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Layer-to-Layer Height Control for Laser Metal Deposition

Processes

Lie Tang, Jianzhong Ruan, Todd E. Sparks, Robert G. Landers, and Frank Liou

Missouri University of S&T

Department of Mechanical and Aerospace Engineering

1870 Miner Circle, Rolla, Missouri 65409–0050

{ltx8d;jzruan;tsparks;landersr;liou}@mst.edu

Abstract                   Reviewed, accepted September 10, 2008

A  Laser Metal Deposition (LMD) height controller design methodology is presented in 

this paper. The height controller utilizes the Particle Swarm Optimization (PSO) 

algorithm to estimate model parameters between layers using measured temperature and 

track height profiles. The process model parameters for the next layer are then predicted 

using Exponentially Weighted Moving Average (EWMA). Using the predicted model, 

the powder flow rate reference profile, which will produce the desired layer height 

reference, is then generated using Iterative Learning Control (ILC). The model parameter 

estimation capability is tested using a four-layer deposition. The results demonstrate the 

simulation based upon estimated process parameters matches the experimental results 

quite well. Simulation study also shows that the methodology described above works 

well in producing the reference layer height.
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1. Introduction

Laser Metal Deposition (LMD) is an important Solid Freeform Fabrication (SFF) 

technology which allows functionally graded metal parts to be deposited from three 

dimensional computer models [1]. Unlike traditional machining operations which build

parts by material subtraction, LMD is an additive process during which the part is 

deposited layer by layer [2]. 

To deposit a part with designated geometric quality, a closed-loop process control 

system should be used. Laser metal deposition is a complex process, which is governed 

by a large number of parameters. Among these parameters, powder flow rate, laser power 

and travel speed are usually used to control the process properties, such as melt pool 

geometry, temperature, etc. Powder flow rate sensing and closed-loop control is 

implemented in [3] and [4]. Both controllers are capable of producing a steady powder 

flow rate. Heat input control in LMD is realized by adjusting laser power using an 

infrared image sensing camera as feedback [5]. The controller helps to overcome the 

effects of thermal variations and reduce cladding geometric variations. A PID controller 

is developed to control the clad height in [6]. The controller is designed based on a 

simplified process model. The laser power and powder flow rate are kept constant during 

the deposition, while the clad height is controlled by adjusting the travel speed. Except 

for those controllers mentioned above, which are based on deterministic process models, 

there are some other process controllers which are based on statistical models. Response 

surface models are developed to minimize the heat affected zone (HAZ) in [7]. 

Process control usually requires a process model. Different models are proposed 

to describe the LMD process. A lumped-parameter, analytical model of material and 
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thermal transfer is established in [8]. The model consists of three first order equations 

describing mass, momentum and energy balances. An elliptic shape melt pool is assumed. 

The model is validated by Gas Metal Arc Welding (GMAW) experiments through 

measurements by an infrared camera and a laser profilometry scanner. Another analytical 

model is developed and experimentally verified in [9]. The model concentrates on the 

mathematical analysis of the melt pool and establishes mass and energy balances based 

on one-dimensional heat conduction to the substrate. There are also some more complex 

models in the literature, such as the three dimensional model used to predict the thermal 

behavior and geometry of the melt pool in [10]. The Finite Element Method (FEM) is 

typically used to solve the equations in the complex models. The complex models usually 

require intense computational power, making them difficult to utilize in real time. The 

model complexity also hinders its usage for controller design. 

The LMD process is dominated by a subtle energy balance, which is affected by 

the part and substrate geometries, ambient temperature, etc. Therefore LMD process is

sensitive to environmental conditions. The model parameters change as the part is being 

built, making a constant parameter model implausible. Also, constant height is difficult to 

achieve. To accommodate these limitations, the layer-to-layer height control 

methodology is proposed. The idea of layer-to-layer height control is to measure the part 

height profile between different layers using a laser displacement sensor. The measured

height profile and melt pool temperature are applied to identify the model parameters 

using PSO. The powder flow rate reference is then generated using ILC with respect to 

the reference height profile of the next layer. With the aid of layer-to-layer control, it is 

475

halljc1
Rectangle



4

possible to make the deposition process automatic, which will help to increase 

productivity and reduce cost.

This paper is organized as follows. Section 2 introduces the LMD system 

hardware. Section 3 formulates the process models and Section 4 presents the layer-to-

layer height controller design. In Section 5 simulation and experimental results are 

presented and discussed. Finally, in Section 6, the paper is summarized and concluding 

remarks are presented.

2. Laser Metal Deposition System Hardware 

The LMD system consists of the following components: 5-axis CNC machine, powder 

delivery system, 1kW diode laser, National Instruments (NI) real-time control system, 

laser displacement sensor and temperature sensor. The system setup is shown in Figure 1. 

The laser displacement sensor (OMRON, model Z4M-W100) has a measurement range 

of 40  mm and a minimum resolution of 8 µm. The temperature sensor (Mikron 

Infrared, model MI-GA 5-LO) has a measurement range of 400 to 2500°C. The 

temperature sensor is mounted on the nozzle and is used to measure the melt pool 

temperature during deposition. The entire control system is implemented in NI LabVIEW.

The NI boards used in the system setup are listed in Table 1.
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Figure 1: Laser metal deposition process system.

Table 1: NI boards used in the system setup.

Model Type Range Resolution Application

PXI-6602 Counter/Timer N/A N/A
Powder feeder motor 

angular position 
measurement

PXI-6040E Analog input -10V-+10V 12 bit
 (4.88 mV)

1. laser displacement 
sensor feedback 

measurement
2. temperature sensor 

feedback measurement

PXI-6711 Analog output -10V-+10V 12 bit 
(4.88 mV)

1. powder feeder motor 
control

2. laser power control

3. Laser Metal Deposition Process Model 

3.1 Model description
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For on-line process control, a simplified model is more desirable due to its computation 

efficiency. The model [8] is composed of three equations derived from mass, momentum 

and energy balances. 

The mass balance equation is given by

       mV t A t v t m t                                              (1)

where   is material density (kg/m3), V is bead volume (m3), A is cross sectional area in 

the direction of deposition (m2), v is table velocity in the direction of deposition (m/s), 

m  is powder catchment efficiency, and m is powder flow rate (kg/s). The bead is 

assumed to be elliptical; thus, the volume and cross sectional area in the direction of 

deposition, respectively, are

       
6

V t w t h t l t


                                                  (2)

     
4

A t w t h t


                                                     (3)

where w, h, l are, respectively, the bead width, height, and length (m).

The momentum balance equation is

                 
4

V t v t V t v t w t h t v t v t w t
                        (4)

where the parameter   is given by

   1 cos GL SL                                                  (5)

where   is the wetting angle (rad), GL  is the gas to liquid surface tension coefficient

(N/m), and SL  is the solid to liquid surface tension coefficient (N/m).

The energy balance equation is
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where T is the average melting pool temperature (K), cs is the solid material specific heat 

(J/(kg·K)), mT  is the melting temperature (K), 0T  is the ambient temperature (K), SLh  is 

the specific latent heat of fusion-solidification (J/kg), lc  is the molten material specific 

heat (J/(kg·K)),   is the laser-surface coupling efficiency, Q  is the laser transmission 

efficiency, Q  is the laser power (W), s  is the convection coefficient (W/(m2·K)), G  is 

the heat transfer coefficient (W/(m2·K)),   is the surface emissivity and   is the Stefan-

Boltzmann constant (W/(m2·K4)).

The bead width-length relationship for the steady-state conductive temperature 

distribution subject to a heat source moving with constant velocity is given by

     
       

  
2

0

0.25 max ,
2 2

QQ tw t w t
l t X t with X t

X t k T t T




 
      

  
         (7)

where k  is the thermal conductivity constant (W/(m·K)).

The experiments conducted in this paper use H13 tool steel as the deposition 

material. The model parameters for H13 tool steel are listed in Table 2 [9].

Table 2: H13 properties and deposition conditions.

Parameter Symbol Value

density (kg/m3)  7760

wetting angle (rad)  / 2
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gas to liquid surface tension coefficient (N/m) GL 1.94237

solid to liquid surface tension coefficient (N/m) SL 1.94246

solid material specific heat (J/(kg·K)) sc 460

melting temperature (K) mT 1730

ambient temperature (K) 0T 292

specific latent heat of fusion-solidification (J/kg) SLh 250000

molten material specific heat (J/(kg·K)) lc 480

heat transfer coefficient (W/m2·K) G 24

surface emissivity  0.53

Stefan-Boltzmann constant (W/m2·K4)  5.67·10-8

thermal conductivity constant(W/m·K) k 29

laser transmission efficiency Q 0.8

laser-surface coupling efficiency  0.15

3.2 Model Adaptation

Let
 

  02
QQ t

f
k T t T







, mathematical analysis shows that f is maximum when Q

reaches maximum (1 kW) and T is minimum (1730 K). In this case, 4
max 4.58 10f m  . 

Experiments show that the track width is close to the laser spot diameter, which is 

approximately 2.54·10-3 (m) at nozzle standoff distance 1.27·10-2 (m). Therefore equation 

(7) becomes

   l t w t                                                              (8)   

4 Laser Metal Deposition Height Controller Design
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A height controller is designed based on the model described above. As shown in Figure 

2, the height controller consists of three major parts: measurement (height and 

temperature), system identification, and powder flow rate reference generation. The 

height and temperature profiles are measured using the laser displacement and 

temperature sensors, respectively. The measurement data, together with the measured 

powder flow rate of the last layer, are used as inputs to the system identification program, 

which is based on PSO [11], to estimate model parameters. Since the estimated model 

parameters are only applicable to the deposition of the last layer, they are further 

predicted using EWMA so the model can be used to predict the deposition of the next 

layer. The powder flow rate reference profile, which will produce the designated layer 

height reference, is then generated using ILC.
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Initial process 
parameter generation

Layer deposition

Height profile measurement

Temperature measurement

Model parameter identification using PSO

Exponentially Weighted Moving Average 
(EWMA) model parameter prediction

Powder flow rate reference generation 
using Iterative Learning Control (ILC)

Start

End

Desired profile 
achieved?

NO

Figure 2: Laser metal deposition height controller structure.

4.1 System identification based on PSO

Particle swarm optimization is an evolutionary computational technique based on swarm 

intelligence. In the particle swarm algorithm, the trajectory of each particle (i.e., 

candidate solution to the optimization problem) in the search space is adjusted according 

to its own experience and the experience of the other particles in the swarm. It has been 

successfully applied in many different areas such as neural network training [12], system 

482

halljc1
Rectangle



11

modeling [13], engineering design [14], etc. In this paper, it is applied to estimate the 

model parameters based on measured height and temperature profiles. The LMD process 

is governed by a number of process parameters, among which heat transfer coefficient G , 

surface emissivity  , thermal conductivity constant k, convection coefficient s  and 

powder catchment efficiency m , etc, are sensitive to the environment. Limited by the 

process feedback (height and temperature), only two process parameters, convection 

coefficient s (W/(m2·K)) and powder catchment efficiency m , are estimated. 

The PSO algorithm is applied to determine the optimal values of s  and m  based 

on the height and temperature feedback. Assume the swarm consists of n particles and the 

position and velocity vectors of particle i  can be represented as

 , , 1, 2, ,i si miX i n      and , , 1, 2, ,
s mi i iV v v i n       , respectively. The position 

vector represents the current solution found by each particle, while the velocity vector 

shows how the solution will change in the next iteration.

The steps of the identification algorithm are as follows:

(1) Randomly initialize the position and velocity vectors of particle i as 

     0 0 , 0i si miX       and      0 0 , 0 , 1, 2, ,
s mi i iV v v i n       , 

respectively, and compute the fitness J  of each particle by comparison of the 

height and temperature feedback with the deposition process simulation results

using the Runge-Kutta method. In this paper, the fitness J is calculated by the 

following equation

         2 2

1 1

q q

h m s T m s
j j

J w h j h j w T j T j
 

                                      (9)
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where q is the total sample number, hw  is weight on  height error, mh  is the     

measured height, sh  is the simulated height, Tw  is the weight on temperature 

error, mT  is the measured temperature and sT  is the simulated temperature. Take 

the current position of each particle as its initial personal best position  0iP  with 

best fitness  0iJPbest , 1, 2, ,i n  , and compare the fitness of all particles in the 

group to find the initial global best position  0gP  and corresponding initial 

global best fitness  0JGbest . 

(2) Update the current iteration number b  and inertial weight  with  w b

1b b  ，  
max

i f
i

w w
w b w b

b

 
   

 
                                        (10)

where maxb  is the maximum iteration number. The initial and final values of the 

inertia weight, respectively, are 0.9 and 0.4.

(3) Update the position and velocity of each particle

               1 1 2 21 , 1,2, ,i i i i g iV b w b V b c r P b X b c r P b X b i n                   

(11)

     1 1 , 1,2, ,i i iX b X b V b i n                                        (12)

The acceleration coefficients 1c and 2c , respectively, are 0.2 and 0.2. The 

parameters 1r  and 2r  are random numbers in the range [0,1].

(4) Evaluate the fitness of each particle  iJ b , and compare it with its previous 

personal best fitness value  1iJPbest b  . If    1i iJ b JPbest b  , then 

   i iP b X b and    i iJPbest b J b . Compare  iJ b  with the previous global 
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best fitness  1JGbest b  . If    1iJ b JGbest b  , then    g iP b X b  and 

   iJGbest b J b .

(5) Compare  JGbest b  with  1JGbest b  . If    1JGbest b JGbest b    , then 

let 1c c  ; If    1JGbest b JGbest b  , the 0c  .                                                        

If setc C , then randomly select ( )n   particles from the group and reinitialize.

Here setC  is a designated natural number. If there is no fitness improvement in 

the past setC  iterations, the reinitializing process will be activated.

(6) If maxb b , then go to step (2), otherwise stop.

Similar to other optimization algorithms such as genetic algorithm, simulated annealing, 

etc., PSO can also become trapped at a local minimum. Here step (5) is employed to 

avoid local minima. The idea originates from the mutation operation used in genetic 

algorithms. In genetic algorithms, mutation is a random modification of a randomly 

selected potential solution. It guarantees the possibility of exploring the space of 

solutions for any initial solution space and avoiding local minima. Here the reinitializing 

process is designed to fulfill the same purpose.

4.2 Model parameters prediction using EWMA

With PSO algorithm described above, the parameters, s  and m , can be estimated for 

the current layer, but they are not applicable to the deposition of next layer. To predict the 

parameter value for the next layer, Exponentially Weighted Moving Average (EWMA) 

can be used. The prediction is described by

                1 , 2,l l lP A E I A P l                                                                               (13)
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2 1P E                                                             (14)

where l is the layer number, the vector of predicted parameters at layer l+1, 

   1 1 , 1l sp mpP l l       , the vector of estimated parameters using PSO at layer l,

   ,l se meE l l     , I is a 2 2  identity matrix, A is a 2 2 diagonal matrix constituted 

by smooth factors for each parameter, here 
0.5 0
0 0.5

A
 

   
.

4.3 Powder Flow Rate Generation using ILC

Iterative Learning Control (ILC) has been widely applied in robotics for tracking repeated 

motion contours. The idea is to adjust the controller output according to the tracking error 

in the previous iterations and, since the motions are usually repeated, the controller 

output will converge to a certain value which will produce an acceptable tracking result. 

The control law is

                                     1 1, , , , , ,j j j j n j j nu i f e e e u u                                   (15)

so that the learning convergence, i.e., lim 0j
j

e


 and *lim 0j
j

u u


   is achieved at an 

acceptable rate. The parameter j is the iteration number, and i is the sample index.

Unlike its most usual application described above, ILC is used to generate the 

powder flow rate reference profile in this paper. The control law applied in this paper is 

first proposed by Arimoto et al.[15] and is

                                                 1 1j j jm i m i e i                                           (16)

The powder flow rate of time i at iteration j+1 is calculated from the powder flow 

rate of time i at the previous iteration j and a corrective term which is a learning gain 
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multiplied by the shifted tracking error  1je i   from the previous iteration. The 

procedure is given in Figure 3. One thing that should be noted is that in this procedure 

ILC utilizes virtual deposition (with the help of process model) to generate the powder 

flow rate reference.

     
     

 

1

2

1

1

_

j r j

j j j

N

j j
i

e i H i H i

m i m i e i

sum e e i





 

  


 rH i

 jH i

 1m i

_ ?j setsum e e

Figure 3: Reference powder flow rate profile generation using ILC.

5 Experiments and Simulation Studies
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5.1 Process model parameter estimation

To test the model parameter identification methodology, a four-layer single track wall is 

deposited using H13. The process parameters are listed in Table 3.

Table 3: Model parameter estimation experimental process parameters.

Parameter Powder flow 
rate (kg/s)

Laser power 
(W)

Table travel 
velocity (m/s)

Nozzle standoff 
distance (m)

Value 0.83·10-4 700 2.1·10-3 1.27·10-2

The track length is approximately 60 (mm). The measured track height and melt pool 

temperature are shown in Figure 4. 
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Figure 4: Measured track height and temperature profiles for four layers.

The model parameters ( s and m ) are estimated using PSO algorithm for all four layers.

The estimated parameter values are given in Table 4.

Table 4: Estimated model parameters for all four layers.

Parameter
convection 

coefficient s
(W/m2·K)

powder 
catchment 

efficiency m
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Layer 1 42.46 10 0.62
Layer 2 41.87 10 0.56
Layer 3 43.55 10 0.35
Layer 4 42.59 10 0.43

The experimental results are compared with the simulation results in Figure 5. The results 

show that the simulation results using estimated parameters match the experimental 

results quite well except for the variations, which are due to unmodeled process dynamics. 

The other thing that should be noted is that parameters experience significant changes 

between layers indicating the necessity of parameter prediction.
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Figure 5: Experimental and simulation results comparison (Layer 1 and Layer 2).

5.2 Powder Flow Rate Reference Generation Simulation Study

The powder flow rate reference generation methodology presented above is applied to a 

circular part deposition. The velocity (along deposition path) profile recorded from the 

489

halljc1
Rectangle



18

execution of a clockwise circle (R = 25.4 mm, V = 254 mm/min) on the CNC machine is 

shown in Figure 6. 
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Figure 6: Measured velocity profile from execution of a clockwise circle (R = 25.4 

mm, V = 254 mm/min) on CNC machine.

The model parameters estimated for Layer 4 in above experiment are employed to 

conduct the simulation. The height reference is set to 0.6 mm. The initial powder flow 

rate is set to 5 g/min. Learning gain of ILC is 0.04. The ILC program runs on the 

computer platform with the following settings: CPU – Celeron M (1.40 GHz), Memory –

448 MB, System – Windows XP home edition (2002). The total iteration number is 200 

and the computation time is 3.60 s. The simulation results are shown in Figure 7.
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Figure 7: Layer height and corresponding powder flow rate profile.

It could be seen that with the powder flow rate reference generated by the ILC program, 

the layer height is approximately 0.6 mm. The small glitches on the height profile are due 

to the sharp velocity changes.

6 Summary and Conclusions

A  LMD height controller design methodology is presented in this paper. The height

controller utilizes the PSO algorithm to estimate the model parameters from measured 

temperature and track height profiles between layers. The model parameters are then 

further predicted using EWMA to account for the process parameter variations. With the 

predicted model, the powder flow rate reference profile, which will produce the 

designated layer height profile, is then generated using ILC. The model estimation 

capability of the methodology is verified experimentally. Simulation study shows that the 

methodology works well in producing the reference layer height.

491

halljc1
Rectangle



20

7. Acknowledgment

This research was supported by the Intelligent Systems Center at Missouri S&T.

492

halljc1
Rectangle



21

Reference

[1] Choi, J., 2002, “Process and Prosperities Control in Laser Aided Direct 

Metal/Materials Deposition Process,” Proceedings of IMECE, New Orleans, Louisiana, 

November 17–22, pp. 1–9.

[2] Griffith, M.L., Keicher, D.M., Atwood C.L., Romero J.A., Smegeresky J.E., Harwell 

L.D., and Greene D.L., 1996, “Free Form Fabrication of Metallic Components Using 

Laser Engineered Net Shaping (LENS),” Solid Freeform Fabrication Symposium, Austin, 

Texas,  pp. 125–131.

[3] Hu, D. and Kovacevic, R., 2003, “Sensing, Modeling and Control for Laser–Based 

Additive Manufacturing,” International Journal of Machine Tools and Manufacture, Vol. 

43, No. 1, pp. 51–60.

[4] Li, L. and Steen, W.M., 1993, “Sensing, Modeling and Closed Loop Control of 

Powder Feeder for Laser Surface Modification,” ICALEO, pp. 965–975.

[5] Hu, D., Mei H., and Kovacevic R., 2001, “Closed Loop Control of 3D Laser Cladding 

Based on Infrared Sensing,” Solid Freeform Fabrication Proceedings, Austin, Texas, pp. 

129–137.

[6] Fathi A., Durali M., Toyserkani, E., and Khajepour, A., 2006, “Control of the Clad 

Height in Laser Powder Deposition Process using a PID Controller,” Proceedings of 

IMECE, November 5–10, Chicago, Illinois, USA.

[7] Keicher, D.M., Jellison, J.L., Schanwald, L.P., Romero, J. A., and Abbott, D.H., 1995, 

“Towards a Reliable Laser Spray Powder Deposition System through Process 

Characterization,” 27th International SAMPE Technical Conference, October 9–12, pp. 

1009–1018.

493

halljc1
Rectangle



22

[8] Doumanidis C. and Kwak, Y-M., 2001, “Geometry Modeling and Control by Infrared 

and Laser Sensing in Thermal Manufacturing with Material Deposition,” Journal of 

Manufacturing Science and Engineering, Vol. 123, pp. 45–52.

[9] Han L., Liou, F.W., and Musti S., 2005, “Thermal Behavior and Geometry Model of 

Melt Pool in Laser Material Process,” Journal of Heat Transfer, Vol. 127, pp. 1005–1014.

[10] Pinkerton A.J. and Li L., 2004, “Modelling the Geometry of a Moving Laser Melt 

Pool and Deposition Track via Energy and Mass Balances,” Journal of Physics D: 

Applied Physics, Vol. 37, pp. 1885–1895.

[11] Kennedy J. and Eberhart R.C., 1995, “Particle Swarm Optimization,” IEEE 

International Conference on Neural Networks, Perth, Australia, November, pp. 1942–

1948.

 [12] Gudise, V.G. and Venayagamoorthy, G.K., 2003, “Comparison of Particle Swarm 

Optimization and Back Propagation as Training Algorithms for Neural Networks,” IEEE 

Swarm Intelligence Symposium, pp. 110–117.

[13] Bhattacharya, R., Joshi, A. and Bhattacharya, T.K., 2006, “PSO-based Evolutionary 

Optimization for Black-box Modeling of Arbitrary Shaped on-chip RF Inductors,”

Silicon Monolithic Integrated Circuits in RF Systems,  Digest of Papers, pp. 103–106.

[14] Hu X., Eberhart, R.C. and Shi Y., 2003, “Engineering Optimization with Particle 

Swarm,” IEEE Swarm Intelligence Symposium, pp. 53–57.

[15] Arimoto, S., Kawamura, S., and Miyazaki, F., 1984, “Bettering Operations of

Robots by Learning,” Journal of Robotic Systems, Vol. 1, pp. 123–140.

494

halljc1
Rectangle


	Layer-to-Layer Height Control for Laser Metal Deposition Processes
	Recommended Citation

	Layer-to-Layer Height Control for Laser Metal Deposition Processes

