
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Computer Science Faculty Research & Creative 
Works Computer Science 

01 Jan 2021 

Visualization as a Service for Scientific Data Visualization as a Service for Scientific Data 

David Pugmire 

James Kress 

Jieyang Chen 

Hank Childs 

et. al. For a complete list of authors, see https://scholarsmine.mst.edu/comsci_facwork/1106 

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
D. Pugmire and J. Kress and J. Chen and H. Childs and J. Choi and D. Ganyushin and B. Geveci and M. 
Kim and S. Klasky and X. Liang and For full list of authors, see publisher's website., "Visualization as a 
Service for Scientific Data," Communications in Computer and Information Science, vol. 1315 CCIS, pp. 
157-174, Springer Verlag, Jan 2021. 
The definitive version is available at https://doi.org/10.1007/978-3-030-63393-6_11 

This work is licensed under a Creative Commons Attribution 4.0 License. 

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been 
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of 
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for 
redistribution requires the permission of the copyright holder. For more information, please contact 
scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork/1106
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/978-3-030-63393-6_11
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:scholarsmine@mst.edu


Visualization as a Service
for Scientific Data

David Pugmire1(B), James Kress1, Jieyang Chen1, Hank Childs3, Jong Choi1,
Dmitry Ganyushin1, Berk Geveci2, Mark Kim1, Scott Klasky1, Xin Liang1,
Jeremy Logan1, Nicole Marsaglia3, Kshitij Mehta1, Norbert Podhorszki1,

Caitlin Ross2, Eric Suchyta1, Nick Thompson1, Steven Walton3, Lipeng Wan1,
and Matthew Wolf1

1 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
pugmire@ornl.gov

2 Kitware, Inc., Clifton Park, NY, USA
3 University of Oregon, Eugene, OR 97403, USA

Abstract. One of the primary challenges facing scientists is extracting
understanding from the large amounts of data produced by simulations,
experiments, and observational facilities. The use of data across the entire
lifetime ranging from real-time to post-hoc analysis is complex and var-
ied, typically requiring a collaborative effort across multiple teams of
scientists. Over time, three sets of tools have emerged: one set for analy-
sis, another for visualization, and a final set for orchestrating the tasks.
This trifurcated tool set often results in the manual assembly of analy-
sis and visualization workflows, which are one-off solutions that are often
fragile and difficult to generalize. To address these challenges, we propose
a serviced-based paradigm and a set of abstractions to guide its design.
These abstractions allow for the creation of services that can access and
interpret data, and enable interoperability for intelligent scheduling of
workflow systems. This work results from a codesign process over analy-
sis, visualization, and workflow tools to provide the flexibility required for
production use. Finally, this paper describes a forward-looking research
and development plan that centers on the concept of visualization and
analysis technology as reusable services, and also describes several real-
world use cases that implement these concepts.

Keywords: Scientific visualization · High-performance computing ·
In situ analysis · Visualization

D. Pugmire et al.—Contributed Equally.
This manuscript has been co-authored by UT-Battelle, LLC, under contract DE-AC05-
00OR22725 with the US Department of Energy (DOE). The US government retains
and the publisher, by accepting the article for publication, acknowledges that the US
government retains a nonexclusive, paid-up, irrevocable, worldwide license to pub-
lish or reproduce the published form of this manuscript, or allow others to do so, for
US government purposes. DOE will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access Plan (http://energy.
gov/downloads/doe-public-access-plan).

This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2020
J. Nichols et al. (Eds.): SMC 2020, CCIS 1315, pp. 157–174, 2020.
https://doi.org/10.1007/978-3-030-63393-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63393-6_11&domain=pdf
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
https://doi.org/10.1007/978-3-030-63393-6_11


158 D. Pugmire et al.

1 Introduction

Gaining insight from large scientific data sets, while challenging, has tradition-
ally been tractable because the process has generally been well understood. This
tractability is the result of three key properties: low barrier to entry, collabo-
ration, and standardization. These traditional approaches had a low barrier to
entry as the data was written to permanent storage in a standardized way and
could easily be shared with others. This in turn enabled rich collaboration among
domain, computational and visualization scientists. Once data is stored on disk,
each stakeholder can access the data at their convenience, and do so with ded-
icated visualization and analysis software, custom scripts, etc., which are easily
shared. Exploration of data often takes place using GUI-based tools that are well
supported and easy to learn. Further, the standardization is helpful on a variety
of fronts, not only in how data is stored and represented, but also in how data is
accessed and processed. The benefit of standardization is in code reuse, enabling
the efforts of a community of software developers to increase their impact. This
is particularly needed for visualization and analysis software, since such software
often contains a large number of algorithms and data format readers.

The three beneficial properties of low barrier to entry, collaboration, and stan-
dardization are rapidly becoming infeasible because of two important trends in
high-performance computing: Big Data and hardware complexity. With respect
to Big Data, scientific data has been dramatically affected by the three V’s—
volume, velocity, and variety. With respect to hardware complexity, modern
computers increasingly have heterogeneous hardware, deep memory hierarchies,
and increased costs for data movement and access. As a result of the volume and
velocity components of the Big Data trend, along with the increased costs of data
movement and access, saving all data to disk is no longer possible. Instead, data
will need to be visualized and analyzed while it is being generated, i.e., in situ
processing. But in situ processing presents challenges to the three beneficial prop-
erties. In particular, standardization is more difficult since data is being delivered
in a variety of ways and locations. Rather than files in known file formats stored
to permanent storage, data may come from a computational simulation over a
socket, from a remote experimental resource, or it may be located in the mem-
ory of a GPU accelerator, just to name a few. Further, the barrier to entry is
often substantially higher, requiring highly-experienced, “ninja” programmers
to incorporate visualization and analysis algorithms. This limits collaboration,
since it is difficult to get visualization and analysis routines applied, leaving the
task to only those that can wrangle complex software.

Scientific campaigns have dealt with these challenges by moving toward auto-
mated workflows to control the complexities with running simulations. These
systems are enabled by middleware systems that provide efficient layers between
applications and systems, and by emerging workflow systems that orchestrate
executables and the movement of data. That said, visualization and analysis has
struggled to adapt to this workflow approach. Despite recent support for in situ
processing and heterogeneous architectures, the fundamental “glue” is lacking
for bringing together the disparate tools and libraries for a scientific software



Visualization as a Service for Scientific Data 159

campaign. Best efforts often are targeted out of necessity at a narrow range of
use cases and are often brittle and difficult to reuse at a later date or generalize
for usage in other situations. These problems make the practical and widespread
use of these tools difficult, further leading to fragmented approaches as every
scientific team creates its own customized approach. Finally, while the results to
date have been lacking, they have also taken great expertise to achieve. Funda-
mentally, we feel that this mismatch—great expertise to achieve poor results—
indicates a failure in the underlying approach.

In this paper, we advocate for a new model for visualization and analysis of
scientific data to address these challenges that is based on following the “aaS”
paradigm—as a service. This model is focused on identifying abstractions for
points of interaction between visualization, middleware, and workflow systems.
The abstractions provide clear interfaces between these three sub-components
in a scientific campaign and makes it easier for them to work together. These
abstractions will make it much easier to move visualization computation to the
data, which is a reversal from the previous model, in which it was easier to move
the data. This in turn restores the possibility of low barrier to entry, collabora-
tion, and standardization, by making visualization workflows more user-friendly
and intuitive and enabling them to become more schedulable, lightweight, and
pervasive. Overall, we feel the entire ecosystem will be more cost effective,
portable, efficient, and intuitive—a return to the benefits our community has
traditionally enjoyed.

An important benefit of an aaS approach is that it enables each participant
to focus on their own area of expertise. For application scientists, visualization
should be about declarative intentions. For example, isocontours of primary vari-
ables are needed in near-real-time (NRT) to track the progress of a simulation,
and high-quality renderings of vorticity magnitude and particle traces around
regions of interest are needed after the campaign is completed. Visualization
experts should focus on algorithms that provide the necessary functionality, per-
form well on computing platforms, and operate on a variety of data types. Mid-
dleware experts should focus on providing efficient I/O and data movement capa-
bilities between data producers and data consumers. Workflow experts should
focus on taking scientific intentions and orchestrating the movement of data
from producers among all the data consumers to provide the desired results. By
providing clear interfaces (i.e., abstractions) between these pieces, it is possible
to rethink how analysis and visualization at scale are performed.

The remainder of this paper is organized around the discussion of a set of
abstractions (Fig. 3) we have identified that enable Visualization As A Service
(VAAS). These abstractions are targeted at addressing the barriers to extracting
insight from large scientific data by providing a service based paradigm, and pro-
vide a road map for research and development that can take full advantage of the
immense power of modern computing systems. At the same time, these abstrac-
tions lower the barriers to entry for users giving them the flexibility to build and
connect services together in arbitrary ways. In Sect. 2 we provide two motivating
examples that helped guide our thinking in the identification of these abstrac-
tions, and Sect. 3 discusses related work and complementary efforts towards these



160 D. Pugmire et al.

goals. Section 4 describes the two tiers of abstractions in detail. The base tier
of abstractions provides the foundation necessary for creating visualization ser-
vices. These abstractions include data access, data interpretation, and ser-
vice composition/workflow abstractions. Together, these three abstractions
allow for the creation of basic visualization services since there is a way to access
the data, a way to interpret the data, and a workflow system that understands
how to schedule the visualization services in conjunction with the simulation
or experiment. The second tier of abstractions is built on top of the base tier
and is concerned with making visualization services more powerful, easier to use
and schedule, and more intelligent. Specifically, we identify portable perfor-
mance, performance modeling, and declarative invocation as this higher
tier. Section 5 discusses how our prior research and experience with application
engagements have guided our thinking and the development of these abstrac-
tions. We show how these abstractions have proven useful and describe their
impact on scientific applications. Finally, Sect. 6 concludes with a discussion on
how further research and development in these abstractions can improve the
process of analysis and visualization in scientific campaigns.

2 Motivating Workflows

Creating and successfully executing large, complex workflows is a challenging
task. These workflows must be extensively vetted before execution to ensure that
the necessary results can be captured in a timely manner that efficiently uses
computing and/or experimental facilities. This vetting process often requires
substantial time from teams of experts, including application scientists, com-
puter scientists, mathematicians, and data analysts. The efforts of these individ-
uals create unique and complicated workflows with a myriad of different analysis
and visualization needs [23]. This section describes two different recent visual-
ization and analysis workflows with which our group has been involved and
highlights the interesting aspects and complexities of both efforts. The first use
case involves work with a simulation, and the second is with an experiment.

2.1 Fusion Simulation Workflow

The simulation use case comes from the high-fidelity whole device modeling
(WDM) of magnetically confined fusion plasmas. WDM is among the most com-
putationally demanding and scientifically challenging simulation projects that
exists within the US Department of Energy (DOE). The 10 year goal of WDM
is to have a complete and comprehensive application that will include all the
important physics components required to simulate a full toroidal discharge in
a tokamak fusion reactor.

This workflow primarily comprises two different fusion codes, XGC and
GENE, which must be coupled together. Coupling these codes enables the sim-
ulation to advance further in a shorter amount of time while retaining more
accuracy than either code can achieve on its own. XGC is a particle-in-cell code



Visualization as a Service for Scientific Data 161

Fig. 1. Workflow for coupled physics simulation. Data from the core and edge coupled
physics codes are sent to services to perform analysis and visualization. The resulting
images from the rendering services are saved to disk.

optimized for treating the edge plasma, and GENE is a continuum code opti-
mized for the core of the fusion reactor. In the WDM workflow, ADIOS is used to
save checkpoint/restart files and offloads variables for in situ analysis and visu-
alization [12]. For in-memory data exchange, ADIOS is used to couple the core
and edge simulations [13]. Figure 1 shows the various components of the WDM
workflow. The workflow is a complex process that requires sending data to and
from multiple separate executables to advance the physics while also visualizing
important variables.

2.2 KSTAR

The experiment analysis workflow that comes from fusion experiments is
designed to validate and refine simulations that model complex physical pro-
cesses in the fusion reactor and to test and validate hypotheses. Recent advances
in sensors and imaging systems, such as sub-microsecond data acquisition capa-
bilities and extremely fast 2D/3D imaging, allow researchers to capture very
large volumes of data at high spatial and temporal resolution for monitoring and
diagnostic purposes and post-experiment analyses. Alone, a 2D spatial imaging
system, called Electron Cyclotron Emission Imaging, at the Korean Supercon-
ducting Tokamak Advanced Research (KSTAR) can capture 10 GB of image
data per 10 second shot [51].

A system using ADIOS was developed for KSTAR to support various data
challenges by executing remote experimental data processing workflows in fusion
science. This system is one of the drivers for the development of the DataMan
engine to support science workflows execution over the wide-area network for
NRT streaming of experiment data in remote computing resource facilities.



162 D. Pugmire et al.

Data Acquisition

Data Repository
Data Mining 

(Model Training)

Instability Prediction

Experiment Control

KSTAR Tokamak
(Fusion Reactor)

Trained Model

History

Near Real-Time data

Feedback On-line Prediction

Sensor Data
Imaging

KSTAR USA

Fig. 2. The KSTAR worfklow showing the data traveling back and forth from KSTAR
and the USA. Each box in the workflow is composed of multiple different visualization
services.

An example of a KSTAR workflow is shown in Fig. 2. This workflow is a mul-
tilevel workflow in that each box comprises one or more sub-workflows. One main
goal is to stream online fusion experiment data from KSTAR in Korea to a com-
puting facility in the United States to perform various computationally intensive
analyses, such as instability prediction and disruption simulation. Although our
previous effort [11] focused on building remote workflows with data indexing, we
are currently composing the KSTAR workflow with DataMan. In this workflow,
ADIOS provides a remote coupling service to move raw observational data as
streams from Korea to the USA. Once data streams arrives in a US computing
facility, a set of analysis and visualization workflows will be launched to perform
denoising, segmentation, feature detection, and selection to detect any instabili-
ties. Visualization results can then be delivered back to Korea for designing the
upcoming shots.

3 On the Shoulders of Giants

The abstractions introduced in Sect. 1 were identified through a careful analysis
of our experiences working with application scientists and from the body of pub-
lished literature. This section describes the systems and concepts that guide our
thoughts.

3.1 Tier 1 Related Works

The tier 1 abstractions provide a foundation for data access, data interpretation,
and the ability to compose and schedule visualization tasks.

Traditionally, visualization has been performed as a post-processing task,
which worked well until the petascale era when it broke down due to the limited
I/O bandwith in supercomputers [9,10,49]. In situ processing has been success-
fully used to avoid this I/O bottleneck, resulting in a rich body of research and
production tools. Recent works [4,6] provide surveys of the state-of-the-art in



Visualization as a Service for Scientific Data 163

situ visualization. Middleware libraries have been developed to provide scalable
I/O. Systems such as ADIOS [31] and HDF5 [47] provide a publish/subscribe
model that enables flexible data access abstraction.

In situ processing is a rich space that consists of three predominant forms.
In-line in situ is a synchronous method in which the data producer and visual-
ization run concurrently on the same resource. Tools such as VisIt Libsim [48]
and ParaView Catalyst [3,17] support this model. In-transit in situ is an asyn-
chronous method in which the data producer and visualization run on separate
resources. Tools such as EPIC [16], Freeprocessing [18], and ICARUS [45] sup-
port this model. Hybrid in situ methods provide the flexibility of supporting
both synchronous and asynchronous processing. Tools such as Damaris/Viz [14]
and SENSEI [4] provide interfaces to use VisIt Libsim and ParaView Cata-
lyst to support a hybrid model. Ascent [28] is a lightweight in situ framework
that also provides hybrid model support. Both SENSEI and Ascent use the
ADIOS [39] middleware library, which provides a publish/subscribe view of data
access using several different data transport mechanisms, including files, in-line,
and in-transit.

Data interpretation has been largely focused on data models and schemas.
Ascent uses the rich capabilities of BluePrint [29], whereas SENSEI, VisIt Lib-
Sim, and ParaView Catalyst rely on the Visualization Toolkit (VTK) data
model, which is specifically targeted at the needs of visualization. VizSchema [46]
provides an interpretation layer on top of ADIOS for streaming and file-based
data. The Adaptable Data Interface for Services [2] is a follow-on work to
VizSchema that provides more flexibility and better support for streaming data.

Many of the existing production in situ tools are monolithic and difficult
to decompose for scheduling by workflow systems. Furthermore, they require
instrumentation into application codes (e.g., VisIt Libsim, ParaView Catalyst,
Ascent, SENSEI, Damaris, Freeprocessing) or a shared message passing inter-
face communicator (e.g., EPIC), whereas other require coupling with files (e.g.,
ICARUS).

Using lightweight visualization tasks in addition to production tools has been
explored in [21,43], as described in part in Sect. 2.

3.2 Tier 2 Related Works

The tier 2 abstractions are focused on providing flexibility, power, and intel-
ligence in visualization tasks. These build on a substantial body of work by
others as well as ourselves; we focus in the following discussion mostly on the
connections of the abstractions to our previous work.

The importance of in situ processing highlighted the need for more flexible
data models for in-memory layouts and portability across heterogeneous archi-
tectures. Early efforts such as the Extreme Scale Analysis and Visualization
Library [36], Dax Toolkit [37], and Piston [32] looked at different aspects of these
challenges and were combined into a single toolkit, VTK-m [38]. These efforts
have demonstrated the benefits of flexible data models [35] and the portable
algorithm performance across a wide variety of architectures [44,50].



164 D. Pugmire et al.

A declarative view of visualization has been explored through understanding
the performance of different algorithm implementations under different work-
loads, levels of concurrency, and architectures. Particle-tracing algorithms, which
are useful methods for understanding flow, can be implemented in several differ-
ent ways [42], and performance is dependent on factors such as workload, concur-
rency, and architecture [7,8,20,41]. Similar work was also done to understand the
performance of different types of rendering algorithms for in situ settings [27],
and the power-performance tradeoffs for visualization [26].

Models for performance and cost prediction can be useful to inform schedul-
ing and placement by workflow systems. Performance and cost models for dif-
ferent in situ visualization methods are described in [24,25,33,34], analysis of
costs for in situ analysis algorithms are described in [40], and a model for in situ
rendering is provided in [27].

4 Visualization as a Service Abstractions

Moving away from monolithic or aggregated solutions would help address the
challenges of visualization in an era of large streaming data and complex com-
puting environments. The ability to break visualization and analysis tasks into
pieces that can be deployed, managed, and automated by a workflow system
is powerful and aligns well with the principles of service-oriented architectures
(SOA) [30].

At a high level, SOA is characterized by a self-contained black box that
provides a well-defined set of features for users. SOA takes several forms, includ-
ing infrastructure as a service (IaaS)[1], software as a service (SaaS)[19], and
microservices [15]. Cloud computing is the most common example of IaaS in
which costs are controlled by dynamically allocating resources in response to
changing user requirements. SaaS is characterized by the delivery of a capability
using a thin client or ergonomic application programming interface. Scalability
for SaaS is provided by different types of back-end implementations that are
appropriately sized. Microservices are small, independently deployable executa-
bles with a distinct goal. Groups of microservices can be orchestrated to perform
more complex tasks.

We envision that visualization as a service (VaaS) will apply the principles of
the SOA paradigm to computational simulations and experiments. Importantly,
we think that VaaS should provide a clear separation between the operations
that scientists want to apply to data and the implementation details required
to perform it. This will allow application scientists to concentrate on under-
standing their simulations. VaaS draws from several different aspects of SOA
implementations.

– Similar to IaaS, visualization and analysis operations must be provisioned on
an appropriate amount of resource. Too much or too little of the wrong kind
of resource can result in inefficiency.



Visualization as a Service for Scientific Data 165

– Similar to SaaS, abstractions for access to data and execution must be pro-
vided so that application scientists can focus on the operations to be per-
formed, and computer scientists can focus on implementation and scalability.

– Similar to microservices, VaaS would support a set of modular analysis and
visualization operations that can be chained together to form complex scien-
tific workflows.

4.1 Visualization as a Service Abstractions

Realization of an SOA to visualize large scientific data will require coordination
and codesign with application scientists and disciplines within the computer sci-
ence community. This section describes a set of abstractions that are targeted at
guiding the framework design that follows an SOA philosophy. These abstrac-
tions serve as guiding principles for the design of visualization frameworks that
can function in a service-based way. They have resulted from our work with appli-
cation scientists to do visualization and from collaborations with other computer
scientists in leveraging complimentary technologies.

From the perspective of an application scientist, our vision is that a service-
based visualization framework would work as follows. A team of scientists plans
a scientific campaign. They specify a set of visualization tasks in a declarative
way. For example, isocontours of high vorticity around an inlet are required in
NRT (e.g., every minute) to monitor the simulation. Volume renderings of pres-
sure from three different views are necessary after the simulation has completed.
These intentions would then be turned into a sequence of analysis and visualiza-
tion tasks that would be input into an automated workflow system and run as
services on the computing resources to provide the results. The abstractions and
their relationships are shown in Fig. 3. These abstractions describe the points of
interaction between the tasks and their sequencing that are needed to produce
the results. The emphasis is on providing interfaces appropriate for the intended
users. Declarative intentions separate the action from the particular algorithms
selected and the resources used. Data models and schemas provide information
to workflow systems about how tasks can be composed and connected. Perfor-
mance models for algorithms can inform required resources and optimize the
placement of tasks onto resources.

The remainder of this section describes the abstractions for VaaS in a bottom-
up approach. We begin with a first tier of abstractions that provides a foundation
for VaaS. These foundational abstractions address data access across memory
hierarchies, service composition for workflow systems, and methods for interpre-
tation of data between services. We then discuss a second tier of abstractions
that builds on the first tier and provides improved flexibility, efficiency, and intel-
ligence to services. These tier 2 abstractions help map visualization intentions
onto efficiently executing service on the underlying computing resources.

4.2 Tier 1 Abstractions

The foundation required to support visualization requires three basic abstractions.
First, a service must be able to access data from a variety of different sources.



166 D. Pugmire et al.

Declaration 

Data Interpretation

Portable Performance

Performance Models

Service Composition

Data Access

Tier 2

Tier 1

Fig. 3. Chart denoting the two tiers of abstractions that we have identified, their
relationships to each other, and proximity to the user.

Second, automated workflow systems must be able to dynamically compose ser-
vices into sequences and schedule and execute across a variety of resources. Finally,
data models, schemas, and ontologies are needed so that workflow systems know
how to connect and schedule services and so that services know how to operate on
the incoming data.

Work in the first two abstractions has a heavy emphasis on disciplines outside
the visualization community. The realization of VaaS will require codesign with
these communities so that the pieces work together smoothly. The visualization
and analysis community must create and codesign the third abstraction together
with the other communities and application scientists so that things work well
together. Each of the three abstractions are discussed in more detail in the
following sections.

Data Access Abstraction: Visualization services need access to data that
come from a variety of sources, including on-node RAM, NVRAM, different
nodes in a system, nodes in a different system, and files. Furthermore, the same
service might need to consume data from different sources under different cir-
cumstances (e.g., from shared memory for an in situ setting, or from disk in a
post-processing setting). Supporting all of these data access modes directly in
the visualization service is inefficient. Middleware systems such as ADIOS [31]
and HDF5 [47] provide a publish/subscribe interface to data that hides the com-
plexity of reading and writing data. The reliance on a data access abstraction
allows the visualization community to focus on functionality and performance
and the middleware community to focus on providing efficient data access. This
also enables greater portability and reuse on different systems and the complex
and evolving memory hierarchy.



Visualization as a Service for Scientific Data 167

Service Composition/Workflow Abstraction: Analysis and visualization
tasks often consist of a sequence of composed subtasks. For example, rendering
an isocontour might involve three steps: (1) recentering a cell-centered variable to
the nodes, (2) computing the isocontour, and (3) rendering the geometry. These
subtasks might have better performance if the variable recenter and isocontour
are performed in situ, and the results are then sent to a set of visualization
resources for rendering. In previous work, we have seen the utility of taking
these “micro-workflows” and forming integrated in situ visualization libraries
(e.g., Catalyst [3], libSim [48]) that can be hard-coded into an application code,
as well as interface solutions such as SENSEI [4,5] that allow the workflow
mechanics to be embedded into the code while leaving the choice of the in situ
visualization or analytics to a run time configuration. However, to fully realize
the VaaS design opportunities, we must go further in codesigning the size and
scope of the visualization components with high-performance in situ workflow
engines. When coupled with the other design abstractions in the VaaS system,
this can enable an autonomously adapting visualization environment that can
maximize efficiency, latency, or the constraint that is most relevant for that
particular scientist’s research campaign. One approach we have been exploring
is to tie into the extended publish/subscribe semantics for ADIOS, as described
in [22], so that VaaS provides context for “editing” and “managing” the data as
it is published.

Data Interpretation Abstraction: Data interpretation is required for the
workflow system to understand how services can be connected and for individ-
ual services to understand the data that is accessed. This information makes
it possible for the workflow system to know what must be done and how an
intention can be sequenced into a series of services that are chained together
and placed onto resources. Data interpretation makes it possible to know which
services can be connected together and ensures that inputs are paired with the
appropriate outputs; in other literature this is often referred to schemas, data
model matching, or ontologies. This includes information about the execution
behavior of the service (e.g., the service requires collective communication and
so it would run more efficiently on a smaller resource).

Once a service has access to a data stream, ontologies for interpretation and
mapping to a data model are needed so that the ontologies can be used by the
visualization routines. Ontologies provide the semantics for data, intentions, and
operations. These provide information about a service (e.g., a service supports
CPU and GPU execution, a service is compute bound or requires collective com-
munication). Ontologies also map the intentions between different data sources
(e.g., the variable “pressure” is the same as “press”). Data models include infor-
mation about the types of meshes in the data (e.g., uniform grid, rectilinear
grid, explicit), the fields that exist on the mesh and their associations (e.g.,
node, cell, edge), and other labels associated with the data. This allows a service
to properly process the data. This information also enables the service to per-
form data conversions where needed or use optimized algorithms when possible
(e.g., algorithms for structured data).



168 D. Pugmire et al.

4.3 Tier 2 Abstractions

The abstractions in this section build on the aforementioned foundation and
provide the ability to optimize functionality and performance and increase flex-
ibility.

Portability Abstraction: Modern computing systems provide rich heteroge-
neous resources. Furthermore, executables in a workflow can be mapped onto
these resources in several ways. A visualization service must be able to run on
a variety of different hardware devices. For example, the same visualization ser-
vice might need to run on all core types in a heterogeneous compute node or be
restricted to use only a subset of a particular core type. Visualization services
must run on computing systems that have differing architectures and hardware.
These complications increase when considering edge computing. This relates to
the aforementioned service composition abstraction by providing the workflow
system with the flexibility to place services on available resources and across
different types of systems. Service portability provides the workflow system with
additional options to use for optimizing a scientific campaign.

Performance Models Abstraction: Models that provide performance and
cost estimates for algorithms operating on a given type of data and set of
resources can provide valuable information to a workflow system. Such mod-
els would help the workflow ensure that visualization results are provided in the
required time on available resources. These models will inform the selection of
cores (e.g., CPU, GPU), task placement on resources, and task dependencies
that result from service execution time estimates. The way that a service is exe-
cuted can have a dramatically different impact on a simulation or experiment.
The synchronous in situ processing of expensive services can block the data pro-
ducer, as can excessive data transfer to additional resources for asynchronous in
transit processing.

This abstraction works in conjunction with user intentions, as well as the size
and type of data and available resources. The service must be able to provide
an estimate on the type and amount of resource required to perform the task or
to report that it is impossible so that negotiations can occur with the scientists.
For example, an expensive analysis task might be unfeasible to perform in situ
for every simulation cycle. However, it might be possible to perform every tenth
cycle or, if dedicated visualization resources can be allocated, the user intentions
can be satisfied using in-transit processing.

Declarative Visualization Abstraction: An important distinction exists
between the operation performed by a service and the algorithm used. Common
visualization techniques—such as isocontouring, rendering, or particle tracing—
can be accomplished using several different types of algorithms. Some algorithms
are optimized for certain data types (e.g., structured grids, explicit grids) on cer-
tain hardware types (e.g., GPU or multicore CPU) and have a lower memory



Visualization as a Service for Scientific Data 169

footprint or minimize communication. A declarative abstraction provides a sep-
aration from the intentions of the scientists and the actual algorithm used by the
service. Given the declarative intention from a scientist, separate from a specific
algorithm, coordination with the workflow system is then possible to select the
proper algorithm that will produce the desired result and optimize performance.

5 Connecting Abstractions to Applications

Both KSTAR and fusion whole device modeling benefits from a data access
abstraction. Access to data is generally the first significant challenge in devel-
oping a visualization capability, especially for in situ environments. A simple
implication of a data access abstraction is a service that can read data from
anywhere in the memory hierarchy (i.e., file or in situ data access use the same
interface). Generally, it is straightforward to obtain output files from previous
runs or test runs from current scientific campaigns. Development, testing, vali-
dation, and scaling against files is generally much easier than trying to do live
analysis in a running campaign. The data access abstraction makes it possible to
easily switch between files and in situ. This was particularly useful for KSTAR
where the data were being moved across the globe. The ability to develop services
and then switch the access mode from file to streams without needing to change
anything else made the development and testing more efficient. This abstraction
enabled the codesign of these services between the visualization and middleware
teams.

The composability and interpretation of data was used in fusion whole device
modeling. This workflow consisted of several different feature extraction services.
As each service extracted features from the simulation output, the data stream
was annotated with VizSchema to describe the relationship among the underly-
ing data. This allowed a single implementation of a rendering service to support
several different use cases. The workflow system chained these service together
and placed them for execution on the computing resources. The rendering ser-
vice used the VizSchema provided in the stream to properly interpret the data
and then rendered images. The portability abstraction was also used by the
fusion example. The rendering service and the isocontouring service used the
VTK-m library, which provides portable performance across multiple processor
architectures.

6 Conclusion and Vision for the Future

Rapidly changing computer architectures, the increasing cost of data movement
relative to compute, and the move to automated workflow systems is a significant
challenge to extracting insight from scientific data. However, a move to service-
oriented visualization allows decoupling the complexity of all these tasks. Our
abstractions provide a road map for visualization services that can take full
advantage of the immense power of modern computing systems, while affording
the flexibility to be connected in arbitrary ways by application scientists.



170 D. Pugmire et al.

We envision a future in which application scientists will make use of visualiza-
tion services without depending on outside expertise for workflow composition.
The ability to specify intentions for visualization and analysis on data, along with
priorities and timelines for when results are necessary will become a mandatory
feature of visualization packages. We envision that these declarative intentions
will automatically be converted into a set of services via natural language pro-
cessing. The statements of priorities and deadlines will form constraints that can
be validated as satisfiable using performance models. Negotiations with the user
might be necessary if there are conflicting requirements; deadlines might need
adjusting, or additional resources might be required. The workflow system will
then take this information and construct a graph of requisite services and orches-
trate its execution. Services will use data access and interpretation schemas to
understand and appropriately process in-flight data. The workflow system will
use dynamic monitoring to update the performance models and make real-time
modifications to service behavior and execution. As the data size and complex-
ity increases and services require more time, the granularity of service execution
can be adjusted (e.g., from every tenth cycle to every hundredth cycle) or the
algorithm used by the service can be changed (e.g., use a faster but lower quality
rendering algorithm).

In order to support the tier 1 abstractions, efforts must be made to agree
on standard methods for data access (e.g., a publish/subscribe model). Several
schemas and data models are actively being used and developed, but ontologies
are needed to ensure flexibility and the interoperability of services. The access
and interpretation of data greatly reduces the barriers to service composition
by workflows systems. Research efforts addressing tier 2 abstractions have been
significant, but these challenges have not all been resolved, and continued work
is needed. Great strides have been made in performance portable algorithms,
and these needs will continue into the foreseeable future. Declarative interfaces
between the user and algorithm implementations will allow the users to specify
requirements and the visualization service can select the correct algorithm for
the type and amount of data, and the specified time frame. Performance models
for a wide range of algorithm classes, workloads and data types are needed that
provide time and cost estimates so that services can be scheduled and placed on
resources.

Collectively, there are rich sets of capabilities for addressing these challenges.
The work required to support the VaaS abstractions involves codesign and mul-
tidisciplinary collaboration to ensure that implementations for interfaces are
available. Adoption of these abstractions, and the standardization of these inter-
faces will enable rich visualization ecosystems. This ecosystem will make it easier
for application scientists to use visualization in their campaigns. It will also make
it easier for visualization scientists to deploy methods and techniques into work-
flows and help extract understanding from the large amounts of scientific data.

Acknowledgment. This research was supported by the DOE SciDAC RAPIDS Insti-
tute and the Exascale Computing Project (17-SC-20-SC), a collaborative effort of DOE
Office of Science and the National Nuclear Security Administration. This research



Visualization as a Service for Scientific Data 171

used resources of the Argonne and Oak Ridge Leadership Computing Facilities, DOE
Office of Science User Facilities supported under Contracts DE-AC02-06CH11357 and
DE-AC05-00OR22725, respectively, as well as the National Energy Research Scientific
Computing Center (NERSC), a DOE Office of Science User Facility operated under
Contract No. DE-AC02-05CH11231.

References

1. Infrastructure as a service (2018). https://webobjects.cdw.com/webobjects/
media/pdf/Solutions/cloud-computing/Cloud-IaaS.pdf

2. ADIS: Adaptive data interfaces and services. https://gitlab.kitware.com/vtk/adis.
Accessed 10 June 2020

3. Ayachit, U., et al.: Paraview catalyst: Enabling in situ data analysis and visualiza-
tion. In: Proceedings of the First Workshop on in Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization, pp. 25–29. ACM (2015)

4. Ayachit, U., et al.: Performance analysis, design considerations, and applications
of extreme-scale in situ infrastructures. In: ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis (SC16). Salt
Lake City, UT, USA (2016). https://doi.org/10.1109/SC.2016.78. LBNL-1007264

5. Ayachit, U., et al.: The sensei generic in situ interface. In: 2016 Second Workshop
on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization
(ISAV), pp. 40–44 (2016). https://doi.org/10.1109/ISAV.2016.013

6. Bauer, A., et al.: In situ methods, infrastructures, and applications on high perfor-
mance computing platforms. In: Computer Graphics Forum, Vol. 35, pp. 577–597.
Wiley Online Library (2016)

7. Binyahib, R., et al.: A lifeline-based approach for work requesting and parallel
particle advection. In: 2019 IEEE 9th Symposium on Large Data Analysis and
Visualization (LDAV), pp. 52–61 (2019)

8. Camp, D., et al.: Parallel stream surface computation for large data sets. In: IEEE
Symposium on Large Data Analysis and Visualization (ldav), pp. 39–47. IEEE
(2012)

9. Childs, H., et al.: Extreme scaling of production visualization software on diverse
architectures. IEEE Comput. Graph. Appl. 30(3), 22–31(2010). https://doi.org/
10.1109/MCG.2010.51.

10. Childs, H., et al.: Visualization at extreme scale concurrency. In: Bethel, E.W.,
Childs, H., Hansen, C. (eds.) High Performance Visualization: Enabling Extreme-
Scale Scientific Insight. CRC Press, Boca Raton, FL (2012)

11. Choi, J.Y., et al.: ICEE: Wide-area in transit data processing framework for near
real-time scientific applications. In: 4th SC Workshop on Petascale (Big) Data
Analytics: Challenges and Opportunities in conjunction with SC13, vol. 11 (2013)

12. Choi, J.Y., et al.: Coupling exascale multiphysics applications: methods and lessons
learned. In: 2018 IEEE 14th International Conference on e-Science (e-Science), pp.
442–452 (2018). https://doi.org/10.1109/eScience.2018.00133

13. Dominski, J., et al.: A tight-coupling scheme sharing minimum information across
a spatial interface between Gyrokinetic turbulence codes. Phys. Plasmas 25(7),
072,308 (2018). https://doi.org/10.1063/1.5044707.

14. Dorier, M., et al.: Damaris/viz: A nonintrusive, adaptable and user-friendly in
situ visualization framework. In: LDAV-IEEE Symposium on Large-Scale Data
Analysis and Visualization (2013)

https://webobjects.cdw.com/webobjects/media/pdf/Solutions/cloud-computing/Cloud-IaaS.pdf
https://webobjects.cdw.com/webobjects/media/pdf/Solutions/cloud-computing/Cloud-IaaS.pdf
https://gitlab.kitware.com/vtk/adis
https://doi.org/10.1109/SC.2016.78
https://doi.org/10.1109/ISAV.2016.013
https://doi.org/10.1109/MCG.2010.51
https://doi.org/10.1109/MCG.2010.51
https://doi.org/10.1109/eScience.2018.00133
https://doi.org/10.1063/1.5044707


172 D. Pugmire et al.

15. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. CoRR
abs/1606.04036 (2016). http://arxiv.org/abs/1606.04036

16. Duque, E.P., et al.: Epic-an extract plug-in components toolkit for in situ data
extracts architecture. In: 22nd AIAA Computational Fluid Dynamics Conference,
p. 3410 (2015)

17. Fabian, N., et al.: The paraview coprocessing library: a scalable, general purpose
in situ visualization library. In: 2011 IEEE Symposium on Large Data Analysis
and Visualization (LDAV), pp. 89–96. IEEE (2011)

18. Fogal, T., et al.: Freeprocessing: transparent in situ visualization via data inter-
ception. In: Eurographics Symposium on Parallel Graphics and Visualization: EG
PGV:[proceedings]/Sponsored by Eurographics Association in Cooperation with
ACM SIGGRAPH. Eurographics Symposium on Parallel Graphics and Visualiza-
tion, vol. 2014, p. 49. NIH Public Access (2014)

19. Hang, D.: Software as a service. https://www.cs.colorado.edu/∼kena/classes/5828/
s12/presentation-materials/dibieogheneovohanghaojie.pdf

20. Joy, K.I., et al.: Streamline integration using MPI-hybrid parallelism on a large
multicore architecture. IEEE Trans. Vis. Comput. Graph. 17(11), 1702–1713
(2011). https://doi.org/10.1109/TVCG.2010.259

21. Kim, M., et al.: In situ analysis and visualization of fusion simulations: lessons
learned. In: Yokota, R., Weiland, M., Shalf, J., Alam, S. (eds.) ISC High Perfor-
mance 2018. LNCS, vol. 11203, pp. 230–242. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-02465-9 16

22. Klasky, S., et al.: A view from ORNL: Scientific data research opportunities in
the big data age. In: 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS), pp. 1357–1368. IEEE (2018)

23. Kress, J., et al.: Visualization and analysis requirements for in situ processing
for a large-scale fusion simulation code. In: 2016 Second Workshop on In Situ
Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV), pp.
45–50. IEEE (2016)

24. Kress, J., et al.: Comparing the efficiency of in situ visualization paradigms at
scale. In: Weiland, M., Juckeland, G., Trinitis, C., Sadayappan, P. (eds.) ISC High
Performance 2019. LNCS, vol. 11501, pp. 99–117. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-20656-7 6

25. Kress, J., et al.: Opportunities for cost savings with in-transit visualization. In:
ISC High Performance 2020. ISC (2020)

26. Labasan, S., et al.: Power and performance tradeoffs for visualization algorithms.
In: Proceedings of IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS), pp. 325–334. Rio de Janeiro, Brazil (2019)

27. Larsen, M., et al.: Performance modeling of in situ rendering. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis SC 2016, pp. 276–287. IEEE (2016)

28. Larsen, M., et al.: The ALPINE In Situ Infrastructure: ascending from the Ashes
of Strawman. In: Proceedings of the In Situ Infrastructures on Enabling Extreme-
Scale Analysis and Visualization, pp. 42–46. ACM (2017)

29. Lawrence Livermore National Laboratory: Blueprint. https://llnl-conduit.
readthedocs.io/en/latest/blueprint.html. Accessed 30 June 2020

30. Lian, M.: Introduction to service oriented architecture (2012). https://www.cs.
colorado.edu/∼kena/classes/5828/s12/presentation-materials/lianming.pdf

31. Liu, Q., et al.: Hello adios: the challenges and lessons of developing leadership class
i/o frameworks. Concurr. Comput. Pract. Exp. 7, 1453–1473. https://doi.org/10.
1002/cpe.3125

http://arxiv.org/abs/1606.04036
https://www.cs.colorado.edu/~kena/classes/5828/s12/presentation-materials/dibieogheneovohanghaojie.pdf
https://www.cs.colorado.edu/~kena/classes/5828/s12/presentation-materials/dibieogheneovohanghaojie.pdf
https://doi.org/10.1109/TVCG.2010.259
https://doi.org/10.1007/978-3-030-02465-9_16
https://doi.org/10.1007/978-3-030-02465-9_16
https://doi.org/10.1007/978-3-030-20656-7_6
https://doi.org/10.1007/978-3-030-20656-7_6
https://llnl-conduit.readthedocs.io/en/latest/blueprint.html
https://llnl-conduit.readthedocs.io/en/latest/blueprint.html
https://www.cs.colorado.edu/~kena/classes/5828/s12/presentation-materials/lianming.pdf
https://www.cs.colorado.edu/~kena/classes/5828/s12/presentation-materials/lianming.pdf
https://doi.org/10.1002/cpe.3125
https://doi.org/10.1002/cpe.3125


Visualization as a Service for Scientific Data 173

32. Lo, L., et al.: Piston: a portable cross-platform framework for data-parallel visual-
ization operators. In: EGPGV, pp. 11–20 (2012)

33. Malakar, P., et al.: Optimal scheduling of in-situ analysis for large-scale scientific
simulations. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, p. 52. ACM (2015)

34. Malakar, P., et al.: Optimal execution of co-analysis for large-scale molecular
dynamics simulations. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, p. 60. IEEE Press
(2016)

35. Meredith, J., et al.: A distributed data-parallel framework for analysis and visu-
alization algorithm development. ACM Int. Conf. Proc. Ser. (2012). https://doi.
org/10.1145/2159430.2159432

36. Meredith, J., et al.: EAVL: the extreme-scale analysis and visualization library. In:
Eurographics Symposium on Parallel Graphics and Visualization, pp. 21–30. The
Eurographics Association (2012)

37. Moreland, K., et al.: Dax toolkit: A proposed framework for data analysis and
visualization at extreme scale. In: 2011 IEEE Symposium on Large Data Analysis
and Visualization (LDAV), pp. 97–104 (2011)

38. Moreland, K., et al.: VTK-M: accelerating the visualization toolkit for massively
threaded architectures. IEEE Comput. Graph. Appl. 36(3), 48–58 (2016)

39. Oak Ridge National Laboratory: ADIOS2: The ADaptable Input/Output System
Version 2 (2018). https://adios2.readthedocs.io

40. Oldfield, R.A., et al.: Evaluation of methods to integrate analysis into a large-
scale shock shock physics code. In: Proceedings of the 28th ACM international
conference on Supercomputing, pp. 83–92. ACM (2014)

41. Pugmire, D., et al.: Scalable computation of streamlines on very large datasets. In:
Proceedings of the ACM/IEEE Conference on High Performance Computing (SC
2009), Portland, OR (2009)

42. Pugmire, D., et al.: Parallel integral curves. In: High Performance Visualization-
Enabling Extreme-Scale Scientific Insight. CRC Press/Francis-Taylor Group
(2012). https://doi.org/10.1201/b12985-8

43. Pugmire, D., et al.: Towards scalable visualization plugins for data staging work-
flows. In: Big Data Analytics: Challenges and Opportunities (BDAC-2014) Work-
shop at Supercomputing Conference (2014)

44. Pugmire, D., et al.: Performance-Portable Particle Advection with VTK-m. In:
Childs, H., Cucchietti, F., (eds.) Eurographics Symposium on Parallel Graphics
and Visualization. The Eurographics Association (2018). https://doi.org/10.2312/
pgv.20181094

45. Rivi, M., et al.: In-situ visualization: State-of-the-art and some use cases. Brussels,
Belgium, PRACE White Paper; PRACE (2012)

46. Tchoua, R., et al.: Adios visualization schema: a first step towards improving inter-
disciplinary collaboration in high performance computing. In: 2013 IEEE 9th Inter-
national Conference on eScience (eScience), pp. 27–34. IEEE (2013)

47. The HDF Group: Hdf5 users guide. https://www.hdfgroup.org/HDF5/doc/UG/.
Accessed 20 June 2016

48. Whitlock, B., Favre, J.M., Meredith, J.S.: Parallel in situ coupling of simulation
with a fully featured visualization system. In: Kuhlen, T., et al. (eds.) Eurographics
Symposium on Parallel Graphics and Visualization. The Eurographics Association
(2011). https://doi.org/10.2312/EGPGV/EGPGV11/101-109

49. Wong, P.C., et al.: The top 10 challenges in extreme-scale visual analytics. IEEE
Comput. Graph. Appl. 32(4), 63 (2012)

https://doi.org/10.1145/2159430.2159432
https://doi.org/10.1145/2159430.2159432
https://adios2.readthedocs.io
https://doi.org/10.1201/b12985-8
https://doi.org/10.2312/pgv.20181094
https://doi.org/10.2312/pgv.20181094
https://www.hdfgroup.org/HDF5/doc/UG/
https://doi.org/10.2312/EGPGV/EGPGV11/101-109


174 D. Pugmire et al.

50. Yenpure, A., et al.: Efficient point merge using data parallel techniques. In: Euro-
graphics Symposium on Parallel Graphics and Visualization (EGPGV), pp. 79–88.
Porto, Portugal (2019)

51. Yun, G., et al.: Development of Kstar ECE imaging system for measurement of
temperature fluctuations and edge density fluctuations. Rev. Sci. Instrum. 81(10),
10D930 (2010)


	Visualization as a Service for Scientific Data
	Recommended Citation

	Visualization as a Service for Scientific Data
	1 Introduction
	2 Motivating Workflows
	2.1 Fusion Simulation Workflow
	2.2 KSTAR

	3 On the Shoulders of Giants
	3.1 Tier 1 Related Works
	3.2 Tier 2 Related Works

	4 Visualization as a Service Abstractions
	4.1 Visualization as a Service Abstractions
	4.2 Tier 1 Abstractions
	4.3 Tier 2 Abstractions

	5 Connecting Abstractions to Applications
	6 Conclusion and Vision for the Future
	References


