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Abstract: Energy portfolios are overwhelmingly dependent on fossil fuel resources that perpetuate
the consequences associated with climate change. Therefore, it is imperative to transition to more
renewable alternatives to limit further harm to the environment. This study presents a univariate time
series prediction model that evaluates sustainability outcomes of partial energy transitions. Future
electricity generation at the state-level is predicted using exponential smoothing and autoregressive
integrated moving average (ARIMA). The best prediction results are then used as an input for
a sustainability assessment of a proposed transition by calculating carbon, water, land, and cost
footprints. Missouri, USA was selected as a model testbed due to its dependence on coal. Of the time
series methods, ARIMA exhibited the best performance and was used to predict annual electricity
generation over a 10-year period. The proposed transition consisted of a one-percent annual decrease
of coal’s portfolio share to be replaced with an equal share of solar and wind supply. The sustainability
outcomes of the transition demonstrate decreases in carbon and water footprints but increases in
land and cost footprints. Decision makers can use the results presented here to better inform strategic
provisioning of critical resources in the context of proposed energy transitions.

Keywords: time series forecast; life cycle thinking; energy transition; sustainability

1. Introduction

Fossil fuel resources provide a majority of the world’s energy and subsequent carbon
dioxide emissions [1,2]. In 1990, fossil fuels made up more than eighty-six percent of the
total primary energy supply of the United States and its combustion resulted in more
than four thousand eight hundred megatons of carbon dioxide emissions. By 2015, energy
demands increased by almost an additional thirteen percent with carbon dioxide emissions
increasing by more than an additional two and a half percent. During this time, renewables
increased by less than two percent. When excluding biofuels and waste-to-energy sources,
this increase is less than one percent. These findings demonstrate that portfolios are shifting,
but not toward renewables resulting in an increase in already high carbon dioxide emissions.
If this trend continues, the consequences associated with climate change will be further
exacerbated [3]. To minimize further harm to the environment, fossil fuel dependent energy
portfolios, especially those relying on coal, must be transitioned to renewable alternatives.

Modern energy transitions are defined by a timely shift toward energy systems that
address global energy challenges [4]. Transitions have received widespread scholarly
attention from several perspectives such as socio-technical [5–8], existing system considera-
tions [9–11], and environmental reform and governance [12–14], among others. An effective
approach in quantitative studies is the use of time series forecasting methods to inform
transition decision making. Energy forecasts primarily consist of three temporal horizons:
short-, medium-, and long-term [15]. Short-term forecasts encompass studies from an hour
to a week [16,17]. Medium-term forecasts include a month to five years [18–20]. Long-
term forecasts cover periods from five to 20 years [21–23]. Forecasting is a data-driven
method that relies on statistical procedures to derive relationships between variables [24].
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Standard data-driven forecasting models include moving and weighted-moving average,
simple exponential smoothing, Holt’s Model, and Damped Holt’s Model [25]. More ad-
vanced methods include autoregressive moving average (ARMA) [26,27], autoregressive
integrated moving average (ARIMA) [28,29], and artificial neural networks [30]. A com-
monality among these models is the ability to monitor change in variables between time
steps. This is a useful feature for decision makers as it provides time-dependent information
regarding the prediction variable and other performance characteristics.

This research extends the conventional assessment of energy transitions by providing
a univariate time series prediction of annual electricity generation that monitors changes in
life cycle sustainability performance using a footprint approach. This research addresses
a gap in the literature with respect to standard analysis methods. Standard comparative
analysis currently consists only of weighing cost against emission reductions over the life
cycle of energy sources [31]. The work presented in this research addresses the gap by
conducting an evaluation that provides a more thorough determination of the relationship
between energy source selection and sustainability impact using a footprint approach [32].
A footprint approach can be conducted by accounting for carbon (g CO2/kWh), water
(m3/kWh), land (m2/kWh), and levelized cost (cents/kWh) over the duration of the energy
source life cycle in a time series transition context.

Missouri was selected as a model test bed to demonstrate methodological efficacy
due to the state’s dependency on coal. The proposed model is a data-driven approach
that uses annual state-level electricity portfolio data from 2001 to 2019 to build a time
series prediction of electricity generation. This prediction is then used as an input for
a sustainability assessment that monitors metric performance of a proposed transition.
The scenario presented consists of a decrease of coal’s portfolio share that is subsequently
replaced by renewable alternatives, solar and wind. By including life cycle measurements
of sustainability performance, energy decision makers are providing socially responsible
stewardship of transition outcomes. Further, these outcomes evaluate a proposed transition
in the context of natural resource consumption and emissions production. Energy decision
makers can use these results to better guide allocation of resources and to align energy
transition strategies with sustainability goals beyond the “do no harm” threshold [33].
The following section presents the data used, time series methods applied, and mechanics
of the energy transition.

2. Materials and Methods
2.1. Data

Historical data is required to produce a time series prediction. The Energy Information
Administration (EIA) maintains annual and monthly state-level energy portfolio data.
Figure 1 displays annual electricity generation for Missouri from 2001 to 2019 [34]. There
are two features of the data that determinate the selection of an appropriate forecasting
method. First, the data does not exhibit trend or seasonality. This eliminates methods
such as Holt’s Model, Holt-Winter’s Model, and variations therein from consideration.
Second, the sample size is small consisting of nineteen data points. Small sample sizes
limit the application of more sophisticated methods that generally return results that are
more accurate. However, exponential smoothing [35,36] and autoregressive integrated
moving average (ARIMA) [37,38] are two effective approaches for generating time series
predictions for energy datasets given these constraints. Table 1 provides sustainability
indicator values converted to kW-hr to be consistent with the time series prediction [32].
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Figure 1. Total Electricity Generation, Missouri 2001–2019.

Table 1. Sustainability Indicators of Various Energy Types.

Energy Type Carbon Footprint
(g CO2/kWh)

Water Footprint
(m3/kWh)

Land Footprint
(m2/kWh)

Cost
(Cents/kWh)

Coal 8.34 × 102–
1.03 × 103

5.40 × 10−4–
2.09 × 10−3

8.30 × 10−5–
5.67 × 10−4 3.77–5.85

Wind: onshore 6.90–1.45 × 101 3.60 × 10−6 2.17 × 10−3–
2.64 × 10−3 4.16–5.72

Solar
Photovoltaic

1.25 × 101–
1.04 × 102 1.51 × 10−4 7.04 × 10−4–

1.76 × 10−3
1.09 × 101–
2.34 × 101

2.2. Time Series Prediction of Electricity Generation

Using historical data, a univariate time series prediction of annual electricity gen-
eration for Missouri was created. The Forecast Library in r was used to fit exponential
smoothing and ARIMA models to the data [39]. Exponential smoothing models can be
classified using a three-letter convention [40]. The letters denote error type, trend, and sea-
sonality, respectively. There are three options for each of the cases: N (none), A (additive),
and M (multiplicative). Similarly, ARIMA also follows a three-letter scheme. The nomen-
clature refers to autoregressive terms, non-seasonal differences required for stationarity,
and lagged forecast errors in the prediction equation. In this instance, the exponential
smoothing (A, N, N) and ARIMA models (1, 0, 0) were selected. This class of exponen-
tial smoothing is often referred to as the simple version. Simple exponential smoothing
uses a smoothing constant, alpha, to attach a unique weight to each observation where
weights decrease exponentially the further the data reference point is from the prediction.
A smoothing constant of one was selected using the simplex method by minimizing the
Corrected Akaike Information Criterion (AICc) which is presented later. This criterion
is also used to select the ARIMA model. The component form of simple exponential



Energies 2021, 14, 141 4 of 14

smoothing is given in Equations (1) and (2) [25]. Equation (1) presents the level forecast
and Equation (2) provides the smoothing procedure.

ŷT+h = yT (1)

lt = αyt + (1 − α)lt−1
s.t. 0 ≤ α ≤ 1

(2)

Mathematical notation for ARIMA models is provided in Equation (3) [25]. The class
of ARIMA model that minimized AICc is referred to as the first-order autoregressive model
or ARIMA (1, 0, 0). In this case, predictions are calculated as a function of the previous
value, slope coefficient phi, and constant mu. Slope coefficient and constant terms are
provided in Table 2. It can be observed that the autoregressive term is 0.7932 and the
constant term is 84,508. Theta corresponds to the moving average portion of the model.
For this class of ARIMA models, there is no moving average component, and therefore it is
not provided. (

1 − φ1B − · · · φpBp)(1 − B)dyt = c +
(
1 + θ1B + · · · θqBq)et (3)

where,
B = backshift operator,
c = µ

(
1 − φ1 − · · · φp

)
,

µ = (1 − B)dyt

Table 2. Autoregressive integrated moving average (ARIMA) (1, 0, 0) Coefficients.

φ µ

ARIMA (1, 0, 0) 0.7932 84,508

Standard Error 0.1547 3802

Equations for AIC and AICc for ARIMA models are provided in Equations (4) and
(5) [25]. Similar equations for exponential triple smoothing models can be found at the
accompanying reference. L is the likelihood of the data and k is a binary variable that
equals one if there is an intercept. AICc is a modified version of AIC that provides a bias
correction for smaller datasets as it corrects for the sample size with T.

AIC = −2Log(L) + 2(p + q + k + 1) (4)

AICc = AIC +
2(p + q + k + 1)(p + q + k + 2)

T − p − q − k − 2
(5)

The method with the best performance across these summary statistics is selected as
the input for the sustainability assessment.

2.3. Mechanics of Energy Transition

Equation (6) demonstrates how the total electricity generation prediction (Elt) is
partitioned into fulfillment by a given electricity source. A coefficient (X) corresponds to
the most recently reported portfolio share for that electricity source.

Eli = XiElt (6)

where X represents initial portfolio share for electricity source i.
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The proposed transition will consist of decreasing coal’s portfolio share (Elc) and
replacing it with a mix of wind (Elw) and solar energy (Els). Equations (7)–(9) provide
transition mechanics. A proportional rate of change is provided to determine allocation of
newly available portfolio between solar and wind.

Elc = Elc,0 − rtElt (7)

where
r = annual rate of change, and
t = time.

Els = Els,0 + γrtElt (8)

where γ = proportional rate of change applied

Elw = Elw,0 + (1 − γ)rtElt (9)

Sustainability of a proposed transition can be summarized by Equation (10). A given
energy source’s portfolio share is first determined using Equation (6). Next, the electricity
provided by a given source is then multiplied by the corresponding sustainability indicator
value. A summation of each of these product operations is then conducted to determine
the specific footprint value. The following section provides results generated using this
methodology.

Ft =
3

∑
i=1

Fg,iEli (10)

where
t = footprint type, and
g = footprint rate associated with energy source i.

3. Results

This research consists of three contributions: (1) Development and Comparison of
Time Series Forecasting Methods, (2) Sustainability Evaluation of Proposed Electricity
Portfolio Transition, and (3) Comparison of Different Fulfillment Strategies. Time series
forecasting methods possess inherent uncertainty and measures therein are provided when
appropriate.

3.1. Development and Comparison of Time Series Forecasting Methods

Using the Forecast Library in r, simple exponential smoothing and ARIMA models
were fit to the annual state-level electricity generation dataset. The results of this procedure
are presented graphically in Figure 2. Actual data is denoted in blue, simple exponential
smoothing in orange, and ARIMA in grey. ETS stands for exponential triple smoothing
of which simple exponential smoothing is a variant. It can be observed that the simple
exponential smoothing forecast selects the most recent observation as the prediction for the
current time step. The ARIMA model is governed by different equations, but ultimately
yields similar results. However, superior performance is difficult to determine upon visual
inspection alone.
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Figure 2. Forecasting Model Comparison.

AICc values for each of the models are presented in Table 3. A smaller value corre-
sponds to a model that is better fit to the data. The ARIMA model slightly outperforms
simple exponential smoothing for this dataset. Additional assessment is required before
the optimal model can be determined.

Table 3. Corrected Akaike Information Criterion (AICc) for Time Series Prediction Models.

Model AICc

ETS (A,N,N) 375.56

ARIMA (1,0,0) 373.64

An alternative approach that augments visual inspection and summary statistical
analysis is the evaluation of prediction intervals for each of the models. Figure 3 illustrates
a 10-year prediction using each of the models. One shortcoming of simple exponential
smoothing is that the prediction is given as a “flat” value. This behavior is unlikely to be
representative of future energy generation scenarios. Alternatively, the ARIMA model
trends upward before flattening out. Figures 4 and 5 investigate the 95% prediction interval
for simple exponential smoothing and ARIMA, respectively. In Figure 4, the prediction
interval continuously expands as the forecast horizon increases. The prediction inter-
val width at the final forecasted value is almost 50,000 (thousand MWh). Alternatively,
ARIMA’s prediction interval provided in Figure 5 provides is greater than 24,000 (thousand
MWh). This represents a significant reduction in uncertainty when compared to the simple
exponential smoothing model.
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Figure 5. Actual Data vs. ARIMA with 95% Prediction Interval.

To further demonstrate the difference between the two models, prediction interval
width is plotted for the forecast horizon in Figure 6.
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The ARIMA model is demonstrably superior when compared to the simple expo-
nential smoothing model in terms of reduction in uncertainty. This observation coupled
with the marginally better AICc value and non-flattening prediction behavior justifies the
selection of the ARIMA model as an input for the sustainability assessment presented in
the next section.

3.2. Sustainability Assessment of Proposed Electricity Portfolio Transition

Fitting a time series model to volatile data is a complex task. This is demonstrated by
the summary statistic performance of both models and the uncertainty present denoted
by the prediction interval widths. Initial electricity source portfolio shares are provided
in Table 4. Sustainability assessment results are given for both prediction intervals and
model predictions in Table 5. The 10-year percentage change for each of the footprints is
provided in a min–max format. This is due to the data being provided in range format.
Minimum values correspond to best-case performance for each of the footprint categories.
Alternatively, maximum values provide a worst-case scenario. The upper 95 percent
prediction interval scenario reflects a substantive increase in electricity from 2020 to 2029.
This increase in electricity generation offsets the sustainability improvements where only
carbon footprint is reduced in both minimum and maximum cases. With the exception
of water’s maximum case, each of the other footprints increases in this scenario. For the
ARIMA prediction, carbon and water footprints decrease. Land and cost footprints increase
significantly. This is due to the higher values reported for the renewable technologies.
The best performance is achieved for the lower 95% prediction interval. As electricity
generation is decreased, the sustainability improvement will be more pronounced. Similarly
to the ARIMA prediction performance, carbon and water decrease while land and cost
increase. However, each of the footprints is decreased considerably from the model’s
prediction. This finding suggests that the best sustainability performance will be achieved
in the event that electricity generation decreases and a transition to renewable alternatives
is conducted in a timely manner.

Table 4. Initial Model Configuration.

Electricity Source Initial Portfolio Share (Xi)

Coal 72.82%

Wind 3.76%

Solar 0.52%

Table 5. Sustainability Assessment Results.

Footprint Simulation Results

10-Year % Change
(Min, Max) Carbon Water Land Cost

Upper 95% PI (−1.83, −1.16) (0.07, −1.46) (97.82, 42.68) (24.70, 30.79)

Model (−6.12, −5.48) (−4.31, −5.77) (89.17, 36.44) (19.24, 25.07)

Lower 95% PI (−11.32, −10.71) (−9.61, −10.99) (78.69, 28.88) (12.64, 18.15)

The results presented in Table 5 correspond to the scenario where coal is replaced in
equal measure by solar and wind. It is beneficial to investigate the outcomes of alternative
fulfillment strategies in the context of sustainability assessment. A comparison is provided
in the next section.

3.3. Comparison of Different Fulfillment Strategies

Table 6 provides sustainability assessment results for the model prediction using
different fulfillment strategies. Gamma is the variable that determines the behavior of the
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feedback loop used in the transition model. The solar-only scenario is denoted by gamma
being equal to one. Alternatively, gamma equals zero for the wind-only strategy. Sustain-
ability performance is provided in 0.2 increments for gamma. The broader implications of
the results presented here are discussed in the next section.

Table 6. Sustainability Evaluation for Different Fulfillment Strategies.

Carbon Footprint Water Footprint Land Footprint Cost Footprint

γ Min Max Min Max Min Max Min Max

1
(solar-only) −6.07% −4.89% −2.46% −5.29% 46.61% 28.72% 29.84% 42.60%

0.8 −6.09% −5.12% −3.20% −5.48% 64.11% 31.82% 25.63% 35.67%

0.6 −6.11% −5.36% −3.94% −5.68% 80.97% 34.90% 21.38% 28.63%

0.5 −6.12% −5.48% −4.31% −5.77% 89.17% 36.44% 19.24% 25.07%

0.4 −6.13% −5.60% −4.68% −5.87% 97.21% 37.97% 17.10% 21.49%

0.2 −6.15% −5.84% −5.42% −6.06% 112.87% 41.01% 12.77% 14.24%

0
(wind-only) −6.16% −6.07% −6.16% −6.25% 127.98% 44.03% 8.41% 6.87%

4. Discussion

Two time series prediction methods, ARIMA and exponential smoothing, were used
to develop a prediction of Missouri’s annual electricity generation. ARIMA exhibited
superior performance measured across key summary statistics. Given these findings,
a 10-year prediction of electricity generation was generated. The result of this procedure
was used as an input for the sustainability assessment model.

Initial portfolio share values for coal, solar, and wind were determined and used for
model initialization. Coal’s initial share (72.82%) was decreased at a rate of one-percent
per year. Therefore, at the end of the simulation coal accounted for ten percent less of the
portfolio. Solar (0.52%) and wind (3.76%) accounted for this decrease in portfolio share
in equal measure. A ten-percent decrease in coal’s portfolio share resulted in a carbon
footprint decrease (−6.12, −5.48) and water footprint decrease (−4.31, −5.77). Alternatively,
land footprint increased (89.17, 36.44) and levelized cost increased (19.24, 25.07). Note that
change in footprint is presented as a range of percentages instead of a discrete value. This is
due to the literature reporting the values as a range derived from longitudinal studies.
As reported in Table 1, some energy sources possess a larger range of values for a given
indicator. Table 5 was generated to demonstrate the proposed transition’s sensitivity to
both the range of sustainability values used and the uncertainty inherent in the model
prediction.

With the exception of water footprint, each of the energy sources exhibit a range
of values for each of the energy sources considered. Coal possesses a larger carbon and
water footprint. However, coal has the smallest land footprint and a comparably low
cost footprint. The magnitude of these differences are best understood in the context of
scenarios presented in Table 5. The upper prediction interval demonstrated marginal
improvement in carbon and water footprints and large increases to both land and cost
footprints. This can be attributed to the increase in generation required not effectively
offsetting coal’s decreased portfolio share. It can be observed that as electricity generation
decreased, sustainability outcomes improved. As less energy is generated, the gains from
decreasing coal’s portfolio share will be more pronounced. Less electricity is generated
in this case and more of it is being fulfilled by renewable sources. Therefore, the lowest
prediction interval returns the best sustainability performance.

For this research, an equal share of newly available portfolio was allocated to both
wind and solar. Table 6 provides simulation results for different fulfillment strategies
using the model prediction. The wind-only strategy achieves the best results for carbon,
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water, and cost footprints. Land footprint, however, is much larger and represents the
worst performance. Alternatively, solar outperforms wind in land footprint performance
alone. Intermediate gamma values demonstrate that sustainability performance improves
as gamma is decreased. However, an optimal gamma value is not presented here as it
is subject to derivation of a weighting scheme for each of the indicators consistent with
stakeholder input.

The sustainability assessment results presented here underscore a few key considera-
tions for energy decision makers tasked with transitioning current fulfillment strategies.
First, a transition to existing renewable energy alternatives is not a panacea for climate
change mitigation. Where renewables demonstrate positive performance in carbon and
water footprint results, they perform negatively for land and cost. This is important to
capture as sustainability involves more than just the relationship between carbon emis-
sions and cost. Second, the impact of the sustainability performance presented here is not
confined to the state of Missouri. Energy supply systems for both fossil fuel and renewable
sources are national, and in some cases, global. Therefore, local energy decision making has
global consequences. Lastly, the lower ninety-five percent prediction interval exhibited the
best sustainability performance. This finding demonstrates the effectiveness of a strategy
that couples a transition to renewables and improvements in technological efficiency that
reduce electricity generation.

These findings are subject to some limitations that provide ample room for future
research. The time series model predicts upward trending behavior that eventually flattens.
Future values are unlikely to exhibit this behavior given the volatility of the historical data.
Exploration of other prediction methods and use of higher resolution temporal data might
generate more accurate and dependable results. Selection of an optimal gamma value
should be determined with input from key stakeholders. This can be accomplished through
the implementation of a Delphi Method and subsequent analysis. A similar stakeholder
engagement procedure could also be followed to determine which scenario presented in
Table 6 is chosen. If either of the upper intervals are used, then the outcome could be an
increase in the net export of electricity or idle capacity installed. Alternatively, if the lower
intervals are used then importing electricity might be required. The sustainability assess-
ment model can be converted into a system dynamics model by incorporating additional
feedback loops. At present, the rate of change constitutes the only feedback mechanism
in the model. Candidate feedback loops include different policy effects, relationships be-
tween sustainability indicators, and response to system disruptions, among others. Further,
the holistic sustainability approach could be extended to account for other metrics such as
dispatchability, resilience, and job creation. The range of footprint values can be further
specified by deploying state-specific data gathering efforts. If accomplished, the variability
of findings would be decreased resulting in an improved model. Additionally, evaluation
of other renewable energy technologies including distributed energy resources should be
conducted. This would include the analysis of alternative energy mix scenarios subject
to data availability. Solar and wind power were selected here given their comparably
large share of Missouri’s renewable electricity portfolio. Lastly, an optimal implementation
plan should be provided given a proposed energy transition. In the following section,
a summary of the research is provided with concluding remarks.

5. Conclusions

Global energy portfolios are dependent on fossil fuel resources. This dependence
results in the continuous emission of greenhouse gases that harm the environment. Beyond
these concerns, energy sources also have an impact on other natural resources such as
land and water. Therefore, energy decision makers must transition current portfolios to
renewable alternatives while monitoring unintended sustainability impacts. The model
presented provides a univariate time series prediction of annual electricity generation using
publicly available data. The method exhibiting the best performance, ARIMA, was then
used as an input for the sustainability assessment model that monitors the performance
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of a proposed transition using a footprint approach. Using Missouri as a testbed, coal’s
share of the portfolio was decreased by one-percent annually and replaced with an equal
share of wind and solar power over a ten-year period. Model findings demonstrate that
such a transition would decrease carbon and water footprints while increasing land and
cost footprints. However, the prediction intervals underscore the range of sustainability
outcomes. The best performance occurs in the event that annual electricity generation
decreases. This finding affects several aspects of management and governance.

Energy decision makers can change fulfillment strategies, but not antecedent demand
behavior. Electricity and, more broadly, energy serve a crucial role in industrial processes.
Therefore, sustainability performance similar to the approach provided here should guide
product design and supply chain configuration. Practitioners can use these results to prior-
itize the sustainable procurement of raw materials through to more preferred end-of-life
management techniques such as reuse [41]. Additionally, research and development efforts
should design product architectures with improved efficiency. Governments can encourage
such behavior through policy incentivization. Subsequently, energy use, and thus demand
for electricity generation would decrease resulting in improved sustainability performance.
Various decision makers are engaged in energy transitions and sustainability improve-
ments. Policy professionals are tasked with passing laws that encourage the adoption of
renewable energy technologies. Business entities should bring products to market that
perform well on sustainability measures beyond profit. Lastly, energy decision makers
must rapidly transition energy portfolios to renewable alternatives to limit further harm
to the environment. The results presented here provide decision makers with a quanti-
tative guide to evaluate the sustainability of proposed energy transition strategies more
thoroughly.
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