with short-

memory models. The squared returns {ef} in ARCH(wx) representation of GARCH(p, q)

has finite fourth moments with absolute summable autocovariance function,



1

ygh) = Cov(sh, 1) and exponentially decaying coefficients, which implies short memory

in returns squares js2j . In contrast to the GARCH model, the autocovariances Cov(s®, s@)

of HYGARCH decay to zero at hyperbolic rate h_1 d, with d >0 (Giraitis et al. (2009)).

Therefore, HY GARCH possesses intermediate memory in squared returns js 2j (Brockwell

and Davis (2009)). On the other hand, the finite fourth moment do not exist in IGARCH
and FIGARCH models since they do not possess finite second moments. However, the
FIGARCH model is frequently used in the literature to fit long range dependence in

squared returns.

Figure 1.5. Simulated GARCH (1,1) time series with a 2=0.1+0.1Ls2+0.85La2
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Figures 1.5 and 1.6 show that the sample paths of simulated GARCH (1,1) and
FIGARCH (1,d,0). The sample ACF’s of GARCH (1,1) and FIGARCH (1,d,0) are given

in Figures 1.7 and 1.8. As seen in the graphs of ACF’s, they are uncorrelated. However,

squared returns given in Figures 1.9 and 1.10 shows that the returns are not independent in

both models.

Figure 1.6. Simulated FIGARCH (1,d,0) time series with
al] =01+(1- 0.45L- (1- L)O75) £2+ 0.45Lc2



Figure 1.7. Sample ACF of GARCH (1,1) returns

Figure 1.8 Sample ACF of FIGARCH (1,d,0) returns
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Figure 1.9. Sample ACF of GARCH (1,1) squared returns

Figure 1.10. Sample ACF of FIGARCH (1,d,0) squared returns

14
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1.4. THE ADAPTION OF THE BOOTSTRAP PROCEDURE

The bootstrap is a non-parametric resampling technique which was developed by
Efron (1979) and can be utilized to make statistical inferences about unknown distributions.
Freedman (1984), Stine (1982, 1987) and Findley (1986) applied bootstrap technique to
time dependent data by resampling the residuals obtained by fitting a model to the data.
Stine (1987) used bootstrap prediction mean squared errors to forecast future values of AR
processes. Thombs & Schucany (1990) employed backward representation method (By
expressing the current value of the time series as a linear function of future values) to
construct bootstrap prediction intervals for AR models with known order p. The use of
backward representation is limited to AR processes, and cannot be used for the processes
with a MA component. Cao et al. (1997) developed a computationally faster conditional
bootstrap without using the backward resampling method. This method was also restricted
to AR processes with known orders.

Miguel & Olave (1999) extended the construction of prediction intervals to ARMA
models with ARCH errors. Pascual, Romo & Ruiz (2006) developed prediction intervals
for returns and volatilities using GARCH type models. Here after we referred method used
by Pascual, Romo & Ruiz as PRR. In contrast to Miguel & Olave’s method they
incorporated the uncertainty of parameter estimations for the intervals. All the above
bootstrap methods assume that the order of the process is known.

The foundation of implementing the bootstrap methods for time series with
unknown order was laid by Kunsch (1989), Kreiss (1992). Further, these type of time series
can be written as an infinite autoregressive process. Buhlmann (1997) extended this

approach to a general class of time series that can be represent as an infinite order moving
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average and use the term “sieve bootstrap”. Alonso et al. (2002, 2003) applied the sieve
bootstrap approach to construct prediction intervals for linear processes. Those processes
can be written as an invertible, and an infinite order moving average with absolute
summable coefficients. Mukhopadhyay and Samaranayake (2010) improved the coverages
of sieve bootstrap method used Alonso et al. (2002, 2003) by rescaling the residuals.
Rupasinghe and Samaranayake (2012, 2013) extended sieve bootstrap prediction intervals
for FARIMA models. They incorporate Poskitt’s (2006) results to establish the theoretical
validation, because the coefficients of infinite moving average representation are not
absolute summable in FARIMA models.

The outline of this dissertation as follows. Paper I and Paper IV discuss the
bootstrap prediction intervals for returns and volatilities in FIGARCH and HYGARCH
models. Prediction intervals for ARMA models with FIGARCH errors are discussed in
Paper II. Order of the AR approximation of ARMA component is carried out using
approaches adopted in Alonso et al. (2003) and Thilakaratne & Samaranayake (2014).
Finally, bootstrap prediction intervals for FARIMA models with FIGARCH errors is
presented in Paper III. Here the order order of the AR approximation of FARIMA
component is motivated by the approach taken in Rupasinghe and Samaranyake (2012,
2013). We used both sieve bootstrap approach as well as PRR method to construct the

intervals in Papers II and IIL.
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PAPER

I. BOOTSTRAP PREDICTION INTERVALS FOR FRACTIONALLY
INTEGRATED GENERALIZED AUTOREGRESSIVE CONDITIONAL
HETEROSCEDASTIC (FIGARCH) MODELS

ABSTRACT

The Generalized Autoregressive Conditional Heteroscedastic (GARCH)
formulations are inadequate to model the persistent volatility found in certain financial
assets. The integrated version of the GARCH formulation, namely the IGARCH model,
was developed to handle such situations.  Fractionally Integrated Generalized
Autoregressive Conditional Heteroscedastic (FIGARCH) models, however, provide a
more flexible alternative to modeling long-term dependence of volatility, providing a
leptokurtic unconditional distribution for returns having long memory behavior. We
propose a method based on the residual bootstrap to obtain prediction intervals for the
returns and the conditional volatilities of FIGARCH processes. A Monte-Carlo simulation
study, conducted using a variety of distributions for the error terms, show that the proposed
intervals have good coverage probabilities in most cases.

Keywords: Fractional integration, Volatility modeling, Residual-based bootstrap, Long

memory
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1. INTRODUCTION

Time series literature is replete with many formulations developed to model the
volatility of financial time series. Engle (1982) introduced the well-known Autoregressive
Conditional Heteroscedastic (ARCH) model and Bollerslev (1986) extended the ARCH
model to the Generalized ARCH (GARCH) model, which accommodate long-term
dependence of volatility with a limited number of lag terms, compared to the ARCH
formulation. Since the introduction of the ARCH and GARCH models, several variations
have been developed by other authors. For example, the exponential GARCH or the
EGARCH model (Nelson, 1991) was developed to allow asymmetric response to positive
and negative shocks. A generally known fact about GARCH type models is their ability to
model volatility clustering. Volatility clustering refers to the phenomenon where large
returns tend to follow large returns and small returns tend to follow small returns. Highly
persistent volatility, however, cannot be modeled well using the GARCH model or its
alternatives such as the EGARCH. The Integrated GARCH (Engle and Bollerslev, 1986)
formulation was developed to model time series with persistent volatility. Fractionally
Integrated Generalized Autoregressive Conditional Heteroscedastic (FIGARCH) was
introduced by Baillie et al. (1996) as an alternative to the IGARCH model, allowing the
ability to model the long-memory nature of the conditional variance found in many
financial time series, but without the assumption of a unit root in the model. In this paper,
we introduce a residual bootstrap-based method of obtaining prediction intervals for the

conditional volatility of FIGARCH processes as well as for future returns.
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The conditional variance of a GARCH process can be written as an infinite sum of
exponentially decaying terms containing squared past innovations. Similarly, the
conditional variance of FIGARCH model can be expressed as a sum whose terms have a
slower hyperbolic rate of decay. This provides the FIGARCH formulation the ability to
model squared return processes having long memory. Thus, in the FIGARCH formulation,
the effect of a past shocks (squared innovations) decay slowly to zero, unlike in the
GARCH case where such effects decay at a faster exponential rate. In contrast to both the
GARCH and FIGARCH processes, the effect of such shocks persists without decaying in
the IGARCH process. Thus, the FIGARCH, while allowing for a past shocks to persist for
a long period, assumes that eventually its effects become negligible, which is a more
reasonable assumption.

There exist several publications on obtaining prediction intervals for the conditional
mean of long memory processes as opposed to obtaining prediction intervals for the
conditional variance. For example, Bisaglia and Grigoletto (2001) introduced bootstrap-
based prediction intervals for Fractionally Integrated Autoregressive Moving Average
(FARIMA) processes. Another example is Rupasinghe and Samaranayake, (2013) which
established a sieve-bootstrap-based procedure to calculate prediction intervals using an
algorithm that is computationally much faster than that proposed by Bisaglia and Grigoletto
(2001). However, there are no published literature on obtaining prediction intervals for
long memory GARCH type models, and there are only a few papers have discussed the
construction of prediction intervals for short-memory ARCH and GARCH type models.

In order to construct prediction intervals, the underlying distribution of the point

predictor or that of a pivotal statistic is needed. But this is not feasible in some situations,
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and in many instances, the asymptotic distribution of such statistics is used instead of the
finite sample distribution, which is intractable. An alternative is the distribution free
resampling approach, where a bootstrap-based technique is utilized. Reeves (2005)
constructed prediction intervals for ARCH models using a bootstrap method and contrasted
it with the traditional asymptotic prediction intervals. Reeves reported that the bootstrap-
based method improved the coverage accuracy. Pascual et al. (2006) developed a

bootstrap-based prediction intervals for both returns and volatilities for the GARCH(1, 1)

model which is referred to as Pascual-Romo-Ruiz (PRR) in the context. Their bootstrap
method incorporated the uncertainty of parameter estimation when building the prediction
intervals, which certainly improved the coverage. However, one drawback of this method
is the time-consuming computational methodology required for the calculation of
prediction intervals. Since GARCH model can be re-written as a linear ARMA type model,
Chen et al. (2010) proposed computationally low-cost sieve bootstrap-based prediction
intervals for returns and volatiles. Trucios and Hotta (2016) constructed prediction
intervals for returns and volatilities for EGARCH and the Glosten-Jagannathan-Runkle
GARCH (GJR-GARCH) models by adapting the method used by Pascual et al. (2006).
They found that volatility prediction could be poor when an additive outlier is present near
the forecasting origin. Although there are a number of published literatures on bootstrap
prediction intervals for the conventional volatility models, there are no such work available
for long memory volatility models. Our paper presents an adaption of PRR algorithm
developed to GARCH models, to construct the prediction intervals for FIGARCH models.

The sections of the paper are organized as follows: First, we introduced the

FIGARCH model in Section 1, and then its properties in Section 2. Section 3 describes the



21

residual based resampling technique and then in Section 4, Monte Carlo simulation results
are reported. Section 5 presents an application of the proposed bootstrap-based prediction

intervals for the FIGARCH model, and the conclusions are presented in Section 6.
2. THE FIGARACH MODEL

A real valued discrete time stochastic process {s,:7ecZ} is said to be an

ARCH(q) process, if
€ =20, (1)

q
2 2
o =0 +ZO[1.8H ,
i=1

where, @ >0and ¢, >0,i=1,..,q. In expression (1), it is assumed that FE(z,)=0,
var(z,) =1 and z,’s are uncorrelated. Thus, by the definition, {g,} is an uncorrelated series
with mean zero process with conditional variance o, where the conditioning is done with
respect to the o —field 3, | generated by the set of random variables {z, :k <r-1}. The

conditional variance is a linear function of squared residuals up to ¢ lags implying a
Markovian dependence. The generalized version of ARCH (GARCH), introduced by
Bollerslev (1986), gives a more flexible structure, compared to (1), with the conditional

variance (volatility) o given by

q p
ol =w+) ag,+) Bo;, =o+al)e + (L), @
i=1 J=1
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where p>0,¢>0, >0, ,20,i=1,..9, 8,20, j=1...p, a(L) and B(L) are such
that (L) =, L+ o, [’ + ...+ o, L' and B(L)= B L+ BL +.. + B, L7, with L signifying the
lag (or backshift) operator. The process defined in (2) is a stationary process and can be
written as an ARMA(p, q) formulation ing}:

[l-a(L)-B(L)e] = o +[1- (L), A3)
where m = max(p, q) and v, =&’ — . The process {v,} can be shown to be uncorrelated

and is interpreted as the innovations associated with the ARMA process. The formulation
in (3) is said to be an IGARCH model if the autoregressive polynomial contains a unit root.

Therefore, autoregressive representation of IGARCH can be given as
(L)1~ L) = o +[1- B(L)]v,,
where ¢(L)=[1-a(L)— B(I)](1-L)" is of order m—1.
Several studies have reported the presence of long memory in the autocorrelations
of squared returns in financial asset prices. Thus, Baillie et al. (1996) adapted the idea of

fractional integration in conditional mean models (FARIMA) in order to develop a

FIGARCH process. The class of FARIMA(k, d, ) models for the discrete time real-
valued process {y,} is defined as

a(L)Y(1-L)"y, =b(L)z, 4)
where a(L) and b(L) are polynomials in the lag operators of orders £ and / , respectively.
Here, {z,}is an uncorrelated process with mean zero. The fractional integration parameter,

d, lies between -0.5 and 0.5 for the stationary FARIMA model. The fractional differencing
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operator (1—L)? has an infinite binomial expansion and can be written in terms of the

hypergeometric function,

(1-L) =F(-d,1,1;L) = il“(k —dT(k+1) 'T(-d) I,

where I'(.) denotes the Gamma function. Analogous to FARIMA(%, d, /) model for the

mean process given in (4), Baillie et al. (1996) defined the FIGARCH model in the

following manner:

HLY1-L)'e] = @ +[1- (L), ®)
where0 <d <1, and all the roots of ¢(L) and [1-S(L)] lie outside the unit circle.
Rearranging the terms in (5), an alternative representation for FIGARCH(p, d, q) canbe
obtained as

ol =o+[1- L)~ g(L)(1~- L) |’ + B(L)a;. (6)
From (6), conditional variance of the {g,}is obtained as:

2 _
Gl—

[1- B +{1-[1- BL] $(L)A-L)"}&]

[1- BT+ A(L)e; @

g 8

where A(L)= Z A LF. For the FIGARCH(p, d, q) process given in equation (5) to be
k=1

well-defined and the conditional variance in the ARCH(«)representation in (7) to be
positive, all the coefficient of ARCH representation in (7) must be non-negative. That is,

each 4, >0for ke N.

In equation (7), the conditional variance of FIGARCH(], d, 1) can be written as follows:

o} =o(-4)" +[1-(1-B)"A-4L)1- L)', ®)
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where,
M) =X AL =1-[1- (= ) (-4~ D).

Therefore, coefficients of the infinite ARCH model can be obtained by equating the

coefficients of lag operator, thus obtaining
A=¢-p+d,
A =d=-pYB—-4)+d(1-d)/2,

A= P dp —dd — B+ B +d(1-d)/ 2 |+d(1-d)/2[(2-d) /13- 4],

A= PA,+[(k-1-d)/ k=¢]6,,.,, keN,
where §,, =6,, ,(k—1-d)k™', keN refer to the coefficients in the series expansion of
(1-L)",with 6,, =land §,, =d .

The FIGARCH formulation enables us to model a wide range of conditional

volatility models. When d =0, it becomes a GARCH(p,m) process where
m =max(p, q). Similarly, when,d =1with S(L)#0and ¢(L)=1, FIGARCH becomes a

regular IGARCH model.

2.1. NON-NEGATIVITY OF THE CONDITIONAL VARIANCE

For the non-negativity of the conditional variance of the FIGARCH, all 4, ’s should

be positive. Baillie et al. (1996) derived a set of sufficient conditions for the conditional

variance to be non-negative. They are 0< 5 <@ +d and0<d <1-2¢ . We used this set

of conditions in our study. Alternatively, Bollerslev and Mikkelsen (1996) state another set
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of sufficient inequality constraints p-d<g <(2-d)/3 and
d[¢—(1-d)/2]< B (¢ — B +d). The latter conditions introduced by Bollerslev and

Mikkelsen (1996) are less restrictive than the former conditions introduced by Baillie et al.
(1996). Chung (1999) suggested another set of sufficient constraints given by
0<¢ <p <d<1. Finally, Conrad and Haag (2006) derived necessary and sufficient
conditions for the non-negativity of the variance for the FIGARCH(p, d, q)for p<2.
According to their findings, conditional variance can be negative almost surely, even if all
the original parameters of FIGARCH are positive and similarly conditional variance can
be non-negative even if all the parameters are negative, except d. They also derived

sufficient conditions for non-negativity of variance for p > 2 .

2.2. ASYMPTOTIC NORMALITY OF THE PARAMETERS AND THE
STATIONARITY OF THE PROCESS

Baillie ef al. (1996) used a dominance type argument by extending the results
available for IGARCH(l, 1), to claim the asymptotic normality of Q-MLEs of
FIGARCH(1, d, 0). They did not prove it theoretically, but their empirical study,
however, suggests that parameter estimates are asymptotically normal. Robinson and
Zaffaroni (2006) established conditions for consistency and asymptotic normality of Q-
MLEs for class of ARCH(o) under some general conditions, which also covers the
FIGARCH type processes. According to their findings strong consistency requires

0 <d <1 and asymptotic normality requiresd >0.5.
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By construction, FIGARCH with {st}defined as in equation (1) has the properties

that cov(st,st-h) = 0for h >0 and E(st) = 0. The hypergeometric function F(-d, 1, 1 u)
, evaluated at u=1, is 0 for 0 <d <1 and thus A(1) =1. Therefore, for 0 >0, the second
moment of the [st} does not exist. The implication is that the FIGARCH process is not
covariance stationary. Giraitis et al. (2018) established the necessary and sufficient

conditions for the FIGARCH to be covariance stationary witho =0. Conrad and Haag

(2006) suggested a way to obtain the covariance stationarity of [st} with 0<d <1 by

assuming var(zt) <1lin (1). Howeuver, it rules out long memory ins® by indicating the
absolute summability of auto-covariance function ofs®, as shown in Zaffaroni (2004).

Even though FIGARCH is not stationary, and its conditional variance is infinite, Baillie et
al. (1996) truncated the coefficients in the infinite lag polynomial on conditional variance
in order to simulate the FIGARCH process. They used larger truncation lag as 1000 in
coefficients in A(L) lag polynomial, in order to incorporate the long run dependencies on
the conditional variance. Furthermore, this truncated version of FIGARCH model has finite
variance since it is using finite number of coefficients. Therefore, truncated FIGARCH is
a covariance stationary with finite variance. Thus, it is feasible to use the model in order to

construct bootstrap based prediction intervals.
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3. BOOTSTRAP PREDICTION INTERVALS

In this section, we adapt the procedure proposed by Pascual et al. (2006) for the
GARCH case to obtain prediction intervals for future values of returns and the future

volatilities generated by a FIGARCH process.

1. Let {&} be a sequence of realizations of a FIGARCH(I, d, 1) process. Then

estimate the parameters of the model 6 = (a31,¢31,c;’ , ﬁl) by using Quasi-Maximum

Likelihood Estimation (Q-MLE) method.

2. Compute the residuals Z, =¢,/5,,1=1,...,n where

62 =6(1- )" +[1-(1- ) A-4L)1- LY ]8
~o(l- 181) +ﬂ18z1+ﬂz‘9z2+ +ﬂ“81k

and settinge” =n" Z fort=—k+1,..,-1, 0.Notethat kisa suitably chosen

11’

truncation lag of the polynomial A(L).

~ ~

3. Compute the centered residuals Z, = 2, — 2,, where z, =n~ Zl 2

4. Denote the empirical distribution function of the centered residuals by
F(x) n71211 (oox )

5. Draw a bootstrap sample with replacement from the above distribution and denote

itbyz,, where t=-m+1,..,—1,0,1,...,n. We used m=2,000 in this study.
6. Generate the bootstrapped FIGARCH seriese,, t =-m+1,..,-1,0,1,....n by first

computing a bootstrapped conditional variance series, o, using the FIGARCH

parameters estimated in Step 1. Then use 81* = zl*al*, t=-m+1,..,-10,1,...,n to
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generateg, . The non-positive lags represent ‘burn-in’ observations that are
dropped to mitigate effects due to initial conditions.

Estimate the FIGARCH parameters 8" = (o", 4, ,d ", B,) for the bootstrapped series
{e: } using the Q-MLE method.

Use the new coefficients 8" =(o",¢ ,d", ) obtained in the previous step,

compute the A-step ahead bootstrap forecasts of future returns and volatilities based
on the following recursions:

o =0 (1= +1-(1-8)"'(1-¢)1-L) 1eZ,

LS LS LS L3 LS L3 2
~o (1-B) ' + 4., +. . +A4e .

n+h-1

*

* * *
Ein=ZpnTnin»tor >0 and ¢, = ¢ for 1<n.

Obtain the estimated bootstrap distribution of g, , denoted by ﬁ; (), by repeating

n+h>
steps 5-8 B times (B =1000) in the simulation study. ﬁgzh (\) is the estimate of the
ngh (.), the bootstrap distribution function of ¢ _,, which is used to approximate
unknown distribution of & ., given the observed sample.

The 100(1-a)% bootstrap prediction interval for &  ,is then computed by
[O"(ar/2),0"(1-a/2)], where Q*(.)= Ii ’; are the percentiles of the estimated

bootstrap distribution.

Similar to step 9, obtain the bootstrap distribution of future volatilities, o, and

then compute the bootstrap prediction interval for volatility similar to step 10.
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4. THE SIMULATION STUDY

To investigate the finite sample performance of the proposed bootstrap prediction

intervals of the FIGARCH model, a Monte-Carlo simulation was carried out. The

representations of {¢,} given in Equations (1) and (8) were used to simulate the FIGARCH

process. This method become feasible due to the truncation of the infinite lag polynomial.
The effect of the pre-sample values might have a higher impact than regular GARCH due
to the long memory nature and the hyperbolic rate of decay of the response to a lagged
squared innovation. Thus, as suggested by Baillie et al. (1996), truncating lag was selected

at k= 1,000to incorporate the long-run dependencies. The simulation results were
compared with the conditional bootstrap method (CB) used by Miguel and Olave (1999)
for ARMA model with ARCH innovations. They only focused on prediction intervals of
returns and not volatilities. CB prediction interval method does not incorporate the
uncertainty of the parameter estimates. Therefore, step 7 is discarded from the process and
use the &in step 8 instead of 8" while keeping the other steps the same as in the PRR
method. Thus, following recursive equations are used to calculate CB prediction intervals:

o, =o0-4)" +[1-(1- )" (1-4)1-L) ]2,

A -1 A o 2 o%
N&)(l—ﬁl) +ﬂ’18n+h—l+"'+ﬂk8n+h—ka

8:+h = Z:+hG:+h'

The Monte-Carlo simulation study was carried out for different error distributions,
namely standard normal and ¢ with 7 degrees of freedom. Centered exponential
distribution was also considered to investigate the effect due to non-symmetric error

distributions. Series of lengths 500 and 1500 were used. The #-distributed errors were
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generated asz, =5"°z (23, +z;,+..+z;,) "by drawing independent and identically
distributed standard normal z,, s for i =1,2,...,8, as employed in Baillie et al. (1996). Here

¢ -distributed errors also have a unit standard deviation. When generating the realizations,
the first 6,000 were dropped to avoid the effects due to initial values.

We considered FIGARCH(], d, 0)and FIGARCH(1, d, 1) models to simulate the
data with =01, d €{0.25,0.50,0.75,0.95} ¢ €{0,0.20}, and
B €{0.10,0.20,0.45,0.70,0.90} . Note that out of these sets of parameter combinations, we

only used the combinations which satisfied the sufficient conditions for non-negativity of
the variance suggested by Baillie et al. (1996). For each combination of the model, sample
size, nominal coverage probability, and error distributions, N = 500 independent time series
were generated. Then bootstrap steps 1 through 10 were implemented for each time series

generated. In each simulation R = 1,000 future values, {¢,.,} were generated. We
estimated the coverage probabilities for future returns by calculating the proportion of
those ¢, values falling between the lower and upper bounds of the bootstrap intervals.
Therefore, the coverage for the i” simulation run is given by C(i)= R%ZL I,[e)., (D]
where A=[Q"(a/2),0"(1-«/2)] is the 100(1—a)th bootstrapped prediction interval.
1,()) is the indicator function of the set A and £’ , (i), » =1, 2,....1000 are the R future

values generated at i” simulation run. The theoretical and bootstrap lengths are obtained
by using L.()=¢/ ,(I-a/2)-¢ (a/2)and L,()=Q (1-a/2)-0 (a/2),
respectively. L, (7)is the difference between 100(1— )tk and the 100(c / 2)th percentiles

generated from R future values of the underling model with known order and the
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coefficients. The mean coverage, standard error of mean coverage, mean bootstrapped
prediction intervals, standard error of bootstrapped prediction intervals, and mean

theoretical intervals are calculated as follows:

Mean coverage C = N Zil (i),

-1 N . ~12 vz
Standard error of mean coverage SE- = {[N (N-1)] Zl_zl[C H—-C] } ,
Mean length (bootstrap) L, = N ' Zil L, (@),
Standard error of mean length SE, = {[N(N -1)]" Zil [L,()—L, 1",

Mean theoretical length L, = N Zil L, (i)

In similar fashion, we obtained the coverage probability for future volatilities

falling between upper and lower bound

{G,.,}, h=1, 10, 20.Thus proportion of those &,,,
of bootstrapped volatilities was used as an estimator of the coverage probability for future
volatility. The mean coverage, standard error of mean coverage, mean bootstrapped
prediction intervals, standard error of bootstrapped prediction intervals, and mean
theoretical intervals for future volatilities obtained were similar to those calculated for
return series.

We investigated the type of model, nominal coverage probability, effect of the
bootstrap truncation lag on coverage probabilities, and error distribution in this simulation
study. We report the mean coverage, mean bootstrap length, mean theoretical length,
standard error of mean coverage, and standard error of mean bootstrap interval length in

Tables 1-9 for standard normal, centered exponential, and 7-distributed innovations for both

PRR and CB methods. Due to space limitation, we only report the behavior of 95%
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intervals. The minimum value, percentiles (25, 50, 75'), and maximum value of the (a)
coverage probabilities, (b) the bootstrap interval bounds (upper and lower), and (c) the
theoretical interval bounds (upper and lower), were computed for further investigation and

results are available upon request.

4.1. PREDICTION INTERVALS FOR RETURNS

Tables 1-6 report the simulation results for future return series. Simulation results
show that the coverage probabilities were close to the nominal value for the normal and
the 7 distributed errors in both methods PRR and CB. Under these error distributions
(Tables 1-4) if one rounded the coverage probabilities to two decimal places, 23 of the 24
cases would achieve 0.95 nominal level in PRR method while 12 of the 24 cases achieve
0.95 nominal level in CB method. On the other hand, the maximum and minimum coverage
probabilities obtained using the centered and skewed exponential error distribution were
0.9286 and 0.9133 for FIGARCH(1, d, 0) with parameters
®=0.10, $=0,d =025, f=0.10andw =0.10, ¢ =0, d =090, f=0.10 respectively.
CB method gives even worse results in this case with most of the coverage probabilities
ranging from 0.90 to 0.92. Note that the coverage probabilities get closer to the nominal
value with increasing sample sizen regardless of the error distribution used. However, the
coverage probabilities obtained using PRR method decrease as sample size #n increases for
the first lag ahead prediction intervals for FIGARCH with exponentially distributed errors.

In most cases, the bootstrap lengths are less than the theoretical lengths for both
PRR and CB methods when using the exponential error distribution as the distribution of

the innovations. It is also noted that PRR interval width is slightly wider than the CB
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intervals. In few occasions not like PRR method interval width is narrower than the
theoretical length in CB intervals. That leads to the conclusion that coverage probabilities
obtained from CB method are somewhat liberal than those are obtained using PRR method.
It can be noted that the higher value of g makes theoretical and bootstrap interval width
wider, since S parameter is associated with the past lagged variance. Finally, the coverage
probabilities obtained using PRR and CB intervals show only a little difference among
them, although the PRR method is slightly ahead of CB method. This comparison is similar

to the study done by Pascual et al. (2006) for their prediction intervals for GARCH(,1)

process.

Table 1. Coverage of 95% intervals for returns FIGARCH (1, d, 1) with parameters
=01 ¢=02d=05, =045, and normally distributed errors

PRR CB

Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length

(SE) (SE) (SE) (SE)

0.9465 8.2894 0.9425 8.1276
1 001 81927 1 (900009) | (02936) | (0.0009) | (0.2816)
0.9490 8.2920 0.9467 8.2053
1,500 82054 1 5 0006) | (0.2857) | (0.0006) | (0.2800)
0.9471 9.0534 0.9420 8.6682
" 001 86480 | 0010 | (03151) | (0.0009) | (02746)
1.500 8 6500 0.9508 8.9662 0.9474 8.7502
: (0.0007) | (0.2733) | (0.0007) | (0.2570)

0.9452 93431 0.9396 8.8169
i 00 1 88316 1 o011y | 03333) | (00011) | (0.2651)
1.500 3 8119 0.9515 9.2332 0.9475 8.9500
: ' (0.0007) | (0.2704) | (0.0007) | (0.2511)
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Table 2. Coverage of 95% intervals for returns of FIGARCH (1, d, 0) with parameters
w=0.1 ¢=0,d=075 £=0.70, and normally distributed errors

PRR CB
Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)
0.9486 14.4595 0.9438 13.6482
1 001 137075 1 (90008) | (0.9551) | (0.0008) | (0.6366)
0.9487 13.8366 0.9466 13.7280
1,500 1 136713 5 0006) | (0.6438) | (0.0006) | (0.6399)
0.9461 16.1092 0.9405 14.2578
" 001 143548 1 (h0010) | (1.7109) | (0.0010) | (0.6539)
0.9485 14.6742 0.9456 14.4359
1,500 143354 (0.0007) | (0.6775) | (0.0007) | (0.6656)
0.9440 18.0165 0.9380 14.7725
20 S00 | 14.8002 0.0011) | (29435 | (0.0011) | (0.6877)
0.9488 15.3545 0.9457 15.0135
1,500 14.8004 (0.0008) | (0.6949) | (0.0008) | (0.6744)
Table 3. Coverage of 95% intervals for returns of FIGARCH (1, d, 0) with parameters
=01, $=0,d=0.50, §=0.45, and ¢ distributed errors
PRR CB
Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)
0.9472 7.7956 0.9439 7.6657
| 001 7913 1 g0000) | (04959) | (0.0010) | (0.4888)
0.9498 7.7323 0.9475 7.6445
1,500 1 76186 1 0006y | (0.4924) | (0.0006) | (0.4856)
0.9471 8.3987 0.9431 8.1344
" 00| 79504 1 g0010) | (0.5066) | (0.0010) | (0.4909)
0.9515 8.3308 0.9484 8.1151
1,500 1 79451 60007) | (0.4548) | (00007) | (0.4328)
0.9461 8.5280 0.9415 8.2087
o L2001 TP ] oot | 047s) | 0010) | (04777)
1.500 79909 0.9512 8.4872 0.9475 8.2109
’ ' (0.0007) | (0.4493) | (0.0007) | (0.4238)
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Table 4. Coverage of 95% intervals for returns of FIGARCH (1, d, 0) with parameters
w=0.1 ¢=0,d=095, =090, and 7 distributed errors

PRR CB

Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)

0.9503 23.1458 0.9447 22.3984

| 00| 219002 1 6000y | (2.1748) | (0.0009) | (2.1580)
0.9505 22.5621 0.9471 22.1749

1,500 1 21.8846 1 5006y | (2.1383) | (0.0006) | (2.1054)
09514 239179 0.9444 22.7487

" 00| 224492 1 0000y | (2.0273) | (0.0009) | (1.9510)
0.9513 23.4620 0.9472 229138

1,500 1 225059 1 60007y | (21716) | ©00007) | 21757)
0.9506 24.6057 0.9430 23.3332

o L2001 22 | oo10) | osany | oot | .ossi
1.500 79 8517 0.9512 24.2496 0.9469 23.4797

: ' (0.0008) | (2.2326) | (0.0007) | (2.1605)

Table 5. Coverage of 95% intervals for returns of FIGARCH (1, d, 0) with parameters

=01 ¢=0,d=025, f=0.10, and exponentially distributed errors

PRR CB

Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)

0.9239 2.9334 0.9068 2.8747
. 500 2.8962 (0.0016) | (0.0753) | (0.0019) | (0.0750)
0.9186 29117 0.9098 2.8843
1,500 29102 1 0011y | (0.0650) | (0.0013) | (0.0639)
0.9250 3.1341 0.9187 3.0655
" 00130923 1 h0015) | (0.0658) | (0.0015) | (0.0678)
0.9266 3.0751 0.9238 3.0377
1,500 3.0848 1 0010y | (0.0557) | (0.0010) | (0.0535)
0.9202 3.1797 09132 3.0964
i 001 30763 1 h0017) | (0.0567) | 0.0017) | (0.0580)
1.500 31707 0.9235 3.1361 0.9205 3.0857
: ' (0.0011) | (0.0518) | (0.0011) | (0.0499)
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Table 6. Coverage of 95% intervals for returns of FIGARCH (1, d, 0) with parameters
=01 ¢=0,d=090, f=0.10, and exponentially distributed errors

PRR CB

Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length

(SE) (SE) (SE) (SE)

0.9224 2.9320 0.9069 2.8753
1 001 29736 1 (ho016) | (02449) | (0.0021) | (0.2370)
0.9133 2.8937 0.9060 2.8732
1,500 1 29721 6 0010) | (02275) | ©00015) | (0.2245)
0.9262 3.1743 0.9254 3.1000
" 00 1 38716 1 o011y | (01055) | (0.0013) | (0.0802)
1.500 3 8581 0.9286 3.1954 0.9283 3.1676
: ' (0.0008) | (0.1080) | (0.0009) | (0.1022)

09172 3.0880 09164 3.0415
20 500 4.1893 (0.0011) | (0.0645) | (0.0014) | (0.0557)
1.500 41859 0.9202 3.1110 0.9197 3.0753
: ' (0.0008) | (0.0684) | (0.0013) | (0.0553)

4.2. PREDICTION INTERVALS FOR VOLATILITIES

Here, we discuss the performance of PRR and CB prediction intervals for future
volatilities. We apply the same Monte-Carlo design used for returns. Tables 7-9 report the
results for normal, 7 and centered exponential error distribution, for lead lag 1, 10, 20
respectively. Further, we included lead lag 2 since the CB method is not able to provide
prediction intervals for lead lag 1. In the FIGARCH formulation, one step ahead prediction
for volatility is known because its condition on past returns and the uncertainty associated

with o2

~n» (h=1) is only due to the parameter estimation. Consequently, volatility of one
step ahead is completely determined at time 7 and therefore, the theoretical length of one

step ahead prediction is zero. Similarly, CB method does not provide one step ahead

prediction intervals because parameter estimates are fixed in every bootstrap step.
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Table 7. Coverage of 95% intervals for returns of FIGARCH (1, d, 0) with parameters
w=0.1 ¢=0,d=050, =045, and normally distributed errors

PRR
Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)
500 ] 09320 | 05237 ] ]
| (0.0113) | (0.0218)
| 500 ] 09380 | 02887 ] ]
: (0.0108) | (0.0095)
0.9591 0.7267 0.5481 0.3005
) 500 0.2485 (0.0063) | (0.0302) | (0.0184) | (0.0160)
0.9545 0.4775 0.6454 0.2794
1,500 0.2509 (0.0057) | (0.0160) | (0.0151) | (0.0112)
0.9192 1.8620 0.8907 1.6727
" 001 L7380 b 0037y | 0.0711) | 0.0048) | (0.0605)
1500 17573 0.9399 1.8698 0.9290 1.7799
: ' (0.0019) | (0.0574) | (0.0022) | (0.0532)
0.9135 23364 0.8901 2.0811
i 00 1 21478 1 (6 0041) | (0.0038) | (0.0049) | (0.0783)
1500 51583 0.9410 2.3814 0.9302 2.2447
’ ' 0.0021) | (0.0742) | (0.0023) | (0.0692)

One step ahead predictions under the PRR method for normal and 7 errors provide

the coverage below the nominal value for the different parameter combinations that is used.

However, the exponential errors provide conservative probabilities with 0.9580 and 0.9540

for sample sizes 500 and 1500 respectively. Generally, as sample size increases the

coverage of probabilities are close nominal value 0.95. When forecasting two or more lags

ahead, the predicted coverages are well under the nominal value 0.95 in CB method. The

differences are significant in contrast to the coverage probabilities in returns that we

discussed in section 4.1, where under CB method coverage probabilities in returns are close

to 0.95 in most cases. Table 7 shows the coverage probabilities under exponentially
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distributed errors. Coverage probabilities for first and second lags are close 0.95 while
coverage probabilities for tenth and twentieth lags are well below 0.95. Overall, the PRR
method provides a much better coverages for volatility than CB method for the parameters

and the error distributions considered in this study.

Table 8. Coverage of 95% intervals for returns of FIGARCH (1, d, 0) with parameters

®w=0.1 ¢=0,d=090, £=0.10, and ¢ distributed errors

PRR CB
Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)
500 ) 0.9420 0.1979 ) )
| (0.0105) | (0.0127)
1500 ) 0.9380 0.1170 ) )
’ (0.0108) | (0.0080)
0.9550 1.4776 0.8546 1.3949
, 001 13830 1 6000) | (01055) | (0.0067) | (0.0995)
0.9495 1.4476 0.8761 1.4074
1,500 1 13927 1 0 0000y | (0.1011) | (0.0055) | (0.1000)
0.9524 2.3374 09115 2.2902
0 500 22723 1 90023y | (0.0871) | (0.0037) | (0.0827)
0.9480 23151 0.9275 2.2927
1,500 122640 1 5 0010y | (0.0924) | (0.0026) | (0.0925)
0.9510 2.2820 09136 2.2359
20 500 229001 00003y | (0.0465) | (0.0036) | (0.0432)
1500 27418 0.9475 22717 0.9294 2.2465
: ' (0.0018) | (0.0414) | (0.0025) | (0.0393)
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Table 9. Coverage of 95% intervals for returns of FIGARCH (1, d, 1) with parameters
w=0.1 ¢=0.20,d =050, f=0.45, and exponentially distributed errors

PRR CB
Lead | Sample | Theoretical Mean Mean Mean
) Mean
lag size length coverage | 4 (SE) coverage length
(SE) & (SE) (SE)
500 ) 0.9580 0.9054 ) )
| (0.0090) | (0.0797)
1500 ) 0.9540 0.4732 ) )
’ (0.0094) | (0.0318)
0.9546 1.7733 0.7062 1.2328
, 001 L0382 1 60051y | 01317) | (0.0146) | (0.1043)
0.9437 1.3333 0.7422 1.1250
1,500 1.0744 0.0048) | (0.0796) | (0.0127) | (0.0713)
0.9284 3.0446 0.8151 24797
0 500 2.3655 (0.0048) | (02150) | (0.0085) | (0.1586)
0.9284 2.6998 0.8615 24821
1,500 | 2.3745 (0.0038) | (0.1705) | (0.0059) | (0.1644)
0.9096 3.5279 0.8101 29321
i 001 3T 0050y | (02479) | (0.0080) | (0.1801)
1500 3 0982 0.9169 3.2513 0.8558 29835
: ' 0.0038) | (02235) | (0.0053) | (0.2194)

5. APPLICATION TO A REAL DATA SET

The proposed method was applied to S&P 500 return data from November 5, 2010

through May 2, 2018, for a total of 2201 observations. Data was obtained from the website

https://finance.yahoo.com. Following standard practice, daily percentage returns of closing

pricesi.e. ¥, =100.log(s, /s, ;)for t=2,3,...,2201 were used. Here s, denotes the closing

price at day 7. The following figure shows one-step ahead bootstrap prediction interval

(95%) for S&P 500 returns.


https://finance.yahoo.com
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One-step ahead prediction intervals for S&P 500 returns

Figure 1. One-step ahead prediction intervals for S&P 500

Table 10. Estimated coverage probabilities for S&P 500 future returns

Lead lag Coverage

1 0.9600
10 0.9424
20 0.9227

We analyzed the coverage probabilities for 1 step, 10th step, and 20f1 step ahead

forecasts for the S&P 500. Table 10 reports coverage probabilities of the future lags.
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6. CONCLUSIONS

In this paper we adapted the procedure proposed by Pascual ez al. (2006) to
construct bootstrap prediction intervals for GARCH realizations. Finite sample properties
were investigated using a Monte-Carlo simulation study. In this study it is assumed that
the order of the FIGARCH process is known. This is not a great limitation because in most
empirical modeling situations, researchers have found that a GARCH process with orders

p=¢g=1would suffice. Extending this argument, one would assume that
FIGARCH(, d, 1) would suffice in most cases, as was demonstrated in our example with

S&P 500 data. Simulation study shows that the proposed bootstrap-based prediction
intervals perform well. The coverage probabilities obtained in the simulation study are
close to the nominal values for symmetric error distributions, under varying sample sizes
and parameter combinations. Further extension of obtaining prediction intervals for
models such as Autoregressive-FIGARCH, FARIMA-FIGARCH using sieve bootstrap

method is currently ongoing.
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1. SIEVE BOOTSTRAP-BASED PREDICTION INTERVALS FOR ARMA
MODELS WITH FRACTIONALLY INTEGRATED GENERALIZED

AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTIC (FIGARCH)
ERRORS

ABSTRACT

In this paper, a sieve bootstrap-based prediction interval for Autoregressive (AR)
and Autoregressive Moving Average (ARMA) models with Fractionally Integrated
GARCH (FIGARCH) error structure is proposed. The order of the AR or ARMA
component is assumed unknown but the order of the FIGARCH error structure is assumed
to be known. The ARMA or AR parts of the models are approximated by a finite order AR

process whose order pis estimated using the AIC criterion from among models of order
one through p_ ., where p__ is determine by a criteria given later in this paper.

Resampling is done on residuals obtained by employing one-step method which fits an
AR(p)-FIGARCH(l,d,1)to the data. Results are compared with a two-step method
where resampling is done by first fitting an AR(p) and then fitting a FIGARCH(1,d,1) to
the residuals of the AR(p) fit. A Monte-Carlo simulation study shows that both methods
yield good intervals for most of the parameter combinations, with coverage probabilities
reasonably close to nominal level. The one-step method, however, produces better
coverage probabilities when the roots of the AR polynomial in the AR-FIGARCH model
are closer to unity.

Keywords: Prediction intervals, ARMA-FIGARCH, Bootstrap resampling, Simulation
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1. INTRODUCTION

Typically, distributions of economic and financial time series exhibit leptokurtic
behavior and the errors show heteroscedasticity. Therefore, traditional Gaussian based
prediction intervals produce poor coverage probabilities. An alternative is a non-parametric
bootstrap approach, which does not require distributional assumptions about the underlying
error. Some of the earliest work on bootstrap-based time series prediction intervals can be
found in Stine (1982, 1987) and Findley (1986). They compute the prediction mean square
errors for future forecasts using a bootstrap technique. Thombs and Schucany (1990) used
a non-parametric approach to establish the forecast intervals for autoregressive (AR) time
series models by incorporating the variability of parameter estimates into the bootstrap
process. They used backward representation method to construct the prediction intervals,
where the current value is written in terms of a linear combination of future values. The
backward representation method is only limited for AR models, and it is not possible to
use it for processes with a Moving Average (MA) component. Cao et al. (1997) proposed
a computationally much faster bootstrap method, which does not require backward
resampling. In contrast to former method presented by Thombs and Schucany, the latter
method does not incorporate the uncertainty of the parameter estimates into the prediction
intervals. Alonso et al. (2002, 2003) proposed a sieve bootstrap (SB) based approach to
constructing prediction intervals for stationary and invertible Autoregressive Moving
Average (ARMA) processes with unknown orders. All the bootstrapped based prediction
intervals discussed above work fairly well, with coverage probabilities close to the nominal

values, if the conditional variance of the error distributions display homoscedastic
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behavior. This is because the bootstrapping was done by resampling the residuals of the
model. When errors indicate heteroscedasticity, direct resampling approach may destroy
the heteroscedastic error structure, providing prediction intervals that are too narrow during
times of high volatility. Hence modelling heteroscedastic error structure become important
when constructing residual-based bootstrap. In the following we discuss some pioneering
work done with respect to modeling conditionally heteroscedastic error in the time series
context.

The Autoregressive Conditional Heteroscedastic (ARCH) formulation was
introduced by Engle in 1982 to model empirical time series with heteroscedastic behavior
in the conditional variance. Bollerslev (1986) extended the ARCH model by proposing the
Generalized ARCH (GARCH) formulation, which accommodates a wider class of time
series with a heteroscedastic error structure. Subsequently, the Integrated GARCH
(IGARCH) representation was introduced by Engle and Bollerslev (1986) to model time
series with persistent volatility in squared shocks (error terms), which cannot be adequately
modeled using ARCH and GARCH formulations. Motivated by long memory behavior of
the autocorrelations of squared or absolute residuals reported in studies by Ding, Granger
& Engle (1993) and Harvey (1993), Baillie et al. (1996) introduced the Fractionally
Integrated GARCH (FIGARCH) representation to model time series that exhibits long
memory in the conditional variance with respect to squared shocks. One of the major
advantages of the FIGARCH model is that it incorporates a wide range of conditional
heteroscedastic models, including ARCH, GARCH and IGARCH formulations as special
cases. Often, these models were employed to obtain point forecasts without considering

the uncertainty associated with future values.
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Miguel and Olave (1997) introduced a bootstrap-based interval forecasting method

for ARMA(p, g)—ARCH(r) models with known orders p, g and r. This prediction

interval, however, did not incorporate the uncertainty associated with the parameter
estimation. Pascual et al. (2006) developed a bootstrap-based prediction interval for

returns and volatility for the GARCH(1, 1) model. In contrast to Miguel and Olaves’s

intervals, these intervals incorporated the wvariability due to parameter estimates.
Thilakaratne and Samaranayake (2014) used a sieve bootstrap technique to compute
prediction intervals for Autoregressive-GARCH (AR-GARCH) processes. Although they
allowed for conditional heteroscedasticity in error variance, it was assumed that the squares
of the conditional heteroscedastic error terms have short memory. In contrasts, our
proposed method can accommodate long memory in the heteroscedastic error components.
More specifically, we propose a sieve bootstrap-based prediction interval for

ARMA(p, q)—FIGARCH(r, d, s) type models. As this the case with the sieve bootstrap

technique, we approximate the ARMA-FIGARCH model by a finite order AR-FIGARCH
process.

The proposed method is different from that adopted in Thilakaratne and
Samaranayake (2014). The proposed method uses a one-step approach where the
parameters in both the AR and the FIGARCH components of the model as estimated
simultaneously while Thilakaratne and Samaranayake used a two-step estimation method.
In the two-step estimation method, one first estimates the parameters of AR part, and then
use the AR residuals to estimate the parameters of the FIGARCH part. By contrast,
parameter estimation in one-step estimation is done by maximizing the quasi likelihood

function of the complete AR-FIGARCH model.
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This paper is organized as follows. We introduce the ARMA-FIGARCH model in
Section 2. Then we discuss the sieve bootstrap technique in Section 3. Section 4 reports
the Monte-Carlo simulation study and its results. An application to a real-world data set is

presented in Section 5. Finally, we present our conclusions in Section 6.

2. ARMA-FIGARCH PROCESS

Let {Xt}tez be a real valued time series with FE(X,)=x , which follows

ARMA(p, q)-FIGARCH(r, d, s) model,

- y4 - q
X, = Zal.XH. +ij817j +g,,
1 j=1

gl = GZZN (l)

ol =0+ B(L)o} +|1- BUL)-pL)1-L1)" |,
where, a, 20, b, 20, ® >0, and )~(l =X, — u_. The series {Zt}teZ is a white noise process
with zero mean and unit variance. Note that [ 1is the lag operator and
BL)=BL+BL+. +BL and §(L)=1-$L—-$ [’ —. —¢ L’ with B, #0and g, #0 It

is assumed that the fractional differencing parameter d in the expression for the

conditional variance lies between O and 1.
Observe that the sequence {8t}in the above expression follows a

FIGARCH(r, d, s) process. In our simulation study we restrict our analysis to the

FIGARCH(, d, 1)error structure. This is the FIGARCH process that is most frequently
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employed to model empirical processes. The conditional variance of a FIGARCH(, d, 1)

process can be €XPress as
o =+ 1-BL-(1-g L)1~ L) |& + po?,,

o; =o(-B)"+[1-(1-B) ' (-¢L)1-1)' |& )
Furthermore, conditional variance in expression (2) can be written as

ol =o(-8)"+A(L)e’, where /1(L)=Z&Lk. The coefficients of A, ieN can be
k=1

obtained by equating terms with common power in the equation

ML) = AL+ AL+ + AL+ =[1-(1-B)  A-4L)1- L) |.

Thus,

A=¢—pf+dand A, =LA +[(k-1-d)/k—¢]6,,., k=2,3,...,

where, 0,, =0, ,(k —1-d)k™, k=2,3,..., refer to the coefficients in the series expansion
of (1-L)?, with §,, =1and &,, =d . Now, all 4, for ieN must be positive to ensure the

non-negativity of the conditional variance o . Following Baillie et al. (1996), the sufficient
conditions for non-negativity of conditional variance are 0< S, <¢ +d and 0<d <1-24,.

The above formulation of ARMA-FIGARCH permits us to model time series with

short memory in the conditional mean and long memory in conditional variance.
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3. THE SIEVE BOOTSTRAP-BASED PREDICTION INTERVAL METHOD

The sieve bootstrap (SB) technique based on residual resampling from a sequence
of AR approximations originated from Buhlmann (1997) and Kreiss (1992,1988). The
advantage of the method is that it does not require the prior knowledge about the order of
the underlining process. Buhlmann (1997) used truncation of an infinite AR process to
approximate a class of linear processes, which include stationary and invertible ARMA

processes. The order of the truncation, p = p(n)is assumed to advance to infinity at a

smaller rate than the sample size n, as n approaches infinity. Kreiss (1988) originally
proposed this finite AR approximation to a class of linear process that can be written as an
infinite AR process. Akaike Information Criteria (AIC) was used by Buhlmann (1997) to
choose the order of AR approximation. Alonso et al. (2002, 2003) formalized the above
ideas and adapted the sieve bootstrap technique to construct the prediction intervals for
ARMA type models with homoscedastic error distributions. Mukhopadhyay and
Samaranayake, (2010) modified the SB method used by Alonso et al. (2002, 2003) to
improve the coverage probabilities in ARMA type processes. Later Rupasinghe and
Samaranayake (2012, 2013) established a computationally much faster SB prediction
interval for Fractionally Integrated Autoregressive Moving Average (FARIMA) processes.

In our proposed approach, we approximate the ARMA part of ARMA-FIGARCH

model by a finite AR process using the SB concept. The optimal order p of the finite AR

approximation is found by using AIC wvalues. Following Alonso et al. (2003) and
Thilakaratne & Samaranayake (2014), the value for p is chosen from the values

1/(2r+2)

1,2,.., .., using the AIC criteria, where, p,,. = c(n/log(n)) with #>2 and some
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¢>0. This p_, . is different from the ARMA process with homoscedastic errors used by
Alonso et al. (2002), and Mukhopadhyay & Samaranayake (2010), where they used p__

as n/10 when constructing prediction intervals using the SB method.
The steps for the proposed SB based (one step estimation) procedure for obtaining

prediction interval for ARMA-FIGARCH model is given below:
1. Select the maximum order p,_ . for the given realization {X,}’ of an AR-
FIGARCH process. We used value of p_ =22 27 for n =500, 1000 respectively,

according to the formula described in the previous paragraph. Then find the optimal

order p from among the values p =1,2,..., p__using the AIC criteria.
2. Use the least-squares estimates, @,,@,,...,@, of AR(p) process as the initial values

for AR part in maximum likelihood estimation of AR-FIGARCH model.
Assignment of initial values for the FIGARCH parameters @,,¢,,d, [, can be done
using random values within a feasible region. Obtain the maximum likelihood

estimates, @,®,,..., @,é)l,(/;l,a; , ,@’1 of AR-FIGARCH by using these initial values.

3. Compute the (n— p) residuals z, by usingz, =¢,/0,, §t=—2f:0@j(XH—X)
where

67 =a(-B) +[1-0-By a-4L)a-1y |2,

~ O(-B) + A8 + e+ + AE,
with @, =—1, t€(p+1,..,n)and X is the mean of the process{X,}" . Further,

note that §t2 =(n— ]A?)*lzj:ﬁﬂél.z for +<pand k is the truncation lag of the
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polynomial A(L). Note that £ should be select large enough to obtain a reasonable

approximation to A(L). In our simulation study, we used 4=1,000.

Compute the centered residualsz =2 —2 ;1€ ( p+l..., n) ; where,
~ An—1 n A
Zt:(n_p) Ziziprlzi'

Denote the empirical distribution function of centered residuals {Zt};las

A R _
F;(.X) = (n_p) Zt:i,+1](—w,x](zt) .

Draw a bootstrap sample with replacement from the above distribution and denote
itby z,, forr=—-m—k+1,...—1,0,1,...,n. m is chosen as 2,000 in this study.

Generate the bootstrapped FIGARCH seriese,, t=-m+1,....—1,0,1,...,n by first

constructing a bootstrapped conditional variance series, {oﬁf*}using estimated

FIGARCH parameters of the AR-FIGARCH model obtained in Step 2. Then use

,t=—-m+1, ...,-10,1, ..., n to generate {8:} In our simulation study,
m was chosen to be 2,000.

Then generate the bootstrapped AR-FIGARCH series,

*
X,,

t=-m+1, ..,0,1, ... n using the bootstrapped FIGARCH errors, {gt* }
: . * T 2N el *
created in Step 7 and based on the recursion X, —X = Z}_Zlgoj (Xi ;=X ) +¢, . Set

the initial p values, X, #< pequal to X . Drop the first m observations to

eliminate the effect of the initial values.
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9. Fit an AR-FIGARCH to the bootstrapped series {X: }; and then estimate the
parameters of it using the Q-MLE method. The parameter estimates of AR and
FIGARCH coefficients are denoted by @:,@;,...,@; and 6?)1* ,(%*,c;’*, ,81*, respectively.

10. Compute the h-step ahead bootstrap forecasts of future values using the

bootstrapped AR  coefficients @:,@z,...,@; and FIGARCH coefficients

Ak x0Ty A . . .
@ ,¢ .d , B, asshown in the following recursions:

* v Poax * RV * # Ak
Xn+h_X_Zj:l(oj(XnJrh—j_X)+gn+h7: & 2,10

z+h: n+h " nth

67, =0" (=B +[1-(-8) " (-¢)a-1)" |s7,,

Aok Ak —1 AR ) S w)
~o (1-B) +A4& .+ e,
for h>0 and g, =&, for t<n.

11. Obtain the estimated bootstrap distribution of X

n+ho>

denoted by ﬁ;*h(.) by

repeating steps 6-10, B = 1,000 times in the simulation study. ﬁX (.)is the estimate

*

of theF;* (), the bootstrap distribution function of X which is used to

nth>
approximate unknown distribution function of X ., given the observed time series.

12. The 100(1-a)% prediction interval for X is then computed as

n+h

[Q*(zx /2),0°(—a/ 2)], where O* ()= ﬁ;ll are the percentiles of the estimated

mwh
bootstrap distribution.
There is only a slight difference between the processes of constructing prediction

intervals using the one-step estimation method and the two-step estimation method. To



54
accommodate the process under the two-step estimation method, parameter estimations of
Step 2 and Steps 9 must be changed to a two-steps estimation process while keeping the
other steps fixed. By applying this change, we estimated the coverages under two-steps

estimation method.

4. THE SIMULATION STUDY

We investigated the finite sample performance of the proposed SB prediction
intervals for ARMA-FIGARCH model using a Monte-Carlo simulation. We compared the
performance of the proposed method with that of the two-step estimation method used by
Thilakaratne and Samaranayake (2014) for the AR-GARCH model. Note that they also
used the SB technique and then applied the two-step estimation method. A Monte-Carlo
simulation was carried out with three different error distributions: normal, ¢ with 7-
degrees of freedom, and centered exponential with mean O and variance 1. Sample sizes

n =500 and n=1,000 were used in the simulation. The following 2 models were used to
simulate the conditional variance of the FIGARCH error structure:

Model 1: o =0.05+|1-0.45L—(1-1)** |& +0.4557

1>

Model 2: & =0.05+[1-0.2L—(1-L)*’ |&’ +0.207 .

We used the AR(1), AR(2) and ARMA(1,1) models along with the error structure

of the heteroscedastic conditional variance, as defined in Models 1 and 2. The following

AR and ARMA models were considered:
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X, =alX,  +g,
X, =aX,  +a,X, , +g,
X, =aX,  +be  +¢,
with gy, 0, €{0.3,0.5,0.7,0.9} and b €{-0.3,—0.5,-0.8} ,where a, = p, + p,, a, = —p, 0,
for the AR(2) model. Weused a, = p, in the AR(l) model as well as AR part of the
ARMA model. Here 1/ p, and 1/ p, are the roots of autoregressive polynomial.

We generated N =500 independent time series for each combination of the model,
sample size, nominal coverage, and error distribution. Then Steps 1 through 12 were
implemented. In each simulation run, R =1,000 future values, {Xm} , for h=1, 10, 20
were generated. Then, the coverage probabilities were estimated by calculating the

proportion of those future values, X, ,, that fall between the lower and upper bounds of

n+ho>

the bootstrap intervals. Therefore, the coverage for the i

simulation run is given by
C(z’)zR*Zf:le[X;k(i)], where A:[Q*(a/z),Q*(l—a/z)]is the 100(1-a)th

bootstrapped prediction interval. /,() is the indicator function of the set 4 and

X7 (), r=1, 2,..., 1,000 are the R future values generated at the /" simulation run. The
theoretical and bootstrap lengths were obtained by using

L()=X_ (1-a/2)-X  (x/2)and L,i)=0Q (1-a/2)-Q"(a/2), respectively.

nik n
L.(i)is difference between 100(1—)th and the 100(«x / 2)th percentiles generated from
R future values of the underling model with known order and coefficients. Similarly, Z,(7)
is the difference between 100(1—«)th and the 100(«/2)thbootstrapped percentiles

calculated following steps 1-12. The mean coverage, mean bootstrap prediction interval



56

length, mean theoretical interval length, and their standard errors were calculated as

follows:
Mean coverage C = N ' Zil C(i),

211/2

Standard error of mean coverage SE. = {[N (N-D]" ZZI [C (i)-C ] |

Mean length (bootstrap) L, = N ’IZZI L,(@),

2]1/2

Standard error of mean length SE; = {[N(N — l)]f1 Zil [LB (i) - ZB] |

Mean theoretical length L. = N’ Zil L(i) .

In total, 120 different combinations of model type, sample size, nominal coverage

probability (1-«) and error distributions were investigated in this study. However, we

report only a representative sample of these results for 95% intervals to conserve space.
These results are reported in Tables 1-9. The tables report mean coverage, mean interval
length, mean theoretical length, standard error of mean coverage, and standard error of
mean interval length.

To further investigate the behavior of the intervals for each of the 120
combinations, the minimum value, percentiles (25, 50th and 75'"), and maximum value
of coverage probabilities, the bootstrap interval bounds (lower and upper), and theoretical
interval bounds (lower and upper), were computed, based on the 1,000 values generated
through simulation. The complete set of results from the simulation study are available
upon request from the corresponding author.

The coverage probabilities given by the simulation results are close to nominal

values under both one-step and two-step methods. However, the coverages produced by
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the one-step estimation method are slightly higher than that from the two-step estimation
method for all parameter combinations. The reason could be that the one-step approach is
able to capture the sampling variation better than the two-step method. The interval lengths
reported for the one-step estimation method are wider than theoretical lengths, but in some
instances the interval lengths reported in the two-step estimation method are narrower than
the theoretical lengths. For example, one-step ahead bootstrap length given for sample size
500 in Table 1 is slightly less than the theoretical length. However, much larger deviation
of lengths can be seen in Table 2 for future lags 10 and 20. In those cases, theoretical
lengths are larger than the bootstrap lengths for the two-step estimation method by at least
2 units. As discussed above, theoretical lengths are constructed by using the known

underlining error process. Thus, intervals shorter than the theoretical lengths point to some

deficiency in the two-step method.

Table 1. Coverage of 95% intervals for X, =0.7.X, | +¢&,,where g, follows a
FIGARCH(1, d, 0) with Model 2 and normal errors : AR root : 1.429

One Step Method Two Step Method
Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)
0.9519 3.1990 0.9479 3.1146
L Y ] oo | 02376) | 00020) | (0.1626)
0.9538 2.6470 0.9495 2.7026
1,000 1 25847 5 0009) | (0.096) | (0.0014) | (0.0021)
0.9547 5.5889 0.9489 5.3503
" 00 1 S 1077 1 (h0008) | (02506) | (0.0009) | (0.2264)
0.9566 49732 0.9508 4.8405
1,000 1 45459 1 5 0006) | (0.0997) | (0.0008) | (0.1045)
0.9557 5.6401 0.9504 5.3929
i 00 1 49465 1 (h0008) | (0.1814) | (0.0009) | (0.1621)
1.000 46147 0.9568 5.1307 0.9524 5.0192
: ' (0.0006) | (0.0603) | (0.0008) | (0.0797)
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Table 2. Coverage of 95% intervals for X, =1.6X, , —0.63X, , +¢&,, where & follows a
FIGARCH(1, d, 0) with Model 1 and normal errors : AR roots : 1.111, 1.429

One Step Method

Two Step Method

Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)

00563 | 59876 | 09452 | 57655

R e B T T
L0001 36934 1 (0.0008) | (0.1587) | (0.0008) | (0.1504)

o |00 | 334060 (8:3(5)?;) (316.68888660) (8:?)8?;) (209.33519633)
1,000 ] 338881 (8:3(5)83) (306.9637616()) (gizﬁz) (301.;‘904629)
L0 | s | oy | dsisn | ooots | (1)
1,000 1 39.5086 (8:3(5)3;) ?ﬁ13304828) (gizéig) (307.9012518())

Table 3. Coverage of 95% intervals for X, =09X,  —0.8¢, , +¢,, where & follows a

FIGARCH(1, d, 0) with Model 1 and normal errors : AR root : 1.111, MA root: 1.429

One Step Method

Two Step Method

Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)

0.9533 63194 0.9414 5.0588

L PP ] o010y | 0a9on | oo | ©.1739)
0.9568 62752 09482 | 60130

1,000 1 59747 6 0007) | (0.1842) | (0.0008) | (0.1694)
0.9590 7.0733 09457 | 64556

" 00 1 63270 1 (h6000) | (02151) | (0.0009) | (0.1865)
0.9608 6.9479 0.9508 64986

1,000 163406 | 5 5007) | (0.1942) | (00007) | (0.1766)
0.9603 7.4858 0.9455 6.6595

i 00 1 64UT 1 (ho010) | 02377) | (0.0010) | (0.2019)
000 | 63848 0.9636 73055 09516 | 66685

: ' 0.0007) | (02060) | (0.0007) | (0.1788)




Table 4. Coverage of 95% intervals for X, =0.9X, , +¢,, where g, follows a

FIGARCH(1, d, 0) with Model 1 and 7 errors : AR root : 1.111

59

One Step Method

Two Step Method

Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)
0.9566 5.5571 0.9459 5.1851
1 00 1 S T106 1 (6000) | (0.1558) | (0.0010) | (0.1441)
0.9596 5.7647 0.9497 5.3398
1,000 152265 | (50007) | (0.1814) | (0.0008) | (0.1450)
0.9565 12.9195 0.9408 11.4645
" 001 3347 1 o011y | (03880) | (0.0012) | (0.3239)
1.000 11,5331 0.9624 13.3923 0.9480 11.9058
: ' (0.0007) | (0.4827) | (0.0009) | (0.3269)
0.9573 14.6911 0.9393 12.7528
20 P00 1 123006 1 (6019) | (04549) | (0.0013) | (0.3819)
0.9647 15.4522 0.9488 13.0985
1,000 1 124507 5 5008y | (0.7160) | (0.0009) | (03607)

Table 5. Coverage of 95% intervals for X, =1.4X, | —0.45X _, +¢,, where & follows a
FIGARCH(1, d, 0) with Model 2 and 7 errors : AR root : 1.111, 2.000

One Step Method

Two Step Method

Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)

o [ | oen Lot | o (o)
1,000 1 24048 (8:3(5)32) (g:ggég) (gi?fé?% (gigg?g)
0.9529 12.0464 0.9327 10.5856

10 — — (OO 9050611) (lOl 39502 247) (8 . 8231’ 3) (lOO 39155379)
1,000 1 10.9245 1 50007y | (02618) | (0.001) | (0.2347)
o e |t [ | ae s
oo | o | 0058 e | oae [ e
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Table 6. Coverage of 95% intervals for X, =0.5X, , —0.5¢, | +¢&,, where &, follows a
FIGARCH(1, d, 0) with Model 2 and 7 errors : AR root : 1.111, MA root : 2.000

One Step Method

Two Step Method

Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)

0.9517 2.7394 0.9471 2.6918
1 00 120520 1 o011y | 01714) | (0.0013) | (0.1338)
0.9539 2.7353 0.9494 2.7028
1,000 126308 50010y | (01722) | 0011y | (0.1379)
0.9553 3.2939 0.9518 3.2330
" 001 29769 1 (90009) | (0.1275) | (0.0009) | (0.1059)
0.9564 3.2626 0.9533 32114
1,000 12,9988 (0.0007) | (0.1173) | (0.0007) | (0.0996)

0.9561 3.2939 0.9539 3.2893
20 500 2.9041 (0.0010) | (0.0699) | (0.0008) | (0.0792)
1.000 79291 0.9569 3.2447 0.9544 3.2427
: ' (0.0007) | (0.0615) | (0.0007) | (0.0768)

Table 7. Coverage of 95% intervals for X, =0.7.X, | +¢&,,where g, follows a

FIGARCH(1, d, 0) with Model 1 and exponential errors : AR root : 1.429

One Step Method

Two Step Method

Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)

0.9577 5.0549 09404 | 45486

L] oorn) | 02194 | ©0019) | 0.1897)
0.9571 48846 0.9395 43878

1,000 | 42552 50014y | (0.3100) | (00017) | (0.1956)
0.9651 7.9496 00486 | 67102

" 00 1 39014 1 (h0010) | (03075) | (0.0010) | (0.2593)
0.9657 77161 09504 | 66018

1LO0O 1 57549 5 0008) | (0.4764) | (0.0008) | (02868)
0.9540 84588 09364 | 7.0035

i 00 1 64687 1 10011y | (03014) | (0.0010) | (0.2631)
000 | 63700 0.9555 83494 0.9393 69287

: ' 0.0009) | (04662) | (0.0009) | (0.3157)
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Table 8. Coverage of 95% intervals for X, =1.2X, | —0.35X , +¢,, where & follows a
FIGARCH(1, d, 0) with Model 1 and exponential errors : AR roots : 1.429, 2.000

One Step Method

Two Step Method

Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)
0.9595 5.0811 0.9427 4.5907
1 00 1 43883 1 (h0017) | (02278) | (0.0018) | (0.1949)
0.958 4.8964 09411 4.4265
L0001 42555 1 (50013) | (03152) | (00016) | (02112)
0.9729 13.1102 0.9572 10.8066
" 00 1 8.9%6 0.0009) | (05022) | (0.0009) | (0.4138)
0.9743 12.8744 0.96 10.7466
1,000 | 8.7529 (0.0007) | (0.8299) | (0.0008) | (0.4567)
0.9612 14.0963 0.9436 11.3741
i 00 1 99098 1 o010) | 0518) | (0.0009) | (0.4436)
1.000 9 8245 0.9621 14.0540 0.9470 11.3921
: ' (0.0008) | (0.8525) | (0.0008) | (0.5121)

Table 9. Coverage of 95% intervals for X, =0.7X, , —0.3¢,, +¢,, where & follows a

FIGARCH(1, d, 0) with Model 1 and exponential errors : AR roots : 1.429, MA root:

2.000
One Step Method Two Step Method
Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)
0.9582 5.2341 0.9417 46110
| 00 1 43992 1 (h0019) | (03726) | (0.0021) | (0.2553)
0.9602 4.8589 0.9447 4.5371
1,000 1 43045 50010y | (02157) | 00015) | (02104)
0.9607 7.2034 0.9450 5.7769
" 001 50263 1 o011y | (0.7468) | (0.0011) | (03362)
0.9609 6.2367 0.9462 5.5254
1,000 149859 1 5000y | (02510) | (0.0009) | (0.2481)
0.9506 8.5814 0.9321 6.1023
i 00155969 1 g0013) | (1.5762) | (0.0012) | (03961)
1.000 5 4549 0.9524 6.7032 0.9360 5.8147
: ' (0.0010) | (0.2648) | (0.0009) | (0.2653)
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Tables 1-3  reports the coverages of AR(1)-FIGARCH(, d, 0),
AR(2)-FIGARCH(, d, 0), and ARMAC(1, 1)-FIGARCH(l, d, 0) under error Model
2, Model 1, and Model 1, respectively with normal innovations. The computed coverages
in both methods are close to 0.95 for the AR(1) - FIGARCH(1, d, 0)model, as reported in
Table 1. Coverages and lengths for a AR (2) model with FIGARCH errors are reported in
the Table 2, where one of the roots of autoregressive polynomial AR(2) is closer to unity

(root equals 1.111) and the other root is 1.428. Again, coverages for one-lag ahead forecasts
are closer to 0.95 in both methods. However, coverages for the 4-step predictions for 7> 1,
including for lags which are not reported here, indicate liberal intervals with coverage
probabilities less than 0.95 for the two-step estimation method. For example, coverages for
10" and 20' steps are 0.9021 and 0.9005, respectively, for samples size 500 for the two-
step estimation method. However, as sample size increases to 1,000, these coverages
increase to 0.9237 and 0. 9250 respectively. By contrast, coverages for the one-step
estimation method lies in between 0.95 and 0.96, for all forecast lags between 1 and 20 (we
only report coverages for lags 1, 10 and 20 in the above tables). Both methods provide
reasonably good coverages for the ARMA(], 1) -FIGARCH(, d, 0) model, where the AR
rootis 1.111 and MA roots is 1.125.

Relatively similar results can be seen for AR(1)-FIGARCH(l,d,0),
AR(2)-FIGARCH(1, d, 0) and ARMAC(1, 1)-FIGARCH(, d, O)under ¢ -distributed
errors in Tables 4-6. The coverage probabilities for AR(1)-FIGARCH(],d,0),
AR(2)-FIGARCH(1, d, 0) and ARMAC(1, 1)-FIGARCH(l, d, O)under Model 1 with

exponentially distributed errors are reported in Tables 7-9. In the exponential case, we
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obtained coverage probabilities with conservative bootstrap lengths using the one-step
estimation method, with coverages ranging from 0.95 to 0.98 in most of the cases (these
are not reported here but can be obtained from the corresponding author). In fact, we
observed that when the roots of the AR component are close to 1, the coverages are much
larger than 0.95. Further, coverages given in one-step estimation method always larger than

that of two-step estimation method.

5. APPLICATION TO A REAL DATA SET

Baillie et al. (1996) and Tayefi & Ramanathan (2016) discussed modelling
exchange rates using a FIGARCH model. Borrowing from their idea, the proposed method
was applied to logarithms of US Dollar to Japanese Yen (JPN/USD) exchange rates. Daily
data was obtained for the period January 1, 2010 through December 15, 2021 from the
website at URL: https://finance.yahoo.com. Figure 1 shows the calculated one-step ahead
prediction intervals from March 11, 2020 to December 15, 2020. Furthermore, the
estimated 95% coverage probabilities for lead lags 1, 10 and 20 for the logarithm of
exchange rates are reported in the Table 10. As the results show, the prediction intervals

we obtained are quite conservative.

Table 10. Estimated coverage probabilities for future exchange rates

Lead lag | Coverage
1 0.9750
10 0.9948
20 1.0000
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Figure 1. One-step ahead prediction interval for logarithm of Japanese Yen/US dollar
exchange rates

6. CONCLUSION

Here we proposed a bootstrap-based method to obtain prediction intervals for AR
and ARMA models with FIGARCH error structure. We extended the sieve bootstrap
method proposed by Alonso et al. (2002,2003) to construct prediction intervals by
incorporating long memory error variance, instead of an independent and identically
distributed error structure. A Monte-Carlo simulation study is carried out to investigate
finite sample properties. Furthermore, we assumed the order ofthe AR and ARMA part is
unknown, and the order of FIGARCH part is known. Simulation results show that the
proposed bootstrap method provide coverages closes to nominal under both parameter
estimation methods in most of the cases. However, we recommend the one-step estimation
method over the two-step estimation method when AR parameter closes to unity with

weaker MA coefficient with FIGARCH errors.
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I11. SIEVE BOOTSTRAP-BASED PREDICTION INTERVALS FOR FARIMA-
FIGARCH MODELS

ABSTRACT

A sieve bootstrap-based prediction interval method is proposed for Fractionally
Integrated Autoregressive Moving Average (FARIMA) process with Fractionally
Integrated Generalized Autoregressive Conditional Heteroscedastic (FIGARCH) errors.
Here we assume the order of the FARIMA part is unknown and the order is determined by
the AIC criterion. Resampling of the residuals is done by using two methods. First method
fits an AR-FIGARCH process and then obtain the residuals of AR-FIGARCH model.
Second method utilize the resamples of FIGARCH errors after fitting an AR model. A
Monte-Carlo simulation study shows that both methods provide reasonably good coverage
probabilities for most of the parameter combinations considered, but the coverages for
intervals constructed by the two-step method deviate from the nominal value when the
fractional integrated parameter d in the FARIMA part of the model is close to 0.5 and a
root of the AR polynomial is close to one. Finally, the one-step method is applied to
monthly consumer price index (CPI) inflation rates in Japan to provide an application to
real-world data.

Keywords: Prediction interval, Fractional integration, Sieve bootstrap
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1. INTRODUCTION

Modeling long memory processes have become important in areas such as
hydrology, macroeconomics, geophysical sciences, and in modeling stock returns and
exchange rates. Fractionally integrated ARMA models have been used extensively to
model long memory processes. Weights of the autocorrelation function and the impulse
response function of such models decay slowly at hyperbolic rate. The most widely used
fractionally integrated model for long memory processes, the Autoregressive Fractionally
Moving Average (FARIMA) model was independently introduced by Granger and Joyeux
(1980) and Hosking (1991). Baillie et al., (1996) extend this model by adding time
dependent error structure and modeled the Consumer Price Index (CPI) inflation of ten
different countries. Apart from the long memory nature of the conditional mean of the
inflation rates, Baillie et al. (2002) found out that the squared and absolute values of
residuals obtained from the fractionally filtered inflation series also exhibit long memory.
Therefore, they introduced the hybrid FARIMA-Fractionally Integrated Generalized
Autoregressive Conditional Heteroscedastic (FIGARCH) formulation to model this dual
long memory feature in both first and second moments of inflation rates.

Forecasting is an important aspect in long memory models. Generally, forecasting
a process with short memory into the far future cannot be done accurately. On the other
hand, forecastable horizon for long memory processes are much longer than that for short
memory process, because explanatory power of the past observations decay at an
exponential rate for short memory processes while it is slow hyperbolic decay for long

memory processes. Brockwell and Davis, (1991) discussed the point prediction of future
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values in FARIMA process based on the innovations algorithm. Ray, (1993) suggested
that approximating a FARIMA model to an AR(p) can be useful in long-range forecasting
for long memory models. Discussions about forecasting with FARIMA and related
processes can be found in the papers published by Crato and Ray (1996), Beran and Ocker
(1999), Ramjee et al. (2002), and Baillie and Chung (2002).

There are plenty of articles available for FARIMA related point forecasting,
however there is dearth of research articles about prediction intervals. Bisaglia and
Grigoletto (2001) established prediction intervals for FARIMA processes by using
bootstrap-based method. This bootstrap-based method involves parameter estimation of
the fractional difference parameter, as well as the AR and MA coefficients jointly, using
the Whittle approximation (Doukhan et al., 2003 and Fox and Taqque, 1986). However,
the computational time required for the implementation of this method is high, but it
performs well, providing the coverages close to the nominal value under normally
distributed errors. Rupasinghe and Samaranayake, (2013) introduced a computationally
much faster sieve bootstrap-based method of obtaining prediction intervals by
approximating FARIMA by a finite order AR(p) model. This method provides coverages
close to the nominal values under the normal errors as well as non-normally distributed
errors such as exponential and a mixture of two normal distributions. The above authors,
however, assumed that the error structure of the FARIMA process is homoscedastic. In
practical situations, such as constructing prediction intervals for stock returns, exchange
rates and inflation rates, errors often exhibit heteroscedastic behavior. Amjad et al. (2017)
developed a bootstrap-based prediction interval for FARIMA-GARCH process to handle

such a situation. The FARIMA-GARCH allows for long memory in the conditional mean
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process and short memory in the conditional variance process. As Baillie et al. (2002), and
Conrad and Karanasos, (2005) suggested, the autocorrelations of both first and second
moments of inflation rates decay in a slow hyperbolic rate, suggesting that FARIMA-
FIGARCH model is a better fit for inflation rates. It can be argued that this phenomenon is
not limited to exchange rates only. It is reasonable to assume that if long-memory exists in
the mean process, then there is the possibility of such long memory to exhibit in the
variance process as well. Thus, our aim is to introduce a bootstrap-based prediction interval
for models that exhibit long memory in both the conditional mean and the conditional
variance. Thus, our focus is to develop prediction intervals for the FARIMA-FIGARCH
model using a residual-based bootstrap approach. The residuals for the bootstrap is
obtained by fitting an AR-FIGARCH model, where the FARIMA component is
approximated by a sequence of AR processes as employed in Rupasinghe and
Samaranayake (2013). The resampling method based on such an approximation technique
is generally called the sieve boostrap (SB).

The rest of the paper is as follows. Section 2 describe the FARIMA-FIGARCH
model. A brief explanation about sieve bootstrap technique and the steps for obtaining the
proposed bootstrap-based prediction intervals are given in Section 3. The results of a
simulation study are reported in Section 4. A real-life application of the method is given in

Section 5. Finally, conclusions are provided in Section 6.
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2. FARIMA-FIGARCH PROCESS

2.1. THE FARIMA MODEL

Based on Granger (1980), Granger and Joyeux (1980), and Hosking (1981), the
mathematical formulation of FARIMA(p, d,,,,, g) model is as follows. Let {Xt}be a
stationary process such that

a(L)(1- L) X, =b(L)e,, (1)
for some —0.5<d,,, <0.5. Where a(L)=1-alL~-..-a,l?, B(L)=1-bL—..=b I are
polynomials of degree p and g respectively, with a, 20 and b, # 0, and with all their
roots outside the unit circle. The innovations in{e,} s are independent and identically
distributed random variables with zero mean and unit variance. Then {X,} is called a
stationary FARIMA process. According to the Wold decomposition, infinite-order

moving-average representation of the above process is given by, X, = Zj;o v €, , and the

infinite-order autoregressive representation is given by E - . X, =g, provided the
j=0""7J t—j t

process is invertible. The coefficients in the infinite sums decay at a hyperbolic rate for

large lags j. That is, v, ~¢ j*" and 7 ~c,j * " Similarly, the autocorrelation
function p; = ¢, j *m:~1 decay at a hyperbolic rate for large lags j . Note that ¢,,¢,, and ¢,
in the above expressions for rate are constants. The parameter d,,, represents the degree
of the long memory present in the FARIMA(p,d,,,»,q)process. If 0 <d,, <0.5, then the

process is said to be a long memory process and if —-0.5<d,, <0, then it is an
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intermediate memory process. The process is stationary and invertible when
—0.5<d,,, <0.5. The process does not have finite variance when 0.5<d,,, <1. In this
study we only considered processes with long range dependence and stationary, therefore,

we only considere the cases where 0<d,,, <0.5.

2.2. FARIMA-FIGARCH MODEL
A FARIMA-FIGARCH model is quite useful when modeling features such as long

memory in both the conditional mean and the conditional variance. Let {¥,:7<cZ}be a

real-valued process with following FARIMA(p, d,.., q)—FIGARCH(r, d,, s)
representation:

a(L)(1-L)"™= X, =b(L)s,,
£ =0:z, 2)
ol =o+p(L)o; +[1- BL) - (L)1~ L) ]!,

where, a(L), b(L)and d,,, are defined similar to FARIMA model definition in 2.1. The
sequence {Z,} is a white noise process with zero mean and unit variance. L is the lag
operator such that S(L)=BL+B,C+.. . +B.L and ¢(L)=1-¢L-$L[’— . —¢ L with
S #0and ¢ #0. The fractional integrating parameter d,, in the conditional variance

expression is assumed to lie between 0 and 1. If 6 =, a constant, then process reduces

toa FARIMA(p,d,,,q) model.

The sequence {6}} in the above expression follows a FIGARCH(r,d,.,,s) process.

Our analysis in this study is restricted to the error structure of FIGARCH(1, d,;, 1), which
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is commonly used to model conditional variance with long memory. The conditional

variance of a FIGARCH(], d,,

> 1) process can be express as:

ol =0 +[1- BL—(-¢ L)1~ L)’ + fo’,,

o; =o(1-f) " +[1-(1- ) 'A-4L)1-L)" e/, G)

Furthermore, the conditional variance in expression (2) can be written as

ol =o(l- B)" + A(L)e;, where A(L)=>_ A" . The coefficients 4 's,i=1,2,... canbe

k=1

obtained by equating terms with common power in the equation
ALY = AL+ A0 + AL+ =[1-(1-8)"' (-4 L)1 L)"].
Thus, 4 =¢ B +dy; and 4, =S4, , +[(k_l_dFG)/k_¢l]§dFG,k—la k=23,

where 6, =6, , (k—1-dy)k', k=2,3,.., refer to the coefficients in the series
expansion of (1— L)  with 8,0 =land 6, =dg . Now,all 1,,fori=1,2,. mustbe

positive to ensure the non-negativity of the conditional variance o . Following Baillie et

al. (1996), the sufficient conditions for non-negativity of conditional variance are

0< B <@ +d,, and 0<d,, <1-24,. As stated earlier, for -0.5<d,, <0.5, FARIMA

rG —
process is stationary and invertible with finite variance. Since the unconditional variance
of FIGARCH process is infinite (Baillie et al., 1996), the unconditional variance FARIMA-

FIGARCH process is infinite for d,, # 0.
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3. SIEVE BOOTSTRAP-BASED PREDICTION INTERVALS FOR THE
FARIMA-FIGARCH MODEL

The sieve bootstrap is a method of approximating class of linear processes with
sequence of finite AR processes, with the bootstrap applied to the residuals from fitting the
approximate AR model. The order ( p(n)) of the finite AR process is allowed to approach
to infinity at a slower rate than the sample size n, as the sample size approaches infinity.
The well-established sieve bootstrapped method was first introduced by Buhlmann (1997).
The advantage of this technique is that it does not require the prior knowledge of the order
of the underlying process such as the ARMA. Alonso et al. (2002, 2003) extended the sieve
bootstrap technique to construct prediction intervals for a general class of linear processes
which includes ARMA models. Later, Mukhopadhyay and Samaranayake (2010) modified
the Alonso (2003) sieve bootstrap technique to improve the coverage probabilities.

Let {X,}be azero mean FARIMA process as defined in equation (2.1). The process

is invertible if the roots of the (L) polynomial lie out sided the unit circle and when

0<d,,; <05. In such situations (2.1) can be written as Zj:o”ij' =g, t € Zwith

7, =1 and Zio‘ﬂ'j‘ <oo. With this representation, the sieve bootstrap method to obtain

prediction intervals, proposed by Alonso et al. (2002, 2003) seems feasible. Some
modifications, however, need to be applied before we proceed. To apply Alonso’s method

directly, coefficients of infinite moving average representation must satisfy

g//].‘ <o  for some reN. However, the FARIMA(p,d,,,,q)model does not

] .
j=0 J

satisty this condition. Poskit, (2006) overcame this issue by approximating much more
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general class of linear process, including FARIMA process, by finite order AR processes.
After applying Poskit’s results, Rupasinghe and Samaranayake, (2012, 2013) obtained a
modified version of the sieve bootstrap prediction intervals introduce by Alonso et al.
(2003). They also established asymptotic properties for the FARIMA prediction intervals
using sieve bootstrap approach.

The FARIMA-FIGARCH model contains heteroscedastic FIGARCH errors instead
of homoscedastic errors assumed in the FARIMA model. Similar to methodology
discussed in Rupasinghe and Samaranayake’s 2013 article, we approximated FARIMA-
FIGARCH by a finite AR-FIGARCH model. Then the parameters of AR-FIGARCH are
estimated by quasi maximum likelihood(Q-MLE) method. Hereafter, we will refer to this
approach as the one-step estimation method. We compared this method with the two-step
estimation method used by Thilakaratne and Samaranayake (2014) to compute prediction
intervals for AR-GARCH models. Parameter estimation in the two-step estimation method
is done by first fitting an AR approximation of the FARIMA component and then fitting a
FIGARCH to the AR residuals. We used both one-step and two-steps estimation methods
to construct the prediction intervals.

The AR-FIGARCH approximation is an important step in our proposed bootstrap

technique. As suggested in Poskit (2006) and employed in Rupasinghe and Samaranayake
(2013), the maximum truncation lag p,,. is selected as p,,. = [log(n)] ™ where n is the

sample size. Along these lines, the optimal order p of the truncation of AR part from

possible choicesin {1,2,..., p, .. }is selected using the AIC criteria. In our simulation study,

we set p__to 36 and 44 for sample sizes 500 and 1000 respectively. The steps for proposed
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SB based one-step prediction interval for FARIMA-FIGARCH model, for the one-step

procedure, is discussed as follows.

1. Select the maximum order p, . for the given realization {X,}" of an FARIMA-

FIGARCH process. We used value of p_ =36, 44 for n=500, 1000
respectively. Then find the optimal order p among the possible values
p=12,..,p_. using the AIC approach. Here we assumed order of the order of the

FIGARCH is known.

2. Use the least-squares estimates, @,,,,...,;of the AR(p)parameters as the initial

values for the AR part in maximum likelihood estimation of the AR-FIGARCH

model. Assignment of initial values for the FIGARCH parameters o,,d,,d, S, are
done by randomly selecting values in a feasible region. Obtain the maximum
likelihood estimates, (/31,(/32,...,(/3&,&31,(31,5’, ,@’1 of AR-FIGARCH model by using
these initial values.

3. Compute the (n— p)residuals z, by usingz, =¢,/0,, & = —Zio ?,(X,_, -X)

and

62=0(-B)" +[1-(1-B)' A-¢L)1- L)' 18,

~ A= B+ AE + e, .+ A EL,,
where @, =—1re(p+1,..,m)and Xis the mean of the process{X,} .

g =(n- f?)’lz;m g’ for t < pand k the truncation lag of the polynomial A(L).
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Compute the centered residualsz, =2 —Z,;re(p+1,...,n), where
~ AN—1 n A
Zl:(n_p) Zi:jﬁlzi'

Denote the empirical distribution function of the centered residuals {Z,}. as

n
P+l

n

E@=m-p">" 1., .G

t=p+l
Draw a bootstrap sample with replacement from the above distribution and denote
itby z,fort=—m—k+1..—10,1...n.

Generate the bootstrapped FIGARCH series ¢, t=-m+1,..,—1,0,1,....n by first

creating a bootstrapped conditional variance, &, using estimated FIGARCH

parameters of AR-FIGARCH obtained in Step 2. Then use

g =z Al*, t=-m+1,..,-1,0,1,...,n to generate 8:.Here m 1s chosen to be 2,000.

Then generate the bootstrapped AR-FIGARCH series, X, t=-m+1,...,0,1

to h

PREEEY

using the bootstrapped FIGARCH errors, &, created in step 7 and using the

recursion X, —X = le 9, (X L X ) +¢ with the first p values of X set equal
to X . Drop the first m observations to eliminate the effect of the initial values.
We used m=2000 in this study.

Fit an AR-FIGARCH for bootstrapped series {Xl* }; and then estimate the

parameters of it using the Q-MLE method and let the estimated AR and FIGARCH

coefficients be denoted by ¢;,¢;,...,¢; and &, .. .d", B respectively.
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10. Compute the  A-step ahead bootstrap forecasts of future values using the

bootstrapped AR coefficients, ¢/, ¢,...¢,and FIGARCH coefficients
o', ¢ ,d", B using the following recursions:

# = P oAx # = # # * A
Xn+h -X = Zj:l Qj (Xn+h—]' B X) +é 8l+h = ZnJrh(7

n+h>

G, =0"(1-F) +[1-(1-£) ' 1-¢H(1-L) 1,
~0 A=-FY ' + AR, +. AR,

n+h-1

for 7#>0 , and letting g, = £, for 1 <n.

11. Obtain the estimated bootstrap distribution of X

nth>

denoted by F. (.), by
repeating steps 6-10 B=1,000 times in the simulation study. ﬁX () 1s the

estimate of the F;* (), the bootstrap distribution function of X, , and is used to
n+h

n+h>

approximate unknown distribution of X,

given the observed sample.

12. The 100(1-«)% prediction interval for X

n+h

is then computed by

[Q*((x /2),0"(1-a/ 2)], where O*()=F." are the percentiles of the estimated

o
bootstrap distribution.

There is only a slight difference between the process of obtaining prediction
intervals under two-steps estimation method and one-step estimation method. In order to
accommodate above steps under two-steps estimation method, parameter estimations in
Step 2 and Step 9 need to change by estimation the parameters of the AR component first

and the FIGARCH component using the residuals obtained by fitting the AR
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approximation. By applying this change, we estimated the coverages under two-steps

estimation method.

4. THE SIMULATION STUDY

We investigated the finite sample properties of bootstrap prediction intervals for
FARIMA-FIGARCH model by carrying out a Monte-Carlo simulation study. We used
standard normal,  with 7 degrees of freedom, and centered exponential distributions with
zero mean and unit variance, for FARIMA-FIGARCH innovations. The conditional

variances of the FIGARCH error structure used in this study are given by

Model 1: 67 =0.05+[1-0.45L—(1-L)** |&] + 04557,
Model 2: o7 =0.05+[1-0.1L-(1-L)" |’ +0.157,.

2 2

In  addition, we considered FARIMA(O, d,, 0) FARIMA(O, d,5, 1)
FARIMA(L, d,,;, 0) and FARIMA(L, d,,,, 1) models along with FIGARCH error
structures defined in Models 1 and 2. The parameters for AR part: a, € {0,0.5,0.8,0.9},

MA part: b, € {0,-0.5,-0.8} and fractionally integrated part: d,,,, € {0.25,0.4,0.49}, were

used to simulate the FARIMA process with FIGARCH errors. Some of these combinations
for the FARIMA part were also employed in Rupasinghe et al. (2013). Sample sizes
considered are 500 and 1,000.

We generated N = 500 independent time series for each combination of the

model, sample size, nominal coverage, and error distribution. Then steps 1 through 12 were
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implemented. In each simulation run, R =1,000 future values, {X,,,}, h=1, 10, 20 were
generated. Then the coverage probabilities were estimated by calculating the proportion of

those future values, X

n+h>

falling between the lower and upper bounds of the bootstrap
intervals. Therefore, the coverage for the i simulation run is given by
ClH)=R'Y." I[X] ()] where A=[Q'(«/2).0'(1-a/2)| is the 100(1-a)ih
bootstrap prediction interval. /,(.)is the indicator function of the set A4 and
X7 (), r=1, 2 ..,1,000 are the R future values generated at the /" simulation run. The
theoretical and bootstrap lengths are obtained by using L. (i) =X, ,(1-a/2)- X (a/2)
and L,(i)=0 (1-a/2)-Q"(a/2) respectively. L,(i)is difference between 100(1 - )th
and the 100(« / 2)th percentiles generated from R future values of the underling model
with known order and coefficients. Similarly, lﬁ(l) is the difference between 100(1 - )th

and the100(«r / 2)thbootstrapped percentiles calculated following the steps 1-12. The mean

coverage, mean bootstrapped prediction interval length, mean theoretical interval length

and their standard errors are calculated as follows:
_ N
Mean coverage C =N 'Y~ C(i),

12
Standard error of mean coverage Sk = {[N (N-D]" Zil [C iH-C T} ,

Mean length (bootstrap) L, = N ’IZZI L,@),

1/2
and

2

Standard error of mean length SE = {[N (N - 1)]71 Zil [LB 0) —ZB]Z}

Mean theoretical length L. = N’ Zil L(i) .
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In total, 60 different combinations of model type, sample size, nominal coverage

probability (1-«r) and error distributions were investigated in this study. However, we

report only a representative sample of results for 95% intervals, in Table 1-8 due to space
limitations. These tables report mean coverage, mean interval length, mean theoretical
length, standard error of mean coverage and standard error of mean interval length. To
further investigate the behavior of the intervals for each of the 60 combinations, the
minimum value, percentiles (25", 50th and 75"), and maximum value of coverage
probabilities, the bootstrap interval bounds (lower and upper) and theoretical interval
bounds (lower and upper), were computed, based on the 1,000 values generated through
simulation. The complete set of results of the simulation study are available upon request
from the corresponding author.

Tables 1-5 report the results under the normal error distribution. It can be seen that
the coverages for normal errors and 7 distributed errors are similar. Therefore, we allocate
only Table 6 to the 7 distributed errors. Finally, computed coverages and lengths under
exponential errors are reported in Tables 7 and 8. Further, we compared the coverages and
bootstrap lengths between the two estimation methods we used. One-step estimation
method yields wider and conservative intervals with coverage probabilities larger than 0.95
(see in Tables 1-6). Out of 36 cases only in 4 occasions the coverage fell below 0.95. In
contrast, the two-step estimation method yielded 14 cases with the coverages less than 0.95.

Two-step estimation method provides poor coverages for FARIMAC(], d,,,, 0) errors

AR >

when an AR root is close to the unity and d,,, is close to 0.5. However, coverages given

under one-step method are close to 0.95 in such cases, as shown in Table 1. The coverages

for the two-step procedure for lead lag one prediction are 0.9416 and 0.9469 for sample
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sizes 500 and 1,000 respectively in Table 1. However, as the prediction horizon increases,
for example for lead lags 10 and 20, coverages are below 0.90 for the sample sizes 500 and
1,000 providing narrower intervals than the expected theoretical lengths. This is the only
occasion that we can see a large contrast between the two estimation methods with respect
to the coverages. When the forecast horizon is greater than 1, coverages for the one-step
method are often greater than 0.96.

Two-step method do produce slightly conservative intervals but in general,
intervals obtained using the one-step estimation method are wider than those obtained
using the two-step estimation method. Only on two occasions the interval width of one-
step estimation narrower than that from the two-step estimation method, when computing
lead one coverages (see Tables 4 and 5). Also note that the theoretical and bootstrap
intervals are narrower when the FIGARCH error structure follows Model 2. The reason

could be that the parameter coefficient of lagged variance (8, = 0.1) is smaller in Model 2

than in Model 1( 5, = 0.45).
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Table 1. Coverage of 95% intervals for (1-0.9L)(1-1)** X, = ¢,, where ¢, follows a
FIGARCH(1, d, 0) with Model 1 and normal errors

One Step Method

Two Step Method

Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)
L0 | ST | oorn | e | ooy | ©2139)
1000 | 59305 | oooom) | @36 | oo | @209
o 500 33.9061 (83(5)143‘) (3 16,;549786) (8?)(6)3;) (2069110394:;
1000 | 337709 | oo000) | (rosen | ooo1s) | (1osso)
Lo |0 | eesar (8:3(5)}47;) (513 88856307) (giggzg) (316..11759481)
1,000 | 482148 (Sjﬁfﬂ) (514 31689066) (8:?)(9)53) (411.41704429)

Table 2. Coverage of 95% intervals for (1-0.9L)(1-L)** X, = (1-0.8L)s,, where &,
follows a FIGARCH(1, d, 0) with Model 1 and normal errors

One Step Method

Two Step Method

Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)

0.9563 5.9123 0.9443 5.6024

| 00153393 1 goo10) | (0.1356) | (0.0011) | (0.1276)
0.9581 6.0727 0.9492 58572

L0001 59527 1 (60007) | (0.2752) | (0.0008) | (02955)
0.9640 8.0450 0.9525 7.4486

o L0 L O | ooy | 0.1828) | 0.0009) | (0.1775)
0.9634 82634 0.9533 76226

1,000 169939 1 50007y | (05122) | (0.0008) | (0.3657)
0.9661 8.9580 09531 8.1382

i 00 1 74029 1 (h6000) | (02145) | (0.0011) | (02118)
000 | 73081 0.9670 9.1603 0.9546 8 5427

> ' 00007) | (0.5559) | (0.0009) | (0.6602)




Table 3. Coverage of 95% intervals for (1-0.8L)(1—1)"* X, = (1-0.5L)¢,, where &,
follows a FIGARCH(1, d, 0) with Model 1 and normal errors
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One Step Method Two Step Method
Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)
0.9562 6.0394 0.9443 5.7384
| 001 56821 1 0000y | (0.1555) | (0.0010) | (0.1582)
0.9587 6.0092 0.9483 5.7296
1,000 1 56681 1 55007y | (0.1500) | (0.0008) | (0.1398)
0.9631 10.1004 0.9507 93140
o L0 L 3T L 0o009) | (02602) | (0.0010) | (0.2445)
0.9633 9.9058 0.9524 9.1760
1,000 87825 1 50007) | (0.2368) | (0.0008) | (0.2076)
0.9644 11.2536 0.9516 10.1927
o L2010 ] o010) | 02992) | ooin) | (02752)
1.000 99971 0.9665 11.0093 0.9541 9.9654
: ' (0.0008) | (0.2702) | (0.0009) | (0.2193)

Table 4. Coverage of 95% intervals for (1-0.5L)(1-1)"* X, = (1-0.8L)¢,, where &,
follows a FIGARCH(1, d, 0) with Model 1 and normal errors

One Step Method

Two Step Method

Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)
0.9443 2.5803 0.9469 2.6339
| 001 28817 1 go019) | (0.1607) | (0.0021) | (0.1205)
0.9491 2.5786 0.9506 2.6028
1,000 24826 50014y | (0.1667) | (0.0019) | (0.1154)
0.9570 3.6073 0.9550 3.5707
o L0 L 2 L ooos) | 0.1282) | 0.0008) | (0.1100)
1.000 3 1524 0.9546 34104 0.9532 3.4238
: (0.0007) | (0.1090) | (0.0007) | (0.1010)
0.9599 3.8609 0.9583 3.7999
i 00 1 31602 1 (h6008) | (0.1069) | (0.0008) | (0.0980)
1.000 31728 0.9580 3.5950 0.9568 3.6386
: ' (0.0006) | (0.0716) | (0.0007) | (0.0848)




Table 5. Coverage of 95% intervals for (1-L)** X, = ¢,, where & follows a
FIGARCH(], d, 1) with Model 2 and normal errors
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One Step Method Two Step Method
Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)
0.9486 2.5302 0.9499 2.6169
1 001 24293 1 goo16) | (0.1215) | (0.0018) | (0.1150)
0.9498 2.5244 0.9513 2.6395
1,000 1 24436 1 50010y | (01272) | (00016) | (0.1187)
0.9595 43147 0.9551 4.1976
o L0 0 | ooos) | ©.1240) | 00010) | (0.1278)
0.9578 4.0506 0.9538 4.0196
1,000 1 3.5978 5 0006) | (0.1119) | (0.0007) | (0.1179)
0.9634 4.8156 0.9582 4.5744
o L% 1 PP ] ©o00s) | 0112s5) | .0009) | (0.1138)
1.000 3 7084 0.9618 4.4876 0.9575 4.3764
: ' (0.0006) | (0.0819) | (0.0007) | (0.1013)

Table 6. Coverage of 95% intervals for (1-0.8L)(1-1)**X, =(1-0.5L)e,, where &,

follows a FIGARCH(1, d, 0) with Model 1 and 7 errors

One Step Method Two Step Method
Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)
0.9578 6.1258 0.9467 5.7475
| 001 55716 1 0000y | (0.2530) | (0.0010) | (02442)
0.9576 6.0092 0.9484 5.6757
1,000 155764 1 (50007) | (0.2515) | (0.0009) | (02340)
0.9634 12.9725 09511 11.7676
o L0 | O | o010 | (04994) | 00011) | (0.4659)
0.9643 12.6592 0.9527 11.5684
1,000 1108071 | 5 5008) | (04937) | (0.0010) | (0.4507)
0.9679 15.9896 0.9538 13.9553
i 00 1 121271 o011y | (06263) | (0.0013) | (0.5401)
1.000 121735 0.9694 15.5293 0.9552 13.7483
’ ' (0.0009) | (0.6006) | (0.0012) | (0.5394)
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Table 7. Coverage of 95% intervals for (1-0.5L)(1—1)"* X, = ,, where ¢, follows a

FIGARCH(1, d, 0) with Model 1 and exponential errors

One Step Method

Two Step Method

Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)

0.9567 51837 0.9401 46393

| 00| 44157 1 o019 | (03271) | (0.0021) | (02548)
0.9608 49921 09457 | 46091

L0001 44303 1 50013y | (02539) | (00015 | (0.2376)
09721 9.4086 0.9570 7.5830

o L0 L 0O | 00009y | (08459) | 0.0010) | (0.4475)
0.9728 8.6214 0.9590 7.4746

1,000 160734 1 (50007) | (04092) | (0.0008) | (03547)
09660 | 107496 | 009515 8.1160

o L2010 ] 00009) | (12349) | 0.0009) | (0.5002)
000 | 64023 0.9655 9.4076 0.9513 7.9657

: ' 00007) | (0.4484) | (0.0007) | (0.4028)

Table 8. Coverage of 95% intervals for (1-0.5L)(1—-L)** X, =(1-0.8L)e,, where &,

follows a FIGARCH(1, d, 0) with Model 2 and exponential errors

One Step Method

Two Step Method

Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)

0.9443 2.3534 0.9441 22217
1 00 1 224834 1 (h0008) | (02429) | (0.0031) | (0.2115)
0.9472 23116 0.9482 2.2682
1,000 | 2.2346 0.0022) | (0.2367) | (0.0027) | (0.2235)
0.9389 2.7355 0.9361 2.5372
0 500 2.6754 (0.0015) | (0.1075) | (0.0011) | (0.0820)
0.9377 2.5170 0.9368 2.4835
1,000 126561 1 59010y | (00793) | (00009 | (0.0810)
0.9330 3.1060 0.9291 2.5508
i 001 29303 1 go015) | (0.2822) | (0.0011) | (00511
1.000 50552 0.9318 2.6019 0.9302 2.5149
: ' (0.0009) | (0.0484) | (0.0009) | (0.0454)
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Results for FARIMA process under Model 1 and Model 2 errors generated with
exponential white noise inputs are reported in Tables 7 and 8 respectively. Coverages are
greater than 0.96 under the one-step estimation method except for lead lag 1 prediction for
sample size 500 (see Table 7). On the other hand, the two-step estimation method provides
coverages reasonably close to 0.95. However, when a moving average component is added
to the FARIMA model, the coverages provided by both methods are well below the 0.95
for forecast horizons above lead one (see Table 8). Further, the bootstrap lengths given
under both methods are less than the theorical lengths for lead lag 10 and 20 (see Table 8).
It is possible that the AR approximation we employed is inadequate to model FARIMA
with a moving average component with roots relatively close to unity and with
conditionally heteroscedastic error with long memory. This is a phenomenon that needs
further investigation.
As a summary, proposed bootstrap method works fairly well for the FARIMA-
FIGARCH model. Both the estimation methods provide good coverages, but we
recommend one step estimation method when the estimated AR parameter is close to 1 and

fractionally integrated parameter (dy,;) is close to 0.5, without or with weaker moving

average parameter in the FARIMA part.

5. APPLICATION TO A REAL DATA SET

Baillie et al. (2002) modeled the monthly Consumer Price Index (CPI) inflation
series for 8 different countries and found that it exhibits a long memory behavior in both

first and second conditional moments. According to their investigation, this is the only
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economic variable that exhibit this property. So, they suggested the FARIMA-FIGARCH
model to represent the underlying generating process of such series displaying dual
phenomenon of long memory in inflation rates and squared inflation rates. Therefore, we
used monthly Japanese CPI inflation series to construct the prediction intervals. The
monthly CPI data were obtained from Federal Reserve Bank of St Louis
https://fred.stlouisfed.org with data ranging from January 1960 to October 2020. We then

computed the CPI inflation rates, which is defined as rt = 100 -Alog(CPIt), t =1,2,...,729
, where CPItis the monthly CPI. Here we used one-step estimation procedure to construct

the prediction intervals. Table 9 reports the calculated coverage probabilities for 1st 10th
and 20th step ahead forecasts. The following figure shows the one-step ahead constructed

sieve bootstrap prediction-based intervals for CPI inflation series.

Prediction intervals for CPI inflation series

Figure 1. 95% sieve bootstrap-based prediction interval for CPI inflation rates


https://fred.stlouisfed.org
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The Figure 1 reports the 95% upper and lower bounds. There are two future values

that lie above the upper bootstrap bound and below the lower bootstrap bound, providing
96% of coverage, which is close to 0.95. Further, 10-step and 20-step intervals provide
coverages slightly greater than the nominal value of 0.95. These results are consistent with
the simulation results of FARIMA-FIGARCH under normal and 7 distributed white noise
process. In general, intervals are narrower in most periods, with the widest interval seen in

May 2014 with interval length 3.5511.

Table 9. Estimated coverage probabilities for future CPI inflation rates

Lead lag | Coverage
1 0.9600
10 0.9560
20 0.9753

6. CONCLUSIONS

The importance of modeling the dual presence of long memory in both the first two
conditional moments is discussed by Baillie et al. (2002) and Conrad and Karanasos
(2002). In this article we proposed a sieve bootstrap-based prediction interval for
FARIMA-FIGARCH model. Finite sample performance was investigated using a Monte-
Carlo study, which showed that the proposed intervals provide close to nominal coverage
when the underlying white noise process that drives the innovations has a normal or a ¢
distribution. Results when the underlying white noise process is exponential show good

coverage only for lead one predictions. In this study we assumed the order of the FIGARCH
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component is known and in the simulation study the orders were set at p =1and g =1with

d lying between 0 and 1. Note that this is not a great limitation because basic lower order
GARCH type models provide better fit to empirical data as shown in most of the empirical

studies. In addition, practitioners have routinely used GARCH(1,1) and
FIGARCH(1,d, 1) or FIGARCH(O, d, 1) to model empirically observed volatility.

Further, coverages in application to CPI inflation rates confirms that the proposed bootstrap
prediction interval appropriate for forecasting data with long memory found in the first and

second conditional moments.
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IV. BOOTSTRAP PREDICTION INTERVALS FOR HYPERBOLIC

GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTIC
(HYGARCH) MODELS

ABSTRACT

It is well known that the volatility of certain financial assets exhibits long range
dependence. Fractionally Integrated Generalized Autoregressive Conditional
Heteroscedastic (FIGARCH) model was widely used to model such a behavior. However,
the second moment of FIGARCH does not exit. Therefore, Hyperbolic Generalized
Autoregressive Conditional Heteroscedastic (HY GARCH) model was developed and suits
well for handling volatility with long memory dependence. Determining the uncertainty
associated in predictions in long memory volatility models is useful for financial market
participants. Conventional methods of constructing prediction intervals for such models
provide poor coverages. A bootstrapped based method proposed by Pascual, Romo and
Ruiz (PRR) was adapted to construct prediction intervals for returns and volatility for
HYGARCH model. A Monte-Carlo simulation study was carried out and simulation results
shown that the adaption of PRR method provide reasonable coverage probabilities for
returns and volatility.

Keywords: Long memory, Prediction intervals, Volatility modeling
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1. INTRODUCTION

Forecasting stock returns and volatility are important tasks for those studying
financial markets. The Autoregressive Conditional Heteroscedastic (ARCH) and
Generalized Autoregressive Conditional Heteroscedastic (GARCH) models introduced by
Engel (1982) and Bollerslev (1986), respectively, are widely used to model and forecast
financial returns and associated volatilities, which tend to evolve over time. Point estimates
are widely used to forecast financial time series and their volatility. In contrast to point
estimators, prediction intervals provide extra information about the uncertainty associated
with future forecasts. Pascual et al. (2006) developed a bootstrap-based methodology for

constructing prediction intervals for returns and volatility under a GARCH(, 1)

formulation. We will refer to this approach as the Pascual-Romo-Ruiz (PRR) method. Chen
et al. (2010) proposed a computationally much faster, sieve bootstrap-based, prediction
interval obtained by converting the GARCH formulation into an ARMA type model.
Trucios & Hotta (2016) adapted the PRR method and used it to construct prediction
intervals for returns and volatilities for EGARCH processes (Nelson, 1991) and for the
Glosten-Jagannathan-Runkle GARCH (GJR-GARCH, Glosten et al., 1993) models. They
reported that the volatility prediction coverage could be poor in EGARCH and GJR-
GARCH cases if an additive outlier is present near the forecasting horizon. The studies
reported above only focus on prediction intervals for short memory volatility models. Yet,
the phenomenon of long memory is not limited to the mean processes only, in which
domain there have been considerable work (for example, Bisaglia & Grigoletto (2001) and

Rupasinghe & Samaranayake (2013)).
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The authors Ding et al. (1993), Ding and Granger (1996) and Harvey (1993) are the
first to address the long-range dependence of squared or absolute returns of financial time
series. Baillie et al. (1996, 2002) and Conrad & Karanasos (2005) also discussed useful
applications of long memory volatility models. The GARCH formulation cannot model
such a behavior as the weights of the autocorrelation function of squared returns, under the
GARCH model, decay exponentially implying short-term dependence. Based on these
observations, Baillie et al. (1996) introduced a Fractionally Integrated Generalized
Autoregressive Conditional Heteroscedastic (FIGARCH) model, which permits the
modeling of long memory behavior in squared or absolute returns. The conditional variance
of FIGARCH can be written as an infinite lag polynomial of squared returns, and the
coefficients of the lag polynomial have a slow hyperbolic decay. A similar behavior is
associated with the autocorrelation function of squared returns under the FIGARCH
formulation. However, coefficients of the infinite lag polynomial sum to one in such
models implying that the unconditional variance of a FIGARCH process is infinite. Thus,
unlike the GARCH, FIGARCH is a non-stationary process. Davidson (2004), introduced
the hyperbolic GARCH (HYGARCH) model, which can be written as a combination of
weighted GARCH and a FIGARCH components. The HYGARCH shares the covariance
stationarity property of the GARCH component, while at the same time it contains the
hyperbolic decaying impulse response coefficients found in the FIGARCH. Therefore, the
HYGARCH formulation can model long run dependence of conditional variance without
sacrificing the covariance stationarity property.
Ekanayake and Samaranayake (2020) introduced a method to construct bootstrap-

based prediction intervals for returns and volatility for long memory FIGARCH processes.
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However, the underlying infinite unconditional variance of the FIGARCH process hinders
the development of asymptotic properties of the bootstrap estimates. An alternative
HYGARCH model provides a solution because its unconditional variance is finite except
in a limiting case. In this paper, we extend PRR algorithm to construct bootstrap prediction
interval for returns and volatility for the HY GARCH model. The theoretical derivations of
the asymptotic properties of the bootstrap-based prediction intervals for the HY GARCH
process will be discussed in a separate paper.

The organization of the sections of this paper is as follows. We introduce the
HYGARCH model in Section 2. Section 3 details the residual based bootstrap procedure
employed to construct prediction intervals for HY GARCH processes. Section 4 presents
the results of a detailed Monte-Carlo simulation study that examines the finite sample
behavior of the intervals. The procedure is applied to NASDAQ stock return data with

results presented in Section 5. Finally, Section 6 provides some concluding remarks.

2. THE HYPERBOLIC GARCH (HYGARCH) MODEL

The Integrated GARCH (IGARCH, Engle and Bollerlev, 1986) and the FIGARCH,
formulations have several drawbacks, such as their infinite unconditional variance. Some
of these issues connected with the IGARCH processes were addressed by the Davidson

(2004) who developed the HYGARCH model. A time series {e,}  is said to follow a
HYGARCH(p, d, q)process if it satisfies the conditions,
£ =20

t 7t

and
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o; =0 +{1-BUL)—g)| 1+a(1-L) -1) }a?+ By, (1)

where, the sequence, {z,}is a white noise process with zero mean and unit variance. Note
that L is the lag operator such that the polynomials B(L)= BL+B,L' +...+ B,L7 and
$(L)=1-@gL—p,I’ —...—¢,L" have no common roots, with g, #0 and ¢ #0. It is

assumed that o >0, d >0. The HYGARCH reduces to the FIGARCH or the GARCH

when =1 or o =0, respectively. Note that parameter d is unidentifiable when « =0.
Further, when d =1in (1), depending on the value of « , the model becomes IGARCH or
GARCH. In fact, when « <1 it becomes a GARCH model, and if & =1then it becomes a
IGARCH model.

In this study we construct prediction intervals for the HYGARCH(1, d,1) model by
using the PRR bootstrap procedure. The procedure described herein can be directly

extended to the general HYGARCH(p, d, g) model. The formulation of

HYGARCH(], d, 1)can be expressed as follows:

ol =o+{1-BL-(-g)[1+a(a-1) -1) || + Bo?,.

(2)
ol =a(-L4)" +{1—(1—@)*1(1—¢51L)[1+a((1—L)d —1)]}83.
The conditional variance of HYGARCH(],d,1) can be written as
ol =o(1-B) + ML), (3)

where A(L)=Y A"
k=1

By equating terms with common powers in the equation
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ML) = AL+ AL + 4+ 4L+ =1-(-B) (1-¢ D) 1+a(0-1) -1) |, the
coefficients A, can be easily obtained as follows:

A=¢—-B +ad,

L=d-p)B -ap)+ad(l-d)/2,

A=p [o:dﬂl —adg - B+ B4, +ad(1—d)/2]+ad(l—d)/z[(z—d)/s—¢1],

A, :ﬂl/I,H+a[(k—1—d)/k—¢l]§d)k71, keN,

where 6,, =6,, ,(k—1-d)k™', keN refer to the coefficients in the series expansion of
(1-L)*,with §,,=1and &,, = d . The conditional variance defined in the equations (2)

and (3), in the HYGARCH definition, must be positive. Therefore, non-negativity of 4’s
is required. Similar to the sufficient conditions for non-negativity of conditional variance
of FIGARCH(1,d,1) derived by Bollerslev and Mikkelsen (1996), the conditions for the
non-negativity of conditional variance in the HY GARCH model are given by,

B —ad<¢ <(2-d)/3 and O(d[¢1 —(l—d)/2]£ B (4 - B +ad). 4)

These conditions are also applied in the studies by Dark (2005, 2010). The
necessary and sufficient conditions for the non-negativity of conditional variance for

general HYGARCH(], d, g) were derived by Conrad (2010). Further, Conrad (2010)

derived the sufficient conditions for non-negativity of conditional variance for the general

HYGARCH(p, d, q), for p > 2 . Please refer Theorem 2 and Theorem 3 in Conrad (2010)

for details. These necessary and sufficient conditions are complex and therefore it is



99
difficult to program into software. Thus, we employed sufficient conditions given in (4) in

our study.
3. BOOTSTRAP PREDICTION INTERVALS

In this section, we apply the procedure proposed by Pascual et al. (2006) (PRR) to
obtain prediction intervals for future returns and future volatilities when the underlying

data generating process is HYGARCH.

1. Let {&,}  be asequence of realizations from a HYGARCH(I, d, 1) process. Then

~ ~ A

estimate the parameters of the model &= (a31, g;l, d, B, 0?) by using the Quasi-

Maximum Likelihood Estimation (Q-MLE) method.

2. Compute the residuals Z, =¢,/6,, t=1,...,n where

& =a(1-4)" +{1—(1—B1)1(1—¢§1L)[1+a((1—L)3 —1)}}512

~ a3(1—,6A’1)’1 +/i151271 +/@8iz +...+ik8ik

and setting &’ :n’lzr_z g, fort=—k+1,..,-1, 0. Note that k£ is a suitably

i=1 17
chosen truncation lag of the polynomial A(L). In the simulation study we used
k=1,000.

. ~ A ~ ~ - [N
3. Compute the centered residuals Z, = 2, — 2, where 2, =n ' D" 2.

=171

4. Denote the empirical distribution function of the centered residuals by

Ex)=n'Y" 1, (5).

t=1" (—o.x]
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Draw a bootstrap sample with replacement from the above distribution and denote

itbyz,, where t=-m+1,...,—1,0,1,...,n . mis chosen as 2,000 in this study.

Generate the bootstrapped HYGARCH series ¢,, t=-m +1,...,-1,0,1,...,n by first

I R

computing a bootstrapped conditional variance series, o, using the HYGARCH

parameters estimated in Step 1. Then use &, =z o,, t=-m+1,...-1,0,1,..,n to
generateg, . The non-positive lags represent ‘burn-in’ observations that are
dropped to mitigate effects due to the initial conditions.

Estimate the HYGARCH parameters 6 z(a)*, ¢,*, d’, ,81*, a*)for the

bootstrapped series {g:} using the Q-MLE method.

Use the new coefficients 8" = (a)*, ¢z,*, d, ,81*, 05*) obtained in the previous step

and compute the A-step ahead bootstrap forecasts of future returns and volatilities

based on the following recursions:

or=0 =g+ 1= g A=) 1va (a7 1) L7,

% N | % 9% % 9%
~o (1-8) +he i+t Ahen, i

* * *

Eoin = ZpinC

n+

for 7>0 and &, = ¢, for 1<n.

nth >

Obtain the estimated bootstrap distribution of &

n+h>

denoted by /" (.), by repeating

steps 5-8 B times (B =1,000) in the simulation study. ﬁ; (\) is the estimate of the

"

F. (), the bootstrap distribution function of ¢, , which is used to approximate
Envh

n+h?

unknown distribution of € ., given the observed sample.
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10. The 100(1-)% bootstrap prediction interval for g, ,,is then computed by
[0:(a /2),0.(1-a /2)]. where Q.() :Iii’l are the percentiles of the estimated

bootstrap distribution.
To construct the prediction intervals for volatility we followed the steps 1-8 and

changed the rest of steps as below.

9.* Obtain the estimated bootstrap distribution of o

n+h>

denoted by F". (.), by repeating

steps 5-8 B times (B =1,000)in the simulation study. ﬁg () is the estimate of

"

the F. (), the bootstrap distribution function of o which is used to
Onth

n+h?

approximate unknown distribution of ¢ ,, given the observed sample.

10.*The 100(1-«)% bootstrap prediction interval for o, ,is then computed by

[0 (a/2),0.(1—a /2)], where Q*()= ﬁ;’l are the percentiles of the estimated
bootstrap distribution.
The performance of the PRR method is compared with the conditional bootstrap
(CB) method for future observations used by Miguel and Olave (1999) to construct forecast
intervals for the ARMA-ARCH model. Prediction intervals involved in CB method does

not incorporate the uncertainty of the parameter estimates. The parameter estimation of
bootstrapped series (i.e {et } ’s) in the PRR method are not carried out in the CB method.
Instead, the CB method employs the parameters estimates obtained from the original

observed series. Thus, step 7 is discarded, and a slight modification is included to step 8,

by using parameter estimates of the observed realizations instead of the parameter
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estimates of bootstrapped series. Therefore, CB future values for returns (& =1,2,...)

n+h>

and volatilities (o ,, h =1,2,...) can be obtained as follows:

n+h>

oty =00-A) + ==y a-d)1ra(a-1)) 1]}z,
X é)(l_:él)il +j18§jh—l +"'+j“k8rﬁh—k7

*

g forh>0and8 =g, fort<nm

nth — Zn+h n+h>
By incorporating steps 9-10 and 9*-10* one can estimate CB prediction intervals for

returns and volatilities.

4. THE SIMULATION STUDY

A Monte-Carlo simulation study was carried out to investigate the finite sample
performance of the HYGARCH model. We simulate the HY GARCH series according to
equations (1) and (2). The lengths of the time series considered here are n =500 and

n=1,500. The truncation lag of the infinite lag polynomial on conditional variance is set

to k=1,000. The parameter combinations used in this study are @ =0.1,¢<{0,0.2,0.4},

d € {0.40,0.50,0.75,0.90}, S €{0.10,0.45,0.70,0.75} and « c {0.85,0.95}. Apart from

these parameters, two special combinations are employed for the remaining parameters.
One combinationis @ =0.1, ¢=04,d =04, f=0.1,a =0.8; employed by Kwan, W. et
al. (2012) in their study. The other one is taken from the results based on the empirical
study of exchange rate data in the seminal paper on HYGARCH by Davidson (2004);
Inspired by estimates of exchange rates we employed the combination

=01 ¢=02,d=0.65 £=075and a=098. Along with these sets of parameter
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combinations, 3 different error distributions with mean O and standard deviation 1 were
used to simulate the HYGARCH series. These are standard normal, 7 with 7 degrees of
freedom and centered exponential with mean 1 (i.e. usual symmetric, a leptokurtic, and a
skewed  distribution). The  ft-distributed  errors  were  generated  as

z,=5"z (23, +z;,+..+z;,) " by drawing independent and identically distributed
standard normal z,,’s for i =1,2,..,8, as employed in Baillie et al. (1996). The parameters

are estimated by maximizing the Gaussian likelihood function (Q-MLE) derive for the
HYGARCH model. We employed constraints given in (4) to estimate parameters to ensure

non-negativity of conditional variance. N =1,000 independent series were generated for

each combination of the model, sample size », nominal coverage level, and error

distribution. Steps 1-10 were implemented and for each simulation run and R =1000

future returns, &, ,, 7€ N and future volatility o,,,, 7€ N were generated using the

n+h> n+h>

original model. The coverages probabilities for future values, ¢, ., and future volatilities
o,., were estimated by calculating the proportion of those values falling into the bootstrap

prediction intervals. The estimated coverage probability for future returns & at it

n+h>

simulation run is given by
. IR P
COH)=R'Y _L]e.,0)],
where, A= [Qg (@/2),0.(1-c/ 2)] is the 100(1—a)th bootstrapped prediction interval.

1,() is the indicator function of the set 4. R future values generated at the i simulation

run are denoted by ¢/, (i), » =1, 2,...,1,000. The interval lengths were also investigated,

h

and these bootstrap lengths and theoretical lengths for a i simulation run are computed
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using L,(i)=Q0.(1-a/2)-Q0.(a/2) and L,(i)=¢ ,(1-a/2)—¢&  (a/2) respectively.
L.(i)is the difference between 100(1—a)th and the 100(«/2)th percentiles generated

from R future values of the underlying model with known order and known coefficients.
The statistics: mean coverage, standard error of mean coverage, mean bootstrap length,
standard error of mean bootstrap length, and mean theoretical length were computed as

follows:

Mean coverage C = N Zil (i),

. )2
Standard error of mean coverage SE- = {[N (N-1)] Zl_zl[C H—-C] } ,
Mean length (bootstrap) L, = N ' Zil L, (@),
Standard error of mean length SE, = {[N(N -1)]" Zil [L,()—L, 1",

Mean theoretical length L, = N Zil L, (i)

In similar fashion to what is used for future return intervals, we estimated the
coverage probability for intervals constructed for future volatilities. Then the mean
coverage, standard error of the mean coverage, mean bootstrap length, standard error of
the mean bootstrap length, and mean theoretical length were obtained for future volatility

o,.., h=12,. .. using equations similar to that we discussed above.

nh

The performance of the intervals was investigated for future returns and volatilities
by using the coverage probabilities and bootstrap lengths for different types of models with
all the different parameter combinations, error distributions, and sample sizes. We explored
the behavior of the coverage probabilities, bootstrap interval bounds (upper and lower) and

theoretical interval bounds (upper and lower) of the minimum value, percentiles including



105
25t 50t 75t 95t and maximum value for future returns and volatilities. We only report
the simulation results for coverages and interval lengths (with corresponding standard
errors) for 95% intervals, due to space limitation. The complete set of results are available
upon request. All the simulations and computations have been carried out using MATLAB

Mathematical Software.

4.1. PREDICTION INTERVALS FOR RETURNS

Tables 1-7 reported the Monte Carlo simulation results for future returns. These
prediction results obtained for lead lag 1, lead lag 10 and lead lag 20, approximately
corresponds to predictions of one day, two weeks and one month respectively under the

scenario where each observation represents a trading day. Tables 1-7 reports the

performance of HYGARCH(], d, 1)and HYGARCH(1, d, 0)with normally distributed,

t — distributed, and exponentially distributed errors. If the coverages reported in Tables 1-
3 are rounded to two decimal places, then one would achieve the nominal coverage of 0.95
in 11 and 9 cases out of 18 under PRR and CB methods, respectively. Apart from that, we
cannot observe a significant difference between these two methods. Therefore, the
incorporation of the variability in parameter estimation does not provide an improvement
to the performance or the predictions intervals for returns under the HY GARCH model
with normally distributed errors. Bootstrap intervals under both methods provide coverages
close to nominal value 0.95 regardless of the parameter combinations used under 7 —
distributed errors as well. The performance under 7 — distributed errors are similar to
normally distributed errors, and they are in concordance with the results reported by

Pascual et al. (2006) for GARCH prediction intervals. The interval lengths were also
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investigated, and the computed PRR and CB lengths are closer to each other and as well as
to the theoretical lengths. Therefore, the performance of intervals computed for future
returns does not depend on the uncertainty of the parameter estimation in symmetric
distributions.

The performance of the intervals examined under exponentially innovations are
reported in Tables 6-7 for both the PRR and CB methods. The lead lag one prediction
intervals using the PRR method is clearly better than those constructed using the CB
method. However, when the prediction horizon increases, the coverage differences get
minimal. The bootstrap interval lengths reported for skewed exponential errors are slightly
narrower than the theoretical intervals, in many cases, in contrast to the case with

symmetric error distributions.

Table 1. Coverage of 95% intervals for returns of HYGARCH (1, d, 1) with parameters

w=01 ¢=04d=04, f=0.1,a =0.80, and normally distributed errors

PRR CB
Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)

0.9452 2 .8988 0.9437 29013

L% 2T ] 00009) | 009200 | (0.0009) | (0.0952)
0.9472 2.9077 0.9469 2.9095

1,500 1 29139 1 50007) | (0.0917) | ©0007) | (0.0926)
0.9438 3.1465 0.9435 3.1549

" 00 1 31698 1 (16000) | (00457) | (0.0009) | (0.0489)
1.500 3 1745 0.9478 3.1766 0.9478 3.1830

’ ' 0.0007) | (0.0395) | (0.0007) | (0.0409)
0.9428 3.1428 0.9424 3.1388

i 00 1 3836 1 (h0010) | (00369) | (0.0009) | (0.0398)
1.500 31796 0.9475 3.1739 0.9474 3.1788

’ ' 0.0007) | (0.0306) | (0.0007) | (0.0316)
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Table 2. Coverage of 95% intervals for returns of HYGARCH (1, d, 0) with parameters
=01 ¢=02,d=0.65 =075a=0098, and normally distributed errors

PRR CB
Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)
0.9443 8.1720 0.9438 8.1686
L% BT ] 00009) | 01452) | 0.0009) | (0.1467)
0.9481 8.2131 0.9479 8.2207
1,500 82185 1 5 0006) | (0.1401) | (0.0006) | (0.1428)
0.9423 8.3183 0.9430 8.3442
" 00 | 84222 0.001) | (01424) | (0.0009) | (0.1440)
0.9469 8.3909 0.9463 8.3935
1,500 ) 84299 1 50007) | (0.1317) | (0.0006) | (0.1363)
0.9381 8.3646 0.9397 8.4099
i 001 83479 1 (h0012) | (0.1394) | (0.0010) | (0.1414)
1.500 8 5434 0.9461 8.5058 0.9459 8.5152
’ ' 0.0007) | 0.1263) | (0.0007) | (0.1308)

Table 3. Coverage of 95% intervals for returns of HYGARCH (1, d, 0) with parameters

=01 ¢=0,d=09, f=0.7,a=0.95, and normally distributed errors

PRR CB

Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)

0.9452 5.0524 0.9446 5.0639
1 00 1 50831 1 (h6000) | (01030) | (0.0009) | (0.1071)
0.9477 5.0756 0.9472 5.0760
1,500 1 50813 5 0006) | (0.1011) | (0.0006) | (0.1027)
0.9419 52749 0.9424 5.3237
" 00 1 33677 1 o011y | (00827) | (0.0011) | (0.0914)
1.500 53998 0.9458 5.3378 0.9462 5.3605
’ ' 0.0007) | (0.0754) | (0.0007) | (0.0791)

0.9386 5.3383 0.9397 5.4089
i 001 54846 1 0011y | 0.0730) | (0.0011) | (0.0807)
1.500 5 4916 0.9454 5.4459 0.9459 54782
’ ' (0.0007) | (0.0613) | (0.0007) | (0.0652)
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Table 4. Coverage of 95% intervals for returns of HYGARCH (1, d, 1) with parameters
w=01 ¢=02,d=05, =045 «a=0.85, and ¢ distributed errors

PRR CB

Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)

0.9459 33678 0.9448 3.3636
L O ] 00009) | 00555 | .0010) | (0.0568)
0.9480 3.3739 0.9478 3.3767
1,300 1 33815 1 50006) | (0052) | (0.0006) | (0.0528)
0.9441 3.4405 0.9435 3.4445
" 001 34523 1 (90009) | (0.0394) | (0.0010) | (0.0422)
1.500 34514 0.9480 3.4616 0.9480 3.4652
: ' (0.0006) | (0.0348) | (0.0006) | (0.0354)

0.9433 34414 0.9431 3.4573
i 00 1 34623 1 (10000) | (0.0349) | (0.0010) | (0.0385)
1.500 3 4695 0.9468 3.4572 0.9466 3.4622
: ' (0.0007) | (0.0268) | (0.0008) | (0.0278)

Table 5. Coverage of 95% intervals for returns of HYGARCH (1, d, 0) with parameters
w=01 ¢=0,d=075 =07, =095, and 7 distributed errors

PRR CB

Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)

0.9449 5.2588 0.9451 5.2850
1 00 1 52819 1 (h0010) | (00995) | (0.0009) | (0.1037)
0.9485 5.2688 0.9485 5.2866
1,500 152018 5 5006) | (0.0950) | (0.0006) | (0.0983)
0.9417 5.3108 0.9426 5.3510
" 00 1 54217 1 (h0010) | (0.0889) | (0.0010) | (0.0929)
1.500 54117 0.9466 53818 0.9470 5.4092
’ ' (0.0006) | (0.0843) | (0.0006) | (0.0872)

0.9397 5.3804 0.9407 5.4299
i 001 34T 1 o011y | (0.0876) | (0.0011) | (0.0913)
1.500 5 4872 0.9457 5.4495 0.9465 5.5014
’ ' (0.0007) | (0.0738) | (0.0007) | (0.0789)
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Table 6. Coverage of 95% intervals for returns of HYGARCH (1, d, 1) with parameters
w=01 ¢=04,d=04, f=0.1,a=0.95, and exponentially distributed errors

PRR CB

Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)

0.9233 3.1800 0.9059 3.1422

L ] 0o019) | 02250) | 0.0023) | (0.2360)
09174 3.1643 0.9082 3.1529

1,500 3.2329 1 50014y | (0.2211) | (0.0016) | (0.2249)
0.9219 3.3046 0.9225 3.3284

" 00 1 38428 1 h0014) | (01024) | (0.0014) | (0.1033)
0.9259 3.2941 0.9273 3.3559

1,500 38079 1 5 0011) | (0.0924) | (00012) | (0.1014)
09124 3.2721 0.9135 3.2943

i 00140595 1 hoo16) | 00781) | (0.0017) | (0.0774)
1,500 40394 0.9195 3.2965 0.9210 3.3547
0.0013) | (0.0663) | (0.0014) | (0.0721)

Table 7. Coverage of 95% intervals for returns of HYGARCH (1, d, 1) with parameters
w=01 ¢=04,d=075 =045 a=0.85, and exponentially distributed errors

PRR CB
Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)
0.9223 3.0390 0.9077 3.0006
1 00 1 SIHT 1 (ho018) | (01638) | (0.0023) | (0.1644)
09161 3.0613 0.9073 3.0480
1,500 1 3016650014y | (01789) | (©0017) | (0.1806)
0.9212 3.2675 0.9230 3.3485
" 00 1 36759 1 (ho014) | (0.0868) | (0.0015) | (0.0972)
0.9276 32018 0.9201 33407
1,500 1 36687 1 50010y | (0.0846) | (0.0010) | (0.0883)
09144 32132 09173 33157
i 001 38649 1 0015) | (0.0579) | (0.0016) | (0.0699)
00 | 3575 0.9194 3.2535 0.9212 33156
: ' ©0011) | (0.0531) | (0.0012) | (0.0601)




110

4.2. PREDICTION INTERVALS FOR FUTURE VOLATILITIES
Tables 8-10 reports the performance of 95% PRR and CB prediction intervals for
future volatilities when the series are generated with normal, student 7, and exponential
distributions respectively. Here we report the coverages and lengths for lead lag 1, 2, 10
and 20. One step ahead value in the volatility of GARCH type models (including
HYGARCH) is completely determined by past observations. Therefore, only uncertainty
associated with one-step ahead prediction when estimating an empirical time series using

such models is due to parameter estimation. Consequently, theoretical volatility, o is

same for R =1,000 iterations for i™ simulation run and hence, the theoretical length is zero.

Similarly, one-step ahead interval length under the CB bootstrap procedure is zero because
the estimated parameters of each bootstrap run is fixed due to use of the original parameters
estimates in each simulation run. On the other hand, PRR procedure provides different
estimates in each bootstrap iteration, and hence one-step ahead predictions intervals under
the PRR methods have non-zero lengths, as seen Tables 8-10.

We report results for HYGARCH parameter combinations and distributions as

follows: @ =0.1, $=0,d =0.75, f=0.45 ¢ =0.85with normally distributed errors and
=01 ¢=040,d=040, f=0.10,a =0.95with 7 and exponentially distributed errors.

The performance of prediction intervals under normal and 7 error (symmetric) distributions
yield results similar to each other (based on the results not reported here). Mean coverages
for one step ahead prediction intervals increase as sample size increases under both 7 and
exponential error distributions and provide coverages close to nominal value 0.95 for
sample size 1,500. However, the mean coverage for the parameter combination

w=01 ¢=0,d=0.75 =045 o =0.85, with normally distributed errors is 0.9220



111
when the sample size is 1,500. When forecasting for two steps into the future, the mean
coverages come close to 0.95 in all models considered, all sample sizes, regardless of the
error distribution for the PRR method. The mean coverage, however, is well under the
nominal value 0.95 for the CB method. When predicting more than two steps, mean
coverages improves as sample sizes increases for both methods, as expected. However, the
intervals for volatility constructed under the CB method underperform (i.e. wider) for all

tfuture horizons (2 =2, 10 and 20). Therefore, the PRR method is recommended over the

CB method for volatility prediction.

Table 8. Coverage of 95% intervals for volatilities of HYGARCH(1, d, 1) with

parameters® =0.1, =0,d =0.75, f=0.45,a =0.85, and normally distributed errors

PRR CB
Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)
500 ) 0.9020 0.1857 ) )
| (0.0133) | (0.0054)
1.500 ) 0.9220 0.1084 ) )
’ (0.0120) | (0.0032)
0.9533 0.4420 0.7754 0.3445
, 001 03292 1 50041y | (00109) | (00109) | (0.0089)
0.9560 0.3895 0.8190 0.3413
1,500 103296 6036) | (0.0081) | (0.0000) | (0.0071)
09179 0.7875 0.8825 0.7486
" 001 07934 1 50035y | (00173) | (0.0046) | (0.0175)
0.9372 0.7938 0.9251 0.7829
1,500 1 0.7952 1 0018) | (0.0138) | (00022) | (0.0135)
0.9153 0.8495 0.8817 0.8109
i 00 1 08566 1 5 0036) | (00173) | (0.0047) | (0.0175)
1.500 08607 0.9373 0.8593 0.9267 0.8488
’ ' 0.0018) | (0.0112) | (0.0021) | (0.0110)




Table 9. Coverage of 95% intervals for volatilities of HYGARCH(1, d, 1) with

parameters @ =0.1, ¢ =0.40,d =040, £ =0.10,a =0.95, and 7 distributed errors
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PRR CB
Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)
500 ) 0.9180 0.3356 ) )
. (0.0123) | (0.0143)
1.500 ) 0.9420 0.1974 ) )
: (0.0105) | (0.0089)
0.9421 1.4708 0.8350 1.3498
, 001 13657 1 50038) | (0.0842) | (0.0077) | (0.0822)
0.9450 1.4325 0.8520 1.3762
1,500 1 13683 6035y | (0.0817) | (0.0064) | (0.0808)
0.9371 1.9229 0.8763 1.8412
0 500 18232 (0.0034) | (0.0721) | (0.0057) | (0.0754)
1.500 18327 0.9438 1.8725 0.9069 1.8621
: ' (0.0027) | (0.0627) | (0.0039) | (0.0682)
0.9326 1.9747 0.8774 1.8954
20 500 19176 (0.0034) | (0.0632) | (0.0053) | (0.0634)
1.500 19033 0.9400 1.9435 0.9097 1.9355
: ' (0.0027) | (0.0591) | (0.0035) | (0.0621)

Furthermore, the interval widths were also investigated for #=2, 10 and 20.

Interval width under CB method always less than the interval with under PRR method. The

PRR interval lengths under normal and 7 distributed errors are always close to the

theoretical lengths. However, the computed PRR lengths are narrower the theoretical

lengths for lead lags 2, 10 and 20 as reported in Table 10.



Table 10. Coverage of 95% intervals for volatilities of HYGARCH(], d, 1) with
parameters® =0.1, ¢ =0.40,d =0.40, £ =0.10,« =0.95, and exponentially distributed
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errors
PRR CB
Lead | Sample | Theoretical Mean Mean Mean Mean
lag size length coverage length coverage length
(SE) (SE) (SE) (SE)
500 ] 0.9240 0.4062 ] ]
| (0.0119) | (0.0376)
1.500 ) 0.9300 0.2472 ) )
: (0.0114) | (0.0196)
0.9416 1.4675 0.8059 1.3941
, 00| 13467 1 g 0040) | (01270) | (0.0093) | (0.1409)
0.9435 1.4586 0.8357 1.4164
15001 13601 1 50036y | (0.1287) | (0.0075) | (0.1301)
0.9253 1.7023 0.8272 1.6316
" 001 19106 1 6040) | (00758) | (0.0079) | (0.0803)
1.500 1 8889 0.9292 1.6469 0.8621 1.6412
’ ' (0.0036) | (0.0650) | (0.0058) | (0.0665)
0.9096 1.7175 0.8131 1.6304
o L2012 ] 000a3) | 0osse) | ©.0077) | (0.0598)
1.500 29131 09131 1.7111 0.8522 1.7179
’ ' (0.0038) | (0.0583) | (0.0056) | (0.0600)

5. APPLICATION TO A REAL DATA SET

The proposed bootstrap prediction interval method was applied for daily NASDAQ
stock data collected from the website https://finance.yahoo.com through time period: 4 of
January 2010 to 27" of October 2020. Daily stock returns for closing prices were calculated
by using # =100.log(s, /s, ;) for t=2,3,..,2751, where, s,denotes the observed daily
closing price at day 7. One-step-ahead prediction intervals was calculated for 250 data

points starting from 20™ of December 2019 through 27™ of October 2020. Following figure

displays the 95% one-step-ahead bootstrap prediction interval for NASDAQ stock returns.


https://finance.yahoo.com
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The return data exhibit low volatility for around first 3 months and it becomes

highly volatile during the period from the end of February until end of May of 2020. The
interval captured this highly volatile period by providing a wider interval during this highly
volatile period and narrower interval for the more tranquil period after the volatility

subsides. The coverage probability calculated for one-step ahead prediction is 0.932.

Prediction intervals for NASDAQ stock returns

Figure 1 One step ahead prediction interval for NASADARQ stock returns

Table 11. Estimated coverage probabilities for future returns
Leadlag  Coverage
1 0.9320
10 0.8963
20 0.8788
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Note that for longer forecast horizons, the coverage probabilities drop below 0.90.

It is possible that for this time series, a higher order HY GARCH process may be warranted.

6. CONCLUSIONS

In this paper, we employed Monte-Carlo simulation to study the finite sample
behavior of bootstrap prediction intervals for returns and volatilities under the

HGARCH(], d, 1) model using the PRR algorithm (Pascual et al. 2006) and compared its

performance with the conditional bootstrap (CB) method. The results show that the
incorporation of the variability of the parameter estimates in the process of building the
prediction intervals for returns, does not make any difference under symmetric error
distributions. However, when constructing prediction intervals for future volatility it is
necessary to incorporate the uncertainty of the parameter estimates to get coverage
probabilities close to the nominal values. Under the skewed error distributions, we get poor
coverage probabilities for returns under both methods.

Here we assumed the order of HYGARCH process is known. This is not a great
limitation as almost all the studies involve with HYGARCH models are restricted to

HGARCH(], d, 1). However, the extension of HGARCH(, d, 1) to
HYGARCH(p, d, q)ispossible under the PRR method. Further extension is also possible,

by adapting sieve bootstrap technique to construct prediction intervals for ARMA-

HYGARCH and FARIMA-HYGARCH models.
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SECTION

2. CONCLUSION

In this study, we employed bootstrap-based prediction intervals for long memory
volatility models and time series with long memory and heteroscedastic errors. Mainly, we
utilized two bootstrap techniques where first one is PRR, which is introduced by Pascual
et al. (2004) and the second one is sieve bootstrap method. We carried out Monte-Carlo
simulation study for check the performance of the finite sample behavior.

PRR method and CB methods are applied to construct prediction intervals for
returns and volatilities in long memory volatility models, FIGARCH and HYGARCH
models as in Papers I and IV. Although both models are used to model long range
dependence in conditional volatility, FIGARCH has infinite unconditional variance while
unconditional variance in HYGARCH is finite. Bootstrap intervals constructed using PRR
method include the uncertainty due to parameter estimates while intervals produced by CB
method does not incorporate the uncertainty due to parameter estimates. Monte Carlo
simulation shows that both methods produce good coverages for returns under symmetric
error distributions, Gaussian, and 7. However, when constructing prediction intervals for
volatility PRR method dominates CB method in both models. Under skewed error
distribution performance of prediction intervals for both returns and volatilities are not as
good as symmetric error distributions.

Papers II and III investigated the finite sample performance of the prediction

intervals of ARMA-FIGARCH and FARIMA-FIGARCH models. We incorporate the
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sieve bootstrap resampling technique to construct the prediction intervals. Two resampling
techniques under sieve bootstrap method are used. Both methods provided better coverages
close to the nominal value however, one step estimation method (Resampling done using
the residuals of AR-FIGARCH) performs well under roots of the AR polynomial closes to

one or /and fractional integration parameter d closes to 0.5.
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APPENDIX

MATLAB ALGORITHM FOR FIGARCH PREDICTION INTERVALS

% Initialization of parameters

parameters = [0.1 0.2 0.5 0.45]; % FIGARCH Parameters

w = parameters(l); phi = parameters(2); d = parameters(3);
beta = parameters(4);

N=500; n = 1500; k=1000; discard=6000; h=20; R=1000;
B=1000;

Para = zeros(N,4); BootPara = zeros(N,4);

%% Returns(defining matrices to store outputs of returns)

Blength = zeros(N,h); Bcount = zeros(N,h); Tlength
= zeros(N,h); Bcount0_025 = zeros(N,h); BcountO_975 =
zeros(N,h); Bquantile = zeros(N,2*h);

Blength99 = zeros(N,h); Bcount99 zeros(N,h);

Tlength99 = zeros(N,h); BcountO_005
Bcount0_995

zeros(N,h);
zeros(N,h); Bquantile99= zeros(N,2*h);

Blengthp25 = zeros(N,h) Bcountp25 = zeros(N,h);
Tlengthp25 = zeros(N,h)
Blengthp50 = zeros(N,h) Bcountp50 = zeros(N,h);
Tlengthp50 = zeros(N,h)
Blengthp75 = zeros(N,h) Bcountp75 = zeros(N,h);
Tlengthp75 = zeros(N,h)
Blengthpmax = zeros(N,h) Bcountpmax = zeros(N,h);
Tlengthpmax = zeros(N,h)
Blengthpmin = zeros(N,h) Bcountpmin = zeros(N,h);

Tlengthpmin = zeros(N,h)

%% Volatilities(defining matrices to store outputs of
volatilities)

Hlength = zeros(N,h); Hcount = zeros(N,h); Vlength
= zeros(N,h); Hcount0 025 = zeros(N,h); HcountO_975 =
zeros(N,h); Hquantile = zeros(N,2*h);

Hlength99 = zeros(N,h); Hcount99 = zeros(N,h);
Viength99 = zeros(N,h); HcountO_005 = zeros(N,h);
HcountO_995 = zeros(N,h); Hquantile99= zeros(N,2*h);

%% constraints for the fmincon optimazation
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init_para [0.1 0.2 0.50 0.45]; % intialization of

parameters

A [O -1 -1 1;0 2 1 0]; % This is for the FIGARCH
(1.d,1)

b [O 17;

Ib [0.0001,0,0.0001,0.0001];

ub [inf,0.9999,0.9999,i1nf];

opts optimoptions(C"fmincon®, "Display”, "off");

%% defining the lambda®s (coeficients of infinite ARCH
process)

lambda = zeros(k,1); delta = zeros(k,1);
lambda(l) = phi-beta+d; delta(l)= d;
tic
for 13=2:k
delta(3d) (13-1-d)/13*delta(13-1);

lambda(13) beta*lambda(13-1) + delta(l3)-
phi*delta(13-1);

end

parfor i=1:N
n=1500; discard=6000;k=1000;
%% Simulating the data

rng(i);
zt = randn(n+k+discard,l);
[eel, ht] = Ffigarchsim(parameters,n,k,discard,zt) ;

%% Generating future values

eel_FV = zeros(R,n+h);
hh_FV = zeros(R,n+h);

etl fv zeros(n+h,1);
etl_fv(l:n) eel ;

et2 fv zeros(n+h,1);
et2_fv(l:n) eel _A2;

hh_fv zeros(n+h,1);
hh fv(l: n) ht ;

rng shuffle;
for 12=1:R



zt _fv =

for I=n+1:n+h
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randn(h,1);

hh_fv(l) = w/(l1-beta) + lambda"*et2_fv(l-1:-
1:1-k);
etl fv(l) = sqrt(hh_fv())*zt_fv(l-n);
et2_fv(l) = (etl_fv7I1))A2Z;
end
eel FV(12,:) = etl fv;
hh FV(12,:) = hh fv;
end
v = eel FV(:,n+l:n+h); % Generated theoretical
future values
fv_h = hh_FV(:,n+l:n+h); % Generated theoretical fTuture
volatilities
%% Percentiles of Return Theoritical Intervals
etqg = quantile(fv,[0.025 0.975]); tgql = etq(l,:); tqu
= etq(2,:);
tlength = tqu-tqgl; Tlength(i,:) =
tlength;
etq = quantile(fv,[0.005 0.995]); tql = etq(l,:); tqu
= etq(2,:);
tlength = tqu-tqgl; Tlength99(i,:) =
tlength;
etq = quantile(fv,0); Tlengthpmin(i,:) = etq;
etqg = quantile(fv,0.25); Tlengthp25 (i,:) = etqg;
etq = quantile(fv,0.50); Tlengthp50 (i,:) = etq;
etq = quantile(fv,0.75); Tlengthp75 (i,:) = etq;
etq = quantile(fv,1); Tlengthpmax(i,:) = etq;
%% Percentiles of Volatility Theoritical Intervals
etq = quantile(fv_h,[0.025 0.975]); tql = etq(l,:);

tqu = etq(2,:);
vlength = tqu-tqgl;
vlength;

etqg = quantile(fv_h,[0.005 0.995]);

tqu = etq(, ) ;
vlength = tqu-tqgl;
vlength;

Viength(i,:) =

tql = etq(l,:);

Viength99(i,:) =
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%% Parameter estimation of FIGARCH (MLE approach)

[para_hat, Igl] =
fmincon(@(x)1_figarch(x,eel,k),init_para,A,b,[1.[1.1b,ub,[]
,opts);

ht_hat = cond_var(para_hat,eel,k); % estimated
condtional variance (this function is similar to the
1_figarch)

w_hat = para_hat(l)*(1-para_hat(4)); % since
inthe 1 _garch function we tend to estimate w/(l-beta) not
w. therefore we did the correction below.

para_hat(1) = w_hat;

Para(i,:) para_hat;

e _hatl
e hat

eel./sqrt(ht_hat);
e hatl - mean(e hatl); % deameaned errors zt’s

%% Starting the bootstrap

eB = zeros(B,h);
hB = zeros(B,h);
BPara =zeros(B,4);

for j=1 : B

discard = 2000; k=1000;

v_star =
datasample(e_hat,n+k+discard);

[e_star, ht_star] =
figarchsim(para_hat,n,k,discard,v_star) ; % generating
bootstrap samples

[para_star, Igl_star] =
fmincon(@(x)1_figarch(x,e_star,k),init_para,A,b,[]1,.[],1b,ub
,[1,0pts);

w_star para_star(1)*(1l-para_star(4));
phi_star para_star(2);
d_star para_star(3);

beta star para_star(@);

BPara (J,:) [w_star phi_star d_star beta_star];
lambda_star zeros(k,1);
delta_star zeros(k,1);

lambda_star(@) phi_star-beta_star+d_star;
delta starQ@ d star;
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for m=2:k
delta_star(m) = (m-1-d_star)/m*delta_star(m-
1);
lambda_star(m) = beta _star*lambda_star(m-1) +

delta_star(m)-phi_star*delta_star(m-1);
end

%% 1. predicting future et and conditional variance using

original data (truncated lag k=1000)

V_Ss = datasample(e_hat,h);
ht_future = zeros(n+h,1);

el future = zeros(n+h,1);

el future@ n) = eel;

e2 future = zeros(n+h,1);

e2 fTuture(l:n) eel_Az;
for r=n+1:n+h
ht_future(r) = w_star/(-beta_star) +
lambda_star(1:k)*e2_future(r-1:-1:r-k);
el future(r) = sgrt(ht_future(r))*v_ss(r-n);
e2 future(r) = (el future(r))Az;

end

yh_b el future(n+l:n+h); % future bootstrap
values
hh_b = ht_future(n+l:n+h); % future conditional

variance values

eB(, ) = yh_ b;

hB(J,:) = hh_b; % future returns and future c.v
end
BootPara(i,:) = mean(BPara);
%% Returns
ebq = quantile(eB,[0-025 0.975]); bql =ebq(d,:);

bgu = ebq(2,:); Blength(i,:) = bqu - bgl;
Bquantile(i,:) = [bgl bqu];

bcount = (fv>bgl&fv<bgu); Bcount(i,:) =
sum(bcount) ;

bcount0_025 = (fv<bgl); BcountO_025(i,:) =
sum(bcount0_025);

bcount0 975 = (fv>bqu); BcountO _975(i1,:) =

sum(bcount0 975);
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ebq = quantile(eB, [0.005 0.995]); bqgl =ebq (@, :);
bqu = ebq(2, :); Blength99(i,:) =bqu - bqgl;

Bquantile99(i,:) = [bgl bqu] ;

bcount = (fv>bql&fv<bqu); Bcount99(i,:)
sum(bcount);

bcountO0_005 = (Ffv<bqgl); BcountO 005 (i1, ) =
sum(bcountO 005) ;

bcount0 995 = (fv>bqu); BcountO 995 (i, =
sum(bcount0 995) ;

ebq = quantile(eB,0.25); Blengthp25(i,:) = ebq;

bcount = (v <= ebq); Bcountp25(i,:) =
sum(bcount) ;

ebq = quantile(eB,0.50); Blengthp50(i,:) = ebqg;

bcount = (fv <= ebq); Bcountp50(i,:) =
sum(bcount) ;

ebq = quantile(eB,0.75); Blengthp75(i,:) = ebqg;

bcount = (fv <= ebq); Bcountp75(i,:) =
sum(bcount) ;

ebq = quantile (eB,1) ; Blengthpmax (i, :)= ebq;

bcount = (v <= ebq); Bcountpmax(i,:) =
sum(bcount) ;

ebq = quantile(eB,0); Blengthpmin(i,:) = ebq;

bcount = (v <= ebq); Bcountpmin(i, :) =

sum(bcount) ;

%% Volatilities

hbq = quantile(hB, [0.025 0.975]); bqgl =hbq (1,:);
bgu = hbq(2, :); Hlength(i,:) = bqu - bgl;

Hquantile(i,:) = [bgl bqu];

hcount = (fv h>bgl&fv h<bqu) ; Hcount(,: ) =
sum(hcount) ;

hcount0_025 = (fv_h<bql); HcountO_025(i,:) =
sum(ChcountO_025) ;
hcount0_975 = (fv_h>bqu); HcountO_975(i,:) =

sum(hcount0_975);

hbq = quantile(hB,[0.005 0.995]); bqgl =hbq(l,:);
bgu = hbq(2,:); Hlength99(i,:) = bqu - bql;

Hgquantile99(i,:) = [bgl bqu];

hcount = (fv_h>bgl&fv_h<bqu); Hcount99(i, :) =
sum(hcount);

o/
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hcountO0_005 = (fv_h<bql); HcountO_005(i,:) =
sum(hcount0_005);
hcount0_995 = (fv_h>bqu); HcountO_995(i,:) =

sum(hcountO_995);
end
% Stored the above out put data to files

» FIGARCH Simulation
6 Supported functions for the above algorithm

XXX

X

¢ Simulation of FIGARCH(1,d,1)

function [eel, hhl]=figarchsim(parameters,n,k,discard,zt)
% zt (ntk+discard)xl vector
% parameters = [w phi d beta]; 4x1 vector;
w=parameters(l); phi=parameters(2); d = parameters(3);
beta=parameters(4);
et = zeros(k+discard+n,1);
et2 = zeros(k+discard+n,1);
ht = zeros(k+discard+n,l);
lambda = zeros(k,1); delta = zeros(k,1);
lambda(l)=phi-beta+d; delta(l)=d;

for 1=2:k
delta(i)=(i-1-d)/i*delta(i-1);
lambda(i)=beta*lambda(i-1) + delta(i)-phi*delta(i-
D ;

end

% bcast = zeros(k,1l)+w/(1-beta);
bcast = zeros(k,1l)+w/(1-sum(lambda)); %does not matter
et2 (1:k)=bcast;
for j = k+l:length(zt)
ht(jJ) = w/(l1-beta) + lambda(l:k)’*et2(J-1:-1:j-k);
et(d) = sart (ht g))*zt();
et2 (J)=et (g )HAZ;

end
eel = et(k+discard+l:k+discard+n);
hhl = ht(k+discard+1l:k+discard+n);

%% FIGARCH LIKELIHOOD FUNCTION
function y=1_figarch(x,eel,k) % AIC = 2*(p+g+l) - 2* log(L)
or AIC = 2*k - 2*log(L) % AlICc = AIC + 2*k(k+1)/(n-k-1)



% k = Truncation Lag

w= x(1);
phi=x (2);
d = x(3) ;

beta = x(4);

lambda = zeros(k,1); delta = zeros(k,1);
lambda(l)=phi-beta+d; delta(l)=d;
%11l = fiweights(parameters);
for 1=2:k
delta(i)=(i-1-d)/i*delta(i-1) ;
lambda(i)=beta*lambda(i-1) + delta(i)-phi*delta(i-
D;

end

uSq = eel.A2; N = length(eel);
epsilon2 = zeros(N+k,1);
epsilon2(l:k)=mean(uSq);
epsilon2(k+1:N+k)=uSq;

tau = k+1:N+k;

ht = zeros(size(epsilon2));
likelihood = O;
for t = tau
ht(t) = w + lambda’*epsilon2(t-1:-1:t-k);
likelihood = likelihood + 0.5*(-log(2*pi)-
log(ht(t))-epsilon2(t)/ht(t));
end

y = -likelihood;

%% ESTIMATED CONDITIOANL VARIANCE
function hh=cond_var(x,eel,k) % Estimated conditioanl
variance

% k = Truncation Lag

w= x (D);
phi=x (2);
d = x(3) ;

beta = x(4);

lambda = zeros(k,1l); delta = zeros(k,1l);
lambda(l)=phi-beta+td; delta(@)=d;
%1l = fiweights(parameters);
for i=2:k
delta(i) = (i-1-d)/i*delta(i-1) ;
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lambda(i)=beta*lambda(i-1) + delta(i)-phi*delta(i-

1);
end

uSq = eel.A2; N = length(eel);

epsilon2 = zeros(N+k,1);
epsilon2(1:k)=mean(uSq);
epsilon2(k+1:N+k)=uSq;

tau = k+1:N+k;

ht = zeros(size(epsilon2));
%likelihood = O;
for t = tau

ht(t) = w + lambda®*epsilon2(t-1:-1:t-k);
%likelihood = likelihood + 0.5*(-log(2*pi)-

log(ht(t))-epsilon2(t)/ht(t));
end
hh=ht(tau);
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