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ABSTRACT

The two of the main formulations for modeling long range dependence in 

volatilities associated with financial time series are fractionally integrated generalized 

autoregressive conditional heteroscedastic (FIGARCH) and hyperbolic generalized 

autoregressive conditional heteroscedastic (HYGARCH) models. The traditional methods 

of constructing prediction intervals for volatility models, either employ a Gaussian error 

assumption or are based on asymptotic theory. However, many empirical studies show that 

the distribution of errors exhibit leptokurtic behavior. Therefore, the traditional prediction 

intervals developed for conditional volatility models yield poor coverage. An alternative is 

to employ residual bootstrap-based prediction intervals. One goal of this dissertation 

research is to develop methods for constructing such prediction intervals for both returns 

and volatilities under FIGARCH and HYGARCH model formulations.

In addition, this methodology is extended to obtain prediction intervals for 

autoregressive moving average (ARMA) and fractionally integrated autoregressive moving 

average (FARIMA) models with a FIGARCH error structure. The residual resampling is 

done via a sieve bootstrap approach, which approximates the ARMA and FARIMA 

portions of the models with an AR component. AIC criteria is used to find order of the 

finite AR approximation on the conditional mean process. The advantage of the sieve 

bootstrap method is that it does not require any knowledge of the order of the conditional 

mean process. However, we assume that the order of the FIGARCH part is known. Monte- 

Carlo simulation studies show that the proposed methods provide coverages closed to the

nominal values.



v

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor Dr. Samaranayake for 

his continues guidance, inspiration and advice given me during my PhD program. I would 

like to thank my graduate committee for their valuable inputs and suggestions. I am grateful 

to all the members of the Department of Mathematics and Statistics, Missouri University 

of Science and Technology, for their help and advice in many ways to bring my academic 

pursuits to success. I would like to thank all my teachers and especially, Dr. Kanthi Perera 

who encouraged me to pursue higher studies. Furthermore, I would like to thank my 

parents S.B. Ekanayake and Yasodara Tennekoon, for giving me the strength and the 

support throughout this journey. Finally, I would like to thank my siblings Wathsala, 

Pandula, Dharshika, Anuradha, Janaka, and my fiancee Chathuri and all my friends who 

always there with me when needed.



vi

TABLE OF CONTENTS

PUBLICATION DISSERTATION O PTIO N ......................................................................... iii

ABSTRACT..................................................................................................................................iv

ACKNOWLEDGMENTS........................................................................................................... v

LIST OF ILLUSTRATIONS.......................................................................................................x

LIST OF TABLES......................................................................................................................xii

SECTION

1. INTRODUCTION..............................................................................................................1

1.1. BACKGROUND......................................................................................................... 1

1.1.1. Autocovariance Function.................................................................................2

1.1.2. Stationary Time Series.....................................................................................2

1.1.3. White Noise Process.........................................................................................3

1.2. CONDITIONAL MEAN PROCESSES...................................................................3

1.2.1. ARMA Process................................................................................................. 3

1.2.2. FARIMA Process............................................................................................. 4

1.3. CONDITIONAL VARIANCE PROCESSES.........................................................7

1.3.1. ARCH(q)............................................................................................................7

1.3.2. GARCH (p, q) Process.....................................................................................8

1.3.3. FIGARCH (p, d, q) Process............................................................................ 9

1.3.4. HYGARCH (p, d, q) Process.......................................................................... 9

Page

1.3.5. ARCH (a>) Process 9



1.4. THE ADAPTION OF THE BOOTSTRAP PROCEDURE................................ 15

PAPER

I. BOOTSTRAP PREDICTION INTERVALS FOR FRACTIONALLY 
INTEGRATED GENERALIZED AUTOREGRESSIVE CONDITIONAL 
HETEROSCEDASTIC (FIGARCH) MODELS.............................................................17

ABSTRACT............................................................................................................................17

1. INTRODUCTION............................................................................................................. 18

2. THE FIGARACH MODEL..............................................................................................21

2.1. NON-NEGATIVITY OF THE CONDITIONAL VARIANCE......................... 24

2.2. ASYMPTOTIC NORMALITY OF THE PARAMETERS AND THE
STATIONARITY OF THE PROCESS................................................................ 25

3. BOOTSTRAP PREDICTION INTERVALS................................................................ 27

4. THE SIMULATION STUDY......................................................................................... 29

4.1. PREDICTION INTERVALS FOR RETURNS................................................... 32

4.2. PREDICTION INTERVALS FOR VOLATILITIES...........................................36

5. APPLICATION TO A REAL DATA SET....................................................................39

6. CONCLUSIONS............................................................................................................... 41

REFERENCES ...................................................................................................................... 41

II. SIEVE BOOTSTRAP-BASED PREDICTION INTERVALS FOR ARMA 
MODELS WITH FRACTIONALLY INTEGRATED GENERALIZED 
AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTIC (FIGARCH) 
ERRORS............................................................................................................................ 44

ABSTRACT ..........................................................................................................................  44

1. INTRODUCTION............................................................................................................. 45

2. ARMA-FIGARCH PROCESS........................................................................................ 48

vii

3. THE SIEVE BOOTSTRAP-BASED PREDICTION INTERVAL METHOD 50



4. THE SIMULATION STUDY..........................................................................................54

5. APPLICATION TO A REAL DATA SET....................................................................63

6. CONCLUSION................................................................................................................. 64

REFERENCES ...................................................................................................................... 65

III. SIEVE BOOTSTRAP-BASED PREDICTION INTERVALS FOR FARIMA-
FIGARCH M ODELS......................................................................................................67

ABSTRACT........................................................................................................................... 67

1. INTRODUCTION............................................................................................................. 68

2. FARIMA-FIGARCH PROCESS.................................................................................... 71

2.1. THE FARIMA MODEL...........................................................................................71

2.2. FARIMA-FIGARCH MODEL................................................................................72

3. SIEVE BOOTSTRAP-BASED PREDICTION INTERVALS FOR THE
FARIMA-FIGARCH MODEL....................................................................................... 74

4. THE SIMULATION STUDY......................................................................................... 79

5. APPLICATION TO A REAL DATA SET....................................................................87

6. CONCLUSIONS............................................................................................................... 89

REFERENCES....................................................................................................................... 90

IV. BOOTSTRAP PREDICTION INTERVALS FOR HYPERBOLIC
GENERALIZED AUTOREGRESSIVE CONDITIONAL 
HETEROSCEDASTIC (HYGARCH) MODELS.......................................................93

ABSTRACT ..........................................................................................................................  93

1. INTRODUCTION............................................................................................................. 94

2. THE HYPERBOLIC GARCH (HYGARCH) M O D EL..............................................96

3. BOOTSTRAP PREDICTION INTERVALS................................................................ 99

viii

4. THE SIMULATION STUDY 102



ix

4.1. PREDICTION INTERVALS FOR RETURNS..................................................105

4.2. PREDICTION INTERVALS FOR FUTURE VOLATILITIES...................... 110

5. APPLICATION TO A REAL DATA SET..................................................................113

6. CONCLUSIONS............................................................................................................. 115

REFERENCES..................................................................................................................... 116

SECTION

2. CONCLUSION..............................................................................................................118

APPENDIX................................................................................................................................ 120

BIBLIOGRAPHY..................................................................................................................... 129

VITA ........................................................................................................................................... 132



x

LIST OF ILLUSTRATIONS

Figure 1.1. Simulated (1 -  0.7 L) X t = (1 -  0.5 L)st time series.................................................4

Figure 1.2. Sample ACF of (1 -  0.7L)Xt = (1 -  0 .5 L )^ ..........................................................5

Figure 1.3. Simulated (1 -  0.7L)(1 - L)03X t = (1 -  0.5L)st time series..................................6

Figure 1.4. Sample ACF of (1 -  0.7L)(1 -  L)03X t = (1 -  0.5L)st .......................................... 6

Figure 1.5. Simulated GARCH (1,1) time series with a t2 = 0.1 + 0.1Lst2 + 0.85 L a t2 ........11

Figure 1.6. Simulated FIGARCH (1, d  ,0) time series with

a t2 = 0.1 + (1 -  0.45L -  (1 -  L)075 ) s t2 + 0.45Lat2 ................................................. 12

Figure 1.7. Sample ACF of GARCH (1,1) returns.................................................................13

Figure 1.8 Sample ACF of FIGARCH (1, d  ,0) returns.........................................................13

Figure 1.9. Sample ACF of GARCH (1,1) squared returns.................................................14

Figure 1.10. Sample ACF of FIGARCH (1, d ,0) squared returns...................................... 14

PAPER I

Figure 1. One-step ahead prediction intervals for S&P 500................................................40

PAPER II

Figure 1. One-step ahead prediction interval for logarithm of Japanese Yen/US dollar
exchange rates ............................................................................................................ 64

SECTION Page



Xi

PAPER III

Figure 1. 95% sieve bootstrap-based prediction interval for CPI inflation rates..............88

PAPER IV

Figure 1. One step ahead prediction interval for NASADAQ stock returns.................. 114



LIST OF TABLES

Table 1. Coverage of 95% intervals for returns FIGARCH (1, d, 1) with parameters
a = 0.1, $ = 0.2, d  = 0.5, P = 0.45 , and normally distributed errors................. 33

Table 2. Coverage of 95% intervals for returns of FIGARCH (1, d, 0) with
parameters a = 0.1, $ = 0, d  = 0.75, P = 0.70, and normally distributed 
errors.......................................................................................................................... 34

Table 3. Coverage of 95% intervals for returns of FIGARCH (1, d, 0) with
parameters a = 0.1, <p = 0, d  = 0.50, P = 0.45, and t distributed errors.............34

Table 4. Coverage of 95% intervals for returns of FIGARCH (1, d, 0) with
parameters a = 0.1, <p = 0, d  = 0.95, P = 0.90, and t distributed errors.............35

Table 5. Coverage of 95% intervals for returns of FIGARCH (1, d, 0) with 
parameters a = 0.1, <p = 0, d  = 0.25, P = 0.10, and exponentially 
distributed errors.......................................................................................................... 35

Table 6. Coverage of 95% intervals for returns of FIGARCH (1, d, 0) with 
parameters a = 0.1, $ = 0, d  = 0.90, P = 0.10, and exponentially 
distributed errors.......................................................................................................... 36

Table 7. Coverage of 95% intervals for returns of FIGARCH (1, d, 0) with
parameters a = 0.1, <p = 0, d  = 0.50, P = 0.45, and normally distributed 
errors .............................................................................................................................  37

Table 8. Coverage of 95% intervals for returns of FIGARCH (1, d, 0) with
parameters a = 0.1, $ = 0, d  = 0.90, P = 0.10, and t distributed errors..............38

Table 9. Coverage of 95% intervals for returns of FIGARCH (1, d, 1) with 
parameters a = 0.1, $ = 0.20, d  = 0.50, P = 0.45 , and exponentially 
distributed errors.......................................................................................................... 39

Table 10. Estimated coverage probabilities for S&P 500 future returns........................... 40

PAPER II

xii

PAPER I Page

Table 1. Coverage of 95% intervals for X t = 0.7X t_l +st ,where st follows a 
FIGARCH(1, d, 0) with Model 2 and normal errors : AR root : 1.429 57



Table 2. Coverage of 95% intervals for X t = 1.6Xt-1 -0 .6 3 X t_2 + s t,where st
follows a FIGARCH(1, d, 0) with Model 1 and normal errors : AR roots : 
1.111,1.429.................................................................................................................  58

Table 3. Coverage of 95% intervals for X t = 0.9Xt-1 - 0.8st-1 + s t, where st follows
a FIGARCH(1, d, 0) with Model 1 and normal errors : AR root : 1.111,
MA root: 1.429...........................................................................................................  58

Table 4. Coverage of 95% intervals for X t = 0.9Xt-1 + s t, where st follows a
FIGARCH(1, d, 0) with Model 1 and t errors : AR root : 1.111........................59

Table 5. Coverage of 95% intervals for X t = 1.4Xt-1 -  0.45 Xt-2 + s t, where st
follows a FIGARCH(1, d, 0) with Model 2 and t errors : AR root : 1.111,
2.000............................................................................................................................  59

Table 6. Coverage of 95% intervals for X t = 0.5 X t-1 -  0.5st-1 + s t ,where st follows
a FIGARCH(1, d, 0) with Model 2 and t errors : AR root : 1.111,
MA root : 2.000.......................................................................................................... 60

Table 7. Coverage of 95% intervals for X t = 0.7 X t-1 + s t ,where st follows a
FIGARCH(1, d, 0) with Model 1 and exponential errors : AR root : 1.429..... 60

Table 8. Coverage of 95% intervals for X t = 1.2Xt-1 -  0.35 Xt-2 + s t, where st
follows a FIGARCH(1, d, 0) with Model 1 and exponential errors : AR
roots : 1.429, 2 .000 .................................................................................................... 61

Table 9. Coverage of 95% intervals for X t = 0.7 X t-1 -  0.3st-1 + s t, where st follows 
a FIGARCH(1, d, 0) with Model 1 and exponential errors : AR roots :
1.429, MA root: 2.000...............................................................................................  61

Table 10. Estimated coverage probabilities for future exchange rates ..............................  63

PAPER III

Table 1. Coverage of 95% intervals for (1 -  0.9L)(1 -  L)049 X t = s t,where st follows
a FIGARCH(1, d, 0) with Model 1 and normal errors......................................... 83

Table 2. Coverage of 95% intervals for (1 -  0.9L)(1 -  L)025 X t = (1 -  0.8L)st, where
st follows a FIGARCH(1, d, 0) with Model 1 and normal errors......................83

xiii

Table 3. Coverage of 95% intervals for (1 -  0.8L)(1 -  L)025 X t = (1 -  0.5L)st, where 
st follows a FIGARCH(1, d, 0) with Model 1 and normal errors.............. 84



xiv

Table 5. Coverage of 95% intervals for (1 -  L)04 X t = s t, where st follows a
FIGARCH(1, d , 1) with Model 2 and normal errors.......................................... 85

Table 6. Coverage of 95% intervals for (1 -  0.8L)(1 -  L)04 X t = (1 -  0.5L)st ,where st
follows a FIGARCH(1, d, 0) with Model 1 and t errors......................................85

Table 7. Coverage of 95% intervals for (1 -  0.5L)(1 -  L)025 X t = s t, where st follows
a FIGARCH(1, d, 0) with Model 1 and exponential errors.................................86

Table 8. Coverage of 95% intervals for (1 -  0.5L)(1-L)049 Xt = (1 -0.8L)st,where st
follows a FIGARCH(1, d, 0) with Model 2 and exponential errors.................. 86

Table 9. Estimated coverage probabilities for future CPI inflation ra tes .......................... 89

PAPER IV

Table 1. Coverage of 95% intervals for returns of HYGARCH (1, d, 1) with 
parameters® = 0.1, (p = 0.4, d  = 0.4, P = 0.1, a  = 0.80, and normally 
distributed errors....................................................................................................... 106

Table 2. Coverage of 95% intervals for returns of HYGARCH (1, d, 0) with
parameters® = 0.1, <p = 0.2, d  = 0.65, P = 0.75, a  = 0.98, and normally 
distributed errors......................................................................................................... 107

Table 3. Coverage of 95% intervals for returns of HYGARCH (1, d, 0) with 
parameters® = 0.1, (p = 0, d  = 0.9, P = 0.7, a  = 0.95, and normally 
distributed errors......................................................................................................... 107

Table 4. Coverage of 95% intervals for returns of HYGARCH (1, d, 1) with
parameters® = 0.1, <p = 0.2, d  = 0.5, P = 0.45,a  = 0.85 , and t distributed 
errors.............................................................................................................................108

Table 5. Coverage of 95% intervals for returns of HYGARCH (1, d, 0) with
parameters® = 0.1, (p = 0, d  = 0.75, P = 0.7, a  = 0.95, and t distributed 
errors.............................................................................................................................108

Table 6. Coverage of 95% intervals for returns of HYGARCH (1, d, 1) with
parameters ® = 0.1, (p = 0.4, d  = 0.4, P = 0.1, a  = 0.95, and exponentially 
distributed errors......................................................................................................... 109

Table 4. Coverage of 95% intervals for (1 -  0.5L)(1 -  L)049 X t = (1 -  0.8 L)st, where
st follows a FIGARCH(1, d, 0) with Model 1 and normal errors......................84



xv

Table 7. Coverage of 95% intervals for returns of HYGARCH (1, d, 1) with
parameters® = 0.1, $ = 0.4, d  = 0.75, P = 0.45,a  = 0.85 , and exponentially 
distributed errors......................................................................................................... 109

Table 8. Coverage of 95% intervals for volatilities of HYGARCH(1, d , 1) with 
parameters® = 0.1, $ = 0, d  = 0.75, P = 0.45,a  = 0.85 , and normally 
distributed errors......................................................................................................... 111

Table 9. Coverage of 95% intervals for volatilities of HYGARCH(1, d , 1) with 
parameters ® = 0.1, $ = 0.40, d  = 0.40, P = 0.10, a  = 0.95, and t 
distributed errors......................................................................................................... 112

Table 10. Coverage of 95% intervals for volatilities of HYGARCH(1, d , 1) with 
parameters ® = 0.1, <fr = 0.40, d  = 0.40, P = 0.10, a  = 0.95, and 
exponentially distributed errors........................................................................... 113

Table 11. Estimated coverage probabilities for future returns.......................................... 114



1. INTRODUCTION

1.1. BACKGROUND

Time series analysis is a specialized area in Statistics which deals with data 

observed over time. It has applications in the fields such as astronomy, economics, 

engineering, environmental sciences, hydrology, and physics. Basically, there are two 

major aspects of time series analysis, namely modelling and forecasting. Many statistical 

approaches are utilized to both model and forecast empirical time series. However, the 

major emphasis in this study is on time series forecasting.

The standard time series formulations developed to model the conditional mean of 

a process, such as the autoregressive moving average (ARMA) models, and for the 

conditional variance, such as the generalized conditional heteroscedastic (GARCH) 

models, have autocorrelations that decay geometrically. These are sometimes known as 

short-memory processes and cannot effectively approximate long-term dependance with a 

parsimonious model. Time series with such long-term dependence are often termed long- 

memory processes. In early 90s, many researchers not only found long memory behaviour 

in the mean process of empirical time series, but also in squared residuals of empirical time 

series in domains such as finance and economics (deLima et al. (1994), Ding et al. (1993) 

and Harvey (1993)). This phenomenon necessitated the development of volatility models 

with long range dependence. Some of the models that addressed this need are the integrated 

GARCH (IGARCH, Engle & Bollerslev (1986)) and fractionally integrated GARCH 

(FIGARCH, Baillie et al. (1996)) formulations. More recently, the hyperbolic GARCH 

(HYGARCH, Davidson (2004)) models were introduced, that address some of the



2

shortcomings of the FIGARCH model. While such models are widely available, bootstrap- 

based methodologies for obtaining prediction intervals for them is lacking. In this 

dissertation, prediction intervals for FIGARCH and HYGARCH volatility models, as well 

as for Autoregressive Fractionally Integrated Moving Average (FARIMA) processes 

whose conditional volatility exhibits long memory behavior, will be discussed. Distribution 

free bootstrap techniques are adapted in order to construct the prediction intervals.

It is important to discuss some key concepts and terminologies used in time series 

analysis, before moving on to describing the methodologies used to obtain prediction 

intervals.

1.1.1. Autocovariance Function. If {X t) is a time series such that
t  O t e Z

Var(X t) < ro for each t e T , then the covariance function yX (•, •) of {X t ) is defined by 

Xx  ( r , s ) := Cov(X r , X ^) = E [ ( X r -  EXr) (X S -  EX S) ] ,  r , s e T .

1.1.2. Stationary Time Series. A time series {X t )t z is said to be (covariance) 

stationary if

i i2
(i) E  |Xt | < ro for all t e Z ,

(ii) E [X t ] = m for all t e Z ,

(iii) yX (r, s) = yX (r +1, s + 1) for all r , s, t e Z .

Further, the autocorrelation function of a stationary processes {X t} is defined as

p X (h) := y x  ̂  for all h e Z , where yx ( h ) = yX ( t , t + h ) for t ,h e  Z. 
yx (0)
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1.1.3. White Noise Process. The process {X t) is said to be white noise (WN) with 

mean 0 and variance a 2, if  the autocovariance function, yX , satisfies

Yx  (h )
a 2 i f  h = 0 
0 i f  h ^  0

1.2. CONDITIONAL MEAN PROCESSES

Here we present the definitions of some conditional mean processes. These are 

sometimes referred to as Box and Jenkins models. Autoregressive Moving Average 

(ARMA) formulations are widely used to model time series that exhibit short term 

dependence where the autocorrelation function decay to zero at an exponential rate. 

Therefore, the memory of the past event decays fast and its impact becomes negligible after 

short a period of time.

1.2.1. ARMA Process. A real valued process {X t} is said to be an 

ARMA(p , q) process if {X t) is stationary and satisfies

0 (L )(X t- p )  = 0(L)et, t e Z,

where O  and 0 are the p  fcand qth degree polynomials with O (z) = 1 - O t z - . . . - O  pz p 

and 0(z) = 1 + 0tz +... + 0qzq and having no common roots. The innovations are assumed to 

be white noise, that is: {st) ~ WN(0 ,a 2) .The mean of the process is p  = E (X t) for all t. 

The lag operator, L is defined by LkX t = X t-k, for k e N .

The ARMA process becomes an Autoregressive process with order p  (AR (p )) 

when q = 0 and further, it becomes a Moving Average process with order q (MA ( p ))
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when p  = 0. Figure 1.1 shows the sample path of a simulated ARMA(1, 1) process with

length of 200. The sample autocorrelation function of it is given in the Figure 1.2.

Simulated ARMA(1,1) series

Figure 1.1. Simulated (1 -  0.7 L) X t = (1 -  0.5L)st time series

1.2.2. FARIMA Process. A real valued process {X t} is said to be an 

Fractionally Integrated Autoregressive Moving Average (FARIMA(p , d , q)) process if the 

process Yt = V d (X t -  p) is a ARMA(p, q) process, where the difference parameter 

d  e (-0 .5 ,0 .5 ), (Vd = (1 - L)d ) .
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Autocorrelation of ARMA(1,1)

Figure 1.2. Sample ACF of (1 -0 .7 L)X t = (1 -0 .5 L)st

The FARIMA model is widely used in many areas such as geophysics, 

econometrics, and hydrology to model time series with a long memory property. 

Autocorrelation function of FARIMA decays to zero in slow hyperbolic rate rather than a 

fast-exponential rate and therefore, it is capable of modelling empirical time series with a 

long memory property. Note that the stationarity of a FAIRMA(p, d , q) process defined as 

in 1.2.2 depends on the fractional difference parameter d. If d  < 0.5, then the process is 

stationary and otherwise, it is not stationary. Furthermore, FARIMA(p, d , q)is said to be 

an intermediate-memory process when -0.5 < d  < 0, and it is said to be a long-memory 

process if 0 < d  < 0.5, according to the definition given in Brockwell and Davis (2009). 

Figure 1.3 shows the sample path of the FARIMA process with the fractional difference 

parameter, d  = 0.3.
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Figure 1.3. Simulated (1 -  0.7L)(1 -  L)03X t = (1 -  0.5L)st time series

Figure 1.4. Sample ACF of (1 -  0.7L)(1 -  L)03 X t = (1 -  0.5L)st
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The sample ACF of the simulated FARIMA process is given in the Figure 1.4. The 

ACF exhibits a long dependence here, not like in the simulated ARMA process with same 

AR and MA parameters.

In next section we will discuss time series whose variance change over time.

1.3. CONDITIONAL VARIANCE PROCESSES

Volatility (variance) of asset prices in financial markets often change over time. 

However, the asset prices themselves are uncorrelated but are not independent. 

Autoregressive Conditional Heteroscedastic (ARCH) model introduced by Engle (1982), 

is one formulation that is widely used to model such behavior.

1.3.1. ARCH(q). L et{st} be a real-valued discrete tim time series and let 3 t

denote the sigma field generated by the collection of variables {si : i < t} . Then the time 

series {st} is said to be an ARCH(q) process (Autoregressive Conditional 

Heteroscedastic) if

E(st | 3 t_ ) = 0 and Var(st | 3 t_1) = a t2 with

q
2 X"™' 2

a t = a + L a >s _ ,
i=1

=  a + a(L)st ,

where q > 0, a >  0, a i > 0, i = 1,2,..., q . Here L is the lag operator, with 

a(L) = 1 _ a 1 L _... _&qLq.

Bollerlev (1986) introduced the generalized ARCH (GARCH) model which a 

natural generalization of ARCH(q) formulation and is capable of modeling a wider class
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of volatility processes with a limited number of lag terms when compared to ARCH 

models.

1.3.2. GARCH (p, q) Process. Given a real valued discrete time stochastic process 

{st} , with 3 , defined as before, {st} is said to be a GARCH(p , q) process 

(Generalized Autoregressive Conditional Heteroscedastic) if  it satisfies

E(S  \ 3 t-1) = 0 and Var(s, | 3 ,-1 ) = a,2,

a 2 = ® + Z a s 2- + Z j 2- j
i=1 j=1

= a>+a(L)s, + P( L )af,

where p  > 0, q > 0, o  > 0, a  > 0, i = 1,2,..., q and f5 > 0, j  = 1,2,..., p  . Here L is the lag 

operator, with a(L ) = 1 -  a 1 L - ...  -  a qLq and (3(L) = P1L +... + PpLp .

Note that when a(1) + ^(1) = 1, the GARCH process defined above becomes an 

Integrated GARCH (IGARCH) process, which was first introduced by Engle and 

Bollerslev (1986). The GARCH (p, q) process reduces to the ARCH(q) process when 

p  = 0 and becomes a white noise process when p  = q = 0.

As mentioned earlier, some studies show that the squared returns of some empirical 

financial time series exhibit long-range dependence. The Fractionally Integrated GARCH 

(FIGARCH) and Hyperbolic GARCH (HYGARCH) are introduced by Baillie et al. (1996) 

and Davidson (2004), respectively, are often used in modelling long memory in squared 

returns. The definition of the FIGARCH is given below based on the definitions given by 

Baillie at el. (1996) and Tayefi & Ramanathan (2016).
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1.3.3. FIGARCH (p, d, q) Process. A real valued discrete time stochastic process

{st} , with 3 t defined as before, is said to be a FIGARCH(p,d, q) process (Fractionally

Integrated GARCH) if it satisfies

E <At | 3 t-1) = 0and Var(^t | 3 ^ )  =

[1 -  f  (L)]a,2 = «  + [1 -  f  (L) -  fa(L)(1 -  L)d ] £2 

where 0 < d  < 1, withfa(L) = 1 -faL - ...  -  faqLq and f  (L) = f 1L +... + f pLp , where L is the 

lag operator, and all roots of fa(L) and [1 -  f  (L)] lie outside the unit circle.

1.3.4. HYGARCH (p, d, q) Process. A real valued discrete time stochastic process

{st} , with 3 , defined as before, is said to be a HYGARCH(p, d, q) process (Hyperbolic

GARCH) if it satisfies

£t = zta t ,

a,2 =®+{1 - f (  L) -fa( L) 1 + a (  (1 -  L)d -  1)]js,2 + f (  L)a,2

where 0 < d  < 1 and a >  0 withfa(L) = 1 -faL - ...-faqLq and f (L )  = f 1L +... + f pLp (L is 

the lag operator).

In addition to the above formulations, it is important to define an infinite order AR

process introduced by Robinson (1991). We employed the definition used by Giraitis et al.

(2009) to define this process.

1.3.5. ARCH (») Process. A real valued discrete time stochastic process {st} ,

is said to be an ARCH(to) process if there exists a sequence of standard (zero mean and 

unit variance) independent and identically distributed random variables {zt) and a 

deterministic sequence bj > 0, j  = 0,1,..., such that
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£t = ztGt ,

w
= bo+ E j t -  j •

j=1

Moreover, assume that {stJ is a causal, i.e for any t, s t has a representation as a 

measurable function of the present and past values ss, s < t .

The GARCH(p, q)and HYGARCH(p, d, q)with a <  1 can be represented as 

ARCH( w) processes as defined above. Coefficients of the ARCH(w) representation for 

GARCH(p, q) processes decay exponentially. For the GARCH representation, the weights

w
bj are defined by the generating function a (z )/(1  -  P(z)) = Zbj i b0 = (1 -P(1)) 1a 0,

j=1

where a (  z ) and p ( z ) are the polynominals associated with the GARCH process. 

Similarly, both IGARCH(p q) and FIGARCH(p, d, q) processes can be represented as

w
an integrated ARCH(w) process with ^ bj = 1. Therefore, both IGARCH and FIGARCH

j=1

possesses have infinite unconditional variance. This is not the case with HYGARCH 

process, which is one reason why these processes are sometimes preferred over IGARCH 

and FIGARCH formulations.

The focus of this dissertation are the volatility models with long range dependence. 

Therefore, it is useful to examine the behavior of the autocovariance function of the squared 

returns | s t2 J for such processes and compare that with the behavior associated with short-

memory models. The squared returns {s2 J in ARCH(w) representation of GARCH(p, q)

has finite fourth moments with absolute summable autocovariance function,
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ye (h) = Cov (sh2, nt), and exponentially decaying coefficients, which implies short memory 

in returns squares j s 2 j . In contrast to the GARCH model, the autocovariances Cov(s^, s02)

of HYGARCH decay to zero at hyperbolic rate h_1_d, with d > 0 (Giraitis et al. (2009)). 

Therefore, HYGARCH possesses intermediate memory in squared returns j s 2 j (Brockwell

and Davis (2009)). On the other hand, the finite fourth moment do not exist in IGARCH 

and FIGARCH models since they do not possess finite second moments. However, the 

FIGARCH model is frequently used in the literature to fit long range dependence in 

squared returns.

Figure 1.5. Simulated GARCH (1,1) time series with a 2 = 0.1 + 0.1Lst2 + 0.85 L a 2
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Figures 1.5 and 1.6 show that the sample paths of simulated GARCH (1,1) and

FIGARCH (1, d ,0). The sample ACF’s of GARCH (1,1) and FIGARCH (1, d ,0) are given

in Figures 1.7 and 1.8. As seen in the graphs of ACF’s, they are uncorrelated. However, 

squared returns given in Figures 1.9 and 1.10 shows that the returns are not independent in 

both models.

Figure 1.6. Simulated FIGARCH (1, d  ,0) time series with 

a]  = 0.1 + (1 -  0.45L -  (1 -  L)075) £t2 + 0.45Lct2
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Figure 1.7. Sample ACF of GARCH (1,1) returns

Figure 1.8 Sample ACF of FIGARCH (1, d ,0) returns
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Figure 1.9. Sample ACF of GARCH (1,1) squared returns

Figure 1.10. Sample ACF of FIGARCH (1, d ,0) squared returns
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1.4. THE ADAPTION OF THE BOOTSTRAP PROCEDURE

The bootstrap is a non-parametric resampling technique which was developed by 

Efron (1979) and can be utilized to make statistical inferences about unknown distributions. 

Freedman (1984), Stine (1982, 1987) and Findley (1986) applied bootstrap technique to 

time dependent data by resampling the residuals obtained by fitting a model to the data. 

Stine (1987) used bootstrap prediction mean squared errors to forecast future values of AR 

processes. Thombs & Schucany (1990) employed backward representation method (By 

expressing the current value of the time series as a linear function of future values) to 

construct bootstrap prediction intervals for AR models with known order p. The use o f 

backward representation is limited to AR processes, and cannot be used for the processes 

with a MA component. Cao et al. (1997) developed a computationally faster conditional 

bootstrap without using the backward resampling method. This method was also restricted 

to AR processes with known orders.

Miguel & Olave (1999) extended the construction of prediction intervals to ARMA 

models with ARCH errors. Pascual, Romo & Ruiz (2006) developed prediction intervals 

for returns and volatilities using GARCH type models. Here after we referred method used 

by Pascual, Romo & Ruiz as PRR. In contrast to Miguel & Olave’s method they 

incorporated the uncertainty of parameter estimations for the intervals. All the above 

bootstrap methods assume that the order o f  the process is known.

The foundation o f implementing the bootstrap methods for time series with 

unknown order was laid by Kunsch (1989), Kreiss (1992). Further, these type of time series 

can be written as an infinite autoregressive process. Buhlmann (1997) extended this 

approach to a general class o f  time series that can be represent as an infinite order moving



16

average and use the term “sieve bootstrap”. Alonso et al. (2002, 2003) applied the sieve 

bootstrap approach to construct prediction intervals for linear processes. Those processes 

can be written as an invertible, and an infinite order moving average with absolute 

summable coefficients. Mukhopadhyay and Samaranayake (2010) improved the coverages 

of sieve bootstrap method used Alonso et al. (2002, 2003) by rescaling the residuals. 

Rupasinghe and Samaranayake (2012, 2013) extended sieve bootstrap prediction intervals 

for FARIMA models. They incorporate Poskitt’s (2006) results to establish the theoretical 

validation, because the coefficients of infinite moving average representation are not 

absolute summable in FARIMA models.

The outline of this dissertation as follows. Paper I and Paper IV discuss the 

bootstrap prediction intervals for returns and volatilities in FIGARCH and HYGARCH 

models. Prediction intervals for ARMA models with FIGARCH errors are discussed in 

Paper II. Order of the AR approximation of ARMA component is carried out using 

approaches adopted in Alonso et al. (2003) and Thilakaratne & Samaranayake (2014). 

Finally, bootstrap prediction intervals for FARIMA models with FIGARCH errors is 

presented in Paper III. Here the order order of the AR approximation of FARIMA 

component is motivated by the approach taken in Rupasinghe and Samaranyake (2012, 

2013). We used both sieve bootstrap approach as well as PRR method to construct the 

intervals in Papers II and III.
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PAPER

I. BOOTSTRAP PREDICTION INTERVALS FOR FRACTIONALLY 
INTEGRATED GENERALIZED AUTOREGRESSIVE CONDITIONAL 

HETEROSCEDASTIC (FIGARCH) MODELS

ABSTRACT

The Generalized Autoregressive Conditional Heteroscedastic (GARCH) 

formulations are inadequate to model the persistent volatility found in certain financial 

assets. The integrated version of the GARCH formulation, namely the IGARCH model, 

was developed to handle such situations. Fractionally Integrated Generalized 

Autoregressive Conditional Heteroscedastic (FIGARCH) models, however, provide a 

more flexible alternative to modeling long-term dependence of volatility, providing a 

leptokurtic unconditional distribution for returns having long memory behavior. We 

propose a method based on the residual bootstrap to obtain prediction intervals for the 

returns and the conditional volatilities of FIGARCH processes. A Monte-Carlo simulation 

study, conducted using a variety of distributions for the error terms, show that the proposed 

intervals have good coverage probabilities in most cases.

Keywords: Fractional integration, Volatility modeling, Residual-based bootstrap, Long

memory
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1. INTRODUCTION

Time series literature is replete with many formulations developed to model the 

volatility of financial time series. Engle (1982) introduced the well-known Autoregressive 

Conditional Heteroscedastic (ARCH) model and Bollerslev (1986) extended the ARCH 

model to the Generalized ARCH (GARCH) model, which accommodate long-term 

dependence of volatility with a limited number of lag terms, compared to the ARCH 

formulation. Since the introduction of the ARCH and GARCH models, several variations 

have been developed by other authors. For example, the exponential GARCH or the 

EGARCH model (Nelson, 1991) was developed to allow asymmetric response to positive 

and negative shocks. A generally known fact about GARCH type models is their ability to 

model volatility clustering. Volatility clustering refers to the phenomenon where large 

returns tend to follow large returns and small returns tend to follow small returns. Highly 

persistent volatility, however, cannot be modeled well using the GARCH model or its 

alternatives such as the EGARCH. The Integrated GARCH (Engle and Bollerslev, 1986) 

formulation was developed to model time series with persistent volatility. Fractionally 

Integrated Generalized Autoregressive Conditional Heteroscedastic (FIGARCH) was 

introduced by Baillie et al. (1996) as an alternative to the IGARCH model, allowing the 

ability to model the long-memory nature of the conditional variance found in many 

financial time series, but without the assumption of a unit root in the model. In this paper, 

we introduce a residual bootstrap-based method of obtaining prediction intervals for the 

conditional volatility of FIGARCH processes as well as for future returns.
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The conditional variance of a GARCH process can be written as an infinite sum of 

exponentially decaying terms containing squared past innovations. Similarly, the 

conditional variance of FIGARCH model can be expressed as a sum whose terms have a 

slower hyperbolic rate of decay. This provides the FIGARCH formulation the ability to 

model squared return processes having long memory. Thus, in the FIGARCH formulation, 

the effect of a past shocks (squared innovations) decay slowly to zero, unlike in the 

GARCH case where such effects decay at a faster exponential rate. In contrast to both the 

GARCH and FIGARCH processes, the effect of such shocks persists without decaying in 

the IGARCH process. Thus, the FIGARCH, while allowing for a past shocks to persist for 

a long period, assumes that eventually its effects become negligible, which is a more 

reasonable assumption.

There exist several publications on obtaining prediction intervals for the conditional 

mean of long memory processes as opposed to obtaining prediction intervals for the 

conditional variance. For example, Bisaglia and Grigoletto (2001) introduced bootstrap- 

based prediction intervals for Fractionally Integrated Autoregressive Moving Average 

(FARIMA) processes. Another example is Rupasinghe and Samaranayake, (2013) which 

established a sieve-bootstrap-based procedure to calculate prediction intervals using an 

algorithm that is computationally much faster than that proposed by Bisaglia and Grigoletto 

(2001). However, there are no published literature on obtaining prediction intervals for 

long memory GARCH type models, and there are only a few papers have discussed the 

construction of prediction intervals for short-memory ARCH and GARCH type models.

In order to construct prediction intervals, the underlying distribution of the point 

predictor or that of a pivotal statistic is needed. But this is not feasible in some situations,
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and in many instances, the asymptotic distribution of such statistics is used instead of the 

finite sample distribution, which is intractable. An alternative is the distribution free 

resampling approach, where a bootstrap-based technique is utilized. Reeves (2005) 

constructed prediction intervals for ARCH models using a bootstrap method and contrasted 

it with the traditional asymptotic prediction intervals. Reeves reported that the bootstrap- 

based method improved the coverage accuracy. Pascual et al. (2006) developed a 

bootstrap-based prediction intervals for both returns and volatilities for the GARCH (1, 1)

model which is referred to as Pascual-Romo-Ruiz (PRR) in the context. Their bootstrap 

method incorporated the uncertainty of parameter estimation when building the prediction 

intervals, which certainly improved the coverage. However, one drawback of this method 

is the time-consuming computational methodology required for the calculation of 

prediction intervals. Since GARCH model can be re-written as a linear ARMA type model, 

Chen et al. (2010) proposed computationally low-cost sieve bootstrap-based prediction 

intervals for returns and volatiles. Trudos and Hotta (2016) constructed prediction 

intervals for returns and volatilities for EGARCH and the Glosten-Jagannathan-Runkle 

GARCH (GJR-GARCH) models by adapting the method used by Pascual et al. (2006). 

They found that volatility prediction could be poor when an additive outlier is present near 

the forecasting origin. Although there are a number of published literatures on bootstrap 

prediction intervals for the conventional volatility models, there are no such work available 

for long memory volatility models. Our paper presents an adaption of PRR algorithm 

developed to GARCH models, to construct the prediction intervals for FIGARCH models.

The sections of the paper are organized as follows: First, we introduced the 

FIGARCH model in Section 1, and then its properties in Section 2. Section 3 describes the
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residual based resampling technique and then in Section 4, Monte Carlo simulation results 

are reported. Section 5 presents an application of the proposed bootstrap-based prediction 

intervals for the FIGARCH model, and the conclusions are presented in Section 6.

2. THE FIGARACH MODEL

A real valued discrete time stochastic process {st : t e Z} is said to be an 

ARCH(q) process, if

s t = zta t, (1)

q2 X"™' 2
a  = ® +L a £̂- l ,i=1

where, o >  0and a t > 0, i = 1,..., q . In expression (1), it is assumed that E(zt) = 0, 

var(zt) = 1 and zt ’s are uncorrelated. Thus, by the definition, [st} is an uncorrelated series 

with mean zero process with conditional variance a t2, where the conditioning is done with 

respect to the a  -  field 3 t_ generated by the set of random variables {zk : k < t -1}. The

conditional variance is a linear function of squared residuals up to q lags implying a 

Markovian dependence. The generalized version of ARCH (GARCH), introduced by 

Bollerslev (1986), gives a more flexible structure, compared to (1), with the conditional 

variance (volatility) a] given by

a 2 =  ® + Y a s —  +  Y p . a J

i=1
Z— i r j  t -  j
.=1

= co+a( L )st2 + P(L)a— (2)
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that a (L ) = a 1L + a 2L2 +... + a qLq and fi(L) = fi1L + L2 +... + PpLF , with L signifying the

lag (or backshift) operator. The process defined in (2) is a stationary process and can be 

written as an ARMA(p, q) formulation in s 2:

[1 -  a (L ) -  fi(L ) K  = © + [1 -  fi(L )]v(, (3)

where m = max(p, q) and vt = K  -  <r2. The process {vt} can be shown to be uncorrelated

and is interpreted as the innovations associated with the ARMA process. The formulation 

in (3) is said to be an IGARCH model if  the autoregressive polynomial contains a unit root. 

Therefore, autoregressive representation of IGARCH can be given as

L )(1 -  L K 2 = © + [1 - f i (  L )]v(, 

where </>( L) = [1 -a (L ) -fi(L)](1 -  L)-1 is of order m -1 .

Several studies have reported the presence of long memory in the autocorrelations 

of squared returns in financial asset prices. Thus, Baillie et al. (1996) adapted the idea of 

fractional integration in conditional mean models (FARIMA) in order to develop a 

FIGARCH process. The class of FARIMA(k, d, /) models for the discrete time real­

valued process {yt} is defined as

a (L )(1 -  L) dy t = b (L) z , (4)

where a(L) and b(L) are polynomials in the lag operators of orders k and / ,  respectively. 

Here, { zt }is an uncorrelated process with mean zero. The fractional integration parameter,

where p > 0, q > 0, o > 0, a t > 0, i = 1,..., q, > 0, j  = 1,...,p , a(L ) and fi(L) are such

d , lies between -0.5 and 0.5 for the stationary FARIMA model. The fractional differencing
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operator (1 -  L)d has an infinite binomial expansion and can be written in terms of the 

hypergeometric function,

w
(1 -  L)d = F  ( -d , 1,1; L) = ^ r ( k  -  d  )r (k  + 1)-1 r ( - d  )-1 Lk,

k =0

where T(.) denotes the Gamma function. Analogous to FARIMA(k, d, /) model for the 

mean process given in (4), Baillie et al. (1996) defined the FIGARCH model in the 

following manner:

L )(1 -  L)d e? = © + [1 -P (  L )]v( . (5)

where 0 < d  < 1, and all the roots of <p(L) and [1 -  A(L)] lie outside the unit circle. 

Rearranging the terms in (5), an alternative representation for FIGARCH(p, d , q) can be 

obtained as

a 2 = © + [1 -  p (L ) -  L)(1 -  L)d]e2 + A(L ) a 2. (6)

From (6), conditional variance of the {st }is obtained as:

a 2 = ©[1 -£ (1 )]-1 + {1 -  [1 -£ (L ) ] -V(L)(1 -  L)d }at2
1 o ? V )

= ©[1 -A 1 )] -1 + ^( L )s2

w
where X(L) = ^  AkLk. For the FIGARCH(p, d, q) process given in equation (5) to be

k=1

well-defined and the conditional variance in the ARCH(w) representation in (7) to be 

positive, all the coefficient of ARCH representation in (7) must be non-negative. That is, 

each Ak > 0 for k e N.

In equation (7), the conditional variance of FIGARCH(1, d , 1) can be written as follows:

at2 = © (1 -  A ) 1 + [1 -  (1 -  A )-1 (1 - f a  )(1 -  L)d ]e2, (8)



24

where,

M  L) = Z  AkL  = 1 -  [! -  (! -  P ) 1 (1 -  & L )(1 -  L)d ].k=1

Therefore, coefficients of the infinite ARCH model can be obtained by equating the 

coefficients of lag operator, thus obtaining

M = A - P  + d  5

M2 = ( d - P ) ( P -& ) + d  (1 -  d  ) /2 ,

M = P  dP1 -  d& -  P12 + P1&1 + d (1 -  d ) / 2 J + d (1 -  d ) / 2 [(2 -  d ) / 3 -  & ],

Mk = p 1Mk-1 + [( k - 1 - d ) / k - & ]^d,k-1. k e N

where 5dk =8d k-1 (k -1  -  d)k 1, k e N refer to the coefficients in the series expansion of 

(1 -  L)d, with 0 = 1 and £d1 = d .

The FIGARCH formulation enables us to model a wide range of conditional 

volatility models. When d  = 0 , it becomes a GARCH(p, m) process where 

m = max(p, q ). Similarly, when, d  = 1with P(L) ^  0 and &(L) = 1, FIGARCH becomes a 

regular IGARCH model.

2.1. NON-NEGATIVITY OF THE CONDITIONAL VARIANCE

For the non-negativity of the conditional variance of the FIGARCH, all Mk ’s should 

be positive. Baillie et al. (1996) derived a set of sufficient conditions for the conditional 

variance to be non-negative. They are 0 < p  < & + d  and 0 < d  < 1 -  2& . We used this set

of conditions in our study. Alternatively, Bollerslev and Mikkelsen (1996) state another set
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of sufficient inequality constraints (  - d  < (2 - d ) /3  and

d [<p1 -  (1 -  d ) /2 ] <  ( ( ^  -  (  + d ) . The latter conditions introduced by Bollerslev and

Mikkelsen (1996) are less restrictive than the former conditions introduced by Baillie et al. 

(1996). Chung (1999) suggested another set of sufficient constraints given by 

0 <$1<P1 < d  < 1. Finally, Conrad and Haag (2006) derived necessary and sufficient 

conditions for the non-negativity of the variance for the FIGARCH(p , d , q) for p  < 2. 

According to their findings, conditional variance can be negative almost surely, even if all 

the original parameters of FIGARCH are positive and similarly conditional variance can 

be non-negative even if  all the parameters are negative, except d . They also derived 

sufficient conditions for non-negativity of variance for p  > 2 .

2.2. ASYMPTOTIC NORMALITY OF THE PARAMETERS AND THE 
STATIONARITY OF THE PROCESS

Baillie et al. (1996) used a dominance type argument by extending the results

available for IGARCH(1, 1), to claim the asymptotic normality of Q-MLEs of

FIGARCH(1, d , 0). They did not prove it theoretically, but their empirical study,

however, suggests that parameter estimates are asymptotically normal. Robinson and

Zaffaroni (2006) established conditions for consistency and asymptotic normality of Q-

MLEs for class of ARCH( to) under some general conditions, which also covers the

FIGARCH type processes. According to their findings strong consistency requires

0 < d  < 1 and asymptotic normality requires d  > 0.5 .
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By construction, FIGARCH with {s t} defined as in equation (1) has the properties 

that cov(st, s t-h) = 0 for h > 0 and E (st) = 0. The hypergeometric function F ( -d , 1, 1; u)

, evaluated at u = 1, is 0 for 0 < d  < 1 and thus A(1) = 1. Therefore, for o  > 0 , the second 

moment of the [st} does not exist. The implication is that the FIGARCH process is not

covariance stationary. Giraitis et al. (2018) established the necessary and sufficient 

conditions for the FIGARCH to be covariance stationary with o  = 0 . Conrad and Haag 

(2006) suggested a way to obtain the covariance stationarity of [st} with 0 < d  < 1 by

assuming var(zt) < 1in (1). However, it rules out long memory in s t2 by indicating the 

absolute summability of auto-covariance function of s t2, as shown in Zaffaroni (2004).

Even though FIGARCH is not stationary, and its conditional variance is infinite, Baillie et 

al. (1996) truncated the coefficients in the infinite lag polynomial on conditional variance 

in order to simulate the FIGARCH process. They used larger truncation lag as 1000 in 

coefficients in A(L) lag polynomial, in order to incorporate the long run dependencies on 

the conditional variance. Furthermore, this truncated version of FIGARCH model has finite 

variance since it is using finite number of coefficients. Therefore, truncated FIGARCH is 

a covariance stationary with finite variance. Thus, it is feasible to use the model in order to 

construct bootstrap based prediction intervals.
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3. BOOTSTRAP PREDICTION INTERVALS

In this section, we adapt the procedure proposed by Pascual et al. (2006) for the 

GARCH case to obtain prediction intervals for future values of returns and the future 

volatilities generated by a FIGARCH process.

1. Let \s t }” be a sequence of realizations of a FIGARCH(1, d , 1) process. Then

estimate the parameters of the model 0 = (col,</)l, d , f t ) by using Quasi-Maximum 

Likelihood Estimation (Q-MLE) method.

2. Compute the residuals zt = s j(7 t , t = 1,...,n where

o 2 = ® c - f t ) -1 +  [1 -  (1 - f t  )-1 (1 -  t o o  -  L ) d sS  

~ ®(1 -  ftft 1 + J^sf-1  +  l̂2̂ t-2 + ... + K slt -k

and settingst2 = n-1 Z  ” s:2, for t = -k  +1 ,...,-1, 0. Note that k  is a suitably chosen 

truncation lag of the polynomial A(L) .

3. Compute the centered residuals zt = zt -  zt , where zt = n-1 Z ”= zi .

4. Denote the empirical distribution function of the centered residuals by

( x) = n-1 Z  t=11 (-«,* ](zt) .

5. Draw a bootstrap sample with replacement from the above distribution and denote 

it by z**, where t = -m  +1,...,-1,0,1,...,n . We used m=2,000 in this study.

6. Generate the bootstrapped FIGARCH seriesst*, t = - m +1,...,-1,0,1,...,n by first 

computing a bootstrapped conditional variance series, <r2* using the FIGARCH 

parameters estimated in Step 1. Then use s* = zt*ot*, t = -m  +1,...,-1,0,1,...,n to
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generates*. The non-positive lags represent ‘burn-in’ observations that are 

dropped to mitigate effects due to initial conditions.

7. Estimate the FIGARCH parameters 0* = (&*,$*,d *,0*) for the bootstrapped series

{s* j using the Q-MLE method.

8. Use the new coefficients 0* = (m*,$*,d*,0*) obtained in the previous step,

compute the h-step ahead bootstrap forecasts of future returns and volatilities based 

on the following recursions:

n+h^ = ®* c - 0 V + [i -  ( i - 0 V ( i  - ^ a  -  L ) d ]s2*

«®*C -0 i*)- 1 +^i*s„2+ h- i +. . .  + « + h- k ,
S+ h = Zn+h°n+h , for h > 0 and St* = St for t < n

9. Obtain the estimated bootstrap distribution of s n+h, denoted by F  t (.), by repeating
s  n+h

steps 5-8 B times (B = 1000) in the simulation study. F t  (.) is the estimate of the

F  * (.), the bootstrap distribution function of s *+h, which is used to approximate
s  n+h

unknown distribution of sn+h given the observed sample.

i0. The i00(i - a ) %  bootstrap prediction interval for s n+h is then computed by 

[Qn( a /  2), Qn(i - a  / 2)], where Q *(.) = F  are the percentiles of the estimated

bootstrap distribution.

i i .  Similar to step 9, obtain the bootstrap distribution of future volatilities,a n+h and

then compute the bootstrap prediction interval for volatility similar to step i0.
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4. THE SIMULATION STUDY

To investigate the finite sample performance of the proposed bootstrap prediction 

intervals of the FIGARCH model, a Monte-Carlo simulation was carried out. The 

representations of {s t} given in Equations (1) and (8) were used to simulate the FIGARCH

process. This method become feasible due to the truncation of the infinite lag polynomial. 

The effect of the pre-sample values might have a higher impact than regular GARCH due 

to the long memory nature and the hyperbolic rate of decay of the response to a lagged 

squared innovation. Thus, as suggested by Baillie et al. (1996), truncating lag was selected 

at k = 1,000 to incorporate the long-run dependencies. The simulation results were 

compared with the conditional bootstrap method (CB) used by Miguel and Olave (1999) 

for ARMA model with ARCH innovations. They only focused on prediction intervals of 

returns and not volatilities. CB prediction interval method does not incorporate the 

uncertainty of the parameter estimates. Therefore, step 7 is discarded from the process and 

use the 0 in step 8 instead of 0* while keeping the other steps the same as in the PRR 

method. Thus, following recursive equations are used to calculate CB prediction intervals:

^ = ® c  - fa r 1+[1 -  (1 - f a  r  (1 - l )(1 -  L)d ] s 2„ :  h 

«®(1 - A ) -1 M ^ h - !  : . . . :v n * h -k ,

* * *
^n:h Zn:h^ n:h .

The Monte-Carlo simulation study was carried out for different error distributions, 

namely standard normal and t with 7 degrees of freedom. Centered exponential 

distribution was also considered to investigate the effect due to non-symmetric error 

distributions. Series of lengths 500 and 1500 were used. The t-distributed errors were
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t -distributed errors also have a unit standard deviation. When generating the realizations, 

the first 6,000 were dropped to avoid the effects due to initial values.

We considered FIGARCH(1, d , 0) and FIGARCH(1, d , 1) models to simulate the

data with a> = 0.1, d  e{0.25,0.50,0.75,0.95), ^ e { 0 ,0 .2 0 ) , and

P e {0.10,0.20,0.45,0.70,0.90). Note that out of these sets of parameter combinations, we

only used the combinations which satisfied the sufficient conditions for non-negativity of 

the variance suggested by Baillie et al. (1996). For each combination of the model, sample 

size, nominal coverage probability, and error distributions, N = 500 independent time series 

were generated. Then bootstrap steps 1 through 10 were implemented for each time series 

generated. In each simulation R = 1,000 future values, {sn+h) were generated. We 

estimated the coverage probabilities for future returns by calculating the proportion of 

those sn+h values falling between the lower and upper bounds of the bootstrap intervals.

Therefore, the coverage for the i th simulation run is given by C (i) = R ■' I  R=, IX + h  ('•)] 

where A = [Q*(a/2),Q*(1 - a / 2 ) ]  is the 100(1 -a ) th  bootstrapped prediction interval. 

IA(.) is the indicator function of the set A and s[+ h(i), r = 1, 2,...,1000 are the R future

values generated at i th simulation run. The theoretical and bootstrap lengths are obtained 

by using Lt (i) = s rn+ h (1 - a / 2) -  e rn+h ( a / 2) and LB (i) = Q *(1 - a / 2) -  Q * (a /2 ) ,

respectively. LT (i)is the difference between 100(1 -a ) th  and the 1 0 0 (a /2 )th  percentiles 

generated from R future values of the underling model with known order and the

generated aszt = 51/2z1t(z \ t + z32t +... + z82t)-1/2by drawing independent and identically

distributed standard normalzit ’s for i = 1,2,...,8, as employed in Baillie et al. (1996). Here
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coefficients. The mean coverage, standard error of mean coverage, mean bootstrapped 

prediction intervals, standard error of bootstrapped prediction intervals, and mean 

theoretical intervals are calculated as follows:

Mean coverage C = N  ■' I  ”, C (i).

Standard error of mean coverage SEC = j[ N (N - ') ] ”' I i = 1[C(i) -  C]2 j ,

Mean length (bootstrap) LB = N  -' I  N'Lb (i).

Standard error o f mean length SEL = {[ N  (N  - 1)]-' I  B=,[ LB (i) -  LB ]}'/2,

Mean theoretical length LT = N  -' I  N ' LT (i) .

In similar fashion, we obtained the coverage probability for future volatilities 

ja n+h j , h = '  '0, 20. Thus proportion of those a n+hfalling between upper and lower bound

of bootstrapped volatilities was used as an estimator of the coverage probability for future 

volatility. The mean coverage, standard error of mean coverage, mean bootstrapped 

prediction intervals, standard error of bootstrapped prediction intervals, and mean 

theoretical intervals for future volatilities obtained were similar to those calculated for 

return series.

We investigated the type of model, nominal coverage probability, effect of the 

bootstrap truncation lag on coverage probabilities, and error distribution in this simulation 

study. We report the mean coverage, mean bootstrap length, mean theoretical length, 

standard error of mean coverage, and standard error of mean bootstrap interval length in 

Tables '-9  for standard normal, centered exponential, and t-distributed innovations for both 

PRR and CB methods. Due to space limitation, we only report the behavior of 95%
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intervals. The minimum value, percentiles (25th, 50th, 75th), and maximum value of the (a) 

coverage probabilities, (b) the bootstrap interval bounds (upper and lower), and (c) the 

theoretical interval bounds (upper and lower), were computed for further investigation and 

results are available upon request.

4.1. PREDICTION INTERVALS FOR RETURNS

Tables 1-6 report the simulation results for future return series. Simulation results 

show that the coverage probabilities were close to the nominal value for the normal and 

the t distributed errors in both methods PRR and CB. Under these error distributions 

(Tables 1-4) if one rounded the coverage probabilities to two decimal places, 23 of the 24 

cases would achieve 0.95 nominal level in PRR method while 12 of the 24 cases achieve 

0.95 nominal level in CB method. On the other hand, the maximum and minimum coverage 

probabilities obtained using the centered and skewed exponential error distribution were 

0.9286 and 0.9133 for FIGARCH(1, d, 0)with parameters 

o = 0.10, (f> = 0, d  = 0.25, p  = 0 .10ando = 0.10, <fr = 0, d  = 0.90, P = 0.10 respectively. 

CB method gives even worse results in this case with most of the coverage probabilities 

ranging from 0.90 to 0.92. Note that the coverage probabilities get closer to the nominal 

value with increasing sample size n regardless of the error distribution used. However, the 

coverage probabilities obtained using PRR method decrease as sample size n increases for 

the first lag ahead prediction intervals for FIGARCH with exponentially distributed errors.

In most cases, the bootstrap lengths are less than the theoretical lengths for both 

PRR and CB methods when using the exponential error distribution as the distribution of 

the innovations. It is also noted that PRR interval width is slightly wider than the CB
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intervals. In few occasions not like PRR method interval width is narrower than the 

theoretical length in CB intervals. That leads to the conclusion that coverage probabilities 

obtained from CB method are somewhat liberal than those are obtained using PRR method. 

It can be noted that the higher value of p  makes theoretical and bootstrap interval width 

wider, since p  parameter is associated with the past lagged variance. Finally, the coverage 

probabilities obtained using PRR and CB intervals show only a little difference among 

them, although the PRR method is slightly ahead of CB method. This comparison is similar 

to the study done by Pascual et al. (2006) for their prediction intervals for GARCH(1,1) 

process.

Table 1. Coverage of 95% intervals for returns FIGARCH (1, d, 1) with parameters 
m = 0.1, $ = 0.2, d  = 0.5, p  = 0.45 , and normally distributed errors

Lead
lag

Sample
size

Theoretical
length

PR R CB
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 8.1927 0.9465

(0.0009)
8.2894

(0.2936)
0.9425

(0.0009)
8.1276

(0.2816)

1,500 8.2054 0.9490
(0.0006)

8.2920
(0.2857)

0.9467
(0.0006)

8.2053
(0.2800)

10
500 8.6480 0.9471

(0.0010)
9.0534

(0.3151)
0.9420

(0.0009)
8.6682

(0.2746)

1,500 8.6500 0.9508
(0.0007)

8.9662
(0.2733)

0.9474
(0.0007)

8.7502
(0.2570)

20
500 8.8316 0.9452

(0.0011)
9.3431

(0.3333)
0.9396

(0.0011)
8.8169

(0.2651)

1,500 8.8119 0.9515
(0.0007)

9.2332
(0.2704)

0.9475
(0.0007)

8.9500
(0.2511)
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Table 2. Coverage of 95% intervals for returns of FIGARCH (1, d, 0) with parameters
o = 0.1, $ = 0, d  = 0.75, P = 0.70, and normally distributed errors

Lead
lag

Sample
size

Theoretical
length

PR R CB
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 13.7075 0.9486

(0.0008)
14.4595
(0.9551)

0.9438
(0.0008)

13.6482
(0.6366)

1,500 13.6713 0.9487
(0.0006)

13.8366
(0.6438)

0.9466
(0.0006)

13.7280
(0.6399)

10
500 14.3548 0.9461

(0.0010)
16.1092
(1.7109)

0.9405
(0.0010)

14.2578
(0.6539)

1,500 14.3354 0.9485
(0.0007)

14.6742
(0.6775)

0.9456
(0.0007)

14.4359
(0.6656)

20
500 14.8062 0.9440

(0.0011)
18.0165
(2.9435)

0.9380
(0.0011)

14.7725
(0.6877)

1,500 14.8004 0.9488
(0.0008)

15.3545
(0.6949)

0.9457
(0.0008)

15.0135
(0.6744)

Table 3. Coverage of 95% intervals for returns of FIGARCH (1, d, 0) with parameters 
o = 0.1, (f> = 0, d  = 0.50, P = 0.45, and t distributed errors

Lead
lag

Sample
size

Theoretical
length

PR R CB
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 7.5913 0.9472

(0.0009)
7.7956

(0.4959)
0.9439

(0.0010)
7.6657

(0.4888)

1,500 7.6186 0.9498
(0.0006)

7.7323
(0.4924)

0.9475
(0.0006)

7.6445
(0.4856)

10
500 7.9504 0.9471

(0.0010)
8.3987

(0.5066)
0.9431

(0.0010)
8.1344

(0.4909)

1,500 7.9451 0.9515
(0.0007)

8.3308
(0.4548)

0.9484
(0.0007)

8.1151
(0.4328)

20
500 7.9686 0.9461

(0.0011)
8.5280

(0.4788)
0.9415

(0.0010)
8.2087

(0.4777)

1,500 7.9909 0.9512
(0.0007)

8.4872
(0.4493)

0.9475
(0.0007)

8.2109
(0.4238)
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Table 4. Coverage of 95% intervals for returns of FIGARCH (1, d, 0) with parameters
o = 0.1, (f> = 0, d  = 0.95, P = 0.90, and t distributed errors

PRR CB

Lead Sample Theoretical Mean Mean Mean Mean

lag size length coverage length coverage length

(SE) (SE) (SE) (SE)

1
500 21.9002 0.9503

(0.0009)
23.1458
(2.1748)

0.9447
(0.0009)

22.3984
(2.1580)

1,500 21.8846 0.9505
(0.0006)

22.5621
(2.1383)

0.9471
(0.0006)

22.1749
(2.1054)

10
500 22.4492 0.9514

(0.0009)
23.9179
(2.0273)

0.9444
(0.0009)

22.7487
(1.9510)

1,500 22.5159 0.9513
(0.0007)

23.4620
(2.1716)

0.9472
(0.0007)

22.9138
(2.1757)

20
500 22.8628 0.9506

(0.0010)
24.6057
(1.9527)

0.9430
(0.0011)

23.3332
(1.9681)

1,500 22.8517 0.9512
(0.0008)

24.2496
(2.2326)

0.9469
(0.0007)

23.4797
(2.1605)

Table 5. Coverage of 95% intervals for returns of FIGARCH (1, d, 0) with parameters 
o = 0.1, $ = 0, d  = 0.25, P = 0.10, and exponentially distributed errors

PRR CB

Lead Sample Theoretical Mean Mean Mean Mean

lag size length coverage length coverage length

(SE) (SE) (SE) (SE)

1
500 2.8962 0.9239

(0.0016)
2.9334

(0.0753)
0.9068

(0.0019)
2.8747

(0.0750)

1,500 2.9102 0.9186
(0.0011)

2.9117
(0.0650)

0.9098
(0.0013)

2.8843
(0.0639)

10
500 3.0923 0.9250

(0.0015)
3.1341

(0.0658)
0.9187

(0.0015)
3.0655

(0.0678)

1,500 3.0848 0.9266
(0.0010)

3.0751
(0.0557)

0.9238
(0.0010)

3.0377
(0.0535)

20
500 3.1763 0.9202

(0.0017)
3.1797

(0.0567)
0.9132

(0.0017)
3.0964

(0.0580)

1,500 3.1707 0.9235
(0.0011)

3.1361
(0.0518)

0.9205
(0.0011)

3.0857
(0.0499)
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Table 6. Coverage of 95% intervals for returns of FIGARCH (1, d, 0) with parameters
m = 0.1, $ = 0, d  = 0.90, P = 0.10, and exponentially distributed errors

Lead
lag

Sample
size

Theoretical
length

PR R CB
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 2.9756 0.9224

(0.0016)
2.9320

(0.2449)
0.9069

(0.0021)
2.8753

(0.2370)

1,500 2.9721 0.9133
(0.0012)

2.8937
(0.2275)

0.9060
(0.0015)

2.8732
(0.2245)

10
500 3.8716 0.9262

(0.0011)
3.1743

(0.1055)
0.9254

(0.0013)
3.1000

(0.0802)

1,500 3.8581 0.9286
(0.0008)

3.1954
(0.1080)

0.9283
(0.0009)

3.1676
(0.1022)

20
500 4.1893 0.9172

(0.0011)
3.0880

(0.0645)
0.9164

(0.0014)
3.0415

(0.0557)

1,500 4.1859 0.9202
(0.0008)

3.1110
(0.0684)

0.9197
(0.0013)

3.0753
(0.0553)

4.2. PREDICTION INTERVALS FOR VOLATILITIES

Here, we discuss the performance of PRR and CB prediction intervals for future 

volatilities. We apply the same Monte-Carlo design used for returns. Tables 7-9 report the 

results for normal, t and centered exponential error distribution, for lead lag 1, 10, 20 

respectively. Further, we included lead lag 2 since the CB method is not able to provide 

prediction intervals for lead lag 1. In the FIGARCH formulation, one step ahead prediction 

for volatility is known because its condition on past returns and the uncertainty associated 

with <jl+h, (h = 1) is only due to the parameter estimation. Consequently, volatility of one

step ahead is completely determined at time t and therefore, the theoretical length of one 

step ahead prediction is zero. Similarly, CB method does not provide one step ahead 

prediction intervals because parameter estimates are fixed in every bootstrap step.
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Table 7. Coverage of 95% intervals for returns of FIGARCH (1, d, 0) with parameters
m = 0.1, $ = 0, d  = 0.50, P = 0.45, and normally distributed errors

Lead
lag

Sample
size

Theoretical
length

PRR CB
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 - 0.9320

(0.0113)
0.5237

(0.0218) - -

1,500 - 0.9380
(0.0108)

0.2887
(0.0095) - -

2
500 0.2485 0.9591

(0.0063)
0.7267

(0.0302)
0.5481

(0.0184)
0.3005

(0.0160)

1,500 0.2509 0.9545
(0.0057)

0.4775
(0.0160)

0.6454
(0.0151)

0.2794
(0.0112)

10
500 1.7380 0.9192

(0.0037)
1.8620

(0.0711)
0.8907

(0.0048)
1.6727

(0.0605)

1,500 1.7573 0.9399
(0.0019)

1.8698
(0.0574)

0.9290
(0.0022)

1.7799
(0.0532)

20
500 2.1478 0.9135

(0.0041)
2.3364

(0.0938)
0.8901

(0.0049)
2.0811

(0.0783)

1,500 2.1583 0.9410
(0.0021)

2.3814
(0.0742)

0.9302
(0.0023)

2.2447
(0.0692)

One step ahead predictions under the PRR method for normal and t errors provide 

the coverage below the nominal value for the different parameter combinations that is used. 

However, the exponential errors provide conservative probabilities with 0.9580 and 0.9540 

for sample sizes 500 and 1500 respectively. Generally, as sample size increases the 

coverage of probabilities are close nominal value 0.95. When forecasting two or more lags 

ahead, the predicted coverages are well under the nominal value 0.95 in CB method. The 

differences are significant in contrast to the coverage probabilities in returns that we 

discussed in section 4.1, where under CB method coverage probabilities in returns are close 

to 0.95 in most cases. Table 7 shows the coverage probabilities under exponentially
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distributed errors. Coverage probabilities for first and second lags are close 0.95 while 

coverage probabilities for tenth and twentieth lags are well below 0.95. Overall, the PRR 

method provides a much better coverages for volatility than CB method for the parameters 

and the error distributions considered in this study.

Table 8. Coverage of 95% intervals for returns of FIGARCH (1, d, 0) with parameters 
o = 0.1, <p = 0, d  = 0.90, P = 0.10, and t distributed errors

Lead
lag

Sample
size

Theoretical
length

PRR CB
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 - 0.9420

(0.0105)
0.1979

(0.0127) - -

1,500 - 0.9380
(0.0108)

0.1170
(0.0080) - -

2
500 1.3830 0.9550

(0.0029)
1.4776

(0.1055)
0.8546

(0.0067)
1.3949

(0.0995)

1,500 1.3927 0.9495
(0.0029)

1.4476
(0.1011)

0.8761
(0.0055)

1.4074
(0.1000)

10
500 2.2723 0.9524

(0.0023)
2.3374

(0.0871)
0.9115

(0.0037)
2.2902

(0.0827)

1,500 2.2640 0.9480
(0.0019)

2.3151
(0.0924)

0.9275
(0.0026)

2.2927
(0.0925)

20
500 2.2401 0.9510

(0.0023)
2.2820

(0.0465)
0.9136

(0.0036)
2.2359

(0.0432)

1,500 2.2418 0.9475
(0.0018)

2.2717
(0.0414)

0.9294
(0.0025)

2.2465
(0.0393)
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Table 9. Coverage of 95% intervals for returns of FIGARCH (1, d, 1) with parameters
m = 0.1, $ = 0.20, d  = 0.50, P = 0.45, and exponentially distributed errors

Lead
lag

Sample
size

Theoretical
length

PRR C]B
Mean

coverage
(SE)

Mean 
length (SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 - 0.9580

(0.0090)
0.9054

(0.0797) - -

1,500 - 0.9540
(0.0094)

0.4732
(0.0318) - -

2
500 1.0482 0.9546

(0.0051)
1.7733

(0.1317)
0.7062

(0.0146)
1.2328

(0.1043)

1,500 1.0744 0.9437
(0.0048)

1.3333
(0.0796)

0.7422
(0.0127)

1.1250
(0.0713)

10
500 2.3655 0.9284

(0.0048)
3.0446

(0.2150)
0.8151

(0.0085)
2.4797

(0.1586)

1,500 2.3745 0.9284
(0.0038)

2.6998
(0.1705)

0.8615
(0.0059)

2.4821
(0.1644)

20
500 3.1114 0.9096

(0.0052)
3.5279

(0.2479)
0.8101

(0.0080)
2.9321

(0.1891)

1,500 3.0982 0.9169
(0.0038)

3.2513
(0.2235)

0.8558
(0.0053)

2.9835
(0.2194)

5. APPLICATION TO A REAL DATA SET

The proposed method was applied to S&P 500 return data from November 5, 2010 

through May 2, 2018, for a total of 2201 observations. Data was obtained from the website 

https://finance.yahoo.com. Following standard practice, daily percentage returns of closing 

prices i.e. rt = 100.log(st / st-1)fo r t = 2,3,...,2201 were used. Herest denotes the closing

price at day t. The following figure shows one-step ahead bootstrap prediction interval 

(95%) for S&P 500 returns.

https://finance.yahoo.com
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One-step ahead prediction intervals for S&P 500 returns

Figure 1. One-step ahead prediction intervals for S&P 500

Table 10. Estimated coverage probabilities for S&P 500 future returns

Lead lag Coverage
1 0.9600

10 0.9424
20 0.9227

We analyzed the coverage probabilities for 1 step, 10th step, and 20th step aheadth

forecasts for the S&P 500. Table 10 reports coverage probabilities of the future lags.
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6. CONCLUSIONS

In this paper we adapted the procedure proposed by Pascual et al. (2006) to 

construct bootstrap prediction intervals for GARCH realizations. Finite sample properties 

were investigated using a Monte-Carlo simulation study. In this study it is assumed that 

the order of the FIGARCH process is known. This is not a great limitation because in most 

empirical modeling situations, researchers have found that a GARCH process with orders 

p  = q = 1 would suffice. Extending this argument, one would assume that 

FIGARCH(1, d , 1) would suffice in most cases, as was demonstrated in our example with 

S&P 500 data. Simulation study shows that the proposed bootstrap-based prediction 

intervals perform well. The coverage probabilities obtained in the simulation study are 

close to the nominal values for symmetric error distributions, under varying sample sizes 

and parameter combinations. Further extension of obtaining prediction intervals for 

models such as Autoregressive-FIGARCH, FARIMA-FIGARCH using sieve bootstrap 

method is currently ongoing.
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II. SIEVE BOOTSTRAP-BASED PREDICTION INTERVALS FOR ARMA 
MODELS WITH FRACTIONALLY INTEGRATED GENERALIZED 

AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTIC (FIGARCH)
ERRORS

ABSTRACT

In this paper, a sieve bootstrap-based prediction interval for Autoregressive (AR) 

and Autoregressive Moving Average (ARMA) models with Fractionally Integrated 

GARCH (FIGARCH) error structure is proposed. The order of the AR or ARMA 

component is assumed unknown but the order of the FIGARCH error structure is assumed 

to be known. The ARMA or AR parts of the models are approximated by a finite order AR 

process whose order p is  estimated using the AIC criterion from among models of order

one through p max, where p max is determine by a criteria given later in this paper. 

Resampling is done on residuals obtained by employing one-step method which fits an 

AR( p) -  FIGARCH(1, d  ,1)to the data. Results are compared with a two-step method 

where resampling is done by first fitting an AR(p) and then fitting a FIGARCH(1, d  ,1) to 

the residuals of the A R(p) fit. A Monte-Carlo simulation study shows that both methods 

yield good intervals for most of the parameter combinations, with coverage probabilities 

reasonably close to nominal level. The one-step method, however, produces better 

coverage probabilities when the roots of the AR polynomial in the AR-FIGARCH model 

are closer to unity.

Keywords: Prediction intervals, ARMA-FIGARCH, Bootstrap resampling, Simulation
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1. INTRODUCTION

Typically, distributions of economic and financial time series exhibit leptokurtic 

behavior and the errors show heteroscedasticity. Therefore, traditional Gaussian based 

prediction intervals produce poor coverage probabilities. An alternative is a non-parametric 

bootstrap approach, which does not require distributional assumptions about the underlying 

error. Some of the earliest work on bootstrap-based time series prediction intervals can be 

found in Stine (1982, 1987) and Findley (1986). They compute the prediction mean square 

errors for future forecasts using a bootstrap technique. Thombs and Schucany (1990) used 

a non-parametric approach to establish the forecast intervals for autoregressive (AR) time 

series models by incorporating the variability of parameter estimates into the bootstrap 

process. They used backward representation method to construct the prediction intervals, 

where the current value is written in terms of a linear combination of future values. The 

backward representation method is only limited for AR models, and it is not possible to 

use it for processes with a Moving Average (MA) component. Cao et al. (1997) proposed 

a computationally much faster bootstrap method, which does not require backward 

resampling. In contrast to former method presented by Thombs and Schucany, the latter 

method does not incorporate the uncertainty of the parameter estimates into the prediction 

intervals. Alonso et al. (2002, 2003) proposed a sieve bootstrap (SB) based approach to 

constructing prediction intervals for stationary and invertible Autoregressive Moving 

Average (ARMA) processes with unknown orders. All the bootstrapped based prediction 

intervals discussed above work fairly well, with coverage probabilities close to the nominal 

values, if the conditional variance of the error distributions display homoscedastic
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behavior. This is because the bootstrapping was done by resampling the residuals of the 

model. When errors indicate heteroscedasticity, direct resampling approach may destroy 

the heteroscedastic error structure, providing prediction intervals that are too narrow during 

times of high volatility. Hence modelling heteroscedastic error structure become important 

when constructing residual-based bootstrap. In the following we discuss some pioneering 

work done with respect to modeling conditionally heteroscedastic error in the time series 

context.

The Autoregressive Conditional Heteroscedastic (ARCH) formulation was 

introduced by Engle in 1982 to model empirical time series with heteroscedastic behavior 

in the conditional variance. Bollerslev (1986) extended the ARCH model by proposing the 

Generalized ARCH (GARCH) formulation, which accommodates a wider class of time 

series with a heteroscedastic error structure. Subsequently, the Integrated GARCH 

(IGARCH) representation was introduced by Engle and Bollerslev (1986) to model time 

series with persistent volatility in squared shocks (error terms), which cannot be adequately 

modeled using ARCH and GARCH formulations. Motivated by long memory behavior of 

the autocorrelations of squared or absolute residuals reported in studies by Ding, Granger 

& Engle (1993) and Harvey (1993), Baillie et al. (1996) introduced the Fractionally 

Integrated GARCH (FIGARCH) representation to model time series that exhibits long 

memory in the conditional variance with respect to squared shocks. One of the major 

advantages of the FIGARCH model is that it incorporates a wide range of conditional 

heteroscedastic models, including ARCH, GARCH and IGARCH formulations as special 

cases. Often, these models were employed to obtain point forecasts without considering 

the uncertainty associated with future values.
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Miguel and Olave (1997) introduced a bootstrap-based interval forecasting method 

for ARMA(p, q) -  ARCH(r) models with known orders p , q and r  . This prediction 

interval, however, did not incorporate the uncertainty associated with the parameter 

estimation. Pascual et al. (2006) developed a bootstrap-based prediction interval for 

returns and volatility for the GARCH(1, 1) model. In contrast to Miguel and Olaves’s 

intervals, these intervals incorporated the variability due to parameter estimates. 

Thilakaratne and Samaranayake (2014) used a sieve bootstrap technique to compute 

prediction intervals for Autoregressive-GARCH (AR-GARCH) processes. Although they 

allowed for conditional heteroscedasticity in error variance, it was assumed that the squares 

of the conditional heteroscedastic error terms have short memory. In contrasts, our 

proposed method can accommodate long memory in the heteroscedastic error components. 

More specifically, we propose a sieve bootstrap-based prediction interval for 

ARMA(p, q) -  FIGARCH(r, d, s) type models. As this the case with the sieve bootstrap 

technique, we approximate the ARMA-FIGARCH model by a finite order AR-FIGARCH 

process.

The proposed method is different from that adopted in Thilakaratne and 

Samaranayake (2014). The proposed method uses a one-step approach where the 

parameters in both the AR and the FIGARCH components of the model as estimated 

simultaneously while Thilakaratne and Samaranayake used a two-step estimation method. 

In the two-step estimation method, one first estimates the parameters of AR part, and then 

use the AR residuals to estimate the parameters of the FIGARCH part. By contrast, 

parameter estimation in one-step estimation is done by maximizing the quasi likelihood 

function of the complete AR-FIGARCH model.
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This paper is organized as follows. We introduce the ARMA-FIGARCH model in 

Section 2. Then we discuss the sieve bootstrap technique in Section 3. Section 4 reports 

the Monte-Carlo simulation study and its results. An application to a real-world data set is 

presented in Section 5. Finally, we present our conclusions in Section 6.

2. ARMA-FIGARCH PROCESS

Let {X t} z be a real valued time series with E (X t) = /j,x, which follows 

ARMA(p , q) -  FIGARCH(r, d, s) model,

X t = Z  aiXt - + E  bJst - j + s  ,
i=1 >=1

s  = ° tzt, (!)
® + P (L )a 2 +[1 -  P ( L) -  f (  L)(1 -  L)d ] s 2,

where, ap ^  0, bq ^  0, a> > 0 , and X t = X t - /j x . The series {Zt} is a white noise process 

with zero mean and unit variance. Note that L is the lag operator and 

P (L) = P1L + P2L2 +... + PrE  and f(L)  = 1 -  f L  -  f 2L2 - .. .  - f sLs with Pr ^  0 and f s ^  0 . It

is assumed that the fractional differencing parameter d  in the expression for the 

conditional variance lies between 0 and 1.

Observe that the sequence {st} in the above expression follows a 

FIGARCH(r, d , s ) process. In our simulation study we restrict our analysis to the

FIGARCH(1, d , 1) error structure. This is the FIGARCH process that is most frequently
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employed to model empirical processes. The conditional variance of a FIGARCH(1, d , 1) 

process can be express as

o f  = a  + [ l  - f t L  -  (1 -  -  L)d ]  s,2 + P a h  ,

0  = a(1 - ^ ) -1 + [ 1  -  (1 - p r ' ( 1 - ^ ( 1  -  L)d ]s ,2. (2)

Furthermore, conditional variance in expression (2) can be written as

TO
o f = a(1  - $ ) _1 + A (L )sf, where 4(L) = '^ jAkL  . The coefficients of 4 , i e N can be

k=1

obtained by equating terms with common power in the equation

4(L) = 4 L  + 4  L- +... + X„i +... = [1 -  (1 -& )-'(1  -^L )(1  -  L)d ] .

Thus,

4  =^1 - A + d  and 4  = AA-1 + [(k -  1 -  d ) / k - fa ]^d,k-1, k = 2 ,3,...,

where, 8d̂k =8d k-1( k - 1 - d)k-1, k = 2,3,..., refer to the coefficients in the series expansion 

of (1 -  L)d, with (  0 = 1 and (  1 = d  . Now, all 4  for i e N must be positive to ensure the

non-negativity of the conditional variance o f . Following Baillie et al. (1996), the sufficient 

conditions for non-negativity of conditional variance are 0 < P1 + d and 0 < d < 1 -  2^ .

The above formulation of ARMA-FIGARCH permits us to model time series with 

short memory in the conditional mean and long memory in conditional variance.
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3. THE SIEVE BOOTSTRAP-BASED PREDICTION INTERVAL METHOD

The sieve bootstrap (SB) technique based on residual resampling from a sequence 

of AR approximations originated from Buhlmann (1997) and Kreiss (1992,1988). The 

advantage of the method is that it does not require the prior knowledge about the order of 

the underlining process. Buhlmann (1997) used truncation of an infinite AR process to 

approximate a class of linear processes, which include stationary and invertible ARMA 

processes. The order of the truncation, p = p (n) is assumed to advance to infinity at a 

smaller rate than the sample size n, as n approaches infinity. Kreiss (1988) originally 

proposed this finite AR approximation to a class of linear process that can be written as an 

infinite AR process. Akaike Information Criteria (AIC) was used by Buhlmann (1997) to 

choose the order of AR approximation. Alonso et al. (2002, 2003) formalized the above 

ideas and adapted the sieve bootstrap technique to construct the prediction intervals for 

ARMA type models with homoscedastic error distributions. Mukhopadhyay and 

Samaranayake, (2010) modified the SB method used by Alonso et al. (2002, 2003) to 

improve the coverage probabilities in ARMA type processes. Later Rupasinghe and 

Samaranayake (2012, 2013) established a computationally much faster SB prediction 

interval for Fractionally Integrated Autoregressive Moving Average (FARIMA) processes.

In our proposed approach, we approximate the ARMA part of ARMA-FIGARCH 

model by a finite AR process using the SB concept. The optimal order p  of the finite AR 

approximation is found by using AIC values. Following Alonso et al. (2003) and 

Thilakaratne & Samaranayake (2014), the value for p  is chosen from the values

1,2,...,^ max , using the AIC criteria, where, ^ max = c (n / log(n)y/(2r+2) with r > 2  and some
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c > 0. This p max is different from the ARMA process with homoscedastic errors used by 

Alonso et al. (2002), and Mukhopadhyay & Samaranayake (2010), where they used p max

as n /10 when constructing prediction intervals using the SB method.

The steps for the proposed SB based (one step estimation) procedure for obtaining 

prediction interval for ARMA-FIGARCH model is given below:

1. Select the maximum order p max for the given realization {X t ̂  of an AR- 

FIGARCH process. We used value of p max = 22,27 for n = 500, 1000 respectively, 

according to the formula described in the previous paragraph. Then find the optimal 

order p from among the valuesp  = 1,2,...,p max using the AIC criteria.

2. Use the least-squares estimates, p ,  p2,..., pp of AR(p) process as the initial values 

for AR part in maximum likelihood estimation of AR-FIGARCH model. 

Assignment of initial values for the FIGARCH parameters (ox, f x,d , fdx can be done 

using random values within a feasible region. Obtain the maximum likelihood 

estimates, p>l,p>1,...,p>p),d}l, f l,d ,P x of AR-FIGARCH by using these initial values.

3. Compute the (n -  p) residuals zt by usingzt = t t / Ct , t t = j  0 p ,■ (Xt_y _ X )

where

C2 = ®(1 _ A)_1 + 1  _ (1 _ A)_’-(1 _ f  L)(1 _ L)d

®(1 _ P\) 1 + ^ t - 1 + ^ t:t_2 +... + t _k  ’
with p0 =_1, t e (p  +1,..., n)and X  is the mean of the process {X t }n=1. Further.

2

zv 2 s /v n  ̂% i n /v 2
note that et = (n _ p  /   ̂ tEt for t < pand  k is the truncation lag of the
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polynomial A(L). Note that k should be select large enough to obtain a reasonable 

approximation to A(L) . In our simulation study, we used k=1,000.

4. Compute the centered residuals zt = zt — zt ; t e (p  + 1,...,n ) , where,

/v s /v n — 1 x  ̂n /v
Zt = (n — P ) Z,=p+1 z,-

5. Denote the empirical distribution function of centered residuals {zt j jP+1as

F  (x) = (n —p T ]X ”=p+i 7(—»,x](zt) .

6. Draw a bootstrap sample with replacement from the above distribution and denote 

it by z*, fort = — m — k +1,... —1,0,1,...,n . m is chosen as 2,000 in this study.

7. Generate the bootstrapped FIGARCH seriess*, t = —m +1,..., —1,0,1,...,n by first 

constructing a bootstrapped conditional variance series, {<xt2*j using estimated 

FIGARCH parameters of the AR-FIGARCH model obtained in Step 2. Then use 

s* = z*<r*, t = —m +1, ..., — 1,0,1, ..., n to generate { s* j. In our simulation study, 

m was chosen to be 2,000.

8. Then generate the bootstrapped AR-FIGARCH series, 

X t*, t = —m +1, ...,0,1 ,..., n using the bootstrapped FIGARCH errors, {s*j

created in Step 7 and based on the recursion X t — X  = Z  U&j (X —j — X  ) + s*. Set 

the initial p values, X t*, t < p  equal to X . Drop the first m observations to

eliminate the effect of the initial values.
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9. Fit an AR-FIGARCH to the bootstrapped series j X fj  i and then estimate the 

parameters of it using the Q-MLE method. The parameter estimates of AR and

/V* /V* /* T* rt*
FIGARCH coefficients are denoted by ( and Q\ ,q\ ,d  , p , respectively.

10. Compute the h-step ahead bootstrap forecasts of future values using the

* * *bootstrapped AR coefficients and FIGARCH coefficients

* * * *G\ ,q\ ,d  , p  as shown in the following recursions:

x *.. -  x = y ,J , (x x  -  x ) + < .„ , ,  s i h =
/V *

a n+h

a m . = ® a  -  k t + [i -  (i -  p d  (i -  m  -  l )

* ® c  - f t y 1+ p s i h- i + ...+is*+h-k,

^*2 
'n +  h J

for h > 0 and s t = s t for t < n .

11. Obtain the estimated bootstrap distribution of X n+h, denoted by F*, (.) byX n+h

repeating steps 6-i0  , B  = i,000 times in the simulation study. F'\ (.)is the estimateX n+h

of theF \  (.), the bootstrap distribution function of X*+h, which is used to 

approximate unknown distribution function of X n+h given the observed time series.

12. The 100(i -  a )% prediction interval for X n+h is then computed as

[Q*(a / 2), Q*(i -  a  / 2) 1, where Q *(.) = F V  are the percentiles of the estimated
I— —I X n+h

bootstrap distribution.

There is only a slight difference between the processes of constructing prediction 

intervals using the one-step estimation method and the two-step estimation method. To
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accommodate the process under the two-step estimation method, parameter estimations of 

Step 2 and Steps 9 must be changed to a two-steps estimation process while keeping the 

other steps fixed. By applying this change, we estimated the coverages under two-steps 

estimation method.

4. THE SIMULATION STUDY

We investigated the finite sample performance of the proposed SB prediction 

intervals for ARMA-FIGARCH model using a Monte-Carlo simulation. We compared the 

performance of the proposed method with that of the two-step estimation method used by 

Thilakaratne and Samaranayake (2014) for the AR-GARCH model. Note that they also 

used the SB technique and then applied the two-step estimation method. A Monte-Carlo 

simulation was carried out with three different error distributions: normal, t with 7- 

degrees of freedom, and centered exponential with mean 0 and variance 1. Sample sizes 

n = 500 and n = 1,000 were used in the simulation. The following 2 models were used to 

simulate the conditional variance of the FIGARCH error structure:

Model 1: a t2 = 005 + [1 -  0.45L -  (1 -  L)05 ] e t2 + 0 .4 5 ^ ,

Model 2: a t2 = 0.05 + [1 -  0.2L -  (1 -  L)09 ] e t2 + 0.2at2-x.

We used the AR(1), AR(2) and ARMA(1,1) models along with the error structure 

of the heteroscedastic conditional variance, as defined in Models 1 and 2. The following

AR and ARMA models were considered:
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X t =  ai X t- 1  +st ,

X t = ai X t-1 + a2X t-2 + St,

X t = ai X t-1 + b1St-1 +St,

with p ,  p 2 e  {0.3,0.5,0.7,0.9{ and b1 e  {-0.3, -0.5, -0 .8}, where a1 = p 1 + p 2, a2 = - p 1p 2 

for the AR(2) model. We used a 1 = p 1 in the AR(1) model as well as AR part of the 

ARMA model. Here 1 / p 1 and 1 / p 2 are the roots of autoregressive polynomial.

We generated N  = 500 independent time series for each combination of the model, 

sample size, nominal coverage, and error distribution. Then Steps 1 through 12 were 

implemented. In each simulation run, R = 1,000 future values, {X n+h}, for h = 1, 10, 20

were generated. Then, the coverage probabilities were estimated by calculating the 

proportion of those future values, X n+h, that fall between the lower and upper bounds of 

the bootstrap intervals. Therefore, the coverage for the ith simulation run is given by 

C(i) = R 1X  R=1 I a[ X +k (i)], where A = [ g > / 2 ) ,  Q*(1 - a / 2 ) ]  is the 100(1 -a ) th  

bootstrapped prediction interval. I A (.) is the indicator function of the set A and 

X„r+k (i), r  = 1, 2,..., 1,000 are the R future values generated at the ith simulation run. The 

theoretical and bootstrap lengths were obtained by using 

Lt (i) = X rn+k (1 -  a  / 2) -  X rn+k (a  / 2) and LB (i) = Q*(1 -  a  / 2) -  Q*(a / 2 ), respectively.

L  (i)is difference between 100(1 -a ) th  and the 1 00 (a /2 )th  percentiles generated from 

R future values of the underling model with known order and coefficients. Similarly, LB (i) 

is the difference between 100(1 -a ) th  and the 100(a/2)thbootstrapped percentiles

calculated following steps 1-12. The mean coverage, mean bootstrap prediction interval
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length, mean theoretical interval length, and their standard errors were calculated as 

follows:

Mean coverage C = N -1 Z  N=1 c  (>).

/  1 n  — 2^ 1/2
Standard error of mean coverage SEc  = |[  N  (N  -  i ) r  z „ [ c ( o - c y j  ,

Mean length (bootstrap) LB = N  -1Z  N=1 Lb (i).

/ i b _ v̂1/2
Standard error of mean length SE^ = |[N (N  -1)] Z i=1 [ LB (i) -  LB ] j ,

Mean theoretical length LT = N  -IZ  N i Lt (i) •

In total, 120 different combinations of model type, sample size, nominal coverage 

probability (1 - a )  and error distributions were investigated in this study. However, we 

report only a representative sample of these results for 95% intervals to conserve space. 

These results are reported in Tables 1-9. The tables report mean coverage, mean interval 

length, mean theoretical length, standard error of mean coverage, and standard error of 

mean interval length.

To further investigate the behavior of the intervals for each of the 120 

combinations, the minimum value, percentiles (25th, 50th and 75th), and maximum value 

of coverage probabilities, the bootstrap interval bounds (lower and upper), and theoretical 

interval bounds (lower and upper), were computed, based on the 1,000 values generated 

through simulation. The complete set of results from the simulation study are available 

upon request from the corresponding author.

The coverage probabilities given by the simulation results are close to nominal 

values under both one-step and two-step methods. However, the coverages produced by
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the one-step estimation method are slightly higher than that from the two-step estimation 

method for all parameter combinations. The reason could be that the one-step approach is 

able to capture the sampling variation better than the two-step method. The interval lengths 

reported for the one-step estimation method are wider than theoretical lengths, but in some 

instances the interval lengths reported in the two-step estimation method are narrower than 

the theoretical lengths. For example, one-step ahead bootstrap length given for sample size 

500 in Table 1 is slightly less than the theoretical length. However, much larger deviation 

of lengths can be seen in Table 2 for future lags 10 and 20. In those cases, theoretical 

lengths are larger than the bootstrap lengths for the two-step estimation method by at least 

2 units. As discussed above, theoretical lengths are constructed by using the known 

underlining error process. Thus, intervals shorter than the theoretical lengths point to some 

deficiency in the two-step method.

Table 1. Coverage of 95% intervals for X t = 0.7X t_l + et ,where st follows a 
FIGARCH(1, d, 0) with Model 2 and normal errors : AR root : 1.429

Lead
lag

Sample
size

Theoretical
length

One Step Method Two Step Method
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 3.1207 0.9519

(0.0011)
3.1990

(0.2376)
0.9479

(0.0020)
3.1146

(0.1626)

1,000 2.5847 0.9538
(0.0009)

2.6470
(0.096)

0.9495
(0.0014)

2.7026
(0.0921)

10
500 5.1077 0.9547

(0.0008)
5.5889

(0.2506)
0.9489

(0.0009)
5.3503

(0.2264)

1,000 4.5459 0.9566
(0.0006)

4.9732
(0.0997)

0.9508
(0.0008)

4.8405
(0.1045)

20
500 4.9465 0.9557

(0.0008)
5.6401

(0.1814)
0.9504

(0.0009)
5.3929

(0.1621)

1,000 4.6147 0.9568
(0.0006)

5.1307
(0.0603)

0.9524
(0.0008)

5.0192
(0.0797)
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Table 2. Coverage of 95% intervals for X t = 1.6Xt-1 -0 .6 3 X t_2 + st,where st follows a
FIGARCH(1, d, 0) with Model 1 and normal errors : AR roots : 1.111, 1.429

Lead
lag

Sample
size

Theoretical
length

One Step Method Two Step Method
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 5.5912 0.9563

(0.0010)
5.9876

(0.1625)
0.9452

(0.0010)
5.7655

(0.1653)

1,000 5.6954 0.9574
(0.0008)

6.0158
(0.1587)

0.9471
(0.0008)

5.7908
(0.1504)

10
500 33.4060 0.9531

(0.0012)
36.8860
(1.0886)

0.9021
(0.0017)

29.3163
(0.8593)

1,000 33.8881 0.9565
(0.0009)

36.6710
(0.9366)

0.9237
(0.0014)

31.4069
(0.7942)

20
500 39.1981 0.9539

(0.0012)
45.2263
(1.5137)

0.9005
(0.0018)

34.6119
(1.1573)

1,000 39.5086 0.9591
(0.0009)

44.3088
(1.1342)

0.9250
(0.0014)

37.0210
(0.9158)

Table 3. Coverage of 95% intervals for X t = 0.9Xt-1 - 0.8et-1 + s t, where st follows a 
FIGARCH(1, d, 0) with Model 1 and normal errors : AR root : 1.111, MA root: 1.429

Lead
lag

Sample
size

Theoretical
length

One Step Method Two Step Method
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 5.9759 0.9533

(0.0010)
6.3194

(0.1901)
0.9414

(0.0011)
5.9588

(0.1739)

1,000 5.9747 0.9568
(0.0007)

6.2752
(0.1842)

0.9482
(0.0008)

6.0130
(0.1694)

10
500 6.3270 0.9590

(0.0009)
7.0733

(0.2151)
0.9457

(0.0009)
6.4556

(0.1865)

1,000 6.3406 0.9608
(0.0007)

6.9479
(0.1942)

0.9508
(0.0007)

6.4986
(0.1766)

20
500 6.4117 0.9603

(0.0010)
7.4858

(0.2377)
0.9455

(0.0010)
6.6595

(0.2019)

1,000 6.3848 0.9636
(0.0007)

7.3055
(0.2060)

0.9516
(0.0007)

6.6685
(0.1788)
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Table 4. Coverage of 95% intervals for X t = 0.9X t_ + st, where st follows a
FIGARCH(1, d, 0) with Model 1 and t errors : AR root : 1.111

Lead
lag

Sample
size

Theoretical
length

One Step Method Two Step Method
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 5.1106 0.9566

(0.0009)
5.5571

(0.1558)
0.9459

(0.0010)
5.1851

(0.1441)

1,000 5.2265 0.9596
(0.0007)

5.7647
(0.1814)

0.9497
(0.0008)

5.3398
(0.1450)

10
500 11.3347 0.9565

(0.0011)
12.9195
(0.3880)

0.9408
(0.0012)

11.4645
(0.3239)

1,000 11.5331 0.9624
(0.0007)

13.3923
(0.4827)

0.9480
(0.0009)

11.9058
(0.3269)

20
500 12.3066 0.9573

(0.0012)
14.6911
(0.4549)

0.9393
(0.0013)

12.7528
(0.3819)

1,000 12.4507 0.9647
(0.0008)

15.4522
(0.7160)

0.9488
(0.0009)

13.0985
(0.3607)

Table 5. Coverage of 95% intervals for X t = 1.4Xt_ _ 0.45Xt_2 +et, where st follows a 
FIGARCH(1, d, 0) with Model 2 and t errors : AR root : 1.111, 2.000

Lead
lag

Sample
size

Theoretical
length

One Step Method Two Step Method
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 2.4276 0.9513

(0.001)
2.4921

(0.1158)
0.9446

(0.0026)
2.5931

(0.1303)

1,000 2.4048 0.9539
(0.0008)

2.4817
(0.0889)

0.9483
(0.0017)

2.5409
(0.0917)

10
500 11.0727 0.9529

(0.001)
12.0464
(0.3524)

0.9327
(0.0015)

10.5856
(0.3157)

1,000 10.9245 0.9561
(0.0007)

11.9027
(0.2618)

0.9437
(0.001)

10.9539
(0.2347)

20
500 12.4381 0.954

(0.0011)
14.1592
(0.2664)

0.9324
(0.0016)

12.1108
(0.2818)

1,000 12.3034 0.9569
(0.0007)

13.7376
(0.1696)

0.9435
(0.0011)

12.5265
(0.2054)
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Table 6. Coverage of 95% intervals for X t = 0.5X t_ -  0.5st_ + et,where st follows a
FIGARCH(1, d, 0) with Model 2 and t errors : AR root : 1.111, MA root : 2.000

Lead
lag

Sample
size

Theoretical
length

One Step Method Two Step Method
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 2.6520 0.9517

(0.0011)
2.7394

(0.1714)
0.9471

(0.0013)
2.6918

(0.1338)

1,000 2.6304 0.9539
(0.0010)

2.7353
(0.1722)

0.9494
(0.0011)

2.7028
(0.1379)

10
500 2.9769 0.9553

(0.0009)
3.2939

(0.1275)
0.9518

(0.0009)
3.2330

(0.1059)

1,000 2.9988 0.9564
(0.0007)

3.2626
(0.1173)

0.9533
(0.0007)

3.2114
(0.0996)

20
500 2.9041 0.9561

(0.0010)
3.2939

(0.0699)
0.9539

(0.0008)
3.2893

(0.0792)

1,000 2.9291 0.9569
(0.0007)

3.2447
(0.0615)

0.9544
(0.0007)

3.2427
(0.0768)

Table 7. Coverage of 95% intervals for X t = 0.7X t-1 + s t,where st follows a 
FIGARCH(1, d, 0) with Model 1 and exponential errors : AR root : 1.429

Lead
lag

Sample
size

Theoretical
length

One Step Method Two Step Method
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 4.3982 0.9577

(0.0017)
5.0549

(0.2194)
0.9404

(0.0019)
4.5486

(0.1897)

1,000 4.2552 0.9571
(0.0014)

4.8846
(0.3109)

0.9395
(0.0017)

4.3878
(0.1956)

10
500 5.9014 0.9651

(0.0010)
7.9496

(0.3075)
0.9486

(0.0010)
6.7102

(0.2593)

1,000 5.7549 0.9657
(0.0008)

7.7161
(0.4764)

0.9504
(0.0008)

6.6018
(0.2868)

20
500 6.4687 0.9540

(0.0011)
8.4588

(0.3014)
0.9364

(0.0010)
7.0035

(0.2631)

1,000 6.3700 0.9555
(0.0009)

8.3494
(0.4662)

0.9393
(0.0009)

6.9287
(0.3157)
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Table 8. Coverage of 95% intervals for X t = 1.2Xt_ - 0.35X t-2 + st, where st follows a
FIGARCH(1, d, 0) with Model 1 and exponential errors : AR roots : 1.429, 2.000

Lead
lag

Sample
size

Theoretical
length

One Step Method Two Step Method
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 4.3843 0.9595

(0.0017)
5.0811

(0.2278)
0.9427

(0.0018)
4.5907

(0.1949)

1,000 4.2555 0.958
(0.0013)

4.8964
(0.3152)

0.9411
(0.0016)

4.4265
(0.2112)

10
500 8.956 0.9729

(0.0009)
13.1102
(0.5022)

0.9572
(0.0009)

10.8066
(0.4138)

1,000 8.7529 0.9743
(0.0007)

12.8744
(0.8299)

0.96
(0.0008)

10.7466
(0.4567)

20
500 9.9098 0.9612

(0.0010)
14.0963
(0.518)

0.9436
(0.0009)

11.3741
(0.4436)

1,000 9.8245 0.9621
(0.0008)

14.0540
(0.8525)

0.9470
(0.0008)

11.3921
(0.5121)

Table 9. Coverage of 95% intervals for X t = 0.7X t-1 -  0.3et-1 + s t, where st follows a
FIGARCH(1, d, 0) with Model 1 and exponential errors : AR roots : 1.429, MA root:

2.000

Lead
lag

Sample
size

Theoretical
length

One Step Method Two Step Method
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 4.3942 0.9582

(0.0019)
5.2341

(0.3726)
0.9417

(0.0021)
4.6110

(0.2553)

1,000 4.3045 0.9602
(0.0012)

4.8589
(0.2157)

0.9447
(0.0015)

4.5371
(0.2104)

10
500 5.1263 0.9607

(0.0011)
7.2034

(0.7468)
0.9450

(0.0011)
5.7769

(0.3362)

1,000 4.9859 0.9609
(0.0009)

6.2367
(0.2510)

0.9462
(0.0009)

5.5254
(0.2481)

20
500 5.5969 0.9506

(0.0013)
8.5814

(1.5762)
0.9321

(0.0012)
6.1023

(0.3961)

1,000 5.4549 0.9524
(0.0010)

6.7032
(0.2648)

0.9360
(0.0009)

5.8147
(0.2653)
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AR(2) -  FIGARCH(1, d , 0), and ARMA(1, 1) -  FIGARCH(1, d, 0) under error Model 

2, Model 1, and Model 1, respectively with normal innovations. The computed coverages 

in both methods are close to 0.95 for the AR(1) -  FIGARCH(1, d , 0) model, as reported in 

Table 1. Coverages and lengths for a AR(2) model with FIGARCH errors are reported in 

the Table 2, where one of the roots of autoregressive polynomial AR(2) is closer to unity 

(root equals 1.111) and the other root is 1.428. Again, coverages for one-lag ahead forecasts 

are closer to 0.95 in both methods. However, coverages for the h-step predictions for h > 1, 

including for lags which are not reported here, indicate liberal intervals with coverage 

probabilities less than 0.95 for the two-step estimation method. For example, coverages for 

10th and 20th steps are 0.9021 and 0.9005, respectively, for samples size 500 for the two- 

step estimation method. However, as sample size increases to 1,000, these coverages 

increase to 0.9237 and 0. 9250 respectively. By contrast, coverages for the one-step 

estimation method lies in between 0.95 and 0.96, for all forecast lags between 1 and 20 (we 

only report coverages for lags 1, 10 and 20 in the above tables). Both methods provide 

reasonably good coverages for theARMA(1, 1) -  FIGARCH(1, d , 0) model, where the AR 

root is 1.111 and MA roots is 1.125.

Relatively similar results can be seen for AR(1) -  FIGARCH(1, d ,0 ) , 

AR(2) -  FIGARCH(1, d , 0) and ARMA(1, 1) -  FIGARCH(1, d , 0)under t -distributed 

errors in Tables 4-6. The coverage probabilities for AR(1) -  FIGARCH(1, d ,0 ) , 

AR(2) -  FIGARCH(1, d , 0) and ARMA(1, 1) -  FIGARCH(1, d, 0) under Model 1 with

Tables 1-3 reports the coverages of AR(1) -  FIGARCH(1, d, 0),

exponentially distributed errors are reported in Tables 7-9. In the exponential case, we
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obtained coverage probabilities with conservative bootstrap lengths using the one-step 

estimation method, with coverages ranging from 0.95 to 0.98 in most of the cases (these 

are not reported here but can be obtained from the corresponding author). In fact, we 

observed that when the roots of the AR component are close to 1, the coverages are much 

larger than 0.95. Further, coverages given in one-step estimation method always larger than 

that of two-step estimation method.

5. APPLICATION TO A REAL DATA SET

Baillie et al. (1996) and Tayefi & Ramanathan (2016) discussed modelling 

exchange rates using a FIGARCH model. Borrowing from their idea, the proposed method 

was applied to logarithms of US Dollar to Japanese Yen (JPN/USD) exchange rates. Daily 

data was obtained for the period January 1, 2010 through December 15, 2021 from the 

website at URL: https://finance.yahoo.com. Figure 1 shows the calculated one-step ahead 

prediction intervals from March 11, 2020 to December 15, 2020. Furthermore, the 

estimated 95% coverage probabilities for lead lags l, 10 and 20 for the logarithm of 

exchange rates are reported in the Table 10. As the results show, the prediction intervals 

we obtained are quite conservative.

Table 10. Estimated coverage probabilities for future exchange rates

Lead lag Coverage
1 0.9750

10 0.9948
20 1.0000

https://finance.yahoo.com
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Figure 1. One-step ahead prediction interval for logarithm of Japanese Yen/US dollar
exchange rates

6. CONCLUSION

Here we proposed a bootstrap-based method to obtain prediction intervals for AR 

and ARMA models with FIGARCH error structure. We extended the sieve bootstrap 

method proposed by Alonso et al. (2002,2003) to construct prediction intervals by 

incorporating long memory error variance, instead of an independent and identically 

distributed error structure. A Monte-Carlo simulation study is carried out to investigate 

finite sample properties. Furthermore, we assumed the order of the AR and ARMA part is 

unknown, and the order of FIGARCH part is known. Simulation results show that the 

proposed bootstrap method provide coverages closes to nominal under both parameter 

estimation methods in most of the cases. However, we recommend the one-step estimation 

method over the two-step estimation method when AR parameter closes to unity with

weaker MA coefficient with FIGARCH errors.
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III. SIEVE BOOTSTRAP-BASED PREDICTION INTERVALS FOR FARIMA-
FIGARCH MODELS

ABSTRACT

A sieve bootstrap-based prediction interval method is proposed for Fractionally 

Integrated Autoregressive Moving Average (FARIMA) process with Fractionally 

Integrated Generalized Autoregressive Conditional Heteroscedastic (FIGARCH) errors. 

Here we assume the order of the FARIMA part is unknown and the order is determined by 

the AIC criterion. Resampling of the residuals is done by using two methods. First method 

fits an AR-FIGARCH process and then obtain the residuals of AR-FIGARCH model. 

Second method utilize the resamples of FIGARCH errors after fitting an AR model. A 

Monte-Carlo simulation study shows that both methods provide reasonably good coverage 

probabilities for most of the parameter combinations considered, but the coverages for 

intervals constructed by the two-step method deviate from the nominal value when the 

fractional integrated parameter d  in the FARIMA part of the model is close to 0.5 and a 

root of the AR polynomial is close to one. Finally, the one-step method is applied to 

monthly consumer price index (CPI) inflation rates in Japan to provide an application to 

real-world data.

Keywords: Prediction interval, Fractional integration, Sieve bootstrap
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1. INTRODUCTION

Modeling long memory processes have become important in areas such as 

hydrology, macroeconomics, geophysical sciences, and in modeling stock returns and 

exchange rates. Fractionally integrated ARMA models have been used extensively to 

model long memory processes. Weights of the autocorrelation function and the impulse 

response function of such models decay slowly at hyperbolic rate. The most widely used 

fractionally integrated model for long memory processes, the Autoregressive Fractionally 

Moving Average (FARIMA) model was independently introduced by Granger and Joyeux 

(1980) and Hosking (1991). Baillie et al., (1996) extend this model by adding time 

dependent error structure and modeled the Consumer Price Index (CPI) inflation of ten 

different countries. Apart from the long memory nature of the conditional mean of the 

inflation rates, Baillie et al. (2002) found out that the squared and absolute values of 

residuals obtained from the fractionally filtered inflation series also exhibit long memory. 

Therefore, they introduced the hybrid FARIMA-Fractionally Integrated Generalized 

Autoregressive Conditional Heteroscedastic (FIGARCH) formulation to model this dual 

long memory feature in both first and second moments of inflation rates.

Forecasting is an important aspect in long memory models. Generally, forecasting 

a process with short memory into the far future cannot be done accurately. On the other 

hand, forecastable horizon for long memory processes are much longer than that for short 

memory process, because explanatory power of the past observations decay at an 

exponential rate for short memory processes while it is slow hyperbolic decay for long 

memory processes. Brockwell and Davis, (1991) discussed the point prediction of future
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values in FARIMA process based on the innovations algorithm. Ray, (1993) suggested 

that approximating a FARIMA model to an AR(p) can be useful in long-range forecasting 

for long memory models. Discussions about forecasting with FARIMA and related 

processes can be found in the papers published by Crato and Ray (1996), Beran and Ocker 

(1999), Ramjee et al. (2002), and Baillie and Chung (2002).

There are plenty of articles available for FARIMA related point forecasting, 

however there is dearth of research articles about prediction intervals. Bisaglia and 

Grigoletto (2001) established prediction intervals for FARIMA processes by using 

bootstrap-based method. This bootstrap-based method involves parameter estimation of 

the fractional difference parameter, as well as the AR and MA coefficients jointly, using 

the Whittle approximation (Doukhan et al., 2003 and Fox and Taqque, 1986). However, 

the computational time required for the implementation of this method is high, but it 

performs well, providing the coverages close to the nominal value under normally 

distributed errors. Rupasinghe and Samaranayake, (2013) introduced a computationally 

much faster sieve bootstrap-based method of obtaining prediction intervals by 

approximating FARIMA by a finite order AR(p) model. This method provides coverages 

close to the nominal values under the normal errors as well as non-normally distributed 

errors such as exponential and a mixture of two normal distributions. The above authors, 

however, assumed that the error structure of the FARIMA process is homoscedastic. In 

practical situations, such as constructing prediction intervals for stock returns, exchange 

rates and inflation rates, errors often exhibit heteroscedastic behavior. Amjad et al. (2017) 

developed a bootstrap-based prediction interval for FARIMA-GARCH process to handle 

such a situation. The FARIMA-GARCH allows for long memory in the conditional mean
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process and short memory in the conditional variance process. As Baillie et al. (2002), and 

Conrad and Karanasos, (2005) suggested, the autocorrelations of both first and second 

moments of inflation rates decay in a slow hyperbolic rate, suggesting that FARIMA- 

FIGARCH model is a better fit for inflation rates. It can be argued that this phenomenon is 

not limited to exchange rates only. It is reasonable to assume that if  long-memory exists in 

the mean process, then there is the possibility of such long memory to exhibit in the 

variance process as well. Thus, our aim is to introduce a bootstrap-based prediction interval 

for models that exhibit long memory in both the conditional mean and the conditional 

variance. Thus, our focus is to develop prediction intervals for the FARIMA-FIGARCH 

model using a residual-based bootstrap approach. The residuals for the bootstrap is 

obtained by fitting an AR-FIGARCH model, where the FARIMA component is 

approximated by a sequence of AR processes as employed in Rupasinghe and 

Samaranayake (2013). The resampling method based on such an approximation technique 

is generally called the sieve boostrap (SB).

The rest of the paper is as follows. Section 2 describe the FARIMA-FIGARCH 

model. A brief explanation about sieve bootstrap technique and the steps for obtaining the 

proposed bootstrap-based prediction intervals are given in Section 3. The results of a 

simulation study are reported in Section 4. A real-life application of the method is given in 

Section 5. Finally, conclusions are provided in Section 6.
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2. FARIMA-FIGARCH PROCESS

2.1. THE FARIMA MODEL

Based on Granger (1980), Granger and Joyeux (1980), and Hosking (1981), the 

mathematical formulation of FARIMA(p, dFAR, q) model is as follows. Let {X t } be a 

stationary process such that

a(L)(1 -  L)dFARX t = b( L)s t , (1)

for some -0 .5  < dFAR < 0.5. Where a (L) = 1 -  a1L - ... -  apLp , b(L) = 1—b^L—... — bqL  are 

polynomials of degree p  and q respectively, with a ^  0 and bq * 0 , and with all their 

roots outside the unit circle. The innovations in {st} ’s are independent and identically 

distributed random variables with zero mean and unit variance. Then {X t} is called a 

stationary FARIMA process. According to the Wold decomposition, infinite-order 

moving-average representation of the above process is given by, X t = ^ j = 0 /  jst-j and the

infinite-order autoregressive representation is given by ^ J = 0^ X t-j = s t provided the

process is invertible. The coefficients in the infinite sums decay at a hyperbolic rate for 

large lags j .  That is, /  « c1 j dpAP 1 and k. « c2 j~dpAR 1. Similarly, the autocorrelation

function p j « c3 j 2dpAP 1 decay at a hyperbolic rate for large lags j . Note that ct , c2, and c3 

in the above expressions for rate are constants. The parameter dFAR represents the degree 

of the long memory present in theFARIM A(p,dFAR, q)process. If 0 < dFAR < 0.5, then the

process is said to be a long memory process and if -0 .5  < dFAR < 0, then it is an
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intermediate memory process. The process is stationary and invertible when 

-0 .5  < dFAR < 0.5. The process does not have finite variance when 0.5 < dFAR < 1. In this 

study we only considered processes with long range dependence and stationary, therefore, 

we only considere the cases where 0 < dFAR < 0.5 .

2.2. FARIM A-FIGARCH M ODEL

A FARIMA-FIGARCH model is quite useful when modeling features such as long 

memory in both the conditional mean and the conditional variance. Let {Yt : t e Z) be a

real-valued process with following FARIMA(p , dFAR, q) -  FIGARCH(r, dFG, s)

representation:

a( L)(1 -  L)dFARX t = b( L)st,

S  = a tzt, (2)

® + P ( L )of + [1 -  P(L) -  f  ( L)(1 -  L)dFG fo2,

where, a(L), b( L)and dFAR are defined similar to FARIMA model definition in 2.1. The 

sequence {Zt) is a white noise process with zero mean and unit variance. L is the lag 

operator such that P(L) = P1L + P2L  +... + PrLr and f  (L) = 1 -  f L -  f 2L  - . . .  - f sLs with 

Pr ^  0 and f s ^  0 . The fractional integrating parameter dFG in the conditional variance 

expression is assumed to lie between 0 and 1. If a 2 =© , a constant, then process reduces 

to a FA RIM A (p dFAR, q) model.

The sequence {st) in the above expression follows a FIGARCH(r, dFG, s) process.

Our analysis in this study is restricted to the error structure of FIGARCH(1, dFG, 1) , which
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is commonly used to model conditional variance with long memory. The conditional 

variance of aFIGARCH(1, dFG, 1) process can be express as:

o t2 = © + [1 -P L  -  (1 -  <plL)(1 -  L)dFG ]s2 + P a ]_,, 

a 2 = © (1 -  P ) -1 + [1 -  (1 -  P ) -1 (1 -  $L)(1 -  L)dFG ]et2. (3)

Furthermore, the conditional variance in expression (2) can be written as

o f  = ©(1 - P(1))-1 + 4 (L )s f , where 4(L) = ^  AkLk . The coefficients 4 's ,i = 1,2,... can be
k=1

obtained by equating terms with common power in the equation

4(L) = \ L  + 42 L  +... + \ L k +... = [1 -  (1 -  P ) -1(1 -  faL)(1 -  L)dFG ].

Thus, 4 = ^ 1  - p ! + dFG and A  =PA-1 + [(k -  1 -  dFG ) / k - h ]5dGG ,k-1> k =

where ^dro k =Sdpak-1(k -1  - dFG)k_1, k = 2,3,..., refer to the coefficients in the series 

expansion of (1 -  L)dFG , with Sdpg 0 = 1 and Sdpg 1 = dFG . Now, all 4 ;, for i  = 1,2,... must be 

positive to ensure the non-negativity of the conditional variance cr2 . Following Baillie et 

al. (1996), the sufficient conditions for non-negativity of conditional variance are 

0 < P  < <pl + dFG and 0 < dFG < 1 -  2$ . As stated earlier, for -0 .5  < dFAR < 0.5, FARIMA

process is stationary and invertible with finite variance. Since the unconditional variance 

of FIGARCH process is infinite (Baillie et al., 1996), the unconditional variance FARIMA- 

FIGARCH process is infinite for dFG ^  0.
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The sieve bootstrap is a method of approximating class of linear processes with 

sequence of finite AR processes, with the bootstrap applied to the residuals from fitting the 

approximate AR model. The order ( p  (n )) of the finite AR process is allowed to approach 

to infinity at a slower rate than the sample size n, as the sample size approaches infinity. 

The well-established sieve bootstrapped method was first introduced by Buhlmann (1997). 

The advantage of this technique is that it does not require the prior knowledge of the order 

of the underlying process such as the ARMA. Alonso et al. (2002, 2003) extended the sieve 

bootstrap technique to construct prediction intervals for a general class of linear processes 

which includes ARMA models. Later, Mukhopadhyay and Samaranayake (2010) modified 

the Alonso (2003) sieve bootstrap technique to improve the coverage probabilities.

Let {X t ) be a zero mean FARIMA process as defined in equation (2.1). The process

is invertible if  the roots of the b(L) polynomial lie out sided the unit circle and when 

0 < dFAR < 0.5. In such situations (2.1) can be written as V j=0x jX t_j = et, t e Z with

tt0 = 1 and V j= 01^| < ^ . With this representation, the sieve bootstrap method to obtain

prediction intervals, proposed by Alonso et al. (2002, 2003) seems feasible. Some 

modifications, however, need to be applied before we proceed. To apply Alonso’s method 

directly, coefficients of infinite moving average representation must satisfy

V  . j r w . \ <m for some r e N . However, theFARIMA(p ,dFAR,q)model does not

satisfy this condition. Poskit, (2006) overcame this issue by approximating much more
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general class of linear process, including FARIMA process, by finite order AR processes. 

After applying Poskit’s results, Rupasinghe and Samaranayake, (2012, 2013) obtained a 

modified version of the sieve bootstrap prediction intervals introduce by Alonso et al. 

(2003). They also established asymptotic properties for the FARIMA prediction intervals 

using sieve bootstrap approach.

The FARIMA-FIGARCH model contains heteroscedastic FIGARCH errors instead 

of homoscedastic errors assumed in the FARIMA model. Similar to methodology 

discussed in Rupasinghe and Samaranayake’s 2013 article, we approximated FARIMA- 

FIGARCH by a finite AR-FIGARCH model. Then the parameters of AR-FIGARCH are 

estimated by quasi maximum likelihood(Q-MLE) method. Hereafter, we will refer to this 

approach as the one-step estimation method. We compared this method with the two-step 

estimation method used by Thilakaratne and Samaranayake (2014) to compute prediction 

intervals for AR-GARCH models. Parameter estimation in the two-step estimation method 

is done by first fitting an AR approximation of the FARIMA component and then fitting a 

FIGARCH to the AR residuals. We used both one-step and two-steps estimation methods 

to construct the prediction intervals.

The AR-FIGARCH approximation is an important step in our proposed bootstrap 

technique. As suggested in Poskit (2006) and employed in Rupasinghe and Samaranayake

(2013), the maximum truncation lag ^ max is selected as ̂ max = [log(n)]1962 where n is the

sample size. Along these lines, the optimal order p  of the truncation of AR part from 

possible choices in {1,2,..., p msK } is selected using the AIC criteria. In our simulation study,

we set ^ max to 36 and 44 for sample sizes 500 and 1000 respectively. The steps for proposed
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1. Select the maximum order ^ max for the given realization {X t of an FARIMA- 

FIGARCH process. We used value of ^ max = 36, 44 for n = 500, 1000 

respectively. Then find the optimal order p  among the possible values 

p  = 1,2,...,p mx using the AIC approach. Here we assumed order of the order of the 

FIGARCH is known.

2. Use the least-squares estimates, j ,  j 2,..., of the AR(p)parameters as the initial 

values for the AR part in maximum likelihood estimation of the AR-FIGARCH 

model. Assignment of initial values for the FIGARCH parameters (ox, f , d , j3l are 

done by randomly selecting values in a feasible region. Obtain the maximum 

likelihood estimates, j ,  j 2,..., j ^ f , t / , / ? 1of AR-FIGARCH model by using 

these initial values.

3. Compute the (n -  p) residuals z t by using zt = £  / a t , £ = - S  L j j  (X - / - X ) 

and

at2 = 0(1 - f t ) 1 +  [1 -  (1 -  £  )-1 (1 -  fL)(1 -  L f  l £ ,

-  0(1 -  p x) 1 + i^ -1  + k £ -2 +... + K ^ t - k ,

where j 0 = - 1 , t e (p  +1,...,n)and X is  the mean of the process{XtJn=1. 

£  = (n -  p )  ' X  p++i £  for t < p  and k the truncation lag of the polynomial K(L) .

SB based one-step prediction interval for FARIMA-FIGARCH model, for the one-step

procedure, is discussed as follows.
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4. Compute the centered residuals Zt = zt -  zt ; t e (p  +1,...,n ) , where

zt = (n -  £ )-1 S  i=p+1 zi.

5. Denote the empirical distribution function of the centered residuals {zt}\P+ias 

Fz(x) = (n -  p)-- S ;=  p+1 /(-«,x](zt) .

6. Draw a bootstrap sample with replacement from the above distribution and denote

*
it by zt ,fort = -m  - k +1,... -1 ,0 ,1 ,...,n .

7. Generate the bootstrapped FIGARCH series s*, t = -m  +1,...,-1,0,1,...,n by first 

creating a bootstrapped conditional variance, of*, using estimated FIGARCH 

parameters of AR-FIGARCH obtained in Step 2. Then use 

s* = z*of, t = -m  +1,...,-1,0,1,...,n to generate s*. Here m is chosen to be 2,000.

8. Then generate the bootstrapped AR-FIGARCH series, X t*, t = - m + 1,...,0,1,...,n 

using the bootstrapped FIGARCH errors, s* created in step 7 and using the

recursion X* -  X  = S  j=1 (X * j -  X ) + s* with the first p values of X * set equal

to X  . Drop the first m observations to eliminate the effect of the initial values. 

We used m=2000 in this study.

9. { *\n
X t }t=1 and then estimate the

parameters of it using the Q-MLE method and let the estimated AR and FIGARCH 

coefficients be denoted by $l,(p2,...,([>* and S*,^*, a ,  j*  respectively.
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10. Compute the h-step ahead bootstrap forecasts of future values using the

bootstrapped AR coefficients, y.,(p2,...,(pp and FIGARCH coefficients

a ,  /?j* using the following recursions:

X n+h
*

X = z  ’j ;  ( xL n+h-j
*

x  )+Ch
*  *  / v ;

St +h = Zn+h®n+h ,

d 1„ *2
n+h ’C h  =^S*0 -/3T)-1 + [1 -  (1 - A V ( 1  -««1*X1 -  L)d

* ® c - A v + A x + h - 1 + . . . +  K C h-k,

for h > 0 , and letting s*t = s t for t < n.

11. Obtain the estimated bootstrap distribution of X n+h, denoted by F*. (.), by

repeating steps 6-10 B = 1,000 times in the simulation study. F*. (.) is theXn+h

estimate of the F*. (.), the bootstrap distribution function of X*+h, and is used toXn+h

approximate unknown distribution of X n+h given the observed sample.

12. The 100(1 -a )%  prediction interval for X n+h is then computed by

|~Q*(a/2), Q*(1 - a / 2 )  1, where Q *(.) = F*-1 are the percentiles of the estimatedL J Xn+h

bootstrap distribution.

There is only a slight difference between the process of obtaining prediction 

intervals under two-steps estimation method and one-step estimation method. In order to 

accommodate above steps under two-steps estimation method, parameter estimations in 

Step 2 and Step 9 need to change by estimation the parameters of the AR component first 

and the FIGARCH component using the residuals obtained by fitting the AR
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approximation. By applying this change, we estimated the coverages under two-steps 

estimation method.

4. THE SIMULATION STUDY

We investigated the finite sample properties of bootstrap prediction intervals for 

FARIMA-FIGARCH model by carrying out a Monte-Carlo simulation study. We used 

standard normal, t with 7 degrees of freedom, and centered exponential distributions with 

zero mean and unit variance, for FARIMA-FIGARCH innovations. The conditional 

variances of the FIGARCH error structure used in this study are given by 

Model 1: ct2 = 0.05 + [1 -  0.45L -  (1 -  L)05 ] s t2 + 0 .4 5 ^ .

Model 2: ct2 = 0.05 + [1 -  0.1L -  (1 -  L)09 ] s t2 + 0.1ct2f

In addition, we considered FARIMA(0, dFAR, 0), FARIMA(0, dFAR, 1),

FARIMA(1, dFAR, 0) and FARIMA(1, dFAR, 1) models along with FIGARCH error

structures defined in Models 1 and 2. The parameters for AR part: a1 e {0,0.5,0.8,0.9),

MA part: b1 e {0, -0.5, -0 .8) and fractionally integrated part: dFAR e {0.25,0.4,0.49), were

used to simulate the FARIMA process with FIGARCH errors. Some of these combinations 

for the FARIMA part were also employed in Rupasinghe et al. (2013). Sample sizes 

considered are 500 and 1,000.

We generated N  = 500 independent time series for each combination of the 

model, sample size, nominal coverage, and error distribution. Then steps 1 through 12 were
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implemented. In each simulation run, R = 1,000 future values, {X n+h}, h = 1, 10, 20 were

generated. Then the coverage probabilities were estimated by calculating the proportion of 

those future values, X n+h, falling between the lower and upper bounds of the bootstrap 

intervals. Therefore, the coverage for the ith simulation run is given by 

C(i) = R-1 ZR=1JXnr+k(i)] where A = [Q*(a/2),Q*(1 - a / 2 ) ]  is the 100(1 -a ) th

bootstrap prediction interval. I A (.)is the indicator function of the set A and 

X nr+k(i), r = 1, 2, ...,1,000 are the R future values generated at the ith simulation run. The 

theoretical and bootstrap lengths are obtained by using LT (i) = X nr+k (1 -  a  / 2) -  Xn+ k (a  / 2) 

and Lb (i) = Q*(1 - a / 2 )  -  Q * (a /2 ) respectively. LT (i)is difference between 100(1 -a ) th  

and the 1 00 (a / 2)th percentiles generated from R future values of the underling model

with known order and coefficients. Similarly, LB(i) is the difference between 100(1 -a ) th  

and the100(a / 2)th bootstrapped percentiles calculated following the steps 1-12. The mean 

coverage, mean bootstrapped prediction interval length, mean theoretical interval length 

and their standard errors are calculated as follows:

Mean coverage C = N -1 Z  N, c  (>),

/ 1 N _  v̂1/2
Standard error of mean coverage SEc = |[  N  (N  -  1 ) 1 1  " . [ C ( i ) - C ] !  ,

Mean length (bootstrap) LB = N  -l Z  N=1 Lb (>)•

/  -1 B _  1/2
Standard error of mean length SE'l = |[  N  (N  -  d i z  ;= 1 [Lb (i) -  Lb ] ! , and

Mean theoretical length LT = N  -1Z  N 1 Lt (i) .
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In total, 60 different combinations of model type, sample size, nominal coverage 

probability(1 - a )  and error distributions were investigated in this study. However, we 

report only a representative sample of results for 95% intervals, in Table 1-8 due to space 

limitations. These tables report mean coverage, mean interval length, mean theoretical 

length, standard error of mean coverage and standard error of mean interval length. To 

further investigate the behavior of the intervals for each of the 60 combinations, the 

minimum value, percentiles (25th, 50th and 75th), and maximum value of coverage 

probabilities, the bootstrap interval bounds (lower and upper) and theoretical interval 

bounds (lower and upper), were computed, based on the 1,000 values generated through 

simulation. The complete set of results of the simulation study are available upon request 

from the corresponding author.

Tables 1-5 report the results under the normal error distribution. It can be seen that 

the coverages for normal errors and t distributed errors are similar. Therefore, we allocate 

only Table 6 to the t distributed errors. Finally, computed coverages and lengths under 

exponential errors are reported in Tables 7 and 8. Further, we compared the coverages and 

bootstrap lengths between the two estimation methods we used. One-step estimation 

method yields wider and conservative intervals with coverage probabilities larger than 0.95 

(see in Tables 1-6). Out of 36 cases only in 4 occasions the coverage fell below 0.95. In 

contrast, the two-step estimation method yielded 14 cases with the coverages less than 0.95. 

Two-step estimation method provides poor coverages for FARIMA(1, dFAR, 0) errors

when an AR root is close to the unity and dFAR is close to 0.5. However, coverages given

under one-step method are close to 0.95 in such cases, as shown in Table 1. The coverages 

for the two-step procedure for lead lag one prediction are 0.9416 and 0.9469 for sample
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sizes 500 and 1,000 respectively in Table 1. However, as the prediction horizon increases, 

for example for lead lags 10 and 20, coverages are below 0.90 for the sample sizes 500 and 

1,000 providing narrower intervals than the expected theoretical lengths. This is the only 

occasion that we can see a large contrast between the two estimation methods with respect 

to the coverages. When the forecast horizon is greater than 1, coverages for the one-step 

method are often greater than 0.96.

Two-step method do produce slightly conservative intervals but in general, 

intervals obtained using the one-step estimation method are wider than those obtained 

using the two-step estimation method. Only on two occasions the interval width of one- 

step estimation narrower than that from the two-step estimation method, when computing 

lead one coverages (see Tables 4 and 5). Also note that the theoretical and bootstrap 

intervals are narrower when the FIGARCH error structure follows Model 2. The reason 

could be that the parameter coefficient of lagged variance (P1 = 0.1) is smaller in Model 2

than in Model 1 (P1 = 0.45).
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Table 1. Coverage of 95% intervals for (1 -  0.9L)(1 -  L)049X t = s t,where st follows a
FIGARCH(1, d, 0) with Model 1 and normal errors

Lead
lag

Sample
size

Theoretical
length

One Step Method Two Step Method
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 5.9674 0.9570

(0.0011)
6.4933

(0.2417)
0.9416

(0.0013)
6.2149

(0.2135)

1,000 5.9305 0.9579
(0.0008)

6.3846
(0.2356)

0.9469
(0.0011)

6.2029
(0.2298)

10
500 33.9061 0.9514

(0.0013)
36.3476
(1.2598)

0.8601
(0.0025)

26.1094
(0.9134)

1,000 33.7709 0.9550
(0.0009)

36.4494
(1.2863)

0.8959
(0.0019)

28.8851
(1.0850)

20
500 48.5217 0.9517

(0.0014)
53.8537
(1.8860)

0.8496
(0.0026)

36.1541
(1.1798)

1,000 48.2148 0.9567
(0.0011)

54.1806
(1.8696)

0.8920
(0.0022)

41.1049
(1.4742)

Table 2. Coverage of 95% intervals for (1 -  0.9L)(1 -  L)025 X t = (1 -  0.8L)st, where st 
follows a FIGARCH(1, d, 0) with Model 1 and normal errors

Lead
lag

Sample
size

Theoretical
length

One Step Method Two Step Method
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 5.5393 0.9563

(0.0010)
5.9123

(0.1356)
0.9443

(0.0011)
5.6024

(0.1276)

1,000 5.5527 0.9581
(0.0007)

6.0727
(0.2752)

0.9492
(0.0008)

5.8572
(0.2955)

10
500 6.9764 0.9640

(0.0009)
8.0450

(0.1828)
0.9525

(0.0009)
7.4486

(0.1775)

1,000 6.9949 0.9634
(0.0007)

8.2634
(0.5122)

0.9533
(0.0008)

7.6226
(0.3657)

20
500 7.4029 0.9661

(0.0009)
8.9589

(0.2145)
0.9531

(0.0011)
8.1382

(0.2118)

1,000 7.3981 0.9670
(0.0007)

9.1603
(0.5559)

0.9546
(0.0009)

8.5427
(0.6602)
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Table 3. Coverage of 95% intervals for (1 -  0.8L)(1 -  L)025 X t = (1 -  0.5 L)st, where st
follows a FIGARCH(1, d, 0) with Model 1 and normal errors

Lead
lag

Sample
size

Theoretical
length

One Step Method Two Step Method
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 5.6821 0.9562

(0.0009)
6.0394

(0.1555)
0.9443

(0.0010)
5.7384

(0.1582)

1,000 5.6681 0.9587
(0.0007)

6.0092
(0.1500)

0.9483
(0.0008)

5.7296
(0.1398)

10
500 8.7878 0.9631

(0.0009)
10.1004
(0.2602)

0.9507
(0.0010)

9.3140
(0.2445)

1,000 8.7825 0.9633
(0.0007)

9.9058
(0.2368)

0.9524
(0.0008)

9.1760
(0.2076)

20
500 9.3226 0.9644

(0.0010)
11.2536
(0.2992)

0.9516
(0.0011)

10.1927
(0.2752)

1,000 9.2921 0.9665
(0.0008)

11.0093
(0.2702)

0.9541
(0.0009)

9.9654
(0.2193)

Table 4. Coverage of 95% intervals for (1 -  0.5L)(1 -  L)049 X t = (1 -  0.8L)st, where st 
follows a FIGARCH(1, d, 0) with Model 1 and normal errors

Lead
lag

Sample
size

Theoretical
length

One Step Method Two Step Method
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 2.4817 0.9443

(0.0019)
2.5803

(0.1607)
0.9469

(0.0021)
2.6339

(0.1205)

1,000 2.4826 0.9491
(0.0014)

2.5786
(0.1667)

0.9506
(0.0019)

2.6028
(0.1154)

10
500 3.1492 0.9570

(0.0008)
3.6073

(0.1282)
0.9550

(0.0008)
3.5707

(0.1100)

1,000 3.1524 0.9546
(0.0007)

3.4104
(0.1090)

0.9532
(0.0007)

3.4238
(0.1010)

20
500 3.1602 0.9599

(0.0008)
3.8609

(0.1069)
0.9583

(0.0008)
3.7999

(0.0980)

1,000 3.1728 0.9580
(0.0006)

3.5950
(0.0716)

0.9568
(0.0007)

3.6386
(0.0848)



Table 5. Coverage of 95% intervals for (1 - L)04X t = st, where st follows a
FIGARCH(1, d , 1) with Model 2 and normal errors
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Lead
lag

Sample
size

Theoretical
length

One Step Method Two Step Method
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 2.4293 0.9486

(0.0016)
2.5302

(0.1215)
0.9499

(0.0018)
2.6169

(0.1150)

1,000 2.4446 0.9498
(0.0012)

2.5244
(0.1272)

0.9513
(0.0016)

2.6395
(0.1187)

10
500 3.6182 0.9595

(0.0008)
4.3147

(0.1240)
0.9551

(0.0010)
4.1976

(0.1278)

1,000 3.5978 0.9578
(0.0006)

4.0506
(0.1119)

0.9538
(0.0007)

4.0196
(0.1179)

20
500 3.7269 0.9634

(0.0008)
4.8156

(0.1125)
0.9582

(0.0009)
4.5744

(0.1138)

1,000 3.7084 0.9618
(0.0006)

4.4876
(0.0819)

0.9575
(0.0007)

4.3764
(0.1013)

Table 6. Coverage of 95% intervals for (1 -  0.8L)(1 -  L)04 X t = (1 -  0.5L)st ,where st 
follows a FIGARCH(1, d, 0) with Model 1 and t errors

Lead
lag

Sample
size

Theoretical
length

One Step Method Two Step Method
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 5.5716 0.9578

(0.0009)
6.1258

(0.2530)
0.9467

(0.0010)
5.7475

(0.2442)

1,000 5.5764 0.9576
(0.0007)

6.0092
(0.2515)

0.9484
(0.0009)

5.6757
(0.2340)

10
500 10.8064 0.9634

(0.0010)
12.9725
(0.4994)

0.9511
(0.0011)

11.7676
(0.4659)

1,000 10.8071 0.9643
(0.0008)

12.6592
(0.4937)

0.9527
(0.0010)

11.5684
(0.4507)

20
500 12.127 0.9679

(0.0011)
15.9896
(0.6263)

0.9538
(0.0013)

13.9553
(0.5401)

1,000 12.1735 0.9694
(0.0009)

15.5293
(0.6006)

0.9552
(0.0012)

13.7483
(0.5394)
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Table 7. Coverage of 95% intervals for (1 -  0.5L)(1 - L)025X t = s t, where st follows a
FIGARCH(1, d, 0) with Model 1 and exponential errors

Lead
lag

Sample
size

Theoretical
length

One Step Method Two Step Method
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 4.4157 0.9567

(0.0019)
5.1837

(0.3271)
0.9401

(0.0021)
4.6393

(0.2548)

1,000 4.4303 0.9608
(0.0013)

4.9921
(0.2539)

0.9457
(0.0015)

4.6091
(0.2376)

10
500 6.0561 0.9721

(0.0009)
9.4086

(0.8459)
0.9570

(0.0010)
7.5830

(0.4475)

1,000 6.0734 0.9728
(0.0007)

8.6214
(0.4092)

0.9590
(0.0008)

7.4746
(0.3547)

20
500 6.3509 0.9660

(0.0009)
10.7496
(1.2349)

0.9515
(0.0009)

8.1160
(0.5002)

1,000 6.4223 0.9655
(0.0007)

9.4076
(0.4484)

0.9513
(0.0007)

7.9657
(0.4028)

Table 8. Coverage of 95% intervals for (1 -  0.5L)(1-L)049 Xt = (1 -0.8L)st,where st 
follows a FIGARCH(1, d, 0) with Model 2 and exponential errors

Lead
lag

Sample
size

Theoretical
length

One Step Method Two Step Method
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 2.2434 0.9443

(0.0028)
2.3534

(0.2429)
0.9441

(0.0031)
2.2217

(0.2115)

1,000 2.2346 0.9472
(0.0022)

2.3116
(0.2367)

0.9482
(0.0027)

2.2682
(0.2235)

10
500 2.6754 0.9389

(0.0015)
2.7355

(0.1075)
0.9361

(0.0011)
2.5372

(0.0820)

1,000 2.6561 0.9377
(0.0010)

2.5170
(0.0793)

0.9368
(0.0009)

2.4835
(0.0810)

20
500 2.9303 0.9330

(0.0015)
3.1060

(0.2822)
0.9291

(0.0011)
2.5508

(0.0511)

1,000 2.9552 0.9318
(0.0009)

2.6019
(0.0484)

0.9302
(0.0009)

2.5149
(0.0454)
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Results for FARIMA process under Model 1 and Model 2 errors generated with 

exponential white noise inputs are reported in Tables 7 and 8 respectively. Coverages are 

greater than 0.96 under the one-step estimation method except for lead lag 1 prediction for 

sample size 500 (see Table 7). On the other hand, the two-step estimation method provides 

coverages reasonably close to 0.95. However, when a moving average component is added 

to the FARIMA model, the coverages provided by both methods are well below the 0.95 

for forecast horizons above lead one (see Table 8). Further, the bootstrap lengths given 

under both methods are less than the theorical lengths for lead lag 10 and 20 (see Table 8). 

It is possible that the AR approximation we employed is inadequate to model FARIMA 

with a moving average component with roots relatively close to unity and with 

conditionally heteroscedastic error with long memory. This is a phenomenon that needs 

further investigation.

As a summary, proposed bootstrap method works fairly well for the FARIMA- 

FIGARCH model. Both the estimation methods provide good coverages, but we 

recommend one step estimation method when the estimated AR parameter is close to 1 and 

fractionally integrated parameter (dFAR ) is close to 0.5, without or with weaker moving 

average parameter in the FARIMA part.

5. APPLICATION TO A REAL DATA SET

Baillie et al. (2002) modeled the monthly Consumer Price Index (CPI) inflation 

series for 8 different countries and found that it exhibits a long memory behavior in both 

first and second conditional moments. According to their investigation, this is the only
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economic variable that exhibit this property. So, they suggested the FARIMA-FIGARCH 

model to represent the underlying generating process of such series displaying dual 

phenomenon of long memory in inflation rates and squared inflation rates. Therefore, we 

used monthly Japanese CPI inflation series to construct the prediction intervals. The 

monthly CPI data were obtained from Federal Reserve Bank of St Louis 

https://fred.stlouisfed.org with data ranging from January 1960 to October 2020. We then 

computed the CPI inflation rates, which is defined as rt = 100 -A log(CPIt), t = 1,2,...,729

, where CPIt is the monthly CPI. Here we used one-step estimation procedure to construct

the prediction intervals. Table 9 reports the calculated coverage probabilities for 1st, 10th 

and 20th step ahead forecasts. The following figure shows the one-step ahead constructed 

sieve bootstrap prediction-based intervals for CPI inflation series.

Prediction intervals for CPI inflation series

Figure 1. 95% sieve bootstrap-based prediction interval for CPI inflation rates

https://fred.stlouisfed.org
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The Figure 1 reports the 95% upper and lower bounds. There are two future values 

that lie above the upper bootstrap bound and below the lower bootstrap bound, providing 

96% of coverage, which is close to 0.95. Further, 10-step and 20-step intervals provide 

coverages slightly greater than the nominal value of 0.95. These results are consistent with 

the simulation results of FARIMA-FIGARCH under normal and t distributed white noise 

process. In general, intervals are narrower in most periods, with the widest interval seen in 

May 2014 with interval length 3.5511.

Table 9. Estimated coverage probabilities for future CPI inflation rates

Lead lag Coverage
1 0.9600

10 0.9560
20 0.9753

6. CONCLUSIONS

The importance of modeling the dual presence of long memory in both the first two 

conditional moments is discussed by Baillie et al. (2002) and Conrad and Karanasos 

(2002). In this article we proposed a sieve bootstrap-based prediction interval for 

FARIMA-FIGARCH model. Finite sample performance was investigated using a Monte- 

Carlo study, which showed that the proposed intervals provide close to nominal coverage 

when the underlying white noise process that drives the innovations has a normal or a t 

distribution. Results when the underlying white noise process is exponential show good 

coverage only for lead one predictions. In this study we assumed the order of the FIGARCH
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component is known and in the simulation study the orders were set at p  = 1 and q = 1 with 

d  lying between 0 and 1. Note that this is not a great limitation because basic lower order 

GARCH type models provide better fit to empirical data as shown in most of the empirical 

studies. In addition, practitioners have routinely used GARCH(1, 1) and 

FIGARCH(1, d, 1) or FIGARCH(0, d, 1) to model empirically observed volatility. 

Further, coverages in application to CPI inflation rates confirms that the proposed bootstrap 

prediction interval appropriate for forecasting data with long memory found in the first and 

second conditional moments.
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IV. BOOTSTRAP PREDICTION INTERVALS FO R HYPERBOLIC 
GENERALIZED AUTOREGRESSIVE CONDITIONAL H ETEROSCEDASTIC

(HYGARCH) MODELS

ABSTRACT

It is well known that the volatility of certain financial assets exhibits long range 

dependence. Fractionally Integrated Generalized Autoregressive Conditional 

Heteroscedastic (FIGARCH) model was widely used to model such a behavior. However, 

the second moment of FIGARCH does not exit. Therefore, Hyperbolic Generalized 

Autoregressive Conditional Heteroscedastic (HYGARCH) model was developed and suits 

well for handling volatility with long memory dependence. Determining the uncertainty 

associated in predictions in long memory volatility models is useful for financial market 

participants. Conventional methods of constructing prediction intervals for such models 

provide poor coverages. A bootstrapped based method proposed by Pascual, Romo and 

Ruiz (PRR) was adapted to construct prediction intervals for returns and volatility for 

HYGARCH model. A Monte-Carlo simulation study was carried out and simulation results 

shown that the adaption of PRR method provide reasonable coverage probabilities for 

returns and volatility.

Keywords: Long memory, Prediction intervals, Volatility modeling
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1. INTRODUCTION

Forecasting stock returns and volatility are important tasks for those studying 

financial markets. The Autoregressive Conditional Heteroscedastic (ARCH) and 

Generalized Autoregressive Conditional Heteroscedastic (GARCH) models introduced by 

Engel (1982) and Bollerslev (1986), respectively, are widely used to model and forecast 

financial returns and associated volatilities, which tend to evolve over time. Point estimates 

are widely used to forecast financial time series and their volatility. In contrast to point 

estimators, prediction intervals provide extra information about the uncertainty associated 

with future forecasts. Pascual et al. (2006) developed a bootstrap-based methodology for 

constructing prediction intervals for returns and volatility under a GARCH(1, 1) 

formulation. We will refer to this approach as the Pascual-Romo-Ruiz (PRR) method. Chen 

et al. (2010) proposed a computationally much faster, sieve bootstrap-based, prediction 

interval obtained by converting the GARCH formulation into an ARMA type model. 

Trutios & Hotta (2016) adapted the PRR method and used it to construct prediction 

intervals for returns and volatilities for EGARCH processes (Nelson, 1991) and for the 

Glosten-Jagannathan-Runkle GARCH (GJR-GARCH, Glosten et al., 1993) models. They 

reported that the volatility prediction coverage could be poor in EGARCH and GJR- 

GARCH cases if an additive outlier is present near the forecasting horizon. The studies 

reported above only focus on prediction intervals for short memory volatility models. Yet, 

the phenomenon of long memory is not limited to the mean processes only, in which 

domain there have been considerable work (for example, Bisaglia & Grigoletto (2001) and 

Rupasinghe & Samaranayake (2013)).



95

The authors Ding et al. (1993), Ding and Granger (1996) and Harvey (1993) are the 

first to address the long-range dependence of squared or absolute returns of financial time 

series. Baillie et al. (1996, 2002) and Conrad & Karanasos (2005) also discussed useful 

applications of long memory volatility models. The GARCH formulation cannot model 

such a behavior as the weights of the autocorrelation function of squared returns, under the 

GARCH model, decay exponentially implying short-term dependence. Based on these 

observations, Baillie et al. (1996) introduced a Fractionally Integrated Generalized 

Autoregressive Conditional Heteroscedastic (FIGARCH) model, which permits the 

modeling of long memory behavior in squared or absolute returns. The conditional variance 

of FIGARCH can be written as an infinite lag polynomial of squared returns, and the 

coefficients of the lag polynomial have a slow hyperbolic decay. A similar behavior is 

associated with the autocorrelation function of squared returns under the FIGARCH 

formulation. However, coefficients of the infinite lag polynomial sum to one in such 

models implying that the unconditional variance of a FIGARCH process is infinite. Thus, 

unlike the GARCH, FIGARCH is a non-stationary process. Davidson (2004), introduced 

the hyperbolic GARCH (HYGARCH) model, which can be written as a combination of 

weighted GARCH and a FIGARCH components. The HYGARCH shares the covariance 

stationarity property of the GARCH component, while at the same time it contains the 

hyperbolic decaying impulse response coefficients found in the FIGARCH. Therefore, the 

HYGARCH formulation can model long run dependence of conditional variance without 

sacrificing the covariance stationarity property.

Ekanayake and Samaranayake (2020) introduced a method to construct bootstrap- 

based prediction intervals for returns and volatility for long memory FIGARCH processes.
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However, the underlying infinite unconditional variance of the FIGARCH process hinders 

the development of asymptotic properties of the bootstrap estimates. An alternative 

HYGARCH model provides a solution because its unconditional variance is finite except 

in a limiting case. In this paper, we extend PRR algorithm to construct bootstrap prediction 

interval for returns and volatility for the HYGARCH model. The theoretical derivations of 

the asymptotic properties of the bootstrap-based prediction intervals for the HYGARCH 

process will be discussed in a separate paper.

The organization of the sections of this paper is as follows. We introduce the 

HYGARCH model in Section 2. Section 3 details the residual based bootstrap procedure 

employed to construct prediction intervals for HYGARCH processes. Section 4 presents 

the results of a detailed Monte-Carlo simulation study that examines the finite sample 

behavior of the intervals. The procedure is applied to NASDAQ stock return data with 

results presented in Section 5. Finally, Section 6 provides some concluding remarks.

2. THE HYPERBOLIC GARCH (HYGARCH) M ODEL

The Integrated GARCH (IGARCH, Engle and Bollerlev, 1986) and the FIGARCH, 

formulations have several drawbacks, such as their infinite unconditional variance. Some 

of these issues connected with the IGARCH processes were addressed by the Davidson 

(2004) who developed the HYGARCH model. A time series {st} is said to follow a

HYGARCH(p, d , q) process if it satisfies the conditions,

and
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a t2 = ® + {l - P (  L) - j (  L) 1 + a ((1 - L)d - 1)]}^2 + fl(L )a 2, (1)

where, the sequence, {zt} is a white noise process with zero mean and unit variance. Note

that L is the lag operator such that the polynomials (3(L) = fl1L + L2 +... + PpLF and 

j ( L) = 1 - j 1L - j 2L2 - ... - j qLq have no common roots, with Pp ± 0 and j  ± 0. It is 

assumed that a>  0, d  > 0 . The HYGARCH reduces to the FIGARCH or the GARCH 

when a  = 1 or a  = 0 , respectively. Note that parameter d  is unidentifiable when a  = 0. 

Further, when d  = 1in (1), depending on the value of a , the model becomes IGARCH or 

GARCH. In fact, when a  < 1 it becomes a GARCH model, and if a  = 1 then it becomes a 

IGARCH model.

In this study we construct prediction intervals for the HYGARCH(1, d, 1) model by 

using the PRR bootstrap procedure. The procedure described herein can be directly 

extended to the general HYGARCH(p, d , q) model. The formulation of 

HYGARCH(1, d , 1)can be expressed as follows:

a 2 = a

a  =  a ( 1  -

+  {1 - p tL - ( 1  - j L ) [ 1  +  a ( (1  - L ) d  -  1 ) ] } E ;  +  M l , ,

( 1  - f l ) -  + { 1  -  ( 1  - A ) - ‘ (1  - j L )  [ 1 + a (  ( 1  -  L ) d  -  1 ) ] } e , 2 .

(2)

The conditional variance of HYGARCH(1, d  ,1) can be written as

a  =a(1 - P d )  )-1 +X( L)e';, (3)

where X(L) = ^ jAkLk .
k=1

By equating terms with common powers in the equation
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A( L) = \ L  + 0  L2 +... + 0 0  +... 1 -  (1 -A ) - ' ( 1  -faL)  [l + a (  (1 -  L)d - 1)

coefficients can be easily obtained as follows:

\  = fa -  0  + a d ,

the

0  = (d - 0 ) ( 0  -afaP + a d  (1 -  d ) /2 ,

0  = 0 1 | a d 0 1 -adfa1 -0 1  + 01fa1 + a d (1 -  d ) / 2 j + a d (1 -  d ) /  2 [(2 -  d ) /  3 -fa1 ],

\  =PA-1 + a [(k - 1 -  d ) / k -fa  ]SdJc-1, k e N, 

where 8dk =Sdk-1 (k -1  - d)k 1, k e N refer to the coefficients in the series expansion of

(1 -  L)d ,with Sd 0 = 1 and Sd1 = d . The conditional variance defined in the equations (2)

and (3), in the HYGARCH definition, must be positive. Therefore, non-negativity of \  ’s

is required. Similar to the sufficient conditions for non-negativity of conditional variance 

of FIGARCH(1, d,1) derived by Bollerslev and Mikkelsen (1996), the conditions for the 

non-negativity of conditional variance in the HYGARCH model are given by,

0  -  a d  < fa1 < ( 2 -  d ) / 3 and a d  [fa1 -  (1 -  d ) / 2 ] < 0 1 (fa -  0 1 + a d ). (4)

These conditions are also applied in the studies by Dark (2005, 2010). The 

necessary and sufficient conditions for the non-negativity of conditional variance for 

general HYGARCH(1, d , q) were derived by Conrad (2010). Further, Conrad (2010) 

derived the sufficient conditions for non-negativity of conditional variance for the general 

HYGARCH(p, d , q), forp  > 2 . Please refer Theorem 2 and Theorem 3 in Conrad (2010)

for details. These necessary and sufficient conditions are complex and therefore it is
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difficult to program into software. Thus, we employed sufficient conditions given in (4) in 

our study.

3. BOOTSTRAP PREDICTION INTERVALS

In this section, we apply the procedure proposed by Pascual et al. (2006) (PRR) to 

obtain prediction intervals for future returns and future volatilities when the underlying 

data generating process is HYGARCH.

1. Let \ s t be a sequence of realizations from a HYGARCH(1, d , 1) process. Then

estimate the parameters of the model 0 <f\, d , p„ a ) by using the Quasi-

Maximum Likelihood Estimation (Q-MLE) method.

2. Compute the residuals zt = stj c t , t = 1,...,n where

c  =0(1(1 -  /7, )-1 + {1 -  (1 -  4  )-1 (1 -  [ 1 + a ( (1 -  L)d -1)]}

1 ®( 1  -  4 )  1 +  4 fft- 1 + ^ 2S?-2 +  . . .  +  K St
2
t - k

and setting £t2 = n 1 Z ” e 2, for t = -k  +1 ,...,-1, 0. Note that k is a suitably

chosen truncation lag of the polynomial A,(L) . In the simulation study we used

2

k=1,000.

3. Compute the centered residuals zt = zt -  zt , where zt = n-1 Z ”= zi .

4. Denote the empirical distribution function of the centered residuals by

( x) = n-1 Z  t=11 (-«,* ](zt) .
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5. Draw a bootstrap sample with replacement from the above distribution and denote 

it by z], where t = -m  +1,...,-1,0,1,...,n . m is chosen as 2,000 in this study.

6. Generate the bootstrapped HYGARCH series s t*, t = -m  +1,...,-1,0,1,...,n by first 

computing a bootstrapped conditional variance series,of*, using the HYGARCH 

parameters estimated in Step 1. Then use s t* = zfof, t = -m  +1,...,-1,0,1,...,n to 

generate s ] . The non-positive lags represent ‘burn-in’ observations that are 

dropped to mitigate effects due to the initial conditions.

7. Estimate the HYGARCH parameters 0* = (<$* , , ,  d*, 0*, a  ) for the 

bootstrapped series js* j using the Q-MLE method.

8. Use the new coefficients 0* = (o>*, , ,  d*, 0*, a  ) obtained in the previous step

and compute the h-step ahead bootstrap forecasts of future returns and volatilities 

based on the following recursions:

2* (1-0*) - 1 + j 1 - (1 -0*) - 1(1 - , * )[1 + a  ((1 - L )d* - 1)Jr  ̂2*
'  n+h

® (1 - 01* ) 1 + % sn+h- 1  +...+ rks
* 2* 1 * 2*

n + h -k ’

h = Zn+h°n+h , for h > 0 and st* = st for t < n

9. Obtain the estimated bootstrap distribution o fs n+h, denoted byF*. (.), by repeating
s  n+h

steps 5-8 B times (B = 1,000) in the simulation study. F*, (.) is the estimate of the 

F* (.), the bootstrap distribution function of s*+h, which is used to approximate
s  n+h

unknown distribution of sn+h given the observed sample.
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10. The 100(1 -a )%  bootstrap prediction interval for s n+h is then computed by

[Ql(a / 2),Q*(1 - a / 2 ) ] ,  where Q*(.) = F**-1 are the percentiles of the estimated
s n+h

bootstrap distribution.

To construct the prediction intervals for volatility we followed the steps 1-8 and 

changed the rest of steps as below.

9. * Obtain the estimated bootstrap distribution o fc n+h, denoted by FC (.), by repeating
c n+h

steps 5-8 B times (B = 1,000) in the simulation study. F*, (.) is the estimate of

the F* (.), the bootstrap distribution function of <cn*+ h, which is used to
c n+h

approximate unknown distribution of c n+h given the observed sample.

10. *The 100(1 -a )%  bootstrap prediction interval for crn+h is then computed by

[Q* (a  / 2), Q * (1 -  a  / 2)], where Q *(.) = F  V are the percentiles of the estimated
n+h

bootstrap distribution.

The performance of the PRR method is compared with the conditional bootstrap 

(CB) method for future observations used by Miguel and Olave (1999) to construct forecast 

intervals for the ARMA-ARCH model. Prediction intervals involved in CB method does 

not incorporate the uncertainty of the parameter estimates. The parameter estimation of 

bootstrapped series (i.e { F j ’s) in the PRR method are not carried out in the CB method.

Instead, the CB method employs the parameters estimates obtained from the original 

observed series. Thus, step 7 is discarded, and a slight modification is included to step 8, 

by using parameter estimates of the observed realizations instead of the parameter
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estimates of bootstrapped series. Therefore, CB future values for returns ( s +̂h, h = 1,2,...)

and volatilities (o*n+ h, h = 1,2,...) can be obtained as follows:

_2*
° n +h =  ® ( 1  -(1 - 4 ) " '  +{l -  (1 -jfi1>“,(1 - i )  [ l  + a (  (1 -  L)d) - 1 Jf ,2*

'n+h

: ® ( 1  - ( )  i + A s n + h - 1 + •••+ \ s ,
,2*
n + h - k ,

Zn+h = Zn+ h°n+ h, for h > 0 and ^  = St for t ^  n

By incorporating steps 9-10 and 9*-10* one can estimate CB prediction intervals for 

returns and volatilities.

4. THE SIMULATION STUDY

A Monte-Carlo simulation study was carried out to investigate the finite sample 

performance of the HYGARCH model. We simulate the HYGARCH series according to 

equations (1) and (2). The lengths of the time series considered here are n = 500 and 

n = 1,500 . The truncation lag of the infinite lag polynomial on conditional variance is set

to k = 1,000. The parameter combinations used in this study are a  = 0.1, i  e {0,0.2,0.4},

d  e {0.40,0.50,0.75,0.90} , (  e {0.10,0.45,0.70,0.75} and a  e {0.85,0.95} . Apart from

these parameters, two special combinations are employed for the remaining parameters. 

One combination is a = 0.1, i  = 0.4, d  = 0.4, (  = 0.1, a  = 0.8; employed by Kwan, W. et 

al. (2012) in their study. The other one is taken from the results based on the empirical 

study of exchange rate data in the seminal paper on HYGARCH by Davidson (2004); 

Inspired by estimates of exchange rates we employed the combination 

a = 0.1, i  = 0.2, d  = 0.65, (  = 0.75, and a  = 0.98. Along with these sets of parameter
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combinations, 3 different error distributions with mean 0 and standard deviation 1 were 

used to simulate the HYGARCH series. These are standard normal, t with 7 degrees of 

freedom and centered exponential with mean 1 (i.e. usual symmetric, a leptokurtic, and a 

skewed distribution). The t-distributed errors were generated as

zt = 51/2z1t(z22t + z32t +... + z82t)-1/2 by drawing independent and identically distributed

standard normal zit ’s for i = 1,2,...,8, as employed in Baillie et al. (1996). The parameters

are estimated by maximizing the Gaussian likelihood function (Q-MLE) derive for the 

HYGARCH model. We employed constraints given in (4) to estimate parameters to ensure 

non-negativity of conditional variance. N  = 1,000 independent series were generated for 

each combination of the model, sample size n , nominal coverage level, and error 

distribution. Steps 1-10 were implemented and for each simulation run and R = 1,000

future returns, sn+h, h e N and future volatility crn+h, h e N were generated using the 

original model. The coverages probabilities for future values, sn+h and future volatilities 

c n+h were estimated by calculating the proportion of those values falling into the bootstrap 

prediction intervals. The estimated coverage probability for future returns sn+h, at ith 

simulation run is given by

C (i) = R I R . ,  IA [<+„ (i) ] ,

where, A . [ q V / 2 ) ,  Q'*(\ - a  /2 ) J is the 100(1 -a ) th  bootstrapped prediction interval.

IA (.) is the indicator function of the set A. R future values generated at the i th simulation 

run are denoted by s rn+ h(i), r = 1, 2,...,1,000 . The interval lengths were also investigated, 

and these bootstrap lengths and theoretical lengths for a ith simulation run are computed
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from R future values of the underlying model with known order and known coefficients. 

The statistics: mean coverage, standard error of mean coverage, mean bootstrap length, 

standard error of mean bootstrap length, and mean theoretical length were computed as 

follows:

Mean coverage C = N  -l I  ”, C (i).

Standard error of mean coverage SEC = j[ N (N -1 )]-1 I i = 1[C(i) -  C]2|  ,

Mean length (bootstrap) LB = N  -11  i^ B  (i)-

Standard error o f mean length SEL = {[ N  (N  - 1)]-11  B=1[ LB (i) -  LB ]}L;l,

Mean theoretical length LT = N  -1Z  N j Lt (i) •

In similar fashion to what is used for future return intervals, we estimated the 

coverage probability for intervals constructed for future volatilities. Then the mean 

coverage, standard error of the mean coverage, mean bootstrap length, standard error of 

the mean bootstrap length, and mean theoretical length were obtained for future volatility 

a n+h, h = 1,2,... using equations similar to that we discussed above.

The performance of the intervals was investigated for future returns and volatilities 

by using the coverage probabilities and bootstrap lengths for different types of models with 

all the different parameter combinations, error distributions, and sample sizes. We explored 

the behavior of the coverage probabilities, bootstrap interval bounds (upper and lower) and 

theoretical interval bounds (upper and lower) of the minimum value, percentiles including

using Lb (i) = Ql(1 - a l l )  -  Q](a / 2) and LT (i) = <+h (1 - a l l )  -  <+h (a / 2) respectively.

Lt (i)is the difference between 100(1 -a ) th  and the 1 00 (a /2 )th  percentiles generated
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25th, 50th, 75th, 95th and maximum value for future returns and volatilities. We only report 

the simulation results for coverages and interval lengths (with corresponding standard 

errors) for 95% intervals, due to space limitation. The complete set of results are available 

upon request. All the simulations and computations have been carried out using MATLAB 

Mathematical Software.

4.1. PREDICTION INTERVALS FO R  RETURNS

Tables 1-7 reported the Monte Carlo simulation results for future returns. These 

prediction results obtained for lead lag 1, lead lag 10 and lead lag 20, approximately 

corresponds to predictions of one day, two weeks and one month respectively under the 

scenario where each observation represents a trading day. Tables 1-7 reports the 

performance of HYGARCH(1, d , 1)and HYGARCH(1, d , 0)with normally distributed, 

t -  distributed, and exponentially distributed errors. If the coverages reported in Tables 1­

3 are rounded to two decimal places, then one would achieve the nominal coverage of 0.95 

in 11 and 9 cases out of 18 under PRR and CB methods, respectively. Apart from that, we 

cannot observe a significant difference between these two methods. Therefore, the 

incorporation of the variability in parameter estimation does not provide an improvement 

to the performance or the predictions intervals for returns under the HYGARCH model 

with normally distributed errors. Bootstrap intervals under both methods provide coverages 

close to nominal value 0.95 regardless of the parameter combinations used under t -  

distributed errors as well. The performance under t -  distributed errors are similar to 

normally distributed errors, and they are in concordance with the results reported by 

Pascual et al. (2006) for GARCH prediction intervals. The interval lengths were also
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investigated, and the computed PRR and CB lengths are closer to each other and as well as 

to the theoretical lengths. Therefore, the performance of intervals computed for future 

returns does not depend on the uncertainty of the parameter estimation in symmetric 

distributions.

The performance of the intervals examined under exponentially innovations are 

reported in Tables 6-7 for both the PRR and CB methods. The lead lag one prediction 

intervals using the PRR method is clearly better than those constructed using the CB 

method. However, when the prediction horizon increases, the coverage differences get 

minimal. The bootstrap interval lengths reported for skewed exponential errors are slightly 

narrower than the theoretical intervals, in many cases, in contrast to the case with 

symmetric error distributions.

Table 1. Coverage of 95% intervals for returns of HYGARCH (1, d, 1) with parameters 
m = 0.1, $ = 0.4, d  = 0.4, ft = 0.1, a  = 0.80, and normally distributed errors

Lead
lag

Sample
size

Theoretical
length

PR R CB
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 2.9176 0.9452

(0.0009)
2.8988

(0.0920)
0.9437

(0.0009)
2.9013

(0.0952)

1,500 2.9139 0.9472
(0.0007)

2.9077
(0.0917)

0.9469
(0.0007)

2.9095
(0.0926)

10
500 3.1698 0.9438

(0.0009)
3.1465

(0.0457)
0.9435

(0.0009)
3.1549

(0.0489)

1,500 3.1745 0.9478
(0.0007)

3.1766
(0.0395)

0.9478
(0.0007)

3.1830
(0.0409)

20
500 3.1836 0.9428

(0.0010)
3.1428

(0.0369)
0.9424

(0.0009)
3.1388

(0.0398)

1,500 3.1796 0.9475
(0.0007)

3.1739
(0.0306)

0.9474
(0.0007)

3.1788
(0.0316)
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Table 2. Coverage of 95% intervals for returns of HYGARCH (1, d, 0) with parameters
o = 0.1, $ = 0.2, d  = 0.65, ft = 0.75, a  = 0.98, and normally distributed errors

Lead
lag

Sample
size

Theoretical
length

PR R CB
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 8.2371 0.9443

(0.0009)
8.1720

(0.1452)
0.9438

(0.0009)
8.1686

(0.1467)

1,500 8.2185 0.9481
(0.0006)

8.2131
(0.1401)

0.9479
(0.0006)

8.2207
(0.1428)

10
500 8.4222 0.9423

(0.001)
8.3183

(0.1424)
0.9430

(0.0009)
8.3442

(0.1440)

1,500 8.4299 0.9469
(0.0007)

8.3909
(0.1317)

0.9463
(0.0006)

8.3935
(0.1363)

20
500 8.5479 0.9381

(0.0012)
8.3646

(0.1394)
0.9397

(0.0010)
8.4099

(0.1414)

1,500 8.5434 0.9461
(0.0007)

8.5058
(0.1263)

0.9459
(0.0007)

8.5152
(0.1308)

Table 3. Coverage of 95% intervals for returns of HYGARCH (1, d, 0) with parameters 
o = 0.1, $ = 0, d  = 0.9, ft = 0.7, a  = 0.95, and normally distributed errors

Lead
lag

Sample
size

Theoretical
length

PR R CB
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 5.0841 0.9452

(0.0009)
5.0524

(0.1030)
0.9446

(0.0009)
5.0639

(0.1071)

1,500 5.0813 0.9477
(0.0006)

5.0756
(0.1011)

0.9472
(0.0006)

5.0760
(0.1027)

10
500 5.3677 0.9419

(0.0011)
5.2749

(0.0827)
0.9424

(0.0011)
5.3237

(0.0914)

1,500 5.3998 0.9458
(0.0007)

5.3378
(0.0754)

0.9462
(0.0007)

5.3605
(0.0791)

20
500 5.4846 0.9386

(0.0011)
5.3383

(0.0730)
0.9397

(0.0011)
5.4089

(0.0807)

1,500 5.4916 0.9454
(0.0007)

5.4459
(0.0613)

0.9459
(0.0007)

5.4782
(0.0652)
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Table 4. Coverage of 95% intervals for returns of HYGARCH (1, d, 1) with parameters
a = 0.1, (p = 0.2, d  = 0.5, P = 0.45, a  = 0.85 , and t distributed errors

Lead
lag

Sample
size

Theoretical
length

PR R CB
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 3.3648 0.9459

(0.0009)
3.3678

(0.0555)
0.9448

(0.0010)
3.3636

(0.0568)

1,500 3.3815 0.9480
(0.0006)

3.3739
(0.052)

0.9478
(0.0006)

3.3767
(0.0528)

10
500 3.4523 0.9441

(0.0009)
3.4405

(0.0394)
0.9435

(0.0010)
3.4445

(0.0422)

1,500 3.4514 0.9480
(0.0006)

3.4616
(0.0348)

0.9480
(0.0006)

3.4652
(0.0354)

20
500 3.4623 0.9433

(0.0009)
3.4414

(0.0349)
0.9431

(0.0010)
3.4573

(0.0385)

1,500 3.4695 0.9468
(0.0007)

3.4572
(0.0268)

0.9466
(0.0008)

3.4622
(0.0278)

Table 5. Coverage of 95% intervals for returns of HYGARCH (1, d, 0) with parameters 
a = 0.1, <p = 0, d  = 0.75, P = 0.7, a  = 0.95, and t distributed errors

Lead
lag

Sample
size

Theoretical
length

PR R CB
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 5.2819 0.9449

(0.0010)
5.2588

(0.0995)
0.9451

(0.0009)
5.2850

(0.1037)

1,500 5.2618 0.9485
(0.0006)

5.2688
(0.0950)

0.9485
(0.0006)

5.2866
(0.0983)

10
500 5.4217 0.9417

(0.0010)
5.3108

(0.0889)
0.9426

(0.0010)
5.3510

(0.0929)

1,500 5.4117 0.9466
(0.0006)

5.3818
(0.0843)

0.9470
(0.0006)

5.4092
(0.0872)

20
500 5.4751 0.9397

(0.0011)
5.3804

(0.0876)
0.9407

(0.0011)
5.4299

(0.0913)

1,500 5.4872 0.9457
(0.0007)

5.4495
(0.0738)

0.9465
(0.0007)

5.5014
(0.0789)
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Table 6. Coverage of 95% intervals for returns of HYGARCH (1, d, 1) with parameters
o = 0.1, $ = 0.4, d  = 0.4, ft = 0.1, a  = 0.95, and exponentially distributed errors

Lead
lag

Sample
size

Theoretical
length

PR R CB
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 3.2164 0.9233

(0.0019)
3.1800

(0.2250)
0.9059

(0.0023)
3.1422

(0.2360)

1,500 3.2329 0.9174
(0.0014)

3.1643
(0.2211)

0.9082
(0.0016)

3.1529
(0.2249)

10
500 3.8428 0.9219

(0.0014)
3.3046

(0.1024)
0.9225

(0.0014)
3.3284

(0.1033)

1,500 3.8079 0.9259
(0.0011)

3.2941
(0.0924)

0.9273
(0.0012)

3.3559
(0.1014)

20
500 4.0545 0.9124

(0.0016)
3.2721

(0.0781)
0.9135

(0.0017)
3.2943

(0.0774)

1,500 4.0394 0.9195
(0.0013)

3.2965
(0.0663)

0.9210
(0.0014)

3.3547
(0.0721)

Table 7. Coverage of 95% intervals for returns of HYGARCH (1, d, 1) with parameters 
o = 0.1, $ = 0.4, d  = 0.75, ft = 0.45, a  = 0.85 , and exponentially distributed errors

Lead
lag

Sample
size

Theoretical
length

PR R CB
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 3.1117 0.9223

(0.0018)
3.0390

(0.1638)
0.9077

(0.0023)
3.0006

(0.1644)

1,500 3.1166 0.9161
(0.0014)

3.0613
(0.1789)

0.9073
(0.0017)

3.0480
(0.1806)

10
500 3.6759 0.9212

(0.0014)
3.2675

(0.0868)
0.9230

(0.0015)
3.3485

(0.0972)

1,500 3.6687 0.9276
(0.0010)

3.2918
(0.0846)

0.9291
(0.0010)

3.3407
(0.0883)

20
500 3.8649 0.9144

(0.0015)
3.2132

(0.0579)
0.9173

(0.0016)
3.3157

(0.0699)

1,500 3.8754 0.9194
(0.0011)

3.2535
(0.0531)

0.9212
(0.0012)

3.3156
(0.0601)
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4.2. PREDICTION INTERVALS FO R  FUTURE VOLATILITIES

Tables 8-10 reports the performance of 95% PRR and CB prediction intervals for 

future volatilities when the series are generated with normal, student t, and exponential 

distributions respectively. Here we report the coverages and lengths for lead lag 1, 2, 10 

and 20. One step ahead value in the volatility of GARCH type models (including 

HYGARCH) is completely determined by past observations. Therefore, only uncertainty 

associated with one-step ahead prediction when estimating an empirical time series using 

such models is due to parameter estimation. Consequently, theoretical volatility, o 2n+1 is

same for R = 1,000 iterations for i th simulation run and hence, the theoretical length is zero. 

Similarly, one-step ahead interval length under the CB bootstrap procedure is zero because 

the estimated parameters of each bootstrap run is fixed due to use of the original parameters 

estimates in each simulation run. On the other hand, PRR procedure provides different 

estimates in each bootstrap iteration, and hence one-step ahead predictions intervals under 

the PRR methods have non-zero lengths, as seen Tables 8-10.

We report results for HYGARCH parameter combinations and distributions as 

follows: o = 0.1, $ = 0, d  = 0.75, P = 0.45, a  = 0.85 with normally distributed errors and 

o = 0.1, <p = 0.40, d  = 0.40, P = 0.10, a  = 0.95 with t and exponentially distributed errors. 

The performance of prediction intervals under normal and t error (symmetric) distributions 

yield results similar to each other (based on the results not reported here). Mean coverages 

for one step ahead prediction intervals increase as sample size increases under both t and 

exponential error distributions and provide coverages close to nominal value 0.95 for 

sample size 1,500. However, the mean coverage for the parameter combination 

o = 0.1, $ = 0, d  = 0.75, P = 0.45, a  = 0.85, with normally distributed errors is 0.9220
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when the sample size is 1,500. When forecasting for two steps into the future, the mean 

coverages come close to 0.95 in all models considered, all sample sizes, regardless of the 

error distribution for the PRR method. The mean coverage, however, is well under the 

nominal value 0.95 for the CB method. When predicting more than two steps, mean 

coverages improves as sample sizes increases for both methods, as expected. However, the 

intervals for volatility constructed under the CB method underperform (i.e. wider) for all 

future horizons (h = 2, 10 and 20). Therefore, the PRR method is recommended over the 

CB method for volatility prediction.

Table 8. Coverage of 95% intervals for volatilities of HYGARCH(1, d , 1) with 
parameters m = 0.1, $ = 0, d  = 0.75, P = 0.45, a  = 0.85 , and normally distributed errors

Lead
lag

Sample
size

Theoretical
length

PRR C]B
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 - 0.9020

(0.0133)
0.1857

(0.0054) - -

1,500 - 0.9220
(0.0120)

0.1084
(0.0032) - -

2
500 0.3292 0.9533

(0.0041)
0.4420

(0.0109)
0.7754

(0.0109)
0.3445

(0.0089)

1,500 0.3296 0.9560
(0.0036)

0.3895
(0.0081)

0.8190
(0.0090)

0.3413
(0.0071)

10
500 0.7934 0.9179

(0.0035)
0.7875

(0.0173)
0.8825

(0.0046)
0.7486

(0.0175)

1,500 0.7952 0.9372
(0.0018)

0.7938
(0.0138)

0.9251
(0.0022)

0.7829
(0.0135)

20
500 0.8566 0.9153

(0.0036)
0.8495

(0.0173)
0.8817

(0.0047)
0.8109

(0.0175)

1,500 0.8607 0.9373
(0.0018)

0.8593
(0.0112)

0.9267
(0.0021)

0.8488
(0.0110)



Table 9. Coverage of 95% intervals for volatilities of HYGARCH(1, d , 1) with
parameters m = 0.1, $ = 0.40, d  = 0.40, ft = 0.10, a  = 0.95, and t distributed errors
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Lead
lag

Sample
size

Theoretical
length

PRR C]B
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 - 0.9180

(0.0123)
0.3356

(0.0143) - -

1,500 - 0.9420
(0.0105)

0.1974
(0.0089) - -

2
500 1.3657 0.9421

(0.0038)
1.4708

(0.0842)
0.8350

(0.0077)
1.3498

(0.0822)

1,500 1.3683 0.9450
(0.0035)

1.4325
(0.0817)

0.8520
(0.0064)

1.3762
(0.0808)

10
500 1.8232 0.9371

(0.0034)
1.9229

(0.0721)
0.8763

(0.0057)
1.8412

(0.0754)

1,500 1.8327 0.9438
(0.0027)

1.8725
(0.0627)

0.9069
(0.0039)

1.8621
(0.0682)

20
500 1.9176 0.9326

(0.0034)
1.9747

(0.0632)
0.8774

(0.0053)
1.8954

(0.0634)

1,500 1.9033 0.9400
(0.0027)

1.9435
(0.0591)

0.9097
(0.0035)

1.9355
(0.0621)

Furthermore, the interval widths were also investigated for h = 2, 10 and 20. 

Interval width under CB method always less than the interval with under PRR method. The 

PRR interval lengths under normal and t distributed errors are always close to the 

theoretical lengths. However, the computed PRR lengths are narrower the theoretical 

lengths for lead lags 2, 10 and 20 as reported in Table 10.
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Table 10. Coverage of 95% intervals for volatilities of HYGARCH(1, d , 1) with
parameters m = 0.1, $ = 0.40, d  = 0.40, ft = 0.10, a  = 0.95, and exponentially distributed

errors

Lead
lag

Sample
size

Theoretical
length

P R R CB
Mean

coverage
(SE)

Mean
length
(SE)

Mean
coverage

(SE)

Mean
length
(SE)

1
500 - 0.9240

(0.0119)
0.4062

(0.0376) - -

1,500 - 0.9300
(0.0114)

0.2472
(0.0196) - -

2
500 1.3467 0.9416

(0.0040)
1.4675

(0.1270)
0.8059

(0.0093)
1.3941

(0.1409)

1,500 1.3601 0.9435
(0.0036)

1.4586
(0.1287)

0.8357
(0.0075)

1.4164
(0.1301)

10
500 1.9106 0.9253

(0.0040)
1.7023

(0.0758)
0.8272

(0.0079)
1.6316

(0.0803)

1,500 1.8889 0.9292
(0.0036)

1.6469
(0.0650)

0.8621
(0.0058)

1.6412
(0.0665)

20
500 2.2669 0.9096

(0.0043)
1.7175

(0.0656)
0.8131

(0.0077)
1.6304

(0.0598)

1,500 2.2131 0.9131
(0.0038)

1.7111
(0.0583)

0.8522
(0.0056)

1.7179
(0.0600)

5. APPLICATION TO A REAL DATA SET

The proposed bootstrap prediction interval method was applied for daily NASDAQ 

stock data collected from the website https://finance.yahoo.com through time period: 4th of 

January 2010 to 27th of October 2020. Daily stock returns for closing prices were calculated 

by using rt = 100.log(st / st-1)fo r t = 2,3,...,2751, where, stdenotes the observed daily

closing price at day t. One-step-ahead prediction intervals was calculated for 250 data 

points starting from 20th of December 2019 through 27th of October 2020. Following figure 

displays the 95% one-step-ahead bootstrap prediction interval for NASDAQ stock returns.

https://finance.yahoo.com
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The return data exhibit low volatility for around first 3 months and it becomes 

highly volatile during the period from the end of February until end of May of 2020. The 

interval captured this highly volatile period by providing a wider interval during this highly 

volatile period and narrower interval for the more tranquil period after the volatility 

subsides. The coverage probability calculated for one-step ahead prediction is 0.932.

Prediction intervals for NASDAQ stock returns

Figure 1. One step ahead prediction interval for NASADAQ stock returns

Table 11. Estimated coverage probabilities for future returns

Lead lag Coverage

1 0.9320

10 0.8963

20 0.8788
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6. CONCLUSIONS

In this paper, we employed Monte-Carlo simulation to study the finite sample 

behavior of bootstrap prediction intervals for returns and volatilities under the 

HGARCH(1, d , 1) model using the PRR algorithm (Pascual et al. 2006) and compared its 

performance with the conditional bootstrap (CB) method. The results show that the 

incorporation of the variability of the parameter estimates in the process of building the 

prediction intervals for returns, does not make any difference under symmetric error 

distributions. However, when constructing prediction intervals for future volatility it is 

necessary to incorporate the uncertainty of the parameter estimates to get coverage 

probabilities close to the nominal values. Under the skewed error distributions, we get poor 

coverage probabilities for returns under both methods.

Here we assumed the order of HYGARCH process is known. This is not a great 

limitation as almost all the studies involve with HYGARCH models are restricted to 

HGARCH(1, d , 1). However, the extension of HGARCH(1, d , 1) to 

HYGARCH(p, d, q )is possible under the PRR method. Further extension is also possible, 

by adapting sieve bootstrap technique to construct prediction intervals for ARMA-

Note that for longer forecast horizons, the coverage probabilities drop below 0.90.

It is possible that for this time series, a higher order HYGARCH process may be warranted.

HYGARCH and FARIMA-HYGARCH models.
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SECTION

2. CONCLUSION

In this study, we employed bootstrap-based prediction intervals for long memory 

volatility models and time series with long memory and heteroscedastic errors. Mainly, we 

utilized two bootstrap techniques where first one is PRR, which is introduced by Pascual 

et al. (2004) and the second one is sieve bootstrap method. We carried out Monte-Carlo 

simulation study for check the performance of the finite sample behavior.

PRR method and CB methods are applied to construct prediction intervals for 

returns and volatilities in long memory volatility models, FIGARCH and HYGARCH 

models as in Papers I and IV. Although both models are used to model long range 

dependence in conditional volatility, FIGARCH has infinite unconditional variance while 

unconditional variance in HYGARCH is finite. Bootstrap intervals constructed using PRR 

method include the uncertainty due to parameter estimates while intervals produced by CB 

method does not incorporate the uncertainty due to parameter estimates. Monte Carlo 

simulation shows that both methods produce good coverages for returns under symmetric 

error distributions, Gaussian, and t. However, when constructing prediction intervals for 

volatility PRR method dominates CB method in both models. Under skewed error 

distribution performance of prediction intervals for both returns and volatilities are not as 

good as symmetric error distributions.

Papers II and III investigated the finite sample performance of the prediction 

intervals of ARMA-FIGARCH and FARIMA-FIGARCH models. We incorporate the
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sieve bootstrap resampling technique to construct the prediction intervals. Two resampling 

techniques under sieve bootstrap method are used. Both methods provided better coverages 

close to the nominal value however, one step estimation method (Resampling done using 

the residuals of AR-FIGARCH) performs well under roots of the AR polynomial closes to 

one or /and fractional integration parameter d  closes to 0.5.
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APPENDIX

MATLAB A LG O RITH M  FO R  FIGARCH PREDICTION INTERVALS

%% Initialization of parameters

parameters = [0.1 0.2 0.5 0.45]; % FIGARCH Parameters 
w = parameters(1); phi = parameters(2); d = parameters(3); 
beta = parameters(4);
N=500; n = 1500; k=1000; discard=6000; h=20; R=1000;
B=10 0 0;
Para = zeros(N,4); BootPara = zeros(N,4);
%% Returns(defining matrices to store outputs of returns) 
Blength = zeros(N,h); Bcount = zeros(N,h); Tlength
= zeros(N,h); Bcount0_025 = zeros(N,h); Bcount0_975 = 
zeros(N,h); Bquantile = zeros(N,2*h);
Blength99 = zeros(N,h); Bcount99 = zeros(N,h); 
Tlength99 = zeros(N,h); Bcount0_005 = zeros(N,h); 
Bcount0_995 = zeros(N,h); Bquantile99= zeros(N,2*h);

Blengthp25 = 
Tlengthp25 = 
Blengthp50 = 
Tlengthp50 = 
Blengthp75 = 
Tlengthp75 = 
Blengthpmax = 
Tlengthpmax = 
Blengthpmin = 
Tlengthpmin =

zeros(N,h) 
zeros(N,h) 
zeros(N,h) 
zeros(N,h) 
zeros(N,h) 
zeros(N,h) 
zeros(N,h) 
zeros(N,h) 
zeros(N,h) 
zeros(N,h)

Bcountp25 = 

Bcountp50 = 

Bcountp75 = 

Bcountpmax = 

Bcountpmin =

zeros(N,h); 

zeros(N,h); 

zeros(N,h); 

zeros(N,h); 

zeros(N,h);

%% Volatilities(defining matrices to store outputs of 
volatilities)

Hlength = zeros(N,h); Hcount = zeros(N,h); Vlength
= zeros(N,h); Hcount0_025 = zeros(N,h); Hcount0_975 = 
zeros(N,h); Hquantile = zeros(N,2*h);
Hlength99 = zeros(N,h); Hcount99 = zeros(N,h); 
Vlength99 = zeros(N,h); Hcount0_005 = zeros(N,h); 
Hcount0_995 = zeros(N,h); Hquantile99= zeros(N,2*h);

%% constraints for the fmincon optimazation
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init_para
parameters
A
(1,d,1)
b
lb
ub
opts

[0.1 0.2 0.50 0.45]; % intialization of

[0 -1 -1 1;0 2 1 0]; % This is for the FIGARCH

[0 1 ];
[0.0001,0,0.0001,0.0001]; 
[inf,0.9999,0.9999,inf];
optimoptions('fmincon','Display','off');

%% defining the lambda's (coeficients of infinite ARCH 
process)

lambda = zeros(k,1); delta = zeros(k,1);
lambda(1) = phi-beta+d; delta(1)= d;
tic
for l3=2:k

delta(l3) = (l3-1-d)/l3*delta(l3-1);
lambda(l3) = beta*lambda(l3-1) + delta(l3)- 

phi*delta(l3-1); 
end

parfor i=1:N
n=1500; discard=6000;k=1000;
%% Simulating the data 
rng(i);
zt = randn(n+k+discard,1);
[ee1, ht] = figarchsim(parameters,n,k,discard,zt) ; 

%% Generating future values

zeros(R,n+h); 
zeros(R,n+h);

ee1_FV = 
hh_FV =

et1_fv 
et1_fv(1:n) 
et2_fv 
et2_fv(1:n) 
hh_fv 
hh fv(1: n)

zeros(n+h,1); 
ee1 ;
zeros(n+h,1); 
ee1.A2; 
zeros(n+h,1); 
ht ;

rng shuffle; 
for l2=1:R
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zt_fv = randn(h,1); 

for l=n+1:n+h

hh_fv(l) = w/(1-beta) + lambda'*et2_fv(l-1:-
1:l-k);

et1_fv(l) = sqrt(hh_fv(l))*zt_fv(l-n); 
et2_fv(l) = (et1_fv7l))A2;

end

ee1_FV(l2,:) = et1_fv; 
hh FV(l2,:) = hh fv;

end

fv = ee1_FV(:,n+1:n+h); % Generated theoretical 
future values

fv_h = hh_FV(:,n+1:n+h); % Generated theoretical future 
volatilities

%% Percentiles of Return Theoritical Intervals 
etq = quantile(fv,[0.025 0.975]); tql = etq(1,:); tqu 

= etq(2,:);
tlength = tqu-tql; Tlength(i,:) =

tlength;

etq = quantile(fv,[0.005 0.995]); tql = etq(1,:); tqu 
= etq(2,:);

tlength = tqu-tql; Tlength99(i,:) =
tlength;

etq = quantile(fv,0); 
etq = quantile(fv,0.25); 
etq = quantile(fv,0.50); 
etq = quantile(fv,0.75); 
etq = quantile(fv,1);

Tlengthpmin(i,:') = etq;
Tlengthp25 (i,:) = etq;
Tlengthp50 (i,:) = etq;
Tlengthp7 5 (i,:) = etq;
Tlengthpmax(i,:') = etq;

%% Percentiles of Volatility Theoritical Intervals 
etq = quantile(fv_h,[0.025 0.975]); tql = etq(1,:); 

tqu = etq(2,:);
vlength = tqu-tql; Vlength(i,:) =

vlength;

etq = quantile(fv_h,[0.005 0.995]); tql = etq(1,:); 
tqu = etq(2, :) ;

vlength = tqu-tql; Vlength99(i,:) =
vlength;
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%% Parameter estimation of FIGARCH (MLE approach) 

[para_hat, lgl] =
fmincon(@(x)l_figarch(x,ee1,k),init_para,A,b,[],[],lb,ub,[]
,opts);

ht_hat = cond_var(para_hat,ee1,k); % estimated
condtional variance (this function is similar to the 
l_figarch)

w_hat = para_hat(1)*(1-para_hat(4)); % since
inthe l_garch function we tend to estimate w/(1-beta) not 
w. therefore we did the correction below. 

para_hat(1) = w_hat;
Para(i,:) = para_hat;

e_hat1 = ee1./sqrt(ht_hat);
e hat = e hat1 - mean(e hat1); % deameaned errors zt’s

%% Starting the bootstrap

eB = zeros(B,h); 
hB = zeros(B,h);
BPara =zeros(B,4);

for j=1 : B
discard = 2000; k=1000; 
v_star =

datasample(e_hat,n+k+discard);
[e_star, ht_star] =

figarchsim(para_hat,n,k,discard,v_star) ; % generating 
bootstrap samples

[para_star, lgl_star] =
fmincon(@(x)l_figarch(x,e_star,k),init_para,A,b,[],[],lb,ub 
,[],opts);

w_star 
phi_star 
d_star 
beta star

para_star(1)*(1-para_star(4)); 
para_star(2); 
para_star(3); 
para_star(4);

BPara (j,:) 
lambda_star 
delta_star 
lambda_star(1) 
delta star(1)

[w_star phi_star d_star beta_star]; 
zeros(k,1); 
zeros(k,1);
phi_star-beta_star+d_star; 
d star;
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for m=2:k
delta_star(m) = (m-1-d_star)/m*delta_star(m-

lambda_star(m) = beta_star*lambda_star(m-1) + 
delta_star(m)-phi_star*delta_star(m-1); 

end

1 );

%% 1. predicting future et and conditional 
original data (truncated lag k=1000)
v_ss
ht_future 
e1_future 
e1_future(1 
e2_future 
e2 future(1:n)

= datasample(e_hat,h); 
= zeros(n+h,1);
= zeros(n+h,1); 

n) = ee1;
= zeros(n+h,1); 

ee1.A2;

variance using

for r=n+1:n+h

ht_future(r) = w_star/(1-beta_star) + 
lambda_star(1:k)’*e2_future(r-1:-1:r-k);

e1_future(r) = sqrt(ht_future(r))*v_ss(r-n); 
e2 future(r) = (e1 future(r))A2;

end

yh_b = e1_future(n+1:n+h); % future bootstrap
values

hh_b = ht_future(n+1:n+h); % future conditional 
variance values

eB(j, :) = yh_b;
hB(j,:) = hh_b; % future returns and future c.v

end
BootPara(i,:) = mean(BPara);
%% Returns
ebq = quantile(eB,[0.025 0.975]); bql =ebq(1,:); 

bqu = ebq(2,:); Blength(i,:) = bqu - bql;
Bquantile(i,:) = [bql bqu];
bcount = (fv>bql&fv<bqu); Bcount(i,:) =

sum(bcount) ;
bcount0_025 = (fv<bql); Bcount0_025(i,:) =

sum(bcount0_025);
bcount0_975 = (fv>bqu); Bcount0_975(i,:) =

sum(bcount0 975);
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ebq = quantile(eB, [0.005 0.995]); bql =:ebq (1, : ) ;
bqu = ebq(2, :); Blength99(i,:) == bqu - bql;

Bquantile99(i,:) = [bql bqu] ;
bcount = (fv>bql&fv<bqu); Bcount99(i,:) =

sum(bcount);
bcount0_ 005 = (fv<bql); Bcount0 005 (i, :) =

sum(bcount0 005) ;
bcount0 995 = (fv>bqu); Bcount0 995 (i,:) =

sum(bcount0 995) ;

ebq = quantile(eB,0.25); Blengthp25(i,:) = ebq;
bcount = (fv <= ebq); Bcountp25(i,:) =

sum(bcount) ;

ebq = quantile(eB,0.50); Blengthp50(i,:) = ebq;
bcount = (fv <= ebq); Bcountp50(i,:) =

sum(bcount) ;

ebq = quantile(eB,0.75); Blengthp75(i,:) = ebq;
bcount = (fv <= ebq); Bcountp75(i,:) =

sum(bcount) ;

ebq = quantile (eB,1) ; Blengthpmax(i,:)= ebq;
bcount = (fv <= ebq); Bcountpmax(i,:) =

sum(bcount) ;

ebq = quantile(eB,0); Blengthpmin(i,:) = ebq;
bcount = (fv <= ebq); Bcountpmin(i,:) =

sum(bcount) ;
%% Volatilities
hbq = quantile(hB, [0.025 0.975]); bql =:hbq (1,:);

bqu = hbq(2, :); Hlength(i,:) = bqu - bql;
Hquantile(i,:) = [bql bqu];
hcount = (fv h>bql&fv h<bqu) ; Hcount(i,: ) =

sum(hcount) ;
hcount0_025 = (fv_h<bql); Hcount0_025(i,:) =

sum(hcount0_025) ;
hcount0_975 = (fv_h>bqu); Hcount0_975(i,:) =

sum(hcount0_975);

hbq = quantile(hB,[0.005 0.995]); bql =hbq(1,:); 
bqu = hbq(2,:); Hlength99(i,:) = bqu - bql;

Hquantile99(i,:) = [bql bqu];
hcount = (fv_h>bql&fv_h<bqu); Hcount99(i,:) = 

sum(hcount);
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hcount0_005 = (fv_h<bql); Hcount0_005(i,:) =
sum(hcount0_005);

hcount0_995 = (fv_h>bqu); Hcount0_995(i,:) =
sum(hcount0_995);

end

% Stored the above out put data to files 
% FIGARCH Simulation
% Supported functions for the above algorithm 

% Simulation of FIGARCH(1,d,1)

function [ee1, hh1]=figarchsim(parameters,n,k,discard,zt)
% zt (n+k+discard)x1 vector 
% parameters = [w phi d beta]; 4x1 vector; 
w=parameters(1); phi=parameters(2); d = parameters(3); 

beta=parameters(4);
et = zeros(k+discard+n,1);
et2 = zeros(k+discard+n,1);
ht = zeros(k+discard+n,1);
lambda = zeros(k,1); delta = zeros(k,1);
lambda(1)=phi-beta+d; delta(1)=d;

for i=2:k
delta(i)=(i-1-d)/i*delta(i-1);
lambda(i)=beta*lambda(i-1) + delta(i)-phi*delta(i-

1) ;
end

% bcast = zeros(k,1)+w/(1-beta); 
bcast = zeros(k,1)+w/(1-sum(lambda)); %does not matter 
et2 (1:k)=bcast; 
for j = k+1:length(zt)

ht(j) = w/(1-beta) + lambda(1:k)’*et2(j-1:-1:j-k); 
et(j) = sqrt (ht (j))*zt(j); 
et2 (j ) =et (j ) A2;

end

ee1 = et(k+discard+1:k+discard+n); 
hh1 = ht(k+discard+1:k+discard+n);

%% FIGARCH LIKELIHOOD FUNCTION
function y=l_figarch(x,ee1,k) % AIC = 2*(p+q+1) - 2* log(L)
or AIC = 2*k - 2*log(L) % AICc = AIC + 2*k(k+1)/(n-k-1)
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% k = Truncation Lag 
w= x(1); 
phi=x (2); 
d = x(3) ; 
beta = x(4);

lambda = zeros(k,1); delta = zeros(k,1); 
lambda(1)=phi-beta+d; delta(1)=d;
%l1 = fiweights(parameters); 
for i=2:k

delta(i)=(i-1-d)/i*delta(i-1) ;
lambda(i)=beta*lambda(i-1) + delta(i)-phi*delta(i-

1) ;
end

uSq = ee1.A2; N = length(ee1); 
epsilon2 = zeros(N+k,1); 
epsilon2(1:k)=mean(uSq); 
epsilon2(k+1:N+k)=uSq;

tau = k+1:N+k;

ht = zeros(size(epsilon2)); 
likelihood = 0; 
for t = tau

ht(t) = w + lambda’*epsilon2(t-1:-1:t-k); 
likelihood = likelihood + 0.5*(-log(2*pi)- 

log(ht(t))-epsilon2(t)/ht(t)); 
end

y = -likelihood;

%% ESTIMATED CONDITIOANL VARIANCE
function hh=cond_var(x,ee1,k) % Estimated conditioanl 
variance

% k = Truncation Lag 
w= x (1); 
phi=x (2); 
d = x(3) ; 
beta = x(4);

lambda = zeros(k,1); delta = zeros(k,1); 
lambda(1)=phi-beta+d; delta(1)=d;
%l1 = fiweights(parameters); 
for i=2:k

delta(i) = (i-1-d)/i*delta(i-1) ;
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lambda(i)=beta*lambda(i-1) + delta(i)-phi*delta(i-

end

uSq = ee1.A2; N = length(eel); 
epsilon2 = zeros(N+k,1); 
epsilon2(1:k)=mean(uSq); 
epsilon2(k+1:N+k)=uSq;

tau = k+1:N+k;

ht = zeros(size(epsilon2));
%likelihood = 0; 
for t = tau

ht(t) = w + lambda'*epsilon2(t-1:-1:t-k); 
%likelihood = likelihood + 0.5*(-log(2*pi)- 

log(ht(t))-epsilon2(t)/ht(t)); 
end
hh=ht(tau);

1 ) ;
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