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ABSTRACT We present a framework for an explainable and statistically validated ensemble clustering
model applied to Traumatic Brain Injury (TBI). The objective of our analysis is to identify patient injury
severity subgroups and key phenotypes that delineate these subgroups using varied clinical and computed
tomography data. Explainable and statistically-validated models are essential because a data-driven iden-
tification of subgroups is an inherently multidisciplinary undertaking. In our case, this procedure yielded
six distinct patient subgroups with respect to mechanism of injury, severity of presentation, anatomy,
psychometric, and functional outcome. This framework for ensemble cluster analysis fully integrates
statistical methods at several stages of analysis to enhance the quality and the explainability of results. This
methodology is applicable to other clinical data sets that exhibit significant heterogeneity as well as other
diverse data science applications in biomedicine and elsewhere.

INDEX TERMS Clustering, ensemble learning, canonical discriminant analysis, multicollinearity, precision
medicine, mixed models, explainable AI, hybrid human-machine systems.

I. INTRODUCTION
Traumatic Brain Injury (TBI) is one of the major causes
of death and disability. It could result in long term effects
of impairments on an individual affecting physical (move-
ment, vision, hearing), emotional (depression, personality
changes), and/or cognitive (memory loss) functions. Annu-
ally, about 3 million TBI-related incidents cause emer-
gency room visits, hospitalizations, or deaths in the United
States [1]. TBI is a heterogeneous neurological disorder in
cause, severity, pathology, and prognosis [2]. It can be caused
by a number of things, including motor vehicle crashes, falls,
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assaults, and trauma. It may be associated with penetrating
injury, focal contusion, different forms of hematoma (sub-
dural, epidural, subarachnoid, intraparenchymal) or diffuse
axonal injury. Some subjects may experience single or repet-
itive concussion (mild TBI) [3]. Sorting out the heterogeneity
present in clinical data, though challenging, has the potential
to reveal insights that could aid clinicians [4]. This study
investigates an effective framework to characterize hetero-
geneous clinical data, specifically TBI, using unsupervised
learning methods guided by domain expert knowledge and
supplemented by statistical analyses to aid in applicability to
prognostic and diagnostic analysis.

Unsupervised learning (clustering) separates an unla-
beled data set into a discrete set of more homogeneous
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subgroups [5], [6]. Cluster analysis has been applied to a
wide range of problems as an exploratory tool to enhance
knowledge discovery. In biomedical applications, unsuper-
vised learning aids disease subtyping i.e. the task of identify-
ing homogeneous patient subgroups that can guide prognosis,
treatment decisions and possibly predict outcomes or recur-
rence risks [7]. In [8], we introduced an ensemble statistical
and clustering model and applied it to an Autism Spectrum
Disorder (ASD) sample using a set of 27 ASD phenotype fea-
tures that spanned varied clinical and behavioral categories.
Similar toASD, TBI heterogeneity also presents amajor chal-
lenge for phenotype categorization. Clinicians need better
tools to assess TBI severity and determine key combinations
of clinical features that delineate TBI subgroups. Currently,
TBI can be classified by Glasgow Coma Scale (GCS) score
according to different levels of clinical severity (severe, mod-
erate, and mild), as well as by cranial computer tomogra-
phy (CT) abnormality [3]. Data-driven decision support holds
exceptional promise to enable development of clinical predic-
tion tools for TBI, as well as other heterogeneous disorders,
based on its ability to identify hidden correlations in complex
data sets. This could elucidate the underlying physiological
mechanisms of injury and recovery, and foster therapeutic
advances.

This work leverages and formalizes the initial model pro-
posed in [8] and [9] on a reliable TBI clinical data set to detect
and characterize novel subtypes, based on discriminant phe-
notypes. We present a data-driven approach that incorporates
not only the GCS score but multiple features extracted from
the data set, including CT measurements and varied clinical
factors, to identify key predictors. We assess the resulting
subtypes using multiple outcome measures to establish clini-
cal relevance. As reviewed in [5], [10], clustering algorithms
vary widely based on data domain and problem scenarios.
In this work, we utilize an ensemble cluster analysis approach
that allows for effective integration of multiple clustering
algorithms.

The TBI sample analyzed is drawn from the Citico-
line Brain Injury Treatment Trial (COBRIT) [11] data
set available from Federal Interagency Traumatic Brain
Injury Research (FITBIR) [12] data repository to approved
researchers. To the best of our knowledge, the only other
previous unsupervised learning task conducted on this data
set is a generalized low-rank model for feature selection
integrated with cluster analysis in [2]. They identified four
clusters with distinct feature profiles that correlated with 90-
day functional and cognitive status. In this work, our overall
aim is to identify homogeneous subgroups that could predict
patterns of patient’s prognosis and recovery outcomes. The
underlying hypothesis is that novel combinations of statis-
tics and machine learning will yield superior techniques for
identifying subtypes of TBI that are amenable to improved
outcomes via more precise interventions. This enhanced
ensemble statistical and clustering model is an efficient and
scalable solution applicable to other disorders that exhibit
significant heterogeneity.

The outline of the paper is as follows. We present the
ensemble learning framework in Section II. The experimental
results obtained are presented in Section III, and a discussion
of its clinical relevance in Section IV. Section V summarizes
the findings of this work.

II. ENSEMBLE LEARNING FRAMEWORK
This section describes our methodology. The overall learning
framework, illustrated in Fig.1, consists of three key phases:
data curation, ensemble clustering, and model interpretation.
Preliminary variants of this model have been introduced in [8]
and [9]. The framework presented here formalizes a princi-
pled integration of the necessary components for a multidis-
ciplinary analysis of complex heterogeneous biomedical data
sets. The ensemble cluster analysis fully integrates statistical
methods at several stages of analysis to enhance the quality
and explainability of results.

A. DATA CURATION
Data quality is a major concern in big data processing and
knowledge management systems. Data curation refers to pre-
processing (cleansing) the data prior to data analysis [5]. This
includes input features extraction, data representation, han-
dling ofmissing data, eliminating redundancy among features
and removing possible outliers.

1) INPUT FEATURES (PHENOTYPES) EXTRACTION
We present a domain expert guided process to determine
relevant input features (phenotypic characteristics) for cluster
analysis. Outcomes of cluster analysis are highly dependent
on the set of input features that are selected, since it is an
exploratory study. In this work, we are interested in clustering
driven by the baseline patient data followed by interpretation
of the clusters based on the recovery outcomes. The COBRIT
study was a phase 3, double-blind, randomized clinical trial
conducted over a span of 4 years to investigate the effects of
citicoline compared to placebo on patients with TBI [11]. The
study sample consisted of 1213 non-penetrating TBI patients
(ages 18-70 years) with diverse severity levels according to
GCS scores (3-15). It includes baseline data on demograph-
ics, injury information, and metabolic, liver and hematologic
functions. Selected vital signs and blood sample data were
repeatedly collected at multiple points during the study. Like-
wise repeated GCS scores and CT scan results were obtained
at baseline and during hospitalization (from days 2 - 7). (Note
that the COBRIT study did not find that active drug resulted in
significant functional or cognitive status improvement [11]).
The features investigated here are baseline measurements
that span demographics, details of injury, CT scan findings,
metabolic, liver and hematologic results obtained from blood
samples, GCS scores, and vital signs (discussed in detail in
Section III-A). Data types of input features could be numeri-
cal, categorical or ordinal. The numerical and ordinal features
are normalized to a [0,1] range while categorical data are
represented as bits of 0 and 1 using one-hot encoding.
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FIGURE 1. Overview of the Explainable and Statistically Validated Ensemble Clustering Model.

2) MISSING DATA STRATEGY
Missing data is a known issue with medical studies and mul-
tiple methods have been proposed to deal with this issue [5].
Almost all the patients had some level of missing information
depending on the feature in question. This work excludes
samples that have missing data for the key features (as
determined by domain experts). This included patients with
any missing CT scans anatomic sites and CT scans volume
category measurement information. We focus on a subset of
these patients with a consistently low percentage of missing
data (≤1%) across the numerical input features considered.
These relatively low missing data values are imputed using
the mean. Although more advanced techniques are available,
these are beyond the scope of this work [13].

3) CORRELATION/COLLINEARITY FILTER
Conducting a robust correlation analysis on the potential set
of input features prior to cluster analysis is very useful. It can
aid in reducing bias due to multicollinearity [14] by filtering
out features with high correlation. The correlation analysis
is completed in two parts. First, pairwise correlations are
assessed between two features at a time. Next, a metric is
utilized that assesses multicollinearity between each feature
and all other features.

Pearson and Spearman rank correlations are well suited for
quantifying levels of correlation present among the pairs of
input numerical features. Pearson measures the strength of
linear correlation; whereas Spearman measures the strength
of a monotonic relationship and is less sensitive to outliers.

Both are calculated for thoroughness. For any pair of features
that exhibit a correlation level of greater than a certain thresh-
old (in absolute value), one is dropped. This process should be
guided by the domain experts to pick an appropriate thresh-
old for the tolerable level of correlation suited for the data
application. (In this work, the allowable correlation threshold
value is set at κ1 ≤0.8).

Generalized variance inflation factors (GVIF) assessmulti-
collinearity between each individual feature and all remaining
features. This is of relevance, since individual pairwise corre-
lationsmay be small, but taken together theymay still account
for much of the information being introduced by the feature
in question [15]. The GVIF is a generalized version of the
Variance Inflation Factor (VIF) that is more appropriate for
analyses in which categorical features are present among the
input features, such as in this work. However, these values are
not directly comparable as the encoding of different variables
implies varying degrees of freedom (df ). To compare these
values across different dimensions, we consider GVIF

1
2 df .

In the case of a continuous scale variable, this is equivalent to
computing the square root of the VIF [16]. As a rule of thumb
in linear models, a VIF above 5 or 10 is usually indicative of
the presence of some or severe multicollinearity, respectively.
This cutoff could however be viewed as very lenient since
such values correspond to a fraction of 80% and 90% of
variance explained by the remaining features [17]. It should
also be noted that, while such degrees of multicollinearity
may be acceptable in the context of a linear model, dif-
ferent cutoff values may be appropriate in the setting of a
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cluster analysis. This work utilizes a cutoff for GVIF
1

2 df

of κ2 ≤3 which would correspond to a VIF of 9. After
identifying problematic features, the condition indices of the
feature matrix are also analyzed. Generally, condition indices
> 30 could indicate a multicollinearity problem [18]. Fea-
tures causing the collinearity problem can be determined by
examining the variate involvement. Usually, features with a
variance-decomposition proportion > 0.5 are highly proba-
ble. The exclusion decision is guided by domain knowledge.

4) OUTLIER DETECTION
An outlier can be defined as an observation which deviates
so much from other observations as to arouse suspicions
that it was generated by a different mechanism [5]. Outliers
are known to significantly bias clustering results, given the
underlying assumption that every data point belongs to a
cluster. This is an inherent challenge when clustering noisy
data such as medical data in which outliers can be the result
of human or data collection error. We apply a visualization
approach using hierarchical agglomerative methods to iden-
tify and remove outliers to enhance robustness of results.

B. ENSEMBLE CLUSTERING
Clustering is a multidimensional optimization problem. For a
single clustering algorithm, multiple results can be obtained
by varying different parameters. It is important to compare
and exploit different algorithms, as they can vary signif-
icantly in performance and outcome. Ensemble clustering
(also known as consensus clustering) is an effective means
to aggregate a collection of dissimilar clusterings to yield
a more robust solution [19], [20]. Multiple clustering
ensemble approaches have been proposed in literature
[19]–[24]. Yoon et al. [21] developed a heterogeneous clus-
tering ensemble scheme that uses a genetic algorithm to
obtain robust clustering results. The ensemble model pro-
posed by Huang et al. [24] utilizes an ensemble-driven cluster
uncertainty estimation and local weighting strategy in con-
trast to their previous work that utilized a factor graph [23].
Zheng et al. [22] proposed a hierarchical ensemble clustering
framework which combines both partitional clustering and
hierarchical clustering results.

Greene et al. [20] investigated the effectiveness of several
ensemble generations and integration techniques using varied
synthetic and medical data. Their study, as well as the other
ensemble approaches discussed, demonstrate that ensemble
clustering provides considerable potential to improve the
ability of the model to identify the underlying structure of
both synthetic and real data in an unsupervised learning
setting. Their results also suggested that diversity among the
ensemble input algorithms is necessary, but not sufficient
to yield an improved solution without the selection of an
appropriate integration method. Hence, to ensure robustness,
four individual algorithms (k-means, spectral, Gaussian mix-
ture and agglomerative clustering with Ward’s linkage) are
utilized in the ensemble clustering model, as well as vigorous

consensus decision metrics to facilitate a principled integra-
tion method.

To provide some context for this work, a brief description
of each algorithm is provided. The k-means algorithm is
perhaps one of the best-known and most popular partition-
based clustering algorithms. It is regarded as a staple of
clustering methods because of its merits and influence on
other clustering approaches. K-means is based on an iterative
optimization procedure to obtain an optimal k-partition of
data by minimizing the sum-of-squared-error criterion [5].
Spectral clustering constructs a similarity graph on the data
and derives the clusters by partitioning the embedding of
the graph Laplacian [25]. The normalized spectral clustering
algorithm [26] is utilized in this work. Agglomerative cluster-
ing is a type of hierarchical clustering based on a bottom-up
approach. It initially assigns each data point to a cluster and
then iteratively merges the clusters based on proximity (or
linkage) measures, until a stopping criterion is attained [5].
Gaussian mixture clustering determines the number of com-
ponents in a mixture and estimates the parameters of each
component in a mixture based on the observations [27].

1) CONSENSUS DECISION METRICS
Consensus decision metrics refers to the process of fusing (or
finishing) the various partitions obtained from the ensemble
clustering scheme. The model utilizes two ensemble finish-
ing methods: Mixture Model (MM) [19] and Graph Closure
(GC) [28]. The MM method obtains the consensus partition
using a maximum likelihood approach. The Expectation-
Maximization algorithm derives maximum-likelihood esti-
mates for model parameters. The k number of desired clusters
is determined a priori. In contrast, GC obtains the consensus
partition by viewing the co-occurrence matrix as a weighted
graph. The graph is binarized based on a user-defined thresh-
old to derive cliques (groups of nodes in a network such
that every node is connected to each other node) [29]. The
cliques are combined in the graph to create unique cluster
formations [30]. These metrics are utilized based on their
known effectiveness in comparison to other metrics, such
as the majority voting method, in obtaining a robust final
consensus partition [31].

2) CLUSTERING VALIDATION MODEL
The cluster analysis yields multiple solutions by varying the
consensus metrics. Validation helps answer the fundamen-
tal question: ‘‘How does one identify the optimal solution
that translates to a ‘‘meaningful’’ configuration for a given
domain application?’’ Cluster validation is the process of
estimating how well a given partitioning (from a clustering
algorithm) aligns with the structure underlying the data [5].
Cluster validation metrics [5], [7] provide an objective mea-
sure to evaluate the quality of the clustering configuration
derived. This is of critical importance when ground truth is
limited. To evaluate the results of cluster analysis in a quan-
titative and objective fashion, we employ seven commonly
used internal clustering validation metrics [32] including the
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TABLE 1. Internal cluster validation metrics.

Silhouette Index (SI), Dunns index, Xie-Beni index (XB),
I index, S_Dbw index, CH index and Davies-Bouldin index
(DB). Each metric (Table 1) views the task of determining the
optimal clustering configuration from a different perspective.
To leverage the strengths of eachmetric, we utilize the ensem-
ble validation model presented in [7] based on aggregated
ranks.

C. MODEL INTERPRETATION
A key component of this framework is model interpretation
which is critical for explainability. Cluster analysis is an
exploratory tool that identifies subgroups (clusters) based on
input features. These results are only meaningful through
appropriate clinical interpretation. It is helpful to characterize
the clustering result based on input features. This can be
done by understanding which sets of features delineate each
cluster. Understanding these differences allows clinicians to
interpret the nature of the clusters. To establish clinical rele-
vance and explainability of results, a set of pertinent outcome
measures, selected by domain experts, should be evaluated
to examine how they differ among the clusters. Results
could indicate if these clusters have any predictive power for
prognosis.

It is important to conduct a thorough statistical analysis to
identify significant differences (if any) among the clusters
for the input features as well as the outcome measures of
interest. The appropriate statistical tests needed depend on
the type of data available and hypothesis tested. Multiple
testing corrections are required to control the false positive
rate across the many tests that are conducted. This frame-
work integrates statistical analysis at every level of the model

interpretation phase to quantify significance between the
clusters and ensure robustness of interpretation.

1) QUALITY ASSESSMENT OF THE CLUSTERING FEATURES
Univariate global statistical tests (omnibus tests) are useful to
assess quality of features (variables) used as input features for
cluster analysis. Univariate analyses determine whether there
are any differences among the clusters for each feature. The
method of analysis differs depending on the measurement
scale of the feature. Significant features from these tests
suggest that they are useful in the clustering.

For continuous variables, a one-way analysis of vari-
ance (ANOVA) is performed to test the null hypothesis for
equality of means across the clusters. The homoskedasticity
assumption for the ANOVA is assessed using a Levene test
with medians (Brown-Forsythe test). A one-way ANOVA
with White adjustment [33] is performed when homoskedas-
ticity is not met. For ordinal variables, a Kruskal-Wallis test
is employed to test for the equality of mean ranks across clus-
ters, and a χ2 test for independence is conducted for nominal
data. Rejecting the null hypothesis indicates the feature dif-
fers significantly among clusters. Table 2 provides a summary
of the tests conducted for the different measurement scales.
The resulting p-values of these tests are corrected for mul-
tiple hypothesis testing using the Holm-adjustment, which
controls the family-wise type I error (false positive) rate.
The Holm method is uniformly more powerful than the well
known Bonferroni-adjustment, which is very conservative
especially in the case of testing many hypotheses [34], [35].
The false discovery rate (FDR) adjustment is also performed,
which controls the expected proportion of false discoveries
rather than directly controlling the family-wise type I error
rate.

2) IDENTIFICATION OF SIGNIFICANT
DISCRIMINANT FEATURES
Although the univariate analysis examines features individ-
ually to determine if they differ across clusters, it does not
consider multivariate relationships between features or indi-
cate which features may be most informative in delineating
the clusters. Two additional approaches are applied to identify
a set of discriminant features for further investigation.

The feature selection approach utilizes three commonly
used feature selection methods (Best First Search, Scatter
Search and Evolutionary Search) [37]–[40] to determine
which features best delineate subgroups. Another method that
is sometimes used is Minimum Redundancy Maximum Rele-
vance (MRMR). It selects features by calculating redundancy
between features and relevance between features and the class
vector. However, it does not consider redundancy and inter-
action between features. The assumption is that the features
are independent from each other [41]. Hence, this method is
not used in this work. The best first algorithm is varied using
the forward, backward and bidirectional parameters. The
most optimal set of discriminant features is selected based
on which one yields the maximum classification accuracy
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TABLE 2. Overview of all statistical tests used in the model framework.

across 3 classification models (Random Forest, Multi-Layer
Perceptron and Support Vector Machine).

In addition, a canonical discriminant analysis (CDA) is uti-
lized to evaluate the discriminative power of multiple linear
combinations of the features and capture interactions [42].
The advantage of CDA over linear discriminant analysis
(which are equivalent under some circumstances) is that it
can be generalized toworkwith categorical data, discriminant
loadings can be easily obtained, and scores are useful for
visualization. Rather than utilizing linear combinations of
features which best explain the sample covariance (or corre-
lation) structure, linear combinations (canonical discriminant
functions) which best discriminate between the classes (clus-
ters) are selected. Similar to principal component analysis,
these correspond to eigenvectors (in this case, the ‘‘quotient’’
SbS−1w of the between group sum of squares and products
matrix Sb and the within group sum of squares and products
matrix Sw instead of the covariance or correlation matrix)
[42]. Up to k − 1 canonical discriminant functions can be
obtained, where k is the number of classes or groups. The
following results are reported for each set of clusters:

1) Squared canonical correlation (SCC). This gives the
proportion of variation explained in the cluster group-
ing variable for each canonical variable (discriminating
function).

2) p-values of the test for redundancy of additional canon-
ical discriminant functions. A rejection implies that
there is significant discriminative power to be gained
in including the respective canonical discriminant
function.

3) Pooled within-group correlations between each vari-
able and the standardized canonical discriminant func-
tions. The closer to +1 or −1, the more important the
variable is in distinguishing the clusters.

4) Plots of the significant canonical variables to visual-
ize their discriminative power. These can be viewed
as dimension reduction of the input features to an

orthonormal space that hierarchically maximizes the
separation of the predefined groups.

The above methods indicate which set or linear combina-
tions of features are useful in classifying an individual into
one of the detected clusters. However, this does not pro-
vide information about which clusters the features separate
between. To obtain these insights, pairwise tests are con-
ducted to identify significant differences between individual
clusters in a defined set of features. These results can help
clinicians interpret the nature of the clusters based on the
input features. The set of investigated features is defined
as the union of the feature selection methods output and
features which had discriminant loadings of a significant
canonical variable exceeding 0.25 in absolute value in CDA.
Since the most promising features are selected for further
analysis, multiple testing corrections are conducted for all of
the obtained p-values for all potentially performed tests (i.e.
for all features that went into the selection process). Both the
Holm and the FDR-adjustments are reported. For the pair-
wise tests, the analyses used are two-sample t-tests, post-hoc
Conover tests (which can handle ties), and individual two-
sided Fisher’s exact tests for features of continuous, ordinal,
and nominal scale, respectively (see Table 2).

3) OUTCOME MEASURES TO QUANTIFY CLUSTERING
CLINICAL RELEVANCE
Clinical interpretation is the process of describing the clinical
characteristics of the cluster. For example, is this a cluster of
‘‘severe’’ cases, a cluster of cases indicative of life threatening
injury or permanent brain dysfunction, etc. Clinical relevance
goes further to address the question ‘‘Do the clusters have
clinically relevant predictive power?’’ For example, do the
‘‘severe’’ cases have a worse outcome or leave the injured
brain more susceptible to future damage or progression?
To address clinical relevance, varied outcome measures that
evaluate functional and cognitive recovery levels are selected
with help from domain experts. Other variables of interest
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determined by domain experts are also selected to quantify
injury severity or unravel underlying data bias. We briefly
describe the measures utilized in this work to determine
clinical relevance of the resulting TBI subgroups, to provide
a context for the statistical analysis.

Recommendations on suitable outcome measures for TBI
studies are listed in [43]. Six of these measures were col-
lected in the COBRIT study including the Glasgow Outcome
Scale-Extended (GOS-E), California Verbal Learning Test-II
(CVLT), Wechsler Adult Intelligence Scale-III Digit Span
(DIGIT), Wechsler Adult Intelligence Scale-III Processing
Speed Index (PSI), Controlled Oral Word Association Test
(COWAT), and the Brief Symptom Inventory 18 (BSI-18)
global severity index. The selected outcome measures are
indicators of recovery from TBI. Importantly, these outcome
measures are not used for cluster creation.

GOS-E is a global outcome assessment of a TBI patient
based on 8 possible categories: dead (1), vegetative state (2),
lower severe disability (3), upper severe disability (4), lower
moderate disability (5), upper moderate disability (6), lower
good recovery (7), and upper good recovery (8) [44]. CVLT
is a detailed assessment of the patient’s verbal learning and
memory deficits. It evaluates the recollection and recognition
of two lists of words over five learning trials. The patient’s
free recall and cued recall are assessed after short-term and
long-term delay [45]. DIGIT is a neurological assessment of
verbal short-term memory, which assists with the evaluation
of a patient’s cognitive status. It evaluates how a patient
can respond to a series of mentioned numbers, recalling and
repeating the numbers in the order they were presented [46].
PSI is a score relevant to a patient’s ability to identify, dis-
criminate, integrate, derive a choice about information, and
to respond to both visual and verbal information. It is broken
down into sub-tests: Coding, Symbol Search, and Cancella-
tion, which evaluates overall visual perception, organization,
attention focus, and memory [47]. COWAT, a supplemental
measure for neuropsychological impairment assessment, is a
verbal fluency test in which patients are required to gener-
ate words from initial letters [48]. BSI-18 is a self-patient
reported scale that reflects a patient’s progress, treatment
outcome, and psychological assessments.

The available GOS-E data were recorded at different time
points ranging from less than 30 days to beyond 180 days
post-injury. For other assessments, data were reported at 30,
90, and 180 days post-injury time points. Data at 30 days were
unavailable for DIGIT and PSI. Two measures are selected to
determine severity of injury by clusters: mortality rate and
number of days spent in intensive care unit (ICU) right after
injury.

4) STATISTICAL ANALYSIS OF OUTCOME MEASURES
Outcome measures are essential to addressing the primary
clinical research objectives which include characterization of
the natural course of recovery from TBI, prediction of late
outcomes, and comparison of outcomes to other studies [44].
To understand clinical relevance of the results, statistical

analyses need to be conducted on the outcome measures to
determine if there exist significant differences among the
clusters at different post-injury time points. Since CVLT,
DIGIT, PSI, COWAT, and BSI-18 are collected at two or three
fixed post-injury time points, pairwise comparisons at each
time point are conducted to determine which clusters differ
significantly on the outcome measure. A mixed model anal-
ysis is performed with a random subject effect to account for
missing data [49] and correlation between data collected on
the same subject at multiple times. Fixed categorical effects
of the model include cluster, time, and the cluster by time
interaction.

The mixed model requires homoskedasticity and normal-
ity. To determine if the homoskedasticity assumption is met,
an ANOVA can be applied on the squared residuals of
the fitted model. A log-transform can be used to improve
homoskedasticity, which is needed for all outcomes in this
work. It should be noted that transformations can lead to
unexpected changes in the actual hypotheses of the tests
performed [36] and ought to be used with caution. In con-
trast to the omnibus and pairwise tests described in Table 2,
an argument of asymptotic normality does not apply to the
mixed model. Thus, normality is ascertained by the use of
QQ-plots to avoid severe deviations. Log-transforms, used to
improve homoskedasticity, also result in improved normality.

GOS-E is also collected at multiple post-injury time points,
but unlike the previously mentioned outcome measures the
time points are not fixed and may vary for different subjects.
The GOS-E is also reported on an ordinal scale, which vio-
lates the necessary assumption of normality. Hence, a cumu-
lative link mixed model (CLMM) is employed to examine
the pairwise differences of the fixed effects at each time
point. The model tests for equality of mean fixed intercepts
across clusters at specified time points while incorporating
the interactions of time and cluster. The model formulas for
both models are given by Outcome ∼ Time ∗ Cluster +
(1|ID), where Outcome is the response, Time and Cluster are
modeled as fixed effects including interactions, and (1|ID)
indicates random intercepts at the individual subject level.

Other outcomes of interest (percentage of patients admitted
to the ICU, days spent in ICU, and mortality rate) are also
investigated by the same pairwise testing procedure described
in Section II-C2 and Table 2.

Holm and FDR multiple testing corrections are performed
in twoways for the outcomemeasures analysis. Simultaneous
testing corrections of the unadjusted pairwise p-values are
applied across all outcomemeasures to control the familywise
false positive rate (Holm) or expected proportion of false
discoveries (FDR) across all outcome measures. Since these
adjusted p-values will depend on the number of outcome
measures tested, corrections are also applied and reported
for pairwise comparisons within each outcome measure. This
allows for comparisons with future studies even if only a
subset of outcome measures is chosen to study independently
of the work presented here. The goal of these analyses is
to provide domain experts with the information needed to
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derive the clinical interpretation of the clustering results. It is
important to note that the nature of this work is exploratory
and aimed at showing the potential for clustering to iden-
tify clinically relevant subgroups of patients. In this context,
the FDR adjustment is more meaningful since it allows for
false discoveries (type I errors) but controls their proportion
to true discoveries. This can increase power (lower type II
error) at the expense of allowing some type I errors to occur.
Regarding a confirmatory interpretation, the Holm adjust-
ment is more suited as it controls the probability of any type I
error occurring. We also suggest additional studies before
potential clinical use.

III. RESULTS
A. DATA CURATION AND EXPERIMENT SETUP
In this work, a set of 35 features is initially considered,
based on the attributes available from the COBRIT study
and domain expert guidance (D.H and B.H). These baseline
measurements include demographics, injury information, CT
scans, metabolic, liver and hematologic functions obtained
from blood samples, GCS scores, and vital signs. Themissing
data exclusion criteria (see Section II-A) reduced the study
sample to 859 patients. Ten of these features (see Table 3:
F2, F14, F15, F20, F21, F23, F24, F25, F27, F29) have some
missing data (≤ 0.1%) which are imputed using the mean
values across all patients. The following features are excluded
from further analysis based on the correlation/collinearity
analysis: CT epidural lesion anatomic site, CT subdural lesion
anatomic site and CT intraparenchymal lesion anatomic site.
As a result of high correlation between the lowest prothrom-
bin time and highest prothrombin time, only lowest prothrom-
bin time is retained. CT lesion high mixed density feature is
dropped as it displayed no variation among the patient sample
considered. Three patients are identified as outliers and are
excluded. The list of 30 features on the sample of 856 patients
used for subsequent cluster analysis are described in Table 3.

The ensemble cluster analysis is implemented using Open
Ensembles Python library [28]. Three different combinations
of algorithms for the ensemble cluster model are imple-
mented. The first model (E1) is a combination of k-means,
spectral, and agglomerative algorithms. The second model
(E2) combines k-means, spectral, agglomerative, and Gaus-
sian mixture while the third model (E3) aggregates spectral,
agglomerative, and Gaussian mixture algorithms. For each
algorithm, the number of clusters k is varied from 2 to
10, with 20 iterations per k , using each algorithm’s default
hyper-parameters. Applying both mixture model (MM) and
graph closure (GC) consensus decision metrics on all the
outcomes results in 33 different clustering outputs across
the three ensemble models. The clustering outputs with
very small cluster sizes (n<5) are discarded. The follow-
ing output naming scheme is adopted:<model#><finishing
method> k <#clusters>. For example, a 5-cluster solution
from graph closure using E1 ensemble model is denoted by
E1:GC:k5 while a 5-cluster solution from mixture model

TABLE 3. Description of input features and evaluation of significance by
clustering output (k6 vs. k5).

using E2 model is denoted by E2:MM:k5. Each ensem-
ble model experiment is implemented once. Within each
run, the base algorithms (k-means, Gaussian mixture, spec-
tral, agglomerative), prior to obtaining the overall partition,
are repeated multiple times by varying multiple parameters
(number of clusters for single base algorithms, number of
clusters for mixture model consensus function, threshold val-
ues for graph closure consensus function). For simulation
comparisons, to assess the effectiveness of the ensemble clus-
tering approach, we also conducted clustering using each base
algorithm as a stand alone run.

The outcomes of the cluster quality evaluation using the
ensemble cluster validationmodel is presented in Table 4. The
Table illustrates the most optimal clustering results for each
of the three ensemble models as well as the top three optimal
results across the base clustering algorithms. The adjusted
rank scores for the ensemble validation model are obtained
using r=5. Interestingly, the E3 and E2 models both produced
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TABLE 4. Cluster validation model ranking outcome.

the same set of 6 clusters that are the highest ranked for each:
(E3:GC:k6 and E2:GC:k6). Thus, this result and the highest
ranked E1 result (E1:GC:k5) are selected for further analysis.
They are denoted by k6 and k5 respectively, in the remainder
of this paper. A comparative visualization inspection of both
results are illustrated in Fig. 2 using Isometric Feature Map-
ping (ISOMAP) algorithm [5].

We can also observe fromTable 4 that the top 3 results from
the individual clustering algorithms are also 6-cluster results:
G:MM:k6, G:GC:k6 and K:GC:k6. These three results varied
slightly in cluster assignment of the samples, but are com-
parable to the 6-cluster result obtained from the ensemble
model. The ISOMAP visualization from the base clustering
algorithm runs are illustrated in the supplementary materials
(Fig. S.1). However, the overall validation ranking is lower
compared to the ensemble model’s outcome. These com-
parisons provides further evidence in favor of the ensemble
clustering approach’s ability to yield a more robust clustering
outcome. Subsequent analyses are conducted on the top two
ensemble model results.

B. OUTCOME OF MODEL INTERPRETATION PHASE
1) QUALITY ASSESSMENT OF INPUT FEATURES AND
IDENTIFICATION OF SIGNIFICANT DISCRIMINANT FEATURES
Results from the global univariate statistical analysis are
shown in Table 3. A majority of input features are identified
as significant with both Holm and FDR approaches for both
k5 and k6 clustering results. This validates the quality of
the input features used. However, these results do not aid in
identifying which features are most informative in the clus-
tering, and the significance values do not take into account
the interactions among the features.

The discriminant features identified using feature selection
methods are shown in Table 3 for both k5 and k6 clustering
results. The feature selection methods inform which features
are most useful in explaining the resulting clusters. The fea-
tures identified as discriminant had to have been selected
by at least two of the feature selection methods (Best First
Search, Scatter Search and Evolutionary Search). (A 10-fold
cross-validation is applied for the classification models uti-
lized to generate the results.) Out of the 30 input features,
11 are selected as discriminant for the k5 result, and 12 for

FIGURE 2. ISOMAP visualization of top two clustering outputs from the
ensemble clustering model.

the k6 result, with 10 of these common between both. Intra-
parenchymal lesion volume, highest white blood cell count
are discriminant only for the k6 result while the lowest pro-
thrombin time INR is discriminant only for the k5 result.
All discriminant features are also significant in the univariate
analysis (either Holm or FDR or both) for both the k5 and
k6 results.

The CDA results are presented in Table 5. For each clus-
tering result, there are k-1 canonical variables. Features with
discriminant loadings exceeding 0.25 in absolute value in
CDA are listed for each canonical variable. In both the k5 and
k6 cluster results, the first three canonical variables provide
significant discriminatory power (p-value<0.05) while the
remaining are not significant. The canonical plots (Fig. 3(a)
and 3(b)), are generated using the first three canonical vari-
ables. The plots demonstrate that these variables almost
perfectly explain the separation between the clusters. Only
features on the first first three (significant) canonical vari-
ables with discriminant loadings exceeding 0.25 in absolute
value are identified as being important in delineating the clus-
ters and are further analyzed. There is a large overlap among
features identified as important in distinguishing clusters in
the CDA and those identified in the discriminant feature
selection for both clustering outputs (Table 3), indicating an
agreement between both methods.

Both the k5 and k6 clustering results exhibit similarity in
terms of important features and visual inspections. We con-
ferred with domain experts to determine which result seemed
most meaningful to utilize for further analysis. The k6 result
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FIGURE 3. Canonical plots of top two clustering outputs from the
ensemble clustering model.

TABLE 5. Canonical Discriminant Analysis (CDA) results for top two
optimal clustering outputs.

is chosen based on an examination of pairwise differences
in feature means between clusters for identified discriminant
features (Fig. 4). These pairwise results are a union of input
features identified from CDA and feature selection methods
that demonstrated significance using the multiple testing cri-
terion (Holm & FDR). Each sub-figure presents the results
for two features, with the mean and standard deviation for
each cluster provided below each feature name for numerical
variables. For non-numerical variables (Fig. 4h), the per-
centage distribution per cluster is given for intraventricular
hemorrhage presence and the highest level of subarachnoid
hemorrhage severity (convexities/sulci and cisterns present).
For mechanism of injury (Fig. 4i), only one mechanism is
present in each cluster except C2 and this mechanism is
reported in the Figure. For C2, three mechanisms are present
(vehicle assault, sports, and non-assault object strike) and

none of these are present in the other clusters. The mech-
anism with the highest frequency (vehicle assault) in C2 is
reported in the Figure. Results in the lower left triangle give
the pairwise significance for the feature on the left side of
the sub-figure; whereas the upper right triangle gives the
results for the feature on the right side. The grayed out
cells containing an asterisk separate these two sets of results.
Brown denotes a statistically significant difference between
two clusters by both FDR and Holm. Tan denotes signifi-
cance by FDR only. Note that there are some features that
are deemed discriminant according to CDA and the feature
selection methods (intraparenchymal lesion volume (both),
subdural lesion volume (both), hydrocephalus present (CDA
only)), however they are not listed in Fig. 4 since they failed
the multiple testing significance criterion. Likewise there are
some features that are not selected based on the discriminant
features analysis but exhibited some pairwise significance
based on multiple testing using FDR (platelet count, systolic
BP, prothrombin time INR, and mesencephalic cisterns type).

2) STATISTICAL ANALYSIS OF OUTCOME MEASURES
Table 6 shows the results for four TBI outcome assessments
(BSI-18, CVLT total adjusted score, DIGIT, and PSI) that
demonstrated pairwise significance between clusters in the
mixed model for at least one time point. The mean and stan-
dard deviation are reported along with the percentage of miss-
ing data at each time point. For all assessment scores, higher
values indicate better outcomes. Multiple testing adjustments
are done both within a single outcome (Holm P) and across
the entire span of 8 outcome measures considered (HolmMT
and FDRMT). Only time points with a statistically significant
difference for at least one of these methods are reported. Note
that the trajectory of COWAT (see Supplementary Materials)
did not display a significance difference for any time point.

The recovery trajectory plot of GOS-E across clusters is
illustrated in Fig. 5. The time points are binned since there
was high variability in the different time points at which the
GOS-E scores were obtained from the patients. Thus, time
is modeled as a categorical, rather than continuous, vari-
able. Table 7 gives the pairwise results for mean differences
between clusters at each of the GOS-E binned time points
from the CLMM model. At least one pairwise difference is
significant at each time point with the exploratory FDR MT
adjustment, although most of these are not confirmed using
the Holm MT adjustment. Further studies may prove insight-
ful. Additional outcomes of interest, that quantify severity
of injuries, are reported in Table 8. Since the data available
on days spent in ICU exhibit strong skewness, the median
is reported as a measure of location, and the 25% and 50%
quantiles, as an indication of spread.

IV. DISCUSSION OF CLINICAL RELEVANCE
Patients that suffer from TBI are a heterogeneous popula-
tion that exhibit diverse pathologies, prognoses, and recovery
trajectories. Sorting out this heterogeneity is challenging.
However, a verifiable and explainable model has the
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FIGURE 4. Overview of clusters based on union of input features from canonical discriminant analysis and feature selection methods that exhibited
significance using the multiple testing criterion (Holm & False discovery rate: FDR). Brown denotes significance by both FDR and Holm. Tan denotes
significance by FDR only. For features on the left side of a box refer to the lower left triangle and for features on the right side of a box, similarly, refer to
the upper right triangle of the matrix. The two are separated by the grayed out cells containing asterisk (∗). For numerical variables, mean±standard
deviation is reported. For the non-numerical variables, 1 indicates percentage distribution per cluster for the highest level of severity (convexities/sulci
and cisterns present for subarachnoid hemorrhage). 2 indicates the highest frequency of mechanism of injury modality for each cluster.

TABLE 6. Mean and Standard Deviation of Outcome Assessment Measures per Subgroup.

potential to reveal insights that could aid clinicians. This work
investigates such a model that identifies phenotype features
which delineate patients into more homogeneous subgroups,
and characterizes these groups in terms of severity of injury
and recovery.

The data utilized in this study were obtained from the
COBRIT data of 1213 TBI subjects accumulated over a
4-year period. Data curation (including elimination of outliers
and subjects with excessive missing data) yielded 856 usable

subjects for ensemble clustering. Thirty features (Table 3)
were used for the cluster analysis. We combined four differ-
ent clustering algorithms (agglomerative, Gaussian mixture,
spectral, and k-means) into three different ensembles (E1, E2,
and E3) and two different consensus models (GC and MM).
A key component of our framework is intentional assess-
ment of clustering quality and statistical validation at every
phase. To assess the clustering quality and ensure that the
optimal solution is selected, we employ an ensemble cluster
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TABLE 7. Recovery trajectory of Glasgow Outcome Scale-Extended (GOS-E) distribution per cluster from less than 30 days to 6 months post-injury.

FIGURE 5. Mean trajectory of Glasgow Outcome Scale-Extended scores
across clusters.The asterisk (∗) markers indicate the time points where
there is at least one significant pairwise difference (adjusted with Holm
for pairwise testing, not for multiple testing across other outcomes) in the
GOS-E output between the clusters. For further information refer to
Table 7.

validation paradigm [7]. As discussed in [7], limiting the
selection of the optimal clustering solution to one prior to
domain experts’ guidance might be misleading. These mea-
sures of cluster quality are agnostic as to whether the derived
clusters are clinically ‘‘meaningful’’, that is, do these clusters
assist physicians in thinking about a heterogeneous disorder
like TBI in a more insightful way? Hence, we presented the
top two clustering solutions (k6 and k5 results), as indicated
by the cluster assessment phase (Table 4), to the domain
experts for inspection based on visualization (Fig. 2, Fig. 3)
and descriptive means (or mode for ordinal and categorical
variables). The selection of the k6 result as the optimal result
is based on a qualitative evaluation and comparison. Visual
inspection of the clusters indicates excellent cluster separa-
tion with both k5 and k6 clustering solutions.

The clinical severity presentation, functional and cognitive
outcomes of the resulting six clusters differ on multiple fronts
(see Fig. 4). It is useful to examine the features selected for
the CDA equations (Table 5) as most important in delineating

TABLE 8. Severity view of clusters based on number of days in intensive
care unit (ICU) (Median [25% Quantile, 75% Quantile]), and mortality
information.

the clusters for the k6 clustering result. These discriminating
features can be grouped as disease mechanism (mechanism
of injury), demographic features (age and weight), features
that reflect brain injury on CT scan (hydrocephalus, epidu-
ral blood volume, subdural blood volume, intraventricular
hemorrhage (IVH)), and features that reflect patient criti-
cality (heart rate (highest and lowest), highest body tem-
perature, highest white blood cell count (WBC), hematocrit
(highest and lowest), glucose (highest and lowest), lowest
hemoglobin count). It is interesting to observe that the feature
selection method approach (Table 3) also strongly aligned
with the CDA results. It identifies additional features beyond
the CDA: total GCS score as well as additional CT scan
features (subarachnoid hemorrhage (SAH) type, intra-
parenchymal lesion volume), and other features that reflect
patient criticality (hours between injury and CT scan, highest
sodium). This suggests the usefulness of combining both
approaches to determine the set of discriminant features.
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Examination of Fig. 4, Fig. 5, and Table 7 suggest that
the six derived clusters do differ from each other in clinically
meaningful ways. The resulting clusters suggest that mecha-
nism of injury plays a key role in predicting both initial sever-
ity and long-term outcome. C1 consists of patients injured as
a result of occupant motor vehicle accident (MVA), either a
driver or passenger in a motor vehicle. C2 is a heterogeneous
mechanism of injury group whose injury resulted either from
pedestrian MVA, sports or being struck on head by an object
but not assault. Pedestrian MVAmechanism is the most com-
mon in C2 (70% of the group). The C3 patients were injured
due to a fall from a moving object such as bike, skateboard
or horse while C4 patients, as a result of being an occupant
(passenger/driver) in amotorcycle or all terrain vehicle or golf
cart accident. For C5 cluster, the injuries were triggered by a
fall from a stationary object (such as roof/ladder) while for
C6 cluster, by any means of assault.

In terms of modal (most common) mechanism of injury
clusters C1, C2, C4 involve motor vehicles or motorcycles,
clusters C3 and C5 involve falls, and cluster C6 involves
assaults. C1 patients have the highest group mean values for
WBC counts and lowest hematocrits and hemoglobin counts,
which could be indicative of a high level of trauma and blood
loss associated with the injury. This is also aligned with
having lowest initial total GCS score (group mean: 8.5) and
shortest time in between injury and scan. Usually, patients
with a greater degree of severity of injury tend to get to the
CT scans quickest. However, this cluster appears to have a
significantly better recovery outcome over time, as quantified
by the GOS-E trajectory compared to the oldest cluster (C5).
Though C5 has a relatively high initial total GCS score (group
mean: 11.2) and lowest WBC count, they appear to make
the slowest recovery over time, as evident by their GOS-E
trajectory. In terms of demographics, C1 cluster consist of the
youngest age group while C5 cluster is relatively the oldest
compared to all others. This appears to substantiate the cluster
analysis as this aligns with the widely accepted notion that
younger age results in better TBI outcomes, even for higher
levels of severity.

The cluster results seem to suggest that controlled blood
sugar levels (as indicated by relatively low glucose levels)
could be associated with better recovery outcome. C5 cluster
have themost elevated blood sugar levels compared to the rest
of the clusters. Though its initial GCS score (group mean:
11.2) and GOS-E at less than 30 days (group mean: 4.3)
align closely with C3 (group means: GCS - 11.4, GOSE-E
- 4.5), it lags in recovery compared to C3 (see Fig. 5 and
Table 7). C3 and C5 differ significantly in their glucose levels
(highest and lowest). The findings seem to suggest that poorly
controlled glucose levels might blunt or delay recovery from
brain injury. Clinically, elevated blood sugar levels are not
good for the brain, as it increases the intracranial pressure.
C3 cluster’s faster paced recovery compared to C5 might be
associated with the lower glucose levels.

Presence of IVH is indicative of severity of bleeding inside
the brain. C1 cluster has the highest percentage (23.1%),

FIGURE 6. Distribution of education level and gender across clusters. The
blue (top) line denotes the percentage of male per cluster while the
yellow (bottom) line denotes likewise for female.

providing further evidence of the initial severity of injury
of this subgroup while C6 has the lowest percentage (2.2%)
indicating minimal trauma, as also verified by its highest
initial GCS score (group mean: 11.7). SAH type quantifies
the distribution of bleeding in the space surrounding the
brain. SAH present in convexities/sulci and cisterns implies
the most critical region. C5 (highest percentage of most
severe type - 23.3%) differs significantly from C1 (17.9%)
and C3 (12.39%) clusters. The findings also indicate that
mesencephalic cisterns type and midline shift, which both
quantify cerebral compression, do not play a significant
role in delineating the clusters. This could be due to how
these features are encoded in the cluster analysis. Mid-
line shift (ms) is represented on an ordinal scale: none,
0 <ms≤5mm, 5 <ms≤10mm, ms>10mm. About 2.7%
of the entire patient sample fell into the ‘>10mm’ severity
group. Likewise, mesencephalic cisterns type is also encoded
as ordinal: normal (0), ‘blood in cisterns but no compression’
(1), ‘effaced/compressed but visible’ (2), ‘obliterated/absent’
(4). The obliterated/absent (most severe) group are about
6.8% of the overall sample size. The C1 cluster does contain
the highest percentage of the most severe cases (8%) while
C2 and C3 clusters both have the lowest percentage (4%).
Future analysis using a binary encoding for these variables
might result in a more meaningful assessment of their effect.

Regarding the highest sodium level and body temperature,
the statistical testings suggests that there is some significance
in the group means and distribution among the clusters. How-
ever, the domain experts viewed these differences as not clin-
ically meaningful, as the values are within a uniform range.
It might have been more useful to quantify these features
using bins based on ranges rather than actual numerical values
to reduce the system’s sensitivity to small ranges of differ-
ence. Although standard statistical methods (Fig. 4, Table 6
and Table 7) have been employed to assist in the interpretation
of the cluster ‘‘meaning’’, it is important to note that not all of
the features that demonstrate statistical significance between
clusters may provide clinically useful information since the
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mean differences are very small. This is a recognized limi-
tation of statistical significance, as determined by p-values,
in that it does not measure the size of an effect and may not
always translate to practically significant results [50], as in
the case of the sodium and body temperature values.

Table 6 illustrates the outcome of the clusters as quan-
tified by their performance on the cognitive and functional
assessments at multiple time points. Given that education
level could impact performance of patients on these type of
assessment tests, we also examined the clusters in terms of
education levels (Fig. 6) and other demographics that are
not necessarily outcome measures. This includes gender and
distribution of study treatment category (placebo vs. citi-
coline drug), since the sample is drawn from a drug trial
study. Multiple testing corrections are done across all three
variables. None of these demographics exhibited a signifi-
cance difference across the clusters except for gender (Fig. 6).
Nonetheless, educational level did vary across clusters. Inter-
estingly clusters C2, C3, and C5 had more advanced educa-
tion. Cluster 3 is somewhat different than the others in that
it is characterized by higher educational level (Fig. 6), better
outcome on the GOS-E (Table 7), and better scores on the PSI
and CVLT-II (Table 6). Educational level has been frequently
linked to better health outcomes in a variety of diseases [51].
The C5 cluster is the oldest group, age-wise. Thus, the more
advanced education might be more reflective of the age of the
population.

Revisiting Fig. 3(a), it is of interest to look at canonical
variable 1 which combines F4 (mechanism of injury) and
F29 (lowest hemoglobin). Lowest hemoglobin is indicative
of overall blood loss during an injury which could suggest
higher trauma. Along the x-axis of Fig. 3(a), the clusters
sort out from left to right as C6-C3-C5-C2-C4-C1-C2 with
C2 appearing twice along the axis. This ordering is of interest
because C6 and C3 to the far left have the best outcomes
on the GOS-E (Table 7) and have the lowest death rate and
shortest median ICU stay times (Table 8). On the other hand,
clusters C4 and C1 to the right hand side of x-axis of Fig. 3(a)
have longer ICU median stays and high death rates (Table 8).
If we consider the x-axis of Fig. 3(a) as representing patient
‘‘criticality’’ from lower to higher, than the bifurcation of
cluster 2 may be interpreted as reflecting more heterogene-
ity in this cluster with some patients more ‘‘critically’’ ill
and others less so. More importantly, ensemble clustering
of this heterogeneous data set of TBI subjects allows the
development of hypotheses as to how different subtypes of
patients may differ in injury mechanism, severity, and out-
come. Again, though the C1 cluster has a very high initial
severity of presentation, they rebound the fastest, compared
to C2, C4 and C5.

Primary limitations of this study are the relatively low
number of features utilized as well as inconsistent patterns
in unreported data for varied outcome measures used for
assessing recovery progress of the patients. The clustering
solution is a reflection of the selected features. If different
features, such as biomarker levels [52] or neurological signs

or symptoms, had been utilized, clustering solutions that dif-
fer both in size and composition would likely result. This is a
key trait of unsupervised machine learning. Cluster quality is
assessed bymetrics (Table 1) that did not require ground truth
labels for the subjects. Such measures are necessary when
insufficient ground truth is available. Although these metrics
are widely accepted to measure cluster quality, interpretation
of cluster ‘‘meaning’’ remains part art and part science. The
primary strength of this study is the participation of an inter-
disciplinary team of computational scientists, statisticians,
a neurosurgeon, and a neuroscientist to ensure a robust statis-
tical and clinical approach that confirmed validity of cluster
methodology.

V. CONCLUSION
This paper presents an effective, validated, explainable
framework, enabling the combination of automated data
analytics with human domain expert knowledge. In this
application, it was used to characterize TBI phenotype data
for applicability to prognostic and diagnostic analysis. The
results yielded six distinct patient subgroups with respect
to mechanism of injury, severity of presentation, anatomy,
psychometric, and functional outcomes. The findings sug-
gest that younger age and controlled blood sugar levels may
contribute to more favorable and quicker recovery trajectory
regardless of a very severe initial presentation of injury. This
enhanced ensemble statistical and clustering model is appli-
cable to other disorders that exhibit significant heterogeneity.
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