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Abstract Dry biomes occupy ~35% of the landscape in the Neotropics, but these are heavily
human‐disturbed. In spite of their importance, we still do not fully understand their origins and how they
are sustained. The Guajira Peninsula in northern Colombia is dominated by dry biomes and has a rich
Neogene fossil record. Here, we have analyzed its changes in vegetation and precipitation during the
Neogene using a fossil pollen and spore dataset of 20 samples taken from a well and we also dated the
stratigraphic sequence using microfossils. In addition, we analyzed the pollen and spore contents of
10 Holocene samples to establish a modern baseline for comparison with the Neogene as well as a study of
the modern vegetation to assess both its spatial distribution and anthropic disturbances during the initial
stages of European colonization. The section was dated to span from the latest Oligocene to the early
Miocene (~24.2 to 17.3 Ma), with the Oligocene/Miocene boundary being in the lower Uitpa Formation. The
early Miocene vegetation is dominated by a rainforest biome with a mean annual precipitation of
~2,000 mm/yr, which strongly contrasts with Guajira's modern xerophytic vegetation and a precipitation of
~300mm/yr. The shift to the drymodern vegetation probably occurred over the past threemillions years, but
the mechanism that led to this change is still uncertain. Global circulation models that include the
vegetation could explain the ancient climate of Guajira, but further work is required to assess the feedbacks
of vegetation, precipitation, and CO2.

1. Introduction

Among the diverse array of biomes in the Neotropics are dry ecosystems such as tropical savannas, Cerrado,
Caatinga, and both dry and xerophytic forests. These dry settings, which occupy ~35% of the total area
(Azevedo et al., 2020), also support a population of more than 40 million people and thus have been heavily
disturbed by human habitation and food production. Despite their geographic extent and societal impor-
tance, we still know little about their origins and what sustains them through time. How long have they been
present? What factors drove their geographic expansion and biotic diversification? How do the climate and
the biota interact in these ecosystems?

The northern‐most region of South America, including the Guajira Peninsula in Colombia, is characterized
by an arid climate and a landscape dominated by xerophytic vegetation (Figure 1). Cacti and the legume
Prosopis are some of the dominant plants in the landscape (Figure 2). The dry climate has created excellent
exposures of the Neogene sequence in the Guajira's Cocinetas Basin, which have spawned numerous
stratigraphic and paleontological studies over the past decade. During the middle Miocene to early
Pliocene, the fossil record of crocodiles, turtles, fishes, and mammals suggests the presence of permanent
and widespread bodies of water, including both rivers and lakes (Aguilera et al., 2013; Amson et al., 2016;
Cadena & Jaramillo, 2015a, 2015b; Carrillo et al., 2018; Florez et al., 2018a, 2018b; Forasiepi et al., 2014;
Jaramillo et al., 2015; Moreno et al., 2015; Moreno‐Bernal et al., 2016; Perez et al., 2017; Suarez

©2020. American Geophysical Union.
All Rights Reserved.

RESEARCH ARTICLE
10.1029/2020PA003933

Special Section:
The Miocene: The Future of
the Past

Key Points:
• The Guajira Peninsula had a high

mean annual precipitation during
the early Miocene, which supported
a tropical rainforest biome

• This setting constrasts sharply with
the modern dry climate, which
supports a xerophytic biome

• Miocene climate simulations do not
reproduce high rainfall for this
region. Mechanisms driving this
change are still to be determined

Supporting Information:
• Supporting Information S1

Correspondence to:
C. Jaramillo,
jaramilloc@si.edu

Citation:
Jaramillo, C., Sepulchre, P.,
Cardenas, D., Correa‐Metrio, A.,
Moreno, J. E., Trejos, R., et al. (2020).
Drastic vegetation change in the
Guajira Peninsula (Colombia) during
the Neogene. Paleoceanography and
Paleoclimatology, 35, e2020PA003933.
https://doi.org/10.1029/2020PA003933

Received 27 MAR 2020
Accepted 14 OCT 2020
Accepted article online 16 OCT 2020

JARAMILLO ET AL. 1 of 22

https://orcid.org/0000-0002-2616-5079
https://orcid.org/0000-0002-4267-4025
https://orcid.org/0000-0002-9823-6470
https://orcid.org/0000-0002-9767-7522
https://orcid.org/0000-0002-0743-0906
https://orcid.org/0000-0001-8463-0648
https://orcid.org/0000-0001-7775-7130
https://orcid.org/0000-0002-2223-9691
https://doi.org/10.1029/2020PA003933
https://doi.org/10.1029/2020PA003933
https://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1944-9208.Miocene1
https://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1944-9208.Miocene1
http://dx.doi.org/10.1029/2020PA003933
http://dx.doi.org/10.1029/2020PA003933
http://dx.doi.org/10.1029/2020PA003933
mailto:jaramilloc@si.edu
https://doi.org/10.1029/2020PA003933
http://publications.agu.org/journals/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2020PA003933&domain=pdf&date_stamp=2020-10-30


et al., 2016). However, paleobotanical evidence was lacking as previous attempts to find plant macrofossils
and pollen/spores in outcropping strata had been unsuccessful. Here, we present the fossil pollen record
obtained from ditch‐cutting samples from one of only two wells that have been drilled in the basin. The
recovery of palynologically productive samples from the well suggests that plant remains in outcrop
samples have been degraded by modern weathering rather than being absent during accumulation.

The Cenozoic sequence of the Cocinetas Basin comprises, in ascending order, the Siamana, Uitpa, Jimol,
Castilletes, and Ware formations (Moreno et al., 2015), and the studied well only encompassed from the
upper Siamana to lower Jimol formations. The ages of the Siamana Formation and the lower part of the
Uitpa Formation are poorly constrained. The Siamana Formation, a massive reef unit that was likely part
of the extensive reef development in the Caribbean during the late Oligocene (Johnson et al., 2009), has been
variously dated as early Miocene, late Oligocene, or both (Carrillo‐Briceño et al., 2016; Florez et al., 2018a,
2018b; Silva‐Tamayo et al., 2017). In order to solve this age uncertainty, we dated the well sequence by per-
forming a detailed biostratigraphic analysis using calcareous nannoplankton, foraminifera, and palyno-
morphs (dinoflagellates, pollen, and spores).

The pollen and spore records of the well were analyzed to assess the type of biome present in Guajira during
the Neogene and to estimate mean annual precipitation (MAP) and mean annual temperature (MAT). In
order to compare the fossil palynological record with the modern vegetation of the region, both the pollen
record of surficial samples of modern environments and the spatial distribution of the modern vegetation
were analyzed. We also conducted a review of sixteenth century Spanish records to determine, as some have
argued, whether the modern vegetation of Guajira could have been a byproduct of the Spanish colonization.

Diverse hypotheses about the climate needed to support the Miocene vegetation in Guajira were explored.
The focus was mostly on a key parameter, precipitation, as this is a better predictor than temperature for

Figure 1. Modern ecosystem map for the Cocinetas Basin. For a description of each ecosystem type, refer to Table 1. Data sources listed in Table S2. The location
of Well A and the sites where surficial sediment samples were collected are also included.
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Figure 2. Main modern types of forest in the Cocinetas Basin (Guajira Peninsula). (a) and (b) woodland in the vicinity
of Arroyo Ekieps, (c) desert, (d) desert with mangrove bordering the coastline near Tucacas Bay, (e) and (f) thorn
forest and woodland along Arroyo Kuluts, and (g) and (h) xerophytic shrublands in Patajau Valley. For location of
reference sites and class color codes at the upper right corner of each photo, refer to Figure 1.
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the type of forest within tropical latitudes (Jaramillo, 2019; Jaramillo & Cardenas, 2013). We explored pub-
lished climate sensitivity studies done with global climate models (GCMs) to quantify the effects of several
Miocene forcings on precipitation over Guajira during the Neogene.

2. Methods
2.1. Palynology and Micropaleontology

We analyzed the palynological contents of 30 samples including 20 ditch‐cutting samples from Well A
(labeled as WA from now on; lat 11.9, long −71.3) and 10 surficial samples from the sediment/water inter-
face (Figure 1). We used the surficial samples to establish a palynological baseline for modern/Holocene
vegetation that could be compared with the Miocene palynological record. The samples were prepared fol-
lowing standard palynological techniques at IIES‐Universidad de Caldas (Traverse, 2007). The procedure
included digesting 15 g of rock in hydrochloric acid for 12 hr to remove calcareous material. Hydrofluoric
acid was then added to remove silicates. The resulting residue was passed initially through a 250 μm mesh
sieve to eliminate the coarse fraction, followed by sieving through a 10 μmmesh. We prepared an extra slide
of the fraction that went through the 10 μm mesh as a control to verify that smaller grains were not being
discarded. The pollen content of the <10 μm fraction was negligible. The organic residue was cleaned with
ultrasonic equipment for some seconds, and then concentrated by centrifugation, followed by mounting of a
first cover slide in a solution of polyvinyl alcohol. A second cover slide was mounted following the same pro-
tocol described above after oxidation of the residue with nitric acid (HNO3). Canadian balsam was used to
seal both mounted slides. Both biological bright light and differential interference contrast (DIC) micropho-
tographs were obtained at 100× magnification using a Nikon DS‐Ri1. The magnification of the camera lens
of the Nikon scope was 0.7×, yielding a final magnification of ×700 unless indicated otherwise (supporting
information Data Set S2). Each photograph displays its own scale (in microns) because the photographs in
each plate are not to the same scale. Photographs were alphabetically sorted into families, genera, and spe-
cies. Marine palynomorphs were analyzed only in the unoxidized residues to avoid bias due to selective
degradation as some peridinoid dinoflagellate cyst taxa are susceptible to degradation during the oxidation
stage (Dale, 1976). All marine palynomorphs (dinoflagellate cysts, acritarchs, and microforaminiferal test
linings) in the unoxidized residues were counted. Palynological slides are stored at the Smithsonian
Tropical Research Institute, Panama.

Pollen and spores were identified to the species level or assigned to an informal species if they had not been
formally described. Three hundred palynomorphs were counted per sample when possible. For taxonomic
identification of fossil pollen we consulted works on Cenozoic palynology of northern South America
(Germeraad et al., 1968; Hoorn, 1994; Jaramillo et al., 2011, 2014, 2017; Lorente, 1986; Muller et al., 1987;
Silva‐Caminha et al., 2010; Soares et al., 2017) and an electronic database (Jaramillo & Rueda, 2019), which
has up‐to‐date information on pollen and spores from the Cretaceous and Cenozoic for northern South
America. Identification of the Holocene pollen types was based on the pollen reference collection of Alan
Graham (Moreno et al., 2014) and a small palynological collection from the most abundant plant species
in the Cocinetas Basin. We also consulted the works of Lorente (1986), Roubik and Moreno (1991),
Colinvaux et al. (1999), and Bush and Weng (2007). Holocene palynomorphs were also named according
to the taxonomy used for Miocene palynomorphs in order to enable comparisons between the assemblages.
A non‐metric multidimensional scaling analysis (NMDS) with Bray‐Curtis distance measure was performed
to compare the Miocene and Holocene palynological assemblages. The NMDS was performed using the
function metaMDS from the package Vegan (R‐Development‐Core‐Team, 2019) in R environment (R‐
Development‐Core‐Team, 2019).

The samples analyzed for foraminifera were prepared with water and hydrogen peroxide (Thomas &
Murney, 1985) and were washed with neutral soap using a 63 μm sieve. The sediment was dried at approxi-
mately 50°C for 24 hr and then sieved in a 125 μm sieve. All planktonic foraminifera were picked from the
>125 μm fraction and grouped and sorted onto a micropaleontological slide. Counting was done through a
Nikon SMZ1500 stereomicroscope. Taxonomic identification of planktonic foraminifera followed the guides
of Kennett and Srinivasan (1983), Young et al. (2017), and Wade et al. (2018) and biozones followed Wade
et al. (2011).
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Calcareous nannofossil slides were prepared using the standard technique of smear slides (Backman &
Shackleton, 1983; Young, 1998). The slides were analyzed using a Nikon light microscope at 1000× magni-
fication. Up to 500 coccoliths were counted or a minimum of 200 when scarce. This counting method guar-
antees at a 99.5% confidence level that specimens representing a minimum of 1% of an assemblage are
included (Fatela & Taborda, 2002). We applied the standard biozonation of Martini (Martini, 1971) and
the biochronology followed Backman (Backman et al., 2012).
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2.2. Lithostratigraphy of Cocinetas Basin

The latitudinal position of the Cocinetas Basin during the Neogene has not changed substantially, 20 million
years ago being at 9.5°N while its modern position is at 11.5°N (Montes et al., 2019a, 2019b). Its Cenozoic
stratigraphy, which was studied in WA, encompasses an Oligocene‐Miocene mixed carbonate‐siliciclastic
sequence which comprises the Siamana, Uitpa, and Jimol Formations (Figure 3). The Siamana Formation
consists of a carbonate reef deposited along the tropical southeastern Circum‐Caribbean realm (Silva‐
Tamayo et al., 2017). The Siamana Formation in WA spans the lowermost 59.4 m of the well and consists
of a thick limestone overlain by mixed carbonate‐siliciclastics (Figure 3). The boundary between the
Siamana and Uitpa Formations is at ~885.4 m (2905′). The Uitpa Formation, which overlies the Siamana,
comprises ~492.3 m in WA, and it is composed of a thick sequence of mudstones and siltstones interbedded
with thin sandstones and limestones towards the base (Figure 3). The boundary between Uitpa and Jimol is
at ~393.2 m (1290′). The Jimol Formation, which overlie Uitpa, comprises a ~353.6 m thick sequence of
sandstones interbedded with minor limestones and mudstones (Figure 3). Recent studies in the Cocinetas
Basin indicate that the fine‐grained siliciclastics of Uitpa were deposited in middle to outer shelf environ-
ments (100–200 m water depth) (Carrillo‐Briceño et al., 2016; Hendy et al., 2015), whereas the
coarse‐grained siliciclastics of Jimol were deposited in shoreface to inner shelf environments (<50 m
water‐depth) (Moreno et al., 2015).

2.3. Vegetation Analysis

The modern vegetation of the Cocinetas Basin is dominated by xerophytic vegetation. In order to better
understand the extant distribution of the major types of vegetation in the Cocinetas Basin, we generated
a modern ecosystems map following the classification proposed by Mass and Burgos (2011) for seasonally
dry tropical forests which is based on the combined effect of soil water availability and potential evapora-
tion/precipitation ratio or dryness index. At the local level, the dryness index determines the type of flora
present at each site. We used field data (i.e., species composition and degree of canopy closure),
high‐resolution satellite imagery (Geoeye), and Google Earth to generate a set of training points for each
of the ecosystem types present in the study area (minimum of 30 points per class) (Figures 2 and S2 and
Table 1). We included mangrove as an additional class, owing to its presence along the coast. We used
all the training points within a random forest classification (Breiman, 2001) to predict ecosystem class from
the following independent variables: elevation, slope, distance to coastline, distance to streams, geologic
units, soils, land cover, reflectance from a Spot‐5 image bands, and normalized difference vegetation index
(NDVI) (Figure S2). All rasters were generated/resampled to match the spatial resolution of the Spot ima-
gery (i.e., 10 m) and were subset to our area of interest. For each training point, values of all independent
variables were extracted and used as input for the random forest R package (Liaw & Wiener, 2002). This
tool generates a large number of decision trees (i.e., forest) based on a bootstrap subset of the training sam-
ples. Subsequently, each pixel in need of classification is put down in each tree and assigned to a class. The
final class is selected as the one having the majority vote. Classification error is performed internally using
the training samples left out of the bootstrap subset (Breiman, 2001). During the classification process, we
excluded soils, near‐infrared reflectance and green band reflectance, since these variables were either
highly correlated with others or did not significantly improve the classification accuracy. Spatial data pro-
cessing was performed in IDRISI (Clark Labs) and ArcGIS (ESRI), and statistical analyses were performed
in R (R‐Development‐Core‐Team, 2019).

Some ecologists have suggested that the modern vegetation of Guajira could be an anthropic effect of
European colonization from the sixteenth to ninteenth centuries. In order to evaluate for this possibility,
we analyzed written accounts of vegetation described by priests and sailors during the first wave of
Spanish colonization. We compiled and reviewed sixteenth and seventeenth historical sources (Table S1)
that described the principal inland exploration routes between the settlements currently known as Coro
(founded in 1527), Cabo de la Vela (founded in 1536), Riohacha (founded in 1538), andMaracaibo (founded
in 1547) (Figure S1). Using these writings, we searched for specific terms and expressions that described the
local vegetation or relevant references to animal and human occupations around the region. Each term or
expression was then categorized into “xerophytic,” “savannah,” or “woodland,” based on comparisons to
modern ecosystems in the region (Instituto de Hidrología et al., 2017).
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2.4. Climatic Analysis

To assess the modern climate of the basin, we analyzed monthly precipitation data from 23 IDEAM stations
(Colombian Institute for Hydrology, Meteorology and Environmental Studies) over a period of ~40 years
(Figure S3). The modern environmental distribution of the taxa represented in the fossil pollen and spore
record from WA was described by using the genus‐level, georeferenced occurrences reported in BIEN
(Maitner et al., 2018) for the respective plant genera. Our training dataset has fewer datapoint in the dry
end of the precipitation spectrum (Figure S4) that could produce an overestimation in the precipitation
towards the dry end of the moisture gradient. All pollen identifications were taken to generic level to avoid
the potential noise from lower taxonomic resolution. Geodetic coordinates of occurrence of each taxon were
used to extract both mean annual temperature and precipitation, and daily temperature and annual tem-
perature ranges from the WorldClim dataset (Hijmans et al., 2005). We used the mean annual temperature
and precipitation of the occurrence points of each taxon to estimate a bivariate probability density function
(pdf) (Wand & Jones, 1994) describing the taxon's distribution across the environmental space defined by
temperature and precipitation. A second pdf was estimated for each taxon using daily and annual tempera-
ture ranges. For each fossil sample, the pdfs of the taxa present in the sample were submitted to an
unweighted mixture, producing an overview of the probable conditions at the time the pollen assemblage
was deposited. Summarizing, taxon level bivariate pdfs were used to derive sample pdfs. The environmental
space associated with the upper 0.05 of probability for either taxa or samples was considered representative
of the climate where the taxa are most likely to occur, and therefore, in the case of samples, the most likely
climate at the moment of sample deposition. Thus, it was possible to illustrate taxa and sample distributions
in a single environmental space. Miocene and Holocene climate estimates were summarized by adding the
pdfs associated with samples from each epoch.

We then explored diverse hypotheses about the type of climate needed to support the vegetation in Guajira
during the Miocene, in the light of recent knowledge regarding present‐day climate dynamics of the region
and numerical climate simulations for the Miocene. We also explored published climate sensitivity studies
(all variables stay the same and only the variable of interest changes) to assess the effect of two key events
in Earth history (the rise of the Andes and closure of the Central Panama Seaway) on Guajira's climate.

3. Results
3.1. Biostratigraphy

The closest outcrop section to WA is La Tienda, Locality ID 290432 (Moreno et al., 2015). The base of La
Tienda is ~400 m northwest of WA where the dip of strata is very shallow (~3.5°SE), and consequently,
the top of WA is correlated with the lowermost limestone of the Jimol Formation in La Tienda, ~60 m depth
in the composite section for the basin (Moreno et al., 2015). The lower boundary of the Jimol Formation at
WA is at 393.2 m (1290′) based on the thick coarse‐grained mixed carbonate‐siliciclastic package (~30.4 m
thick) capping the fine‐grained siliciclastics of the upper Uitpa Formation (Figure 2). The Jimol
Formation, consequently, would be ~393.2 m thick at WA whereas Utipa would be ~368.8 m thick

Table 1
Modern Ecosystem Map Classes

Ecosystem namea Description at the local level Dominant species

Woodland Thicket, dense shrubland growing in rocky
areas (e.g., limestone, gneiss)

Subpilocereus repandus, Castela erecta, Parkinsonia praecox,
Bursera simaruba, Rhamnus sp., Senna atomaria

Desert Open areas without vegetation, with some patches covered
by shell beds, or saline soils with sparse small shrubs

Bare, or with Jatropha gossypiifolia growing in small patches

Mangrove Mangrove Avicennia sp.
Thorn forest and woodland Bushland margins growing along streams Pereskia guamacho, Haematoxylum brasiletto,

Guaiacum officinale, Cissus sp., Prosopis juliflora
Xerophytic shrubs and scrubs Open thorn scrub forest Opuntia caracassana, Prosopis juliflora,

Castela erecta, Subpilocereus repandus

aSensu (Mass & Burgos, 2011).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 4. Selected calcareous nannofossils and planktonic foraminifera. (a) Cyclicargolithus abisectu (2740–2770′).
(b) and (c) Helicosphaera ampliaperta (130–160′). (d) Helicosphaera compacta (2740–2770′). (e) Helicosphaera recta
(2860–2890′). (f) Reticulofenestra bisecta (2260–2290′). (g) and (h) Sphenolithus belemnos (1440–1470′). (i) and (j)
Sphenolithus umbrellus (2830–2860′). (k) and (l) Sphenolithus disbelemnos (1440–1470′). (m) Paragloborotalia cf. kugleri
(2410–2440′). (n) Ciperoella ciperoensis (2710–2740′). (o) Dentoglobigerina globularis (2470–2500′). (p) Dentoglobigerina
galavisi (2650–2680′). (q) Dentoglobigerina larmeui (2710–2740′). (r) Globigerinella cf. praesiphonifera (2710–2740′).
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(a) (b) (c)

(d) (e) (f)
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Figure 5. Photographs of selected dinocysts (a–l) and acritarchs (m–o) in WA. Scale bar is 10 μm. E.F.: England Finder
coordinates. (a) Achomosphaera alcicornu, uncertain view, high focus on processes. 1600′–1630′, EF: F40/3.
(b) Chiropteridium galea, ventral view, high focus on processes. 2810′–2820′, EF: M67/2 (c) Cleistosphaeridinium
diversispinosum, uncertain view, mid‐focus on processes. 130′–160′, EF: H42/2. (d) Cribroperidinium tenuitabulatum,
right lateral view, high focus on wall and archeopyle margin. 640′–670′, EF: L48. (e) Cristadinium sp. of De Verteuil
and Norris (1992), dorsal view, mid‐focus on wall and archeopyle suture. 2020′–2050′, EF: K48/4. (f) Echinidinium
euaxum, uncertain view, low focus on processes. 1750′–1780′, EF: J34/2. (g) Heteraulacacysta campanula, apical view,
high focus on wall and archeopyle. 460′–490′, EF: D25. (h) Lejeunecysta marieae, dorsal view, mid‐focus on archeopyle.
1750′–1780′, EF: N36. (i) Minisphaeridium latirictum, apical view, high focus on archeopyle. 2140′–2170′, EF: E43/2.
(j) Trinovantedinium ferugnomatum, dorsal view, low focus on processes and archeopyle suture. 130′–160′, EF: K32/2.
(k) Trinovantedinium variabile, uncertain view, high focus on processes. 1600′–1630′, EF: L32/2. (l) Trinovantedinium?
xylochoporum, ventral view, mid‐focus on wall and processes. 2140′–2170′, EF: V38/3. (m) Cyclopsiella elliptica/granosa
complex, uncertain view, high focus on wall. 1900′–1930′, EF: H37/3. (n) Quadrina? condita, uncertain view,
mid‐focus on wall and processes. 2020′–2050′, EF: X28/1. (o) Quadrina “incerta” of Jaramillo et al. (2017), uncertain
view, mid‐focus on wall and processes. 280′–310′, EF: S37/1.
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(Figure 2). The boundary between Siamana and Uitpa in WA corresponds
to a sharp lithological limestone/shale contrast at 885.4 m (2905′)
(Figure 3).

Important biostratigraphic taxa includes the calcareous nannofossil
Helicosphaera ampliaperta at the top of WA (Figure 4 and supporting
information Data Set S1), the last appearance datum (LAD) of planktonic
foraminifera Ciperoella ciperoensis at 752.9 m (2470′), the LAD of spore
Cicatricosisporites dorogensis at 762 m (2500′), a single occurrence of
Paragloborotalia cf. P. kugleri at 734.6 m (2410′), the co‐occurrence in
the interval 734.6–871.7 m (2410′–2860′) of planktonic foraminifera
Dentoglobigerina galavisi, Dentoglobigerina globularis, Dentoglobigerina
larmeui, and Globigerinella praesiphonifera, the occurrence of
Helicosphaera compacta at 835.2–844.3 m (2740′‐2770′), the occurrences
of Cyclicargoliyhus abisectus at 688.9–871.7 m (2260′–2860′) and
Sphenolithus umbrellus at 752.9–798.6 m (2470′–2620′), the LAD of both
Cyclicargoliyhus abisectus and Reticulofenestra bisecta at 688.9 m (2260′),
and the sporadic occurrence of Helicosphaera recta at 734.6–880.9 m
(2410′–2890′). There are occurrences of Sphenolitus belemnos from
438.9 m (1440′) to 734.6 m (2410′); the LADs of the dinocysts

Chiropteridium galea is at 856.5 m (2810′) and Achomosphaera alcicornu is at 487.7 m (1600′) (Figure 5
and supporting information Data Set S1). Cleistosphaeridium diversispinosum was recorded throughout
the entire WA sequence. The LAD of Cribroperidinium tenuitabulatum occurs at 85.3 m (280′) and the
FAD of Trinovantedinium ferugnomatum at 204.2 m (670′). The LAD of Cristadinium sp. of De Verteuil
and Norris (1992) occurs at 533.4 m (1750′), and there is a single occurrence at 85.3 m (280′) of Quadrina
“incerta” of Jaramillo et al. (2017). The LAD of Quadrina? condita is at 615.7 m (2020′).

3.2. Contrasts in Vegetation From Miocene to Present in La Guajira

There are two main dry‐forest types in the Cocinetas Basin, the desert and xerophytic shrubs and scrubs
(Figure 2 and Table 1), and these occupy more than 90% of the basin's area (Figure 1). Additional types of
dry forest include the thorn forest and woodland occurring along the water courses and the woodlands that
occur in themountains surrounding the basin (Figure 1). There is a fifth type of vegetation, mangrove, which
occurs in the intertidal zones. The accuracy of land cover classification was 96%, and ranged from 93% (thorn
forest and woodland, xerophytic shrubs, and scrubs) to 100% (mountain woodland and mangrove). Overall,

the most important variables in explaining ecosystem distribution were
red‐band reflectance, normalized difference vegetation index (NDVI),
and elevation, although there were other variables important at the indi-
vidual class level. For instance, geology was among the three most impor-
tant variables for mountain woodland distribution, whereas distance to
the coastline was important for mangroves (Figure 1).

Historical accounts consistently described the areas surrounding northern
Guajira (Cabo de la Vela) as extensive landscapes of arid soils and poor
vegetation of thistles and thorns; 64.8% of all the terms that describe the
environment are related to xerophytic assemblages and 19.4% to savanna
(Table S1). The remaining 15.8% of environmental terms indicate wood-
land ecosystems that resemble the vegetation found in the sierras located
in the northeastern and southeastern parts of the peninsula today.

Out of a total of 8,272 palynomorphs counted, we identified 206 taxa,
including 120 angiosperms, 1 gymnosperm, 20 ferns, 51 dinoflagellate
cysts, and 14 reworked taxa (for a complete list of the fossil taxa, full
counts and illustration of 103 taxa in three plates, see supporting
information Data Sets S1 and S2). The early Miocene pollen record is
dominated by ferns (e.g., Polypodium and Cyatheacaee), large tropical
trees (Arrabidea, Hura, Hiraea, Bombacoideae, Caesalpiniodeae, Pouteria,

Table 2
Most Abundant Taxa in Palynological Samples

Miocene Holocene

Family Genus Family Genus

Arecaceae Arecaceae Cyperaceae aff. Eleocharis
Bignoniaceae Arrabidaea Amaranthaceae Amaranthaceae
Bataceae Batis Simaroubaceae Castela
Betulaceae Betulaceae Fabaceae‐Pap. cf. Myrocarpus
Malvaceae‐Bom Bombacoideae sp2 Fabaceae Fabaceae sp2
Fabaceae‐Caes. Caesalpinioideae sp2 Cactaceae Opuntia
Meliaceae Cedrela Amaranthaceae Philoxerus
Cyatheaceae Cyathea 1 Poaceae Poaceae
Cyatheaceae Cyatheaceae sp1 Rhizophoraceae Rhizophora
Alismataceae Echinodorus Cyperaceae Unknown
Malpighiaceae Hiraea Urticaceae Urticaceae
Euphorbiaceae Hura
Arecaceae Lepidocaryum
Polypodiaceae Polypodium
Sapotaceae Pouteria
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Figure 6. Non‐metric multidimensional scaling (NMDS) of the Miocene
and Holocene pollen samples.
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and Cedrela), and palms (Lepidocaryum/Mauritia) (Table 2 and Data Set S1). The Holocene pollen record is
dominated by shrubs and herbs including Castela, Urticaceae, Myrocarpus, Eleocharis, Philoxerus,
Cyperaceae, Amaranthaceae, Poaceae, and Opuntia (Table 2 and Data Sets S1 and S2). The NMDS
(Figure 6) had a low stress value (0.07), and Miocene samples are significantly separated from Holocene
samples along axis 1 (t test, mean NMDS axis 1 score for Miocene −1.09, mean NMDS axis 1 score for
Holocene 2.13, p < 0.001, df = 9.4).

3.3. Climate

Modern climate in the northern Guajira Peninsula is characterized by year‐round high temperatures with
little monthly variability. The mean annual temperature (MAT) is 26.0°C, with a range of monthly mean
values of only ~3.0°C. The mean annual precipitation (MAP) ranges from 218 to 532 mm. There is a slight
latitudinal gradient in MAP, with higher values on the southern part of the Peninsula and around the
Macuira mountain range. Intra‐annual (seasonal) rainfall variability is pronounced, regardless of the

Figure 7. Boxplot of mean monthly and annual precipitation (1972–2018) for the Sillamana and Puerto Lopez stations in
northeast Guajira Peninsula. Data from the Colombian Institute of Hydrology, Meteorology and Environmental
Studies (IDEAM) were downloaded online (http://dhime.ideam.gov.co/atencionciudadano/).
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geographic location on the Peninsula. There is a short wet season between September and December.
Highest rainfall values are recorded in November, with median montly values always <150 mm at all
locations. The short humid season is followed by an 8‐ to 9‐month dry period, interrupted only by a brief
increase in precipitation during June. The only two meteorological stations in the Cocinetas Basin record
a very low MAP, 236 mm for Sillamana and 218 mm for Puerto Lopez (Figures 7 and S3). Most rivers are
small and seasonal, being dry most of the year. There are very few lakes and those that persist year‐long
are highly saline.

The climatic estimations derived from the palynological content of the samples indicate a MAP of 1,300 mm
for the Holocene and 2,000 mm for the Miocene, a significant increase of 40% (Figure 8). The MAT for the
Holocene is ~24°C, whereas it is ~26°C for the Miocene (Figure 8).

4. Discussion
4.1. Biostratigraphy

The early Neogene of the Cocinetas Basin is poorly studied and consequently information on its geochronol-
ogy is imprecise. Therefore, a large focus of our study was on dating the stratigraphic section, because age is a
critical component of any paleoclimatic analysis. Well WA encompasses the upper Siamana, Uitpa and
lower Jimol formations, and of these, only the Jimol has previous studies with a solid time control. Using
molluscan Sr stratigraphy, Hendy et al. (2015) determined the age of the uppermost part of WA (39.6 m)
to be ~17.3 Ma (Figure 3) and that of the Uitpa‐Jimol contact, which is at 393.2 m (1290′) to be 19.4 Ma
(Figure 3, supporting information Section S1). The presence of the calcareous nannofossil Helicosphaera
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Figure 8. Estimations of mean annual temperature and mean annual precipitation for the Guajira Peninsula during
the Miocene and Holocene. Dark and light gray bands show interquartile range (50% of central probability) and 95%
confidence interval of the reconstructed environmental attributes, respectively. The upper probability density functions
(pdf) show the comparison of average conditions during the Holocene (dashed polygons) and the Miocene
(gray polygons) whereas the lower pdfs show the percentual difference of change of the Miocene relative to the Holocene
(gray triangles show the difference associated with the highest probability density).
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ampliaperta (20.43–14.86 Ma) (Backman et al., 2012) at the top of WA also supports a Burdigalian age for the
upper segment.

An important datum is the stratigraphic position of the Oligocene/Miocene boundary in the basin, which
has been a matter of dispute for more than 70 years (see detailed discussion in Section S1 and Data
Set S1). Several biostratigraphic datums establish the position of the boundary in WA at 762 m (2500′);
these include the LAD of Ciperoella ciperoensis, Cicatricosisporites dorogensis, the co‐occurrence of
Dentoglobigerina galavisi, D. globularis, D. larmeui, and Globigerinella praesiphonifera, the occurrence of
Helicosphaera compacta and the LAD of both Cyclicargoliyhus abisectus and Reticulofenestra bisecta (Data
Set S1 and see supporting information for a more extensive explanation). Assuming a constant sedimenta-
tion rate within the middle/upper Uitpa and using the top of the Oligocene at 762 m (2500′) and 19.4 Ma at
393.2 m (1290′), the Aquitanian/Burdigalian boundary would be at ~495.6 m (1626′).

Overall, the biostratigraphic analysis indicates that theWA section extends from the latest Oligocene to early
Miocene (late Chattian to Burdigalian) (Figure 3). The top of the Siamana Formation is late Chattian (late
Oligocene), and the Uitpa Formation extends from the latest Oligocene to the early Burdigalian
(~19.4 Ma). Well A started drilling in the lower part of the Jimol Formation at a stratigraphic level dated
as Burdigalian (~17.3 Ma).

4.2. Vegetation and Climate

Since 1499 and during the first two centuries of European colonization of the Americas, theCabo de la Vela in
the Guajira Peninsula, about 60 km northeast of the Cocinetas Basin, was one of the main strategic points for
commercial routes and exploration (Polo Acuña, 1998). Detailed accounts from the captains, friars and offi-
cials found inRelaciones Geográficas, visitas de encomiendas and elegías during the sixteenth and seventeenth
centuries provide descriptions of the human and ecological environments during the initial stages of Spanish
colonization (Bürgi et al., 2004; Butzer & Butzert, 1997; Endfield & O'Hara, 1999; Etter et al., 2006;
Tovar, 1992; Turner & Butzer, 1992). During this time, extensive exploration for and exploitation of pearls
and gold became the main drivers of commerce and communication routes (Barrera, 2000; Navarrete
Peláez, 2003; Vásquez & Correa, 1993). The xerophytic and woodland vegetation types described near
Cabo de la Vela (Table S1) are consistent with the vegetation that exists in Guajira today (Figures 1 and 2).
The historical accounts indicate that modern vegetation is indeed natural and not a byproduct of drastic
human modification.

The modern vegetation of the Cocinetas Basin is dominated by desert and xerophytic shrubs and scrubs
(Figure 2 and Table 1), which account for more than 90% of basin's area (Figure 1). The desert type is mostly
bare land with occasional monotypic patches of the shrub species Jatropha gossypiifolia (Euphorbiacea) and
the xerophytic shrubs/scrubs type is dominated by the cactus Opuntia and the thorny legume Prosopis
(Table 1). The Holocene palynological record largely reflects the modern vegetation (Table 2 and Data
Set S1). In contrast, the early Miocene palynological record is significantly different from Holocene palyno-
floras (Figure 6). Early Miocene palynofloras have many floristic elements from tropical rainforests
(Table 2) including Cedrela, Hura, Bumbacoideae, Pouteria, and many palms including Lepydocarium and
Mauritiella. Sediments from the Uitpa Formation are shallow marine, and consequently, most of the pollen
and spores recorded in this study were transported from the land by currents and perhaps also by wind,
although in lower proportion, as occurs in the modern Orinoco Delta (Hofmann, 2002; Muller, 1959). It
could be argued that a long river with a large catchment basin that included tropical rainforest hundreds
of kilometers to the south was delivering sediments and pollen along with it to the Cocinetas Basin.
However, provenance analysis in the basin indicates that most sediments were delivered from nearby
sources (Perez‐Consuegra et al., 2018), thus excluding the possibility of long‐distance pollen transport.
MAP estimations indicate that during the early Miocene (Figure 8), the region was significantly wetter than
during the Holocene, reaching almost 2,000 mm and that it lay within the climatic envelope of modern tro-
pical rainforests (Jaramillo & Cardenas, 2013). The substantial increase in precipitation is also seen in the
Middle Miocene record of the same basin (Scholz et al., 2020). Miocene MAT was also warmer, an almost
two‐degree increase compared to Holocene predicted values (Figure 8). Overall, precipitation, temperature,
and floristic composition indicate that the forest surrounding the Cocinetas Basin underwent a profound
transformation, from a tropical rainforest in the early Miocene to the modern xeropythic vegetation. The
extensive vertebrate record from the middle Miocene Jimol Formation and middle Pliocene Ware
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formation in the same basin (Aguilera, Lundberg, et al., 2013; Aguilera, Moraes‐Santos, et al., 2013; Amson
et al., 2016; Cadena & Jaramillo, 2015a, 2015b; Carrillo et al., 2018; Florez et al., 2018a, 2018b; Forasiepi
et al., 2014; Jaramillo et al., 2015; Moreno et al., 2015; Moreno‐Bernal et al., 2016; Perez et al., 2017;
Suarez et al., 2016) suggests that the rainforest and high precipitation persisted to the middle Pliocene.
Provenance analysis also indicates that most rivers had local watersheds and that most of the water was
derived from precipitation within the Cocinetas Basin (Perez‐Consuegra, Parra, et al., 2018).

There is a sedimentary hiatus in Cocinetas during the late Miocene to early Pliocene; however, knowledge
about this gap can be informed by the adjacent Falcon province in northwestern Venezuela, which has an
extensive sedimentary record of the Late Neogene. The climate and vegetation of Falcon are similar to those
of Cocinetas; both belong to the Caribbean dry plant formation biogeographic province (Sarmiento, 1975),
and the vegetation types of Falcon are similar to those described here (Matteucci, 1987; Matteucci et al., 1982;
Medina et al., 1989), as are the temperature and precipitation regimen, both being in the South Caribbean
Dry Zone (Martelo, 2003). The extensive vertebrate and sedimentological record of the late Miocene
Urumaco Formation in Falcon indicates the existence of a tropical fluvial plain environment with fresh-
water bodies that range from shallow lakes and ponds to small and large rivers (Lorente, 1986; Quiroz &
Jaramillo, 2010; Sánchez‐Villagra et al., 2010). The fish fossil record also indicates that permanent fresh-
water bodies (rivers and lakes) continued at least until the middle Pliocene in both the Falcon province
and Cocinetas Basin (Aguilera, Moraes‐Santos, et al., 2013). Therefore, the shift to the modern xerophytic
condition must have occurred over the past ~3 million years.

Today, moisture transport and rainfall patterns of northern South America are driven “by the confluence of
global and local factors” (Hoyos et al., 2018), including large‐scale atmospheric dynamics, topography, and
continental water recycling. The Guajira Peninsula is located north of the boreal summer limit of the Inter
Tropical Convergence Zone (ITCZ), and its climate is instead strongly influenced by the Caribbean
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Low‐Level Jet (CLLJ), which corresponds to a maximum of easterly zonal wind in the lower troposphere
(Wang, 2007). The CLLJ corresponds to the lower lateral branch of a Walker cell that advects moisture
from the eastern Caribbean to central America where convection and rainfall occur. In turn, subsidence
and seasonal aridity are set over the eastern part of this cell, including the Guajira Peninsula (Gamble &
Curtis, 2008; García‐Martínez & Bollasina, 2020). Analyses of moisture divergence from ERA‐interim reana-
lysis (Dee et al., 2011) show that moisture convergence over the Guajira Peninsula occur only from
September to December, explaining the rainy season depicted earlier (Hoyos et al., 2018). In line with the
strong easterlies associated with the CLLJ, the Guajira Peninsula is adjacent to a strong upwelling system
that leads to rather cold sea surface tempatures, thereby reducing evaporation and moisture advection to
the continent. Today, apart from moisture advection from the oceans, an important part of the continental
rainfall over northern South America comes from the continental recycling. In the case of the Guajira
Peninsula, the xerophytic nature of the vegetation impedes strong evapotranspiration fluxes, thereby acting
as a positive feedback to aridity. Nonetheless, the Guajira Peninsula is very sensitive to interannual variabil-
ity in precipitation typically at the time scale of El Niño events (2–4 years); such precipitation changes can
result in major changes in vegetation (Figure S5). Therefore, the drastic changes from the Miocene to the
Holocene and modern conditions call for identifying drivers of a long‐term climate change.

A shifted ITCZ during the Miocene? A first working hypothesis to explain aridification of La Guajira
Peninsula between the Miocene and today is a southward shift of the ITCZ. Changes in orbital parameters
could be invoked, as summer insolation determines the ITCZ latitudinal position. However the orbital for-
cing cannot explain the long‐term aridification by itself, since numerical experiments with favorable
insolation parameters for a northward ITCZ show no change in rainfall patterns over northern South
America (Liu et al., 2017). The Miocene earth system is characterized by conditions very different from
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today's, including atmospheric pCO2 ranging between 500 ppmv and ~200 ppmv (Super et al., 2018), lower
Andes (Garzione et al., 2008), open seaways (including east‐Tethys and Central American Seaway, hereafter
CAS), and reduced icesheets, all of these potentially capable of altering the ITCZ position.

Most modeling studies, for example, Sentman et al. (2018) and see Sepulchre et al. (2014) for a synthesis,
show that the closure of CAS induces a strengthening of the Atlantic meridional overturning circulation
(AMOC) associated with higher sea surface temperatures in the northern hemisphere and a slight north-
ward shift of the ITCZ (Schneider et al., 2014). Figure 9a shows how the Guajira Peninsula is expected to
be even drier than today with an early Miocene‐like open CAS, at odds with the empirical records presented
earlier showing greater precipitation during the Miocene. Furthermore, numerical experiments with lower
Andes (Figure 9b) (Poulsen et al., 2010; Sepulchre et al., 2010) show that the topography did not alter the
rainfall patterns over northern South America strongly enough to explain the recorded aridification of La
Guajira region.

Quaternary records of precipitation changes in the tropics have long been interpreted as representing a dis-
placement of the ITCZ latitudinal position, in response to latitudinal surface temperature gradients (e.g.,
Escobar et al., 2012). The ITCZ would expand towards the warmer hemisphere, for example, northward dur-
ing the mid‐Holocene when boreal summer insolation produces north Atlantic warming, or southward dur-
ing Heinrich events. However, numerical experiments reveal a more complex behavior of the ITCZ. Using
reconstructions of SSTs gradients for the Quaternary and its linear relationship with ITCZ latitudinal posi-
tion obtained from preindustrial and past climate simulations with >20 models, McGee et al. (2014) showed
that the maximal latitudinal displacement of the ITCZ as a response to Quaternary abrupt temperature
changes would not be higher than one latitudinal degree. This was later explained by the ability of the
wind‐driven ocean circulation to damp the ITCZ latitudinal displacement (Green & Marshall, 2017). In line
with these results, numerical simulations for the mid‐Pliocene warm period show neither significant latitu-
dinal displacement of the ITCZ over South America nor increase in precipitation over Guajira (Li et al., 2020;
Tan et al., 2020).

Several numerical climate simulations have been carried out for the Miocene. The simulated precipitation
response to Miocene boundary conditions is particularly varied for tropical regions, depending on the model
used (Henrot et al., 2017). Specifically, atmosphere‐only (i.e., with forced SSTs) simulations depict stronger
shifts in ITCZ than fully‐coupled simulations, as the damping feedback from the ocean mentioned earlier is
not accounted for (Lunt et al., 2008). For the middle Miocene over the Guajira region, simulations carried
out with CESM1 (Goldner et al., 2014), MPI‐ESM (Krapp & Jungclaus, 2011), and Planet Simulator
(Henrot et al., 2010) depict drier conditions than the pre‐industrial, whereas FOAM‐LMDZ (Hamon
et al., 2012) and CCSM3 (Herold et al., 2012) simulate slightly wetter conditions, but with values far lower
than our reconstructions for the Miocene. In turn, all the models (Goldner et al., 2014; Hamon et al., 2012;
Herold et al., 2012; Krapp & Jungclaus, 2011) summarized in Henrot et al. (2017) simulate either a tropical
deciduous forest/woodland savanna or a tropical grassland or savanna, but never a wet forest with MAP
values around 2,000 mm such as the one predicted here based on palynological data.

Here we compare the most recent Miocene simulation run with CESM 1.0.5 (Zhou et al., 2018) with our
reconstructed values of precipitation and temperature. This simulation provides a ~1,000 mm annual rain-
fall over northeastern South America, with continental surface temperature averaging 28.9°C (Figure 10), a
climatic envelope still too warm and too dry when compared with reconstructions. Although the vegetation
is prescribedmostly as a tropical rainforest over the region, continental recycling is not sufficient to feed con-
vection and enhance precipitation, possibly as a result of vegetation self‐limitation transpiration at high
pCO2. Further investigations will also require analysis of the atmospheric dynamics of this simulation to
quantify moisture convergence over the Guajira region.

5. Conclusions

Our biostratigraphic analysis may solve a long‐standing question about the stratigraphic position of the
Oligocene/Miocene boundary in the Cocinetas basin as well as the age of the Siamana Formation and the
lower Uitpa Formation. Our results indicate that the top of the Siamana Formation is late Chattian (late
Oligocene), that the Uitpa Formation extends from the latest Oligocene (~24.2 Ma) to the early
Burdigalian (~19.4 Ma), and that the lower Jimol Formation is Burdigalian (~19.4–17.3 Ma).
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The modern vegetation of the Cocinetas Basin is dominated by xerophytic shrubland, which, together with
desert occupies more than 90% of the region. The dominance of this type of vegetation is not an effect of early
Spanish colonization as historical records indicate that this vegetation was predominant at the time of arri-
val of the first Europeans to the region. The palynological record of Holocene/modern sediment samples is a
good proxy for the present vegetation of the region, yet when compared with the earlyMiocene palynological
record, there is a stark contrast, as the Miocene is dominated by rainforest taxa. This major difference is also
seen in the mean annual precipitation, which is ~2,000 mm for the early Miocene, within the envelope of a
tropical rainforest. The vertebrate record of the late Neogene of both the Cocinetas and Falcon Basins,
although still lacking fossil corroborating plant evidence, suggests that aridity has been a feature only over
the past ~3 million years. When and how this change occurred is still a matter of future studies.

Understanding why most Miocene climate simulations fail to reproduce the reconstructed climate condi-
tions over La Guajira is crucial for understanding how the regional climate was driven at the time. First,
the present‐day atmospheric dynamics over the region together with the sensitivity experiments for the
Quaternary indicate that the ITCZ migration alone is unlikely to explain the differences between the
Miocene and the present‐day climate. Rather, one should explore (i) how moisture convergence patterns
and CCLJ are altered during the Miocene, (ii) how the ealier‐mentioned subsidence over the Guajira
Peninsula is represented in ESMs, and (iii) howmoisture convergence behaves with Miocene boundary con-
ditions. A second point is that the Guajira Peninsula is, at the scale of typical climate model resolution, a
small region with heterogenous surface conditions. Refining the boundary conditions, including the vegeta-
tion and paleotopograpy, together with the use of higher resolution models, could help better represent the
Miocene climate of this region. Lastly, constraining the Miocene SSTs of the Caribbean, especially regarding
the presence or not of the Guajira upwelling, would help clarify the ocean‐atmosphere interactions in this
region. The currently under‐development modeling intercomparison project for the Miocene (“MioMIP”)
will help provide such constraints and, we hope, solve the Guajira Miocene climate conundrum.

Data Availability Statement

All data and model outputs analyzed in this study are available open access as NetCDF files on the Zenodo
repository, DOI: https://doi.org/10.5281/zenodo.4075108 (https://zenodo.org/record/4075108). Figures 9 and
10 were done using NOAA pyferret within Jupyter notebooks, thanks to the ferretmagic add on developed
at LSCE by Patrick Brockmann. Ferret is a product of NOAA's Pacific Marine Environmental Laboratory.
(Information is available at http://ferret.pmel.noaa.gov/Ferret [last access: 1 June 2020; NOAA's Pacific
Marine Environmental Laboratory, 2020]), distributed under the Open Source Definition. The Jupyter
notebook is an open‐source web application. Figures 9 and 10 in this paper were made with perceptually uni-
form, color‐vision‐deficiency‐friendly scientific color maps, developed and distributed by Fabio Crameri
(http://www.fabiocrameri.ch/colourmaps.php), to prevent visual distortion of the data (Crameri, 2018).
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