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Machine learning enables prompt 
prediction of hydration kinetics 
of multicomponent cementitious 
systems
Jonathan Lapeyre1, Taihao Han1, Brooke Wiles1, Hongyan Ma2, Jie Huang3, Gaurav Sant4 & 
Aditya Kumar1*

Carbonaceous (e.g., limestone) and aluminosilicate (e.g., calcined clay) mineral additives are routinely 
used to partially replace ordinary portland cement in concrete to alleviate its energy impact and 
carbon footprint. These mineral additives—depending on their physicochemical characteristics—alter 
the hydration behavior of cement; which, in turn, affects the evolution of microstructure of concrete, 
as well as the development of its properties (e.g., compressive strength). Numerical, reaction-
kinetics models—e.g., phase boundary nucleation-and-growth models; which are based partly on 
theoretically-derived kinetic mechanisms, and partly on assumptions—are unable to produce a 
priori prediction of hydration kinetics of cement; especially in multicomponent systems, wherein 
chemical interactions among cement, water, and mineral additives occur concurrently. This paper 
introduces a machine learning-based methodology to enable prompt and high-fidelity prediction of 
time-dependent hydration kinetics of cement, both in plain and multicomponent (e.g., binary; and 
ternary) systems, using the system’s physicochemical characteristics as inputs. Based on a database 
comprising hydration kinetics profiles of 235 unique systems—encompassing 7 synthetic cements and 
three mineral additives with disparate physicochemical attributes—a random forests (RF) model was 
rigorously trained to establish the underlying composition-reactivity correlations. This training was 
subsequently leveraged by the RF model: to predict time-dependent hydration kinetics of cement in 
new, multicomponent systems; and to formulate optimal mixture designs that satisfy user-imposed 
kinetics criteria.

Concrete—a mixture of ordinary portland cement, water, and aggregates—is the foundational material used in 
construction of various forms of surface and sub-surface infrastructure. Much of the research in the field, in the 
past several years, has been focused on designing, and optimizing the performance of, blended cementitious 
systems, which feature 10–60%mass replacement of cement with  CO2-efficient mineral  additives1–4; so as to offset 
both carbon footprint and energy impact associated with cement production and concrete design-and-use5–10. 
Examples of the aforesaid mineral additives include: (1) Fillers: limestone (crystalline calcite:  CaCO3), and 
quartz (crystalline silica:  SiO2); and (2) Pozzolans: silica fume (amorphous silicate:  SiO2), and calcined clay such 
as metakaolin (dominantly amorphous  Al2Si2O7)11–17. When used to partially replace cement in concrete, fillers 
accelerate cement hydration  rates11,12,18–20 through provision of supplemental topographical sites for heterog-
enous nucleation of calcium silicate hydrate (C–S–H (In this manuscript, cement chemistry shorthand is used 
to represent cementitious compounds and the constituent oxides. As per this shorthand: C = CaO; A = Al2O3; 
S = SiO2; $ = SO3; and H = H2O.))—the principal cementing agent that binds together the particulates (e.g., of 
cement; aggregates; and hydration products) within the concrete microstructure. Acceleration of cement hydra-
tion, as prompted by a filler, is commonly referred to as the filler effect19–21. Along the same lines, when cement 
is partially replaced with a pozzolan (i.e., silicate or aluminosilicate material), the latter is known to initiate and 
partake in pozzolanic reaction; which involves the reaction of the pozzolan with calcium hydroxide (Ca(OH)2 
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or CH; a secondary hydration product), resulting in precipitation of additional C–S–H, thereby increasing its 
content in the  system18,22–24. In addition to the aforesaid pozzolanic effect, pozzolans also have a finite filler effect; 
which accelerates cement hydration kinetics, especially during the first 5–0 h of  hydration18,22.

The hydration of cement—that is, the reaction of cement with water—dictates critical physical character-
istics (e.g., initial/final setting; compressive strength; chemical durability; etc.) of  concrete25–30. Even in a plain 
paste—which comprises only of cement and water—hydration is a complex chemical process, with several 
interdependent kinetic processes (e.g., dissolution of anhydrous cement particulates; diffusion of ionic species 
within the microstructure; simultaneous precipitation of multiple hydration products, each dictated by a distinct 
mechanism; etc.) that occur concurrently. For example, the hydration of the two most reactive phases present 
in cement—tricalcium silicate  (Ca3SiO5 or  C3S as per cement chemistry notation); and tricalcium aluminate 
 (Ca3Al2O6 or  C3A)—are driven by disparate mechanisms; result in formation of different hydration products; and 
occur at distinct nonlinear, nonmonotonic  rates31. The hydration of  C3S results in formation of stoichiometric 
amounts of two hydration products (i.e., CH and C–S–H); the kinetics of  C3S hydration is highly nonlinear with 
respect to time, driven dominantly by heterogeneous nucleation-and-growth of C–S–H22,32–35. The other cementi-
tious phase,  C3A, reacts vigorously upon contact with water [which, in cementitious systems, typically contains 
 SO4

2− ions released from dissolution of C$H2 (gypsum); a minor phase present in cement]; as a result, small, 
needle-shaped crystals of ettringite (a hydration product) precipitate within minutes of  mixing36–38. After this 
initial burst of precipitation, the growth of ettringite crystals occurs at a near-constant, slow rate for the ensuing 
hours until  SO4

2− ions in the solutions are  depleted36,38,39. In blended cementitious systems—wherein a fraction 
of cement is replaced with one or more mineral additives—chemical interactions among cement, water, and addi-
tives can give rise to staggeringly large degrees of freedom. This is because the nature of aforesaid interactions 
depends on physicochemical characteristics of the cement and the additive(s). For example, in a [cement + alu-
minosilicate pozzolan] system, dissolution of the pozzolan results in the release of aluminate [Al(OH)4

−] and 
silicate  [H2SiO4

2−] ions in the contiguous solution; these ions can subsequently react with components of the 
paste (e.g., cement; hydration products; etc.), thereby resulting in precipitation of secondary hydration products 
(e.g., hydrogarnet; strätlingite; etc.) and/or stabilizing or de-stabilizing sulfate-bearing hydration products (e.g., 
ettringite; monosulfoaluminate; etc.)40,41. In [cement + aluminosilicate pozzolan + limestone] systems—apart 
from the aforementioned interactions—chemical reaction between the pozzolan and limestone can result in 
formation of additional hydration products (e.g., monocarboaluminate)42,43. The nature and magnitude of these 
effects—in addition to the above-described filler and pozzolanic effects—depend on the additives’ composition 
and physical characteristics (mainly specific surface area); and these effects could have profound effect on hydra-
tion kinetics of the host material, cement.

Due to the above-described complexities associated with hydration of cement in plain and multicomponent 
pastes, the derivation of semi-empirical equations, that describe the rate-limiting reactions or provide a plau-
sible representation of the underlying thermo-kinetic mechanisms (e.g., equilibrium constants) that drive the 
reactions, is  challenging22,35,38,44–49. Furthermore, our comprehension of how different experimental process 
parameters (e.g., composition of cement) affect cement hydration behavior—which, historically, have always 
been investigated using classical materials science approaches (e.g., the Edisonian approach of iterative synthesis-
testing-analysis of specimens)—is limited, and has several knowledge-gaps. These knowledge-gaps have thus 
far prevented the development of all-encompassing cement hydration models capable of reliably predicting 
cement hydration kinetics. In spite of these knowledge-gaps, several semi-empirical numerical models (e.g., phase 
boundary nucleation-and-growth models) have been developed, and employed to enhance our understanding of 
mechanisms that drive cement hydration as function of time and various other process  parameters20,22,31,33,35,49–52. 
Selected numerical models have achieved success—albeit with a caveat—in reproducing the temporal evolution 
of cement hydration kinetics, measured via the isothermal calorimetry technique; wherein time-dependent exo-
thermic heat release of hydration is monitored, and used to estimate rate and extent of cement  hydration22,31–33,49. 
The aforesaid caveat is that these semi-empirical models—even in the best-case scenario (e.g., after rigorous cali-
bration of multiple parameters)—can only reproduce the results of isothermal calorimetry experiments. Simply 
put, they are unable to produce a priori predictions of the heat evolution profiles (or hydration kinetics profiles) 
of new cementitious systems. Furthermore, several  researchers31,32,49,51,53 have argued that these models require 
further refinement; since models that are based on erroneous assumptions, approximations, and mechanisms, 
or incorrect representation of mechanisms, can still reproduce calorimetry data.

Owing to the above-described limitations of semi-empirical numerical models, in recent years, several 
researchers have focused on developing and applying data-driven, artificial intelligence techniques [e.g., machine 
learning (ML) models] to predict the properties of cementitious systems using their initial physicochemical 
attributes as inputs. ML models are appealing because they are able to extract composition-properties correlations 
in a material from the training dataset, and subsequently capitalize on such correlations to produce predictions 
and optimizations of properties of materials with new compositions; all without the need for an across-the-board 
understanding the underlying mechanisms. Even in the case of materials for which composition-properties cor-
relations are well understood, ML models are still useful as they could be used to predict properties of materials 
of entirely new compositions; while being informed, guided, and constrained by well-established theoretical laws. 
Owing to these reasons, it is unsurprising that, just in the last ten years, numerous articles describing the use 
of ML models to predict properties of complex material systems (e.g., concrete; multicomponent glasses; etc.) 
have been  published54–65. In our literature review, while we found scores of studies that employed ML models to 
predict mechanical properties of cementitious systems, we did not find any study that focused on prediction of 
time-dependent hydration kinetics of cement. On a much broader level, there are no studies that demonstrate 
the application of ML—or other analytical or statistical models, for that matter—to predict continuous, time-
based evolution of material’s reactivity; although, ML models have been used to predict rate/extent of reactivity 
of materials (e.g., glasses) at discrete time-steps54,59,60. In the context of cementitious systems, prediction of 
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continuous, time-dependent kinetics of cement hydration is valuable; because these kinetic profiles can be used 
to produce crude estimates of various other properties of the  system20,66–69, such as setting time, rheological 
behavior, and mechanical properties (e.g., compressive strength). Simply put, time-dependent hydration kinetics 
of cement in a given cementitious system can be used as a singular metric to estimate—albeit roughly—various 
fresh and mature properties of the system. As an example: in a scenario, wherein multiple cementitious systems 
need to be ranked/ordered in terms of their properties (e.g., compressive strength), prompt predictions of cement 
hydration kinetics (produced by ML models) could be used to complement or even replace time-consuming 
and expensive experiments.

In this study, a random forests (RF)  model70–72—a reformed version of the classification-and-regression 
decision trees (CART) model—is used to perform predictions of time-dependent, heat evolution behavior (as a 
measure of rate and extent of cement hydration in the first 24 h after mixing) of multicomponent cementitious 
systems. The RF model was trained from a high-volume database, comprising heat evolution profiles of 235 
unique systems; encompassing 7 synthetic cements, and three different mineral additives (coarse limestone; fine 
limestone; and metakaolin) that were used—individually or in pairs—to replace 0–60%mass of the cement. The 
aforesaid synthetic cements were formulated to encompass a wide spectrum of compositions; this was achieved 
by mixing three cementitious phases—C3S;  C3A; and C$H2—at varying proportions. It should be noted that 
these cements represent a simplification of commercial cements, which contain two additional cementitious 
phases (e.g., belite or  C2S; and ferrite or  C4AF). These phases, nevertheless, react very slowly; and, therefore, 
do not significantly affect the overall hydration kinetics, at least in the first 24 h after contact with water. The 
RF model was rigorously trained using the database so as to establish the underlying composition-reactivity 
correlations. Once trained, the RF model was used to predict time-dependent hydration kinetics of cement in 
new, multicomponent systems. Results show that the RF model produces accurate predictions of continuous, 
time-dependent hydration kinetics of cement, a feat that is currently impossible with semi-empirical kinetic 
models. Results also show that the RF model—and the composition-reactivity correlations learned by the model 
during its training—can be capitalized on to predict optimal mixture designs of cementitious systems that satisfy 
user-imposed kinetics criteria.

Overview of the random forests model
The random forests (RF) model—based on an ensemble of 100–1000 s of uncorrelated classification-and-
regression-trees (CART)55,58,59,73—is used in this study. The RF model is premised on: (1) Building uncorrelated 
decision trees (i.e., CARTs) at a large scale; (2) Grouping CARTs into committees, so as to produce independ-
ent outputs; and (3) Averaging outputs produced by all CARTs to estimate the final  output74. While buildings 
CARTs, their partitioning into terminal nodes is achieved via binary splits; the partitioning is of recursive 
nature, and is continued until the optimal structure of the CART is achieved (i.e., until homogeneity among 
terminal nodes reaches its global maximum). The RF model leverages: (1)  Bagging70,71, which guarantees that the 
growth of each CART originates from a collection of bootstraps that are selected at random, with each bootstrap 
comprising the exact same number/type of inputs as the entire training dataset; and (2) Bootstrapping, which 
serves to simultaneously reduce both bias (overfitting) and variation (underfitting) amongst the large number of 
 CARTs75. During the training-and-validation of the RF model, each CART is allowed to grow until it achieves its 
maximum-permissible size; without implementing any pre- or post-processing step (e.g., pruning; smoothening; 
etc.) to alter or rectify its structure. On account of this, the CARTs remain diverse (N.B.: Output of all CARTs are 
truly independent); therefore, permitting the RF model to garner input–output correlations within the training 
database, without disregarding data-records that digress significantly from the trends (i.e., outliers). It is worth 
pointing out that a pair of hyperparameters—number of CARTs in the ensemble and number of logical splits in 
each CART —of the RF model ought to be adjusted to achieve optimal prediction accuracy. Manual adjustment 
of these hyperparameters could lead to poor prediction performance. Therefore, in this study, the grid-search 
 method76—coupled with the tenfold cross-validation method (see “Results and discussion” section)58,59,77,78—was 
used to autonomously adjust-and-optimize the two hyperparameters.

Materials and methods
Tricalcium silicate  (C3S) powder—the main precursor used for formulation of synthetic cement—was synthesized 
in the laboratory; details pertaining to the solid-state synthesis can be found in  reference18. Other precursors 
used for formulation of synthetic cement [i.e., tricalcium aluminate  (C3A); and gypsum (C$H2)], and mineral 
additives used to partially substitute cement [i.e., limestone  (CaCO3); and metakaolin  (Al2Si2O7)], were sourced, 
in powder form, from commercial suppliers. Reagent-grade C$H2 (sourced from Alfa Aesar) was determined 
to be 99%mass pure.  C3A (sourced from Kunshan Chinese Technology New Materials Co., Ltd) was determined 
to be > 98%mass pure; with the remaining 2%mass being free lime (CaO). Metakaolin (subsequently referred to as 
MK) was sourced from Imerys Kaolin; and was found to be > 98.5%mass amorphous  Al2Si2O7, with the remaining 
1.5% being minor oxides of iron, calcium, titanium, and alkalis. To obtain two different particle size distributions 
(PSDs) of limestone (sourced from Mississippi Lime), the as-received powder (denoted as coarse limestone or 
C-LS) was ground using a wet, ball-milling method. Here, limestone was mixed with de-ionized water (18.3 
MΩ); milled for ~ 48 h; and subsequently dried in an oven to obtain fine limestone (subsequently referred to as 
F-LS). PSDs of all powders were determined using a static light scattering (SLS)/laser diffraction particle size 
analyzer (Microtrac S3500); results are shown in Fig. S1 (Supporting Information). Details pertaining to the 
PSDs—including the specific surface area (SSA) of the particulates—are listed in Table S1.

7 synthetic cements—each with a distinct composition—were formulated by mixing  C3S,  C3A, and C$H2 at 
varying mixture proportions (see Table 1). Emphasis was given to vary the  C3S-to-C3A and  C3A-to-C$H2 ratios 
so as to emulate the compositions of commercial cements, which feature broad-range variations in  C3S,  C3A, and 
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C$H2 contents. Next, pastes were formulated by mixing the solids (i.e., cement; or cement + mineral additives) 
with DI-Water (MΩ 18.3) at a constant liquid-to-solid mass ratio (l/s) of 0.45. Plain pastes were formulated by 
mixing cement with water. Binary pastes were formulated by partially replacing the cement with an additive 
(either coarse limestone; or fine limestone; or metakaolin) at replacement levels of 10–60%mass. For ternary pastes, 
up to 60%mass of cement was replaced with a [metakaolin + limestone] mixture, prepared at mass ratios of either 
1:1 or 2:1 (between masses of metakaolin and limestone). Mixture designs, featuring binary and ternary pastes 
prepared using Cement #1, are shown in Table 2. Binary and ternary pastes, prepared using Cements #2–#7, 
were formulated using the same designs of mixtures shown in Table 2.

Hydration kinetics of cement in the pastes were measured using a TAM IV (TA Instruments) isothermal 
conduction microcalorimeter over a 24-h period at a constant temperature of 20 ± 0.1 °C. The microcalorimeter 
monitors and records the rate (mW.  gCem

−1) and extent (J.  gCem
−1) of heat released from the hydration of cement 

in the pastes at a high time-resolution of 1 μs and power-resolution of 0.1 μW. The heat flow rate and cumulative 
heat release serve as direct, accurate measurements of rate (kinetics) and degree (extent) of hydration of cement, 
 respectively18,22,23,49,79.

Database and appraisal of prediction accuracy of the random forests model
Heat evolution (calorimetry) profiles obtained from microcalorimetry experiments—that is, time-dependent 
heat flow rate and cumulative heat release corresponding to hydration of cement in the pastes—were compiled, 
and split into two databases: a training database (Table S2; Supporting Information) comprising 5640 data-
records from 235 pastes (including 18 pastes that were repeated to account for standard deviation in isothermal 
microcalorimetry profiles); and a testing database (Table S3) consisting of 168 data-records from 14 unique 
pastes. It should be noted that while heat flow rate and cumulative heat release profiles correspond to differen-
tial and cumulative forms of heat release behavior, in this study, both profiles were treated (i.e., for training and 
testing) separately. This was done to evaluate the prediction performance of the ML model on two separate but 
interdependent measures of reactivity, wherein the differential profile is comparatively more complex (highly 
nonmonotonic due to its transition through different stages such as dissolution and induction period) and more 
sensitive to minor changes in physicochemical attributes of the paste.

Table 1.  Compositions of cements #1–7. As can be seen, the synthetic cements feature a wide range of 
compositions, with different  C3S,  C3A, and C$H2 contents.

Cement no. (#) C3S (%Mass) C3A (%mass) C$H2 (%mass) C$H2/C3A (mass ratio)

1 90 4 6 1.50

2 92 4 4 1.00

3 88 8 4 0.50

4 80 8 12 1.50

5 70 12 18 1.50

6 82 12 6 0.50

7 100 0 0 N/A

Table 2.  Mixture designs of binary and ternary pastes prepared using Cement #1. The ternary paste features 
either a 1:1 or a 2:1 ratio between metakaolin (MK) and limestone (LS). Limestone with two different particle 
size distributions—i.e., coarse limestone (C-LS) and fine limestone (F-LS)—are used.

C3S (%mass) C3A (%mass) C$H2 (%mass) Cement #1 (%mass) MK (%mass) LS (%mass) Total additive (%mass)

81 3.6 5.4 90 10 0 10

72 3.2 4.8 80 20 0 20

63 2.8 4.2 70 30 0 30

54 2.4 3.6 60 40 0 40

45 2 3.0 50 50 0 50

36 1.6 2.4 40 60 0 60

72 3.2 4.8 80 10 10 20

63 2.8 4.2 70 15 15 30

54 2.4 3.6 60 20 20 40

45 2.0 3.0 50 25 25 50

36 1.6 2.4 40 30 30 60

63 2.8 4.2 70 20 10 30

36 1.6 2.4 40 40 20 60
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The training database was used to train the RF model and optimize its hyperparameters. Next, the model’s 
prediction accuracy—that is, its ability to produce a priori predictions of time-dependent heat flow rate and 
cumulative heat release of pastes with new compositions—was evaluated against pastes included in the testing 
database. Both the training and testing databases included pastes formulated using each of 7 synthetic cements, 
and each of three additives [i.e., metakaolin (MK); coarse limestone (C-LS); and fine limestone (F-LS)]. Both 
databases included 7 inputs pertaining to physicochemical properties of the paste:  C3S content (%mass);  C3A 
content (%mass); C$H2 content (%mass); metakaolin content (%mass); limestone content (%mass); SSA of limestone 
particulates  (cm2.  g−1); and time (hour). The outputs comprised of time-dependent cumulative heat release (J. 
 gCem

−1) and heat flow rate (mW.  gCem
−1) from 0-to-24 h, with a 1-h time-interval between successive steps. Statisti-

cal parameters pertaining to the training and testing databases are summarized in Tables S2 and S3, respectively.
To evaluate the prediction performance of the RF model, predictions of heat flow rate and cumulative heat 

release of pastes in the testing database were compared against isothermal calorimetry measurements. These 
predictions of heat release profiles were produced by the model with a 2-h interval. Here, a time-step of 2 h was 
chosen so as to have a discernible gap between successive predictions that can be easily visualized. It is worth 
clarifying that predictions could have been produced with a time-interval of 1 h (or 0.5 h or 3 h); but doing so 
would not change the overall prediction performance of the model. Five unique statistical parameters were used 
to quantitatively compare the predictions against the measurements. The five statistical parameters include: mean 
absolute percentage error (MAPE); Person correlation coefficient (R); mean absolute error (MAE); coefficient 
of determination  (R2); and root mean squared error (RMSE). Each parameter serves as a distinct measure of 
prediction error; and equations describing how these parameters are estimated are described in prior  studies55,59.

Results and discussion
Isothermal microcalorimetry: hydration kinetics of cement in multicomponent pastes. Fig-
ure 1 shows representative hydration kinetics profiles of cement (i.e., time-dependent heat flow rate profiles) in 
ternary pastes formulated using three different synthetic cements (i.e., Cement #1; #3; and #7) and three different 
mineral additives (i.e., metakaolin; coarse limestone; and fine limestone) at 0–60%mass cement replacement levels. 
As can be seen, with increasing levels of replacement of cement with additives, there is: either (1) A leftward shift 
in main peak of the heat flow rate profile, which is indicative of enhancement in cement hydration  rates19,20,22,80; 
or (2) A rightward shift, which is indicative of suppression of cement hydration  kinetics22,49,67,79,81–83. The mag-
nitudes of these alterations—that is, acceleration or deceleration of cement hydration kinetics—strongly depend 
on multiple factors: cement’s composition; PSD and composition of the additive; and overall mixture design 
(i.e., %mass of cement; limestone; and metakaolin in paste). For example, in pastes formulated using Cement 
#1 (Fig. 1A,B), cement hydration rates are enhanced—in near-monotonic manner—with increasing levels of 
cement-replacement with additives. Notwithstanding, depending on the PSD of limestone (i.e., coarse limestone; 
or fine limestone) and the overall mixture design, the magnitudes of these enhancements are different from each 
other. In pastes formulated using Cement #3 (Fig. 1C,D)—on account of disparate, albeit concurrent, physical/
chemical interactions among components of the paste—the heat flow rate profiles feature multiple peaks. Here, 
the physical interactions may include filler effects induced by metakaolin and limestone, resulting in enhance-
ment of hydration kinetics of  C3S. The chemical interactions may include those among metakaolin, limestone, 
 C3A, C$H2—resulting in alterations in the stability of  SO3-bearing phases (e.g., ettringite), and precipitation of 
 CO3-bearing phases (e.g., monocarboaluminate)42,43,84. Lastly, in pastes formulated using Cement #7 (Fig. 1E), in 
which the cement is partially replaced with metakaolin and coarse limestone, the main hydration peak appears 
to shift rightward—as opposed to the leftward shift observed in other pastes—in relation to increasing levels of 
replacement of cement with additives. As Cement #7 is comprised of only  C3S, it is expected that aluminate ani-
ons [Al(OH)4

¯], released from metakaolin’s dissolution upon contact with water, inhibit topographical sites (e.g., 
etch-pits; grain boundaries; etc.) of  C3S dissolution and of C–S–H’s nucleation-and-growth; thereby resulting in 
slower hydration kinetics of  C3S (and thus of cement)18,85–87. However, when fine limestone is used to partially 
replace cement, the metakaolin-induced inhibition of early age hydration of  C3S appears to be less pronounced 
(Fig. 1F); conceivably due to the acceleration induced by filler effect of the fine limestone.

Figure 2—which shows two characteristic kinetic parameters (i.e., intensity of heat flow rate at the main 
hydration peak, and time to main hydration peak; extracted from the heat flow rate  profiles19,20,22,80) of pastes—
highlights the complex nature of composition-reactivity correlations in multicomponent pastes. As can be seen, 
depending on initial physicochemical properties of the paste (i.e., cement composition; cement replacement 
level; composition/PSD of the additives; and mixture design), the kinetic parameters change drastically (e.g., 
time to peak ranges from 4.5-to-22 h). Such complexity, nevertheless, is not unforeseen; and can be attributed 
to the ability of each physicochemical parameter—e.g., cement composition; additive’s chemical makeup; etc.—
to cast distinct, and substantial, effect on the hydration kinetics of one or both cementitious phases (i.e.,  C3S 
and  C3A), and thus of cement. Going from one paste to another, when multiple physicochemical parameters 
are concurrently varied, the net effect on cement hydration kinetics is the culmination of not only the sum of 
individual contributions of each parameter, but also mutual interactions between the said parameters. While 
decades of research on understanding the mechanisms that drive cement hydration has collectively provided 
valuable insights, and led to the development of semi-empirical numerical models; there still are significant 
knowledge-gaps that disallow a priori prediction of time-dependent cement hydration behavior, especially in 
multicomponent pastes (e.g., pastes shown in Fig. 2; which feature complex, highly nonlinear linkages between 
reactivity and composition of paste components). Explicitly because of this reason, data-driven methods—that 
do not require an across-the-board understanding the underlying mechanisms—are needed for such predictions.
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(A) (B)

(C) (D)

(E) (F)
Figure 1.  Heat flow rate profiles of ternary pastes prepared using Cement #: (A)1; (C) 3; and (E) 7, wherein 
the cement is partially replaced with metakaolin (MK) and coarse limestone (C-LS). Heat flow rate profiles of 
pastes containing fine limestone (F-LS) and metakaolin are shown in (B, D, and F). The replacement levels of 
cement with metakaolin and limestone are shown in the legends (e.g., 40%-20% indicates 40%mass and 20%mass 
replacement of cement with metakaolin and limestone, respectively).
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Prediction of time-dependent hydration kinetics of cement. It is worth reiterating here that, in this 
study, the training of the RF model was accomplished using a fraction of the database (i.e., training database); 
and, post-training, the model’s prediction performance was ascertained by comparing its predictions of time-
dependent heat evolution profiles of pastes (included in the testing database) against experimentally measured 
profiles. In general, to maximize the RF model’s ability to perform predictions over blank data-domains, it is 
crucial that all of the following criteria are met: the model is offered adequate training so as to develop logical 
correlations between inputs (e.g., cement composition; mixture design; etc.) and outputs (i.e., time-dependent 
heat flow rate and cumulative heat release); Outliers in the database are incorporated rather than discarded 
(e.g., pruned from the CARTs); and Both underfitting and overfitting (i.e., variance and bias among CARTs) 
are abated inasmuch as they can be. Towards fulfilling the aforementioned criteria, the pair of free hyperparam-
eters of the model (no. of CARTs in the ensemble; and no. of logical splits in each CART) were autonomously 
adjusted-and-optimized using the grid-search  method76,88. The grid-search method—which is employed in tan-
dem with the tenfold cross-validation  method78—performs by grid-by-grid search of optimal magnitudes of the 
hyperparameters such that the model’s predictions digress from actual observations (measured using the five 
statistical parameters listed in “Database and appraisal of prediction accuracy of the random forests model” sec-
tion) by as little as possible. Representative results, obtained from the grid-search method, are shown in Fig. 3. 
Here, two statistical parameters (i.e., R; and MAPE) are used as archetypal metrics to measure the average devia-
tion between predictions and measured values of cumulative heat release and heat flow rate over a 24-h period. 
Based on these metrics, it was found that, for predictions of cumulative heat release, the optimal values of no. of 
CARTs (trees) in the ensemble (forest) and no. of logical splits in each CART  were found to be 500 and 5, respec-
tively. For predictions of heat flow rate, the optimal values were slightly higher—that is, 800 and 7, respectively—
presumably because of highly nonlinear and nonmonotonic nature of heat flow rate with respect to time [N.B.: 
Cumulative heat release increases monotonically—although in nonlinear fashion—with respect to time]. The 
grid-search method revealed that when the no. of logical splits per CART  were: (1) Less than the optimal value, 
the decision-trees were not adequately sophisticated to process the complex, inputs-outputs correlations from 
the root node to the terminal, leaf nodes; and (2) Larger than the optimal value, the root-to-leaf structure of the 
CARTs became too complex, thus amplifying bias (or the likelihood of overfitting, wherein outliers in the data-
base are prioritized to similar degree as data-records that fall into trends). Similarly, when the number of CARTs 
in the ensemble was: (1) Less than the optimal number, the shortage of independent bootstraps prevented the 
model from instituting reliable inputs-outputs correlations from the training database; and (2) Larger than the 
optimal number, a large numbers of CARTs ended up having the same structure, thus resulting in redundancy 
and little-to-no improvement in the model’s overall prediction performance in spite of the undesired increase in 
computational  complexity70,89.

Following the optimization of the RF model’s hyperparameters, the model was used to predict time-dependent 
heat flow rate and cumulative heat release profiles—as proxies of cement hydration kinetics—of pastes included 
in the testing database (N. B.: The RF model, during its training, was not exposed to data pertaining to these 
pastes). Deviations between predictions and measured values of heat flow rate and cumulative heat release, as 
functions of time, were quantified using the five statistical parameters described in “Database and appraisal of 
prediction accuracy of the random forests model” section. These parameters—pertaining to prediction errors of 
heat flow rate and cumulative heat release—are shown in Figs. S2 and S3 (Supporting Information), respectively; 
representative results [MAPE of prediction errors in relation to time] are shown in Fig. 4. These prediction errors 
were then averaged over the 24-h period; these time-averaged errors are summarized in Table 3. Figure 5 shows 
predictions of heat evolution profiles of representative pastes (belonging to the testing database) plotted against 
those measured using isothermal microcalorimetry. Figure S4 (Supporting Information) shows the learning 
behavior of model; specifically, the enhancement in the prediction performance of the RF model (with optimized 

Figure 2.  Characteristic calorimetric (kinetic) parameters of all pastes, prepared using 7 different synthetic 
cements, plotted as functions of the replacement level (%mass) of cement with different additives (i.e., metakaolin; 
coarse limestone; and fine limestone). Representative calorimetric parameters shown here include: (A) Time to 
main heat flow rate (or hydration) peak; and (B) heat flow rate at the peak.
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(A) (B)

(C) (D)

Figure 3.  Grid-search method used to optimize hyperparameters (number of CARTs in the ensemble; and 
number of logical splits at each node of the CART ) of the RF model to improve its prediction performance against: 
heat flow rate, assessed using (A) MAPE, and (B) R; and cumulative heat release, assessed using (C) MAPE, and 
(D) R.

(A) (B)

Figure 4.  Mean absolute percentage error (MAPE)—as a measure of error in prediction (with respect to 
measurements)—of (A) heat flow rate and (B) cumulative heat release of pastes over a 24-h period. MAPE was 
estimated at different time intervals; as such, the plots show MAPE as functions of time.
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parameters) in relation to increasing volume of the training database. Figure S5, shows the variable importance 
analysis; specifically, the ranking of physicochemical attributes of the pastes in terms of the influence they exert 
on the pastes’ heat release behavior. Discussion pertaining to results shown in Figs. S4 and S5 is provided in the 
Supporting Information.

As can be seen in Figs. 4, 5 and Table 3, heat flow rate and cumulative heat release profiles of the pastes, 
as predicted by the RF model, are in excellent agreement with experimental measurements.  R2 and RMSE of 
heat flow rate predictions are 0.91 and 0.63 mW.  gCem

−1, respectively; while the  R2 and RMSE of cumulative 
heat release predictions are 0.98 and 14.9 J.  gCem

−1, respectively. These results reinforce the point made earlier 
in “Introduction” section—that data-driven, artificial intelligence-based models are able to predict outcomes 
of new systems, with much higher accuracy as compared to semi-empirical models, while obviating the need 
for thorough comprehension of the mechanisms that dictate cause-effect correlations in such systems. Statisti-
cal parameters shown in Figs. 4, S2, and S3 reveal an important trend: the RF model produces more accurate 
predictions of cement hydration kinetics at later ages (i.e., time ≳ 5 h) as compared to predictions of early age 
(time ≲ 5 h) hydration kinetics. This inconsistency—in prediction accuracy of the model at early versus later 
ages—is hypothesized to be caused by the inherent, substantial differences in the complexity of early vis-à-vis 
later age hydration kinetics of cement. More specifically, cement hydration transitions through four different 
stages—initial dissolution period; induction period; and acceleration period—within the first 2–5 h; and each stage 
leaves a unique footprint on the hydration kinetics (and, therefore, heat evolution) profile owing to the disparities 
in the underlying  mechanisms31,32. However, between 5-and-24 h of hydration (and even beyond 24 h), cement 
hydration transitions through only two stages (i.e., acceleration period; and deceleration period); and, more 
importantly, during both stages, cement hydration kinetics are driven by a singular, nucleation-and-growth 
 mechanism22,32,33,49,81. Furthermore, early age hydration kinetics of cement are more susceptible to changes (i.e., 
acceleration or deceleration) in response to even minor alterations in the system’s physicochemical parameters 
(e.g., changes in composition/content of cement; composition/PSD/content of additive; etc.). Therefore, it is 
conceivable that the RF model would require a very large volume of database, with significant diversity, to capture 
such dynamic and rapid variations in early age hydration kinetics of cement induced by various physicochemical 
factors (see Figure S4). Later age hydration kinetics of cement—in contrast to early age—are appreciably less 
sensitive to the aforementioned physicochemical factors; and, therefore, can be predicted with higher accuracy.

Comparisons of predicted kinetics profiles with measured ones (Fig. 5G,H) also revealed another important 
point. Predictions of cement hydration kinetics in metakaolin-rich pastes were, in general, found to be less accu-
rate compared to all other pastes. This discrepancy is expected to be a manifestation of the ability of metakaolin 
to affect cement hydration kinetics—especially at early ages—in ways that are substantially different from those 
induced by limestone (or other fillers, for that matter). As described in “Introduction” section, in metakaolin-
rich systems, the dissolution of metakaolin releases aluminate ions [Al(OH)4

−] into the contiguous solution; 
these ions inhibit  C3S dissolution sites, as well as heterogeneous nucleation sites for C–S–H, thus resulting in 
suppression of early age hydration of  C3S18,22,23,80. Furthermore, metakaolin exerts dual effects—filler and poz-
zolanic effects—of which the former accelerates early age hydration kinetics of  C3S18,23. Lastly, in ternary pastes, 
interactions among  C3A, metakaolin, limestone, and C$H2 can result in formation of  CO3-bearing phases (e.g., 
monocarboaluminate) at the expense of  SO3-bearing monosulfoaluminate phase; thereby affecting the overall 
hydration behavior of  cement5,90. As would be expected, the nature and magnitude of these effects depend 
strongly on cement chemistry (e.g., %mass of  C3A and C$H2 in the cement). These effects are absent or negligible 
in metakaolin-deficient pastes; or in pastes formulated using small amount of metakaolin and large amount of 
fine limestone, wherein the latter acts to accelerate  C3S hydration kinetics, thereby counteracting the hydration-
inhibiting effects of metakaolin. It is expected that supplementing the training database with more data-records 
of metakaolin-rich systems can allow the RF model to better grasp the effects of metakaolin; thereby allowing it 
to produce more accurate predictions of cement hydration kinetics in binary and ternary metakaolin-rich pastes.

The proficiency of the RF model’s in terms of promptly producing high-fidelity predictions of cement hydra-
tion kinetics (in the forms of time-dependent cumulative heat release and heat flow rate) is anticipated, given the 
large body of published  research54–56,58,59,73,77,91; in which it has consistently been shown that the RF model—and 
other decision trees-based models—generally outperform other models that are based on nonlinear regression 
analyses (e.g., elastic net regression), or an assortment of logistic transfer functions (e.g., artificial neural net-
works), or data clustering/mapping mechanisms (e.g., support vector machines). To benchmark the prediction 
performance of the RF model, two additional ML models developed and used in our previous  studies55,57–59,92—the 
multilayer perceptron artificial neural network (MLP-ANN) model; and support vector machine (SVM)—were 

Table 3.  Time-averaged magnitudes of statistical parameters, used to quantify errors in RF model’s 
predictions of cumulative heat release and heat flow rate.

ML model

R R2 MAE MAPE RMSE

Unitless Unitless mW.  gCem
−1 % mW.  gCem

−1

Heat flow rate

RF 0.952 0.912 0.410 23.09 0.63

Unitless Unitless J.  gCem
−1 % J.  gCem

−1

Cumulative heat release

RF 0.991 0.982 10.45 19.15 14.90
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(A) (B)

(C) (D)

(E) (F)

(G) (H)

Figure 5.  The RF model’s predictions of: (A) heat flow rate and (B) cumulative heat release of Cement 
#1 + metakaolin + coarse limestone paste; (C) heat flow rate and (D) cumulative heat release of Cement 
#3 + coarse limestone paste; (E) heat flow rate and (F) cumulative heat release of Cement #4 + metakaolin + fine 
limestone paste; and (G) heat flow rate and (H) cumulative heat release of Cement #6 + metakaolin + fine 
limestone paste compared against experimental measurements. Mean absolute percentage error (MAPE) as 
function of time are shown in each figure. The time-averaged MAPE of the predictions are shown in the legends.
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used to produce predictions of heat release behavior, and compared against those produced by the RF model 
(see Fig. S6; Supporting Information). As shown in Figure S6, the RF model consistently produces more accurate 
predictions that the other two ML models. The RF model’s superior prediction performance can be attributed 
to aspects of its internal  architecture70,71,93; the important ones of which are summarized ahead. In conventional 
decision trees-based models, a large number of CARTs are grown with minimal regularization; because of this, 
the accuracy of the model’s predictions is predicated on the database’s diversity and its volume being large 
(e.g., >  > 1000 unique data-records). In the RF model, used in this study, this deficiency (requirement of high-
volume database) was overcome by introducing regularization for each CART through several mechanisms: (1) 
Minimizing variance (underfitting): through construction of an enormous number (≫ 100) of deep, unpruned 
CARTs, on a node-by-node basis; (2) Establishing robust cause-effect correlations within the training database: 
by allowing unmitigated growth of each CART until it reaches its maximum-allowable size, while revoking the 
criterion that the number of terminal (leaf) nodes among different CARTs ought to be the same; (3) Minimiz-
ing bias (overfitting): by adopting 3-stage randomization, which ensures that each CART—of the 100 s that are 
included in the ensemble—produces its own, unique prediction that is truly independent of all other CARTs; and 
(4) Autonomous optimization: by utilizing the tenfold cross-validation  method78 in tandem with the grid-search 
 method88,91 to autonomously adjust-and-optimize the pair of hyperparameters (i.e., number and structure of 
CARTs) so as to establish robust inputs-outputs correlations while also accounting for outliers in the database.

Optimization of mixture design to meet target kinetics criteria. Results shown in “Prediction of 
time-dependent hydration kinetics of cement” section prove that the RF model—provided that is rigorously 
trained, and its hyperparameters are optimized—can be utilized to promptly and reliably predict the time-
dependent heat flow rate and cumulative heat release corresponding to hydration of cement in multicomponent 
systems. The authors posit that this ability of the RF model—to understand hidden correlations between physio-
chemical attributes of pastes and hydration behavior of cement in such pastes—can be leveraged to develop opti-
mal mixture design of [cement + mineral additive] systems that exhibit target (user-imposed) hydration behav-
ior. To verify this, a Bayesian optimization  module58,59,91,94,95 was designed—atop the prediction module of the RF 
model—to enable predictions of optimal mixture design of multicomponent [cement + metakaolin + limestone] 
pastes that would satisfy target kinetics criteria (i.e., a target cumulative heat value at 24 h).

Within the optimization scheme, the target 24-h cumulative heat release was set at 320–370 J.  gCem
−1—which 

are reasonably high values that entail high degree/extent of cement hydration (i.e., ~ 67–77%, assuming the 
enthalpy of cement hydration is 480 J.  gCem

−1). Next, two mixtures—[(100 − x − y) %mass Cement #3 + x %mass 
metakaolin + y %mass limestone] and [(100 − x − y) %mass Cement #6 + x %mass metakaolin + y %mass limestone]—
were designed. And, in the final step, the RF-based optimization module was implemented to estimate the opti-
mum levels of replacement of cement with metakaolin (x) and (fine or coarse) limestone (y) that would result in 
the target 24-h cumulative heat release. Results produced by the optimization module are shown in Fig. 6. For 
the purposes of benchmarking the optimization results, data-points obtained from isothermal microcalorimetry 
experiments of ternary pastes—in which the 24-h cumulative heat release is within ± 5% of the target value—are 
also included in Fig. 6.

As shown in Fig. 6, results produced by the RF-based optimization module are in good agreement with data-
points extracted from isothermal microcalorimetry experiments. While this agreement between predictions 
and experiments is reassuring, the trend(s) that surfaced in Fig. 6A–D are counterintuitive. For example, in the 
figures, there is a common trend that emerged: In order to achieve a high degree/extent of cement hydration, the 
limestone content needs to be increased with increasing metakaolin content; that is, from 10-to-30%mass in the 
paste. While this correlation between limestone and metakaolin contents cannot be fully justified from theory, 
it is expected that higher limestone content—and its associated filler effect—is needed to overcome metakaolin’s 
propensity to suppress hydration of the  C3S phase in cement. Higher limestone content would also be needed 
to chemically interact with metakaolin to produce  CO3-bearing phases (e.g., monocarboaluminate); thereby 
resulting in high overall reactivity of cement at 24 h. When the metakaolin content is very high (i.e., ≳ 30%mass), 
the optimization results (Fig. 6) suggest that the limestone content ought to be reduced to ~ 20%mass to achieve 
high degree of cement hydration. Again, the underlying reasons for this are unclear; but it is hypothesized that 
large content of metakaolin in the paste ensures elevated filler and pozzolanic (i.e., reaction between metakaolin 
and calcium hydroxide) effects of metakaolin, thereby requiring less limestone to achieve high degree of cement 
hydration. Large content of metakaolin in the paste could also result in chemical reaction with  CSH2, leading 
to formation of  SO3-bearing ettringite and monosulfoaluminate phases; thus, precluding the need for large 
content of limestone.

The discussion above suggests that results produced by the RF-based optimization module cannot be justified 
by theory—at least not in a comprehensive manner. Nonetheless, the excellent agreement between experiments 
and optimization results (Fig. 6) supports the premise that the optimization module can produce reliable results 
even when the underlying mechanisms are not well understood. This is an important point; the implication 
of which is that the RF model, once trained with a database with additional data-entries, could be employed 
to promptly and reliably predict the ideal amount and type of additive(s) for a [cement + mineral additive(s)] 
system that exhibits desired time-dependent heat evolution profile, while concurrently fulfilling desired per-
formance (e.g., desired setting time; and desired 28-day compressive strength) and sustainability (e.g., cement 
content < 50%mass of the binder) criteria.
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Conclusions
Concrete—the most produced-and-used material in the world—is the foundational material used in construction 
of various forms of infrastructure. Much of the research in the past several years has been focused on designing, 
and optimizing the performance of, blended cementitious systems, which feature 10–60%mass of cement replaced 
with  CO2-efficient mineral additives; so as to offset both carbon footprint and energy impact associated with 
cement and concrete production. The hydration of cement—a complex chemical phenomenon comprising mul-
tiple, concurrent dissolution–precipitation processes—dictates critical physical characteristics (e.g., initial/final 
setting; compressive strength; chemical durability; etc.) of all cement-based systems (e.g., concrete). Therefore, 
prediction of continuous, time-dependent kinetics of cement hydration is valuable; because these kinetic profiles 
could be used as a singular metric to estimate various fresh and mature physical properties of the host material. 
Notwithstanding, semi-empirical kinetics models (e.g., phase boundary nucleation-and-growth models)—which 
are based partly on theoretically-derived kinetic mechanisms, and partly on assumptions (to fulfill knowledge-
gaps)—are unable to produce a priori prediction of hydration kinetics of cement; especially in multicomponent 
systems, wherein chemical interactions among the system’s components occur concurrently, thus giving rise to 
a staggeringly large degrees of freedom.

The work presented in this paper is a pioneering effort to enable prompt, high-fidelity, and a priori predictions 
of continuous, time-dependent hydration kinetics of cement in multicomponent systems (i.e., plain; binary; and 
ternary pastes). To the best of authors’ knowledge, there are no studies that have demonstrated the use of machine 
learning—or other sophisticated statistical models, for that matter—to predict continuous, time-resolved evolu-
tion of reactivity of multiphase material such as cement. In this study, a modified form of the random forests 
(RF) model was developed; and subsequently trained from a high-volume database. The database comprised of 
time-resolved kinetics profiles of 100 s of unique systems encompassing 7 synthetic cements, and three different 
mineral additives (i.e., limestone with two different PSDs; and metakaolin) that were used—individually or in 
pairs—to replace 0–60%mass of the cement. The aforesaid synthetic cements were formulated to encompass a wide 
spectrum of compositions; this was achieved by mixing three cementitious phases—C3S;  C3A; and C$H2—at 

(A) (B) (C)

(D)

Figure 6.  Results produced by the RF-based optimization module. Optimum levels (%mass) of replacement 
of cement with metakaolin (x-axis) and limestone (y-axis) in ternary pastes formulated using: (A) 
Cement #3 + metakaolin + coarse limestone; (B) Cement #3 + metakaolin + fine limestone; (C) Cement 
#6 + metakaolin + coarse limestone; (D) Cement #6 + metakaolin + fine limestone. The target 24-h cumulative 
heat release is indicated in legend of each figure. Data-points (solid-blue symbols) from experimental 
measurements—and their corresponding 24-h cumulative heat release values—are also included in each figure.
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varying proportions. Results show that the RF model—once trained, and then fed with information (as inputs) 
pertaining to physicochemical characteristics of multicomponent pastes—produces accurate, a priori predictions 
of continuous, time-dependent hydration kinetics of cement in multicomponent pastes; a feat that is currently 
impossible with semi-empirical kinetic models. Results also show that the RF model—and the composition-
reactivity correlations learned by the model during its training—can be capitalized on, and coupled with Bayes-
ian optimization scheme, to predict optimal mixture designs of cementitious systems that satisfy user-imposed 
kinetics criteria.

This study demonstrates the use of a machine learning model—trained-and-validated from rigorous experi-
mentation—to enable high-fidelity prediction of cement hydration behavior in multicomponent systems, as well 
as to formulate mixture designs that satisfy target (user-imposed) kinetic criteria; all without a comprehensive 
understanding of the underlying kinetic mechanisms. In the context of optimization, the machine learning 
model—once trained with a database with additional data-entries—could be employed to predict the ideal 
amount and type of additive(s) for a [cement + mineral additive(s)] system that exhibits desired time-dependent 
cement hydration kinetics, while concurrently fulfilling desired performance (e.g., desired setting time; and 
desired 28-day compressive strength) and sustainability (e.g., cement content < 50%mass) criteria. Furthermore, 
the machine learning methodology described in this study is generic; in that it can be readily extended to describe 
time-dependent dissolution–precipitation interactions in other material systems (e.g., dissolution of glass in sol-
vent; time-dependent degradation of material in relation to environmental variables; etc.). In summary, it can be 
said that the novel work presented in this study represents an important starting point for artificial intelligence-
based mixture design optimization of complex material systems (e.g., cementitious materials)—which is in line 
with the “materials-by-design” paradigm—by leveraging the knowledge of the systems’ underlying nonlinear 
composition-property (i.e., reactivity) relationships.

Data availability
The datasets presented herein, the machine learning model, and the code generated or used during the study are 
available from the corresponding author (A. Kumar; kumarad@mst.edu) by request.

Received: 7 December 2020; Accepted: 4 February 2021

References
 1. Juenger, M. C. G., Winnefeld, F., Provis, J. L. & Ideker, J. H. Advances in alternative cementitious binders. Cem. Concr. Res. 41(12), 

1232–1243. https ://doi.org/10.1016/j.cemco nres.2010.11.012 (2011).
 2. Scrivener, K., Martirena, F., Bishnoi, S. & Maity, S. Calcined clay limestone cements (LC3). Cem. Concr. Res. 114, 49–56. https ://

doi.org/10.1016/j.cemco nres.2017.08.017 (2018).
 3. Gupta, C., Nadelman, E., Washburn, N. R. & Kurtis, K. E. Lignopolymer superplasticizers for low-CO2 cements. ACS Sustain. 

Chem. Eng. 5(5), 4041–4049. https ://doi.org/10.1021/acssu schem eng.7b000 21 (2017).
 4. Skocek, J., Zajac, M. & Ben Haha, M. Carbon capture and utilization by mineralization of cement pastes derived from recycled 

concrete. Sci. Rep. 10(1), 5614. https ://doi.org/10.1038/s4159 8-020-62503 -z (2020).
 5. Snellings, R., Mertens, G. & Elsen, J. Supplementary cementitious materials. Rev. Mineral. Geochem. 74(1), 211–278. https ://doi.

org/10.2138/rmg.2012.74.6 (2012).
 6. Worrell, E., Price, L., Martin, N., Hendriks, C. & Meida, L. O. Carbon dioxide emissions from the global cement industry. Annu. 

Rev. Energy Env. 26, 303–329. https ://doi.org/10.1146/annur ev.energ y.26.1.303 (2001).
 7. Boden, T.; Marland, G.; Andres, B. Global, Regional, and National Fossil-Fuel CO2 Emissions.; Carbon Dioxide Information Analysis 

Center, Oak Ridge National Laboratory, U.S. Department of Energy: Oak Ridge, Tenn., USA, 2017.
 8. Madlool, N. A., Saidur, R., Hossain, M. S. & Rahim, N. A. A critical review on energy use and savings in the cement industries. 

Renew. Sustain. Energy Rev. 15(4), 2042–2060. https ://doi.org/10.1016/j.rser.2011.01.005 (2011).
 9. Habert, G.; Ouellet-Plamondon, C. Recent update on the environmental impact of geopolymers. RILEM Tech. Lett. 2016, 1, 17–23. 

https ://doi.org/10.21809 /rilem techl ett.2016.6.
 10. Pan, S.-Y. et al.  CO2 mineralization and utilization using steel slag for establishing a waste-to-resource supply chain. Sci. Rep. 7(1), 

17227. https ://doi.org/10.1038/s4159 8-017-17648 -9 (2017).
 11. Gutteridge, W. A.; Dalziel, J. A. Filler cement: the effect of the secondary component on the hydration of Portland cement: part I. 

A fine non-hydraulic filler. Cement Concrete Res. 1990, 20 (5), 778–782. https ://doi.org/10.1016/0008-8846(90)90011 -L
 12. Gutteridge, W. A. & Dalziel, J. A. Filler cement: the effect of the secondary component on the hydration of Portland cement: Part 

2. Fine hydraulic binders. Cem. Concrete Res. 20(6), 853–861. https ://doi.org/10.1016/0008-8846(90)90046 -Z (1990).
 13. Rahhal, V. & Talero, R. Early hydration of Portland cement with crystalline mineral additions. Cem. Concr. Res. 35, 1285–1291. 

https ://doi.org/10.1016/j.cemco nres.2004.12.001 (2005).
 14. Sharma, R. L. & Pandey, S. P. Influence of mineral additives on the hydration characteristics of ordinary Portland cement. Cem. 

Concr. Res. 29, 1525–1529. https ://doi.org/10.1016/S0008 -8846(99)00104 -0 (1999).
 15. Thomas, J. J., Jennings, H. M. & Chen, J. J. Influence of nucleation seeding on the hydration mechanisms of tricalcium silicate and 

cement. J. Phys. Chem. C 113(11), 4327–4334. https ://doi.org/10.1021/jp809 811w (2009).
 16. Bellotto, M., Gualtieri, A., Artioli, G. & Clark, S. M. Kinetic study of the kaolinite-mullite reaction sequence. Part I: kaolinite 

dehydroxylation. Phys. Chem. Min. 22, 207–217. https ://doi.org/10.1007/BF002 02253  (1995).
 17. Li, C., Wu, M. & Yao, W. Eco-Efficient Cementitious System Consisting of Belite-Ye’elimite-Ferrite Cement, Limestone Filler, and 

Silica Fume. ACS Sustainable Chemistry & Engineering 7(8), 7941–7950. https ://doi.org/10.1021/acssu schem eng.9b007 02 (2019).
 18. Lapeyre, J. & Kumar, A. Influence of pozzolanic additives on hydration mechanisms of tricalcium silicate. J. Am. Ceram. Soc. 

101(8), 3557–3574. https ://doi.org/10.1111/jace.15518  (2018).
 19. Kumar, A. et al. The filler effect: the influence of filler content and type on the hydration rate of tricalcium silicate. J. Am. Ceram. 

Soc. 100(7), 3316–3328. https ://doi.org/10.1111/jace.14859  (2017).
 20. Oey, T., Kumar, A., Bullard, J. W., Neithalath, N. & Sant, G. The filler effect: the influence of filler content and surface area on 

cementitious reaction rates. J. Am. Ceram. Soc. 96(6), 1978–1990. https ://doi.org/10.1111/jace.12264  (2013).
 21. Cook, R., Ma, H. & Kumar, A. Influence of size-classified and slightly soluble mineral additives on hydration of tricalcium silicate. 

J. Am. Ceram. Soc. 103(4), 2764–2779. https ://doi.org/10.1111/jace.16936  (2019).
 22. Meng, W., Lunkad, P., Kumar, A. & Khayat, K. Influence of silica fume and polycarboxylate ether dispersant on hydration mecha-

nisms of cement. J. Phys. Chem. C 120(47), 26814–26823. https ://doi.org/10.1021/acs.jpcc.6b081 21 (2016).

https://doi.org/10.1016/j.cemconres.2010.11.012
https://doi.org/10.1016/j.cemconres.2017.08.017
https://doi.org/10.1016/j.cemconres.2017.08.017
https://doi.org/10.1021/acssuschemeng.7b00021
https://doi.org/10.1038/s41598-020-62503-z
https://doi.org/10.2138/rmg.2012.74.6
https://doi.org/10.2138/rmg.2012.74.6
https://doi.org/10.1146/annurev.energy.26.1.303
https://doi.org/10.1016/j.rser.2011.01.005
https://doi.org/10.21809/rilemtechlett.2016.6
https://doi.org/10.1038/s41598-017-17648-9
https://doi.org/10.1016/0008-8846(90)90011-L
https://doi.org/10.1016/0008-8846(90)90046-Z
https://doi.org/10.1016/j.cemconres.2004.12.001
https://doi.org/10.1016/S0008-8846(99)00104-0
https://doi.org/10.1021/jp809811w
https://doi.org/10.1007/BF00202253
https://doi.org/10.1021/acssuschemeng.9b00702
https://doi.org/10.1111/jace.15518
https://doi.org/10.1111/jace.14859
https://doi.org/10.1111/jace.12264
https://doi.org/10.1111/jace.16936
https://doi.org/10.1021/acs.jpcc.6b08121


14

Vol:.(1234567890)

Scientific Reports |         (2021) 11:3922  | https://doi.org/10.1038/s41598-021-83582-6

www.nature.com/scientificreports/

 23. Lapeyre, J., Ma, H. & Kumar, A. Effect of particle size distribution of metakaolin on hydration kinetics of tricalcium silicate. J. Am. 
Ceram. Soc. 102(10), 5976–5988. https ://doi.org/10.1111/jace.16467  (2019).

 24. De Weerdt, K. et al. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem. Concr. 
Res. 41(3), 279–291. https ://doi.org/10.1016/j.cemco nres.2010.11.014 (2011).

 25. Powers, T. C. Structure and physical properties of hardened Portland cement paste. J. Am. Ceram. Soc. 41(1), 1–6. https ://doi.
org/10.1111/j.1151-2916.1958.tb134 94.x (1958).

 26. Wang, K.; Ge, Z.; Grove, J.; Ruiz, J. M.; Rasmussen, R.; Ferragut, T. Developing a Simple and Rapid Test for Monitoring the Heat 
Evolution of Concrete Mixtures for Both Laboratory and Field Applications; Center for Transportation Research and Education: 
Iowa State University, 2007; p 46.

 27. Bentz, D. P., Barrett, T., De la Varga, I. & Weiss, W. J. Relating compressive strength to heat release in mortars. Adv. Civ. Eng. Mater. 
1(1), 20120002. https ://doi.org/10.1520/ACEM2 01200 02 (2012).

 28. Vance, K., Aguayo, M., Oey, T., Sant, G. & Neithalath, N. Hydration and strength development in ternary portland cement 
blends containing limestone and fly ash or metakaolin. Cement Concr. Compos. 39, 93–103. https ://doi.org/10.1016/j.cemco ncomp 
.2013.03.028 (2013).

 29. Kumar, A. et al. A comparison of intergrinding and blending limestone on reaction and strength evolution in cementitious materi-
als. Constr. Build. Mater. 43, 428–435. https ://doi.org/10.1016/j.conbu ildma t.2013.02.032 (2013).

 30. Berodier, E. & Scrivener, K. Evolution of pore structure in blended systems. Cem. Concr. Res. 73, 25–35. https ://doi.org/10.1016/j.
cemco nres.2015.02.025 (2015).

 31. Bullard, J. W. et al. Mechanisms of cement hydration. Cem. Concr. Res. 41(12), 1208–1223. https ://doi.org/10.1016/j.cemco 
nres.2010.09.011 (2011).

 32. Scherer, G. W., Zhang, J. & Thomas, J. J. Nucleation and growth models for hydration of cement. Cem. Concr. Res. 42(7), 982–993. 
https ://doi.org/10.1016/j.cemco nres.2012.03.019 (2012).

 33. Bullard, J. W., Scherer, G. W. & Thomas, J. J. Time dependent driving forces and the kinetics of tricalcium silicate hydration. Cem. 
Concr. Res. 74, 26–34. https ://doi.org/10.1016/j.cemco nres.2015.03.016 (2015).

 34. Bullard, J. W. A determination of hydration mechanisms for tricalcium silicate using a kinetic cellular automaton model. J. Am. 
Ceram. Soc. 91(7), 2088–2097. https ://doi.org/10.1111/j.1551-2916.2008.02419 .x (2008).

 35. Kumar, A., Bishnoi, S. & Scrivener, K. L. Modelling early age hydration kinetics of alite. Cem. Concr. Res. 42(7), 903–918. https ://
doi.org/10.1016/j.cemco nres.2012.03.003 (2012).

 36. Quennoz, A. & Scrivener, K. L. Hydration of C3A–gypsum systems. Cem. Concr. Res. 42(7), 1032–1041. https ://doi.org/10.1016/j.
cemco nres.2012.04.005 (2012).

 37. Minard, H., Garrault, S., Regnaud, L. & Nonat, A. Mechanisms and parameters controlling the tricalcium aluminate reactivity in 
the presence of gypsum. Cem. Concr. Res. 37(10), 1418–1426. https ://doi.org/10.1016/j.cemco nres.2007.06.001 (2007).

 38. Lapeyre, J., Ma, H., Okoronkwo, M., Sant, G. & Kumar, A. Influence of water activity on hydration of tricalcium aluminate-calcium 
sulfate systems. J. Am. Ceram. Soc. https ://doi.org/10.1111/jace.17046  (2020).

 39. Quennoz, A. & Scrivener, K. L. Interactions between Alite and  C3A-gypsum hydrations in model cements. Cem. Concr. Res. 44, 
46–54. https ://doi.org/10.1016/j.cemco nres.2012.10.018 (2013).

 40. Antoni, M., Rossen, J., Martirena, F. & Scrivener, K. Cement substitution by a combination of metakaolin and limestone. Cem. 
Concr. Res. 42(12), 1579–1589 (2012).

 41. Fernandez, R., Martirena, F. & Scrivener, K. L. The origin of the pozzolanic activity of calcined clay minerals: a comparison between 
kaolinite, illite and montmorillonite. Cem. Concr. Res. 41(1), 113–122. https ://doi.org/10.1016/j.cemco nres.2010.09.013 (2011).

 42. Matschei, T., Lothenbach, B. & Glasser, F. P. Thermodynamic properties of Portland cement hydrates in the system CaO–Al2O3–
SiO2–CaSO4–CaCO3–H2O. Cem. Concr. Res. 37(10), 1379–1410. https ://doi.org/10.1016/j.cemco nres.2007.06.002 (2007).

 43. Lothenbach, B. et al. Cemdata18: a chemical thermodynamic database for hydrated Portland cements and alkali-activated materi-
als. Cem. Concr. Res. 115, 472–506. https ://doi.org/10.1016/j.cemco nres.2018.04.018 (2019).

 44. Thomas, J. J. The instantaneous apparent activation energy of cement hydration measured using a novel calorimetry-based method. 
J. Am. Ceram. Soc. 95(10), 3291–3296. https ://doi.org/10.1111/j.1551-2916.2012.05396 .x (2012).

 45. Oey, T. et al. The influence of water activity on the hydration rate of tricalcium silicate. J. Am. Ceram. Soc. 99(7), 2481–2492. https 
://doi.org/10.1111/jace.14181  (2016).

 46. Baquerizo, L. G., Matschei, T. & Scrivener, K. L. Impact of water activity on the stability of ettringite. Cem. Concr. Res. 79, 31–44. 
https ://doi.org/10.1016/j.cemco nres.2015.07.008 (2016).

 47. Brand, A. S. & Bullard, J. W. Dissolution kinetics of cubic tricalcium aluminate measured by digital holographic microscopy. 
Langmuir 33(38), 9645–9656. https ://doi.org/10.1021/acs.langm uir.7b024 00 (2017).

 48. Brand, A. S. et al. Dissolution and initial hydration behavior of tricalcium aluminate in low activity sulfate solutions. Cem. Concr. 
Res. 130, 105989. https ://doi.org/10.1016/j.cemco nres.2020.10598 9 (2020).

 49. Ley-Hernandez, A. M., Lapeyre, J., Cook, R., Kumar, A. & Feys, D. Elucidating the effect of water-to-cement ratio on the hydration 
mechanisms of cement. ACS Omega 3(5), 5092–5105. https ://doi.org/10.1021/acsom ega.8b000 97 (2018).

 50. Scrivener, K. L., Juilland, P. & Monteiro, P. J. M. Advances in understanding hydration of Portland cement. Cem. Concr. Res. 78, 
38–56. https ://doi.org/10.1016/j.cemco nres.2015.05.025 (2015).

 51. Scrivener, K., Ouzia, A., Juilland, P. & Kunhi Mohamed, A. Advances in understanding cement hydration mechanisms. Cem. Concr. 
Res. 124, 105823. https ://doi.org/10.1016/j.cemco nres.2019.10582 3 (2019).

 52. Kumar, A., Sant, G., Patapy, C., Gianocca, C. & Scrivener, K. L. The influence of sodium and potassium hydroxide on alite hydra-
tion: experiments and simulations. Cem. Concr. Res. 42(11), 1513–1523. https ://doi.org/10.1016/j.cemco nres.2012.07.003 (2012).

 53. Thomas, J. J. et al. Modeling and simulation of cement hydration kinetics and microstructure development. Cem. Concr. Res. 41(12), 
1257–1278. https ://doi.org/10.1016/j.cemco nres.2010.10.004 (2011).

 54. Anoop Krishnan, N. M. et al. Predicting the dissolution kinetics of silicate glasses using machine learning. J. Noncryst. Solids 487, 
37–45. https ://doi.org/10.1016/j.jnonc rysol .2018.02.023 (2018).

 55. Cook, R., Lapeyre, J., Ma, H. & Kumar, A. Prediction of compressive strength of concrete: a critical comparison of performance 
of a hybrid machine learning model with standalone models. ASCE J. Mater. Civ. Eng. 31(11), 04019255. https ://doi.org/10.1061/
(ASCE)MT.1943-5533.00029 02 (2019).

 56. Young, B. A., Hall, A., Pilon, L., Gupta, P. & Sant, G. Can the compressive strength of concrete be estimated from knowledge of 
the mixture proportions? New insights from statistical analysis and machine learning methods. Cem. Concr. Res. 115, 379–388. 
https ://doi.org/10.1016/j.cemco nres.2018.09.006 (2019).

 57. Cai, R. et al. Prediction of surface chloride concentration of marine concrete using ensemble machine learning. Cem. Concr. Res. 
136, 106164. https ://doi.org/10.1016/j.cemco nres.2020.10616 4 (2020).

 58. Han, T., Siddique, A., Khayat, K., Huang, J. & Kumar, A. An ensemble machine learning approach for prediction and optimization 
of modulus of elasticity of recycled aggregate concrete. Constr. Build. Mater. 244, 118271. https ://doi.org/10.1016/j.conbu ildma 
t.2020.11827 1 (2020).

 59. Han, T., Stone-Weiss, N., Huang, J., Goel, A. & Kumar, A. Machine learning as a tool to design glasses with controlled dissolution 
for application in healthcare industry. Acta Biomater. 107, 286–298. https ://doi.org/10.1016/j.actbi o.2020.02.037 (2020).

 60. Liu, H. et al. Predicting the dissolution kinetics of silicate glasses by topology-informed machine learning. NPJ Mater. Degrad. 
3(1), 1–12. https ://doi.org/10.1038/s4152 9-019-0094-1 (2019).

https://doi.org/10.1111/jace.16467
https://doi.org/10.1016/j.cemconres.2010.11.014
https://doi.org/10.1111/j.1151-2916.1958.tb13494.x
https://doi.org/10.1111/j.1151-2916.1958.tb13494.x
https://doi.org/10.1520/ACEM20120002
https://doi.org/10.1016/j.cemconcomp.2013.03.028
https://doi.org/10.1016/j.cemconcomp.2013.03.028
https://doi.org/10.1016/j.conbuildmat.2013.02.032
https://doi.org/10.1016/j.cemconres.2015.02.025
https://doi.org/10.1016/j.cemconres.2015.02.025
https://doi.org/10.1016/j.cemconres.2010.09.011
https://doi.org/10.1016/j.cemconres.2010.09.011
https://doi.org/10.1016/j.cemconres.2012.03.019
https://doi.org/10.1016/j.cemconres.2015.03.016
https://doi.org/10.1111/j.1551-2916.2008.02419.x
https://doi.org/10.1016/j.cemconres.2012.03.003
https://doi.org/10.1016/j.cemconres.2012.03.003
https://doi.org/10.1016/j.cemconres.2012.04.005
https://doi.org/10.1016/j.cemconres.2012.04.005
https://doi.org/10.1016/j.cemconres.2007.06.001
https://doi.org/10.1111/jace.17046
https://doi.org/10.1016/j.cemconres.2012.10.018
https://doi.org/10.1016/j.cemconres.2010.09.013
https://doi.org/10.1016/j.cemconres.2007.06.002
https://doi.org/10.1016/j.cemconres.2018.04.018
https://doi.org/10.1111/j.1551-2916.2012.05396.x
https://doi.org/10.1111/jace.14181
https://doi.org/10.1111/jace.14181
https://doi.org/10.1016/j.cemconres.2015.07.008
https://doi.org/10.1021/acs.langmuir.7b02400
https://doi.org/10.1016/j.cemconres.2020.105989
https://doi.org/10.1021/acsomega.8b00097
https://doi.org/10.1016/j.cemconres.2015.05.025
https://doi.org/10.1016/j.cemconres.2019.105823
https://doi.org/10.1016/j.cemconres.2012.07.003
https://doi.org/10.1016/j.cemconres.2010.10.004
https://doi.org/10.1016/j.jnoncrysol.2018.02.023
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002902
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002902
https://doi.org/10.1016/j.cemconres.2018.09.006
https://doi.org/10.1016/j.cemconres.2020.106164
https://doi.org/10.1016/j.conbuildmat.2020.118271
https://doi.org/10.1016/j.conbuildmat.2020.118271
https://doi.org/10.1016/j.actbio.2020.02.037
https://doi.org/10.1038/s41529-019-0094-1


15

Vol.:(0123456789)

Scientific Reports |         (2021) 11:3922  | https://doi.org/10.1038/s41598-021-83582-6

www.nature.com/scientificreports/

 61. Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 
559(7715), 547–555. https ://doi.org/10.1038/s4158 6-018-0337-2 (2018).

 62. Alcobaça, E., Mastelini, S. M., Botari, T., Pimentel, B. A., Cassar, D. R., de Carvalho, A. C. P. de L. F., Zanotto, E. D. Explainable 
machine learning algorithms for predicting glass transition temperatures. Acta Mater. 2020, 188, 92–100. https ://doi.org/10.1016/j.
actam at.2020.01.047.

 63. Ren, F. et al. Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments. 
Sci. Adv. 4(4), eaa11566. https ://doi.org/10.1126/sciad v.aaq15 66 (2018).

 64. Jordan, M. I. & Mitchell, T. M. Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260. https ://doi.
org/10.1126/scien ce.aaa84 15 (2015).

 65. Sun, Y. T., Bai, H. Y., Li, M. Z. & Wang, W. H. Machine learning approach for prediction and understanding of glass-forming ability. 
J. Phys. Chem. Lett. 8(14), 3434–3439. https ://doi.org/10.1021/acs.jpcle tt.7b010 46 (2017).

 66. Kumar, A. et al. Simple methods to estimate the influence of limestone fillers on reaction and property evolution in cementitious 
materials. Cement Concr. Compos. 42, 20–29. https ://doi.org/10.1016/j.cemco ncomp .2013.05.002 (2013).

 67. Meng, W., Kumar, A. & Khayat, K. Effect of silica fume and slump-retaining PCE on the development of properties of Portland 
cement paste. Cement Concr. Compos. 99, 181–190. https ://doi.org/10.1016/j.cemco ncomp .2019.03.021 (2019).

 68. Vance, K., Kumar, A., Sant, G. & Neithalath, N. The rheological properties of ternary binders containing Portland cement, limestone, 
and metakaolin or fly ash. Cem. Concr. Res. 52, 196–207. https ://doi.org/10.1016/j.cemco nres.2013.07.007 (2013).

 69. Mehdipour, I., Kumar, A. & Khayat, K. H. Rheology, hydration, and strength evolution of interground limestone cement containing 
PCE dispersant and high volume supplementary cementitious materials. Mater. Des. 127, 54–66. https ://doi.org/10.1016/j.matde 
s.2017.04.061 (2017).

 70. Breiman, L. Random forests. Mach. Learn. 45(1), 5–32 (2001).
 71. Chen, X. & Ishwaran, H. Random forests for genomic data analysis. Genomics 99(6), 323–329. https ://doi.org/10.1016/j.ygeno 

.2012.04.003 (2012).
 72. Sankaran, A., Jain, A., Vashisth, T., Vatsa, M. & Singh, R. Adaptive latent fingerprint segmentation using feature selection and 

random decision forest classification. Inf. Fusion 34, 1–15. https ://doi.org/10.1016/j.inffu s.2016.05.002 (2017).
 73. Cook, R., Keitumetse, C. M., Hayat, M. B., Kumar, A. & Alagha, L. Prediction of flotation performance of sulfide minerals using 

an original hybrid machine learning model. Eng. Rep. 12, e12167. https ://doi.org/10.1002/eng2.12167  (2020).
 74. Breiman, L. Bagging predictors. Mach. Learn. 24(2), 123–140. https ://doi.org/10.1007/BF000 58655  (1996).
 75. Biau, Gãš.; Devroye, L.; Lugosi, G. Consistency of random forests and other averaging classifiers. J. Mach. Learn. Res. 2008, 9 (Sep), 

2015–2033. https ://doi.org/10.1145/13906 81.14427 99
 76. Eitrich, T. & Lang, B. Efficient optimization of support vector machine learning parameters for unbalanced datasets. J. Comput. 

Appl. Math. 196(2), 425–436. https ://doi.org/10.1016/j.cam.2005.09.009 (2006).
 77. Chou, J.-S., Tsai, C.-F., Pham, A.-D. & Lu, Y.-H. Machine learning in concrete strength simulations: multi-nation data analytics. 

Constr. Build. Mater. 73, 771–780. https ://doi.org/10.1016/j.conbu ildma t.2014.09.054 (2014).
 78. Schaffer, C. Selecting a classification method by cross-validation. Mach. Learn. 13(1), 135–143. https ://doi.org/10.1007/BF009 

93106  (1993).
 79. Cook, R., Ma, H. & Kumar, A. Mechanism of tricalcium silicate hydration in the presence of polycarboxylate polymers. SN Appli. 

Sci. 1(2), 145. https ://doi.org/10.1007/s4245 2-018-0153-1 (2019).
 80. Cook, R., Ma, H. & Kumar, A. Influence of size-classified and slightly-soluble mineral additives on hydration of tricalcium silicate. 

J. Am. Ceram. Soc. 103(4), 2674–2779. https ://doi.org/10.1111/jace.16936  (2020).
 81. Valentini, L. et al. Kinetic model of calcium-silicate hydrate nucleation and growth in the presence of PCE superplasticizers. Cryst. 

Growth Des. 2016, 646–654. https ://doi.org/10.1021/acs.cgd.5b011 27 (2016).
 82. Marchon, D., Sulser, U., Eberhardt, A. & Flatt, R. J. Molecular design of comb-shaped polycarboxylate dispersants for environ-

mentally friendly concrete. Soft Matter 9(45), 10719–10728. https ://doi.org/10.1039/C3SM5 1030A  (2013).
 83. Schröfl, C., Gruber, M. & Plank, J. Preferential adsorption of polycarboxylate superplasticizers on cement and silica fume in ultra-

high performance concrete (UHPC). Cem. Concr. Res. 42(11), 1401–1408. https ://doi.org/10.1016/j.cemco nres.2012.08.013 (2012).
 84. Puerta-Falla, G. et al. Elucidating the role of the aluminous source on limestone reactivity in cementitious materials. J. Am. Ceram. 

Soc. 98(12), 4076–4089. https ://doi.org/10.1111/jace.13806  (2015).
 85. Nicoleau, L., Schreiner, E. & Nonat, A. Ion-specific effects influencing the dissolution of tricalcium silicate. Cem. Concr. Res. 59, 

118–138. https ://doi.org/10.1016/j.cemco nres.2014.02.006 (2014).
 86. Pustovgar, E., Mishra, R. K., Palacios, M., d’Espinose de Lacaillerie, J.-B., Matschei, T., Andreev, A. S., Heinz, H., Verel, R., Flatt, 

R. J. Influence of aluminates on the hydration kinetics of tricalcium silicate. Cem. Concrete Res. 2017, 100, 245–262. https ://doi.
org/10.1016/j.cemco nres.2017.06.006.

 87. Bellmann, F. & Ludwig, H.-M. Analysis of aluminum concentrations in the pore solution during hydration of tricalcium silicate. 
Cem. Concr. Res. 95, 84–94. https ://doi.org/10.1016/j.cemco nres.2017.02.020 (2017).

 88. Bergstra, J. & Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(10), 281–305 (2012).
 89. Segal, M. R. Machine Learning Benchmarks and Random Forest Regression. 2004.
 90. Lothenbach, B., Scrivener, K. & Hooton, R. D. Supplementary cementitious materials. Cem. Concr. Res. 41(12), 1244–1256. https 

://doi.org/10.1016/j.cemco nres.2010.12.001 (2011).
 91. Gomaa, E., Han, T., ElGawady, M., Huang, J. & Kumar, A. Machine learning to predict properties of fresh and hardened alkali-

activated concrete. Cement Concr. Compos. 115, 103863. https ://doi.org/10.1016/j.cemco ncomp .2020.10386 3 (2021).
 92. Zhuang, Y. et al. Fiber optic sensor embedded smart helmet for real-time impact sensing and analysis through machine learning. 

J. Neurosci. Methods 351, 109073. https ://doi.org/10.1016/j.jneum eth.2021.10907 3 (2021).
 93. Svetnik, V. et al. Random forest: a classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. 

Comput. Sci. 43(6), 1947–1958. https ://doi.org/10.1021/ci034 160g (2003).
 94. Pelikan, M. Hierarchical Bayesian Optimization Algorithm. In Hierarchical Bayesian Optimization Algorithm: Toward a new 

Generation of Evolutionary Algorithms; Pelikan, M., Ed.; Studies in Fuzziness and Soft Computing; Springer Berlin Heidelberg: 
Berlin, Heidelberg, 2005; pp 105–129. https://doi.org/https ://doi.org/10.1007/978-3-540-32373 -0_6.

 95. Swersky, K., Snoek, J., Adams, R. P. Multi-Task Bayesian Optimization. In Advances in Neural Information Processing Systems 26; 
Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K. Q., Eds.; Curran Associates, Inc., 2013; pp 2004–2012.

Acknowledgements
Financial support for this research was provided by the UM system; the Federal Highway Administration (Award 
No. 693JJ31950021); the Leonard Wood Institute (LWI: W911NF-07-2-0062) and the National Science Founda-
tion (NSF-CMMI: 1661609 and 1932690).

https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1016/j.actamat.2020.01.047
https://doi.org/10.1016/j.actamat.2020.01.047
https://doi.org/10.1126/sciadv.aaq1566
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1021/acs.jpclett.7b01046
https://doi.org/10.1016/j.cemconcomp.2013.05.002
https://doi.org/10.1016/j.cemconcomp.2019.03.021
https://doi.org/10.1016/j.cemconres.2013.07.007
https://doi.org/10.1016/j.matdes.2017.04.061
https://doi.org/10.1016/j.matdes.2017.04.061
https://doi.org/10.1016/j.ygeno.2012.04.003
https://doi.org/10.1016/j.ygeno.2012.04.003
https://doi.org/10.1016/j.inffus.2016.05.002
https://doi.org/10.1002/eng2.12167
https://doi.org/10.1007/BF00058655
https://doi.org/10.1145/1390681.1442799
https://doi.org/10.1016/j.cam.2005.09.009
https://doi.org/10.1016/j.conbuildmat.2014.09.054
https://doi.org/10.1007/BF00993106
https://doi.org/10.1007/BF00993106
https://doi.org/10.1007/s42452-018-0153-1
https://doi.org/10.1111/jace.16936
https://doi.org/10.1021/acs.cgd.5b01127
https://doi.org/10.1039/C3SM51030A
https://doi.org/10.1016/j.cemconres.2012.08.013
https://doi.org/10.1111/jace.13806
https://doi.org/10.1016/j.cemconres.2014.02.006
https://doi.org/10.1016/j.cemconres.2017.06.006
https://doi.org/10.1016/j.cemconres.2017.06.006
https://doi.org/10.1016/j.cemconres.2017.02.020
https://doi.org/10.1016/j.cemconres.2010.12.001
https://doi.org/10.1016/j.cemconres.2010.12.001
https://doi.org/10.1016/j.cemconcomp.2020.103863
https://doi.org/10.1016/j.jneumeth.2021.109073
https://doi.org/10.1021/ci034160g
https://doi.org/10.1007/978-3-540-32373-0_6


16

Vol:.(1234567890)

Scientific Reports |         (2021) 11:3922  | https://doi.org/10.1038/s41598-021-83582-6

www.nature.com/scientificreports/

Author contributions
J.L. and B.W.: Experiments and analyses of data. T.H.: Development and application of machine learning model. 
H.M., J.H., G.S., and A.K.: Supervision, conceptualization of the work, analyses of the data, development of the 
manuscript, and review.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https ://doi.
org/10.1038/s4159 8-021-83582 -6.

Correspondence and requests for materials should be addressed to A.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-83582-6
https://doi.org/10.1038/s41598-021-83582-6
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Machine Learning Enables Prompt Prediction of Hydration Kinetics of Multicomponent Cementitious Systems
	Recommended Citation

	Machine learning enables prompt prediction of hydration kinetics of multicomponent cementitious systems
	Overview of the random forests model
	Materials and methods
	Database and appraisal of prediction accuracy of the random forests model
	Results and discussion
	Isothermal microcalorimetry: hydration kinetics of cement in multicomponent pastes. 
	Prediction of time-dependent hydration kinetics of cement. 
	Optimization of mixture design to meet target kinetics criteria. 

	Conclusions
	References
	Acknowledgements


