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Abstract

People’s activities in Online Social Networks (OSNs) have generated a mas-
sive volume of data to which tremendous attention has been paid in academia
and industry. With such data, researchers and third-parties can analyze hu-
man beings’ behaviors in social communities and develop more user-friendly
services and applications to meet people’s needs. However, often times, they
face a big challenge of acquiring the data, as the access to such data is
restricted by their collectors (e.g., Facebook and Twitter), due to various
reasons, such as their user’s privacy. In this paper, we intend to shed light
on leveraging limited local social network topological properties to effectively
and efficiently conduct search in OSNs. The problem we focus on is to dis-
cover the connectivity of a group of target users in an OSN, particularly from
the perspective of a third-party analyst who does not have full access to the
network. For the analyst, even discovering a user’s local connections requires
issuing a query through OSN APIs (e.g., Facebook Friendlist API or Twitter
Followerlist API). We develop searching techniques which demand only a few
number of queries for the connectivity discovery.

After conducting an intensive set of experiments on both real-world and
synthetic data sets, we found that our proposed techniques perform as well
as the centralized detection algorithm, which assumes the availability of the
entire data set, in terms of the size of the discovered subgraph connecting
all target users as well as the number of queries made in the search. The
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experiment results demonstrate the effectiveness of incorporating topological
properties of social networks into searching in the OSNs.

Keywords: online social networks, subgraph connectivity, search, local
view, minimum steiner tree

1. Introduction

In the past decade, a large number of researchers have shown their inter-
est in social networks. Particularly, they have been dedicated to designing
algorithms to solve complex problems relevant to the topological structures
of graphs in massive social networks, for example, community detection Du
et al. (2007); Nguyen et al. (2011); Bedi and Sharma (2016); Wang et al.
(2015); Qin et al. (2015), detecting subgraphs with a given pattern Fang
(2012) and sampling social network graphs Papagelis et al. (2013). Most of
them have researched the problems assuming the availability of the entire
network graph, which, however, is not realistic often times considering the
API restrictions set by OSN operators for third parties to access the date
they collected. Therefore, in recent years, more attention has been paid
to leveraging local information and designing distributed algorithms Sarma
et al. (2010); Zhao et al. (2011); Borgs et al. (2012); Cui et al. (2014); Yin
et al. (2017); Basuchowdhuri et al. (2018) to solve the algorithmic issues in
massive OSNs.

Our work in this paper considers the problem of discovering target users’
connectivity in an OSN, particularly from the perspective of a third-party
analyst who does not have a full view of the relationship graph of the social
site. As a motivating example, consider that a person plans to organize a
successful party/workshop, where the success is subject to three constraints:
(1) a list of people must be invited to the event (i.e., target people); (2) all
target participants should be acquainted with each other directly or through
people who need to be invited additionally; and (3) the number of people
additionally invited should be minimized due to some reasons, such as budget
or space limit.

To solve this problem, we first need to find the information that can
be used to measure people’s acquaintance. Thanks to the development of
web techniques, OSNs have attracted millions of users and collected a large
amount of data from the users, including their friendship information, such
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as friendship on Facebook and following relationship on Twitter. Such rela-
tionship information indicates users’ acquaintance and can be used to present
a relationship network in the OSN.

For an OSN operator who has a view of the entire relationship network, it
is easy to find out the minimum subgraph that connects all target people. In
fact, similar subgraph detection problems have been studied in the domain
of graph mining and graph theory, varying from detecting a subgraph simply
connecting a target group of people to finding a more complex one with
specific restrictions on the graph size or density Faloutsos et al. (2004); Tong
and Faloutsos (2006); Koren et al. (2007); Cheng et al. (2009); Kasneci et al.
(2009); Sozio and Gionis (2010). Most of the techniques developed in the
literature were designed with the assumption of the availability of the entire
graph. However, such an assumption is a profound limit for a third-party
analyst, as they do not have the full access to the data. Therefore, the
existing techniques are not applicable to our detection problem.

Solving this problem is challenging for two reasons. First, in an OSN,
the information that a third-party analyst can use is limited. The analyst
can gather some data either by visiting individual users profile pages or by
sending queries through OSN APIs. What he can see is local to the visited
or queried users. Second, even discovering such local information demands
effort. One can write script to crawl the web site to collect such data; how-
ever, intensively querying the OSN may cause the server to get overwhelmed.
This is why many OSNs limit the number of web queries from the same IP
address or a particular group of IP addresses per day. Due to the restric-
tion, gleaning a large number of friendlists is time-consuming. Therefore,
a third-party analyst needs less-cost search techniques. The contribution of
this paper can be summarized as follows:

• We propose a novel subgraph detection problem for OSNs from the
perspective of a third-party analyst. We intend to discover a small
subgraph which covers all target users with a few number of OSN API
queries.

• We design searching techniques which consist of online and offline
phases to detect the desirable subgraph. Particularly, we integrate
some well-known topological properties of social networks in the on-
line searching, including small-world, power-law distribution of node
degrees and the well-connectivity of high-degree nodes.
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• We conduct an intensive set of experiments on both synthetic and real-
world social networks to evaluate the performance of our techniques.
Our finding is that the users on the OSNs are connected very well.
Additionally, we can discover the connectivity of any group of arbi-
trarily selected nodes in an OSN with a small number of queries. Our
experiment results also demonstrate the effectiveness of applying the
topological properties of social networks to searching in OSNs.

The roadmap of this paper is outlined as follows. Section 2 introduces
preliminaries including the topological properties of social networks, system
model and problem definition. Sections 3 and 4 address the two phases of
our proposed searching techniques, online searching and offline, respectively.
Section 5 discusses the experimental study. Section 7 introduces the related
work, followed by a conclusion in Section 8.

2. Preliminaries

2.1. Topological properties of Social Networks

Through many years of research in social networks, researchers have de-
tected some important topological properties of social networks after con-
ducting a large number of experiments and analyzing a myriad of real-world
data sets. Some of these properties are well-known, like small-world, scale-
free and well-connectivity among high-degree nodes.

2.1.1. Small-world Property

Small-world is one of the well-known social network topological proper-
ties, which is also translated into “six degrees of separation.” It was first ob-
served through a series of experiments conducted by Stanley Milgram and his
coworkers in the 1960’s Korte and Milgram (1970); Milgram (1967); Travers
and Milgram (1969). This property causes the small diameter of social net-
works and ensures the existence of a short path between any pair of nodes
in the social network graphs.

2.1.2. Scale-free Property

A scale-free network has a power-law degree distribution, at least asymp-
totically. That is, the fraction P (x) of nodes in the network with x direct
neighbors for large values of x is given as P (x) ∼ x−α, where α is a con-
stant typically in the range 2 < α < 3. It means only a small number of
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nodes have very large degrees. The power-law degree distribution has been
observed from many experiments over large-scale social networks.

2.1.3. Well-connectivity Among High-degree Nodes

Several literature, such as Newman (2002) , have addressed the assorta-
tivity of social networks, indicating that nodes with similar degrees are more
likely connected with each other. Particularly, the work Wilson et al. (2009)
has discovered that the high degree nodes form a well-connected core from
a large set of experiments on real-world data sets. In Theory 1, we prove
that given two nodes, as their degrees increase, the probability of them being
connected also increases. Moreover, we conducted an intensive set of exper-
iments on real-world data sets to analyze the connectivity among nodes of
high degree, which will be detailed in Section 5. Our experiment result is
consistent with the finding in the work Wilson et al. (2009).

Theorem 1 Given an undirected graph of n nodes and two nodes, va and vb,
with degrees da and db respectively, suppose n-1 other nodes have the same
probability of connecting with va (vb), then the probability of having an edge
between va and vb (Pab) increases with da and db. 2

Proof Pab can be calculated with Equation 1. The numerator shows the
number of the cases where the two nodes have a connection while the denom-
inator shows all possible cases. If the two nodes have a connection, for node
a, we choose da − 1 out of n − 2, excluding node a and node b (i.e.,

(
n−2
da−1

)
)

from n nodes, and we perform the same calculation for node b (i.e.,
(
n−2
db−1

)
).

Their multiplication covers all cases where nodes a and b are connected.
If the two nodes do not have a connection, for node a, we choose da out

of n− 2 nodes, excluding node a itself and node b (i.e.,
(
n−2
da

)
) from n nodes,

and we do the same for node b (i.e.,
(
n−2
db

)
). The multiplication of the two

values gives us the possible cases when the two nodes are not linked together.
From the Equation 1, we can see that as da and db increase, Pab also

increases. �

Pab =

(
n−2
da−1

)(
n−2
db−1

)(
n−2
da

)(
n−2
db

)
+
(
n−2
da−1

)(
n−2
db−1

)
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=
1

1 +
(n−2
da

)(n−2
db

)
( n−2
da−1)(

n−2
db−1)

=
1

1 + (n−da−1)(n−db−1)
dadb

(1)

2.2. System Model

Although most OSNs provide all kinds of user relationship information,
for example, friendship or dating relationship, we consider only friendship in
this paper. Additionally, we do not quantify the strength of the friendship
between users. Therefore, we can use an undirected and unweighted graph,
G(V,E), to model the friendship network of an OSN, where the node set
V represents users and the edge set E denotes the friendships among users.
Given the graph model, querying a node’s friendlist can be modeled as dis-
covering its neighboring friends which we call “local view”. The number of
a node’s neighbors is denoted as its degree.

1

3

2

Queried user

Candidate user

Figure 1: The procedure of querying nodes
on an OSN

S0

1 2 3

4

10

Figure 2: An example of the inefficiency of
UMS

With the local-view discovery model, we can detect the subgraph we
search for by sending a sequence of queries to the OSN. We keep track of not
only nodes already queried but also a list of candidate nodes we may choose
to query next. A node is called a candidate if it has not yet been queried but
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it has been discovered in the local view of a queried node. As more nodes
are queried, our view in the OSN graph grows. Figure 1 illustrates a generic
querying procedure, where blue dots represent nodes we have queried while
white ones are candidate nodes discovered already.

2.3. Problem Definition

We name our problem Local-view based Mininum Subgraph Detection
problem (LMSD), as defined in Problem 1. Note that the LMSD problem
requires both the size of the detected subgraph and the number of queries
be minimized, which, however, is hard to achieve at the same time. To
cope with this challenge, we heuristically interpret the problem and break
it down to two phases. We first conduct online search with a few number
of queries to find a connected subgraph which covers all target nodes, and
then in the detected subgraph we intend to discover the minimum subgraph
which keeps all target nodes connected. The rationale of the effectiveness of
our interpretation in solving the LMSD problem is if the number of nodes
queried in the first phase is small, the size of the finally detected subgraph
should not be very large.

Problem 1 Local-view based Minimum Subgraph Detection (LMSD): Given
a set of target nodes S0 in a graph, G(V,E), the full topology of which is
unknown initially, find the minimum number of nodes from V \ S0 to make
all target nodes connected with the minimum number of node queries for
local-view discovery.

Given the subgraph discovered in the first phase, we name the minimum
subgraph detection problem in the second phase the Centralized Minimum
Subgraph Detection problem (CMSD). The CMSD problem is defined as
given the entire graph and a group of target nodes, we look for the minimum
number of extra nodes to connect all of the target nodes together. The CMSD
problem is a hard problem as proved in Theorem 2 below. The complexity of
the CMSD indirectly indicates the hardness of the LMSD problem, because
the former is part of the latter. Based on our two-phase based interpretation,
we will first discuss how to detect the connectivity of target nodes via a few
number of online queries in Section 3 and then talk about algorithms to
discover a smaller connected subgraph offline from the data collected in the
previous phase.

Theorem 2 The Centralized Minimum Subgraph Detection problem (CMSD)
is NP-hard. 2
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Proof We will prove the NP-hardness of CMSD by a reduction to the
Steiner Tree problem (ST). The definition of ST is: Given an unweighted
graph G and a set of nodes Vt in it, find a tree with minimum number of
edges in G, which make any two nodes in Vt reachable to each other either
directly or indirectly via other nodes in G. As is well known, the ST problem
is NP-hard Garey and Johnson (1979). The decision version of ST is that
given an unweighted graph G(V,E), a set of nodes Vt ⊆ V and an integer
k, we are looking for a tree which involves all nodes in Vt and contains at
most k edges from E. The decision version of CMSD problem is that given
an unweighted graph G′(V ′, E ′), a set of nodes V ′t ⊆ V ′ and an integer k′, we
are searching for a subgraph of G′ which includes all nodes in V ′t and covers
at most k′ nodes from V ′ \ V ′t .

Now we will demonstrate that there is a solution for ST if and only if
there is a solution for CMSD. Evidently, the nodes in any steiner tree with
at most k edges will be the solution of CMSD, where k′ = k + 1 − |Vt|. On
the other hand, any spanning tree of the subgraph found in CMSD will form
a steiner tree with at most k′ + |V ′t | − 1 edges. Here the spanning tree is
referred to as a tree composed of all the nodes and some (or perhaps all) of
the edges of a given graph. Therefore, the CMSD problem is NP-Hard. �

3. Online Searching

In the online searching, we intent to discover a subgraph in the OSN
to connect all target nodes with a few number of queries. The traditional
graph searching techniques, such as Depth First Search (DFS) or Breadth
First Search (BFS), can be applied as the brute-force subgraph detection
techniques; however, their cost on individual queries is non-trivial without
knowing the topology of the entire OSN graph. Therefore, we aim to design
more efficient searching techniques to discover the connectivity of the targets.

3.1. The starting point of search

Without any prior knowledge, searching from the target nodes is a rea-
sonable starting point. After we query all target nodes, each of them and
its neighbors discovered through the OSN API form a subgraph. These
subgraphs are most likely disjoint due to the structural sparsity of social net-
works. Each of these subgraphs has its own node candidate set for further
queries. The candidate set of a subgraph initially contains only the neighbors
of its target node, but it grows as more nodes are queried.
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Given the scattered subgraphs, efficiently discovering the connectivity of
target nodes requires merging all of these subgraphs quickly by querying a
small number of nodes. One can see that in order to solve this problem,
the selection of nodes to query is critical. In the following subsections, we
will define two criteria to evaluate the importance of a node in the online
searching.

3.2. The evaluation of node candidates

In a dense graph (|E| � |V |), it’s straightforward to pick a good node
candidate for query. Basically, a node which can make more target nodes
accessible to each other should be selected. However, such a criterion is not
sufficient to determine a candidate node in a sparse graph, such as social
network graphs, and may even lead to the failure of the search process. The
reason is that in a sparse graph more likely none of the node candidates can
directly improve the reachability of target nodes. Therefore, we need a new
criterion to evaluate a node’s capability of merging the subgraphs associated
with target nodes.

Inspired by the critical role of high-degree nodes in searching on social
network graphs Adamic and Adar (2005); Adamic et al. (2001), we prioritize
node candidates of high degree for query in the online searching. However,
often times, the real degree of a node candidate is unknown until we query
it. Considering the query restriction, we propose two approaches to estimate
the degrees of node candidates.

(1) Pre-Degree. A node’s pre-degree is the number of the node’s neighbors
which have been discovered in online searching upon to a time point. An
example is illustrated in Figure 1. In this snapshot of our search, the pre-
degree of node 3 is two at that time point, as we only see its connections
with node 1 and node 2. As more nodes are queried, we may discover more
connections of node 3, which causes its pre-degree to increase accordingly.

We use a node’s pre-degree to estimate its real degree. The rationale
is that since social network graphs have power-law degree distributions, if
we see a node has a very high pre-degree, the real degree of that node will
probably be high as well. However, this may not always be accurate when a
node’s pre-degree is low.

(2) Creation Time. The time a user created his/her account in the OSN
is also useful to infer its real degree in the OSN graph. The rationale came
from the Barabasi-Albert(BA) model Barabasi and Albert (1999), which is
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a well-known model for generating random scale-free networks using a pref-
erential attachment mechanism. In this model, new nodes are added to the
network one at a time. Each new node is connected to existing nodes with
a probability that is proportional to the number of links that the existing
nodes already have. This tells us it’s highly likely that the earlier a node
(e.g., a user account) was created in the social network, the higher degree
the node has, which is also addressed in the paper Leskovec et al. (2008).

In most of the OSNs, although the account creation time is available
on the user’s profile web page, we have to issue a query to retrieve that
information. However, we notice that on some OSNs, like Twitter, users’
numeric IDs are assigned sequentially. A smaller user ID indicates the earlier
creation time of that user’s account. Therefore, from the follower list returned
from the Twitter API, we can see which candidate node was created earlier
so as to prioritize it for query.

3.3. Algorithmic Techniques for Online Search

We propose two online search techniques for detecting the connectivity
of target nodes with a few number of queries, called Unbalanced Multiple-
Subgraph Searching (UMS), and Balanced Multiple-Subgraph Searching (BMS),
respectively. We break each query step down into two phases, first to decide
which target node’s subgraph to choose and second to decide which node
from the candidate set of the subgraph to query. The difference of the two
techniques is in the subgraph selection. In order to evaluate a subgraph,
we define subgraph degree in Equation 2 as the maximum (estimated) de-
gree of nodes in the subgraph, where the nodes include not only already
queried nodes but also the ones in the candidate set, and D(u) represents
the estimated degree of u in the subgraph.

DSub(i) = max({D(u)|u ∈ subgraph(i)}) (2)

3.3.1. Unbalanced Multiple-Subgraph Search (UMS)

The basic idea of UMS is to prioritize not only high-degree nodes but
also high-degree subgraph to query in the online search. The UMS technique
consists of three steps: (1) query all of the target nodes in the OSN graph
and form their subgraphs individually; (2) select the subgraph with maxi-
mum subgraph degree as the target subgraph; and (3) query the node in the
candidate set of the target subgraph which has the largest degree. The node
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degree can be estimated in terms of either of the two criteria, the pre-degree
or the creation time, as we discussed earlier. A tie will be broken arbitrarily.
The Steps 2 and 3 will be repeated until the subgraphs of all target nodes
are merged together.

Note that after querying a node, the target subgraph and its node can-
didate set will be updated according to the list of newly discovered nodes
returned from the query. If the query causes any overlap between the target
subgraph and another subgraph, they will be merged together. Specifically,
their sets of node candidates and of nodes already queried will be merged
respectively. We call this scheme Unbalanced Multiple-Subgraph Search as
we realize that once the target subgraph is determined at the beginning of
the search, it will never be changed. This observation is proved in Property
1.

Property 1 With UMS, the target subgraph will never be changed once it is
picked at the beginning of the search.

Proof Based on the definition of the target subgraph, a subgraph is selected
as the target subgraph if it has the maximum degree, which is evaluated by
the largest degree of the nodes in that subgraph. After we query one node,
the largest degree can only be increased, regardless of whether it’s evaluated
by the pre-degree or the creation time (or user id). Therefore, the previously
picked target subgraph will still have the largest degree among all of the
subgraphs, thereby always being the target subgraph. �

An example is illustrated in Figure 3. After querying nodes, v1, v2 and
v3, three subgraphs, Subg1, Subg2 and Subg3, are correspondingly formed
with degrees two, one and three, separately. Based on the maximum degree
rule in the UMS searching, Subg3 is chosen as the target subgraph. v4 is
randomly selected as the first node to query from the candidate set of Subg3
as there are three node candidates having the same degree. Then, v5 becomes
the candidate with the highest pre-degree in Subg3, therefore, we query v5,
which leads to the merging of Subg2 with Subg3. The search continues by
querying nodes selected from the candidate set of Subg3 until Subg1 is also
merged with Subg3.

3.3.2. Balanced Multiple-Subgraph (BMS)

The inspiration in designing BMS came from our concern over the effi-
ciency of searching with UMS. One can see that essentially UMS prioritizes
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Algorithm 1: The Framework of Our Online Searching Techniques

Input: Set of target nodes, TS, and an oracle of querying nodes in
the OSN

Output: A connected subgraph covering all nodes in TS
foreach Node vi in TS do

subgraph(i) = Query(vi);
list.add(subgraph(i));

while list.size != 1 do
tsg = SelectTargetSubgraph(list);
tn = SelectNode(tsg);
subgraph(tsg).add(Query(tn));
if CheckOverlap(list, tsg) then

Merge(list, tsg);

foreach Node candidate vm in tsg do
Update(D(vm));

Algorithm 2: Selection Target Subgraph for UMS

Input: List of subgraphs sg1, sg2, . . . , list
Output: The target subgraph
tsg = sg1;
foreach sgi in list do

if DSub(sgi) > DSub(tsg) then
tsg = sgi;

return tsg;

12



Algorithm 3: Selection Node For UMS and BMS

Input: Target Subgraph, tsg
Output: The node to query
NC = tsg.nodecandidates;
tn = v0 in NC;
foreach Node i in NC do

if D(i) > D(tn) then
tn = vi;

return tn;

high-degree nodes in the search, which may not be able to efficiently reach out
to the target nodes of low degrees. For example, in Figure 2 the subgraphs
initialized with the low-degree target nodes can do nothing but waiting the
target subgraph to reach out to them. However, since the high-degree nodes
in social networks are well connected as we introduced in Section 2, if we
could reduce the degree difference among the subgraphs by prioritizing the
subgraphs of low degrees in searching, the procedure of merging subgraphs
may perform faster.

Inspired by this idea, we design the BMS search scheme which also con-
sists of three steps: (1) query all target nodes in the OSN graph and form
individual subgraphs; (2) select the subgraph with the minimum subgraph
degree as the target subgraph; and (3) query the highest-degree node from
the candidate set of the target subgraph (break ties arbitrarily). The Steps
2 and 3 will be repeated until the subgraphs of all target nodes are merged
together. Similar to UMS, if a query with BMS causes any subgraphs to
overlap, they will be merged and the degree of the target subgraph will be
updated accordingly. Therefore, the previously picked target subgraph may
not be selected for the next query if its degree does not remain the minimum
among all the subgraphs.

Unlike UMS, BMS focuses on low-degree subgraphs in our searching.
Therefore, we call this technique Balanced Multiple-Subgraph Searching. Let
us run BMS on the simple example we used before for UMS, as shown in Fig-
ure 4. Initially, the subgraphs formed by querying target nodes have degrees
two, one and three. Since Subg2 has the minimum degree, it is defined as the
target subgraph in the first query. Then the only node candidate in Subg2, v4,
is queried, which causes the merging of Subg2 and Subg3. The newly merged
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Figure 3: The example of using UMS tech-
nique
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Figure 4: The example of using BMS tech-
nique

subgraph has degree of three, which is larger than the degree of Subg1, there-
fore, the target subgraph is reassigned with Subg1. In Subg1, v5 is selected
to query, which grows Subg1 and increases its degree to four. At this point,
the target subgraph will be reassigned again. The search continues until all
subgraphs are merged.

Algorithm 4: Selection Target Subgraph for BMS

Input: List of subgraphs sg1, sg2, . . . , list
Output: The target subgraph
tsg = sg1;
foreach sgi in list do

if DSub(sgi) < DSub(tsg) then
tsg = sgi;

return tsg;

Here we want to emphasize the unique topological properties of social net-
works used in design of BMS, which ensure the efficiency of merging the sub-
graphs of target nodes in the OSN. First of all, based on the literature Adamic
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et al. (2001), we know that high-degree node based search can reach nodes of

the highest degree with about O(n
γ−2
γ−1 ) steps in social network graphs, where

γ is the exponent of the power-law distribution, and n is the number of nodes
in the networks. Therefore, in our search, each subgraph will reach node of
the highest degree with a few steps of searching. Second, because of the
limited number of nodes of the highest degrees in scale-free social networks,
searching multiple subgraphs along high-degree nodes will let the subgraphs
grow towards the nodes of the highest degrees and merge together. Third,
due to the well-connectivity among high-degree nodes, balancing the search
to prioritize low-degree subgraphs will speed up the merging of subgraphs as-
sociated with target nodes. Incorporating all of these topological properties
in design of BMS ensures its efficiency of searching.

4. Offline Detection

In the offline detection phase, we aim to find a smaller subgraph from the
subgraph discovered in the online searching which can maintain the connec-
tivity of all target nodes. Considering the association between the CMSD
problem and the Steiner Tree problem (ST) as we discussed in Section 2,
we apply a classic approximate ST algorithm Kou et al. (1981) to detect a
smaller subgraph in the offline detection phase.

There are two main reasons for us to apply the ST algorithm Kou et al.
(1981). First, it can guarantee the size of the detected subgraph is no larger
than 2(1−1/`) times the size of the optimal subgraph, where ` is the number
of leaves in the optimal tree. Second, it runs faster with the time complexity
|S0||V |2, which is a critical concern when running algorithms on large-scale
OSN data sets.

Given an undirected and unweighted graph G(V,E) and a set of target
nodes S0 ⊆ V , there are four steps to find a heuristic minimum steiner tree
in Kou et al. (1981): (1) construct the complete undirected graph G1(V1, E1)
by creating an edge between each pair of nodes in S0 with a label of the
length of their shortest path on G; (2) find the minimal spanning tree T1 of
G1; (3) construct a subgraph Gs of G by replacing each edge in T1 by its
corresponding shortest path in G; and (4) find the minimal spanning tree Ts
of Gs. Delete from Ts edges with leaves which are non-steiner points.
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5. Experimental Study

To evaluate the performance of our techniques in solving the LMSD prob-
lem, we conducted experiments not only on large-scale real-world data sets
but also on a synthetic data set. In the following subsections, we will first
introduce the data sets used in the experiments and analyze their topological
properties, including the degree distribution and the connectivity of high de-
gree nodes. Then, we will evaluate the two steps in making each query with
our techniques – picking a target subgraph first and then choosing a node to
query.

Additionally, we implemented a variation of Breath First Search (BFS)
Mislove et al. (2007); Ye et al. (2010): place all targets in a queue first, and
then query each node in the queue and enqueue its neighbors accordingly
until all targets are reachable to each other. The BFS was proposed in
Mislove et al. (2007); Ye et al. (2010) to crawl the OSN to collect data
for OSN analysis, such as estimating any user property and some topological
properties. Although BFS was not particularly designed to solve our problem,
since it’s a well-know approach to collect data in OSNs, we tailored it and
use it as a benchmark for comparison purpose.

5.1. Data Sets

We used four real-world data sets and one synthetic data set in our exper-
imental study. All real-world data sets excluding Facebook Viswanath et al.
(2009) can be downloaded from the repository Leskovec (2019).

(1) Facebook data set Viswanath et al. (2009): The data was crawled
from Facebook.com, capturing the friendship between users, which can be
modeled as an undirected graph.

(2) Slashdot data setLeskovec et al. (2009): The data contains the friend/foe
links between the users of Slashdot. The data set does not distinguish friend-
ship from foeship between users. The links in the original set are directional,
We converted the Slashdot data set to an undirected graph for our experi-
mental study. Specifically, if there is originally one edge between two nodes,
regardless of their direction, we correspondingly create an edge between the
nodes in the undirected graph.

(3) Gowalla data set Cho et al. (2011): Gowalla is a location-based so-
cial networking web site where users share their locations by checking in.
The data collected from Gowalla present the friendship network which is
undirected.

16



Table 1: Largest component from data sets for our experiments

Date Sets Nodes Edges LC(V, E) C
Slashdot 82168 504230 (82168,504230) 1
Gowalla 196591 950327 (196591,950327) 1
Brightkite 58228 214078 (56739,212945) 547
Facebook 63731 817090 (63392,816886) 144
Synthetic 80000 1999375 (80000,1999375) 1

(4) Brightkite data set Cho et al. (2011): Brightkite was once a location-
based social networking service provider where users shared their locations
by checking-in. The friendship network is originally directed, but we have
constructed a network with undirected edges whenever there is a friendship
regardless of the direction.

(5) Synthetic data set: We generated a random graph using the Barabasi-
Albert preferential attachment model Barabasi and Albert (1999). In the
model, a graph of n nodes is grown by attaching new nodes each with m
edges that are preferentially attached to existing nodes with high degree.
We set n = 80000 and m = 25 to generate our synthetic set which has a size
similar to the size of Facebook data set.

As we study on how to connect a group of nodes together on an OSN,
we need to ensure all the target nodes are indeed reachable to each other
in the OSN graphs, which means the undirected input graphs should be
connected. Therefore, we preprocessed the original data sets by extracting
the largest connected component from each of them. In Table 1, we list the
numbers of edges, nodes, and components (i.e., C) as well as the size of largest
component (i.e., LC(V,E)) in each original data set. In our experiments we
used the largest connected components as the input graphs for evaluating
our algorithms.

5.2. Topological Properties of Data Sets

We examined some topological properties of our data sets which we in-
troduced in Section 2, including power-law degree distribution and the well
connectivity of high-degree nodes, .
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Table 2: Fitting the power-law distribution to empirical data

Date Sets Slashdot Gowalla Brightkite Facebook Synthetic
alpha 3.46 2.83 2.56 4.44 2.99
xmin 219 95 24 157 47

5.2.1. Power-law degree distribution

We applied the statistical framework for discerning and quantifying power-
law behavior in empirical data proposed in Clauset et al. (2009) to check the
degree distribution of our data sets. We ran the framework program Alstott
et al. (2014) on our data sets. In power-law distribution, P (x) ∼ x−α, α
is known as the exponent or scaling parameter, which typically lies in the
range 2 < α < 3. More often the power law applies only for values greater
than some minimum xmin. In such cases we usually say that the tail of the
distribution follows a power law. Therefore, we checked the values of the two
parameters, α and xmin, for all of our data sets and the results are listed in
Table 2.

5.2.2. Connectivity of High-Degree Nodes

To evaluate the connectivity of high-degree nodes in our data sets, we first
extracted the subgraph formed by nodes with a degree more than a threshold
and the edges among them. The threshold ranges from 100 to 600 in incre-
ments of 100. We analyzed the number of the connected components and
the average length of the shortest paths (i.e., distance) between any pair of
reachable nodes in each extracted subgraph. In calculating the average dis-
tance, if an extracted subgraph has more than one component, we calculated
the average distance in each component first and then average them.

From Table 3, we can see that although the number of nodes decreases as
the degree threshold goes up, the nodes of high degree are still connected well.
Furthermore, the average distance between any reachable pair of nodes is
about 2, as shown in Table 3. These results demonstrate the well-connectivity
among high-degree nodes in our OSN data sets.

5.3. The Evaluation of Techniques

We conducted multiple groups of experiments with each data set by vary-
ing the number of selected target nodes, ranging from 20 to 100 in increments
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Table 3: Subgraphs of high-degree nodes

≥ Degree 100 200 300 400 500 600

Facebook
nodes 3307 461 106 46 26 11

Components 1 1 1 1 1 2
Average Distance 2.61 2.26 1.98 1.68 1.70 1.58

Slashdot
nodes 1916 757 235 115 61 39

Components 1 2 2 1 3 3
Average Distance 2.11 2.0 1.91 1.92 2.01 2.26

Gowalla
nodes 1787 494 245 143 99 77

Components 1 1 1 1 1 1
Average Distance 2.32 1.96 1.82 1.70 1.63 1.58

Brightkite
nodes 408 89 30 14 9 7

Components 1 1 1 1 1 1
Average Distance 2.29 1.95 1.88 1.78 1.67 1.71

Synthetic
nodes 5181 1348 592 348 240 169

Components 1 1 1 1 1 2
Average Distance 2.61 2.26 1.98 1.68 1.70 1.58

Figure 5: Facebook: Queries - NS Figure 6: Slashdot: Queries - NS
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Figure 7: Gowalla: Queries - NS Figure 8: Brightkite: Queries - NS

Figure 9: Synthetic: Queries - NS Figure 10: Synthetic: Extra Nodes - NS

Figure 11: Facebook: Extra Nodes - NS Figure 12: Slashdot: Extra Nodes - NS
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Figure 13: Gowalla: Extra Nodes - NS Figure 14: Brightkite: Extra Nodes - NS

Figure 15: Percentage of Failures - BFS
Figure 16: Percentage of Failures - Unbal-
ancedReal
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of 20. Furthermore, given a specific number of target nodes, we ran 100
rounds of experiments by selecting target nodes uniformly at random. The
same set of targets were used to compared different strategies. As we dis-
cussed in Section 3, there are two steps in the online searching, choosing
the target subgraph first and then selecting a node to query. Therefore, we
evaluate these two steps, respectively. In addition, we compared one of our
searching techniques with two other landmark solutions for graph searching.
One is a variation of Breadth First Search (BFS) which starts from multi-
ple target nodes, and the other is to randomly choose the target subgraph
first and then randomly select a node from the subgraph to query, which is
therefore called DoubleRandom solution.

5.3.1. Node selection (NS)

In this group of experiments, we used the balanced subgraph selection
strategy which targets the subgraph with the lowest degree and evaluated
different node selection strategies, including pre-degree based strategy (Bal-
ancedPreD), real-degree based strategy (BalancedRealD) as well as the strat-
egy of randomly selecting next node for query (BalancedRand). Additionally,
for the synthetic data set, we implemented the creation-time based strat-
egy (BalancedCreaT). Since the synthetic data set was generated with the
Barabasi-Albert preferential attachment model Barabasi and Albert (1999),
the nodes with smaller ids were created earlier. Therefore, the node ids sig-
nify the order of user account creations, which is the other way we proposed
in Section 3 to estimate node degrees. We evaluated these node selection
strategies in terms of the number of online queries and the number of extra
nodes selected in the offline detection for reaching nodes connectivity. We
validated whether high-degree nodes are good choice for search and verified
the goodness of using pre-degree and creation time to estimate the real degree
of a node candidate.

In terms of the number of queries displayed in Figures 5-9, we can see:
(1) BalancedRealD outperforms the others. In the real world, some online
social networks, like Linkedin.com, do provide the number of connections
of neighboring nodes without additional query effort. (2) BalancedCreaT
performs better than BalancedPreD, and does as well as BalancedRealD for
most of the experiments. (3) BalancedPreD and BalancedRandom issued
a similar number of queries in the online search. At first glance, the 3rd
observation is unexpected. But we believe it is because we applied balanced
subgraph search for both strategies, which predominates the search process
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Figure 17: Facebook: Queries - SS Figure 18: Slashdot: Queries - SS

regardless of the node selection. In order to verify this thought, we ran
another group of experiments on real-world data sets with UnbalancedRand
- sticking with the subgraph of highest degree but randomly selecting node
to query from the subgraph. The result is that all online search failed due to
not being able to achieve the targets connectivity with queries less than 10
times of the number of targets, which we set as a termination condition.

In terms of the number of extra nodes needed for connecting targets pre-
sented in Figures 10-14, we can observe that: (1) BalancedRealD outperforms
the others. (2) When comparing the local-view based strategies with Cen-
tral which assumes the availability of the entire data set, their results are
comparable, and sometimes, local-view based strategies perform better than
Central. This is because Central is an approximate algorithm rather than
the optimum one, as discussed in Section 4. (3) BalancedCreaT performs
similarly to BalancedRealD in the synthetic data set. (4) BalancedPreD per-
forms a little better than BalancedRand, needing less number of nodes for
making targets reachable.

5.3.2. Subgraph Selection (SS)

In order to evaluate subgraph selection techniques, we implemented the
unbalanced subgraph selection (UMS), and the balanced subgraph selection
(BMS). The UMS always targets the subgraph with the largest degree, while
the BMS always chooses the subgraph with the lowest degree. In this group
of experiments, we applied the real degrees of nodes for node selection aiming
at eliminating the impact of node section on evaluating the performance of
subgraph selection techniques. After running some experiments, we realized
that the number of queries issued with BMS is about two times of the number
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Figure 19: Gowalla: Queries - SS Figure 20: Brightkite: Queries - SS

Figure 21: Synthetic: Queries - SS Figure 22: Synthetic: Extra Nodes - SS

Figure 23: Facebook: Extra Nodes - SS Figure 24: Slashdot: Extra Nodes - SS
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Figure 25: Gowalla: Extra Nodes - SS Figure 26: Brightkite: Extra Nodes - SS

of targets; however, UMS may search through a large portion of the data set
to complete the online search. Therefore, for UMS, we set a termination
condition: if the number of queries issued is more than 10 times of the
number of targets, we will terminate the search.

In Figures 17-21, we can see: (1) Except for the synthetic data set, Bal-
ancedRealD requires much less number of queries to reach the connectivity
of targets than UnbalancedReal does. (2) For the real-world data sets, the
number of queries issued with UnbalancedReal reaches almost 10 times of
the number of targets. This is because most of the experiments with Unbal-
ancedReal were terminated by the condition we set and failed to achieve the
connectivity of targets as displayed in Figures 15-16.

In Figures 22-26, we can observe: (1) For the real-world data sets, Bal-
ancedRealD performs as well as the Central, and even better in some cases.
(2) Since UnbalancedReal failed to achieve connectivity in the real-world
data sets, its result was not displayed except for some cases where the on-
line searching successfully discovered the connectivity of targets. (3) For the
synthetic data set, the performance of BalancedRealD and UnbalancedReal
are similar.

5.3.3. Comparison with Landmarks

In this group of experiments, we evaluated BalancedRealD more by com-
paring it with Breath First Search (BFS) and randomness based search. The
BFS begins with all targets and then queries their neighbors, so on and so
forth. We implemented the randomness based search as randomly selecting
the target subgraph first and then randomly choosing a node to query from
the subgraph. Therefore, we name it DoubleRandom.
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Figure 27: Facebook: Queries - Landmark Figure 28: Slashdot: Queries - Landmark

In terms of the queries as displayed in Figures 27-31, BFS performs much
worse than BalancedRealD and DoubleRandom, which is caused by the im-
plementation of BFS. Specifically, if a high degree node is visited, soon the
search will visit all of its neighbors. Therefore, very likely, the search will get
stuck with one subgraph, causing the unbalance. For DoubleRandom, as we
mentioned earlier, the subgraph selection predominates the node selection.
Therefore, DoubleRandom also gives other subgraphs a chance to target, so
it performs better than BFS. Another observation from the figures is that
BalancedRealD issued less queries than DoubleRandom did.

For the extra nodes discovered from the offline search, as showed in Fig-
ures 32-36, BalancedRealD requires less extra nodes than DoubleRandom
does. For BFS, as displayed in Figure 15, in most of the experiments on
real-world data sets, BFS failed to achieve the connectivity of targets in the
online search. Therefore, the results of BFS only came from the successful
online search. The performance of BalancedRealD is even better than the
Central except for the Gowalla data set.

6. Discussion about Target Reachability

In our work, we assumed that all target nodes are reachable in the OSN,
so the worst case in our online searching is to visit all nodes in the graph
to achieve the connectivity of targets. Therefore, we preprocessed the real-
world data sets by extracting the largest connected component to ensure
the reachability of the targets before conducting online searching. However,
in real-world OSNs, it could happen that the targets are not connected,
although the chance may be slim, as nodes are connected well in online
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Figure 29: Gowalla: Queries - Landmark Figure 30: Brightkite: Queries - Landmark

Figure 31: Synthetic: Queries - Landmark
Figure 32: Synthetic: Extra Nodes - Land-
mark

Figure 33: Facebook: Extra Nodes - Land-
mark

Figure 34: Slashdot: Extra Nodes - Land-
mark
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Figure 35: Gowalla: Extra Nodes - Land-
mark

Figure 36: Brightkite: Extra Nodes - Land-
mark

social networks Wilson et al. (2009). Therefore, we hope to terminate the
searching soon if it is highly likely that the targets are not reachable, so that
we will not waste too much query resource.

From our experimental study, we realized that the number of queries is-
sued in the online searching with BMS is about two times of the number of
targets. Therefore, we set 10 times of the number of targets as the query
threshold to terminate UMS. Actually, we can use BMS to relieve the as-
sumption of graph connectivity. Specifically, after issuing a certain number
of queries (as threshold), if the targets could not achieve connectivity, we
can claim that the targets are not reachable or the cost to discover their
connectivity is too high. Such threshold should be determined by the query
cost a user could afford.

7. Related Work

7.1. Search in Social Networks

Some attention has been paid to efficiently searching in a social network
graph. Adamic et al. (2001) studied the searching on network graphs with
power-law link distributions, containing a few nodes with very high degree
and many with low degree. They proposed a number of local search strategies
that utilize high degree nodes in power-law graphs. They also noticed that
high connectivity nodes play the important role of hubs in communication
and networking, which is exploited in designing efficient search algorithms.
One of their proposed algorithms follows degree sequence. Specifically, at
each step of searching, a neighboring node with a degree higher than the
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current node itself is selected for visiting so that a highest degree node will
be reached quickly. Once a highest degree node is visited, an non-visited
node of approximately second highest degree will be chosen. By following
this degree sequence, one can reach a target node very quickly. In the paper
Adamic and Adar (2005), the same authors also addressed how to find a
shortest path between a pair of nodes solely depending on local view on
social networks. Their heuristic strategy also prioritizes high degree node
in searching by virtue of the fact in our social community that if a person
knows so many people, then he is more likely to know the target as well.
Thus, nodes of high degrees are found important in searching social networks.
Additionally, the authors in Mislove et al. (2007); Ye et al. (2010); Gjoka et al.
(2011) discussed how to collect data from OSNs by crawling/sampling so as
to analyze properties of social networks, such as topological properties.

Although our LMSD problem is also relevant to searching in social net-
works, it differs from the literature aforementioned. Specifically, rather than
looking for a shortest path between a pair of nodes, we are more interested
in the connectivity of a target group of nodes, usually more than two. Ap-
parently, if we solely leverage on the high-degree nodes to find the shortest
path for any pair of targeted nodes, the community including all the shortest
paths will ensure the connectivity of the targeted nodes, thus LMSD problem
being solved. However, the searching cost will be quite considerable. There-
fore, we are motivated to design more efficient algorithms to solve the LMSD
problem.

7.2. Subgraph Connectivity

Our subgraph detection problem is relevant to the subgraph connectiv-
ity in the domain of graph mining. Faloutsos et al. (2004) and Tong and
Faloutsos (2006) proposes solutions for finding a subgraph that connects a
set of query nodes in a graph, where the proximity between nodes is defined
depending on the global topology of the graph. Specifically, they extracted
subgraphs including nodes as close to the query nodes as possible, where the
closeness is quantified by the similarity measure between two nodes. In its
subsequent work, Koren et al. (2007) redefined the proximity measures based
on “cycle-free effective conductance” (cfec) and proposed some algorithms for
optimizing the cfec measure. Another work Asur and Parthasarathy (2009)
suggests the concept of viewpoint neighborhood analysis to identify neighbors
of interest to a particular source in a dynamically evolving network, associ-
ating their measure with heat diffusion. Cheng et al. (2009) investigated the
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problem of connecting query nodes in a context-aware framework. They first
employed modularity measure to partition the graph, and then studied the
connectivity in both intra-community and inter-community levels. Kasneci
et al. (2009) proposed a random walk-based approach to find informative
subgraphs associated with a group of query nodes in entity-relationship di-
agrams. Additionally, Sozio and Gionis (2010) addressed the searching for
the densest community containing all query nodes with and without size
constraint. Most recently, Hu et al. (2017) examines the Steiner Maximum-
Connected Subgraph (SMCS) problem: given a graph G and a set Q of
query nodes, find the G’s induced subgraph that contains Q with the largest
connectivity. Particularly, they addressed the minimal SMCS, which is the
minimal subgraph of G with the maximum connectivity containing Q.

The main difference between our proposed problem and the above line
of research is two-fold: (1) While the existing work addressed subgraph con-
nectivity with pre-known global topology, thus from the perspective of social
network “owner” (i.e., service provider), we instead consider the subgraph
detection by a third-party analyst. (2) Unlike the traditional minimum sub-
graph detection problem the goal of which is to solely minimize the discovered
subgraph which connects target nodes together, we are also concerned with
the cost specified by the number of queries issued in OSNs for subgraph
discovery, as many OSN web sites limit the number of web accesses per IP
address per day to ensure the workload at OSN servers.

7.3. Local View Based Graph Algorithms

Some researchers also noticed the importance of conducting graph mining
or operation based on location information as often time the global informa-
tion is not available. For example, Yin et al. (2017) proposes local graph
clustering methods to find a cluster of nodes by exploring a small region of
the graph, which enable targeted clustering around a given seed node and
are faster than traditional global graph clustering methods because their run
time does not depend on the size of the input graph. Additionally, Cui et al.
(2014) proposes a local-search strategy, which searches in the neighborhood
of a node to find the best community for the node. The difference between
our work and the above work is that we consider a different search problem,
and also, we particularly take advantage of topological properties of social
networks in design of search strategies.
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8. Conclusion

In this paper, we propose a problem of discovering a minimum subgraph
covering a given group of nodes from the perspective of third-party analysts
in OSNs, namely local-view based minimum subgraph detection (LMSD). Re-
searching this problem has broad applications, for instance, finding a group
of terrorists or malicious users in OSNs. To solve this problem, we pro-
pose two searching techniques, called Unbalanced Multiple-Subgraph (UMS)
and Balanced Multiple-Subgraph (BMS), which are based on the well-known
topological properties of social networks, including small-world phenomenon,
power-law node degree distribution and the well-connectivity of nodes of high
degree.

Through experiments over large-scale real-world and synthetic data sets,
we evaluate the performance of our proposed techniques. The BMS technique
performs better than UMS, which demonstrates that the well-connectivity
property in social networks is not restricted to nodes of high degree in OSNs,
rather, the entire OSNs are well connected, as any group of arbitrarily se-
lected nodes can reach connectivity by a small number of node queries. Fur-
thermore, the design principle in BMS of searching from subgraphs of low
degree shows great impact on the efficiency in solving the LMSD problem.
Our work sheds light on leveraging social network topological properties to
conduct search efficiently, which may improve some of the existing searching-
related research work in OSNs.
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