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Abstract 

The global escalating cases of skin donor shortage for patients with severe wounds warn the vital need for alternatives to skin 
allografts. Over the last three decades, research in the skin regeneration area has addressed the unmet need for artificial skin 
substitutes. 3D bioprinting is a promising innovative technology to accurately fabricate skin constructs based on natural or synthetic 
bioinks, whether loaded or not loaded with native skin cells (i.e., keratinocytes and fibroblasts) or stem cells in the prescribed 3D 
hierarchal structure to create artificial multilayer and single cell-laden construct. In this paper, the recent developments in 3D 
bioprinting for skin regeneration are reviewed to discuss different aspects of skin bioprinted substitutes, including 3D printing 
technology, bioink composition, and cell-laden constructs. The impact of 3D printing parameters on functionality of the skin 
substitute and cell viability is reviewed to provide insight into controlled fabrication as the critical component of advanced wound 
healing. We highlight the recent and ongoing research in skin bioprinting to address the progress in the translation of advanced 
wound healing from lab to clinic. 
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 Introduction  

The skin as the outmost layer of human body, is 
particularly dealing with traumas and injuries. Wound 
healing refers to the normal physiologic response to 
injury which is critical for patient survival. There is a 
variety of wound healing products available in the 
market, the majority of which are biosynthetic wound 
dressings [1]. Despite the good clinical outcomes, 
there are challenges for treatment of different types of 
wound. For example, burn wounds as a major wound 
type are highly dehydrated and require a moist 
environment. Furthermore, most wound dressings 

cannot support the scarless wound healing with skin 
appendages, such as hair follicle, sweat glands and 
native pigment, which are very important for the 
normal appearance and functionality of the skin [2-4]. 
Therefore, research on wound healing has been 
focusing on developing modern wound dressings to 
enable scarless healing and to reduce both 
physiological and psychological inconvenience for 
patients [5]. 

Tissue/organ printing, known as 3D bioprinting, 
enables accurate construction based on biomolecules, 
synthetic/natural hydrogel and cells. These 3D printed 
structures have the potential to repair skin and 
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The skin as the outmost layer of human body, is 
particularly dealing with traumas and injuries. Wound 
healing refers to the normal physiologic response to 
injury which is critical for patient survival. There is a 
variety of wound healing products available in the 
market, the majority of which are biosynthetic wound 
dressings [1]. Despite the good clinical outcomes, 
there are challenges for treatment of different types of 
wound. For example, burn wounds as a major wound 
type are highly dehydrated and require a moist 
environment. Furthermore, most wound dressings 

cannot support the scarless wound healing with skin 
appendages, such as hair follicle, sweat glands and 
native pigment, which are very important for the 
normal appearance and functionality of the skin [2-4]. 
Therefore, research on wound healing has been 
focusing on developing modern wound dressings to 
enable scarless healing and to reduce both 
physiological and psychological inconvenience for 
patients [5]. 

Tissue/organ printing, known as 3D bioprinting, 
enables accurate construction based on biomolecules, 
synthetic/natural hydrogel and cells. These 3D printed 
structures have the potential to repair skin and 
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accelerate wound healing, as well as skin related 
pharmacology, toxicology and drug development [6]. 

The first research on skin bioprinting was published 
in 2009, where primary human dermal fibroblasts were 
added to a collagen hydrogel [7]. Currently, skin 
bioprinting is more focused on selecting high-
performance materials to achieve precise printability 
and faster wound healing simultaneously [8-10]. 
Besides the biofunctionality and mechanical properties 
(e.g., viscoelasticity) of bioink, the printing technology 
plays a crucial role in controlling the macrostructure of 
the built construct by using engineering paradigms 
[11]. 

Comparing to the conventional skin regeneration 
approaches, 3D bioprinted skin substitutes are taking 
advantage of the automation and standardization for 
clinical application and precision in deposition of cells. 
Additionally, by employing the 3D bioprinted 
technology, the production time for large size skin 
substitutes decreases significantly. Cells can be added 
to the bioink prior to printing, otherwise cell-free 
bioinks can be printed to develop acellular skin 
regeneration products. Both of the scaffolds take 
advantage of the increased surface area after printing, 
which results in more reactivity and faster healing [12]. 

According to the literature, different synthetic or 
natural hydrogels such as alginate, collagen, and 
cellulose have been investigated in terms of 
printability, mechanical integrity, and biological 
response. Physical and chemical properties including 
glass transition point, viscoelastic behavior, rheology, 
chemical reactivity, and molecular weight play an 
important role in the quality of printed construct [10, 
12, 13].  

In order to promote the skin regeneration, stem cells 
[14-16] and/or terminally differentiated cells [17-21] 
have been widely used in different biofabrication 
methods including 3D bioprinting. Many researchers 
added keratinocyte, fibroblast, or mesenchymal stem 
cells to the bioink to address the regenerative medicine 
approach. The printed cell-laden construct could be 
either applied on the wound immediately or after 
maturation. Some research used novel hybrid co-
culture systems on a 3D layered structure to mimic the 
bilayer epidermal/dermal structure of the native skin 
[18, 19, 21]. 

The recent developments in 3D bioprinting for skin 
regeneration are reviewed to discuss different aspects 
of skin bioprinted substitutes, including 3D printing 
technology, bioink composition, and cell-laden 
constructs. The impact of 3D printing parameters on 
functionality of the skin substitute and cell viability is 
reviewed to provide insight into controlled fabrication 
as the critical component of advanced wound healing. 
We highlight the recent and ongoing research in skin 
bioprinting to address the progress in the translation of 
advanced wound healing from lab to clinic. 

 Printing Technology 

In the recent years, 2D skin substitutes have been 
produced based on electrospinning, casting, freeze-
drying, and 3D bioprinting. Despite the thin and flat 
geometry of skin, 3D skin substitutes have become 
more popular comparing to 2D substitutes, due to the 
enhanced cell viability and tissue regeneration they can 
provide [22, 23].  

 

 

Figure 1- Schematic representation of various techniques of 3D bioprinting. Inkjet bioprinting: Thermal inkjet printers electrically heat the 
printhead to produce air-pressure pulses that force droplets; while acoustic printers use pulses formed by piezoelectric or ultrasound pressure. 
Microextrusion bioprinting: These printers use pneumatic or mechanical dispensing systems (piston or screw) to extrude continuous beads of a 
bioink. Laser-assisted bioprinting: These printers use lasers focused on an absorbing substrate to generate pressures that propel cell-containing 
materials onto a collector substrate. (Copyright 2020, Figure adapted from ref. [24].) 

 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.promfg.2020.05.115&domain=pdf


	 Fateme Fayyazbakhsh  et al. / Procedia Manufacturing 48 (2020) 790–796� 791 

Available online at www.sciencedirect.com 

ScienceDirect 
Procedia Manufacturing 00 (2019) 000–000   

     www.elsevier.com/locate/procedia 

   

 

 

 

 

 

2351-9789 © 2019 The Authors, Published by Elsevier B.V. 
Peer review under the responsibility of the scientific committee of NAMRI/SME 

 

48th SME North American Manufacturing Research Conference, NAMRC 48, Ohio, USA 

A Brief Review on 3D Bioprinted Skin Substitutes 

Fateme Fayyazbakhsha*, Ming C. Leua 
aDepartment of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, 65409 USA 

 

* Corresponding author. Tel.: +1-573-341-4482; E-mail address:f.fba@mst.edu  

Abstract 

The global escalating cases of skin donor shortage for patients with severe wounds warn the vital need for alternatives to skin 
allografts. Over the last three decades, research in the skin regeneration area has addressed the unmet need for artificial skin 
substitutes. 3D bioprinting is a promising innovative technology to accurately fabricate skin constructs based on natural or synthetic 
bioinks, whether loaded or not loaded with native skin cells (i.e., keratinocytes and fibroblasts) or stem cells in the prescribed 3D 
hierarchal structure to create artificial multilayer and single cell-laden construct. In this paper, the recent developments in 3D 
bioprinting for skin regeneration are reviewed to discuss different aspects of skin bioprinted substitutes, including 3D printing 
technology, bioink composition, and cell-laden constructs. The impact of 3D printing parameters on functionality of the skin 
substitute and cell viability is reviewed to provide insight into controlled fabrication as the critical component of advanced wound 
healing. We highlight the recent and ongoing research in skin bioprinting to address the progress in the translation of advanced 
wound healing from lab to clinic. 

 
© 2019 The Authors, Published by Elsevier B.V. 
Peer review under the responsibility of the scientific committee of NAMRI/SME 

 Keywords: 3D bioprinting; skin; wound healing; tissue regeneration; bioink 

 Introduction  

The skin as the outmost layer of human body, is 
particularly dealing with traumas and injuries. Wound 
healing refers to the normal physiologic response to 
injury which is critical for patient survival. There is a 
variety of wound healing products available in the 
market, the majority of which are biosynthetic wound 
dressings [1]. Despite the good clinical outcomes, 
there are challenges for treatment of different types of 
wound. For example, burn wounds as a major wound 
type are highly dehydrated and require a moist 
environment. Furthermore, most wound dressings 

cannot support the scarless wound healing with skin 
appendages, such as hair follicle, sweat glands and 
native pigment, which are very important for the 
normal appearance and functionality of the skin [2-4]. 
Therefore, research on wound healing has been 
focusing on developing modern wound dressings to 
enable scarless healing and to reduce both 
physiological and psychological inconvenience for 
patients [5]. 

Tissue/organ printing, known as 3D bioprinting, 
enables accurate construction based on biomolecules, 
synthetic/natural hydrogel and cells. These 3D printed 
structures have the potential to repair skin and 

 

Available online at www.sciencedirect.com 

ScienceDirect 
Procedia Manufacturing 00 (2019) 000–000   

     www.elsevier.com/locate/procedia 

   

 

 

 

 

 

2351-9789 © 2019 The Authors, Published by Elsevier B.V. 
Peer review under the responsibility of the scientific committee of NAMRI/SME 

 

48th SME North American Manufacturing Research Conference, NAMRC 48, Ohio, USA 

A Brief Review on 3D Bioprinted Skin Substitutes 

Fateme Fayyazbakhsha*, Ming C. Leua 
aDepartment of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, 65409 USA 

 

* Corresponding author. Tel.: +1-573-341-4482; E-mail address:f.fba@mst.edu  

Abstract 

The global escalating cases of skin donor shortage for patients with severe wounds warn the vital need for alternatives to skin 
allografts. Over the last three decades, research in the skin regeneration area has addressed the unmet need for artificial skin 
substitutes. 3D bioprinting is a promising innovative technology to accurately fabricate skin constructs based on natural or synthetic 
bioinks, whether loaded or not loaded with native skin cells (i.e., keratinocytes and fibroblasts) or stem cells in the prescribed 3D 
hierarchal structure to create artificial multilayer and single cell-laden construct. In this paper, the recent developments in 3D 
bioprinting for skin regeneration are reviewed to discuss different aspects of skin bioprinted substitutes, including 3D printing 
technology, bioink composition, and cell-laden constructs. The impact of 3D printing parameters on functionality of the skin 
substitute and cell viability is reviewed to provide insight into controlled fabrication as the critical component of advanced wound 
healing. We highlight the recent and ongoing research in skin bioprinting to address the progress in the translation of advanced 
wound healing from lab to clinic. 

 
© 2019 The Authors, Published by Elsevier B.V. 
Peer review under the responsibility of the scientific committee of NAMRI/SME 

 Keywords: 3D bioprinting; skin; wound healing; tissue regeneration; bioink 

 Introduction  

The skin as the outmost layer of human body, is 
particularly dealing with traumas and injuries. Wound 
healing refers to the normal physiologic response to 
injury which is critical for patient survival. There is a 
variety of wound healing products available in the 
market, the majority of which are biosynthetic wound 
dressings [1]. Despite the good clinical outcomes, 
there are challenges for treatment of different types of 
wound. For example, burn wounds as a major wound 
type are highly dehydrated and require a moist 
environment. Furthermore, most wound dressings 

cannot support the scarless wound healing with skin 
appendages, such as hair follicle, sweat glands and 
native pigment, which are very important for the 
normal appearance and functionality of the skin [2-4]. 
Therefore, research on wound healing has been 
focusing on developing modern wound dressings to 
enable scarless healing and to reduce both 
physiological and psychological inconvenience for 
patients [5]. 

Tissue/organ printing, known as 3D bioprinting, 
enables accurate construction based on biomolecules, 
synthetic/natural hydrogel and cells. These 3D printed 
structures have the potential to repair skin and 

2 Fayyazbakhsh et al./ Procedia Manufacturing 00 (2019) 000–000 

 

accelerate wound healing, as well as skin related 
pharmacology, toxicology and drug development [6]. 

The first research on skin bioprinting was published 
in 2009, where primary human dermal fibroblasts were 
added to a collagen hydrogel [7]. Currently, skin 
bioprinting is more focused on selecting high-
performance materials to achieve precise printability 
and faster wound healing simultaneously [8-10]. 
Besides the biofunctionality and mechanical properties 
(e.g., viscoelasticity) of bioink, the printing technology 
plays a crucial role in controlling the macrostructure of 
the built construct by using engineering paradigms 
[11]. 

Comparing to the conventional skin regeneration 
approaches, 3D bioprinted skin substitutes are taking 
advantage of the automation and standardization for 
clinical application and precision in deposition of cells. 
Additionally, by employing the 3D bioprinted 
technology, the production time for large size skin 
substitutes decreases significantly. Cells can be added 
to the bioink prior to printing, otherwise cell-free 
bioinks can be printed to develop acellular skin 
regeneration products. Both of the scaffolds take 
advantage of the increased surface area after printing, 
which results in more reactivity and faster healing [12]. 

According to the literature, different synthetic or 
natural hydrogels such as alginate, collagen, and 
cellulose have been investigated in terms of 
printability, mechanical integrity, and biological 
response. Physical and chemical properties including 
glass transition point, viscoelastic behavior, rheology, 
chemical reactivity, and molecular weight play an 
important role in the quality of printed construct [10, 
12, 13].  

In order to promote the skin regeneration, stem cells 
[14-16] and/or terminally differentiated cells [17-21] 
have been widely used in different biofabrication 
methods including 3D bioprinting. Many researchers 
added keratinocyte, fibroblast, or mesenchymal stem 
cells to the bioink to address the regenerative medicine 
approach. The printed cell-laden construct could be 
either applied on the wound immediately or after 
maturation. Some research used novel hybrid co-
culture systems on a 3D layered structure to mimic the 
bilayer epidermal/dermal structure of the native skin 
[18, 19, 21]. 

The recent developments in 3D bioprinting for skin 
regeneration are reviewed to discuss different aspects 
of skin bioprinted substitutes, including 3D printing 
technology, bioink composition, and cell-laden 
constructs. The impact of 3D printing parameters on 
functionality of the skin substitute and cell viability is 
reviewed to provide insight into controlled fabrication 
as the critical component of advanced wound healing. 
We highlight the recent and ongoing research in skin 
bioprinting to address the progress in the translation of 
advanced wound healing from lab to clinic. 

 Printing Technology 

In the recent years, 2D skin substitutes have been 
produced based on electrospinning, casting, freeze-
drying, and 3D bioprinting. Despite the thin and flat 
geometry of skin, 3D skin substitutes have become 
more popular comparing to 2D substitutes, due to the 
enhanced cell viability and tissue regeneration they can 
provide [22, 23].  

 

 

Figure 1- Schematic representation of various techniques of 3D bioprinting. Inkjet bioprinting: Thermal inkjet printers electrically heat the 
printhead to produce air-pressure pulses that force droplets; while acoustic printers use pulses formed by piezoelectric or ultrasound pressure. 
Microextrusion bioprinting: These printers use pneumatic or mechanical dispensing systems (piston or screw) to extrude continuous beads of a 
bioink. Laser-assisted bioprinting: These printers use lasers focused on an absorbing substrate to generate pressures that propel cell-containing 
materials onto a collector substrate. (Copyright 2020, Figure adapted from ref. [24].) 
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Table 1- Main skin bioprinting strategies, pros and cons [7-9, 11, 25-27] 

Technology  Description  Advantages Drawbacks 
Inkjet bioprinting 
[15, 21, 28-30] 

In these printers the bioink is sprayed by 
heater or piezoelectric actuator over a 
biomaterial or culture dish. 

 Simple method and customizable 
 Low cost 
 High cell viability (80-90%) 
 High resolution 
 High speed 
 High reproducibility  

 Low cell density 
 Limited to bioink 

viscosity 
 Risk of exposing cells 

and reagent to thermal 
and mechanical stress 

 Nozzle clogging  
Laser-assisted 
bioprinting 
[21, 31-34] 

These printers use focused laser pulses to 
create a high-pressure bubble that pushes 
the bioink into a laser-absorbing layer, 
where the scaffold is produced layer-by-
layer. 

 High cell viability (80-90%) 
 Variety of printable bioinks 
 Nozzle-free and non-contact  

 Low cell density  
 Complexity 
 High cost 
 Low flow rate due to the 

rapid gelation  
Microextrusion  
bioprinting 
[17, 20, 21, 35-43] 

This printer uses pneumatic, piston or 
screw forces to dispense bioink through a 
nozzle that produces continuous flow of 
material. 

 Printability of highly viscous bioinks 
 Printability of high cell density  
 Simple method 

 Low cell viability 
 Low speed 
 Low resolution  

Bioprinting refers to the 3D simultaneous 
deposition of cells and a bioink using a computer-
controlled printer, to produce functional tissue 
equivalents. Currently, bioprinting has shown 
promising results in skin regeneration and wound 
healing. The main advantages of skin bioprinting 
compared to the traditional cell therapy systems, are 
reproducibility and technical flexibility, besides 
enabling production of patient-specific constructs. The 
applications of skin bioprinting are limited since there 
are few printable polymers and solvents [26, 44]. 

The three main bioprinting strategies for skin tissue 
engineering are inkjet-based, laser-assisted, and 
microextrusion-based. The printed constructs can be in 
the form of cell suspensions, cell-encapsulated 
hydrogels, or cell-free constructs [11, 22].  

 Bioink Composition  

Regardless of the bioprinting technology, the 
functionality of the bioprinted skin substitute is highly 
dependent on the bioink composition and cell type, in 
terms of rheology, mechanical integrity, 
biocompatibility, biodegradation, and antimicrobial 
activity. 

Hydrogels or 3D networks of hydrophilic polymer 
chains have the ability to absorb water up to ten times 
of their initial weight. Hydrogels show promising 
results on wound healing due to providing a moist 

environment and a cell carrier. According to the source 
of production, hydrogels used for skin bioprinting can 
be classified into two main groups, namely natural 
polymers (e.g., collagen, gelatin, alginate) and 
synthetic polymers (e.g., PCL (polycaprolactone), 
PLA (polylactic acid), ABS (acrylonitrile butadiene 
styrene)). Despite the good wound healing efficiency, 
natural hydrogels have poor printability with 
significantly longer recovery time [10, 34]. An ideal 
hydrogel for printing requires to stay in liquid form 
during printing and to become solid after printing to 
maintain the desired geometry in a repeatable manner 
[16]. Table 2 presents a list of hydrogels for skin 
bioprinting as the results of recent research on different 
bioprinted skin substitutes. In order to provide stable 
constructs through predefined shapes, 3D bioprinting 
technology requires crosslinking or rapid gelation.  

 
In order to mimic the bilayer structure of the native 

skin, many researchers have conducted multiple-
nozzle printing to take advantage of layered structure 
of bioprinting technology. One of the most common 
hydrogel combination for keratinocyte/fibroblast co-
culture is an alginate/gelatin double-nozzle printing 
system. Despite the good printability of alginate, its 
application is limited by low cell viability [45]. Hence, 
many researchers combined gelatin with alginate to 
increase cellular response [15, 16, 38, 43].
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Table 2 – Typical hydrogels for skin bioprinting 

Hydrogel  Cell  Advantages Drawbacks  Crosslinking  
Collagen 
[17, 29, 30, 36, 
38] 

 Keratinocyte  
 Fibroblast  
 Neonatal Fibroblast 
  

 High porosity 
 Enhance cell attachment and 

proliferation 
 Absorbability 
 Low immunogenicity 

 Poor solubility  
 Poor mechanical properties 
 Slow gelation time 
 Fibrotic tissue formation 
 Easily clog the nozzle 

N/A 

Gelatin and 
Gelatin-derived 
polymers, e.g. 
GelMa 
[15, 16, 21, 35-38, 
41, 43] 
 

 Keratinocyte  
 Fibroblast  
 Mammary 
 progenitor cells 
 Neonatal Fibroblast 
 Human amniotic 

epithelial cells 

 Low cost 
 Biodegradability 
 Low antigenicity 
 Reversible 

 Poor mechanical strength 
 Unstable to heat 
 Modification required 

UV exposure 
(for GelMa) 
Mushroom 
tyrosinase  
(enzymatic 
cross-
linking) 

Alginate 
[15-18, 23, 38, 
43] 
 

 Keratinocyte  
 Fibroblast  
 Mammary 
 progenitor cells 

 Easy and fast gelation 
 Low cost 

 Low mechanical strength 
 Poor cell attachment 

CaCl2 

Chitosan 
[19, 28, 41] 
 

 Keratinocyte  
 Fibroblast  

 Mild gelation conditions 
 Antibacterial 

 Poor solubility  
 Weak mechanical strength 
 Slow gelation 

Polyethylene 
glycol (PEG) 

Silk 
[28, 37] 
 

 Fibroblast  High mechanical strength 
 Feasible structural modification 
 Controllable degradation 
 Low immunogenicity 

 Poor solubility  
 Need to mixed with other 

polymers for optimal rheology 
and printability 

 Brittle  
 Easily clog the nozzle 

N/A 

Hyaluronic acid 
[17, 21, 42] 

 Keratinocyte  
 Fibroblast 

 Excellent moisture retention  
 Promotes proliferation 
  

 Viscous gel 
 Slow gelation rate, 
 Rapid degradation 

Thiol (DTP) 
UV light 
(365 nm) for 
30 s. 

Poly urethane  
[21] 

 Keratinocyte  
 Fibroblast  

 Flexibility 
 Low antigenicity 
 Increases the printability of other 

polymers 

 Low fluid controllability 
 Need to be mixed with other 

hydrogel 
 Unstable to heat 

Thrombin 

 
Koch et al. carried out the first research on 

bioprinted skin substitutes using a collagen bioink 
mixed with keratinocytes and fibroblasts separately 
and developed a bilayer construct based on collagen 
with keratinocyte and fibroblast on the surface layer 
and lower layers, respectively [7]. Further endeavors 
on developing multilayer skin constructs have utilized 
multiple nozzles to deposit the cell-laden layers more 
precisely [17-19, 21, 31]. Some researchers have 
equipped stem cell-laden bioinks to take advantage of 
the differentiation potential [46-48]. As shown in 
Table 2, bioprinted skin constructs could be divided 
into three groups in term of the nature of loaded cells, 
namely primary cell-laden constructs (e.g., 
keratinocyte, fibroblast, and skin appendages), stem 

cell-laden constructs (bone marrow derived, adipose 
derived, and umbilical stem cell), and cell-free 
constructs [17, 19, 38]. Figure 2 (A, B) shows the 
printability of cell-laden 3D bioprinted constructs 
based on alginate and gelatin. To investigate the cell 
viability of the 3D construct, the live/dead assay has 
been used in most research, as is exampled in Figure 2 
(C) [3, 16, 23, 30, 34, 38, 41, 44].  

To address the main challenges of skin 
regeneration, such as poor vascularization, lack of hair 
follicles and other skin appendages, some researchers 
focused on regenerating skin appendages, such as hair 
follicles, sweat glands, and melanocytes [15, 49-51]. 
Terminally differentiated cells need to be insulated and 
harvested prior to printing to mimic the natural niche 
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Table 1- Main skin bioprinting strategies, pros and cons [7-9, 11, 25-27] 

Technology  Description  Advantages Drawbacks 
Inkjet bioprinting 
[15, 21, 28-30] 

In these printers the bioink is sprayed by 
heater or piezoelectric actuator over a 
biomaterial or culture dish. 

 Simple method and customizable 
 Low cost 
 High cell viability (80-90%) 
 High resolution 
 High speed 
 High reproducibility  

 Low cell density 
 Limited to bioink 

viscosity 
 Risk of exposing cells 

and reagent to thermal 
and mechanical stress 

 Nozzle clogging  
Laser-assisted 
bioprinting 
[21, 31-34] 

These printers use focused laser pulses to 
create a high-pressure bubble that pushes 
the bioink into a laser-absorbing layer, 
where the scaffold is produced layer-by-
layer. 

 High cell viability (80-90%) 
 Variety of printable bioinks 
 Nozzle-free and non-contact  

 Low cell density  
 Complexity 
 High cost 
 Low flow rate due to the 

rapid gelation  
Microextrusion  
bioprinting 
[17, 20, 21, 35-43] 

This printer uses pneumatic, piston or 
screw forces to dispense bioink through a 
nozzle that produces continuous flow of 
material. 

 Printability of highly viscous bioinks 
 Printability of high cell density  
 Simple method 

 Low cell viability 
 Low speed 
 Low resolution  

Bioprinting refers to the 3D simultaneous 
deposition of cells and a bioink using a computer-
controlled printer, to produce functional tissue 
equivalents. Currently, bioprinting has shown 
promising results in skin regeneration and wound 
healing. The main advantages of skin bioprinting 
compared to the traditional cell therapy systems, are 
reproducibility and technical flexibility, besides 
enabling production of patient-specific constructs. The 
applications of skin bioprinting are limited since there 
are few printable polymers and solvents [26, 44]. 

The three main bioprinting strategies for skin tissue 
engineering are inkjet-based, laser-assisted, and 
microextrusion-based. The printed constructs can be in 
the form of cell suspensions, cell-encapsulated 
hydrogels, or cell-free constructs [11, 22].  

 Bioink Composition  

Regardless of the bioprinting technology, the 
functionality of the bioprinted skin substitute is highly 
dependent on the bioink composition and cell type, in 
terms of rheology, mechanical integrity, 
biocompatibility, biodegradation, and antimicrobial 
activity. 

Hydrogels or 3D networks of hydrophilic polymer 
chains have the ability to absorb water up to ten times 
of their initial weight. Hydrogels show promising 
results on wound healing due to providing a moist 

environment and a cell carrier. According to the source 
of production, hydrogels used for skin bioprinting can 
be classified into two main groups, namely natural 
polymers (e.g., collagen, gelatin, alginate) and 
synthetic polymers (e.g., PCL (polycaprolactone), 
PLA (polylactic acid), ABS (acrylonitrile butadiene 
styrene)). Despite the good wound healing efficiency, 
natural hydrogels have poor printability with 
significantly longer recovery time [10, 34]. An ideal 
hydrogel for printing requires to stay in liquid form 
during printing and to become solid after printing to 
maintain the desired geometry in a repeatable manner 
[16]. Table 2 presents a list of hydrogels for skin 
bioprinting as the results of recent research on different 
bioprinted skin substitutes. In order to provide stable 
constructs through predefined shapes, 3D bioprinting 
technology requires crosslinking or rapid gelation.  

 
In order to mimic the bilayer structure of the native 

skin, many researchers have conducted multiple-
nozzle printing to take advantage of layered structure 
of bioprinting technology. One of the most common 
hydrogel combination for keratinocyte/fibroblast co-
culture is an alginate/gelatin double-nozzle printing 
system. Despite the good printability of alginate, its 
application is limited by low cell viability [45]. Hence, 
many researchers combined gelatin with alginate to 
increase cellular response [15, 16, 38, 43].
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Table 2 – Typical hydrogels for skin bioprinting 

Hydrogel  Cell  Advantages Drawbacks  Crosslinking  
Collagen 
[17, 29, 30, 36, 
38] 

 Keratinocyte  
 Fibroblast  
 Neonatal Fibroblast 
  

 High porosity 
 Enhance cell attachment and 

proliferation 
 Absorbability 
 Low immunogenicity 

 Poor solubility  
 Poor mechanical properties 
 Slow gelation time 
 Fibrotic tissue formation 
 Easily clog the nozzle 

N/A 

Gelatin and 
Gelatin-derived 
polymers, e.g. 
GelMa 
[15, 16, 21, 35-38, 
41, 43] 
 

 Keratinocyte  
 Fibroblast  
 Mammary 
 progenitor cells 
 Neonatal Fibroblast 
 Human amniotic 

epithelial cells 

 Low cost 
 Biodegradability 
 Low antigenicity 
 Reversible 

 Poor mechanical strength 
 Unstable to heat 
 Modification required 

UV exposure 
(for GelMa) 
Mushroom 
tyrosinase  
(enzymatic 
cross-
linking) 

Alginate 
[15-18, 23, 38, 
43] 
 

 Keratinocyte  
 Fibroblast  
 Mammary 
 progenitor cells 

 Easy and fast gelation 
 Low cost 

 Low mechanical strength 
 Poor cell attachment 

CaCl2 

Chitosan 
[19, 28, 41] 
 

 Keratinocyte  
 Fibroblast  

 Mild gelation conditions 
 Antibacterial 

 Poor solubility  
 Weak mechanical strength 
 Slow gelation 

Polyethylene 
glycol (PEG) 

Silk 
[28, 37] 
 

 Fibroblast  High mechanical strength 
 Feasible structural modification 
 Controllable degradation 
 Low immunogenicity 

 Poor solubility  
 Need to mixed with other 

polymers for optimal rheology 
and printability 

 Brittle  
 Easily clog the nozzle 

N/A 

Hyaluronic acid 
[17, 21, 42] 

 Keratinocyte  
 Fibroblast 

 Excellent moisture retention  
 Promotes proliferation 
  

 Viscous gel 
 Slow gelation rate, 
 Rapid degradation 

Thiol (DTP) 
UV light 
(365 nm) for 
30 s. 

Poly urethane  
[21] 

 Keratinocyte  
 Fibroblast  

 Flexibility 
 Low antigenicity 
 Increases the printability of other 

polymers 

 Low fluid controllability 
 Need to be mixed with other 

hydrogel 
 Unstable to heat 

Thrombin 

 
Koch et al. carried out the first research on 

bioprinted skin substitutes using a collagen bioink 
mixed with keratinocytes and fibroblasts separately 
and developed a bilayer construct based on collagen 
with keratinocyte and fibroblast on the surface layer 
and lower layers, respectively [7]. Further endeavors 
on developing multilayer skin constructs have utilized 
multiple nozzles to deposit the cell-laden layers more 
precisely [17-19, 21, 31]. Some researchers have 
equipped stem cell-laden bioinks to take advantage of 
the differentiation potential [46-48]. As shown in 
Table 2, bioprinted skin constructs could be divided 
into three groups in term of the nature of loaded cells, 
namely primary cell-laden constructs (e.g., 
keratinocyte, fibroblast, and skin appendages), stem 

cell-laden constructs (bone marrow derived, adipose 
derived, and umbilical stem cell), and cell-free 
constructs [17, 19, 38]. Figure 2 (A, B) shows the 
printability of cell-laden 3D bioprinted constructs 
based on alginate and gelatin. To investigate the cell 
viability of the 3D construct, the live/dead assay has 
been used in most research, as is exampled in Figure 2 
(C) [3, 16, 23, 30, 34, 38, 41, 44].  

To address the main challenges of skin 
regeneration, such as poor vascularization, lack of hair 
follicles and other skin appendages, some researchers 
focused on regenerating skin appendages, such as hair 
follicles, sweat glands, and melanocytes [15, 49-51]. 
Terminally differentiated cells need to be insulated and 
harvested prior to printing to mimic the natural niche 
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of skin. Moreover, in order to regenerate more 
functional and vascularized skin constructs, either 
biomolecules (e.g., growth factors, proteins, and 
nanoparticles), or physical signaling factors (e.g., 
mechanical/electrical stimuli, hollow microchannels 

and branched microstructure) have been focused in the 
ongoing research [4, 52, 53].  

 
 

  

 

Figure 2. Printability  of bioinks based on alginate and gelatin, Lattices printed with bioinks consisting of a 1:2 ratio of low to high molecular 
weight alginate in (A, B). Cell viability within these lattices after 7 days of culture, scale bar 500 µm (C). Copyright 2019, Reproduced with 
permission from Williams et al. [54]

 Conclusion  

The promising results in skin bioprinting 3D have 
shown that not only adding keratinocytes, fibroblasts 
and stem cells directly into different bioinks such as 
gelatin, alginate, and chitosan is possible, but also 
printing reproducible skin constructs with mechanical 
integrity and functional regeneration of skin tissue 
with minimal damage to printed cells leads to 
enhanced wound healing. Moreover, by controlling the 
printing parameters including temperature, extrusion 
rate, and geometry, as well as bioink chemical and 
physical properties (e.g., viscosity, cell density, and 
crosslinking), the functionality of the bioprinted 
construct has been optimized in terms of cell viability, 
wound healing and vascularization. Although the main 
application of skin bioprinting technology is wound 
healing, it has also been used in diagnostic applications 
such as toxicity, pharmaceutical, and cosmetic testing. 
However, reconstructive surgery and scarless wound 
healing, as the main clinical outcomes of skin 
bioprinting technology, are very promising research 
avenues to facilitate clinical translation. 
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of skin. Moreover, in order to regenerate more 
functional and vascularized skin constructs, either 
biomolecules (e.g., growth factors, proteins, and 
nanoparticles), or physical signaling factors (e.g., 
mechanical/electrical stimuli, hollow microchannels 

and branched microstructure) have been focused in the 
ongoing research [4, 52, 53].  

 
 

  

 

Figure 2. Printability  of bioinks based on alginate and gelatin, Lattices printed with bioinks consisting of a 1:2 ratio of low to high molecular 
weight alginate in (A, B). Cell viability within these lattices after 7 days of culture, scale bar 500 µm (C). Copyright 2019, Reproduced with 
permission from Williams et al. [54]

 Conclusion  

The promising results in skin bioprinting 3D have 
shown that not only adding keratinocytes, fibroblasts 
and stem cells directly into different bioinks such as 
gelatin, alginate, and chitosan is possible, but also 
printing reproducible skin constructs with mechanical 
integrity and functional regeneration of skin tissue 
with minimal damage to printed cells leads to 
enhanced wound healing. Moreover, by controlling the 
printing parameters including temperature, extrusion 
rate, and geometry, as well as bioink chemical and 
physical properties (e.g., viscosity, cell density, and 
crosslinking), the functionality of the bioprinted 
construct has been optimized in terms of cell viability, 
wound healing and vascularization. Although the main 
application of skin bioprinting technology is wound 
healing, it has also been used in diagnostic applications 
such as toxicity, pharmaceutical, and cosmetic testing. 
However, reconstructive surgery and scarless wound 
healing, as the main clinical outcomes of skin 
bioprinting technology, are very promising research 
avenues to facilitate clinical translation. 
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