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Abstract: Antimony and arsenic concentrations and their oxidation states (Sb(III), Sb(V), As(III) and
As(V)) in copper electrorefining electrolyte can affect copper cathode quality through the formation of
floating slimes. A laboratory-scale pilot plant was operated to remove Sb from commercial electrolyte.
The pilot plant consisted of a pre-treatment process with copper shavings followed by ion exchange.
The results indicated that Sb(III) was removed from copper electrolyte completely, while Sb(V) was
partially eliminated. The concentrations of As(III) and As(V) were not affected, and the poisoning of the
ion exchange resin by Fe(III) was avoided by pre-reduction to Fe(II) by copper shavings. The operation
configuration of the pilot plant was applied to the design of an industrial plant for Sb/Bi removal at the
Atlantic Copper Refinery in Huelva, Spain. The evolution of Sb, Fe and As species in the commercial
electrolyte was monitored prior to and after the installation of the Sb/Bi removal plant. The results show
a ca. 45% decrease in total Sb content (from 0.29 g L−1 to 0.16 g L−1) in the electrolyte. This reduction is
more noticeable for Sb(III), whose concentration decreased from 0.18 g L−1 to 0.09 g L−1, whereas Sb(V)
concentration diminished from 0.11 g L−1 to 0.07 g L−1. The resin also retained ca. 75% of the Bi content
(0.15–0.22 g L−1). The total As increased during the study period (from 7.7 to 9.0 g L−1) due to changes
in plant inputs. Arsenic was predominantly As(V) (ca. 93–95%). The total Fe concentration experienced
little variation (0.9–1.1 g L−1) with Fe(II) being the main species (ca. 94–96%).

Keywords: copper electrolyte; antimony; arsenic; iron; removal; species; ion exchange

1. Introduction

During the copper electrorefining process, anode impurities, most frequently As, Bi,
Fe and Sb, are dissolved with copper from the anode into the electrolyte [1,2]. These
impurities can accumulate in the electrolyte or form different types of anode slimes which
can adhere to the anode, deposit on the bottom of the electrolytic cell or float within the
electrolyte [3–6].

The redox species of arsenic and antimony have a great influence on the formation
of the insoluble precipitates which could affect copper cathode quality. As(V) and Sb(V)
can form a series of arsenato antimonic acids (AAAc), which can further react with As(III),
Sb(III), and Bi(III) to form arsenato antimonates [1,7]. As(V), Sb(III) and Bi(III) can form
arsenates [8] and Sb(V) plays a substantial role in the formation of floating slimes [9–11],
which are amorphous and chemically undefined compounds that may contain Sb(III), Sb(V),
Bi(III), As(V) and As(III) [12,13]. Floating slimes are commonly avoided by controlling the
total antimony concentration in the electrolyte below 0.5 g L−1 [13] by maintaining the
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concentration of arsenic in the electrolyte above 6–7 g L−1 and an As/(Sb+Bi) molar ratio
above 1.5–2 in the anodes [14].

Other techniques have been proposed to control antimony concentrations in copper
electrolytes, including precipitation [15], adsorption [16,17] and ion exchange [18]. Ion
exchange resins are used in several copper refineries [19,20] to remove Sb and Bi and
maintain their concentrations below 0.50 g L−1 in commercial electrolytes [21,22], although
the concentrations of these elements can increase due to the high impurities content
in copper anodes [23]. The resins employed are usually chelating, a subgroup of ion
exchange resins with coordination compounds that can establish selective covalent-like
bonds between the central ion of the functional group of the resin and donor ions in
solution [24].

In the literature, there are several studies on the removal of Sb from copper elec-
trolyte [25,26], but there has been no discussion about the elimination and distribution of
Sb by oxidation state. According to Riveros, 2008 [18], the difficult elution of Sb from ion
exchange resins is achieved with concentrated HCl, where Sb(III) was easily eluted and
Sb(V) elution was extremely slow resulting in Sb build-up and a decrease in resin life.

In addition to the Sb species, it is important to know the oxidation states of Fe
during the ion exchange treatment of the electrolyte. This is of main importance for
Fe(III), as some studies carried out with synthetic copper electrolytes have shown that the
presence of Fe(III) (but not Fe(II)) affects the retention capacities of Sb and Bi species on
aminophosphonic resins. These studies refer to the “poisoning” of sulphonated phosphonic
and aminophosphonic resins with the Fe(III) ion [27,28].

The objective of this paper is to document the oxidation states of As, Sb and Fe in
copper electrorefining electrolyte during a laboratory-scale pilot plant demonstration of
a Sb/Bi removal process by ion exchange using an aminophosphonic resin, and after the
process was implemented on an industrial scale. In addition to Sb, Fe and As species were
monitored to evaluate the pre-treatment of the electrolyte prior to ion exchange.

2. Materials and Methods
2.1. Laboratory-Scale and Industrial Sb/Bi Removal Plants

The previous laboratory-scale operation to remove Sb and Bi from the copper elec-
trolyte was described by F. Arroyo-Torralvo et al. (2017) [23]. The experimental configu-
ration is a two-step process in which the electrolyte is pumped through two columns in
series. The first column was filled with copper shavings. The copper shavings were used
to promote the reduction of Fe(III) to Fe(II), and thus avoid the possible poisoning of the
ion exchange resin with Fe(III). The second column was filled with an ion exchange resin
with chelating aminomethylphosphonic acid groups (Lanxess Lewatit MonoPlus TP 260,
Lenntech, Delft, Holland), that removes Sb and Bi from the electrolyte. The volume of the
resin bed used in the tests was 100 mL which occupied a column height of 35 cm. The
operating configuration involves the conditioning of the resin with H2SO4, loading of the
electrolyte, electrolyte displacement and backwash with H2SO4, regeneration of the resin
with HCl + thiourea, displacement of HCl with H2SO4 at different pH (2, 4 and 6) and
conditioning of the resin with recirculated H2SO4 from a previous stage.

The laboratory-scale plant allowed the calculation of ion exchange resin capacity
and the evaluation of operating protocol (load-elution-regeneration) [23]. It was used
as a model for the design of the industrial Sb/Bi removal plant. The Sb/Bi removal
plant was installed and connected to the electrorefining circuit within the Atlantic Copper
Metallurgical Complex (Huelva, Spain) in 2018. The principal chemical components of
the copper electrolyte were 45 g L−1 Cu, 12 g L−1 Ni and 180 g L−1 H2SO4. The main
impurities present at high concentrations are ca. 9 g L−1 As, 1 g L−1 Fe, 0.30 g L−1 Sb. The
concentration of Bi during the operation of the laboratory-scale plant was 0.15–0.18 g L−1

Bi, and 0.22 g L−1 during the operation of the industrial Sb/Bi removal plant.
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2.2. Analytical Techniques

The Sb and As redox species were determined by high-performance liquid chro-
matography (HPLC) coupled to hydride generation-atomic fluorescence spectrometry
(HG-AFS). The instrumentation consisted of a quaternary pump (JASCO PU-2080 Plus,
Hachioji, Tokyo, Japan) fitted with an ion-exchange column (Hamilton, Reno, NV, USA)
coupled to an AFS spectrometer (PS Analytical Millennium Excalibur 10.055, Orpington,
UK) equipped with boosted discharge hollow cathode lamps for Sb or As (Photron, Victo-
ria, Australia). A detailed summary of the analytical parameters for the determination of
As(III), As(V), Sb(III) and Sb(V) in copper electrolyte has been previously described [29].

For determination of Fe(II), the absorbance of the red-orange Fe-phenanthroline com-
plex formed was measured using a SPECTRONIC 200 spectrophotometer (Thermo Scien-
tific, Waltham, MA, USA). The wavelength of 510 nm was selected, which corresponds to
the maximum absorption of the complex spectrum. The total Fe content (sum of Fe(II) +
Fe(III)) was calculated by adding hydroxylamine hydrochloride to the samples, to reduce
Fe(III) to Fe(II), before the addition of o-phenanthroline. Fe(III) was determined indirectly
by the difference between the total Fe content and the Fe(II) content [30].

3. Results and Discussion
3.1. Removal of Sb Species from Copper Electrolyte by Ion Exchange Resin
3.1.1. Laboratory-Scale Plant

The oxidation states of Sb and Fe in copper electrolytes were determined during the
operation of the laboratory scale pilot plant. The treatment consisted of pumping the
electrolyte through a column with copper shavings and then through a second column
with Lewatit TP 260 ion exchange resin. The overall time of the process (loading of the
electrolyte and posterior regeneration stage of the resin) was adjusted to a working day
(8–12 h). Additionally, the removal efficiency of bismuth from the electrolyte with this resin
has been estimated at 75% [23]. Table 1 shows the average concentration of antimony and
iron species in the initial electrolyte, the electrolyte treated only with copper shavings, and
the electrolyte treated both with copper shavings and the ion exchange resin.

Table 1. Average concentrations (g L−1) of Sb and Fe species in samples of initial electrolyte, treated electrolyte with Cu
shavings and treated electrolyte with Cu shavings and ion exchange resin in the laboratory-scale plant. The results of the
concentrations are expressed as mean ± standard deviation (n = 14).

Initial Electrolyte Electrolyte + Cu Shavings Electrolyte + Cu Shavings + Ion Exchange Resin

mean ± sd mean ± sd mean ± sd
Sb(V) 0.12 ± 0.02 0.13 ± 0.02 0.07 ± 0.01
Sb(III) 0.20 ± 0.04 0.19 ± 0.07 0.01 ± 0.01

Total Sb 0.32 ± 0.06 0.32 ± 0.08 0.08 ± 0.03
Fe(II) 0.90 ± 0.07 0.92 ± 0.07 0.93 ± 0.07
Fe(III) 0.08 ± 0.04 0.05 ± 0.03 0.05 ± 0.04

Total Fe 0.98 ± 0.06 0.97 ± 0.08 0.98 ± 0.08

The electrolyte initially had an average concentration of 0.32 g L−1 of Sb with Sb(III)
being the predominant species (0.20 g L−1) and Sb(V) as the minor species (0.12 g L−1).
When the electrolyte circulated through the column with copper shavings, neither the total
antimony content nor the distribution of the antimony species was affected. The elution
of the electrolyte through the ion exchange resin resulted in a decrease in total Sb from
0.32 to 0.08 g L−1 (ca. 74% extraction). The absorption rate was different for the Sb species.
The resin removed most of the Sb(III) contained in the electrolyte, ca. 95% extraction, as its
concentration decreased from 0.20 to 0.01 g L−1. This high extraction efficiency of Sb(III)
removal with Lewatit TP 260 obtained for industrial copper electrolyte is consistent with
previous works that have also employed aminophosphonic resins, such as Doulite-467
and Amberlite IRC747 using synthetic copper electrolyte [18,31]. There is little information
about the chemical mechanisms involved in the absorption of Sb(III) likely as SbO+. The



Metals 2021, 11, 902 4 of 10

absorption implies a chelation reaction with the amine and/or the phosphate groups of the
resin, despite the fact that Sb(III) has little affinity for amine or phosphate compounds. The
exact composition of the possible chelate is unknown [32,33].

On the other hand, Sb(V) was only partially removed from the electrolyte by the
Lewatit TP 260 resin, as its concentration decreased from 0.12 to 0.07 g L−1, a reduction of
ca. 42%. The low affinity of Sb(V) in comparison to Sb(III) for amine or phosphate groups
under very acidic conditions has been reported [32]. The partial retention of Sb(V) on a
resin with aminophosphonic groups is not expected, as Sb(V) should exist in H2SO4 media
as Sb3O9

3−. Therefore, initial studies indicated that it was not clear if the retention of Sb(V)
was due to an ion-exchange mechanism or precipitation in the resin pores [18]. Further
studies using scanning electron microscopy by these authors have revealed that Sb(V) is, at
least initially, adsorbed by a true ion-exchange mechanism [33].

The average concentration of Fe in the electrolyte is ca. 1 g L−1, the reduced species
Fe(II) is the main species (0.90 g L−1), while Fe(III) is minor (0.08 g L−1). When the
electrolyte crossed through the column with copper shavings and then through the ion ex-
change resin, the average total Fe concentration did not change significantly. The reduction
of Fe(III) to Fe(II) was promoted, as the average Fe(III) concentration decreased from 0.08 to
0.05 g L−1, with a corresponding increase in Fe(II) concentration from 0.90 to 0.93 g L−1.
This indicates that the poisoning of the column due to Fe(III) contamination was prevented
by the pre-treatment with Cu shavings [23]. The reduction of Fe(III) to Fe(II) due to the
oxidation of Cu shaving to Cu2+ ions which are transferred into the electrolyte, can be
explained considering the higher redox potential of Fe3+/Fe2+ (E0 = 0.77 V) compared to
the redox potential of Cu/Cu2+ (E0 = 0.34 V) [34].

3.1.2. Industrial Sb/Bi Removal Plant

The Sb/Bi removal plant using Lewatit TP 260 ion exchange was installed to treat
industrial electrolytes in June 2018. The determination of the species of Sb and Fe in
the initial electrolyte, electrolyte pre-treated with copper shavings, and electrolyte with
shavings and circulated through the ion exchange resin was evaluated similarly to the
pilot plant.

When the industrial plant was started, the electrolyte contained 0.21 g L−1 of total
Sb with 0.12 g L−1 Sb(III) and 0.09 g L−1 Sb(V). The total Sb content in electrolytes had
decreased from the laboratory-scale pilot plant test in 2016 (0.32 g L−1) due to changes in
the chemical composition of copper anodes refined from 2016 to 2018.

When the electrolyte was passed through copper shavings, the total Sb content and
species distribution did not change significantly (Table 2), in accordance with previously
published studies, which indicate that metallic Cu does not reduce Sb(V) [18]. The circu-
lation of the electrolyte through the second column with ion exchange resin resulted in
100% removal of Sb(III), while Sb(V) was only partially removed. The Sb(V) concentration
decreased from 0.09 to 0.04 g L−1 indicating a proper functioning of the resin since it
eliminated ca. 55% of initial Sb(V) content. Overall, the decrease in Sb total content was
from 0.21 to 0.04 g L−1 representing ca. 80% of the initial content, a similar value to that
obtained from the laboratory scale tests.

Table 2. Average concentrations (g L−1) of Sb and Fe species in samples of initial electrolyte, treated electrolyte with Cu
shavings and treated electrolyte with Cu shavings and ion exchange resin in the industrial Sb/Bi removal plant. The results
of the concentrations are expressed as mean ± standard deviation (n = 8).

Initial Electrolyte Electrolyte + Cu Shavings Electrolyte + Cu Shavings + Ion Exchange Resin

mean ± sd mean ± sd mean ± sd
Sb(V) 0.09 ± 0.01 0.07 ± 0.01 0.04 ± 0.00
Sb(III) 0.12 ± 0.01 0.14 ± 0.04 0.00 ± 0.00

Total Sb 0.21 ± 0.01 0.21 ± 0.03 0.04 ± 0.00
Fe(II) 0.85 ± 0.03 0.86 ± 0.02 0.86 ± 0.05
Fe(III) 0.06 ± 0.02 0.05 ± 0.02 0.05 ± 0.01

Total Fe 0.91 ± 0.03 0.91 ± 0.03 0.91 ± 0.04
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The total Fe content of the electrolyte was 0.91 g L−1, in the same range as the Fe
concentration of the electrolyte employed for the previous experiences performed in the
laboratory-scale plant (0.98 g L−1). Fe(II) was again the major species (0.85 g L−1) as
compared to Fe(III) (0.06 g L−1), as shown in Table 2. The use of the first column with
copper shavings successfully favored the reduction of the content of Fe(III) in the electrolyte,
which remained at 0.05 g L−1 after the elution through the second column filled with ion
exchange resin. Fe(III) represents only 5.5% of the total Fe content of the electrolyte. In
this sense, the poisoning of the ion exchange resin due to a high concentration of Fe(III)
was prevented. These results agree with previous experiments performed at laboratory
scale with the treated industrial electrolyte from the Atlantic Copper Refinery, which
indicated that the concentration of Fe(III) ranged 0.03–0.07 g L−1 or 2.7–6.5% of the total
Fe. Additionally, a similar laboratory experiment performed with industrial electrolyte
doped with Fe(III), indicated that Cu shavings have the capability to reduce most of the
added amount of Fe(III), resulting in a final concentration of Fe(III) in the electrolyte
of 0.03–0.15 g L−1, representing 1–8% of the total Fe [23]. The loading of Fe(III) onto
aminophosphonic resins is an ion exchange process. For a sulfate-based electrolyte it
can be described by Equation (1), where R represents the resin not involved in the ion
exchange [28]:

Fe2(SO4)3 + 6(HR)→ 2(FeR3) + 3H2SO4 (1)

The elution and regeneration of the resin have been accomplished by washing with
HCl solutions, followed by H2SO4 conditioning [23].

The effect of the operation of the Sb/Bi industrial removal plant on the total As
content and the distribution of As species in the electrolyte was examined. Electrolyte
samples were analyzed on a periodic basis prior to the installation of the Sb/Bi removal
plant (February-May 2018) and after its installation (July-December 2018). Figure 1 shows
that the total As content was not affected with mean As concentrations of 9.11 g L−1 and
9.17 g L−1 in the two periods, respectively. This confirms that As is not retained by the
aminomethylphosphonic resin, as described by Dreisinger et al., 1993 [35]. At the low pH
of the electrolyte, both As(V) and As(III) are present mainly in the form of neutral species
(H3AsO4 and HAsO2, respectively) according to Eh-pH diagrams [4]. Therefore, their
retention onto this resin due to an ion exchange resin mechanism is not favored.
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Figure 1. Trend of As species and total As concentration in copper electrolyte for 2018. Dashed line
indicates the start of the industrial Sb/Bi removal plant.

No significant oxidation or reduction of As species in the electrolyte was found. Prior
to the IX (ion exchange) plant installation, the mean concentrations of As(III) and As(V)
were 0.51 g L−1 and 8.60 g L−1, respectively. After installation, the mean concentrations
were 0.46 g L−1 and 8.71 g L−1, respectively. This indicates that in both periods As(V)
represent ca. 94% of the total As content in the electrolyte. Braun et al., 1976 [13] indicated
that the control of antimony concentration in the electrolyte can be by precipitation of
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SbAsO4. The total antimony is controlled by the electrolyte As(V) concentration which
promotes precipitation of Sb(III) in the slimes layer as SbAsO4. As(III) from the anode
appears to oxidize to As(V) and may inhibit Sb(III) oxidization to Sb(V).

3.2. Evolution of Sb, As and Fe in the Copper Electrolyte

The trends of the total Sb, As and Fe concentration, as well as their redox species, were
studied during the 2015–2019 period to further understand the ramifications of the new
Sb/Bi removal plant in 2018. The results summarized in Figure 2 indicate that both the
total content of Sb and the concentrations of the species decreased over the studied period.
The total Sb concentration decreased from 0.29 g L−1 to 0.16 g L−1 with a more pronounced
decline after 2018. The ion exchange plant as expected successfully removed more Sb(III)
(0.18 g L−1 to 0.09 g L−1) than Sb(V) (0.11 to 0.07 g L−1). This represents a reduction of
ca. 50% for Sb(III) and 36% for Sb(V) which reflected Sb(III) preferred absorption on the
Lewatit TP 260 ion exchange resin.
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The annual trends in Figure 2 reveal that in 2017 the distribution of Sb as Sb(III) and
Sb(V) was different than the other years. The anomalous behavior was the result of periods
where Sb(V) was the predominant antimony species. This is shown in Figure 3 where the
percentages of Sb(III) and Sb(V) from 2015 to 2019 are displayed. The electrolyte initially
(2015 and 2016) contains 60–70% Sb(III) and 30–40% Sb(V). The proportion of both Sb
species became more similar after the start of operation of the Sb/Bi removal plant with ca.
54% Sb(III) and 46% Sb(V).
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In the anomalous period of May-July 2017, the distribution of the Sb species changed
with Sb(V) becoming the predominant Sb species (ca. 40% Sb(III) and 60% Sb(V)). This was
accompanied by a statistically significant decrease in the total As content of the electrolyte
from ca. 9 to 8 g L−1 during these months (t-test, p < 0.05). This decrease was not only
observed in the total As content but also in the As(III) concentration, which was at its
lowest during this time frame. Figure 4a shows the concentrations of As(III) in the copper
electrolyte during 2017, in which the annual mean As(III) was 0.48 g L−1. It can be seen
that during the May–July period, As(III) concentrations were below the mean, with a
minimum concentration of 0.20 g L−1 in June 2017. The presence of As(III) in the electrolyte
is desirable, as it prevents or minimized the oxidation of Sb(III) to Sb(V). Similarly, As(V)
showed lower concentrations during this period (7.66–7.87 g L−1) than the 8.28 g L−1

annual mean. These results are in agreement with the literature, which indicates the
importance of maintaining a high concentration of As(V) in the copper electrolyte [26].
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Figure 4. (a) Concentration of As(III) in copper electrolyte during the year 2017. The dashed line corresponds to the mean
annual concentration; (b) Concentrations of As and Sb in anodes for 2017.

This diminution of As in the electrolyte was studied in relation to the anode composition
during 2017. The monthly concentrations of As in the anodes (Figure 4b) indicated a decrease
in the concentration of As between the months of March and June (932–1102 mg kg−1) below
the annual mean of 1184 mg kg−1. Both periods of minimum As in the anode and in the
electrolyte overlap. The one-month displacement from the decrease in anode arsenic to the
arsenic decrease in the electrolyte is due to the time elapsed between anode casting and
electrorefining. In the same way, the concentration of Sb in the anodes during the months of
March and June (85.8–106.5 mg kg−1) was below the annual average of 118 mg kg−1. These
results demonstrated that the low level of impurities in the electrolyte was likely related to
changes in the anode composition for the March-June 2017 period.

Regarding iron in the electrolyte, the Fe concentration in the electrolyte remained fairly
stable from 2015 to 2019 (0.9–1.1 g L−1). It was determined that Fe(II) was always the major
species with an average proportion of 95% (Figure 5). Fe(III) which can potentially poison
the ion exchange resin and lower cathode current efficiency represented 5–6% of the total
Fe electrolyte content of the electrolyte. At the beginning of this study, the mean annual
Fe(III) concentration was 0.06 g L−1. The use of the copper shavings column favored the
decrease of Fe(III) concentration, which resulted in a mean concentration of 0.04 g L−1 in
2019, thus lowering the proportion of Fe(III) in the electrolyte to less than 4%.
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The annual As concentration in the electrolyte increased during the study period from
an initial mean value of 7.7 g L−1 in 2015 to 9.2 g L−1 in 2019 (Figure 6). The study of
the redox species indicated that the main As species in the electrolyte was As(V) with
an average annual proportion in the range of 93–95%. The increase in As concentration
corresponded to only increases in As(V), whose concentration raised from 7.2 to 8.7 g L−1.
During the same period, the mean annual concentration of As(III) remained consistent at
0.5 g L−1 (Figure 6). As indicated in Figure 3, that concentration of As(III) in the electrolyte
helps to prevent significant oxidation of Sb(III) to Sb(V), a fact that is only observed when
the As(III) concentration drops below 0.3 g L−1.
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4. Conclusions

The removal of antimony from the industrial copper electrolyte at the Atlantic Copper
Refinery was performed on a laboratory-scale and industrial scale. The removal process
includes a pre-treatment with copper shavings followed by ion exchange with Lewatit
TP 260. The concentrations of the stable oxidation species of Sb, Fe and As in the copper
electrolyte were determined. The major species were Sb(III), Fe(II) and As(V) for most
time periods.

The laboratory-scale pilot plant successfully removed ca. 100% of Sb(III) and ca. 50%
of Sb(V) from the industrial copper electrolyte. The pre-treatment with copper shaving
promoted the reduction of Fe(III) to Fe(II) thus avoiding the rapid poisoning of the Lewatit
TP 260 resin. The ion exchange treatment process did not alter the concentration and
distribution As species in the copper electrolyte.

Since the start of the industrial Sb/Bi removal plant in 2018, a reduction of ca. 50%
of Sb(III) and 36% of Sb(V) in the copper electrolyte has been noted. Overall, the total
concentration of Sb in the electrolyte has decreased by 45% which should minimize the
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possible formation of floating slimes and scale formation in piping and on stainless steel
blanks. The relative proportions of As (ca. 94% As(V) and Fe (ca. 95% Fe(II) redox species
in the electrolyte remained steady during the study period (2015–2019).
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