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Abstract 

 
Powder bed fusion (PBF) is one of the current additive manufacturing techniques that can 

fabricate almost fully dense functional metal components. Through a layer by layer fabrication 
methodology, complex geometries to meet the requirements of aerospace, automotive, 
biomedicine industries, etc. can be produced. The success of a build largely depends on having a 
flawless pre-process planning, including build orientation selection, support structure optimization, 
process parameter chosen, etc., which closely relates to the quality of the final products. Geometric 
inaccuracy and poor surface quality can occur due to a bad build plan. This review presents the 
crucial general planning rules for the build process. Build orientation selection, support structure 
optimization, and process parameter chosen in terms of residual stress reduction are the mainly 
concerns, which have been surveyed and discussed. The overall objective of this work is to help 
setup build plans that can ensure precise dimensions and high surface quality among the built 
components. 
 

Introduction 
 

Powder bed fusion (PBF) employs a manufacturing process by sintering or melting the raw 
material with a heat source (usually a laser or electron beam) then cooling and consolidating the 
material layer by layer to allow the fabrication of light-weighted components. The layered 
manufacturing methods enable the fabrication of the small-size components with the complex 
geometry. The geometry complexity is of difficulty for the conventional manufacturing techniques 
to realize.   
 

However, some consequences of an unsuccessful pre-processing plan hold back the 
prevalence of PBF system. Given that the fabricated products usually possess a poor surface finish 
[1,43-47], which needs machining during post-process. Besides, the strong support structure is 
necessary to be applied to constrain the overhang or inclined angle structure so as to improve the 
stiffness of the supported structure and dissipate the redundant heat efficiently, otherwise most 
time, the build will fail [13,14]. Nevertheless, the conventional support is usually a volume column 
underneath the supported material. The additional build of the support structure leads to the extra 
cost of material and time to design during pre-processing, manufacture during the build processing 
and remove at post-processing [16]. The residual stress because of improper use of process 
parameter gives rise to the deformation, distortion, and delamination or even build failure [30]. 
The origin of the residual stress in the layered manufacturing process is temperature gradient 
mechanism. That the large thermal gradient comes from the rapid heating and relatively slow 
cooling induces stress inside the material. The stress is not allowed to fully release by an elastic 
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(stress less than the yield stress of the material) or plastic deformation (stress more than the yield 
stress of the material) due to the fast solidification, so part of the stress remain inside the 
components. [29-30,32,38] 
 

Proper pre-process planning is one of the inspirations that could liberate the build process 
from those limitations. In this review, a pre-process planning in terms of the optimization of build 
orientation, the selection of the support structure as well as the reduction of residual stress from 
changing the process parameter are presented as a guideline to achieve a better geometric accuracy, 
surface finish and save more build time and material.  

 
Pre-Process Planning Setup 

Build orientation selection 
 

The feature and objective of the build need to be specified first so as to obtain an optimized 
build orientation [24]. Shape features need to be identified to determine the manufacturability of 
the Additive Manufacturing (AM) processes, which related to the constraints of the layer-wise 
manufacturing process and the contact between the components and the machine. The shape 
features are machine and build geometry dependent. For instance, for different manufacturing 
processes based on powder bed fusion (PBF), such as Selective Laser Melting (SLM), Selective 
Laser Sintering (SLS), and Electron Beam Melting (EBM), there are some special rules regarding 
the contact between the fabricated parts and the wiper or recoating blade to prevent the extreme 
rise of the edge of the part [25].  

 
a. No long parallel contact to reduce the force induced by a wiper or recoating blade to a 

single part. It can be solved by rotating a small angle of the part (Figure 1). For multiple 
parts in one build, the parts could not be positioned along the wiper to eliminate 
simultaneous initial contacts [25]. 
 

b. The inclined overhang or support structure need to face away from the wiper or recoating 
blade so as not to exacerbate the upward trend of the part deflection on account of the force 
induced by the movement of the wiper [25].  

 
c. Avoid too large aspect ratio. The force from the wiper will bend the thin, tall part eventually 

[25].  
 

 
Figure 1: Build orientation chances by a small angle rotation 
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General objectives that need to be defined in terms of the designer preference and 
requirement to achieve the better functional products. The main general objectives include surface 
quality [24,26,35], part accuracy [24], support volume [24,26], mechanical properties [24], build 
time (build height) [24,26], build cost [24], post-processing [24], favorableness of AM feature [24], 
and other potential attributes [26]. Given that the surface finishes of the upward and downward 
facing surface of a fabricated overhang are distinct [48]. The build orientation of the overhang 
needs to be changed upside down if the user requires a better surface finish of the down skin, as 
shown in Figure 2.  
 

After the features and objectives are specified, two main tasks need to be figured out 
[21,24]. First, select a set of the alternative orientations from the infinite build orientation for a 
part based on the shape feature. Rule or knowledge-based method, sampling or listing method 
could be employed, listed in Table 1. Genetic algorithm and Response Surface Methodology are 
the two representatives in sampling or listing method. Then refine the alternative orientation to get 
rid of duplicate orientations. The second step is to determine the optimized orientation in terms of 
the identified general objectives or attributes applying multi-criteria decision-making method 
[20,23,24].  
 

 
Figure 2: Build orientation changing with a key feature 

 
Zhang et al. [21] use a feature and rule-based method to generate finite orientation sets for 

every single part. Then apply the multi-criteria decision-making method to rank and weight the 
criteria to determine the optimized orientation for multi-part. Byun and Lee [19] determine their 
optimized build orientation from all the possible candidates by genetic algorithm (GA). They rank 
and weight the importance of each criterion (surface roughness and build time as a priority in this 
case) to identify the optimized orientation. Zhang et al. [20] point out a two-step solution to 
determine the optimized orientation for multi-part production. The single part orientation sets can 
first be selected regarding the key feature of the user preference. Then the optimized orientation 
for multi-part can be identified by setting the global objectives and applying the GA. The authors 
of [28] propose a software using Matlab with an optimization algorithm to determine the build 
orientation with least support volume, which could be applied to both single part and multipart.  

 
Ahsan et al. [26] further develop an analysis for concurrent determination of both optimal 

build orientation and tool-path direction. The analysis combines the basis of geometry, the part 
attributes, and genetic algorithm. Recently, Langelaar [27] provides a method, which could be 
applied to optimize the part geometry, build orientation and support layout simultaneously.  
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Table 1: The method used to optimize the orientation 

 
 
Support structure for overhang problem 
 

The supports used in building process are significant structures designed as sacrificial 
structures so as to reinforce the resulting components. The designed support structures are well 
needed under the following situation in SLM process [48]:   

 
I. The overhang plane (length more than 1mm) with an angle of less than 45 degrees with 

regard to (w.r.t.) the horizontal plane. Otherwise, either a relatively low density or a rough 
finish of the down skin surface could happen. The length of the plane within 0.3mm to 
1mm can self-support without support structures [48].  
 

II. Local minima refer to any areas of the component that are not connected to the layer below, 
which will need the support to anchor them. If not, the first layer of the local minima is 
possible to be displaced by the wiper, which may result in inaccurate geometry, or even 
failure [48].  

 
III. Lateral holes or arches on the side surface of the component with the radii more than 5mm 

will also need the support in order to prevent geometry distortion from happening [48].  
 
Support structure optimization is of importance. With a proper selection of the support 

structure, material and build time could be saved, better surface finish could be achieved, and the 
support could be easier to be removed. The reviewed support optimization strategies are mainly 
categorized into two types. One is designed in terms of the support geometry selection. The other 
is optimized by changing the process parameter for both downward facing surface and support.  

1164



These two support design strategies are listed in Table 2.  
 

 
Figure 3: Conventional solid column support after EDM 

 

I. Support Geometry  
 
To achieve simple support and fast computation, the authors of [13] present a model and 

algorithm to optimize the shape and topology of the support. The shapes of conventional support 
structures are usually solid column like Figure 3, which are waste of the material and build time. 
So instead of a conventional solid column, lattice support structure is a better choice. Hussein et 
al. [42] study the two types of advanced lattice support structures, gyroid and diamond. They point 
out that in the best case, only 8% relative volume is used with gyroid lattice support structure by 
changing the size and struts of the unit cell, which means 92% of the powder can be saved and 
reused. The diameters of the struts of the support structure and the distances between the adjacent 
points connected to the down skin surface are two determinant factors to influence the 
manufacturability. The authors of [12] also present the feasibility of the gyroid and diamond 
cellular support structure with different size of unit cell and volume fraction. The 
manufacturability and performance of the gyroid type cellular support structure made by SLM are 
evaluated by Yan et al. [6]. The conclusion shows unit cell size between 2 to 8mm can be fabricated 
properly without additional support and the geometric accuracy of the produced structure is sound.  

 
The authors of [11] present a pure mathematical 3D implicit functions for design and 

optimize the cellular support structure. Vaidya and Anand [17] propose an approach to generate a 
cellular support structure. They combine the space filling hollow cellular support with Dijkstra’s 
shortest path algorithm to create the support with minimal volume fraction.  
 

Another commonly used geometry of the support structure is teeth support [7]. Poyraz et 
al. report a design of the teeth support then conclude that the tooth parameter is less important than 
the hatching distance which greatly determines the extent of the distortion of the overhang. 
Calignano [8] investigates the optimized teeth parameter for AlSi10Mg and Ti6Al4V in terms of 
process efficiency and effectiveness by selective laser melting and demonstrates the importance of 
build orientation selection to reduce the amount of support and the possibility of distortion. Figure 
4 illustrates the teeth support below the fabricated part. The authors of [7] propose the easiness of 
the removal of the teeth support during post-process due to the weak tip of the teeth.  
 

1165



 
Figure 4: Teeth support geometry 

 
In addition to the lattice and teeth support structure, there are still some effective support 

structures with different geometry developed. Gan and Wong [2] investigate three support 
structures, inverted ‘Y’ shape, ‘Y’ shape, and pin and came to the conclusion that the relatively 
levelled thin overhang plates can be achieved with the help of the inverted ‘Y’ supports with only 
2.2% overhang-support contact area. The authors of [10] come up with a point contact support 
which can dissipate heat efficiently with the minimal contact area, which is also easy to remove 
during post-processing. 

 
Recently, a new concept of the support structure realizes in Electron Beam Melting (EBM) 

process, which is developed by Leprince-ringuet and Vignat [3]. They point out a contact-free 
support which could not only be removed without any mechanical tool but reduce the extent of 
distortion efficiently. But the problem is that the contact-free solid column which could not be 
recycled is still a waste of material and production time. The optimization is proposed to add a 
constraint at the front of the part end, which can also effectively prevent the overhang from curling 
at the edge meanwhile maintain the ease of support removal and save the material significantly. 
Cooper et al. [4] also come out with the idea of contact-free support as a heat sink. They 
demonstrate the applicability of the heat support with no or little post-processing by both 
simulation and experiment and figure out that the effectiveness of the support is sensitive to the 
gap distance between the downward facing skin and the support and thickness of the support. Li 
et al. [16] also propose a lightweight and support-free design method to design a support.  

 
II. Process parameter 

 
Besides the optimization of geometry of the support structure, altering the process 

parameter of the downward facing surface and the support also helps. Mertens et al. [9] propose 
an optimized laser power and scan spacing for downfaces of the horizontal and inclined overhang 
to achieve better performance without support. However, this design is just for short structure 
while the extra support has to be provided for long downfacing structures. Cloots et al. [10] 
demonstrate that the support structure can be eliminated for the overhang with an angle of more 
than 20°w.r.t horizontal plane. They change the hatching space, scan angle and scan speed to 
reduce the heat input and achieve the build without support while still retaining acceptable density 
and surface roughness. Jhabvala et al. [15] present that support structure could be built using pulsed 
laser accounting for easy removal and time-saving. Bobbio et al. [18] use a relatively lower energy 
input to build the support structure than the solid part to achieve a low structural strength, which 
could be of benefit to ease the support removal during post-process.  
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Table 2: The strategies of different support geometries and process parameter 

 
 

Process parameter chosen in terms of residual stress reduction 
 

The consequence of the high residual stress may result in a severe build failure like 
delamination in Figure 5. Therefore, it is necessary to evaluate and control the magnitude of 
residual stress during the build process to prevent the curing or warping happening. The authors 
of [32] give a detailed review of residual stress and further a future study direction. Many 
researchers report the methods they use to measure the residual stress and analyze the effects of 
different factors on the residual stress.  
 

 
Figure 5: The consequence of large residual stress 

 
Kruth et al. [31] provide a method called bridge curvature method used to assess the angle 

of curvature α of the bridge structure made by SLM to imply the magnitude of the residual stress, 
shown in Figure 6. Thus, this method can be employed to assess and compare the extent of the 
influencing factor on residual stress. Zaeh and Branner [30] analyze the residual stress by using 
neutron diffractometer. Safronov et al. [36] put forward that the top surface of the part could be 
concave on account of residual stress induced shrinkage. Thus, the magnitude of the residual stress 
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is related to the curvature radius R. The authors of [37] evaluate the residual stress by hole-drilling 
strain gauge method and conclude the residual stresses in some area of the part exceed the yield 
stress of the material, which indicates the distortions in the specimen result from the residual stress. 
Liu et al. [38] measure the residual stress by X-ray diffraction and propose the stress perpendicular 
to the scanning direction are much smaller than that parallel to the scanning direction. In addition, 
the peak values of residual stress always exist at the beginning of scanning tracks, which means 
the deformation or distortion are easier to happen at the edge of the part. The authors of [39] also 
demonstrate that the greatest stress occurs parallel to the scan vectors since there is larger thermal 
gradient parallel to scan vector using a thermo-mechanical model. 

 

 
Figure 6: (a) Before, (b) after removal from the base plate. The geometry of the test parts 

 
Mercelis and Kruth [29] propose the distribution of the residual stress, which contains large 

tensile stresses at both top and bottom of the final part while intermediate compressive stress in 
between. They also investigate the parameter influencing the magnitude of the residual stress and 
the method to reduce the residual stress; details are generalized in Table 3. The application of 
island scan strategy generates lower residual stress than that of longitudinal scan direction or 
alternating scan direction. Zaeh and Branner [30] also report the parameters which effect on 
residual stress and deformation. They conclude that the residual stress could be a function of the 
scanning direction, cantilever thickness, layer thickness and initial platform temperature.  Further, 
Ali et al. demonstrate that pre-heating the bed to 570°C for Ti6Al4V could significantly reduce 
the residual stress and improve the yield strength and ductility of the final components [34]. The 
authors [39] indicate the longitudinal stress increases with scan vector length and a non-uniform 
anisotropic stress field is generated during the layer by layer manufacturing process. Vasinonta et 
al. [40] employ a thermo-mechanical model with a thin-walled structure to quantify the effect of 
wall height, scan speed, laser power and the preheating of the substrate on the size of the melt pool 
and the residual stress. Two process maps are applied to predict the melt pool size and maximum 
residual stress. The process parameter can be determined using this method to optimize the melt 
pool size while controlling the residual stress.  
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Table 3: The effect of different factors on residual stress 

  
 

Conclusion 
 

To keep the build from distortion and deformation, and ensure the quality of the final 
components, a proper build setup need planning in powder bed process. In this review, the setup 
rules with regard to orientation selection, support structure optimization and residual stress 
reduction are concluded as follows: 
 

1. Build orientation 
 
The rules of orientation optimization consider the geometry feature and wiper interaction. 

The orientation needs to be selected in terms of preventing the extreme rise of the edge of the part 
on account of the interaction between the build part and the wiper movement during the build 
process. The alternative orientation sets can be generated by either rule (knowledge) based method 
or sampling (listing) based method.  After general objectives of the build are specified by the user, 
the optimal orientation could be selected from the sets. 
 

2. Support structure optimization 
 
The structures with the angle of a plane less than 45°w.r.t the horizontal plane, with local 

minima or with lateral holes with large diameter need to be supported. To save the build time and 
minimize the support material, different geometry of the support structure which can still self-
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support could be applied. In addition, the support structure could be built using pulsed laser or low 
energy input to ensure the ease of the final support removal. The process parameter with lower 
energy input could also be employed to build the downward facing surface to achieve a better 
surface finish without support.  
 

3. Process parameter chosen in terms of residual stress reduction 
 
The effect of different factors, including the number of layers, the thickness of the base 

plate, the scan pattern, and energy input, etc., on residual stress, are mainly listed in Table 3.  
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