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ABSTRACT

Alloying has been used to confer desirable properties to materials. It typically 

involves the addition of small amounts of secondary elements to a primary element. In 

the past decade, however, a new alloying strategy that involves the combination of 

multiple principal elements in high concentrations to create new materials called high- 

entropy alloys (HEAs) has been in vogue. In the first part, the investigation focused on 

the fabrication process and property assessment of the additive manufactured HEA to 

broaden its engineering applications. Additive manufacturing (AM) is based on 

manufacturing philosophy through the layer-by-layer method and accomplish the near 

net-shaped components fabrication. Attempt was made to coat AlCoCrFeNi HEA on an 

AISI 304 stainless steel substrate to integrate their properties, however, it failed due to 

the cracks at the interface. The implementation of an intermediate layer improved the 

bond and eliminated the cracks. Next, an AlCoCrFeNiTi0.5 HEA coating was fabricated 

on the Ti6Al4V substrate, and its isothermal oxidation behavior was studied. The HEA 

coating effectively improved the Ti6Al4V substrate's oxidation resistance due to the 

formation of continuous protective oxides. In the second part, research efforts were made 

on the deep learning-based quality inspection of additive manufactured products. The 

traditional inspection process has relied on manual recognition, which could suffer from 

low efficiency and potential bias. A neural-network approach was developed toward 

robust real-world AM anomaly detection. The results indicate the promising application 

of the neural network in the AM industry.
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SECTION

1. INTRODUCTION

1.1. BACKGROUND AND RESEARCH OBJECTIVES

Additive manufacturing (AM), also known as 3D printing technology, has 

developed rapidly and revolutionized how it produces the complex and high-quality 

components in the biomedical, transportation, and automotive industries [1]-[9]. AM 

process consists of successive printing layers of materials that are formed on top of each 

other. AM technology's primary advantages over the conventional process lie in the 

freedom of design and automaton, albeit the slow uptake time [10]—[12].

Currently, there are several representative AM techniques, including inkjet 

printing [13], fused deposition modeling (FDM) [14], selective laser melting (SLM)

[15] —[17], extrusion [18], [19], direct energy deposition (DED) [2], [20], [21]. Each AM 

method has its specific applications based on its merits. For example, powder bed 

selective fusion methods are ideal for producing complex and high accuracy components

[16] , [20]. Extrusion-based AM processes are the favored approach for ceramic 

fabrication due to the simplicity and low cost of the fabrication system combined with the 

high-density of the fabricated parts [22]-[26]. Due to the DED process's nature, it can 

simultaneously feed different kinds of powders through multiple hoppers; therefore, DED 

is applicable for building composite materials or graded materials [27]-[30].

Materials are the basis of AM technology and hopefully extend the connotation of 

this advanced process, thereby boosting new opportunities for AM's future development.



The strategy of “Create Materials” proposed by Gu [31] by AM is a step-by-step 

approach based on the fact of “Use Materials” and “Develop Materials.” As such, AM 

could potentially extend the traditional materials science and engineering paradigm 

relating to structure-property-processing-performance. Recent efforts have been made on 

the materials design, the selection of feedstock materials, the metallurgical behaviors, the 

resulted performance, and the relationship between these factors. The current state of 

materials development focuses on metal alloys (Ti/Al/Mg alloys, steels, Ni or Co-based 

superalloys [20], [31]—[37]), polymer composites [38]-[40], ceramics (AhO3, or AhO3- 

ZrO2 system [41]-[44]) and concrete [35].

This research objective will provide comprehensive knowledge of the advanced 

materials processing, characterization, and neural network-based detection in metal 

additive manufacturing. The current research will provide critical information on the 

production of novel high-entropy alloys (HEAs) from the elemental powders by laser 

metal deposition method, microstructures, mechanical and oxidation properties of the 

HEA system. This study advances the knowledge of fabrication of a HEA coating on the 

stainless steel substrate using a novel intermediate layer, which lays the foundation of 

future application of HEA as a structural material. A neural network-based method has 

been developed to classify the defects existing in laser metal deposition fabricated parts 

with excellent performance. The promising results give real-time quality inspection in the 

industry to improve the AM product quality.

2
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1.2. ADDITIVE MANUFACTURING OF HIGH-ENTROPY ALLOYS

Recent advancements in metallic materials and alloys for AM are increasing the 

range of usable materials. Current studies are being conducted on the High-entropy alloys 

(HEAs). They are a relatively new alloy design strategy in which a minimum of five 

principal elements are combined to a concentration of 5-35 atom (at.) % to produce high 

entropies of mixing (1.61R, compared to < 0.69R for conventional alloys, where R is the 

gas constant) [45]. The high mixing entropy may lead to non-ordered solid solution 

crystal structures, such as body-centered (BCC) or face-centered (FCC). There are other 

inherent characteristics in addition to the high-entropy effect: lattice distortion effect, 

sluggish diffusion effect, and cocktail effect [45]-[47]. Due to the multi-component alloy 

design concept, HEAs exhibit property combinations not found in the conventional alloys 

[20], [34], [48]-[52], such as high hardness, strength and wear resistance, exceptional 

high-temperature strength, and high corrosion and oxidation resistance [53].

Among the various HEAs, AlxCoCrFeNi (x value in molar ratio) [45], [46], [54]- 

[61] is one of the most comprehensively investigated systems due to the relative 

abundance of constituent elements coupled with excellent mechanical properties. As the 

mechanical properties depend on the microstructure, the latter has been studied 

intensively. The as-cast equiatomic AlCoCrFeNi alloy has a BCC+B2 crystal structure, 

which decomposes into dendrites and interdendrites, both containing CrFe-rich 

precipitates embedded in a NiAl-rich matrix. The AlNi-rich phase is an ordered B2 type, 

and the CrFe-rich phase belongs to a disordered BCC phase [60]. The microstructure of 

as-cast AlxCoCrFeNi can be tailored from a single FCC phase, duplex FCC and BCC 

phase to a single BCC phase with the increasing aluminum mole ratio; meanwhile, the



4

hardness increases from 116 HV to 509 HV [59]. AlCoCrFeNi exhibited impressive 1.37­

1.45 GPa yield stress, 2.96-3.53 GPa ultimate stress and 15.5-24.5% strain from the 

compression results [57], [58]. However, the as-cast AlCoCrFeNi showed a poor tensile 

elongation of only 1.0% due to the limited dislocation motion through these finely-spaced 

interfaces (50-100 nm) [55]. After the heat treatment, the FCC phase's occurrence of 

ductility and reduced casting defects could lead to improved elongation to 11.7% [55]. 

The heat treatment also makes an impact on the microstructures and properties. Lin et al. 

found out the age-hardening occurred in the temperate range between 350-950 °C [56]. 

The formation of the brittle sigma phase was detected around 1273K, restricting their 

usage in high temperatures. FCC phase was formed at the grain boundaries after aging, 

which helped improve ductility and decreased yield strength [54].

Various processing routes have been utilized to fabricate HEAs, such as casting, 

arc melting, plasma sintering, and laser metal deposition (LMD). LMD is an additive 

manufacturing technology that can produce fully dense metallic parts with complex near- 

net-shape by deposition of powders layer by layer [61]. This encourages a variety of 

metallic parts fabricated by LMD, such as stainless steels (304L, 316L, 17-4PH), Co-Cr 

alloys (Co28Cr6Mo), tool steels (H13), Ni-based superalloys (Inconel 625, Inconel 728), 

Ti-based alloy (commercial purity grade 1 and 2, Ti-6Al-4V), functionally gradient 

materials (304 SS to Ti-6Al-4V, 304 SS to Inconel 625, 316 SS to Ti-6Al-4V, Cu to 

Inconel 718) [62]. LMD can use the pre-alloyed powders or pure elemental powders.

With the possibility of using elemental powder blends and controlled supply from several 

hoppers, LMD provides an alternative process to efficiently and effectively prepare in 

situ homogenous HEAs.
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HEA coatings have been prepared by LMD in the recent years, such as those of 

6FeNiCoSiCrAlTi [63], TiVCrAlSi [64], FeCoNiCrCuTiMoAlSiB0.5 [65], 

Al2CrFeCoCuTiNix [66], AlxFeCoNiCuCr [67] and CoCrCuFeNi [68]. The laser 

engineered net shaping (LENS) produced AlCoCrFeNi alloy exhibited an average 

microhardness of approximately 543 HV0.5, and this approximately 13% higher than the 

hardness in the as-cast state due to the grain refinement in the LENS-produced alloy [69]. 

AlNiCoCuFeNi HEA was fabricated on Mg substrates using laser cladding, and some Cu 

diffused into the Mg melt and subsequently solidified following the Mg-Cu phase 

diagram [70]. AlCoCrFeNi HEA coating on the Al substrate showed superior corrosion 

resistance, which could be attributed to the reduced dilution and formation of the HEA 

phase [71]. Zhang et al. have performed a similar study, FeCoCrAlNi HEA alloy coating 

was synthesized on 304 stainless steel to enhance corrosion and cavitation erosion 

resistance [72]. When Ti was added in the AlCoCrFeNi system, it led to Ti2Ni or Fe2Ti 

intermetallic phases besides the FCC and BCC phases. The phase transition and the 

increase in atom size difference with Ti's addition explained the enhanced microhardness 

and cavitation erosion resistance [73], [74]. The compositionally graded AlxCrCuFeNi2 (x 

varying from 0 to 1.5) alloys were processed using LENS technology, which permitted a 

detailed transition in microstructure along the same alloy gradient. The increasing Al 

content made a progressive increase in BCC/B2 microstructure and stronger 

ferromagnetic [75]. Previous research has demonstrated that AlCoCrFeNi HEA is 

attractive coating materials for enhancing surface properties.
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1.3. HIGH-TEMPERATURE APPLICATION OF HIGH-ENTROPY ALLOYS

To seek HEAs' applications in the aerospace industry or other fields, an 

understanding of their oxidation behaviors and the development of models to predict their 

behaviors are required. To the best knowledge of the author, the research in this field is 

lacking. With regarding oxidation, HEAs are less compositionally constrained than 

conventional structural alloys (e.g., stainless steels, Ni-based superalloys) since they 

accommodate higher concentrations of the elements that are necessary to form protective 

external oxide scales (e.g., Al or Cr) [76]-[79]. Secondly, HEAs have been reported to 

own sluggish diffusion kinetics, which could improve their oxidation behaviors by 

inhibiting the formation of non-protective transient oxides [80]-[86]. With this in mind, 

there have been several investigations of the oxidation behaviors of different HEAs.

Their results indicate that HEAs tend to selectively oxidize and exhibit varying modes of 

oxide growth [87]-[92]. Huang et al. studied the enhancement in oxidation resistance of 

Ti6Al4V alloy at 800 °C in the air due to the laser clad coating of AlSiTiVCr HEA. The 

enhancement in oxidation resistance was attributed to dense and adherent multi-oxide 

scale [64]. Zhang et al. demonstrated remarkable thermal stability of laser cladding 

CrFeCoNiCu HEA coating on the Q235 steel substrate up to 750 °C [6 8 ]. Butler reported 

that AlCoCrFeNi HEAs selectively oxidized to form predominantly AhO3 and & 2O3 

scales and presented some parabolic oxide growth similar to model NiCrAl alloys [92].

1.4. ANOMALY DETECTION IN ADDITIVE MANUFACTURING

AM has demonstrated promising potential in the medical, construction, or 

automobile field, particularly for custom designs and functionally critical parts



manufactured locally at distinct locations. However, uncertainties regarding the product 

quality have hindered the full introduction of AM technology in these fields [93], [94]. 

Generally, the product quality is influenced by the materials' microstructures and defects, 

such as porosity, cracks, or lack of fusion [95]-[102]. The defects are highly dependent 

on numerous processing parameters, such as the laser scanning speed, laser power, or 

layer thickness. The process-structure-property relationships have been discussed from 

the previous work. One approach is to conduct experiments to obtain reliable data and 

optimize the processing parameters, which could be either time-consuming or expensive. 

The second method to ensure product quality and process reliability is the in-situ 

monitoring systems. For example, thermal camera, high-speed digital camera, 

stereomicroscope, and acoustic sensor have been developed and applied for data 

acquisition in AM monitoring [101], [103]. Zhang reported that stereomicroscope could 

capture the AM metallic parts' surface, and the detected weld features could reflect the 

manufacturing quality [104]. Materials scientists or engineers can identify the product 

quality, but human labor could lead to time-consuming, high-cost or evaluation bias for 

mass production. Therefore, this challenge is being addressed by applying machine 

learning in additive manufacturing [105]—[107].

1.4.1. Machine Learning Applications in Additive Manufacturing. Machine 

learning (ML) is an artificial intelligence (AI) technique that allows machines or systems 

to learn from data automatically and decisions or predictions [105], [108]. ML is gaining 

popularity in autonomous driving, fraud detection, natural language processing, object 

detection, medical diagnostics, materials property prediction, and smart manufacturing

7



[109]—[114]. In general, ML algorithms are commonly categorized as supervised, 

unsupervised, and reinforcement learning.

Supervised learning enables the algorithm to learn from a set of labeled data in a 

training set to predict unlabelled data from a test set with the highest possible accuracy. 

The objective function is the cost function, which calculates the errors between the 

predicted output values and the actual output values [106], [115]. During the training 

process, the parameters or weights are updated to minimize the cost function after each 

iteration. The unseen data is introduced to the algorithms to provide an unbiased 

evaluation of the model’s accuracy. Multiple supervised ML methods have been utilized 

in the field of AM industry, i.e., Decision Tree (DT), K-Nearest Neighbor (KNN),

Support Vector Machine (SVM), Linear Discriminant Analysis (LDA) [116].

As indicated in the name, unsupervised learning will study the relationship among 

the unlabeled data. Therefore, it uncovers the hidden pattern or cluster similarities 

together from the given dataset. Unsupervised learning is often used in the 

recommendation systems (e.g., e-commerce, online advertisement), anomaly detection 

(e.g., signal processing, finance, manufacturing) [117]—[119]. Reinforcement learning is 

semi-supervised learning how to map situations to actions to yield the most significant 

rewards. It requires no training dataset and allows the model to interact with the 

environment [120], [121]. Reinforcement learning is popularly adopted in disciplines like 

robotic arms, autonomous driving, and AlphaGo [122]-[124].

In the past few years, ML's application has gained increasing attention in the AM 

field due to its unprecedented performance in the AM design, process, and production. 

Generally, ML can be leveraged to optimize process parameters, conduct in-process

8



defects monitoring, pre-manufacturing planning, and quality assessment [105], [125]— 

[128]. For example, process parameter development and optimization have been 

traditionally implemented by designing experiments or simulation methods. Nevertheless, 

the design of the experiment approach usually involves trial-and-error, which is time­

consuming and costly. Even though the physical-based simulation could reveal the AM 

process's underlying mechanism, it may suffer from the discrepancies with experimental 

results for its simplified physical assumptions. Therefore, many research works have 

explored the possibility of solving the above challenges by ML approaches. Aoyagi et al. 

proposed an SVM method to predict the surface quality in the electron beam melting 

process [125]. Their results showed that the CoCr process window could be determined 

by a small amount of data (precisely, 11 data points) and could be used to optimize the 

process parameters unique to the machine. Bayes classifier and DT were implemented to 

investigate the influence of support structure parameters on the electron beam produced 

parts [126]. Similar work has been performed to estimate the melt pool geometry in laser 

deposition and predict the maximal printable height in the materials extrusion process. It 

is found that ML has been used to link the process parameters to the quality indicators at 

mesoscale (i.e., porosity, melt pool geometries) [127]and macroscale (mechanical 

properties) levels [128].

The AM process suffers from various process-related defects like lack of fusion, 

cracks, porosity, delamination, and keyhole, which results from one layer to the 

subsequent layers and lead the build to fail. There have been many efforts addressing AM 

process quality monitoring, which involve the acoustic-based, optical-based, or computed 

tomography (CT) inspection. Ye et al. collected acoustic signals by a microphone, and
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the framework of a deep belief network could reach a defect detection accuracy up to 

95% with Fast Fourier transformation and denoising [129]. A fiber Bragg grating 

acoustic sensor was employed to collect the quality features for the SLM process [130].

In particular, the time span for each running window was configured to be 160 ms to 

achieve a balance between the spatial resolution and classification accuracy. A high­

speed visible-light camera with a fixed field of view was used to observe the melt pool 

morphology in a commercial powder-bed machine autonomous detection of six powder 

bed anomalies via Bag of Words algorithm [115]. A porosity prediction method was 

developed using a thermal monitoring system to capture the melt-pool morphological 

characteristics [116]. Supervised learning methods were utilized to identify the melt pool 

images' patterns, which KNN had the highest rate of accuracy of 98% among the various 

models (i.e., DT, KNN, SVM, LDA). A binary classification via SVM was developed 

and implemented on the in-situ CT-based powder-ped process inspection [107]. The 

authors found the discontinuities, i.e., incomplete fusion, porosity, or inclusions, were 

identified using automated analysis or manual inspection. Through fine-tuning and cross­

validation, the in-situ detection accuracy of over 80% was achieved.

1.4.2. Recent Trends in Deep Learning. Conventional machine learning 

techniques have been limited in their ability to process natural data in the raw form. It is 

usually required careful engineering and domain expertise to design a feature extractor 

that transforms the raw data, i.e., the pixel values of an image, into a suitable internal 

representation or feature vector [131], [132]. Deep learning is making significant 

advances in the artificial intelligence community for years, which uses multiple 

processing layers to learn data representations. LaCun stated that as deep learning takes

10
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much less engineering by hand, it can easily take advantage of the increasingly available 

data [131]. Current and new learning algorithms deployed for deep neural networks with 

cloud computing will accelerate this progress.

Despite such success, a few studies have been performed using deep learning in 

the materials informatics community. A convolutional neural network (CNN) was 

adopted to link the microstructure with ionic conductivity in yttria-stabilized zirconia 

[133]. The results revealed that seven micrographs could train CNN, and its performance 

exceeded the traditional hand-crafted features scheme. CNN was also carried out for 

defects detection in photovoltaic cell images of 93% accuracy on an ordinary computer, 

which could help manual labeling [134]. One major obstacle is the lack of well-labeled 

data, as it takes a few days to obtain the optical or electron microscope patterns [135], 

which requires a great deal of time and expense. Another reason is the difficulty in 

feeding meaningful information from deep learning networks to materials researchers, as 

the representations are highly abstract.

1.5. ORGANIZATION OF THIS DISSERTATION

This research work aims to advance the knowledge of fabrication of high-entropy 

alloys (HEAs) and the application of artificial intelligence in the field of laser metal 

additive manufacturing (AM). To achieve this goal, four papers are listed as follow:

Study the feasibility of fabrication of a HEA alloy by laser metal deposition 

(LMD). AlxCrCuFeNi2 (x in molar ratios) HEA alloys will be prepared by elemental 

powder blends. The evolution of chemistry, phases, and hardness will be performed by



energy dispersive diffraction (EDS), X-ray diffraction (XRD). The grain size will be 

studied by electron backscatter diffraction (EBSD).

AlCoCrFeNi HEA coating will be fabricated on AISI 304 stainless steel (SS) 

substrate by laser metal deposition. Crack has been found during the direct deposit 

AlCoCrFeNi HEA coating on AISI 304 SS, so a novel intermediate layer will be 

proposed to bridge the composition differences gap. The intermediate layer, the phase 

structure and elemental composition change will be examined by XRD and EDS. EBSD 

will characterize the texture and grain size of the HEA coating.

To enhance the oxidation resistance of titanium alloy, AlCoCrFeNiTi0.5 HEA 

coating will be synthesized on the Ti6Al4V substrate. First, AlCoCrFeNiTi HEA coating 

will be deposited on the Ti6Al4V substrate, and its microstructure, interface 

characteristics, and phase composition will be investigated. Secondly, high-temperature 

properties will be evaluated in terms of the thermal oxidation behaviors and phase 

compositions. The present study will help the future design of HEAs towards high- 

temperature structural applications.

A convolutional neural network (CNN) approach will be presented towards robust 

AM quality inspection, including good quality, crack, gas porosity, and lack of fusion. To 

obtain the appropriate model, extensive experiments will be performed on a series of 

architectures. Besides, data augmentation will be adopted to deal with data scarcity. L2 

regularization and dropout will be applied to avoid overfitting.

A conclusion section is presented after the four papers to summarize the current 

work. The recommendations for future work are proposed at the last section.
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PAPER

I. FABRICATION AND CHARACTERIZATION OF AlxCrCuFeNii  HIGH- 
ENTROPY ALLOYS COATINGS BY LASER METAL DEPOSITION

ABSTRACT

High-entropy alloys (HEAs) are becoming new hot spots in the metallic materials 

community, which are defined to contain equiatomic or close-to-equiatomic 

compositions. HEAs can possess many interesting mechanical properties, and in 

particular, they have the great potential to be used as coating materials requiring high 

hardness and wear resistance. In this study, the feasibility of fabrication AlxCrCuFeNi2 

(x=0,0.75) HEAs was investigated via laser metal deposition from elemental powders. 

The microstructure, phase structure, and hardness were studied by an optical microscope, 

scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS), electron 

backscatter diffraction (EBSD) and Vickers hardness tester. The bonding between the 

AlxCrCuFeNi2 (x = 0,0.75) HEAs and AISI 304 stainless steel were good combinations. 

The Al0.75CrCrFeNi2 alloy consisted of columnar dendritic microstructure with Al/Ni 

enrichment in the dendritic regions. The phase structure of the AlxCrCuFeNi2 (x = 0,0.75) 

HEAs were face center cubic structure as identified by EBSD. Vickers hardness results 

indicate that the average hardness of CrCuFeNi2 HEA was 175 HV. With the addition of 

aluminium, the Vickers hardness of Al0.75CrCuFeNi2 HEA increased to 285 HV.
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1. INTRODUCTION

Conventional metallurgical theory suggests that the multiple alloying elements in 

an alloy may result in the formation of complex compounds. Recently this paradigm has 

been broken by high-entropy alloys (HEAs) developed by Yeh et al. [1] HEAs are 

composed of five or more principle elements in equimolar or near-equimolar ratios. The 

high mixing entropy of multi-principle elements induces the formation of solid-solution 

structure, e.g., face center cubic (FCC) or body center cubic (BCC) or FCC combined 

with BCC [1-6]. The discovery of HEAs has brought a new alloy design concept and 

generated researchers’ interest in the past decade. An AlCrFeCoNi HEA was prepared by 

vacuum arc melting and exhibited excellent compressive strength 2004.23 MPa [2]. 

Another study of AlCrFeCuNix (0.6 < x < 1.4) HEAs was prepared by casting reported 

by Jinhong et al., which found the hardness of as-cast HEAs decreased as x increased 

from 1.0 to 1.4 [3]. Dong et al. investigated the AlCrFeNiMox (x = 0,0.2,0.5,0.8 and 1.0 

in molar ratios) HEAs produced by vacuum melting [7]. Their work showed 

AlCrFeNiMo0.2 HEA possessed good fracture strength of 3222 MPa and plastic strain of 

0.287, which implies its potential application in industrial areas. These HEAs were 

fabricated by casting or vacuum melting. Unlike the previous studies, this work will 

implement the laser metal deposition (LMD) method to fabricate the AlxCrCuFeNi2 (x = 

0, 0.75 in molar ratios) HEAs.

As an advanced additive manufacturing technology, LMD can accomplish layer- 

by-layer fabrication of near net-shaped components by introducing a powder stream 

through a high energy laser beam [4,5,8-10]. A melt pool is formed by rastering the laser



beam, and the powders are injected into the melt pool to deposit each layer during the 

LMD process. Layer by layer composition changes, the introduction of a dissimilar metal 

interlayer and control over the melt zone size can be accommodated [4,9-13]. A 

FeCoNiCrCu HEA coating was synthesized, and its microhardness reached 375 HV0.5, 

which was about 50% higher than that of the same alloy prepared by arc melting [4].

With the additional of titanium content, AhCrFeNiCoCuTix (x = 0, 0.5, 1.0, 1.5 and 2.0 

in molar ratios) HEAs showed good corrosion and wear resistance on Q235 steel 

substrate [10]. Few research has been devoted to the fabrication of AlCrCuFeNi2 HEAs 

by LMD.

In this paper, the feasibility of fabrication AlxCrCuFeNi2 (x = 0, 0.75 in molar 

ratios) HEA coatings on AISI 304 stainless steel (SS) was performed by laser metal 

deposition technology using elemental powders. The metallurgical bonding, 

microstructure, and Vickers hardness were investigated.

2. EXPERIMENTAL
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2.1. LMD PROCESSING

Gas-atomized elemental powders of aluminium (Al), chromium (Cr), copper (Cu), 

iron (Fe) and nickel (Ni) purchased from Atlantic Equipment Engineers Inc. was used as 

precursor materials. The particle size of the elemental powders provided by Atlantic 

Equipment Inc. is as tabulated in Table 1. The elemental powders were weighted in the 

required ratios and then mixed by a Turbula mixer (Glen Mills Inc., Clifton, NJ, USA)
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for 30 mins to obtain homogeneous blends. Elemental compositions (atomic %) of the as- 

blended HEAs are given in Table 2.

Table 1. Particle size distribution of the elemental powders.
Materials US Standard Mesh

Al -100
Cr -100
Cu -100
Fe -100
Ni -100/+325

Table 2. Nominal compositions (atomic %) of HEAs.

Alloys Al Cr Cu Fe Ni
CrCuFeNi2 0 20 20 20 40

Al0.75CrCuFeNi2 13 17 17 17 36

The schematic of the LMD system is shown in Figure 1. The 1 kW continuous- 

wave YAG fiber laser (IPG, Photonics, Oxford, MA, USA) was used as a heat source 

with a beam diameter of 2 mm. The metallic powders were fed through a vibration X2 

powder feed system (Powder Motion Labs, MO, USA). The powders were introduced 

into the melt pool by an alumina tube. Argon gas was used as a carrier gas to deliver the 

powder mixtures to the melt pool. The movement during the laser deposition was 

achieved through a computer numerical control (CNC) table.

Commercially procured AISI 304 SS bar stock (dimension: 2 inch x 2 inch x 0.25 

inch) was used as the substrate and cleaned with acetone to clean the surface. A 

preheating scan was performed by running the laser across the substrate. The thin wall 

structure was built, and the laser power of the initial three layers was conducted at 700 W
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and 8.5% (3.36 g/min) powder feed rate. The remaining of the deposition was carried out 

at 600 W and 8.5% (3.36 g/min) powder feed rate with 1 mm layer thickness.

Powder
feeder

Laser beam

Melt pool

Deposit

-  Substrate

Figure. 1. Schematic of the laser metal deposition (LMD) system.

2.2. CHARACTERIZATION

For microstructural characterization, the deposits were transverse cross-sectioned 

and prepared with standard metallographic methods. The samples were polished with 

320-1200 grit SiC grinding paper, and the final mechanical polish was 0.05 pm silica 

suspension. The specimens were given the electrolytic etching in the nitric acid solution 

(70 mL nitric acid and 30 mL distilled water).

A Hirox optical microscope investigated the AlxCrCuFeNi2 HEAs morphology. 

The scanning electron microscopy (SEM), elemental analysis using energy dispersive 

spectroscopy (EDS), and electron backscatter diffraction (EBSD) studies of the 

specimens were carried out in a Helios Nanolab 600 SEM coupled with an EDS and an



EBSD detector. The obtained EBSD data was processed and analyzed using Aztec 

software. The hardness was obtained with a Struers Duramin hardness tester (Struers Inc., 

Cleveland, OH, USA) using a 9.81 N force and 10 s load duration.

3. RESULTS AND DISCUSSION

3.1. MICROSTRUCTURE

Figure 2 shows the optical images of the deposited HEAs. The deposit was shown 

in the top area in Figure 2a while the bottom part was AISI 304 SS substrate. An explicit 

interface was seen between the deposit and the AISI 304 SS substrate. The columnar 

dendrite microstructure was observed from Figure 2b. Similarly, a good metallurgical 

bonding existed between Al0.75CrCuFeNi2 HEA and the AISI 304 SS substrate. The 

dendritic continued in Ab.75CrCuFeNi2 alloy. The growth direction of these columnar 

was identified to be along with the deposition direction, which could be correlated with 

the solidification direction during the LMD process.

3.2. EDS AND EBSD ANALYSIS

The evolution in chemistry from the substrate to the CrCuFeNi2 HEA was 

characterized by EDS line scan first. The quantitative results are plotted in Figure 3a. The 

results measured by EDS of the AISI 304 SS substrate (Cr: ~18-19 atomic %, Fe: ~70-71 

atomic %, Ni: ~9-10 atomic % in Figure 3a) did not derive from the nominal AISI 304 SS 

chemical compositions. Mn (~ 1-2 atomic %) was detected by EDS in AISI 304 SS 

substrate but was not shown in Figure 3.
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Figure 2. Optical images of (a) the interface between CrCuFeNi2 HEA and AISI 304 SS 
substrate, (b) microstructure of CrCuFeNi2 HEA, (c) the interface between 
Al0.75CrCuFeNi2 HEA and AISI 304 SS substrate and (d) microstructure of

Al0.75CrCuFeNi2 HEA.

Figure 3. Elemental composition evolution (a) the interface between AISI 304 SS 
substrate and CrCuFeNi2 HEA, (b) the interface from AISI 304 SS substrate to

Al0.75CrCuFeNi2 HEA.

The elemental compositions of Cu (~18-21 atomic %) and Ni (~35-38 atomic %) 

increased while that of Fe (~23-26 atomic %) reduced, and Cr (~20 atomic %) remained 

changed from the substrate to the CrCuFeNi2 HEA deposit. A small amount of Cu (~1-2 

atomic %) was detected in the substrate because the substrate was mixed with the HEA



deposit. The distribution of the consisted compositions from the substrate to the 

Alo.75CrCuFeNi2 HEA was shown in Figure 3b. The constituents of the Alo.75CrCuFeNi2 

HEA were determined by EDS (Al: ~9-10 atomic %, Cr: ~19 atomic %, Cu: ~17 atomic 

%, Fe: ~20 atomic %, Ni: ~ 32-34 atomic %). The difference between the as-blended (13 

atomic %) and as-deposited aluminum (~9-10 atomic %) compositions could be 

attributed to the inconsistency of powder capture efficiency and evaporation due to its 

low melting point.

EBSD and EDS measurements were conducted in the aim of differentiating 

structure and phase information of the AlxCrCuFeNi2 (x = 0, 0.75) alloys. Regions of 

interest and phase analysis of CrCuFeNi2 and Al0.75CrCuFeNi2 alloys are shown in 

Figures 4 and 5 respectively. Figures 4 and 5 indicate an FCC structure in both HEA 

fabrications. The phase fractions and the corresponding lattice parameter identified by 

EBSD are listed in Table 3. The zero solution is the fraction of the selected area whose 

crystal structure could not be solved by the software.

Figures 6 and 7 show the EDS element maps obtained from the AlxCrCuFeNi2 

HEAs. The Fe-Ka, Cr-Ka, Ni-Ka, Cu-Ka and Al-Ka signals were used to estimate the 

elemental compositions within the regions of interest in the deposits. EDS elemental 

compositions were gathered from the dendritic microstructures for the AlxCrCuFeNi2 (x 

= 0, 0.75) HEAs. The standardless measurements are listed in Table 4. The 

microstructure of CrCuFeNi2 alloy exhibited a dendritic microstructure as reported 

previously. Based on the previous EBSD phase analysis, this dendritic phase was likely 

to be a single FCC phase. While it was observed a distinct contrast between the dendritic 

and interdendritic regions (as seen in Figure 6), this contrast could be attributed to the
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segregation of Cu (which tended to partition and segregate readily [14,15]) as in Figure 

6e. Table 4 shows that Cu was enriched in the interdendritic regions. Figure 7 indicates 

that with the addition of aluminum, Al0.75CrCuFeNi2 alloy contained predominantly two 

phases. Associated with the results from Table 4, the dendritic phase was observed to be 

Al and Ni rich (Al+Ni: ~41 atomic %, Fe+Cr: ~18 atomic %), while the interdendritic 

microstructure was rich in Fe and Cr (Al+Ni: ~28 atomic %, Fe+Cr: ~52 atomic %). The 

Cu was deficient in the interdendritic regions.

21

Table 3. Summary of the lattice parameter and phase fraction (%) of the AlxCrCuFeNi2

HEAs obtained from EBSD analysis.

Alloy Phase Name Space Group Lattice
Parameter (A)

Fraction (%)

CrCuFeNi2 FCC Fm-3m (225) 3.66 88.2
BCC Im-3m (229) 2.93 0.13

Zero solution - - 11.67
Al0.75CrCuFeNi2 FCC Fm-3m (225) 3.66 99.3

BCC Im-3m (229) 2.93 0.09
Zero solution - - 0.61

From the mixing enthalpy of atom-pair as listed in Table 5, it clearly shows that 

the mixing of enthalpy of Al and Ni is higher (-22 kJ/mol) than of other atom-pair. It 

indicates that Al and Ni atoms tend to form atom pairs and segregate. Similar results have 

been reported previously, with this microstructure being attributed to the spinodal 

decomposition [2,6,16-18].
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Figure 4. EBSD phase map indicates predominating FCC phase in the CrCuFeNi2 alloy. 
(a) The region of interest on CrCrFeNi2 alloy (b) Phase map shows predominantly FCC 

phase (represented by blue color) within the region of interest.

Figure 5. EBSD phase map indicates predominating FCC phase in the Al0.75CrCuFeNi2 

alloy. (a) The region of interest on Al0.75CrCuFeNi2 alloy, (b) Phase map shows 
predominantly FCC phase (represented by blue color) within the region of interest.

3.3. VICKERS HARDNESS

Figure 8 gives the Vickers hardness profiles of the AlxCrCuFeNi2 (x = 0, 0.75) 

alloys deposits on the AISI 304 SS substrates. The Vickers hardness of CrCuFeNi2 alloy 

was around 175 HV, which could be attributed to the solid solution strengthening.

Table 6 gives the Vickers hardness of various alloys, including AISI 304 SS, 

Inconel 625 and 7075-T6 aluminum [20,21], and Al0.75CrCuFeNi2 alloy has the highest 

average hardness of 285 HV. With the addition of aluminum, the average Vickers 

hardness of Al0.75CrCuFeNi2 HEA reached 285 HV, because the second phase



strengthening blocked the dislocation [6,18]. The high hardness of HEA coating is 

expected to correlate with good performance in strength and wear resistance [10,13].
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Figure 6. EDS elemental maps of CrCuFeNi2 alloy, (a) region of interest, (b) element
map of Fe, (c) Cr, (d) Ni and (e) Cu.

Figure 7. EDS elemental maps of Al0.75CrCuFeNi2 alloy, (a) region of interest, (b) Fe, (c)
Cr, (d) Ni, (e) Cu and (f) Al.
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Table 4. Elemental compositions of the elements at different regions in atomic % for the
CrCuFeNi2 and Al0.75CrCrFeNi2 alloys.

A lloy A rea Al Cr Cu Fe Ni
CrCuFeNi2 Nominal 0 20 20 20 40

Dendritic 0 18.5 18.7 27.1 35.7
Interdendritic 0 16.9 25.9 21.4 35.8

Al0.75CrCuFeNi2 Nominal 13 17 17 17 36
Dendritic 15 7.3 41.4 10.3 26

Interdendritic 8 20 24 28 20

Table 5. Mixing enthalpy of different atom-pair in the CrCuFeNi2 and Al0.75CrCrFeNi2
alloys [19].

A H m ix (kJ/m ol) Cu Cr Al Ni
Fe 13 -1 -11 -2
Cu - 12 -1 4
Cr - - -10 -7
Al - - - -22

Figure 8. Vickers hardness profiles of the AlxCrCuFeNi2 (x = 0,0.75) alloys.

Table 6. Vickers hardness of various alloys.
A lloy H ardness (HV) R eference

CrCuFeNi2 175 This work
A f) .7 5 CrCuFeNi2 285 This work

A IS I304 SS 160 This work
Inconel 625 156 [211

7075-T6 aluminum 118 [201
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4. CONCLUSIONS

AlxCrCuFeNi2 (x = 0,0.75 in molar ratios) HEAs were coated on AISI 304 

stainless steel substrate via laser metal deposition technology. The metallurgical bonding, 

microstructure, and the Vickers hardness were investigated and discussed. The good 

metallurgical bonding was observed between the HEA coatings and the substrate. The 

AlxCrCuFeNi2 (x = 0,0.75) HEAs coating exhibited columnar dendritic microstructure 

and FCC structure identified by EBSD. CrCuFeNi2 HEA was found to have an average 

hardness of 175 HV, while Al0.75CrCuFeNi2 HEA has a hardness of 285 HV.
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I I .  F A B R I C A T I O N  O F  A L C O C R F E N I  H I G H - E N T R O P Y  A L L O Y  C O A T I N G  O N  
A N  A I S I  3 0 4  S U B S T R A T E  V I A  A  C o F e i N i  I N T E R M E D I A T E  L A Y E R

A B S T R A C T

Through laser metal deposition, attempts were made to coat AlCoCrFeNi, a high- 

entropy alloy (HEA), on an AISI 304 stainless steel substrate to integrate their properties. 

However, the direct coating of the AlCoCrFeNi HEA on the AISI 304 substrate was 

found to be unviable due to cracks at the interface between these two materials. The 

difference in compositional change was suspected to be the source of the cracks. 

Therefore, a new transition route was performed by coating an intermediate layer of 

CoFe2Ni on the AISI 304 substrate. Investigations into the microstructure, phase 

composition, elemental composition and Vickers hardness were carried out in this study. 

Consistent metallurgical bonding was observed along both of the interfaces. It was found 

that the AlCoCrFeNi alloy solidified into a dendritic microstructure. The X-ray 

diffraction pattern revealed a transition of the crystal structure of the AISI 304 substrate 

to the AlCoCrFeNi HEA. An intermediate step in hardness was observed between the 

AISI 304 substrate and the AlCoCrFeNi HEA. The AlCoCrFeNi alloy fabricated was 

found to have an average hardness of 418 HV, while the CoFe2Ni intermediate layer had 

an average hardness of 275 HV.
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1. INTRODUCTION

As a novel metallic alloy system, high-entropy alloys (HEAs) have received 

considerable attention in the past decade. The name HEA indicates that the mixing of the 

principal elements in the alloy leads to a substantial change in entropy. This change in 

entropy promotes the formation of a simple solid solution instead of complex 

compounds. One of the extensively studied HEAs is equiatomic AlCoCrFeNi, which 

shows high hardness, good wear behavior but low tensile ductility [1-7]. As-cast 

AlCoCrFeNi alloy showed a tensile elongation of 1.0%, while post-heat treatment, the 

elongation was increased to 11.7% [4]. Wang et al. studied the compressive properties of 

AlCrFeCoNi HEA prepared by vacuum arc melting. They found that this alloy showed 

large strain hardening and compressive strength up to 2004 MPa with a 32.7% 

compressive plasticity [6]. Munitz et al. reported the impact of heat treatment of 

AlCoCrFeNi HEA, in which the BCC (Body-centered cubic) matrix transformation 

occurred between 650 and 975 °C. This transformation led to a substantial increase in 

microhardness [5]. Further modification of this alloy system through the addition of 

titanium, leading to AlCoCrFeNiTix (x = molar ratios), was found to be promising for 

wear protection [1]. Further, AlCoCrFeNi HEA solidified with dendritic and 

interdendritic microstructures due to elemental segregation. Dendritic segregation regions 

were found to be Al- and Ni-rich, while interdendritic areas were Fe- and Cr-rich, and the 

distribution of Co was uniform. Body-centered cubic (BCC) Fe and Cr precipitates, and 

B2 (ordered BCC) Al- and Ni-rich matrices were observed in previous studies [2,4,6,8,9]. 

Most of these studies are based on material fabricated through processes such as casting



and arc melting. Unlike these early studies, laser metal deposition (LMD) was 

implemented in this study.

LMD is capable of fabricating freeform three-dimensional metallic components 

[10-12] and has been used to fabricate several HEAs [12-16]. Chen et al. fabricated 

AlxCoFeNiCu1-x (x = 0.25, 0.5 and 0.75 atom %, respectively) HEAs using elemental 

powders on the AISI 304 substrate. They reported an increase in hardness with an 

increase in aluminum content [16]. He et al. used laser cladding to produce 

FeCoCrNiAlTix (x = 0, 0.25, 0.5, 0.75 and 1 atom %, respectively) coating on Q253 steel 

through the use of elemental powders. Addition of titanium was observed to improve the 

hardness and wear resistance of the HEA [15]. Similarly, FeCoCrAlCu HEA coating by 

laser cladding demonstrated good wear resistance under a dry sliding condition [17].

In this paper, the feasibility of coating an AlCoCrFeNi HEA on an AISI 304 

stainless steel substrate was investigated. Sole LMD fabrication of AlCoCrFeNi HEA 

components is very costly due to the need for high-purity (i.e., 99.9%) raw powders of 

elements such as Co, Cr and Ni. AISI 304 stainless steel, on the other hand, is a low-cost 

structural material. However, AISI 304 is a soft material with low wear resistance. It is 

widely used in industrial facilities, transportation equipment and architectural 

applications. Therefore, by coating AlCoCrFeNi HEA on AISI 304, it can enhance the 

hardness of AISI 304 structures. This combination of materials could facilitate fabrication 

of components for applications that require both hardness and wear resistance.

However, direct coating of AlCoCrFeNi HEA on AISI 304 is difficult due to the 

change in chemistry, thermal expansion and residual stress of the dissimilar materials.

For example, the measured coefficient of thermal expansion (CTE, 10-6/K) for
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AlCoCrFeNi HEA was 9.03 (293-303 K), 12.47 (368-378 K) and 13.54 (423-773 K)

[18]. However, the CTE values of AISI 304 were 14.7 (293 K), 16.3 (400 K), 19.5 (700 

K) and 20.2 (800 K) [19]. Harihar et al. observed crack formation at the bottom of an 

AlCoCrFeNi deposit when deposited on an AISI 304 substrate. Due to the brittleness of 

the deposited material, the deposit broke off from the AISI 304 substrate easily [12]. An 

extensive network of cracks occurred when a TiVCrAlSi HEA was cladded on a Ti-6Al- 

4V substrate. This was attributed to the difference between the thermal expansion 

coefficients and residual stresses associated with the high cooling rate in laser cladding 

[20].

Therefore, to facilitate the dissimilar material bond, an intermediate layer was 

necessary and could accommodate the residual stresses and variation in chemistry change 

[10,20,22]. Intermediate layers of Fe/Cr/V were used between AISI 316 stainless steel 

and Ti6Al4V to facilitate a similar material bond [10]. Currently, there are few studies 

available identifying the viable intermediate layer between AlCoCrFeNi HEA and AISI 

304. In this study, an attempt was made to coat the equiatomic AlCoCrFeNi HEA on the 

AISI 304 substrate using LMD. The objective was to obtain a strong bond between the 

two materials. We first demonstrated the issues with direct-coating the HEA onto the 

substrate. Then we proposed a candidate intermediate material and proved its viability.

2. MATERIALS AND METHODS
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Elemental powders of gas-atomized aluminum (Al), chromium (Cr), cobalt (Co), 

nickel (Ni) and iron (Fe) from Atlantic Equipment Engineers Inc. were used as precursor
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materials. These powders, weighed in required ratios, were mixed using a Turbula mixer 

(Glen Mills Inc., Clifton, NJ, USA) for 1 h to obtain homogeneous blends. Commercially 

procured AISI 304 bar stock (dimensions: 2.75 inch x 2 inch x 0.25 inch) was used as the 

substrate material for the deposition. The particle size distribution of the elemental 

powders stated by the producer is as tabulated in Table 1. Elemental analysis of the 

elemental powders is listed in Table 2. Elemental compositions (atom %) of the as- 

blended CoFe2Ni intermediate layer and AlCoCrFeNi alloy are given in Table 3.

Table 1. Particle size distribution of the precursor elemental powders.
M aterials US S tandard  M esh

Al -1 0 0
Co -1 0 0 /+ 3 2 5
C r -1 0 0
Fe -1 0 0
N i -1 0 0 /+ 3 2 5

Table 2. Elemental analysis (atom %) of elemental powders as provided by the
manufacturer.

M aterials Al C r Si Fe C N i Co S Ca
Al 0.88 - 0.07 0.05 - - - - -
Co - - - 0.002 - <0.001 ~0.99 - 0.001
C r - 0.89 - 0.02 0.09 - - - -
Fe - - - 0.99 0.01 - - - -
N i - - - 0.01 0.05 0.92 - 0.02 -

Table 3. Nominal compositions (atom %) of CoFe2Ni and AlCoCrFeNi alloy powder
blends.

A lloy A l Co C r Fe N i
C oFe 2N i 0 25 0 50 25

A lC oC rFeN i 20 20 20 20 20



33

The laser deposition process was performed in an LMD system whose schematic 

representation is as seen in Figure 1a. The heat source was a 1 kW continuous-wave 

YAG fiber laser (IPG Photonics, Oxford, MA, USA) with a 2 mm beam diameter. The 

powders were fed using a vibration X2 powder feed system procured from Powder 

Motion Labs. The powder was introduced into the melt pool through an alumina tube. A 

computer numerical control (CNC) table was used to facilitate the movement during the 

deposition. Argon gas was used to ensure an inert atmosphere and act as a carrier gas to 

deliver the powder mixture to the melt pool.

In the current setup, the 2 mm spot size is insufficient to attain a large capture 

efficiency of the powder. This is due to the scatter of the powder flow out of the powder 

feed tube. This scatter was suspected to vary with individual precursor powder. 

Therefore, in order to obtain as-deposited compositions that are close to as-blended 

compositions, the capture efficiency during the deposition process needed to be 

increased. A trochoidal toolpath (shown in Figure 1b) was designed to create a large 

enough melt pool to improve capture efficiency during deposition. This toolpath was 

inspired by “weave”-style toolpaths that are commonly used in welding.

The AISI 304 substrates were cleaned with acetone to remove the impurities such 

as dirt and oil from the surface. A preheating scan was conducted by running the laser 

across the substrate surface. To ensure a successful start, the power of the initial five 

layers of the deposition was carried out at 750 W and 8.5% (3.36 g/min) powder feed 

rate. The remainder of the deposit was run at a power level of 550 W and 8.5% (3.36 

g/min) powder feed rate. The thickness of each layer is 1 mm.
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(a)
Figure 1. Schematic of the experimental setup, (a) laser metal deposition (LMD) system

and (b) the trochoidal tool path.

After laser deposition, vertical transverse sections of the specimens were cut using 

a wire electric discharge machine (Hansvedt Industries Inc., Rantoul, IL, USA) and 

mounted in Bakelite for polishing and etching. The metallographic specimens were first 

ground using 240, 400, 600 and 800 grit silicon carbide papers and then polished using 

15 pm, 9 pm and 3 pm diamond suspensions. The final step of polishing involved 0.05 

pm colloidal silica suspension. To reveal the microstructure, the electrolytic etching was 

carried out in the nitric acid solution (70 mL nitric acid, 30 mL distilled water) at 5 V for 

5 seconds. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy 

(EDS) and electron backscatter diffraction (EBSD) were performed on Helios Nanolab 

600 SEM (Thermo Fisher Scientific, Waltham, MA, USA). The SEM image was 

acquired by an Everhart-Thornley detector. The EDS element was analyzed by the 

factory standardizations provided in the Aztec software. The EBSD step size was selected 

to be 2.5 pm. EBSD data acquisition and analysis were conducted using Aztec and
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Channel 5 software, respectively. Grain size was measured by the line intercept method, 

and the misorientation angle was 10°. Optical microscopy images were collected using a 

Hirox optical microscope. X-ray diffraction patterns were collected using Philips X’pert 

MRD using Cu anode. The Vickers hardness was measured using a Struers Duramin 

hardness tester (Struers Inc., Cleveland, OH, USA) at a 9.8 N load and a 10 s load 

duration. The reported hardness results were the average of three indentations.

3. RESULTS AND DISCUSSION

3.1. DIRECT COATING OF ALCOCRFENI HEA ON AISI 304 SUBSTRATE

The direct LMD of the AlCoCrFeNi HEA on the AISI 304 substrate will be 

discussed first. Figure 2a shows a portion of the vertical transverse section of the HEA 

deposit near the AISI 304 substrate. An area close to the crack zone, as marked in the 

dashed-line box, is shown in Figure 2b with high magnification. A network of cracks, 

mostly transverse and horizontal in orientation, were found to be prevalent. Cracking 

occurred at the bottom of this HEA deposit. This could be attributed to the mismatch 

between the thermal expansion coefficients. The CTE of this HEA was reported to be 

9.03 (10-6/K, 293-303 K) while the value of AISI 304 was 14.7 (10-6/K, 293 K) [18,19].

The elemental composition distribution along the interface between the HEA 

deposit and the AISI 304 substrate is shown in Figure 3. At the bottom of the melted 

metal, the composition mixing was significant during the laser deposition process (see 

Figure 3). The bottom of the deposit had high susceptibility of cracking in the transverse 

cross-section, as seen in Figure 2.
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(a) (b)
Figure 2. (a) Optical microscopy image of the vertical transverse cross-section of direct 
AlCoCrFeNi HEA coating on AISI 304 substrate, (b) a high-magnification view of the

dashed-line-boxed area in (a).

Figure 3. Elemental composition distribution along the interface between the AISI 304
substrate and the HEA deposit.

The variation in Vickers hardness across the HEA-AISI 304 direct coating is 

presented in Figure 4. The average Vickers hardness of the HEA deposits was 412 HV, 

while that of the substrate was 161 HV. Since the coefficients of thermal expansion are
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mismatched between HEA and the substrate, residual stresses were developed during the 

laser deposition process. The AISI 304 substrate had a high elongation rate from 28% to 

50% in the temperature range of 300-500 °C [23]. However, the tensile elongations of 

the AlCoCrFeNi HEA were 1% (as-cast condition) and 11.7% (after heat treatment) [4]. 

A difference in ductility exists between the substrate and the HEA. Having an 

intermediate material to bridge these differences was deemed necessary.

0 1 2  3 4
Distance (mm)

Figure 4. Vickers hardness profile of the direct coating of the AlCoCrFeNi alloy on AISI
304 stainless steel.

3.2. A NEW TRANSITION ROUTE

A blend of Fe, Co and Ni powders was selected as the candidate intermediate 

material. Since they are among the constituents of the AlCoCrFeNi HEA, no special 

procurement was needed. A Fe-Co-Ni ternary phase diagram at 1073 K compiled from 

experimental data is shown in Figure 5 [24]. Fe, Ni and Co have excellent mutual 

solubility, and no brittle intermetallic phases are expected. From the phase diagram, an 

atomic composition ratio of Fe, Ni and Co of 50%, 25% and 25%, respectively, was 

chosen. The selected ratio is expected to bridge the material composition gap between the
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AlCoCrFeNi HEA and AISI 304. This new transition route, AISI 304 substrate ^  

CoFe2Ni intermediate layer ^  AlCoCrFeNi HEA, was then carried out and 

characterized.

Figure 5. Ternary alloy phase diagram of Fe-Co-Ni at 1073 K [24].

3.3. AlCoCrFeNi HEA-AISI 304 WITH AN INTERMEDIATE LAYER

3.3.1. Microstructure. The CoFe2Ni intermediate layer was coated on the AISI 

304 substrate using premixed elemental powder. Then, the AlCoCrFeNi HEA was coated 

on the intermediate layer by LMD. The intermediate layer composition was theorized to 

avoid the formation of intermetallic compounds and bridge the large gap in strength 

differences. Figures 6a and 6b show the optical images of etched surfaces of transverse 

sections of these deposits. Unlike the HEA-AISI 304 direct coating, no apparent cracks 

were observed, which indicated an improvement in bonding. However, issues of



microporosity persisted. A dendrite microstructure was observed along the interface 

between the intermediate layer and the HEA.
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(a) (b)
Figure 6. The optical microstructure of (a) the CoFe2Ni intermediate layer and the AISI 
304 substrate and (b) the AlCoCrFeNi alloy deposit and the CoFe2Ni intermediate layer.

A high-magnification secondary electron image of the AlCoCrFeNi HEA deposit 

is shown in Figure 7, where a two-phase dendritic microstructure was observed. The area 

fraction of the dendritic microstructure was ~52%, while the interdendritic area fraction 

was ~48%. The interdendritic region is named A, and the dendritic region is named B. 

The mean elemental compositions of A and B (average from three arbitrary points) were 

analyzed by EDS, and the results are listed in Table 4. It is shown that the atomic 

percentages of Al and Ni were ~29% in A and ~41% in B. The percentages of Fe and Cr 

were ~54 atom % in A and 43 atom % in B. These results indicate that Fe and Cr were 

rich in A, while Al and Ni were rich in B. The composition of Co did not show evident 

differences between A and B. The mixing enthalpies between Fe-Cr, Fe-Ni, Fe-Co, Fe-

Al, Cr-Ni, Cr-Co, Cr-Al, Ni-Co, Ni-Al and Co-Al were -1, -2, -1, -11, -7, -4, -10,
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0, -22 and -19 kJ/mol, respectively [6,25]. The mixing enthalpy of Al and Ni was higher 

than other pairs, which indicated that Al and Ni tended to form atomic pairs and 

segregate. Similar results have been reported for the AlCoCrFeNi HEA, with this 

microstructure being attributed to the spinodal decomposition [2,4-6,9].

Table 4. Elemental compositions analyzed by energy dispersive X-ray spectroscopy 
(EDS)of the AlCoCrFeNi HEA shown in Figure 7.

Elements (atom %) Al Co Cr Fe Ni
A 16.2 16.8 23.4 30.2 13.4
B 23.5 15.7 19.4 24.2 17.2

XRD was used to identify the crystal structures of the intermediate layers and the 

HEA. A transition of the crystal structure was observed from the AISI 304 substrate to 

the AlCoCrFeNi alloy. The XRD patterns of the AISI 304 substrate, the CoFe2Ni 

intermediate layer and the AlCoCrFeNi alloy are shown in Figure 8. The present phases 

and the corresponding crystallographic information are summarized in Table 5. The peak 

patterns of FCC were observed in the CoFe2Ni intermediate layer, while BCC peak 

patterns were detected in the AlCoCrFeNi alloy. Lobel et al. found BCC and B2 (ordered 

BCC) phases in AlCoCrFeNiTix (x = 0) when fabricated via arc melting [1]. A similar 

result was reported by Shiratori et al., when casting was employed to produce an 

AlCoCrFeNi HEA [26]. Due to the same basic lattice structure and lattice parameters, the 

B2 ordered structure is very hard to detect from XRD, as the peak patterns of B2 and 

BCC are the same [2,9]. However, the evidence of the existence of the B2 phase was 

found from the EDS analysis above. Previously, an AlCoCrFeNi HEA was reported to 

also contain the FCC crystal structure with preheating or post-heat treatment [5,13,26].
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The FCC structure was not found in this work, which could be because the high cooling 

rate during LMD inhibited the formation of the FCC crystal structure [5,13,26].

Figure 7. Secondary electron image of the AlCoCrFeNi HEA microstructure at a
magnification of 10000.

The evolution in chemistry from the intermediate layer to the substrate was 

characterized by an EDS line scan first. The quantitative results are shown in Figure 9a. 

The EDS measured results of the AISI 304 substrate (Cr: ~18—19 atom %, Fe: ~70-72 

atom %, Ni: ~9-10 atom % in Figure 9a) did not vary from the nominal AISI 304 

elemental compositions. Mn (~1-2 atom %) was detected in the AISI 304 substrate by 

EDS but is not shown in Figure 9. The percentages of Co (~17-22 atom %) and Ni (~21- 

23 atom %) reduced, while the Fe (~54-56 atom %) content increased from the 

intermediate layer to the AISI 304 substrate. A small amount of Cr (~3-5 atom %) was 

present in the intermediate layer, because the substrate was mixed with the intermediate 

layer. The composition distribution from the HEA to the intermediate layer is shown in 

Figure 9b. The constituents of the AlCoCrFeNi HEA were detected by EDS (Al: ~16—17
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atom %, Co: 19-20 atom %, Cr: ~17 atom %, Fe: ~25 atom %, Ni: ~20-21 atom %). The 

difference between the as-blended (20 atom %) and as-deposited aluminum (~ 16-17 

atom %) percentages is suspected to be a consequence of inconsistency in capture 

efficiencies of the constituent powders, and evaporation due to differences in melting 

point. Al and Cr were present in the intermediate layer as seen in Figure 9b, and their 

total content was ~4-5 atom %.

Table 5. Summary of phases detected by XRD analysis for AISI 304, CoFe2Ni and the
AlCoCrFeNi HEA.

A lloy Lattice Structure Space G roup Lattice P aram eter (A)

A I S I 304
FCC Cu Fm -3m  (225) 3.5911
BCC Fe Im -3m  (229) 2.87

C oFe 2N i FCC Cu Fm -3m  (225) 3.5911
A lC oC rFeN i H E A BCC W Im -3m  (229) 2.876

Figure 8. XRD pattern of the AISI 304 substrate, the CoFe2Ni intermediate layer and the
AlCoCrFeNi HEA.
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Figure 9. Elemental composition distribution along the boundary, (a) CoFe2Ni 
intermediate layer and AISI 304 substrate and (b) AlCoCrFeNi HEA and CoFe2Ni

intermediate layer.

3.3.2. Electron Backscatter Diffraction. Figure 10a shows the inverse pole 

figure (IPF) map obtained from the bottom of the HEA section of the specimen. The 

measured area was approximately 3.4 mm *1.2 mm of the cross-section parallel to the 

build direction (BD), which spanned from the left to the right of the specimen. The 

difference in color indicates the different crystallographic orientations. From Figure 10a, 

the overall constitution can be classified into two zones—the edge zone (1 and 3) and the 

middle zone (2). In areas 1 and 3, the grains were observed to be elongated along the 

build direction (see 1 and 3 in Figure 10a). The distributions of the intercept lengths 

(using 100 horizontal lines) in different areas are depicted Figure 10b. The median linear 

intercept for areas 1 and 3 was 72.5 pm, while it was 127.5 pm for area 2. From the 

linear intercept distribution of area 2, 25% of the intercept values were greater than 300 

pm, whereas only 14% of the intercept values were above 300 pm for areas 1 and 3. This 

grain morphology is likely to be a consequence of deposition toolpath and variation in 

cooling rate at edges and in the middle [27,28]. Figures 10c and 10d show the {100}, 

{110} and {111} pole figures of different areas, which give the distribution of the pole



density along the build direction. The pole figure of the areas 1 and 3 (Figure 10c) 

suggests that the orientations of the grains were close to the <100> direction. However, 

the grains were random in orientation and did not appear with obvious texture in area 2 

(Figure 10d). Further study is necessary to investigate the impact of this toolpath on the 

grain morphology.
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(a)

(b)
Figure 10. (a) Inverse pole figure (IPF)IPF map of the bottom of the HEA section in the 
specimen; the measured region was approximately 3.4 mm *1.2 mm, from the left to the 
right side in the cross-section parallel to the build direction (BD); (b) distribution of the 

intercept length of grains with the bin size of 10 pm; (c) pole figure of areas 1 and 3; and
(d) pole figure of area 2 in (a).
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(d)
Figure 10. (a) Inverse pole figure (IPF)IPF map of the bottom of the HEA section in the 
specimen; the measured region was approximately 3.4 mm *1.2 mm, from the left to the 
right side in the cross-section parallel to the build direction (BD); (b) distribution of the 

intercept length of grains with the bin size of 10 pm; (c) pole figure of areas 1 and 3; and
(d) pole figure of area 2 in (a). (cont.)

3.3.3. Vickers Hardness Analysis. Figure 11 gives the Vickers hardness 

distribution of the AlCoCrFeNi HEA deposited on the AISI 304 substrate with the 

CoFe2Ni intermediate layer. The Vickers hardness of the CoFe2Ni intermediate layer was 

around the 275 HV, which could be attributed to the solid solution strengthening. Table 6 

lists the Vickers hardness of the AlCoCrFeNi HEA, annealed AISI 304, aged Inconel 

625, and annealed duplex steel SAF 2205 [29,31]. The average Vickers hardness of the 

HEA deposit was in the range of 418 HV, because of the second-phase strengthening [4].

According to the XRD results, the AISI 304 substrate and the CoFe2Ni 

intermediate layer had an FCC structure, while the AlCoCrFeNi HEA had a BCC 

structure. The transition from FCC to BCC structure is also expected to enhance the



hardness. The high hardness is expected to correlate with good performance in strength 

and wear resistance [1,16].
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Figure 11. Vickers hardness profile of the AISI 304 substrate—AlCoCrFeNi HEA with
the CoFe2Ni intermediate layer.

Table 6. Vickers hardness of various alloys.
Alloy Hardness (HV) Reference
AlCoCrFeNi HEA 418 This work
AISI 304 annealed 188 [29]
Inconel 625 aged 225 [30]
Duplex steel SAF 2205 annealed 290 [31]

4. CONCLUSIONS

An AlCoCrFeNi HEA was coated on an AISI 304 substrate by laser metal 

deposition (LMD) technology. The coating on the substrate without and with the 

intermediate layer was characterized and discussed. The main conclusions are as follows:
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Cracking was found to be prominent when the AlCoCrFeNi HEA was directly 

coated on the AISI 304 substrate due to the compositional change between HEA and the 

substrate.

Using an intermediate layer of CoFe2Ni improved the bond. The incorporation of 

the intermediate layer successfully eliminated crack formation in the deposit.

XRD patterns revealed a transition of crystal structure from FCC in the AISI 304 

substrate to BCC in the AlCoCrFeNi alloy. The evidence of a B2 phase in the 

AlCoCrFeNi HEA was also found in the EDS analysis results.

The AlCoCrFeNi alloy fabricated by LMD was found to have an average 

hardness of 418 HV, while the CoFe2Ni intermediate layer had an average hardness of 

275 HV.
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III. METAL ADDITIVE MANUFACTURING PARTS INSPECTION USING 
CONVOLUTIONAL NEURAL NETWORK

ABSTRACT

Metal additive manufacturing (AM) is gaining increasing attention from academia 

and industry due to its unique advantages compared to the traditional manufacturing 

process. Parts quality inspection is playing a crucial role in the AM industry, which can 

be adopted for product improvement. However, the traditional inspection process has 

relied on manual recognition, which could suffer from low efficiency and potential bias. 

This study presented a convolutional neural network (CNN) approach toward robust AM 

quality inspection, such as good quality, crack, gas porosity, and lack of fusion. To obtain 

the appropriate model, experiments were performed on a series of architectures. 

Moreover, data augmentation was adopted to deal with data scarcity. L2 regularization 

and dropout were applied to avoid overfitting. The impact of each strategy was evaluated. 

The final CNN model achieved an accuracy of 92.1%, and it took 8.01 milliseconds to 

recognize one image. The CNN model presented here can help in automatic defect 

recognition in the AM industry.

1. INTRODUCTION

Metal additive manufacturing (AM) processes have introduced some capabilities 

unparalleled by traditional manufacturing, as they realize custom-designed shape, 

complex features, and low materials consumptions provided by AM [1]. Laser metal
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deposition (LMD) is a form of AM which accomplishes the layer-by-layer fabrication of 

near net-shaped components by introducing a powder stream into a high-energy laser 

beam. During the LMD process, a melt pool is formed by rastering the laser beam across 

the sample surface, and the powders are injected into the melt pool for each layer 

deposition. LMD has been explored for various applications, e.g., metallic component 

repair, surface modification, and layering gradient metal alloy on a dissimilar metal base 

[2-5]. Some of the control parameters involved in LMD are the laser power, laser scan 

speed, powder feed rate, shielding gas flow rate, and the quality of the powder feedstock. 

The above parameters constantly affect the parts being formed. Some studies have 

focused on the process parameter selection and optimization of the performance of LMD 

parts, but the defect presence is still high compared to traditional manufacturing [1,6-8].

The common defects present in the LMD process are crack, gas porosity, and lack 

of fusion (LoF), which have negatively affected the properties of LMD fabricated parts

[9]. The direct joining of two dissimilar alloys is usually compromised by cracks, 

resulting from the residual stress, formation of brittle intermetallic compounds, or 

differences in thermal expansion coefficient [2,5,10]. Reichardt tried to fabricate gradient 

components transitioning from AISI 304L stainless steel to Ti6Al4V, but the component 

was halted due to cracks in the build [3]. A similar phenomenon has been observed by 

Huang [4] and Cui [5], which the material deposited cracked prior to analysis. Gas 

porosity, which is caused by the entrapment of gas from the powder feed system or the 

release of gas present in the powder particles [8,11,12]. This type of porosity could occur 

in any specific location and is nearly spherical. The gas porosities are highly undesirable 

because they severely degrade mechanical strength and fatigue resistance. The noticeable



effect of porosity was reported by Sun, in that 3.3% gas porosity content in the direct 

energy deposited AISI 4340 steel made the ductility decrease by 92.4% compared to the 

annealed one [8]. When there is insufficient energy in the melt pool, the resulting 

inability to melt the powder particles leads to LoF defects. LoF defects are usually found 

along boundaries between layers and in irregular shapes [6,7]. A significant LoF defect 

nucleated the fracture and led to poor elongation of 7% (as compared to 25%-33% 

elongation without LoF defects) for Ti-6Al-4V [6]. These defects contribute to the 

variation in the mechanical properties of each deposit, representing the main barrier to the 

widespread adoption of LMD technology. Therefore, this creates a need to inspect and 

evaluate the LMD build parts.

Traditionally, the quality of AM build parts has been manually inspected by 

experienced materials engineers. However, the manual inspection process is very time­

consuming and labor-intensive. The machine vision-based inspection method has been 

investigated in the past decade. This method has been adopted for many years in facility 

parts identification and classification, glass products, steel strips, metal surface 

inspection, and agricultural product identification [13-16]. Barua used the deviation of a 

melt-pool temperature gradient from a reference defect-free cooling curve to predict gas 

porosity in the LMD process [15]. The Gaussian pyramid decomposition was applied to 

low the resolution and center-surround difference operation for steel strip defects 

detection, which would lose the image information [14]. Vision-based methods had been 

used the primitive attributes reflected by local anomalies to detect and segment defects. 

Therefore, it is necessary to tailor the algorithm according to practical image content. The
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features identified by handcrafted or shallow learning techniques are not discriminative 

for a complex condition.

In recent years, due to the advance of deep learning, in particular, the 

convolutional neural network (CNN) has emerged as state of the art in terms of accuracy 

and robust for a number of computer vision tasks such as image classification, object 

detection, and segmentation [13,17-20]. Based on artificial neural networks, CNN 

discovers the distributed representation of its input data by transforming the low-level 

features into a more abstract and composite representation. LeCun proposed the LeNet 

model back in 1998, which included convolution layers and pooling layers for digits 

recognition [21]. However, restricted by the computation performance of the central 

processing unit (CPU) and graphics processing unit (GPU), CNN fell silent for several 

years. With the acceleration of GPU, AlexNet was proposed by Krizhevsky in 2012 [22], 

and it significantly increased the accuracy and computation speed of CNN for ImageNet 

dataset classification.

The significance of utilizing CNN-based methods in AM is that it can lead the 

trend towards real-time monitoring and quality evaluation for AM build parts. Due to the 

complexity of the physical process, it is difficult to predict the whole AM process via 

analytical models [23]. Current process monitoring in AM has been focused on statistical 

learning methods. Gaja investigated the ability of acoustic emission to detect and identify 

the defects in the LMD using a logistic regression model [24]. Supervised learning 

methods have been utilized to predict the porosity in the LMD process by Khanzadeh 

[25]. Porosity-related features were extracted from the melt-pool thermal images and then 

converted into vectors by transformation and rescaling. The vectors were processed by K-
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nearest neighbors (K-NN), support vector machine (SVM), decision tree (DT), and linear 

discriminant analysis (LDA) algorithms [25]. Gobert collected the layerwise images 

using a high-resolution digital single-lens reflex camera [26]. The visual features were 

extracted and evaluated by linear SVM for binary defect classification. Likewise, metallic 

powder micrographs were identified by the scale-invariant feature transform method and 

represented by principal component analysis [27]. The statistical methods mentioned 

above rely on handcraft features. However, CNN-based methods can learn the features 

from the raw data and have achieved excellent performance in the engineering area.

Lots of researchers have applied CNN into the area of material informatics. 

DeCost et al. compared the classic bag of visual words [28] and CNN-based 

representations on the steel microstructures image classifications. The calculated image- 

based features were then fed to an SVM [29] classifier. The results showed that the CNN 

methods offered the best classification performance [30]. Similarly, Wang [20] and 

Chowdhury [31] successfully applied the traditional computer vision and CNN 

algorithms to micrography recognition tasks, which turned out that CNN represented the 

highest classification accuracies. Besides, CNN was adopted to link experimental 

microstructure with ionic conductivity for yttria-stabilized zirconia samples [32]. The 

CNN models have been applied in surface detection in bearing rollers, aluminum parts, 

and steel plates [33-37]. It was found out that CNN-based methods had better and more 

robust performance compared to the SVM classifiers.

The objective of this work is to explore a good CNN-based architecture with its 

parameters for the robust inspection of LMD fabricated parts. We will first discuss the 

model training and then provide performance evaluation and failure analysis.
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2. ADDITIVE MANUFACTURING PARTS INSPECTION

In this section, the sample preparation, data preprocessing, data augmentation and 

convolutional neural network architecture is described.

2.1. SAMPLE PREPARATION

The sample preparation was performed by the researchers at Missouri S&T. The 

specimens were fabricated by the LMD process, which included AISI 304 stainless steel, 

AISI 316 stainless steel, Ti6Al4V, AlCoCrFeNi alloys, Inconel 718 alloys. A 1 kW 

continuous wave YAG fiber laser (IPG Photonics, Oxford, MA, USA) with a 2 mm beam 

diameter was used in the experiments. Table 1 lists the process parameters employed to 

fabricate the parts. The energy density is defined as E = Laser Power/Scan speed x Layer 

thickness (J/mm2) [7,8], which is considered as a key factor affecting the quality. For the 

quality inspection, the samples were transverse cross-sectioned and prepared with the 

standard metallographic procedure. The images were captured by a Hirox (Hackensack, 

NJ, USA) digital microscope with a magnification of 100 and a resolution of 1600 x 

1200 pixels, which provided enough information about the defects.

Table 1. Process conditions employed in the laser metal deposition.
Powder Size (pm) Power (W) Scan Speed (mm/s) Layer Thickness (mm)

44-145 300-750 150-220 0.6-1
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2.2. PREPROCESSING

The optical images obtained were split into blocks of size 224 x 224 pixels. After 

splitting, each block was screened, and 4140 image blocks were processed for the 

experiment. Some of the image blocks were not selected as they consisted of unusable 

regions, such as the mounting epoxy materials. Four types of parts quality, including 

good quality, crack, lack of fusion, and gas porosity are shown in Figure 1. The number 

of each type is given in Table 2. The samples were shuffled and randomly split into a 

training set (3519 samples) and a test set (621 samples). Then the training dataset was 

divided into training samples (2898 samples) and validation samples of 621 images.

2.3. DATA AUGMENTATION

To achieve good performance of CNN, a large number of labeled datasets are 

needed. As our dataset is comprised of several thousands of samples, the expansion of the 

dataset is necessary. Therefore, data augmentation operations [22] were applied to our 

original images. Each image was passed through a series transformation: random rotation 

from -180° to 180°, horizontal flipping, random crop, adding Gaussian noise and blur 

[16], as shown in Figure 2.

2.4. CONVOLUTIONAL NEURAL NETWORK (CNN) ARCHITECTURE

Several CNN models were explored using our dataset to obtain the optimal hyper­

parameters of the model.
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(a)

(b)

(c)

(d)
Figure 1. Examples of laser metal deposition (LMD) build parts quality optical images: 
(a) good quality, (b) crack, (c) gas porosity, and (d) lack of fusion with a resolution of

224 x 224 pixels.

Table 2. The number of images in each category.
Crack Gas Porosity Lack of Fusion Good Total
1013 1015 1005 1107 4140
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(a) (c)

(d) (e) (f)
Figure 2. Data augmentation: (a) origin image, (b) rotation, (c) flipping, (d) crop, (e) 

adding Gaussian noise, and (f) adding blur.

Figure 3 presents the final schematic framework after several experiments. The 

overall schematic model is composed of feature extraction and classification. To make 

this work in a self-contained way, the fundamentals of our CNN model will be briefly 

described below. First, there were M depth images, Xm, and the images were scaled to 

224 x 224 pixels with grayscales after the data augmentation process, and then fed into 

the first convolutional layer with the kernel size of 5 x5 for feature extraction. In order to 

model non-linearities of the mapping between input and output, the Rectified Linear Unit 

(ReLU(x) = max (0,x)) [21]was used in each convolutional layer operation. Moreover, a 

max pooling layer of 2 x2 was followed by each convolutional layer. The max pooling 

layer substituted the activation in a sub-region of the feature map with the maximum 

value in that region. The pooling layer downsampled the previous feature map.
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Figure 3. Final schematic of the convolutional neural network (CNN) model for 
autonomous recognition of LMD build parts quality.

After the feature extraction, the classification module took the 28 * 28 x 128 

feature maps and flattened them as a 512 feature vector. Then fully connected (FC) layers 

were applied to densify the 512 feature vector to the dimension of 64 and C, where C is 

the number of categories in our dataset. The vectors of C dimensions ([V1, V2, ..., Vc]) 

were computed the predicted probability of a class using Softmax function [21] Equation

(1) and transformed to the output.

P ( y =  c | Xm) =
exp(Vc) 

2 =1 exp(Vc) (1)

where P(ym = c \ Xm) was the predicted probability of a sample Xm being class c.

During the training process of our CNN model, the difference between the true

class and corresponding predicted class were calculated by the cross-entropy loss
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function as in Equation (2). Through the optimization of parameters m in the network, 

our target was to minimize the loss function for the training dataset X.

ZM  ^ — i C

/  Ym c  log(T(ym = C 1 X m ) (2)
m = ^ J c=1

2.4.1. Hyper-Parameter Tuning. The hyper-parameter is a crucial part of the 

CNN model and has a significant impact on the performance, such as the number of the 

convolutional layers, kernel size, and L2 regularization and dropout parameters. To 

determine the optimal hyper-parameters, several architectures were built and trained. The 

study of hyper-parameters was based on the training and validation datasets, which is 

described in Sections 3.1-3.3.

2.4.2. Training Details. The experiments in this work were conducted with one 

six-core AMD (Santa Clara, CA, USA) Ryzen 5 2600 processor and one Nvidia (Santa 

Clara, CA, USA) GeForce 1070 GPU. The code was developed in Python 3.6.8 using 

TensorFlow (version 1.13.1) and Keras (version 2.2.4). Some parameters were common 

in all experiments and are described here. A batch size of 32 and a learning rate of 1 * 

10-4 were used. Each convolutional layer was followed by a max pooling layer with a 

filter size of 2 *2 and a stride of 1. Batch normalization was used for centering and 

normalization of the images [40] and applied before the fully connected layers. An Adam 

optimizer [41] was used in the training process. Each network was identified with a 

unique Model #.

2.4.3. Evaluation Metrics. The commonly used evaluation metrics were 

implemented for our multiclass performance as in Equations (3)-(5).
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Precision:

Recall:

F score:

Precision = T P / (T P  + FP)

Recall = T P / ( F N  + TP)

(3)

(4)

F score = (2 x  Precis ion  x  R e c a l l ) / (P r ec i s io n  + Recall)  (5)

In Equations (3)-(5), True Positive (TP) describes a sample from Xm from a 

certain class ym that is correctly classified as ym; False Positive (FP) represents a sample 

of Xm which does not belong to class ym but incorrectly classified as ym; False Negative 

(FN) is defined as a sample of Xm belonging to the class ym that is incorrectly classified 

as “not ym” classes. F score in Equation (5) indicates the overall performance of the 

precision and recall, which is their harmonic mean in the interval of [0, 1].

3. RESULTS AND DISCUSSION

3.1. EVALUATION OF THE CNN ARCHITECTURE

Because of the complexity and parametric variation existing in the CNN models, 

it was not feasible to perform all possible models with their parameters, e.g., kernel size, 

the number of convolutional layers. Therefore, six representative CNN models with an 

increasing number of convolutional layers were compared to find the optimal network. 

The experimental results of the six CNN frameworks are tabulated in Table 3. It was 

shown that by increasing the depth and the number of kernels of the network, the 

validation accuracy changed from 74.6% to 83.8% (from Model 1 to Model 6). The



accuracy and loss plots for Model 6 in Figure 4 suggested the overfitting, in which the 

model fit better on the training dataset than on the validation dataset. Considering the 

validation accuracy, the following data augmentation operations were conducted with the 

network used in Models 3-6.
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Figure 4. (a) The accuracy and (b) the loss values of the training and validation dataset
for Model 6.

Table 3. Experimental results with six architectures. The convolutional layers’ parameters 
are denoted as “C kernel size/number of kernels”. The fully connected layers are denoted 

as “FC number of hidden units”. Epoch = 30, learning rate = 1 x 10-4.

Model # Architecture Time
(h:m:s)

Val. Acc. 
(%)

1 C 3 x 3/8, C 3 x 3/16, FC 64 0:4:30 74.6
2 C 5 x 5/8, C 5 x 5/16, FC 64 0:4:46 76.7
3 C 3 x 3/16, C 3 x 3/32, C 3 x 3/64, FC 256, FC 64 0:4:37 79.5
4 C 5 x 5/16, C 5 x 5/32, C 5 x 5/64, FC 256, FC 64 0:4:45 80.1
5 C 3 x 3/32, C 3 x 3/64, C 3 x 3/128, FC 512, FC 64 0:5:43 82.5
6 C 5 x 5/32, C 5 x 5/64, C 5 x 5/128, FC 512, FC 64 0:6:31 83.8

3.2. IMPACT OF DATA AUGMENTATION

Data augmentation operations were carried out on original images, and the 

classification performance is provided in Table 4. It was found that the validation 

accuracy has improved up to 5.6% compared to Table 3. It took an average of 5 min 13 s



longer to train the models compared to doing so without data augmentation. Therefore, 

with the availability of large training datasets, the CNN models could achieve high 

accuracies. The following regularization was performed on the architectures of Models 5 

and 6 associated with data augmentation.

3.3. REGULARIZATION

Regularization could be used to mitigate the problem of overfitting during the 

training process. The implementation of L2 regularization and dropout were explored in 

our study. L2 regularization applies a penalty on large framework parameters and forces 

them to be relatively small. Dropout is a method that randomly drops units in the 

network. Several combinations of L2 regularization and dropout in convolutional and 

fully connected layers were tested.
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Table 4. Experimental results of Models 3-6 using data augmentation operations. The 
convolutional layers’ parameters are denoted as “C kernel size/number of kernels”. The 

fully connected layers are denoted as “FC number of hidden units”. Epoch = 30 and
learning rate = 1 x 10-4.

Model
#

Architecture Time
(h:m:s)

Val. Acc. 
(%)

3 C 3 x 3/16, C 3 x 3/32, C 3 x 3/64, FC 256, FC 64 0:10:39 81.2
4 C 5 x 5/16, C 5 x 5/32, C 5 x 5/64, FC 256, FC 64 0:10:11 85.7
5 C 3 x 3/32, C 3 x 3/64, C 3 x 3/128, FC 512, FC 64 0:10:37 86.7
6 C 5 x 5/32, C 5 x 5/64, C 5 x 5/128, FC 512, FC 64 0:11:05 87.3

The training time and validation accuracy of eight models were presented in Table

5. The use of L2 in the convolutional layer with a ratio of 1 x 10-5 and a dropout rate of 

0.25 on all layers was demonstrated to be the most conducive for both architectures. 

Regarding the convolutional kernel size, the size of 5 has a 4.3% higher validation
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accuracy than the size of 3. Therefore, Model 11 was chosen, and the corresponding

accuracy and loss plots are shown in Figure 5. It was observed that the overfitting issue

was alleviated compared to Model 6 in Figure 4, but more fine tuning of regularization

parameters and longer training time were needed to improve the network performance.

Table 5. Experimental results of different L2 regularization and dropout parameters. The 
convolutional layers’ parameters are denoted as “C kernel size/number of kernels”. The 

fully connected layers are denoted as “FC number of hidden units”. Epoch = 30 and
learning rate = 1 x 10-4.

M odel
#

A rchitecture L2 D ropout Tim e
(h:m :s)

V al. A cc. 
(% )

7 C 3 x 3/32, C 3 x 3/64, 
C 3 x 3/128,

FC 512, FC  64

Y(1 x 10-5) | N  1 Y(0.25)|Y(0.25) 0:10:43 84.4
8 Y(1 x 10-5) | Y(1 x 10-5) Y(0.25)|Y(0.25) 0:11:05 82.5
9 Y(1 x 10-5) | Y(1 x 10-5) N |N 0:10:47 77.6
10 N|N Y(0.25)|Y(0.25) 0:10:56 81.2
11 C 5 x 5/32, C 5 x 5/64, 

C 5 x 5/128,
FC 512, FC  64

Y(1 x 10-5) | N Y(0.25)|Y(0.25) 0:10:24 88.7
12 Y(1 x 10-5)|Y(1 x 10-5) Y(0.25)|Y(0.25) 0:10:29 87.5
13 Y(1 x 10-5)|Y(1 x 10-5) N |N 0:10:17 73.2
14 N|N Y(0.25)|Y(0.25) 0:10:10 87.8

1 The left side o f  “ |” indicates the use o f  regularization  in  the convolutional layer, and the right 
side o f  “ |” m eans the use o f  regularization  in  the fu lly  connected  layer. “N ” m eans no 
regularization . “Y ” m eans the use o f  regularization , the num ber in  “()” m eans the regularization  
param eter.

Figure 5. (a) The accuracy and (b) the loss values of the training and validation dataset 
for Model 11 using data augmentation, L2 regularization, and dropout.
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Model 11 was trained for the fine tuning dropout parameters with epochs of 300, 

and the results are listed in Table 6. Model 16 achieved a validation accuracy of 94.3% 

and outperformed other models. The accuracy and loss plots of the four tested models are 

shown in Figure 6. The learning rate was increasing until around 100-150 epochs in 

Figure 6a. The training and validation accuracy climbed until about 50-100 epochs and 

then plateaued as seen in Figure 6c,e,g, but overfitting was displayed as worse in Models 

17 and 18. Thus, Model 16 was chosen as our final model that converged fast and had 

high validation accuracy of 94.3% with a training time of about 1 h and 46 min. The 

schematic architecture of Model 16 is shown in Figure 3.

3.4. PERFORMANCE EVALUATION

The performance of our final model was evaluated on the test dataset. The results 

of the precision recall and F score of each class are reported in Table 7. Note that the 

overall F score could reach above 0.9, indicating good classification performance. It took 

about 8.01 milliseconds to handle one image in our test process, which could be adopted 

for real-time inspection applications.

Table 6. Results of fine tuning dropout parameters. The convolutional layers’ parameters 
are denoted as “C kernel size/number of kernels”. The fully connected layers are denoted 

as “FC number of hidden units”. Epoch = 300 and learning rate = 1 x 10-4
M odel

# A rchitecture D ropout
T im e

(h:m :s)
V al. A cc. 

(%)
15

C 5 x 5/32, C 5 x 5/64, C 5 x 5/128, FC 
512, FC  64

Y (0 .5)|Y (0 .5) 1:43:43 87.5
16 Y (0 .25)|Y (0 .25) 1:46:32 94.3
17 Y (0 .1)|Y (0 .1) 1:41:56 92.7
18 Y (0 .1)|Y (0 .25) 1:43:04 90.7
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(g) (h)
Figure 6. Plots of accuracy and loss for (a,b) Model 15, (c,d) Model 16, (e,f) Model 17 
and (g,h) Model 18. (a,c,e) and (g) are accuracy plots and (b,d,f) and (h) are loss plots.

The classification accuracy of three different alloys in the test dataset is listed in

Table 8. It is shown that the average accuracy is 91.9% (AlCoCrFeNi alloy), 91.5%
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(Ti6Al4V) and 92.7% (AISI 304 stainless steel) respectively, and the difference is ~1%. 

This indicates that the model can classify the defects robustly for different alloys.

Table 7. Precision, recall, and F score of the final model on the test dataset.
Class Precision R ecall F Score
C rack 0.94 0.95 0.945

G as porosity 0.91 0.87 0.891
G ood quality 0.96 0.94 0.949

L ack o f  fusion 0.88 0.92 0.901

Table 8. Classification accuracy of different alloys in the test dataset.
A lloys G ood L ack o f  Fusion C rack G as Porosity

A lC oC rFeN i alloy 93.1% 91.2% 94.9% 88.5%
T i6A l4V 95.1% 88.7% 93.7% 88.3%

A IS I 304 stainless steel 96.4% 89.3% 94.8% 90.4%

Table 9 reports the comparison of the test accuracy of our approach and other 

methods whose codes are publicly available. The results were experimental on our metal 

AM parts quality dataset. The accuracy obtained by histogram of oriented gradients 

(HOG) + SVM [42] was 79.6%, while the accuracy of 89.3% was achieved using Liu’s 

CNN model [36]. Our approach had an accuracy of 92.1%. This could be attributed to our 

model being efficient in learning the internal features of the AM metal defects, which 

would be a benefit for our classification task.

Table 9. The performance of classification accuracy with different methods.
Method Accuracy

Li et al. [42] 79.6%
Liu et al. [36] 89.3%

This work 92.2%
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3.5. FEATURE VISUALIZATION

To have a better understanding of what the CNN model has learned, the learned 

filters and the extracted feature maps are visualized in Figure 7. The 32 filters from the 

first convolutional layers are shown in Figure 7a. Four samples representing crack, lack 

of fusion, gas porosity, and good quality are present in Figure 7b-e. It seems difficult to 

interpret those 32 5 * 5 filters in Figure 7a, but some low-level features are extracted by 

reviewing the features maps in Figure 7b-e. For example, these filters were able to 

identify the edges of the crack, as in Figure 7b. The irregular shape of the lack of fusion 

was emphasized by the filters, which was different from the round shape in gas porosity. 

The second and the third convolutional layers are not discussed here, as they contain the 

high-dimensional information and make it less visually interpretable.

Attention maps can be obtained for a given input image with back-propagation on 

a CNN model. The value of each pixel on the attention map is able to reveal to what 

extent the same pixel on the input image makes contributions to the final output of the 

network [18,19]. Therefore, through the attention maps, it can intuitively analyze which 

part of the AM build metal images attracts the attention of the network. Figure 8 includes 

the AM build metallic parts profiles shown in a-d and the corresponding attention maps 

e-h. The defects were highlighted in the red circles and rectangles in Figure 8a-d. The 

bright places indicate where the CNN model focuses, as seen in Figure 8e-h, while the 

dark regions suggest where the network is less interested. Those maps demonstrate that 

the network pays attention to the defects and verify the effectiveness of our model.
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(d) (e)
Figure 7. Visualization of the (a) 32 learned filters of the first convolutional layers, (b) 32 

feature maps for a crack sample, (c) 32 feature maps for a lack of fusion sample, (d) 32 
feature maps for a good sample and (e) 32 feature maps for a gas porosity sample.

3.6. FAILURE CASE STUDY

The failure cases that were not correctly classified in the test dataset will be 

discussed in this subsection. Some incorrectly classified images are shown in Figure 9. 

The image shown in Figure 9a was misclassified as “good” as the dirt on the sample 

surface led to misclassification. The sample images shown in Figure 9b-d could be
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attributed to the high similarity between the gas porosity and lack of fusion, which makes 

it difficult to distinguish them.

(a)
/

(b) (c)

(e) (f) (g) (h)
Figure 8. (a-d) Additive manufacturing build metal parts images, (e-h) attention maps

corresponding to (a-d).

(a) (b) (c) (d)
Figure 9. Examples of wrongly classified images in the test dataset of metal additive 

manufacturing defects. Results highlighted in black and red indicate correct and incorrect 
classification results, respectively. (a) Gas—Good, (b) Gas—LoF, (c) Gas—LoF, (d)

LoF—Gas.

To address the failure cases for performance improvement, some future work will

be explored: (1) A variety of AM manufactured materials can be considered to be



included to enlarge the dataset, e.g., ceramics, glass, polymers, and composites. (2) The 

architecture of the CNN models can be explored to enhance its performance.

4. CONCLUSION

In this paper, we presented the application of a convolutional neural network 

(CNN) for robust quality inspection of metal additive manufacturing (AM) parts. The 

Missouri S&T dataset, including optical microscope images of real-world metal AM parts 

were used to train and test the CNN model. This work contributed to the development of 

a CNN model with excellent performance in recognition of good quality, crack, gas 

porosities, and lack of fusion categories. To generate the appropriate model, extensive 

experiments were investigated on hyper-parameters including kernel size and the number 

of layers, data augmentation operations, and regularization. Our final model achieved an 

accuracy of 92.1% with 8.01 milliseconds recognition time of one image. The results 

indicate the promising application of the CNN method in quality inspection in the AM 

industry. It would be interesting to explore more CNN architectures and include a variety 

of materials in the future.
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IV. LASER METAL DEPOSITION OF AN AlCoCrFeNiTks HIGH-ENTROPY 
ALLOY COATING ON A Ti6Al4V SUBSTRATE: MICROSTRUCTURE AND

OXIDATION BEHAVIOR

ABSTRACT

Ti6Al4V has been recognized as an attractive material, due to its combination of 

low density and favorable mechanical properties. However, its insufficient oxidation 

resistance has limited the high-temperature application. In this work, an AlCoCrFeNiTi0.5 

high-entropy alloy (HEA) coating was fabricated on a Ti6Al4V substrate using laser 

metal deposition (LMD). The microstructure and isothermal oxidation behaviors were 

investigated. The microstructure of as-deposited HEA exhibited a Fe, Cr-rich A2 phase 

and an Al, Ni, Ti-enriched B2 phase. Its hardness was approximately 2.1 times higher 

than that of the substrate. The oxidation testing at 700 °C and 800 °C suggested that the 

HEA coating has better oxidation resistance than the Ti6Al4V substrate. The oxide scales 

of the Ti6Al4V substrate were mainly composed of TiO2, while continuous AhO3 and 

Cr2O3 were formed in the HEA coatings and could be attributed to oxidation resistance 

improvement. This work provides an approach to mitigate the oxidation resistance of 

Ti6Al4V and explore the applicability of the HEA in a high-temperature environment.

1. INTRODUCTION

Ti6Al4V has been an important and versatile titanium alloy currently used in 

petrochemical, automotive, power generation, and biomedical industries. Indeed, this 

alloy possesses a desirable combination of properties, such as high melting point,



superior corrosion resistance, good biocompatibility, and weldability [1-3]. However, 

Ti6Al4V alloy is very active at elevated temperature, which results in being easily 

oxidized, as well as its insufficient oxidation resistance [4,5]. At present, the permitted 

maximal service temperature of Ti6Al4V alloy still does not exceed 600 °C [1,4]. The 

improvement of its high-temperature oxidation property can be solved by the surface 

modification process [3-6].

As a promising surface modification technology, laser metal deposition (LMD) 

has introduced a number of capabilities unparalleled by conventional process [3,6-11]. 

LMD achieves layer-by-layer fabrication of near net-shaped deposition onto the substrate 

by introducing a powder stream into a laser beam. In addition to the geometry freedom, 

precise tailoring of compositions and microstructure can be achieved to produce highly 

specialized coatings. On the basis of these advantages, many efforts have been made to 

improve the oxidation resistance of Ti6Al4V alloy. In particular, Liu et al. prepared a 

TiN/Ti3Al composite coating on the Ti6Al4V substrate [12]. The isothermal oxidation 

results indicated that the relative oxidation resistance of the coating was approximately 

six times higher than that of the substrate at 600 °C, due to the formation of TiN, Al2O3, 

and TiO2. A titanium-aluminum alloy (Ti48Al2Cr2Nb) was adopted as a coating material 

and demonstrated good anti-oxidation property in comparison with the Ti6Al4V at 800 

°C [13]. Successive layers of oxides (up to 12 pm thick) were formed on the 

Ti48Al2Cr2Nb after 150 h of oxidation, while the oxide layers detached from the 

Ti6Al4V after 5 h. A gradient Ti-Ni alloy was fabricated by laser cladding, and a dense 

Al2O3 layer was formed, inhibiting the further diffusion of oxygen atoms under 800 °C 

[14]. Wang et al. manufactured a Ti5Si3/y/TiSi composite coating, in which the presence
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of continuous AI2O3 and SiO2 scales contributed to the high-temperature oxidation 

resistance [15]. The authors also discovered that Ti5Si3 and TiSi possessed brittleness at 

room temperature, and the shedding was observed on the worn face of the coatings. 

Although the titanium silicide-based materials mentioned above can have an excellent 

high-temperature oxidation resistance, they also bring some issues, such as the brittleness 

at room temperature and high cracking susceptibility [2,6,15].

An important concept of “High-entropy alloys (HEAs)” has broken the traditional 

idea of alloy design based on one or two principal components [16-18]. This new class of 

alloys typically contain 5 to 13 principal elements, and the concentration of each element 

is between 5 and 35 atomic percent. The high-entropy effect of HEAs is beneficial to the 

formation of the solid solution with crystal structures such as face-centered cubic (FCC), 

body-centered cubic (BCC), or hexagonal close-packed (HCP), instead of too many 

complex intermetallic compounds. Among a variety kind of HEAs, Al-Co-Cr-Fe-Ni has 

been one of the most developed and refined systems. The equimolar AlCoCrFeNi alloy 

exhibited dendritic and interdendritic microstructures, which were composed of CrFe-rich 

precipitates embedded in an AlNi-rich matrix [19,20]. After the ageing treatments at 800 

°C, 1000 °C, and 1200 °C, the precipitation of an FCC phase resulted in reduced 

compressive yield strength accompanied by enhanced ductility [21]. Concerning the 

oxidation resistance, the sluggish diffusion kinetics has been found, and it can restrain the 

formation of non-protective transient oxides [22,23]. Mohanty et al. investigated two 

types of HEAs (Al0.3CoCrFeNi and Al0.7CoCrFeNi) and reported that the thickness of the 

oxide layer increased with the content of Al [24]. The oxidation behaviors of a series of 

arc-melted Alx(NiCoCrFe)100-x (x = 8, 10, 12, 15, 20 and 30 atomic%) and
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AlCoCrFeNi(Fe or Si) HEAs were studied by Butler et al. [25,26]. The oxide scales 

contained a combination of AhO3, AlN beneath, and external Cr2O3 scale. Each HEA 

exhibited initial transient oxidation followed by parabolic oxide growth. The oxidation 

study of AlCoCrCuxFeNi (x = 0, 0.5, 1 in molar ratio) revealed the parabolic constants 

were at the same level as those Al-Ni intermetallic alloys [27]. The oxide scales consisted 

of a-AhO3 and were visible on the oxidation surface of these HEAs. The addition of Ti 

could lead to solid solution strengthening and precipitation strengthening in 

Al1.5CrFeMnTi and AlCoCrFeNiTix HEAs [28,29]. The study of AlxCoCrFeNiTii-x (x = 

1, 0.8, 0.5 in molar ratio) indicated that Ti promoted the formation of FCC phase, and Al 

resulted in BCC phase [30]. Nevertheless, these HEAs have been mainly prepared by arc 

melting [25-27,29,30], thermal spray technique [31], and the electrospark process [32] . 

Therefore, it is desirable to laser fabricate an AlCoCrFeNiTi0.5 HEA coating and evaluate 

its oxidation performance.

This work aimed to investigate the microstructure and oxidation behavior of an 

AlCoCrFeNiTi0.5 HEA coating synthesized on the Ti6Al4V substrate by laser metal 

deposition. Microstructural characterization was performed on the as-deposited HEA 

coating. Then, the isothermal oxidation test was conducted to evaluate its oxidation 

behaviors at elevated temperatures. The weight change, phase constitutions, and cross­

sectional morphology after oxidation were analyzed and discussed.
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2. MATERIALS AND METHODS

2.1. SAMPLE PREPARATION

AlCoCrFeNiTio.5 HEA samples with the nominal composition (as shown in Table 

1) were prepared by LMD. Spherical gas-atomized elemental powder blends were used. 

The powders of Al, Co, Cr, Fe, Ni, and Ti were supplied by Micron Metals (Ramapo, NJ, 

USA) with 99.9% purity and 44-145 pm particle size distribution. The powder mixture 

(total: 276.5 g) was prepared by carefully weighing the powders using a weighing 

balance with an accuracy of ±0.1 mg. The mixed powders were homogenized in a 

Turbula mixer (Glen Mills Inc., Clifton, NJ, USA) for 1 h. The experimental setup 

consisted of an IPG 1 kW continuous wave YAG fiber laser (IPG Photonics, Oxford, 

MA, USA), a numerical control working table, and a vibration powder feeder (Powder 

Motion Labs, Rolla, MO, USA), as shown in Figure 1. The Grade 5 Ti6Al4V bar stock 

was used as the substrates (dimensions 75 mm x 12 mm x 6 mm) and cleaned with 

acetone to remove the dirt and oil before the experiment. The deposition process was 

performed in a sealed, controlled environment purged with a continuous flow of argon 

gas. A pre-heating was undertaken to minimize the thermal stress between the deposit 

and the Ti6Al4V substrate. The powders were delivered to the laser beam by an argon jet 

with a flow rate of 3 g/min. The deposits with a thin-wall structure were fabricated at the 

transverse laser speed of 200 mm/s, 2 mm laser beam size, 0.5 mm layer thickness, and 

the powers of 700 W for the first two layers, 600 W for the next two layers and 500 W 

for further layers.
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Table 1. Nominal composition (atom%) of an AlCoCrFeNiTio.5 high-entropy alloy
(HEA).

Al Co Cr Fe N i Ti
A tom % 18.2 18.2 18.2 18.2 18.2 9.0

Figure 1. Schematic of the laser metal deposition (LMD) experiment setup.

2.2. CHARACTERIZATION

After the deposition, the specimens were sectioned by electrical discharge 

machining (EDM) (Hansvedt Industries Inc., Rantoul, IL, USA) and prepared by standard 

metallographic procedures. They were polished with 320-1200 grit SiC grinding paper, 

followed by 9 pm, 3 pm, 1 pm diamond solutions with a final step of 0.05 pm colloidal 

silica suspension. The HEA sample was etched with aqua regia (30 mL HCl and 10 mL 

HNO3) (Thermal Fisher Scientific, Waltham, WA, USA), and Ti6Al4V was etched with 

Kroll’s reagent (2 mL HF, 8 mL HNO3 and 90 mL H2O) (Thermal Fisher Scientific, 

Waltham, WA, USA).

The microstructure was characterized by a Helios Nanolab 600 (Thermal Fisher 

Scientific, Waltham, WA, USA) scanning electron microscope (SEM). The energy



dispersive spectroscopy (EDS) data were collected and analyzed in the factory 

standardization manner (Oxford AZtec version 4.2). The electron backscatter diffraction 

(EBSD) scan was acquired using an Oxford HKL system with a step size of 2 pm, and 

data analysis was performed on HKL Channel 5 software (Oxford Instruments,

Abingdon, UK). The grain was determined by a misorientation angle of 10°, and grain 

size was measured using the line intercept method. X-ray diffraction (XRD) profiling was 

performed to determine the phase constituents in the samples. The phases were identified 

by Phillips X’Pert diffractometer (Amsterdam, The Netherlands) using Cu-Ka radiation 

at 45 kV/40 mA with a scanning step of 0.05° and a scanning range from 20° to 90°. The 

Vickers hardness was measured using Struers Duramin hardness equipment (Struers Inc, 

Cleveland, OH, USA) at a 9.8 N load and a duration of 10 s. The reported hardness 

results were the average of ten indentations.

2.3. OXIDATION TESTS

The HEA and Ti6Al4V specimens for oxidation tests with dimensions of 10 mm 

(length) x 10 mm (width) x 2 mm (height) were prepared using EDM. Sample surfaces 

were subsequently polished using 320-1200 grit SiC grinding paper and cleaned with 

acetone. Oxidation tests were carried out in an electric furnace (DT-29-RSA, Deltech, 

Denver, CO, USA) under atmospheric pressure at 700 °C and 800 °C for 45 h. The 

samples were heated from room temperature to the target temperatures at a heating rate of 

10 °C/min. The weight gain was measured before and after at specified intervals using an 

analytic balance (AG204, Mettler Toledo, Columbus, OH, USA) with an accuracy of 0.1 

mg. The oxidized samples were characterized by XRD and SEM, as described above.
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3. RESULTS AND DISCUSSION

3.1. MICROSTRUCTURE OF THE AS-DEPOSITED HEA

Figure 2 illustrates the XRD patterns of as-deposited AlCoCrFeNiTio.5 HEA and 

the Ti6Al4V substrate. The a-Ti phase was detected in the Ti6Al4V (Figure 2a). Two 

BCC phases were observed in the HEA (Figure 2b), and they are ordered a BCC structure 

(B2) phase and a disordered BCC structure (A2) phase. Through careful analysis of the 

standard PDF database, the two BCC phases were identified as Al-Ni and Fe-Cr phases, 

which is in accordance with the similar alloys synthesized using arc-melting [23,30] and 

casting [33].

Figure 2. X-ray diffraction (XRD) pattern of the (a) Ti6Al4V substrate and (b) as-deposited
AlCoCrFeNiTi0.5 HEA.

Figure 3a presents the interface between the HEA coating and the Ti6Al4V 

substrate, which can be seen as a good metallurgical bond without crack. The EDS line 

scan was used to characterize the elemental evolution from the Ti6Al4V substrate to the 

HEA, and the quantitative results are shown in Figure 3b. The EDS measured
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compositions of the Ti6Al4V substrate (Ti: ~84-86 atom%, Al: ~10—11 atom%, V: ~3-4 

atom%) did not deviate from the nominal compositions of Grade 5 Ti6Al4V. Since the 

Ti6Al4V was mixed with the HEA layer, the elements of Al (~12—14 atom %), Co (~10- 

12 atom%), Cr (~ 11—13 atom%), Fe (~9—11 atom%), Ni (~11—14 atom%) and Ti (~36-39 

atom%) were detected. A small amount of V (~1-3 atom%) was detected in the HEA 

layer, due to the dilution. According to the equilibrium Fe-V, Fe-Ti phase diagrams, the 

Fe-V or Fe-Ti intermetallic phases might be formed when the content of V was in a range 

of 30-65 atom% or the content of Fe was above 50 atom% [34-36]. From the elemental 

analysis above, the contents of V and Fe were low (~10 atom% or below), thus the HEA 

layer had a low risk of forming those intermetallic phases. Moreover, the XRD patterns 

obtained did not show Fe-V or Fe-Ti intermetallic phases.

The microstructural details of the laser deposited HEA at different magnifications 

are shown in Figures 3c,d. The equiaxed grains were delineated by intergranular phases 

(Figure 3 c). The dendritic structure can be observed within the equiaxed grains. The EDS 

was used to analyze the element distribution, and the results are listed in Table 2 and 

Figures 4a-g. The dark contrast phase was enriched in Al, Ni, Co, and Ti, and the high 

level of Fe and Cr concentration was detected in the bright contrast phase. As learned 

from Table 2, the chemical compositions of Fe and Cr were ~45 atom% in the bright 

contrast phase while were ~16 atom% in the dark contrast phase. In combination with the 

phase identification, the dark contrasted phases rich in Al, Ni, and Ti are B2 phase while 

the bright contrast phases are Fe, Cr enriched A2 phase. A similar microstructure has 

been observed, and it was attributed to the spinodal decomposition of B2 dendrites into 

B2 and A2 coexisting phases [20,23,37].
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(a)

(c) (d)
Figure 3. (a) Secondary electron images of the interface between the AlCoCrFeNiTio.5 

HEA coating and Ti6Al4V substrate, (b) energy dispersive spectroscopy (EDS) line scan 
along the white arrow line in (a), (c) and (d) backscattered electron images of the HEA 

microstructure at different magnifications.

The chemical mixing enthalpies of element pairs in AlCoCrFeNiTi0.5 alloy are 

tabulated in Table 3. The phase formation and element segregation are determined by the 

mixing enthalpy among the constituent metallic elements. It is shown that Al, Ni, and Co 

has high negative mixing enthalpy with Ti, and they are liable to generate the B2 phase. 

For example, the mixing enthalpy between Al-Ti, Al-Ni, and Al-Co are -30 kJ/mol, -22
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kJ/mol, and -19 kJ/mol, respectively. Furthermore, Cr and Fe tend to form the A2 phase 

as they exhibit low mixing enthalpy close to zero.

(d)

(e) (f) (g)
Figure 4. (a) Secondary electron image and the corresponding elemental maps of (b) Al, 

(c) Ti, (d) Ni, (e) Fe, (f) Cr, and (g) Co of the AlCoCrFeNiTi0.5 HEA.

Table 2. Elemental composition (atom %) of each phase in the HEA by SEM-EDS (more
than 5 locations).

Phase E lem ent
Al Co Cr Fe Ni Ti

B2 24.8 ±  1.6 17 ±  1.0 7.2 ±  0.7 8.4 ±  1.1 21.2 ± 0 .6 20 ±  1.7
A 2 15.5 ±  2.1 13.8 ±  1.4 19.7 ±  1.2 25.4 ± 1 .3 14.3 ± 0 .9 12.1 ± 0 .5

The EBSD inverse pole figure (IPF) image of a region of 1180 pm by 1056 pm 

taken in the XZ-plane of the as-deposited AlCoCrFeNiTio.5 alloy is given in Figure 5a. 

Each individual grain in the IPF image was color-coded based on the relationship 

between its crystallographic orientation and the building direction, which was vertically 

upwards (Z direction indicated in Figure 5a). There was no obvious preferred



crystallographic texture developed in the alloy because the grains were randomly color- 

coded. It revealed the equiaxed grains from the IPF image. Moreover, the histogram of 

the grain size measurement is illustrated in Figure 5b. The grain size measured by the 

vertical intercept was approximately 20.3 pm and was 21.1 pm along with the horizontal 

intercept. It has been acknowledged that, for a specific alloy, the temperature gradient G 

and the solidification rate R determine the solidification microstructure during the laser 

process. As the advancing laser moved away from the substrate, the melt pool retreated, 

and the solidification from moved upward, which led to the temperature field to low G 

and high R and the formation of the equiaxed grains. A recent study demonstrated that 

B2-structured dendrites were frequently fragmented, providing profuse effective 

nucleation sites, and therefore, promoted equiaxed grain formation in the 

AlCoCrFeNiTio.5 HEA [37].
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Table 3. The chemical mixing enthalpies of element pairs and atomic size [9,10].
E lem ent A l Co C r Fe N i Ti

(A tom ic Size, nm ) (0.143) (0.125) (0.127) (0.127) (0.125) (0.145)
Al - - 1 9 -1 0 -1 1 - 2 2 - 3 0
Co - - - 4 - 1 0 -2 8
Cr - - - - 1 - 7 - 7
Fe - - - - - 2 - 1 7
N i - - - - - -3 5

Figure 6 presents the microhardness of AlCoCrFeNiTio.5 (Al1.0Ti0.5) HEA and 

Ti6Al4V (Ti64) substrate. Those of AlCoCrFeNi (Al1.0), CrCuFeNi2 (Al0), 

Al0.75CrCuFeNi2 (Al0.75), and AISI 304 stainless steel substrate (304 SS) alloys reported 

in our previous work are shown for comparison [17,18]. The addition of Ti into the 

AlCoCrFeNi system enhanced the microhardness from 418 HV (Al1.0) to 634 HV 

(Al1.0Ti0.5), which was about 2.1 times that of the Ti6Al4V substrate. Since Ti has a
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larger atomic radius than Al (as in Table 3), it would increase lattice distortion and 

improve the effect of solid solution strengthening. Our previous study reported that Al0 

and Al0.75 possessed FCC phase structures, making them less resistant towards localized 

plastic deformation, thereby exhibiting low hardness (170 HV and 290 HV, respectively). 

The BCC phase consisted of a decreased number of dislocation slip systems compared to 

the FCC phase, which could explain the high hardness of AlCoCrFeNiTi0.5 HEA in this 

work.

(a)

0 10 20 30 40 50
Grain size ((.im)

(b)
Figure 5. (a) Electron backscatter diffraction (EBSD) - inverse pole figure (IPF) map of 

the XZ-plane in the as-deposited HEA sample, and (b) histogram of the grain size
measurement.
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Figure 6. Microhardness of various alloys [7,8].

3.2. OXIDATION BEHAVIOR

3.2.1. Oxidation Kinetics. Figure 7 displays the isothermal oxidation results of 

the AlCoCrFeNiTi0.5 HEA and Ti6Al4V at different temperatures (700 °C and 800 °C), 

over a period of 45 h in the air atmosphere. As illustrated in Figure 7a, the weight gains 

(AW) of the HEA were found to be 0.23 mg/cm2 and 0.61 mg/cm2 at 700 °C and 800 °C, 

respectively. For the Ti6Al4V alloy, its mass gain was measured at 5.87 mg/cm2 at 700 

°C, and its curve was recorded only within 20 h due to the scale spalling at 800 °C. The 

oxidation curves were observed to follow the parabolic form. The results of the parabolic 

rate law plot are shown in Figure 7b-d. Here, the parabolic rate constant, Kp can be 

considered as a measure of the oxidation resistance, and it was calculated using the 

Equation (1).

A W  _
( )2 = Kp x t  + C (1)

where A W  is the mass gain (mg/cm2), A represents the unit area, Kp is the parabolic rate 

constant in mg2cm-4h-1, t is the oxidation time (h), and C is a constant value. In addition, 

the coefficient determination R2 values (>0.95) indicate that the parabolic model fits well



with the observations in Figure 7b-d. The Kp values were determined as 0.8501 

(Ti6Al4V at 700 °C), 0.0011 (HEA at 700 °C) and 0.0077 mg2cm-4h-1 (HEA at 800 °C). 

For discussion in Section 3.3, the Kp values were converted to the unit of g2cm-4s-1, i.e., 

2.36 x 10-10 (Ti6Al4V at 700 °C), 3.06 x 10-13 (HEA at 700 °C), and 2.14 x 10-12 (HEA 

at 800 °C). Hence, better oxidation resistance was observed with the HEA as its low 

weight gain and parabolic rate constant.

3.2.2. Phase Analysis. XRD analyses were performed following oxidation tests, 

and the results are indicated in Figure 8. The strong diffraction peaks of TiO2 and weak 

diffraction peaks of AhO3 were seen from the Ti6Al4V substrate, as in Figure 8a. This 

illustrated that the scale formed on the Ti6Al4V substrate was mostly composed of TiO2 

and a small amount of AhO3. The TiO2 was a poorly adherent and brittle scale, and Ti 

and O ions could diffuse through the porous oxides, which resulted in the fast oxidation 

kinetics. A thick oxide scale was formed and cracked due to the thermal stress at the 

elevated temperature [2].

For the AlCoCrFeNiTi0.5 alloy oxidized at 700 °C, AhO3, together with B2 and 

A2 phases were detected, as shown in Figure 8b. When oxidized at 800 °C, the oxides 

were & 2O3, TiO2, AhO3, and spinel (mainly composed of M & 2O4), as in Figure 8c. 

Besides, a Fe-Cr sigma phase with a tetragonal structure (P42/mmm, 136) was detected in 

AlCoCrFeNiTi0.5 alloy oxidized shown in Figure 8b. A similar phenomenon was 

described by Wang et al., in which the transformation occurred from BCC to sigma phase 

at 650 °C [38,39].

3.2.3. Cross-Section Morphology of Oxidate Scales. The cross-sectional 

backscattered electron images and the elemental composition distribution of the Ti6Al4V
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and AlCoCrFeNiTio.5 HEA oxidized at 700 °C and 800 °C are present in Figure 9. The 

oxide scales of the Ti6Al4V had a thickness of 25.54 ± 1.85 pm and they were loose, 

porous, and some cracks can be observed in Figure 9a. Its main composition was TiO2, as 

the content of Ti was ~25-28 atom% and ~47-60 atom% of O (as in Figure 9b).

EDS mapping analysis of the cross-sectional HEA oxidized at 700 °C and 800 °C 

was performed to reveal the oxide scales better, and the results are shown in Figures 10a- 

h and 11a-h. The thickness of the scale on the HEA oxidized at 700 °C was about 1.73 ± 

0.14 pm, of which it mainly contained AhO3 (Al: ~15—17 atom%, O: 50-55 atom%, Ni, 

Cr, Co, Ti: below 10 atom% as in Figures 9c,d) and this was consistent with the 

observation in Figure 10. The thickness of the scale on the HEA reached to 5.12 ± 0.37 

pm at 800 °C in Figure 9e, corresponding to that the scale thickness increased with the 

oxidation temperature. The scale structure mainly comprised of TiO2 (Ti: ~20-22 atom%, 

O: ~63-66 atom%), & 2O3 (Cr: ~18-21 atom%, O: ~ 53-56 atom%) and AhO3 (Al: ~17- 

19 atom%, O:~48-50 atom%) for the oxidized HEA at 800 °C (Figure 9f). The thickness 

of each layer was measured at 0.96 pm for the TiO2, 1.69 pm for the & 2O3, and 2.51 pm 

for the Al2O3 . This HEA mainly formed an outermost TiO2 scale, an innermost 

continuous AhO3 layer, and a & 2O3 layer in-between, as illustrated in Figures 11a-e. The 

formation of the continuous & 2O3 and AhO3 layers can actually limit the diffusion of 

oxygen [40], providing excellent oxidation resistance at high temperatures.

3.3. DISCUSSION ON THE OXIDATION BEHAVIOR

The oxidation mechanism of Ti6Al4V and AlCoCrFeNiTi0.5 HEA can be obtained
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from the above analysis. The predominant oxide in Ti6Al4V is TiO2, with a small amount
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of AI2O3 at 700 °C. Since TiO2 is brittle and loose in the oxide film, it is vulnerable to 

detach from the substrate when it comes to high-temperature oxidation.

Time (h)

(a)
Time (h)

(b)

Time (h)

(d)
Figure 7. Isothermal oxidation results of AlCoCrFeNiTi0.5 HEA and Ti6Al4V at 700 °C 
and 800 °C for 45 h; (a) weight gain versus oxidation time curves, the parabolic plot for 

(b)Ti6Al4V at 700 °C, (c) HEA at 700 °C and (d) HEA at 800 °C.

Figure 8. XRD patterns of the oxidized (a) Ti6Al4V at 700 °C, (b) HEA at 700 °C, and
(c) HEA at 800 °C for 45 h.
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(a)
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(c) (d)

(e) (f)
Figure 9. Cross-sectional backscattered electron images and the corresponding elemental 
composition distribution along the yellow arrow for the oxidized: (a) and (b) Ti6Al4V at 

700 °C, (c) and (d) HEA at 700 °C, (e) and (f) HEA at 800 °C for 45 h.

For the AlCoCrFeNiTi0.5 HEA, it is slightly oxidized at 700 °C, as a thin AhO3

oxide layer is observed, and the Fe-Cr sigma phase occurs due to the phase
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transformation. The Al, Cr, and Ti are selectively oxidized and diffuses and enriches into 

the oxide layer at 800 °C. The TiO2 is distributed in the outermost oxide layer, and 

continuous protective & 2O3 and AhO3 scales are located beneath the TiO2 layer. The 

behavior of the AlCoCrFeNiTi0.5 HEA is similar to Group II in Ni-Cr-Al alloy systems 

[25,41]. The oxide map can be explained that the concentrations of Al and Cr facilitate 

the external & 2O3 with an internal subscale AhO3 scale. In a review of thermodynamic 

data, the standard Gibbs free energy of AhO3 (-891 KJ/mol at 800 °C) formation is more 

negative than other possible oxides (i.e., & 2O3: -569 KJ/mol) in the HEA [42], the 

growth of AhO3 should be favorable during the initial stage of oxidation.

(a) (b) (c)

(e) (f) (g) (h)
Figure 10. (a) Backscattered electron image and the corresponding (b) O, (c) Al, (d) Ti, 
(e) Cr, (f) Ni, (g) Fe and (h) Co EDS maps of the oxide scales on AlCoCrFeNiTi0.5 HEA

oxidized at 700 °C for 45 h.

It is important and interesting to compare the oxidation rates from our work with 

other HEAs and conventional alloys. Table 4 collects the parabolic constants Kp



measured for different HEAs (CrMnFeCoNi, FeCoNiCrAl and Alo.sCoCrFeNiTio.s) and 

alumina-forming austenitic (AFA) stainless steel. It is worth noting that the examined 

HEAs are comparable to those similar types of HEAs. The AlCoCrFeNiTi0.5 HEA is 

believed to own good oxidation properties due to the sluggish diffusion effect and 

formation of AhO3 and Cr2O3 oxides. However, its oxidation resistance is shown to fall 

short of FeCoNiCrAl, Ah .5CoCrFeNiTi0.5 and AFA steel, i.e., 2-3 order of differences in 

Kp values. According to Butler et al. [24,25], increased Al content enhanced the 

continuity of the AhO3 scale, leading to improved oxidation resistance. The formed 

alumina could exhibit a protective effect at low Ti content. With the addition of Ti, it 

negatively affected the oxidation behavior of the aluminum-containing HEAs. As 

described in Erdogan’s work [43], a good barrier against oxidation did not form in the Ti- 

rich CoCrFeNiAl0.5Ti due to the fast-growing oxides.

97

(a)
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/

(e) (f) (g) (h)
Figure 11. (a) Backscattered electron image and the corresponding (b) O, (c) Al, (d) Ti, 
(e) Cr, (f) Ni, (g) Fe and (h) Co EDS maps of the oxide scales on AlCoCrFeNiTi0.5 HEA

oxidized at 800 °C for 45 h.



98

Table 4. The values of the parabolic constants for various alloys.
Alloy K v (g2mg-4s-1) Temperature (°C) Reference

AlCoCrFeNiTi0.5 3.06 x 10-13 700 This work
2.14 x 10-12 800

CrMnFeCoNi 5.47 x 10-12 700 [44]
1.67 x 10-11 800

FeCoNiCrAl 8.5 x 10-15 700 [45]
4.0 x 10-14 800

Al1.5CoCrFeNiTi0.5 1.66 x 10-14 700 [46]
14Cr-25Ni-3.5Al AFA steel 3 x 10-14 850 [47]
22Cr-25Ni-2.5Al AFA steel 9.19 x 10-15 700 [48]

3.55 x 10-14 800

Based on these facts, the laser processed AlCoCrFeNiTi0.5 HEA has great 

potential under the high-temperature application. A great effort should be put on (1) the 

investigation of the sequence of oxide formation at the early stage, and (2) the 

improvement of the oxidation resistance by alloying addition, e.g., Al, Si.

4. CONCLUSION

The AlCoCrFeNiTi0.5 high-entropy alloy (HEA) coating was fabricated by laser 

metal deposition (LMD) on a Ti6Al4V substrate. The microstructure and isothermal 

oxidation behavior at 700 °C and 800 °C in air atmosphere were investigated, and the 

underlying mechanisms were discussed. The main phase constitutions in as-deposited 

HEA were the Fe, Cr-rich A2 and Al, Ni, and Ti-enriched B2 phases. The isothermal 

oxidation testing demonstrated that the HEA coatings could effectively improve the 

oxidation resistance of the Ti6Al4V substrate. The oxidation kinetics of the HEA and

Ti6Al4V met the parabolic rate law, while the weight gain and parabolic rate constant of
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the HEA were lower than Ti6Al4V, implying a better oxidation resistance. The scales of 

the Ti6Al4V were mainly composed of TiO2 at 700 °C, and it suffered from spalling at 

800 °C. The AlCoCrFeNiTi0.5 HEA was slightly oxidized at 700 °C as a few oxides were 

formed. At 800 °C, the formation of continuous AhO3, & 2O3 scales could be ascribed to 

their good oxidation resistance of the HEA. This work provides an approach to enhance 

the oxidation resistance of Ti6Al4V alloy and accelerate the broad adoption of HEAs in 

high-temperature applications.
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SECTION

2. CONCLUSIONS

The fabrication of a novel high-entropy alloy (HEA) was fabricated from 

elemental powders using laser metal deposition (LMD). The microstructure, mechanical 

properties, and oxidation behavior of as-fabricated HEA have been investigated in the 

current work. In the first work, AlxCrCuFeNi2 (x = 0,0.75 in molar ratios) HEAs were 

coated on AISI 304 stainless steel substrate via laser metal deposition technology. Good 

metallurgical bonding was observed between the HEA coatings and the substrate. The 

AlxCrCuFeNi2 (x = 0,0.75) HEAs coating exhibited columnar dendritic microstructure 

and FCC structure identified by EBSD.

Next, an AlCoCrFeNi HEA was coated on an AISI 304 substrate by LMD 

technology. The coating on the substrate without and with the intermediate layer was 

characterized and discussed. Cracking was prominent when the AlCoCrFeNi HEA was 

directly coated on the AISI 304 substrate due to the compositional change between HEA 

and the substrate. Using an intermediate layer of CoFe2Ni improved the bond. The 

incorporation of the intermediate layer successfully eliminated crack formation in the 

deposit.

The oxidation behavior of the HEA was further investigated. The 

AlCoCrFeNiTi0.5 HEA coating was fabricated on a Ti6Al4V substrate. The 

microstructure and isothermal oxidation behavior at 700 °C and 800 °C in air atmosphere 

were investigated, and the underlying mechanisms were discussed. The isothermal



oxidation testing demonstrated that the HEA coatings could effectively improve the 

oxidation resistance of the Ti6Al4V substrate. This work provides an approach to 

enhance the oxidation resistance of Ti6Al4V alloy and accelerate the broad adoption of 

HEAs in high-temperature applications.

At last, we presented a convolutional neural network (CNN) application for robust 

quality inspection of metal additive manufacturing (AM) parts. The Missouri S&T 

dataset, including optical microscope images of real-world metal AM parts were used to 

train and test the CNN model. This work contributed to developing a CNN model with 

excellent performance in recognizing good quality, crack, gas porosities, and a lack of 

fusion categories. Our final model achieved an accuracy of 92.1% with 8.01 milliseconds 

recognition time of one image. The results indicate the promising application of the CNN 

method in quality inspection in the AM industry. It would be interesting to explore more 

CNN architectures and include a variety of materials in the future.
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3. RECOMMENDATIONS FOR FUTURE WORK

The novel AlCoCrFeNi high-entropy alloys (HEAs) have been fabricated by laser 

metal deposition (LMD) process. Significant progress has been made in terms of the 

gradient composition fabrication, microstructure, and oxidation behavior. These 

accomplishments will continue to motivate new research questions and to inspire major 

scientific themes. Some of these, for example, high-throughput computational and 

experimental methods, are essential tools to cope with the enormous composition 

combinations of HEAs. In addition to high-temperature oxidation performance, creep 

behavior and fatigue properties should also be studied to accelerate HEAs' real-world 

adoption.

This work established the new neural network-based methods in the metal 

additive manufacturing (AM) process. We can expect to see that vast amounts of data 

will be generated with AM's rapid development. However, these data's accessibility is not 

easy across different research groups, as these data in “these isolated islands” have 

inconsistent application programming interfaces (APIs) to call. Therefore, the 

collaboration among the process engineers, materials engineering, and computer scientist 

will significantly benefit from acquiring unified APIs. The hardware and software will be 

needed to provide reliable sensor and control systems. We can envision that the advanced 

deep learning algorithm will boost computational speed and performance. We can 

forecast that the overwhelming amount of deep learning efforts paid on AM materials and 

automated process feed-back systems will push forward the intelligent AM forward.
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