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ABSTRACT

iii

Well stimulation (well fracturing) became an essential tool in the Oil and Gas 

industry to unlock the potential of unconventional reservoirs all over the world and 

especially in the Middle East. In Kuwait, well stimulation is obligatory when dealing 

with deep Jurassic carbonate reservoirs. Thus, the well fracture designing process plays a 

very critical role in determining the success of the stimulation job and the improvement 

of the recovery.

Several wells stimulated with 20% HCL have shown wide variations in both short 

and long term well production performance. The research aims to investigate and identify 

the possible reasons causing these variations by creating an integrated workflow 

comprised of two modeling sections using actual field data. Fracture Modeling; to assess 

the fracturing operation and obtain the fracture geometry and conductivity using 

StimPlan software. Reservoir Simulation; to test the fracture design by the performance 

of the well using Petrel and Eclipse software. The iterative process in the workflow also 

gives the ability to tailor the design to reach the maximum potential of the well.

Three major reasons are suspected to be behind the underperformance of the 

investigated well. First, human errors in planning and gathering the required data for the 

stimulation job. Second, the stress contrast between the layers allows the fracture to 

propagate vertically giving more fracture height than length. Third, the fracture 

orientation, which has a great effect on the long-term performance by allowing the 

induced fracture to intersect with the formation and the natural fractures.
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1. INTRODUCTION

1.1. BACKGROUND

The domestic demand for gas led Kuwait Oil Company to the discovery of the 

unconventional Jurassic age reservoirs. There are six main fields contributing to gas and 

light oil production. The biggest two fields are Sabriyah and Raudhatain shown in Figure 

1.1 are the bread and butter for the Jurassic project, surrounded by Bahrah, Dhabi, Um- 

Niqqa, and North-West Raudhatain. Middle Marrat and Najmah-Sargelu formations are 

spreading across all the mentioned fields. Unlike the famous conventional sandstone 

Burgan field, the Jurassic reservoirs are highly fractured carbonate formations, and they 

are the only formations producing commercial quantities of hydrocarbons.

Figure 1.1 Map of Jurassic Fields Locations (www.kpc.com.kw).

http://www.kpc.com.kw
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The lithology of Najmah-Sargelu formation in Figures 1.2 and 1.3 is slightly 

different than Middle Marrat. It consists of a mix of limestone and kerogen layers, while 

Middle Marrat contains limestone, shale, anhydrite, and dolomites.

Sub Period Epoch Kuw ait Main L ithology Thickness Age
Formation MY'

0
2
3
5

23
35
57
65

74

83
87

90
95
96
97
98 

100

112
120

133

139
140

146

152
155
157
161
168
173
178
187
195
201
208
210
223
225
230
241
245
256

Figure 1.2 Kuwait Formations Geological Stratigraphy (Al-Muhailan et al., 2016).
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Figure 1.3 Jurassic Formations Rock Types.

The deep and sour environment raised many challenges in the journey of drilling 

and developing these complex reservoirs, which also contain near critical point fluids. A 

summary of the field’s properties is listed in Table 1.1.

Table 1.1 Properties of Raudhatain Field.

Raudhatain

Reservoir Middle Marrat
Initial Pressure 11000 Psi
Reservoir Temperature 270 F
Porosity 15- 20%
Permeability 0.0001 - 100 mD
Reservoir Fluid Volatile Oil
Depth ~ 16000 ft
h 2s ~ 1 %
c o 2 ~ 0.3 %
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The subject of study in this research is MA-021, a well located on the west side of 

the Raudhatain field illustrated in Figure 1.4. It was drilled as a deviated well adapting 

the 7 casings policy for the completion design as demonstrated in Figure 1.5. In Middle 

Marrat formation in 2008, an overbalanced perforation was adopted using 6 spf with 45 

degrees phasing. An illustration of the gun used for perforation is shown in Figure 1.6.

m m
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Figure 1.4 Well Location Map.
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Figure 1.5 Well Schematics and Casing Data.
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The well logs in Figure 1.7 show good cement isolation with few natural fractures 

across the perforated interval. The porosity and permeability ranges are (5 -  18 %) and 

(0.1 -  10 mD) respectively, the distribution of these ranges is transformed in the reservoir 

model as demonstrated in Figures 1.8 and 1.9. The core lab tests observed the 

development of good porous reservoir facies. The seismic section interpretation denies 

the intersection of the well with any nearby faults.
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Figure 1.7 Composite Logs of Well MA-021.

Figure 1.8 Well Cross-Section with the Distribution of Porosity Ranges.
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Figure 1.9 Well Cross-Section with the Distribution of Permeability Ranges.

The well was producing during a short-term test on 32”/64” choke size for 8 

hours. The produced fluid had an API of 45 degrees with zero water production. A 

production logging tool (PLT) test was performed to identify the contribution from the 

perforated interval. It was found that most of the production is flowing from the upper 

part of the perforation interval as indicated in Table 1.2. The test also revealed that the 

actual perforation interval is shifted (- 36 ft) from the originally proposed perforation as 

illustrated in Figure 1.10.

Table 1.2 PLT’s Production Contribution Percentage.

P ro d u c tio n

%

Z o n e s

f t

39 .83 1 5 2 9 2 .CM 5 3 0 7 .2

8 .49 1 5 3 0 8 .0 -1 5 3 2 4 .3

27 .12 1 5 3 2 5 .9 -1 5 3 5 0 .9

21 .17 1 5 3 5 1 .4 -1 5 3 6 4 .4

3 .39 1 5 3 8 2 .5 -1 5 3 8 5 .0



Figure 1.10 PLT Log Results.
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1.2. OBJECTIVES

Before getting to the reasons behind this study, let us briefly discuss the behavior 

of wells in carbonate fractured reservoirs. The production plateau from a fractured 

reservoir tends to decline rapidly in a short time, relatively based on the number of 

natural fractures available in the formation. The initial high production rates represent the 

flow of hydrocarbons from the fractures into the wellbore, then it declines when the 

matrix starts feeding the fractures. At this point in the process of developing the well, the 

team turns to acid well stimulation or hydraulic fracturing to enhance the production.

MA-021, our subject of study was chosen for an acid (20% HCL) fracture job 

after showing a decline in production. Unexpectedly upon testing, the well showed only a 

30% improvement in post-job production. This surprising result was noticed in several 

other wells without knowing the cause of such a poor outcome.

The main objective of the workflow demonstrated in Figure 1.11 that shapes this 

research is to investigate the post-acid fracture production and the poor results exhibited 

by the well through:

• Performing a forensic audit on all the available well data to examine and 

review the planning, acquisition, and execution phases.

• Modeling the actual acid-stimulation fracturing job performed on the well 

using StimPlan software.

• Compare post-fracture data interpretation results from StimPlan to the service 

company results.

• Run reservoir simulation on the studied well with the fracture input data from 

StimPlan’s new fracture designs for evaluation.
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Figure 1.11 The Integrated Workflow of the Study.

1.3. LITERATURE REVIEW

The key factor for best stimulation results is to perfect the design of the fracture 

job. The outcome of the design can be simulated by lab experiments and numerical 

models creating workflows. These integrated workflows are used to calibrate the fracture 

design and optimize the results hence enhancing the recovery of the well.

For more than six decades, scientists and engineers in the oil and gas industry 

started to study and evaluate well stimulation process, trying their best to capture the 

controlling parameters behind it, to assist them in understanding the fracture propagation 

and conductivity which are critical in the process of their prediction.

The journey of studies and experiments started with a graphical estimation of 

productivity improvement using ratios of fracture conductivity to formation permeability, 

and fractured length to drainage radius as an estimation method for productivity 

improvement by McGuire and Sikora (1960). Followed by the analytical solution of 

utilizing fracture conductivity correlations to predict acid penetration length in the 

formation which was presented by Terrill (1965). Then a derivation of the productivity



formula considering vertical fracture conductivity and radial steady-state flow was 

introduced by Raymond and Binder (1967). Sevougian et al. (1987) combined the 

productivity equation along with the conductivity correlations to estimate the optimum 

fracture length and conductivity for vertical wells. Ben-Naceur and Economides (1989) 

delivered guidelines addressing the importance of controlling the leak-off rate, avoiding 

fracture height, and maintaining width in the fracture design process. The numerical type 

curves were introduced to estimate productivity in low permeability reservoirs by 

Wattenbarger et al. (1998). A few years ago, Ravikumar et al. (2015) proposed fracture 

design procedures to estimate uniform fracture conductivity and optimum fracture length 

in acid-stimulated wells.

With the expansion and growth of computational power, researches and studies 

upgraded from lab experiments to the use of numerical models. These models have the 

ability to capture to some extent the interaction between the rock and the injected acid 

deep down in the reservoirs. Despite the existence of such a powerful tool, the degree of 

complexity created by the number of uncertainties and unknowns indicated in Figure 1.12 

are so massive to be accounted for in a small number of models. It is very difficult even 

for us humans to keep track of all parameters and changes at the same time, as most of 

the features that affect the rock response to engineering activities remain hidden. In my 

personal opinion, the only possible way to integrate all of the required models at once is 

by using Artificial Intelligence (AI) as illustrated in Figure 1.13.

12
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Figure 1.12 Some of the Fractures Associated Uncertainties (Delorme et al, 2014).

Figure 1.13 Types of Models used in Fracture Design Studies.



The mixture of fracture modeling and reservoir simulations creates a very 

powerful tool in field development, especially in unconventional studies. It has the 

capability of integrating production data, geological properties through the whole field 

minimizing the uncertainties in the undrilled areas between the wells, and performing 

multiple sensitivity studies. In addition to optimizing fracture designs, well completion, 

infill drilling, and re-fracturing. Allowing the engineers to integrate all of the available 

data to visualize the whole picture for better decisions making (Du et al., 2015; Tavassoli 

et al., 2013a, 2013b). It is famously known in the geological community, small evidence 

on the surface (logs and core) might be hard to extend to the deepest parts of the reservoir 

but definitely could guide us to better interpretations (Wennberg et al., 2009). That 

reminds me of one of Charles Lyell’s principles of geology: “The present is the key to the 

past”.

There are several studies on the subject of acid fracturing that helped in shaping 

the idea of this research. The majority of those studies include in their integrated 

workflow a fracture propagation model to generate the fracture, acid fracturing model to 

simulate the etching and fracture conductivity, and well performance model (Deng et al., 

2011; Lo & Dean, 1989; Mou et al., 2010; Oeth et al., 2013; Oeth et al., 2011; Settari, 

1993). Despite the fact that numerical models use estimated data and simplified 

assumptions to overcome the complexity, but still they are better solutions than the 

simple and fast classical approaches, which lack detailed results and most importantly the 

capability to generalize the results up to a full field scale (Delorme et al., 2016).

Jeon et al. (2016) presented a magnificent comparison between acid fracturing 

and fracturing with proppant shown in Tables 1.3, 1.4, and 1.5. Although the study

14
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outcome contradicts with the decision made on our subject of study, where they used acid 

to fracture the formation, there are many more reasons (economic conditions, cost of 

treatment, and cost of oil and gas) as stated by the authors which should be covered to be 

able to give a proper decision. As we all know, operational cost plays a strong role in the 

decision-making process in the industry, because it affects the profit thus affecting the 

success of the entire project.

Table 1.3 Strengths of Proppant and Acid Fracturing (Jeon et al., 2016).

P r o p p a n t  F r a c tu r in g A c id  F r a c tu r in g

• Fluids are not reactive and corrosive to downhole 
tubulars.

• Fracture dimensions can be determined by proppant 
addition and distribution.

• High strength proppant commonly ensures better 
fracture conductivity in deep wells.

• Longer fracture length can be achieved in tighter 
formations by increasing total fracturing fluid volume 
pumped.

t Leak-off is not significant problem as it can be easily 
controlled with available additives.

• It has simpler process than Proppant fracturing.

• It it highly applicable in high permeable reservoirs as 
acid dissolves formation and enlarges flow channels 
while etching.

• Wellhead pressure is usually not restricted.

• Conceptually it can have higher fracture conductivity; 
unless limited by severe reservoir conditions, very high 
fracture conducvity can be achived.

• Since it does not require flush stage, fast well clean-up 
and ready-well-reponse is attainable.

• There is no screen-out concerns.

Table 1.4 Limitations of Proppant and Acid Fracturing (Jeon et al., 2016).

P r o p p a n t  F r a c tu r in g A c id  F r a c tu r in g

• Higher operation cost is expected due to large volume 
of padding fluid and proppants.

• Proppant usage brings a concern of placement in the 
fracture and screen-out to formation.

• In high deliverability wells, proppant flow back may 
occur.

• It is expensive to clean out the wells once screen-out 
happens.

• Soft carbonates under high closure stress often 
experiences proppant embedment problem even 
though it can be remedied with wider propped fracture 
design.

• Due to acid reaction with formation, high fluid leak-off 
is problematic.

• Acid reaction does not allow long etched fractures.

• Corrosion inhibitors are always required to protect the 
treatment facilities.

• Strategic acid placement is required to obtain stable 
fracture conductivity at high effective pressures.

t Deep, high temperature wells commonly require more 
expensive organic/HCl blends.

t Soft carbonates under high effective stress can re-heal.
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Table 1.5 Treatment Recommendation Based on Simulation (Jeon et al., 2016).

S e ria l # C a s e  N a m e B e s t o p t io n  fo r  fra c tu r in g

1 D e e p  re s e rv o ir A c id  fra c H igh  s tre n g th  p ro p p a n t L o w  s tre n g th  p ro p p a n t

2 S h a llo w  re s e rv o ir A c id  fra c H ig h  s tre n g th  p ro p p a n t L o w  s tre n g th  p ro p p a n t

3 H ig h  p o re  p re s s u re A c id  fra c H igh  s tre n g th  p ro p p a n t L o w  s tre n g th  p ro p p a n t

4 L o w  p e rm e a b ility A c id  fra c H igh  s tre n g th  p ro p p a n t L o w  s tre n g th  p ro p p a n t

5 H ig h  p o ro s ity A c id  fra c H ig h  s tre n g th  p ro p p a n t L o w  s tre n g th  p ro p p a n t

6 H ig h  Y o u n g 's  m o d u lu s A c id  fra c H igh  s tre n g th  p ro p p a n t L o w  s tre n g th  p ro p p a n t

7 H ig h  te m p e ra tu re A c id  fra c H igh  s tre n g th  p ro p p a n t L o w  s tre n g th  p ro p p a n t

1.3.1. KOC Study. The aim of the study was to test three different 

unconventional approaches on one of Kuwait’s tight carbonate reservoirs, to decide on 

the most optimum method to model stimulated fractures. These approaches are as 

follows:

• Well-bore PI multiplier.

• Matrix permeability multiplier (SPSP model).

• Dual-media model (DPDP model).

Sensitivity analysis was also performed to overcome the uncertainty with fracture 

permeability, as it was calculated using Poiseuille’s law. The study concluded that the 

DPDP model produces the best results in modeling stimulated fractures (K. Tiwari et al., 

2019). Therefore, in this study, a DPDP model is used in the reservoir model to enhance 

the outcome of implementing the fracture geometry and conductivity from the fracture 

model.

1.3.2. Integrated Workflows. The structure of the integrated workflow 

presented in this research was introduced and discussed in the literature within various 

studies. With the use of different data, approaches, methods, and ideas, studies can build 

on each other aiming at solving the targeted enigma.



The acid fracture research laboratory at Texas A&M University presented great 

studies delivering integrated workflows that helped in shaping this research’s workflow. 

The first study was applied on a carbonate reservoir (100% limestone) with three models 

combined to produce a unique workflow, which enables the user to evaluate and optimize 

the fracture design (Wu et al., 2013). The generated models are:

• Fracture propagation model: for fracture geometry using StimPlan 

software.

• Acid transport and dissolution model: for the etched fracture conductivity 

in each cell using correlations.

• Well performance model: for well production rates using Eclipse software.

The second study introduced two-way modeling workflows; the normal forward

integrated workflow and inversion integrated workflow, which aimed to overcome 

unavailable input data (leak-off coefficient) (Jin et al., 2017). The used models are:

• Fracture propagation model: for fracture geometry using Mfrac software.

• 3D fracturing model: for fracture conductivity in each cell using 

correlations.

• Well performance model: for well production history match using Vogel 

inflow performance model.

In the third study, they used integrated models coupled with a reservoir model for 

optimum stimulation design, with the use of fracture conductivity distribution along the 

created fracture. It is worthy of note that the fracture geometry and conductivity were 

simulated during the injection and closure periods, meaning that the values are not 

constant (Aljawad et al., 2018). The models constructed the workflow are:

17
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• Acid fracture models:

- Fracture propagation model (fracture geometry).

- Acid transport and reaction model (acid).

- Heat transfer model (temperature).

• Productivity model: for productivity index calculations.

This last study contained a unique way of constructing the workflow. Using a 

data-rich well as a subject of study enabled in producing a fully integrated fracture 

treatment evaluation. The detailed reservoir characterization data linked with the models 

boosted the capability of evaluating and optimizing fracture treatment designs 

(Offenberger et al., 2013). The list of the models is as follows:

• Geo-cellular model.

• Discrete fracture network model (DFN).

• Reservoir model: PVT data, permeability, relative permeabilities, porosity, 

and saturations.

1.3.3. Post-Stimulation Production. Some several uncertainties and unknowns 

surround the well performance after the fracture job, including direct and indirect 

affecting factors. What makes it more complicated, is that the reasons differ from case to 

case. To fully investigate the matter, the whole process of stimulation needs to be 

monitored and reviewed, starting from the planning phase, passing through data 

collection, and finally the operation execution phase. Acid stimulation in carbonate 

reservoirs might cause wellbore damage, causing the change in skin factor resulting in 

getting smaller production rates than expected. Therefore, the estimation of skin factors



before and after the fracture job is highly important, as it might be the cause of the 

underperformance of the well (Jin et al., 2017).

Any fracture engineer knows the importance of geomechanics for placing wells 

and designing the fracture job. Formation stresses can be another key factor affecting 

post-stimulation production. Etching the formation, especially near-wellbore may result 

in a change in stresses and in some cases collapse of the completion casing. Thus, an 

assessment of the mechanical damage on the acidized rock is critical to ensure long-term 

production (Safari et al., 2017).

1.3.4. Induced and Natural Fractures. The future of a certain field can be 

determined by the existence of natural fractures in the reservoir and the level of 

understanding of the interaction between those natural fractures and the induced ones 

(Delorme et al., 2016). Natural fractures can sometimes affect negatively on the 

conductivity of the created fracture, as they steal a fraction of the injected acid designed 

for the main fracture causing a reduction in the fracture conductivity (Ugursal et al., 

2019). In addition to that, in some cases, the natural fractures orientation is perpendicular 

to the induced fracture. This system of alignment causes the induced fracture to propagate 

in the same direction as the naturally existing fractures negating their effect on improving 

the production (Li et al., 2012).
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2. METHODOLOGY

2.1. DATA COLLECTION AND VALIDATION

Data availability can push the project drastically to the point of success. That’s 

why this first step of the study is extremely important, it is the base rock that will hold the 

rest of the research. Before collecting the data, a review of over 70 wells from six 

different fields took place to select the candidate well for the study. The criteria of 

selection were based on data availability, reservoir, and areas with the least simulation 

problems and errors in the model. Two wells were selected, MA-021 our primary 

selection and another well used as a backup.

During the validation process of the collected data shown in the background 

section, it was found that the well trajectory wasn’t correctly represented, as the well was 

vertical in the model while it is actually deviated. That dates back to the time at the 

beginning of the project when the team used simple methods (Microsoft Excel software) 

to draw the schematic of the well to save time because in the early stages contracting with 

software companies process takes time. Keeping a small note in the corner of the 

schematic wasn’t enough to avoid this error.

Moreover, the shift in the perforation interval discovered in PLT was not modified 

in the well data in the reservoir model. Lastly, the latest tubing check performed in the 

well revealed with the help of an impression plug, that there was a wire left in the hole 

during one of the jobs. Which can cause blockage, formation damage, and corrosion in 

the long term.
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Another part of the validation was to review the fracture job proposal. This 

proposal is a document provided by the service company that will handle the execution of 

the fracture job. The document provides information on the fracture design in terms of; 

lab tests, type of treatment, job schedule, and procedures. Most of the information 

delivered in the proposal was produced from fracture model simulations. One of these 

simulations, mimics the fracture in the formation, providing height, width, and 

conductivity of the fracture as illustrated in Figure 2.1.

1 4 7 00
< 0 .0 0  m d.ft 
0 - 5 0  m d .ft 
50  - 3 5 0 5 0  m d t 
3 5 0 5 0  - 7 0 0 5 0  n 
7 0 0 5 0  - 1 0 5 0 5  
1 0 5 0 5 0  - 1400! 
1 4 0 0 5 0  - 1750! 
1 7 5 0 5 0  - 2100! 
2 1 0 0 5 0  - 2450!
> 2 4 5 0 5 0  m d .1

d.ft 
m d.ft 

0 m d .ft 
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200
Fracture H a l f - le n g t h - f t

Figure 2.1 Simulated Fracture Length and Conductivity.

The simulated fracture shows around 280 ft of fracture height and about 150 ft of 

fracture length, which is not bad if it is the actual fracture results. Nevertheless, it is not



necessary for the actual induced fracture to be identical to the simulated one, since the 

shape of the final induced fracture is controlled by the results of the mini fracture tests 

performed before the main fracture. The issue with the service company’s proposal 

results is that the simulated fracture does not intersect with either the old perforations 

(15328 -  15421 ft) or the new revised one (15292 -  15385 ft).

2.2. FRACTURE MODELING

The fracture modeling part was performed with the use of StimPlan software, one 

of few fracture modeling software available that have the capability of fully 3D fracture 

modeling. The software also has the feature of acid stimulation (acidizing), which will 

enable us to mimic the actual fracture job and analyze the results. The software was 

introduced to the industry by NSI Technologies Company in the mid-’90s. The main 

purpose of the fracture modeling part is to obtain the fracture input parameters for the 

reservoir simulator. Those parameters are fracture geometry and conductivity, with which 

we can evaluate and optimize the fracture design. The software has a variety of plots that 

work as tools of interpretation and analysis on both real-time and recorded data from the 

executed fracture job. It also gives the user the ability to design the fracture treatment and 

test it by simulating the fracture geometry and proppant distribution.

2.2.1. Geological Model. The first step was to structure the geological model in 

StimPlan by using actual field data. The logging process in the Jurassic wells usually 

covers only the zone of interest, but luckily in MA-021, Raw log data covers the whole 

unconventional reservoirs, starting with the top of Najma-Sargelu and ending with the 

base of the Middle Marrat reservoir. This thickness will enable us to test fracture designs
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with less worry of breaking through the formation boundaries. Feeding the software with 

reservoir data (pressure and gradients) enables it to calculate the static and dynamic 

Young’s modulus and Poisson’s ratio of the formation as demonstrated in Figure 2.2.
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Figure 2.2 Imported Well Logs and the Calculated Data.

The calculated logs need to be averaged to smooth the curves and for better 

integration as a preparation for the layering process. The maximum layer number allowed 

in the software is 100, which has a direct effect on the simulation run time. Therefore,



24

two sets of models were built, a main 80 layers primary model, and a smaller 40 layers 

model in case the simulation run was consuming a long time. The changes in gamma-ray, 

Poisson’s ratio, Young’s modulus, and stresses drive the layering process. In the primary 

model, three rock types were assigned to the layers based on permeability and facies logs 

as indicated in Figure 2.3. The types of rocks are:

• Anhydrite: seal (black).

• Dolomite: porous (blue).

• Tight carbonate: low porosity (purple).

Figure 2.3 Averaged Logs with the Assigned Rock Types.
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2.2.2. Post-Fracture Data Analysis. The pressures, pumping rates, time, and 

volumes that ought to be analyzed in StimPlan are actual data gathered and recorded from 

separate tests in the fracture job. In the field, they are sometimes called mini fracs. In 

MA-021, the fracture tests performed are:

• Injectivity test: pumping a volume of slickwater to create the initial break 

in the formation and obtain the fracture data.

• Step rate test: to test the response of the formation with different pumping 

rates by slickwater as the pumping fluid.

• Calibration test: a mini fracture with small volume to test the response of 

the formation with the actual treatment fluid (ClearFrac).

• Main fracture: pumping the treatment volumes as designed for the main 

fracture job.

Every test has its data that have to be imported separately in the software. The periods of 

injection and decline for each test has to be specified individually for plotting as shown in 

Figures 2.4, 2.5, and 2.6.
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Figure 2.4 The Imported Fracture Data from Field Tests.
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k Test Start Time End Time Analyze
SRT_Decline 19.30 52.31 ( V )
SRT 0.00 19.30 R
SRT_Step-Down 14.50 19.60 R
Calibrationjnjection 1.90 20.10 R
Calibration_Decline 20.10 81.62 R

Figure 2.5 Data Classification Based on Injection and Decline Periods.

Figure 2.6 Decline Period on the Treatment Plot.

StimPlan offers several plots used as tools of analysis and interpretation, which 

ease the process and provide better results and consistency as illustrated in Figure 2.7. 

The plots types are:

Horner plot.



27

• ISIP plot.

• Log-log plot.

• Bourdet plot.

• Square-root of time plot.

• G-fimction plot.

• Barre plot.

The closure pressure, ISIP, and fluid efficiency from each plot should be consistent and 

in agreement with one another. This consistency in the interpreted data will impact the 

history matching process in StimPlan positively and reduce the time needed for the 

match. The best results of fluid efficiency and net pressure were transferred to the 

structured geological model in StimPlan as preparation for history matching.

Figure 2.7 Data Interpretation via the Square-Root of Time Plot.



2.2.3. History Matching. The constructed geological model was calibrated by 

history matching the net pressure data and fluid efficiency. The tuning parameters in this 

process are the formation’s leak-off coefficient and the stress contrast between the 

previously assigned layers in the model. In Figures 2.8 and 2.9, the simulated fluid 

efficiency should match the one measured in the fracture job, and the simulated net 

pressure must overlay the measured data in the plot.

28

Figure 2.8 Unmatched Net Pressure Data.

Figure 2.9 Unmatched Fluid Efficiency Data.
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The fluid properties in StimPlan should represent the one that was used in the 

fracture job. Therefore, the service company was contacted to request the fluid data in 

Table 2.1, and they faced a hard time locating the data since it was from more than 10 

years ago.

Table 2.1 Fluid Properties used in the Fracture Job.

Shear Cycle Tme Temperature ii Kv(lbf-s*n Coef. K(lbf-s*n K slot(lbf- Vise® Viscg \fec@
Ramp No (mm) m 1100 ft2) Detn.(R‘2) /100ft2) s*n/100ft2) 40(1/sXcP) 100(1/sKcP) 170(1/sKcP)

1 1 351 248 0.31756 6488818 09911 5.947415 7.060389 272.69 145.92 101.59
1 2 65.1 254 0.37176 5026809 0.971 4635022 5.47254 258.15 145.17 104.01
1 3 95.1 255 0.39605 4 458223 0.9629 4.12232 4.851021 250.28 14391 104.45
1 4 125.1 255 040925 4.18124 0.9631 3872221 4.547572 246.33 143.36 104.78
1 5 155.1 255 041593 4048848 0.966 3.752589 4.402381 244.41 14312 104.98
1 6 1852 255 041902 3992593 09693 3.701811 4.340627 243.74 143.13 105.16
1 7 215.1 255 0.41916 3.996325 0.9719 3.705336 4.344655 244.1 143.36 105.34

The history match was performed on two models; ID model and 3D model. 

Although using the 3D model consumed greater time, it was needed to test the effect of 

adding 20% HCL to the fracture fluid on the results, which is a feature only available in 

the 3D model.

2.2.4. New Fracture Designs. The last part of the fracture modeling section is 

the creation of fracture designs, to be evaluated with the reservoir simulator. Four fracture 

designs were generated and simulated in both ID and 3D models based on the treatment 

total volume (2000 BBLS) used in the fracture job. The software simulates the provided 

designs and illustrates the fracture geometry with the distribution of the proppants inside 

as demonstrated in Figure 2.10. A detailed report can also be produced for the results of



the simulated design as shown in Table 2.2. The designs are classified and described as 

follows:

• Fracdesignslb: this design was an attempt to recreate the service 

company’s design by providing StimPlan with the desired fracture half- 

length as illustrated in Figure 2.11.

• Frac design Ol: to test the outcome of almost the same pumping schedule 

of the fracture job without the inclusion of proppant.

• Frac_design_02: the design was driven by the dimensionless fracture 

conductivity equation to obtain the optimum fracture design where Fcd 

equals 2, with the inclusion of proppant.

• Frac_design_03: aims to test the effect of a multi-stage pumping schedule 

(pumping cycles).

• Frac_design_04: only applicable in the 3D model to solely test the effect 

of adding acid (20% HCL) to the fracture fluid.
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Figure 2.10 An Example of Fracture Geometry and Proppants Distribution.
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Table 2.2 An Example of Calculated Results of the Design.

Calculated Results 
from 3-D Simulator - StimPlan 1-D 

Pumping Schedule - Frac design sib 
Geologic Model - MA-21 M.Marrat L80 

Licensed To: University of Missouri at Rolla - V7.23 - Network License 
Frac IPerforations : 15292.00-15385.00 ft MD /15292.00-15385.00 ft TVD
H a l f  L e n g th H y d r a u l ic '  L e n g th  (ft) 1 4 8 .0
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P R E S S U R E : M a x  N e t  P r e ss u r e  (p s i) 2 4 7 6 .8
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M a x im u m  S u r fa c e  P r e ss u r e  (p s i) 2 7 5 8 .4

T IM E : M a x  E x p o s u r e  to  F o r m . T e m p , (m in ) 0 .4

T im e  to  C lo s e 1 7 .6

R A T E : F lu id  L o s s  R a te  d u r in g  p a d  (B P M ) 1 9 .6 3
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A v e r a g e  C o n d u c t iv ity  (m d -f t ) 1 7 3 .7

H E IG H T : M a x  F ra ctu re  H e ig h t  ( f t) 3 2 5 .6

W ID T H : A v g  w id th  a t e n d  o f  p u m p in g  ( in ) 0 .3 1

V O L U M E S : T o ta l F lu id  V o lu m e  (M -G a l) 4 2 3 .4

T o ta l P r o p p a n t V o lu m e  (M -L b s ) 2 5 .6

Well ID: MA 21

Flew Back Rate (BPM) |0 000 | ( Fluid Volumes Plot ]
Start Pump Time (YYYY/MM/DD Hh:MM:SS r i -------i

J --------- ----------------------- 1 Foam Schedule

Figure 2.11 The Pumping Schedule of One of the Designs.
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2.3. RESERVOIR SIMULATION

The role of reservoir simulation in this study is to evaluate the fracture designs by 

forecasting the well production performance. In this section, two software were used, 

Petrel as an interface for the reservoir model, and Eclipse as the engine or the numerical 

simulator. The power of these packages in field development might be a strong reason 

behind the decision of KOC to used them. In addition, the feature of hydraulic fracturing 

and the ability to capture the effect of fracture geometry and conductivity in the well was 

the main reason for our selection. The model has a DFN that captures the existence of 

natural fractures in the formation, which will to some degree covers their effect on the 

forecasted post-production. The software also adapts a DPDP model, that will simulate 

the fluid flow from the fractures to the wellbore and from the matrix to the wellbore 

through the fractures.

2.3.1. Well Sector Model. The static model was constructed at the beginning by 

integrating seismic data along with the data acquired from the drilled wells. The drilling 

plans helps in updating the model with new information obtained from the newly drilled 

wells every year. Tests on field fluid samples feed the model with the required data to 

simulate the fluid flow through the formation rocks. Both fluid properties and core lab 

test results are entered to bring the model to life, in other words, changing it from static to 

dynamic model. Additionally, the model helps in calculating and propagating data in the 

undrilled areas between the wells to overcome the unknowns and address part of the 

uncertainties. All these advantages explain the high cost of the modeling software 

packages, but in turn, it will save time, effort, and maximize the economic gain by 

allowing the user to take better and faster decisions.
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The main model in Figure 2.12 was built to represent all six fields of the Jurassic 

project. The total area of the model was segregated into regions based on faults, 

pressures, contacts, and reservoir boundaries.

Figure 2.12 Full Model with Segregated Regions.

An 8 x 8 cells sector model was created with the use of distance from well 

properties shown in Figures 2.13 and 2.14. The idea was to contain the effect of induced 

fracture and its length within the boundaries of the sector model. This step was performed 

on both fine and upscaled models, where the simulation run time will be the judge on the 

one to use. A local grid refinement was implemented to give more detailed information 

around the wellbore, but the huge cell count indicated in Table 2.3 affected the simulation 

run time negatively.
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Figure 2.13 Segment Model Showing the Effect of Distance from Well Property.

Figure 2.14 The Final Sector Model with Formation Layers.

Table 2.3 The Cell Count of the Models.

M odel G rid  C e lls  C o u n t
Fine 9,600

U p-sca led 4,352
Refin ed 73,728



2.3.2. Well Data Revision. The issues with well deviation, perforations, and 

fracture centralization, which were encountered during the data collection and validation 

process will be addressed in this section.

The well deviation problem can be solved in two ways, either by importing the 

deviation survey or by the use of the well path design feature in Petrel, which was the 

approach used to tackle the issue. By providing the software with depths, azimuth, 

inclination, and the shape of the directionally drilled well, the software then creates the 

path in the well passing through the target formations in the model as demonstrated in 

Figure 2.15.

35

Figure 2.15 Well Path Design Feature used for Well Deviation.
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The perforation and fracture interval issues were tackled by simply creating a new

well with the revised well perforations from PLT and the fracture interval centralized

with respect to it as indicated in Figure 2.16.
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Figure 2.16 New Well with Revised Data.

2.3.3. Simulation Pre-run. Before testing the sector model, several parts need to

be reviewed in the software to build a simulation case and ensure a smooth simulation run

free of errors. The reviewed sections are as follows:

• Fluid model

Relative permeability curves
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• Rock properties

• Development strategy

Many numbers of simulation cases had to be built for the HM process, the created 

stimulation designs, and the sensitivity analysis. Each case has the matrix and fracture 

properties, along with sigma which is the controlling factor of the flow between them as 

illustrated in Figure 2.17.

SmJ4cr Type I laa Owl pwnnWly v l Gnd ;'([# .  _AII$*j_Up*cal

DMcripton i 0  Gnd ^  Furctm |  Strategic* | , Advanced [ Raeula

.5 -g -X ft, "h HI t  4 J
Input Umt Keyword Fracture

1 S’) [«•’$ ! BMIK.Upt(.*1 Rtxo»l«y|PO«0| »

2 B) k ; pfRM.i Permeability 1 [PfRMX] *

) B1 [<  k ] HRM.I Permeability J (PCRMV) "

4 B) [<• k» PCRM.K Permeability K (PCRMZ) *

S B l [j> k ; FBtRM.I Permeability 1 [P!RMX] * B l

• B l [< k ) FHRM.I Permeability 1 fCRMV) * B l

7 B l <• k* FHRM.lt Permeability KIPCRM2] * S I

• B l \< <t> F.PO R O .BatK att Porotity (POROJ 9 S I

9 B i [<• an Matrix fracture coupling [SI6MAV] *

to B l B p i  NIG Net to  g ro tl ritlo  [NIC) 9 □

11 B i 1* %  FNTG.BaicCaia Net to  g ro t! ratio |N1G) * B l

1? B) [♦Jfcf ) FIPMUM.UWITS.11 Fluid in place region [FIPNIIM) * □

IS B l I j j m  FIPNUM.UNITS.11.hKtu Fluid in piece region [FIPNUM] * B l

14 B l [ ♦ / t l  MUITNUM.2 Multiplier region [MULTNUM] * □

Q) Run [ }  Chock Sr [ ^ b p o r t  ✓  4pply /O K  *  Cancel

Figure 2.17 An Example of a Simulation Case.

Imbedded into the cases, is the development strategy, where the well conditions 

are identified and controlled. In addition to that, it contains the well history production 

data, which have to be matched before moving to the prediction phase as shown in Figure

2.18.
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Figure 2.18 An Example of a Development Strategy.

The software introduces two ways to input a stimulation event, one is by simply 

increasing the KH with a multiplier around the wellbore, and the second is by entering 

the fracture geometry and conductivity in the well data as indicated in Figure 2.19.

Figure 2.19 Stimulation Events Feature.
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2.3.4. History Matching. The work done during the HM process was separated 

into two cases:

• Case Ol: history match all the production data (2008 -  20014) to test the 

model capability of producing the actual production rates during this 

period as demonstrated in Figure 2.20.

• Case_02: history match the production data (2008 -  2009) to match the 

production rates prior to the fracture job.

The history production rates and the well-head pressure showed an abnormal trend 

starting in July 2012. That raised a suspension of unvalidated data that needs to be 

investigated before running the cases. The reason behind the strange plot was that the 

team at that time installed a new well-head meter for better reading, but the results were 

not representing nor acceptable, which forced the team to use back-allocated production 

data to overcome the issue.

M A-021

Jan 2008 Jul 2008 Jan 2009 Jul2009 Jan 2010 Jul 2010 Jan 2011 Jul 2011 Jan 2012 Jul 2012 Jan 2013 Jul 2013 Jan 2014 Jul2014
Date

-----MA-021_HM_01, Bottom hole pressure ------MA-021_HM_01, Gas production rate ------MA-021_HM_01, Oil production rate ------MA-021_HM_01, Tubing head pressure
---- MA-021_HM_01, Water production rate 0Observed_Data_O1, Bottom bole pressure 0Observed_Data_O1, Gas production rate 0Observed_Data_O1,Oil production rate
#  Observed_Data_01, Tubing head pressure 0  Observed_Data_01, Water production rate

Figure 2.20 Abnormal Trend in Production and Pressure Data in Case Ol.



2.3.5. Production Forecast. The most interesting part of the study and time

consuming is the prediction. The well performance was set to be predicted for 10 years 

using the fracture geometry and conductivity taken from the two fracture designs:

• Frac_StimPlan_1D.

• Frac_StimPlan_3D.

2.3.6. Sensitivity Analysis. At the beginning of the research, there was no need 

to perform a sensitivity analysis, but the well performance of the fracture designs shed the 

light on its importance and valuable contribution in the post-fracture production 

investigation. Thus, a sensitivity analysis was performed on the well performance for 10 

years production period using the following parameters:

• Fracture half-length.

• Fracture height.

• Fracture width.

• Fracture orientation.

40

Fracture permeability
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3. RESULTS

3.1. FRACTURE MODELING RESULTS

The following sections cover the results of the fracture modeling part of the study 

by presenting the outcome from StimPlan.

3.1.1. Post-Fracture Data Analysis Results. The results of the study in Table 

3.1 are compared with the data analysis results performed by the service company in 

Table 3.2. The difference in the pressure values goes back to the reason that in our 

interpretation we used the surface treating pressure instead of the doubted calculated 

bottom-hole pressure, which was used by the service company.

Table 3.1 Data Analysis Results from StimPlan.

S tep  Rate Test C alib ra tion  Test

5R T_D ecline 5RT C o l ib r o t io n jn je c t io n C o l ib r o t io n D e c l in e

a tte n t io n  Pressure 6 3 1 9 .5 8

a tte n tio n  (tote 9 .1 5

C losu re  P ressure (Pc) 3 7 1 9 .4 2

I S *  P lo t ISIP 8 5 6 0 .5 9 9 4 3 6 .9 6

H o m e r  P lo t
R ese rvo ir P ressure  (Pres) 2 5 0 5 .6 4 2 4 6 5 .2 5

P u m p in g  T im e 1 9 .3 18 .2

C losu re  P ressure (Pc) 4 9 9 6 .0 9 5 0 5 9 .8 1

Square-R oot P lo t C losu re  T im e (Tc) 1 .1 3 5

E ffic ie n cy 0 .0 5 0 .1 9

C lo su re  P ressure (Pc) 4 9 9 7 .7 7 5 0 3 8 .2 5 5

G -Function P lo t C lo su re  T im e (Tc) 1 .12 5 .0 8 4

E ffic ie n cy 0 .0 5 1 0 .1 9 1

C losu re  P ressure (Pc) 5 0 0 2 .2 1 5 3 3 6 .4 4

Barre P lo t (G d p /d G ) C lo su re  T im e (Tc) 1 .33 5 .0 4 7

E ffic ie n cy 0 .0 5 9 0 .1 8 9

KH 3 1 0 .1 5 2 1 4 .9 8 3

Type Curve P e rm e a b il i ty  (K) 3 .3 4 2 .3 1 2

R ese rvo ir P ressure (Pres) 2 4 2 0 .7 1 2 9 2 6 .9

R ese rvo ir P ressure (Pres) 2 5 0 5 .6 4 2 4 6 5 .2 5

F lo w  Regim es P lo t KH 2 9 7 .7 5 1 0 5 .5 2

P e rm e a b il i ty  (K) 3 .2 1 .1 3 5

Friction  P lo t
C losu re  P ressure (Pc) 

F r ic t io n  Pressure

5 0 5 9 .8 1

3 4 4 3 .3
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It was noticed from the values, that the estimation of fracture permeability is 

around 300,000 mD, which 10 times higher than what StimPlan predicted. That 

overestimation might give promising production rates that contradict reality, which was 

witnessed in the post-fracture production test of the well.

Table 3.2 Data Interpretation of the Service Company.

Step-Rate Test Calibration Test

Bottomhole ISIP psi 14,858 Surface ISIP 9,321

Estimated Pc. V 14,003 Bottomhole ISIP psi 15,926

Frac. Gradient ps i/ft 0.93 ISIP Gradient ps i/ft 1.06

Estimated K md 1.2 Estimated Pc. 'p s i 14,193

Estimated Tf md-ft/cp 707 Frac. Gradient ps i/ft 0.94

Estimated Pnet psi 1,542 Estimated K md 1.09

Estimated Tf md-ft/cp 628

Estimated Pres. 'p s i 9,595

Estimated Pnet psi 1,733

Another observation was that our interpreted values from each plot are in line with 

each other, which raises the credibility of both the model and the results. Although, 

interpreted data from the Barre plot was not close enough and that is understandable since 

the plot works better in low permeability formations and high fluid efficiency which is 

not the case in this study.

3.1.2. History Matching Results. In the ID model, the match was obtained by 

tuning the leak-off coefficient and stress contrast within the dolomite layers only as 

shown in Figure 3.1. While in the 3D model, the match was achieved by tuning the 

parameters in both dolomite and tight carbonate layers as demonstrated in Figure 3.2.



43

Figure 3.1 Matched Net Pressure Data via ID Modeling.

Figure 3.2 Matched Net Pressure Data via 3D Modeling.
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3.1.3. Fracture Designs Results. Out of all nine fracture designs indicated in 

Table 3.3, only two were selected to be tested in the reservoir simulation model. That is 

due to the unfortunate reason of StimPlan not calculating the fracture conductivity in the 

absence of proppants in the design. Thus, Frac_design_02 results in ID and 3D models 

we transferred to the reservoir simulator.

Table 3.3 Summary of Fracture Designs Results.

N a m e Fluid  T y p e
S lu rry  V o lu m e  P r o p p a n t T y p e  P ro p p a n t  Co n e. P u m p  R atre

bbl ppg bbls/min
Fed X f

ft
H f

ft
W f

in
F ra ctu re  C o n d u c t iv t y  F lu id  E ffic ie n cy

md-ft %
C o m m e n ts

Frac_design_slb ClearFRAC.K 3048 20/40 0.5-1.0 20 0.25 148.8 327.4 0.29 40.9 13% software design | ID
Frac_design_01 ClearFRAC.K 2000 20 131.2 288.6 0.27 14% no proppant|ID
Frac_design_02 ClearFRAC.K 2000 20/40 1.0-4.0 30 2.02 142.4 313.3 0.31 307.7 19% with proppant ID
Frac_design_03 ClearFRAC.K 1980 30 142.7 314 0.9 19% no p ro p pa nt_m u Iti-stages |1D

Frac_design_slb ClearFRAC.K 3048 20/40 0.5-1.0 20 0.14 193.1 337.9 0.25 30.2 9% software design 3D
Frac_design_01 ClearFRAC.K 2000 20 179.3 248.7 0.24 9% no proppant|3D
Frac_design_02 CleaFRAC.K 2000 20/40 3.0-10.0 30 2.07 182.5 347 0.32 419.1 18% with proppant 13D
Frac_design_03 ClearFRAC.K 1980 30 178.7 346 0.27 16% no proppant_multi-stages 3D
Frac_design_04 ClearFRAC_K+A 1980 30 178.2 347.9 0.27 16% acid_no proppant_multi-stages |3D

The closer dimensionless fracture conductivity to 2, the more optimum and robust 

the designs become.

3.2. RESERVOIR SIMULATION RESULTS

The following sections cover the results of the reservoir simulation part of the 

study by presenting the outcome from Petrel and Eclipse.

3.2.1. History Matching Results. Two simulation cases went under the HM 

process. Case_01 showed better HM results after using the new back-allocated
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production data as illustrated in Figure 3.3, which made it possible to match the abnormal 

data section.

Figure 3.3 History Matched Data of Case Ol.

This first match gave the green light to proceed with matching the second case in Figure

3.4, which will be the base case for fracture designs performance predictions.

Figure 3.4 History Matched Data of Case_02.
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The run of HM in the second case was for 1 year only, which is the period the 

well was hooked up to the production facility. It is noticeable from the sharp decline in 

the production data during that period, that the well is depleting quickly and in need for 

the fracturing job.

3.2.2. Production Forecast Results. The prediction results for the two fracture 

designs were compared with those of the service company. The increase in the 

cumulative production is barely noticeable from all three designs as demonstrated in 

Figure 3.5, which is normal due to the long prediction period. But, it also agrees with the 

fact that the well is not meeting the expected improvement. In addition to that, the close 

results with the service company design (using a different fracture simulation model and 

software) give great confidence in our results and the built model.

Figure 3.5 Well Performance Comparison of Fracture Designs.
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The difference in cumulative production percentage was very close even though 

the design of the service company gives a 10 times higher value of fracture permeability 

as shown in Table 3.4, which might be due to the use of acid in their design. That flagged 

the idea of how big is the impact of each parameter on the results which shed the light on 

the need for a sensitivity analysis to reveal the magnitude of the impact.

Table 3.4 Parameters and Results of Fracture Designs.

Frac Design
Kf

m D
W f

in
2 X f

m
O ren ta tio n

deg
Hf

ft

Gas

%
Oil

%
Frac_SLB 300000 0.20 91 0 281 0.786% 0.847%

F rac_Sti m P1 a n _ l D 29396 0.31 87 0 313 0.829% 0.752%
F rac_Sti m P1 a n_3 D 37400 0.32 111 0 347 0.830% 0.753%

3.2.3. Sensitivity Analysis Results. Five parameters with different values were 

sensitized to examine the effect of each one on the post-production of the well. The 

results in Table 3.5 show that growing in fracture height will increase the gain in 

production but to a certain point, where the effect goes in the opposite way. That point 

could be the point at which the fracture broke through the formation boundaries.

Table 3.5 Sensitivity Analysis Results of Fracture Height.

Frac Design
Kf

m D

W f

in

2 Xf

m

O re n ta tio n

d e g

H f

f t
Gas

%

O il

%

F ra c _ 2 5 3 0 0 0 0 0 0 .1 9 6 8 5 9 1 .4 4 0 9 3 0 .6 6 6 % 0 .6 9 7 %

F ra c _ 2 6 3 0 0 0 0 0 0 .1 9 6 8 5 9 1 .4 4 0 1 9 3 0 .7 8 4 % 0 .8 4 9 %

F ra c _ 2 7 3 0 0 0 0 0 0 .1 9 6 8 5 9 1 .4 4 0 2 9 3 0 .7 5 4 % 0 .8 4 8 %

F ra c _ 2 8 3 0 0 0 0 0 0 .1 9 6 8 5 9 1 .4 4 0 3 9 3 0 .8 4 6 % 0 .7 8 4 %

F ra c _ 2 9 3 0 0 0 0 0 0 .1 9 6 8 5 9 1 .4 4 0 4 9 3 0 .7 9 4 % 0 .8 5 6 %
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The impact of increasing the fracture permeability is as expected positive on the 

cumulative production of the well as illustrated in Table 3.6.

Table 3.6 Sensitivity Analysis Results of Fracture Permeability.

Frac Design
Kf W f 2 Xf O re n ta tio n

d e g

Hf Gas O il

m D in m f t % %

F ra c _ 20 5 0 0 0 0 0 .1 9 6 8 5 9 1 .4 4 0 2 8 1 0 .8 3 0 % 0 .7 5 3 %

F ra c _ 21 1 0 0 0 0 0 0 .1 9 6 8 5 9 1 .4 4 0 2 8 1 0 .8 4 6 % 0 .7 8 0 %

F ra c _ 22 2 5 0 0 0 0 0 .1 9 6 8 5 9 1 .4 4 0 2 8 1 0 .7 8 5 % 0 .8 4 8 %

F ra c _ 23 5 0 0 0 0 0 0 .1 9 6 8 5 9 1 .4 4 0 2 8 1 0 .7 8 1 % 0 .8 4 2 %

F ra c _ 24 7 5 0 0 0 0 0 .1 9 6 8 5 9 1 .4 4 0 2 8 1 0 .6 8 2 % 0 .8 5 8 %

The percentage of the cumulative production is increasing proportionally with the 

increase in the fracture width value as demonstrated in Table 3.7.

Table 3.7 Sensitivity Analysis Results of Fracture Width.

Frac Design
Kf W f 2 Xf O re n ta tio n

d e g

Hf Gas O il

m D in m f t % %

F rac_15 300000 0 .1 9 1 .4 4 0 2 8 1 0 .7 8 5 % 0 .8 4 8 %

F ra c _ 16 300000 0 .3 9 1 .4 4 0 2 8 1 0 .7 7 8 % 0 .8 4 2 %

F ra c _ 17 300000 0 .5 9 1 .4 4 0 2 8 1 0 .7 4 4 % 0 .8 4 5 %

F rac_18 300000 0 .7 9 1 .4 4 0 2 8 1 0 .6 2 8 % 0 .8 4 6 %

F rac_19 300000 1 9 1 .4 4 0 2 8 1 0 .5 2 4 % 0 .8 6 9 %

The fracture length has a similar positive impact on the performance as shown in 

Table 3.8. The fracture width, height, length, and permeability, all are taking the same 

trend in their relation with the gas and oil cumulative production, which is somehow 

predictable, but what is not expected is how minor is the effect (less than 1%).
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Table 3.8 Sensitivity Analysis Results of Fracture Length.

Frac Design
Kf

m D

W f

in

2 Xf

m

O re n ta tio n

d e g

Hf

f t

Gas

%

O il

%

F ra c _ 10 3 0 0 0 0 0 0 .1 9 6 8 5 5 0 0 2 8 1 0 .7 8 6 % 0 .8 4 7 %

F ra c J L l 3 0 0 0 0 0 0 .1 9 6 8 5 1 5 0 0 2 8 1 0 .7 5 4 % 0 .8 4 8 %

F ra c _ 12 3 0 0 0 0 0 0 .1 9 6 8 5 3 0 0 0 2 8 1 0 .7 8 5 % 0 .8 4 8 %

F rac_13 3 0 0 0 0 0 0 .1 9 6 8 5 5 0 0 0 2 8 1 0 .9 9 9 % 0 .8 2 8 %

F ra c _ 14 3 0 0 0 0 0 0 .1 9 6 8 5 1 0 0 0 0 2 8 1 0 .7 6 8 % 0 .6 6 9 %

Unlike other parameters, the fracture orientation is not a value that is controlled 

by increasing and decreasing its value. The angle of orientation is measured with the 

degree change of the fracture plane, meaning the angle is 0 degree when the plane is 

perpendicular to the perforations, and 90 degrees when it is parallel to it. The positive and 

negative values mean that the angle is opening away from the surface when positive and 

closer to it if negative.

The first observation was the big difference in the impact on the production, 

which reached up to 3% in the best case where the angle of the fracture plane is at (- 67.5 

degrees) as indicated in Table 3.9.

Table 3.9 Sensitivity Analysis Results of Fracture Orientation.

Frac D e sign
Kf W f 2 Xf O re n ta tio n

deg
H f Gas Oil

m D in m f t % %
Frac_01 3 0 0 0 0 0 0 .1 9 6 8 5 9 1 .4 4 45 281 1 .0 8 4 % 1.2 5 6 %
Frac_02 3 0 0 0 0 0 0 .1 9 6 8 5 9 1 .4 4 90 281 1 .0 1 6 % 1.2 8 7 %
Frac_03 3 0 0 0 0 0 0 .1 9 6 8 5 9 1 .4 4 -45 281 2 .6 5 3 % 2 .8 3 7 %
Frac_04 3 0 0 0 0 0 0 .1 9 6 8 5 9 1 .4 4 -90 281 1.0 8 4 % 1.2 5 6 %
Frac_05 3 0 0 0 0 0 0 .1 9 6 8 5 9 1 .4 4 -22 .5 281 0 .7 8 6 % 0 .8 4 7 %
Frac_06 3 0 0 0 0 0 0 .1 9 6 8 5 9 1 .4 4 -67 .5 281 3 .0 4 1 % 3 .3 0 5 %
Frac_07 3 0 0 0 0 0 0 .1 9 6 8 5 9 1 .4 4 -60 281 2 .6 5 3 % 2 .8 3 7 %
Frac_08 3 0 0 0 0 0 0 .1 9 6 8 5 9 1 .4 4 -70 281 1.0 8 4 % 1.2 5 6 %
Frac_09 3 0 0 0 0 0 0 .1 9 6 8 5 9 1 .4 4 -50 281 2 .6 5 3 % 2 .8 3 7 %
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That drastic impact shows the importance of well placing with respect to 

formation stresses and natural fractures. The right orientation can guide the induced 

fracture to a better intersection with the formation and the existing natural fractures.
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4. CONCLUSIONS

The conclusions deduced from the executed work in this study, which aimed to 

find the reasons behind the underperformance of the well are presented below:

• Investigations showed that human errors in planning and gathering the required 

data for the stimulation job might lead to poor performance results.

• The geological model in StimPlan showed that the stress contrast between the 

layers is allowing the induced fracture to propagate vertically, giving more 

fracture height than the desirable fracture length.

• The sensitivity analysis demonstrated the positive impact of the fracture angle 

(orientation) on the well long-term performance, by allowing the induced fracture 

to better intersect with the formation and the existing natural fractures.
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5. RESEARCH OUTCOME

The advantages of the conducted study and its workflow not only covers the 

academic area, but also extend to reach the career level in the oil and gas industry. 

Unfortunately, the acid fracturing design and execution processes are currently handled 

by service companies, therefore the development teams can benefit from applying the 

workflow as follows:

• The fracture modeling will give the experience and ability to quality check the 

fracture modeling simulation (fracture job proposal) provided by the service 

company.

• Analyzing the fracture job data will provide the capability to quality check the 

post-fracture analysis reports.

• Cutting the high cost of fracture jobs by handling the design and results 

analysis.



53

6. FUTURE WORK AND RECOMMENDATIONS

The future work and recommendations are introduced on both academic and 

career levels:

• Data validation must be carried out before the submission to service companies.

• Geomechanical studies are required to build a representative earth model to give a 

better understanding and select the optimum well placing for future frac jobs.

• Implementation of a Q/C process on future fracture job proposals and results.

• Tackle the reasons behind the poor well performance discovered in the planning 

and the operational phases by forming a task force to apply the workflow on all 

other underperforming wells.

• Pursuing PhD degree:

- Lab tests on core samples.

- New fracture modeling accounting for natural fractures effect.

- Reservoir simulation on multiple wells.
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