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Abstract This paper probed deep into a high-temperature resistant inorganic matrix:

alkali-activated slag cement (AASC), which is a kind of cementitious material prepared by

alkali-activator and pozzolanic or latent hydraulic material. Firstly, the mix ratio of the AASC

was optimized to improve the wettability and mechanical properties. Then, the effects of the

adhesive matrix and the type of fiber-reinforced polymer (FRP) were observed through FRP-to-

concrete bond tests on 93 specimens. The test results, coupled with anchorage analysis, indicate that

the AASC has comparable reinforcing effects as those of organic epoxy matrix; the anchorage

length of FRP sheets has a significant influence on the failure behavior and failure mode of

FRP-enhanced concrete structures. In addition, our tests prove that the AASC has favorable

high-temperature resistance and bonding effects. The research results provide a good reference

for the design and application of inorganic matrix for FRP-enhancement of concrete structures.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/

4.0/).

1. Introduction

In recent years, fiber reinforced polymer (FRP) composites
have been widely applied to enhance the strength and stiffness

of structures, thanks to their ease of handling, superior corro-
sion resistance, high specific strength, high-temperature resis-
tance. The FRP-reinforced bridges, tunnel linings and
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buildings are living proof of the remarkable efficiency of the
FRP bonding technique [1,2].

The effects of FRP reinforcement directly depend on the

adhesive matrix. Organic epoxy matrices, which are commer-
cially available, have often been adopted for FRP reinforce-
ment [3,4]. However, there are several defects with organic

matrices, namely, poor resistance to heat and fire, low glass
transition temperature Tg (60–82 �C), susceptibility to ultravi-
olet (UV) radiation, and inapplicability to humid surfaces

[5,6].
The above defects can be overcome by an emerging cemen-

titious material: the alkali-activated slag cement (AASC). The
AASC was prepared by mixing ground-granulated blast-

furnace slag (GGBFS) with alkaline activators [7,8]. This
low-viscosity inorganic matrix can effectively penetrate into
FRP sheets. Compared with organic epoxy matrices, the

AASC is highly resistant to fire and high temperature (its
strength at 600 �C is no weaker than that at room tempera-
ture), not susceptible to UV radiation, and applicable at low

temperatures or on wet surfaces [9,10].
The application of organic matrices is detailed in the Guide

for the Design and Construction of Externally Bonded FRP Sys-

tems for Strengthening Concrete Structures, which is reported
by ACI Committee 440 [5]. By contrast, the reinforcement
effect of inorganic matrices is only discussed by a few scholars
[11–13]. Most studies related to the AASC have only focused

on the immobilization of hazardous wastes [14]. There is little
report on the performance of concrete structures enhanced
with FRP sheets bonded by inorganic matrices rather than

organic epoxy matrices [15,16].
This paper attempted to develop a high-temperature resis-

tant inorganic matrix to be an alternative for organic epoxy.

For this purpose, the mix ratio of the AASC and type of
FRP sheets were optimized in turn. The feasibility of the
AASC with the optimal mix ratio, coupled with the best type

of FRP sheets, was verified through tests on failure modes,
basic anchorage lengths, and strain development at FRP rup-
ture. The research results provide a good reference for the
design and application of inorganic matrix for FRP-

enhancement of concrete structures.

2. Preparation of AASC

2.1. Materials

The granulated blast furnace slag was grounded in a Vertical
Slag Ball Mill to the specific surface area (SSA) of 475
m2/kg, which fall to Grade S95 specified in the Ground

Granulated Blast Furnace Slag Used for Cement and Concrete
(GB/T 18046-2008). The chemical composition of the GGBFS
is explained in Table 1.

The alkaline activator was prepared by mixing sodium
hydroxide with potassium silicate. The sodium hydroxide
was dissolved in potassium silicate to adjust the modulus
(Ms). Firstly, the sodium hydroxide was mixed for about

1 min at low speed, then water was poured into the pan and
stirred for approximately 6 min until the mixture was well
combined. The potassium silicate belongs to Class 1 as speci-

fied in the Potassium Silicate for Industrial Use (HG/T 4131-
2010), whose specific gravity is 1.465 and silica modulus
(Ms1) is 1.76 (Ms1 = SiO2/K2O; K2O = 15.98%;

SiO2 = 28.15%). The sodium hydroxide pearls were dissolved
in potassium silicate solution to adjust its silica modulus

(Ms = SiO2/(K2O + Na2O)).

2.2. Optimization of mix ratio

To optimize the mix ratio of the AASC for FRP reinforce-
ment, this section investigates the three factors that affect
strength and wettability: silica modulus (Ms), sodium

silicate-to-slag ratio, and water-to-slag ratio (Table 2).
According to the Standard for test method of basic proper-

ties of construction mortar (JGJ/T70-2009), the compressive
strength of the mixture must surpass 70 MPa. For the safety

and reliability of the bonding interface, the adhesives should
outperform the concrete substrate in mechanical properties
[17]. Therefore, based upon JGJ/T70-2009, the compressive

strength of the AASC at room temperature was tested on an
automatic bending compression test and control system
(Fig. 1), such as to optimize the mix ratio of the AASC.

In order to more clearly describe the equipment and sys-
tems, the specific details are as follows: Firstly, the
40 mm � 40 mm � 160 mm specimen was folded into two

halves on the Yaw-300 Automatic Press and Folding Test
Machine, and the loading rate of the testing machine was
0.25kN/s. Then, the half specimen (its size was about
40 mm � 40 mm � 80 mm) was pressed in the two sides of

the specimen when it was formed. The standard compression
fixture could ensure that the compression surface was
40 mm � 40 mm.

The test results [18,19] show that reasonable choice of
alkaline activator can make the compressive strength of the
mixture surpass 70 MPa. At the same dose, water glass (which

means potassium silicate) is the strongest alkaline activator,
followed in turn by sodium hydroxide and P.O 42.5 cement.
The same dose of water glass and sodium hydroxide can create
a more alkaline environment than cement, which is favorable

for the hydration of cementitious materials. The superiority
of water glass over sodium hydroxide is attributable to Si
(OH)4, the hydrolysate of water glass, exists as colloid. During

the hydration of water glass, Si(OH)4 can adsorb Si-O anionic
group and alkali metal ions in the liquid, resulting in the poly-
condensation of monomers and speeding up hydration. The

hydrolysate also prevents the Si-O anionic group from super-
saturation around slags, and thus depolymerizes the slags.

Table 1 Chemical composition of the

GGBFS.

Name of component Weight percent

Silica (SiO2) 33.70

Alumina (Al2O3) 14.40

Calcium oxide (CaO) 41.70

Ferrous oxide (FeO) 0.37

Potassium oxide (K2O) 0.31

Magnesium oxide (MgO) 8.60

Sulphur trioxide (SO3) 0.40

Sodium oxide (Na2O) 0.02

Chloride 0.01

Residuum 0.10

Loss on ignition (LOI) 0.39

Specific gravity 2.87 g/cm3
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Therefore, potash water glass was adopted as the alkaline
activator of the GGBFS. Equal mass of slag (800 g) was

employed each time, such as to convert the doses of water
glass and water into percentages of slag mass. Three AASC
specimens of the size 40 mm � 40 mm � 160 mm were
molded and solidified in a standard curing room, and

demolded after 24 h after casting. After 28 days of aging, the
compressive strength of each specimen was measured as per
the Method of Testing Cements: Determination of Strength

(GB/T 17671-1999).
During the measurement [7,8], the modulus of water glass

(The molecular formulas of water glass are Na2O�nSiO2 and

K2O�nSiO2. The coefficient n in the formula is called the mod-
ulus of water glass, which is the molecular ratio (or molar
ratio) of silica and alkali metal oxides in water glass) was

adjusted from 0.8 to 2.4 by adding a suitable amount of
sodium hydroxide. For example, the modulus of water glass
M = 1.0 was achieved by adjusting the molar ratio of the
solution to n(SiO2):m(K2O + Na2O) = 1.0:1. As shown in

Fig. 2, the compressive strength of 40 mm � 40 mm �
160 mm specimen was decreased with the growing modulus
of water glass. When the modulus was M = 0.8, the water

glass became viscous and virtually immobile; a small amount
of crystalline precipitated after standing for a while at room
temperature. Once the modulus increased to M = 1.0, the

mobility of the water glass was relatively good, leaving no sign
of crystallization; meanwhile, the compressive strength of the
specimens could reach 80.88 MPa. Therefore, the modulus of
water glass is set to 1.0 in this research.

Under the modulus of water glass of 1.0, the dose of water
glass was increased from 8% to 22%. The results of
40 mm � 40 mm � 160 mm specimen in Table 3 and Fig. 3

show that, the compressive strength of AASC first increased
and then decreased, with the growing dose of water glass.
Hence, there must be an optimal range for the dose of water

glass. If the dose is too small, the hydration cannot proceed
thoroughly, failing to fully activate the slags; if the dose is

too large, the excess alkalis will react with CO2 in the air to
produce carbonates, which suppresses the compressive

strength of the cementitious material. What is worse, the heavy
presence of hydroxyl radicals will lead to a rapid accumulation
of hydrates around slag particles, forming a protective film

that prevents further reaction and delays the strength develop-
ment of the cementitious material. Therefore, the dose of water
glass is set to 12% in this research.

Furthermore, the compressive strength of each specimen

was measured, as the dose of water (part of which comes from
the water glass) was changed from 35%, 42% to 45%. It can
be seen from the measured results of

40 mm � 40 mm � 160 mm specimen (Fig. 4) that, at the water
dose of 35%, the compressive strength of AASC reached
90.16 MPa. In this case, the adhesive was relatively viscous,

and the initial setting time was merely 30 min, failing to meet
the time requirements of construction operations. At the water
dose of 42%, the compressive strength of the AASC stood at
80.88 MPa, and the adhesive was moderately viscous. In this

case, the initial and final setting times of AASC were 45 min
and 80 min, respectively. Thus, the FRP sheets could be fully
infiltrated and pestled to complete the paste operation. At the

water dose of 45%, the adhesive had relatively poor cohesion,
and the AASC exhibited relatively low compressive strength.
As a result, the water dose was set to 42% for further analysis.

3. FRP-to-concrete bond tests at room temperature

3.1. Test materials

Besides the mix ratio of AASC, the bonding between AASC

and FRP sheets in reinforcement of concrete structures was

Table 2 The mix ratio of the AASC.

Number Slag Silica modulus (Ms) Potassium silicate amount, % Sodium hydroxide,% Water amount %

W32 1 1.0 14 4.58 32

W35 1 1.0 12 5.35 35

Fig. 1 The automatic bending compression test and control

system.

Fig. 2 The effects of modulus of water glass on compressive

strength of AASC.
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also affected by the tensile strength and wettability of FRP

sheets. Hence, three kinds of FRP sheets were subjected to
double shear tests, including UT70-20 carbon fiber reinforced
polymer (CFRP) sheets (Toray, Japan), UT70-30 CFRP sheets

(Toray, Japan), and BUF13-380 basalt fiber reinforced

polymer (BFRP) sheets (Zhejiang Goldstone Co., China).
Table 4 lists the basic properties of the three FRP sheets.

Before the FRP-to-concrete bond tests, the AASC speci-
mens were prepared with the optimized mix ratio, and concrete
blocks (size: 100 mm � 100 mm � 100 mm) were enhanced

with one layer of FRP sheet (width: 70 mm; length: 100 mm)
bonded with AASC for in-plane shear tests. Three standard
concrete blocks (size: 150 mm � 150 mm � 150 mm) were

casted for unconfined compressive strength tests, according
to the Code for Design of Concrete Structures. The compressive
strength of these blocks was 31.55 MPa at the age of 28 days.

3.2. Test procedure

According to the Technical Specification for Strengthening
Concrete Structures with Carbon Fiber Reinforced Polymer

Laminate (CECS 146: 2003), the test procedure was designed
as follows (Fig. 5), with the same ratio of AASC serving as
the primer, putty and saturant.

Step 1. Cleaning the surface of concrete

To create a good bonding layer, the structural layer of the
concrete should be exposed. Therefore, the concrete surface
was polished smooth, and rid of any loose surface material.
To enhance the bond between FRP sheets and concrete, the

dusts, oil stains and other impurities were erased from the con-
crete surface with acetone. The cleaned surface was kept wet
before applying the FRP sheets.

Step 2. Clipping the FRP sheets

To meet the test requirements, the FRP sheets were clipped
into strips 600 mm in length and 70 mm in width.

Step 3. Impregnating and pestling the FRP strips

The FRP strips were immersed in a square groove filled
with AASC prepared with the optimal mix ratio, and then pes-

tled unidirectionally with a smooth roller for 15 min.

Step 4. Brushing the primer

The AASC was brushed uniformly onto the concrete sur-
face, and the adhesive was controlled within 2 mm thick.

Table 3 The effects of dose of water glass on compressive strength of AASC (MPa).

Dose of water glass Compressive strength Mean strength

1 2 3 4 5 6

8% 70.69 69.86 71.05 69.51 70.94 71.49 70.59

10% 74.80 75.16 76.01 75.37 76.23 76.51 75.68

12% 80.91 80.58 80.63 81.22 81.19 80.75 80.88

14% 78.19 77.75 78.44 77.90 76.58 76.74 77.60

16% 73.68 74.19 74.63 74.01 74.14 74.37 74.17

18% 69.33 70.94 69.85 70.75 71.19 70.64 70.45

20% 54.19 54.27 54.56 55.04 54.20 54.14 54.40

22% 46.97 47.45 47.33 47.85 47.20 47.78 47.43

Note: (a) The AASC specimens were of the size 40 mm � 40 mm � 160 mm; (b) As shown in Fig. 1, each specimen was split into two halves

along the centerline with a bending device, and one half was crushed with one side facing up in the standard compression fixture; (c) The

standard compression fixture has a bearing plate, which controls the compression area as a 40 mm � 40 mm square.

Fig. 3 The effects of dosage of water glass on compressive

strength of AASC.

Fig. 4 The effects of dosage of water on compressive strength of

AASC.
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Step 5. Bonding the FRP strips

Each impregnated and pestled FRP strip was pasted on the
concrete surface (droplet side down). Then, the air bubbles

within the AASC were expelled with a plastic scraper.

Step 6. Brushing the surface adhesive

The AASC was brushed uniformly onto the surface of the
externally bonded FRP strips, guarding against potentially

damaging environmental and mechanical effects. The adhesive
was controlled within 2 mm thick.

Step 7. Specimen curing

The bonded specimens were solidified in a standard curing
room until 3d, 7d and 28d age.

Step 8. Double shear testing

A total of 33 concrete cubes with
100 mm � 100 mm � 100 mm size were reinforced with

FRP sheets bonded with AASC or organic adhesive, and sub-
jected to double shear tests (Fig. 6).

3.3. Comparison of bonding effects of FRP sheets

Theoretically, there are four typical failure modes for FRP
sheets bonded to concrete blocks with inorganic matrices: test

[1]: concrete failure, test [2]: concrete-to-adhesive interface fail-
ure, test [3]: adhesive failure, and test [4]: FRP-to-adhesive
interface failure. After concrete failure, a large area of concrete

adjacent to the adhesive-concrete interface will cling to the
FRP strip; after concrete-to-adhesive interface failure,
the entire adhesive layer and a few concrete will cling to the

(a) Cleaning the surface of concrete.   (b) Impregnating and pestling the FRP strips.

(c) Brushing the primer. (d) Bonding the FRP strips.

(e) Expelling the air bubbles.   (f) Brushing the surface adhesive. 

Fig. 5 The bonding of the FRP sheets.

Table 4 The basic properties of the three FRP sheets.

Type Ma (g/m2) tf (mm) T (MPa) E (GPa) d (%)

UT70-20 CFRP sheets 200 0.111 4114 243 1.71

UT70-30 CFRP sheets 300 0.167 4125 244 1.71

BUF13-380 BFRP sheets 380 0.180 2300 91 2.60

Note: Ma is mass per unit area; tf is calculated thickness; T is standard tensile strength; E is elastic modulus; d is elongation under sustained

loading.
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FRP strip; after adhesive failure, the concrete will be separated
from the FRP strip, as the adhesive layer slips internally; after
FRP-to-adhesive interface failure, most adhesives will cling to

the concrete surface.
For the above four failure modes, the tensile strength of the

adhesive should be much greater than that of concrete, if there

is a good wettability between the adhesive and FRP sheets.
The latter three failure modes rarely appear in reliable con-
structions, and should not appear in concrete structures rein-

forced with FRP sheets. Hence, the ideal failure mode is
concrete failure, after which a thin layer of concrete is peeled
off from the concrete surface.

The mechanical model of the in-plane shear test is shown in

Fig. 7, where ta is the primer thickness (about 2 mm); tf is
the calculated thickness of single-layer FRP sheet (about
0–0.2 mm); bc is the width of concrete specimens

(about 100 mm); bf is the width of single-layer FRP sheet
(about 0–100 mm); La is the anchorage length of FRP
sheets (about 200–500 mm) [20–23].

Fig. 8 displays the failure situations of the concrete speci-
mens enhanced with each of the three FRP sheets bonded with
AASC. Table 5 compares the in-plane shear strengths of the

three FRP sheets at different ages.
The comparison shows that the UT70-20 CFRP sheets,

which are relatively thin, suffered both peeling and tensile fail-
ure during the double shear tests; the UT70-30 CFRP sheets,

which are moderately dense, were stripped as a whole plate
through impregnating and pestling in the AASC; the
BUF13-380 BFRP sheets, which have poor wettability,

showed a small in-plane shear strength; after failure, some
adhesives were attached to the concrete reinforced with
BFRP sheets. Thus, the UT70-20 and UT70-30 CFRP sheets

bonded with AASC can effectively reinforce the concrete
specimens.

3.4. Comparison of shear effects between AASC and organic
adhesive

The CFRP sheets separately bonded with the AASC and

organic epoxy were subjected to double shear tests. The tensile
strengths of the two types of sheets were both above 3.5 MPa,
greater than the tensile strength of concrete. The specimen size

and preparation procedure were mentioned in Section 2.1 and
the failure situations are displayed in Fig. 9. The test results are
listed in Table 6.

It can be seen that the CFRP sheets bonded with AASC
achieved an in-plane shear strength of 1.34 MPa, which was
almost the same as that of those bonded with organic epoxy.
Moreover, these CFRP sheets brought the ideal failure mode:

a large area of concrete adjacent to the adhesive-concrete inter-
face clung to the FRP strip. The comparison proves the feasi-
bility of reinforcing concrete structures with FRP sheets

bonded with AASC.

4. CFRP anchorage length tests at room temperature

The synergy between CFRP sheets and concrete depends on
the bonding strength of the interfaces between the CFRP
sheets, the adhesive and the concrete. To maximize the enhanc-

ing effect of the CFRP sheets, the interface must have suffi-
cient bonding strength to transfer shear stress. If the
anchorage length of CFRP sheets is insufficient, the stress will

concentrate on the CFRP end, causing the FRP strip to detach
from the concrete. In this case, the CFRP sheets will cease to
exert the enhancing effect. If the anchorage length of CFRP
sheets is too long, there will be a huge waste of materials.

Therefore, the anchorage length must be properly determined
in practical engineering [16].

4.1. Test program

Under flexural stress, the height of the reinforced concrete
beams is much greater than the thickness of CFRP sheets.

Hence, the reinforced concrete beams may have to bear all
the vertical shear stress. Meanwhile, the CFRP sheets
anchored to the bottom of the beam mainly withstand the

interfacial shear stress, and the effect of normal peeling stress
is so small as to be negligible. As a result, the basic anchorage
length of CFRP sheets was identified through a double shear
test, which saves labor and raw materials.

Fig. 7 The mechanical model of in-plane shear test [1].

Fig. 6 The instrument of double-shear tests.
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A total of 10 concrete samples were reinforced with CFRP
sheets bonded with AASC, and subjected to double shear tests.
Both UT70-20 and UT70-30 CFRP sheets were selected for the
double shear test, in addition to a concrete prism of the size

1,000 mm � 160 mm � 160 mm. The concrete surface was
bonded with one layer of 70 mm-width CFRP sheets. The
materials were prepared as mentioned in Section 2.1, and the

test instrument is illustrated in Fig. 10. To ensure the enhanc-
ing effect, four reinforcing steel bars (diameter: 12 mm) were
embedded in each concrete prism. The distance from the con-

crete surface to the outside of the stirrups (diameter: 6 mm)
was 25 mm. The stirrups were arranged at an interval of
150 mm. The mechanical properties of the steel bars are listed
in Table 7.

Assuming that the bonding stress is uniformly distributed
along the anchorage length of CFRP sheets, the average shear
strength can be calculated by:

s ¼ P
�

2bfLa

ð1Þ

where, s is the mean shear strength; P
�
is the mean failure load;

bf is the width of the CFRP strip; La is the anchorage length of

the CFRP sheets. Obviously, the mean shear strength is not
equal to maximum bond stress. However, the mean shear
strength can serve as a reference in the evaluation of bonding

strength.
The anchorage lengths of CFRP sheets were identified by

changing the bonding length of the CFRP sheets and measur-

ing their strain development [20]. The strain gauges were posi-
tioned close to the loading end along the anchorage length at
an interval of 10 mm. The center of the first strain gauge
was 5 mm from the loading end. The interval between the

middle strain gauges was 10 mm, and that between the last
three strain gauges was 15 mm.

4.2. Results analysis

As shown in Fig. 11, two anchorage failure modes were
observed from 20 specimens: 16 specimens suffered from
anchorage failure and 4 underwent tensile failure of CFRP

sheets.

(1) Anchorage failure

In 16 specimens, the concrete cover peeled off near the
CFRP sheets. The peeling started as visible cracking near the

loading end of the concrete prism, along the longitudinal axis
of the CFRP sheets. With the growth in external load, the con-
crete cracking kicked off interfacial peeling of the CFRP strip
off the loading end. The peeling mainly occurred in the middle

of the specimen along the longitudinal axis. A thin layer of
concrete peeled off and clung to the CFRP strip, giving off a
loud popping sound. Once the anchorage length was insuffi-

cient, the anchorage failure would take place.

(2) Tensile failure of CFRP sheets

In 4 specimens, a crisp sound was heard due to the peeling
of concrete adjacent to the adhesive-concrete surface, when the
external load grew to about 80% of the ultimate load. This

means the CFRP sheets were pulled uniformly. Then, a sharp
crackling sound might be heard due to CFRP rupture. The
fractured surface of the CFRP sheets generally had zigzagging

cracks, and concentrated in the non-anchorage zone of CFRP

(a) 0.111mm-thick CFRP sheets.     (b) 0.167mm-thick CFRP sheets. 

  (c) 0.180mm-thick BFRP sheets.

Fig. 8 The failure situations of the concrete specimens enhanced with each of the three FRP sheets bonded with AASC.
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sheets. Once the anchorage length was insufficient, the CFRP
sheets would suffer from tensile failure.

The anchorage length of CFRP sheets could be identified
clearly based on the test results in Table 8. This explains pre-

cisely the concept of anchorage length: the length along the
CFRP sheets that the stress is transferred, i.e. the length along
the CFRP sheets with non-zero strain.

From the Fig. 11, it is proved that when the anchorage
length of CFRP sheet is not enough, the specimen suffers from

anchorage failure. When the anchorage length of CFRP sheet
is enough, the specimen suffers from tensile failure of CFRP
sheet.

Fig. 12 shows the strain distribution and development for

specimens T-10 and T-20 along the CFRP strip, where P is
the applied load; Pu is the ultimate load; s is the slip at the
loaded end. It can be seen that the anchorage length increased

almost linearly with the applied load, but the mean shear
strength decreased with the growing anchorage length

Table 5 Comparison of the in-plane shear strengths of three FRP sheets.

Type tf (mm) A (d) No. P (kN) Failure mode R (%) P
�
(kN) s (MPa)

UT70-20

CFRP sheets

0.111 3 1 12.0 60% 13.27 �0.95

2 13.3 Failure mode (1) 70%

3 14.5 75%

7 1 13.2 80% 14.40 �1.03

2 14.7 Failure mode (1) 75%

3 15.3 80%

28 1 15.8 75% 16.87 �1.20

2 16.5 Failure mode (1) 85%

3 18.3 90%

UT70-30

CFRP sheets

0.167 3 1 14.4 30% 15.43 1.12

2 15.6 Failure mode (1) 45%

3 16.3 60%

7 1 16.4 70% 18.10 1.29

2 18.6 Failure mode (1) 75%

3 19.3 85%

28 1 17.7 80% 18.70 1.34

2 18.1 Failure mode (1) 85%

3 20.3 95%

BUF13-380

BFRP sheets

0.180 3 1 8.7 Failure mode (1) 30% 9.03 0.65

2 9.1 Failure mode (4) —

3 9.3 Failure mode (4) —

7 1 10.6 Failure mode (1) 65% 10.83 0.77

2 10.7 Failure mode (4) —

3 11.2 Failure mode (1) 70%

28 1 10.9 Failure mode (1) 80% 11.57 0.83

2 11.7 Failure mode (4) —

3 12.1 Failure mode (1) 85%

Note: tf is calculated thickness; A is age; No. is number of specimen; P is failure load; P
�
is mean failure load; s is mean shear strength; R is the

peeling area ratio, i.e. the ratio of the peeling area of concrete to the bonding area of FRP sheets (Ac/Af) measured by the coordinate paper; —

means no concrete peeled off; � means the actual shear strength is no less than the listed value, due to the coexistence of peeling and tensile

failure of 0.111 m-thick CFRP sheets.

(a) 0.167mm-thick CFRP sheets bonded  (b) 0.167mm-thick CFRP sheets bonded with with 

AASC.                                       organic epoxy.

Fig. 9 The failure situations of the CFRP sheets separately bonded with the AASC and organic epoxy.
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(Table 8). According to the strain development along the
length of the CFRP sheets, it is clear that the CFRP sheets

did not reach their fracture strains. Consequently, the basic
anchorage length is negatively correlated with the length of
the high stress area (the strain of CFRP sheet is higher as

shown in Fig. 1).
As shown in Table 8, when grade C30 concrete specimens

are strengthened with CFRP sheets bonded with AASC, the

test results show that strains measurement of CFRP approach
zero in 200 mm and 300 mm. Therefore, the basic anchorage
length of 0.111 mm-thick CFRP sheets should be greater than

200 mm, and that of 0.167 mm-thick CFRP sheets should be
greater than 300 mm.

5. Bonding performance at high temperature

5.1. Test method

A total of 10 concrete samples were reinforced with CFRP

sheets bonded with AASC, and subjected to double shear tests.
The anchorage length was adjusted from 225 mm to 400 mm.
The high temperature tests were performed at six different tar-

get temperatures: 20 �C, 100 �C, 200 �C, 300 �C, 400 �C,
500 �C in an electric furnace (Fig. 13). 4 �C/min was set as
the heating rate. When the temperature inside furnace reached
the target temperature, the constant temperature time was 2 h

to make the specimens temperature homogenous. The speci-
mens were then cooled down to room temperature naturally
in furnace. Finally, the specimens were taken out from the fur-

nace and each of the symmetrical sides of the specimen was
pasted with strain gauges. Stain gauges and displacement sen-
sors were used to measure strains in the CFRP sheets and dis-

placements at various positions, as shown in Fig. 10.

5.2. Result analysis at high temperature

The temperature holding time was measured by thermocouples
embedded in AASC specimen at 4 mm to the surface (Fig. 14).
The furnace temperature and measured temperatures are dis-
played in Fig. 15. It can be seen that the temperature holding

time was 30 min.
The two anchorage failure modes were observed as the tem-

perature increased at the heating rate of 4 �C/min from 100 �C
to 500 �C. The test phenomena are presented in Fig. 16 below.

When the temperature increased from 100 �C to 500 �C, the
anchorage lengths were measured as 387.5 mm (at 100 �C),
337.5 mm (at 200 �C), 312.5 mm (at 300 �C), 300 mm (at
400 �C) and 300 mm (at 500 �C), respectively. The measured
values were compared with the anchorage length at room tem-

perature to reveal the change law of CFRP anchorage length
with temperature by using the formula (2) below:

Table 6 Comparison of in-plane shear strengths between AASC and organic epoxy.

Type tf (mm) Adhesive No. P (kN) Failure mode R (%) P
�
(kN) s (MPa)

UT70-20

CFRP sheets

0.111 AASC 1 15.8 75% 16.87 1.20

2 16.5 Failure mode (1) 85%

3 18.3 90%

Organic

epoxy

1 15.9 85% 16.67 1.19

2 18.1 Failure mode (1) 90%

3 16.0 95%

UT70-30

CFRP sheets

0.167 AASC 1 17.7 80% 18.70 1.34

2 18.1 Failure mode (1) 85%

3 20.3 95%

Organic

epoxy

1 18.1 85% 18.68 1.33

2 18.6 Failure mode (1) 95%

3 19.3 100%

Fig. 10 The sketch map of the test instrument.

Table 7 The mechanical properties of the steel bars.

Reinforcing

bars

Yield

strength

fy (MPa)

Ultimate

strength

fu (MPa)

Young’s

modulus

Es (GPa)

D12 358.83 533.75 163

D6 278.21 431.54 184
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where, La.T is the anchorage length of the CFRP sheets at tem-
perature T (mm); La is the anchorage length of the CFRP
sheets at room temperature (20 �C) (mm); T is the current tem-

perature (�C); R2 is the correlation coefficient of fitting
accuracy.

Fig. 17 compares the fitted curve obtained by formula (2)
and the test curve. It can be seen that the anchorage lengths
of CFRP sheets increased from 280 mm to 387.5 mm, as the

temperature rose from 20 �C to 100 �C, and decreased from
387.5 mm to 275 mm as the temperature climbed from

(a)Anchorage failure. (b) Tensile failure of CFRP sheets.

Fig. 11 The anchorage failure modes.

Table 8 The test results on the anchorage length of CFRP sheets.

Type tf (mm) No. La (mm) P (kN) Anchorage failure modes R (%) P
�
(kN) s (MPa)

UT70-20

CFRP sheets

0.111 T-1

T-2

T-3

T-4

T-5

T-6

T-7

T-8

120

140

160

180

16.9

17.5

18.4

18.1

18.8

19.2

19.7

19.4

AF

AF

AF

AF

95%

80%

75%

80%

65%

85%

45%

30%

17.20

18.25

19.01

19.55

1.02

0.93

0.85

0.78

T-9

T-10

200 19.8

20.1

CR —

—

19.95 0.71

UT70-30

CFRP sheets

0.167 T-11

T-12

T-13

T-14

T-15

T-16

T-17

T-18

220

240

260

280

20.8

21.3

21.9

22.5

23.4

23.9

24.2

23.8

AF

AF

AF

AF

80%

75%

65%

70%

45%

30%

30%

35%

21.05

22.20

23.65

24.00

0.68

0.66

0.65

0.61

T-19

T-20

300 24.0

24.7

CR —

—

24.35 0.58

Note: AF is anchorage failure; CR is CFRP rupture.

La:T

La

¼
0:91þ 4:80 T

1000

� �
20 �C 6 T 6 100 �C; R2 ¼ 0:999

1:73� 4:53 T
1000

� �þ 11:65 T
1000

� �2 � 11:17 T
1000

� �3
100 �C < T 6 500 �C; R2 ¼ 0:997

(
ð2Þ
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100 �C to 500 �C. In short, basic anchorage lengths at high
temperature were higher than those at room temperature.

5.3. Result analysis after high temperature

When target temperatures are 100–500 �C after high tempera-

ture, the anchorage lengths were measured as 487.5 mm,
475 mm and 450 mm, 437.5 mm and 400 mm, respectively.
Comparative analysis shows that the double shear specimens

after high temperature were the same as those under ambient
temperature. However, the colors of AASC and concrete
faded, and concrete stripping areas after high temperature
were bigger than those at room temperature.

Compared with those under high temperature, the double
shear specimens after high temperature witnessed a large area
of concrete stripping. Obviously, the AASC provides the

anaerobic protection for CFRP after high temperature and
at high temperature, preventing the latter from being oxidized.
The CFRP anchor lengths after high temperature were fitted

from those at high temperature by:

L
0
a:T

La

¼ 0:82þ 9:26 T
1000

� �
20

�
C� T� 100

�
C; R2 ¼ 0:999

1:83� 1:09 T
1000

� �
100

�
C< T� 500

�
C; R2 ¼ 0:988

(

ð3Þ

(a) Strain development along 0.111mm-thick 

CFRP sheets for specimen T-10: La=200mm. 

(b) Strain development along 0.167mm-thick 

CFRP sheets for specimen T-20: La=300mm. 

Fig. 12 Strain development along the length of CFRP sheets.

Fig. 13 The sketch map of the test instrument at high

temperature.

Fig. 14 Specimens with thermocouples.
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Fig. 15 Furnace temperature and measured temperatures.
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where, L’a.T is the anchor length of CFRP after temperature T

(mm).
Fig. 18 compares the fitted curve obtained by formula (3)

and the test curve. It can be seen that the anchorage lengths

of CFRP sheets increased linearly from 280 mm to
487.5 mm after the temperature of 20–100 �C, and declined
gradually from 487.5 mm to 400 mm after the temperature

of 100–500 �C. Hence, the basic anchorage lengths after high
temperature were higher than those at room temperature and
those at high temperature.

6. Conclusions

This paper presents a high-temperature resistant inorganic

matrix: alkali-activated slag cement (AASC), which is expected

to become an alternative for organic epoxy. Experimental
results show that the modulus of water glass should be around

M = 1.0; the dose of water glass and that of water should be
around 12% and 42%, respectively. In the considered cases,
UT70-30 CFRP sheets achieved the best performance, fol-
lowed in turn by UT70-20 CFRP sheets and BFRP sheets.

The adhesive matrix directly bears on the bonding between
concrete and the FRP sheets. The comparison against organic
epoxy matrix shows the feasibility of reinforcing concrete

structures with FRP sheets bonded with AASC.
When grade C30 concrete specimens are strengthened with

CFRP sheets bonded with AASC, the basic anchorage length

of 0.111 mm-thick CFRP sheets should be greater than
200 mm, and that of 0.167 mm-thick CFRP sheets should be
greater than 300 mm.

The failure loads and anchorage lengths were measured at

high temperature and after high temperature. The basic
anchorage lengths of CFRP sheets after high temperature were
higher than those at room temperature and those at high tem-

perature. The fitted anchorage length agrees well with the
length measured in tests.

The use of AASC as an adhesive is only part of the engi-

neering application, and future work is to probe the AASC
as an alternative of concrete or clay.
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