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Abstract
In this paper, new oscillation results for nonlinear third-order difference equations
with mixed neutral terms are established. Unlike previously used techniques, which
often were based on Riccati transformation and involve limsup or liminf conditions for
the oscillation, the main results are obtained by means of a new approach, which is
based on a comparison technique. Our new results extend, simplify, and improve
existing results in the literature. Two examples with specific values of parameters are
offered.

MSC: 34N05; 39A10

Keywords: Oscillation; Comparison; Nonlinear third-order difference equations;
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1 Introduction and preliminaries
Oscillation of solutions for third-order difference equations has received comparably little
attention, although such equations are of importance in many fields of science such as eco-
nomics, physics, mathematical biology, and other areas of mathematics [3, 4, 6, 7, 10, 11,
13, 14, 24, 27, 31, 32, 35–37]. It is worth to mention that third-order difference equations
may have totally different behavior from corresponding third-order differential equations;
see the explicit example in [9]. On the other hand, oscillation of solutions for difference
equations of first and second order have been extensively investigated in the literature; see
the monographs [1, 2, 8] and the papers [5, 12, 15–19, 21, 23, 25, 26, 30, 33].

In this study, we consider a nonlinear third-order difference equation with mixed non-
linear neutral terms. We obtain conditions guaranteeing oscillation of solutions of this
equation. The main results are proved by using a comparison technique with first-order
equations. Such an approach was effectively used for other types of equations in [20, 22].
To demonstrate this, we present two examples, which cannot be discussed using any of
the previously established results.

We consider the equation

�
(
p1(t)

(
�2y(t)

)α1) = p2(t)xα2 (t – m + 1) + p3(t)xα3
(
t + m∗), (1.1)
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where y(t) = x(t) + p4(t)xα4 (t – k) – p5(t)xα5 (t – k), and subject to the assumptions:
(i) α1, α2, α3, α4, α5 are the ratios of positive odd integers, α1 ≥ 1,

(ii) p1, p2, p3, p4, p5 : Z→ (0,∞) are sequences,
(iii) m, m∗, k ∈N are such that m > 2, m∗ > 2, k < m – 1.

A solution of (1.1) is called oscillatory if it is neither eventually negative nor eventually
positive. We call (1.1) oscillatory provided that all its solutions are oscillatory.

The objective of this paper is to offer conditions ensuring oscillation of (1.1) whenever

α4 < 1 < α5 or α4 < α5 ≤ 1

and subject to the assumption

P1(t, t1) → ∞ as t → ∞, where P1(v, u) :=
v–1∑

τ=u

1

p1
1
α1 (τ )

. (1.2)

In view of the results established in the literature and to the best of our observations, there
are no oscillation results for (1.1).

This paper is organized as follows: In Sect. 2, we give some auxiliary results and intro-
duce some notation. Sect. 3 features the main results of the paper. We present our inves-
tigations under two cases for (1.1). The first case is when α4 < 1 < α5, and the other case
is when α4 < α5 ≤ 1. Our approach is based on a comparison technique with first-order
difference equations. In Sect. 4, two examples are provided in order to illustrate our main
theorems.

2 Auxiliary results and notations
We start with the following fundamental result. See [22, Lemma 1], and for the proof of
(I), see [29, Lemma 2.2].

Lemma 2.1
(I) If the first-order delay difference inequality

�y(t) + p2(t)yγ (t – m + 1) ≤ 0

has an eventually positive solution, then so does the corresponding delay difference
equation.

(II) If the first-order advanced difference inequality

�y(t) – p2(t)yγ
(
t + m∗) ≥ 0

has an eventually positive solution, then so does the corresponding advanced
difference equation.

We also need the following lemmas.

Lemma 2.2 (see [28]) If X, Y ≥ 0, then

Xλ + (λ – 1)Y λ – λXY λ–1 ≥ 0 for λ > 1 (2.1)
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and

Xλ – (1 – λ)Y λ – λXY λ–1 ≤ 0 for 0 < λ < 1. (2.2)

Lemma 2.3 Assume (1.2). Then

�Y (t) > 0 eventually, where Y := p1
(
�2y

)α1 (2.3)

implies that eventually one of the following four situations occur:

Case PPP. y(t) > 0, �y(t) > 0, �2y(t) > 0;

Case PPN. y(t) > 0, �y(t) > 0, �2y(t) < 0;

Case NNN. y(t) < 0, �y(t) < 0, �2y(t) < 0;

Case NPN. y(t) < 0, �y(t) > 0, �2y(t) < 0.

Proof By (2.3), there exists t0 ∈N0 satisfying

�Y (t) > 0 for all t ≥ t0. (2.4)

We first assume that

there exists t1 ≥ t0 with Y (t1) > 0. (2.5)

Then, for all t ≥ t1, we have

Y (t) = Y (t1) +
t–1∑

τ=t1

�Y (τ )
(2.4)≥ Y (t1)

(2.5)
> 0.

Hence,

�2y(t) > 0 for all t ≥ t1. (2.6)

Now, for t ≥ t1, we get

�y(t) = �y(t1) +
t–1∑

τ=t1

�2y(τ ) = �y(t1) +
t–1∑

τ=t1

Y
1
α1 (τ )

p1
1
α1 (τ )

(2.4)≥ �y(t1) +
t–1∑

τ=t1

Y
1
α1 (t1)

p1
1
α1 (t1)

= �y(t1) + Y
1
α1 (t1)P1(t, t1) (2.5)→ ∞ as t → ∞,

due to (1.2). Thus,

there exists t2 ≥ t1 with �y(t) > 0 for all t ≥ t2. (2.7)
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Hence, for t ≥ t2, we obtain

y(t) = y(t2) +
t–1∑

τ=t2

�y(τ )
(2.6)≥ y(t2) +

t–1∑

τ=t2

�y(t2)

= y(t2) + (t – τ2)�y(t2) (2.7)→ ∞ as t → ∞.

Therefore,

there exists t3 ≥ t2 with y(t) > 0 for all t ≥ t3. (2.8)

By (2.6), (2.7), and (2.8), we have

y(t) > 0, �y(t) > 0, �2y(t) > 0 for all t ≥ t3,

so Case PPP holds. Next, if (2.5) does not hold, then the only other possibility is

Y (t) < 0 for all t ≥ t0,

and hence

�2y(t) < 0 for all t ≥ t0. (2.9)

We assume that

there exists t1 ≥ t0 with �y(t1) < 0. (2.10)

Then, for all t ≥ t1, we have

�y(t) = �y(t1) +
t–1∑

τ=t1

�2y(τ )
(2.9)≤ �y(t1)

(2.10)
< 0.

Thus,

�y(t) < 0 for all t ≥ t1. (2.11)

Now, for t ≥ t1, we get

y(t) = y(t1) +
t–1∑

τ=t1

�y(τ )
(2.9)≤ y(t1) +

t–1∑

τ=t1

�y(t1)

= y(t1) + (t – t1)�y(t1) (2.10)→ –∞ as t → ∞.

Hence,

there exists t2 ≥ t1 with y(t) < 0 for all t ≥ t2. (2.12)
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By (2.9), (2.11), and (2.12), we have

y(t) < 0, �y(t) < 0, �2y(t) < 0 for all t ≥ t2,

so Case NNN holds. Next, if (2.10) does not hold, then the only other possibility is

�y(t) > 0 for all t ≥ t0. (2.13)

We assume that

there exists t1 ≥ t0 with y(t1) > 0. (2.14)

Then, for all t ≥ t1, we have

y(t) = y(t1) +
t–1∑

τ=t1

�y(τ )
(2.13)≥ y(t1)

(2.14)
> 0 for all t ≥ t1. (2.15)

By (2.9), (2.13), and (2.15), we have

y(t) > 0, �y(t) > 0, �2y(t) < 0 for all t ≥ t1,

so Case PPN holds. Finally, if (2.14) does not hold, then the only other possibility is

y(t) < 0 for all t ≥ t0. (2.16)

By (2.9), (2.13), and (2.16), we have

y(t) < 0, �y(t) > 0, �2y(t) < 0 for all t ≥ t1,

so Case NPN holds. There are no other cases. See Table 1 for an illustration of the proof.
�

Throughout the remainder of the paper, we suppose that

k0, k1, k2, k3 ∈N satisfy 2k0 < m∗, k1 < m + 1, and k2 < k3 < m + 1 – k. (2.17)

For convenience, we introduce the notations

ξ0(t) := t + m∗ – 2k0, ξ1(t) := t – m + k1 – 1, ξ2(t) := t – m + k – 1,

Table 1 Illustration of the proof of Lemma 2.3

�2y(t) �y(t) y(t)

(2.5) P P P

(2.9) N (2.10) N N

(2.13) P (2.14) P

(2.16) N
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ξ3(t) := ξ2(t) + k3, �0(t) :=
t–1∑

τ=t–k0

(
1

p1(τ )

τ–1∑

s=τ–k0

p3(s)

) 1
α1

,

�1(t) := p2(t)
(
(t – m + 1)P1(t – m + k1, t – m)

)α2 ,

�2(t) := Q(t)

(t–m+k∑

τ=t1

P1(τ , t1)

) α2
α5

,

�3(t) := k
α2
α5

2 Q(t)P1
α2
α5 (t – m + k + k3, t – m + k + k2), Q(t) :=

p2(t)

p5
α2
α5 (t – m + k + 1)

.

Remark 2.4
1. Note that, due to the assumptions m > 2, m∗ > 2, and k < m – 1, it is always possible

to find k0, k1, k2, k3 such that (2.17) holds, e.g., one may pick

k0 = k1 = k2 = 1 and k3 = 2.

2. Note that ξ0(t) > t holds always since m∗ – 2k0 > 0. Hence, equations involving ξ0 are of
advanced type. Moreover, ξ1(t) < t, ξ2(t) < t, and ξ3(t) < t always since m + 1 – k1 > 0,
m + 1 – k > 0, and m + 1 – k – k3 > 0. Hence, equations involving ξ1, ξ2, ξ3 are of delay
type.

3 Main results
Now we present our first oscillation result.

Theorem 3.1 Let α4 < 1 < α5. Suppose that (i)–(iii), (1.2), and (2.17) hold. Assume that
there exists p : Z → (0,∞) such that

lim
t→∞

(
g1(t) + g2(t)

)
= 0, where

g1(t) := (1 – α4)α4
α4

1–α4 p
α4

α4–1 (t)p4
1

1–α4 (t) and

g2(t) := (α5 – 1)α5
α5

1–α5 p
α5

α5–1 (t)p5
1

1–α5 (t).

(3.1)

Let θ0, θ1 ∈ (0, 1). If the first-order advanced difference equation

�y(t) = θ0�0(t)y
α3
α1

(
ξ0(t)

)
(3.2)

and the first-order delay difference equations

�Z(t) + θ1�1(t)Z
α2
α1

(
ξ1(t)

)
= 0, (3.3)

�Z(t) + �2(t)Z
α2

α1α5
(
ξ2(t)

)
= 0, (3.4)

and

�Z(t) + �3(t)Z
α2

α1α5
(
ξ3(t)

)
= 0 (3.5)

are oscillatory, then so is (1.1).
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Proof Assume that x is a nonoscillatory solution of (1.1), say

x(t) > 0, x(t – k) > 0, x(t – m + 1) > 0, x
(
t + m∗) > 0

eventually. It follows from (1.1) that, eventually,

�
(
p1(t)

(
�2y(t)

)α1) = p2(t)xα2 (t – m + 1) + p3(t)xα3
(
t + m∗) > 0. (3.6)

Hence (2.3) is satisfied, and thus, by Lemma 2.3, only the four Cases PPP, PPN, NNN, and
NPN are possible. We now discuss each of these possible cases.

Cases PPP and PPN. Applying (2.1) with

λ := α5 > 1, X := p5
1
α5 (t)x(t – k), Y :=

(
1
α5

p(t)p5
– 1

α5 (t)
) 1

α5–1
,

we obtain

p(t)x(t – k) – p5(t)xα5 (t – k) ≤ g2(t),

while applying (2.2) with

λ := α4 ∈ (0, 1), X := p4
1
α4 (t)x(t – k), Y :=

(
1
α4

p(t)p4
– 1

α4 (t)
) 1

α4–1
,

we get

–
(
p(t)x(t – k) – p4(t)xα4 (t – k)

) ≤ g1(t).

Using these two inequalities, we have

x(t) = y(t) –
(
p(t)x(t – k) – p5(t)xα5 (t – k)

)
+

(
p(t)x(t – k) – p4(t)xα4 (t – k)

)

≥ y(t) – g1(t) – g2(t) =
[

1 –
g1(t) + g2(t)

y(t)

]
y(t).

Since y in both Cases PPP and PPN is positive and nondecreasing, there exists C > 0 sat-
isfying y(t) ≥ C, and so we have

x(t) ≥
[

1 –
g1(t) + g2(t)

C

]
y(t).

Next, due to (3.1), there exists κ ∈ (0, 1) such that

x(t) ≥ κy(t) eventually. (3.7)

Thus, we have

�
(
p1(t)

(
�2y(t)

)α1) ≥ κα2 p2(t)yα2 (t – m + 1) + κα3 p3(t)yα3
(
t + m∗) ≥ 0. (3.8)
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Case PPP. By (3.8), we get

�
(
p1(t)

(
�2y(t)

)α1) ≥ κα3 p3(t)yα3
(
t + m∗). (3.9)

Summing (3.9) from t – k0 to t – 1, we get

p1(t)
(
�2y(t)

)α1 = p1(t – k0)
(
�2y(t – k0)

)α1 +
t–1∑

τ=t–k0

�
(
p1(τ )

(
�2y(τ )

)α1)

(3.9)≥ κα3
t–1∑

τ=t–k0

p3(τ )yα3
(
τ + m∗)

≥ κα3 yα3
(
t + m∗ – k0

) t–1∑

τ=t–k0

p3(τ ).

Therefore, we have

�2y(t) ≥ κ
α3
α1 y

α3
α1

(
t + m∗ – k0

)
(

1
p1(t)

t–1∑

τ=t–k0

p3(τ )

) 1
α1

. (3.10)

Summing (3.10) again from t – k0 to t – 1, we obtain

�y(t) = �y(t – k0) +
t–1∑

τ=t–k0

�2y(τ )

(3.10)≥ κ
α3
α1

t–1∑

τ=t–k0

y
α3
α1

(
τ + m∗ – k0

)
(

1
p1(τ )

τ–1∑

s=τ–k0

p3(s)

) 1
α1

≥ κ
α3
α1 y

α3
α1

(
t + m∗ – 2k0

) t–1∑

τ=t–k0

(
1

p1(τ )

τ–1∑

s=τ–k0

p3(s)

) 1
α1

.

In summary, y is a positive and increasing solution of

�y(t) – κ
α3
α1 �0(t)y

α3
α1

(
ξ0(t)

) ≥ 0.

Employing Lemma 2.1 (II), (3.2) also has an eventually positive solution, which is a con-
tradiction.

Case PPN. We introduce

Z := –p1
(
�2y

)α1 > 0 eventually. (3.11)

By (3.8), we obtain

–�Z(t) ≥ κα2 p2(t)yα2 (t – m + 1). (3.12)
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First, we see that, eventually,

y(t) = y(t1) +
t–1∑

τ=t1

�y(τ ) ≥
t–1∑

τ=t1

�y(τ )

≥
t–1∑

τ=t1

�y(t – 1) = (t – t1)�y(t – 1) = t�y(t – 1)
(

1 –
t1

t

)
.

Since t1/t → 0 as t → ∞, there exists θ ∈ (0, 1) so that

y(t) ≥ θ t�y(t – 1) eventually. (3.13)

Now, we put

u := t – m and v := u + k1 > u.

Then, eventually,

0 ≤ �y(v) = �y(u) +
v–1∑

τ=u
�2y(τ )

(3.11)= �y(u) –
v–1∑

τ=u

Z
1
α1 (τ )

p1
1
α1 (τ )

(3.6)≤ �y(u) –
v–1∑

τ=u

Z
1
α1 (v – 1)

p1
1
α1 (τ )

= �y(u) – Z
1
α1 (v – 1)P1(v, u),

and hence

�y(u) ≥ Z
1
α1 (v – 1)P1(v, u) eventually. (3.14)

Altogether, eventually,

–�Z(t)
(3.12)≥ κα2 p2(t)yα2 (t – m + 1)
(3.13)≥ (θκ)α2 p2(t)(t – m + 1)α2

(
�y(t – m)

)α2

= (θκ)α2 p2(t)(t – m + 1)α2
(
�y(u)

)α2

(3.14)≥ (θκ)α2 p2(t)(t – m + 1)α2
(
Z

1
α1 (v – 1)P1(v, u)

)α2

= (θκ)α2 p2(t)(t – m + 1)α2
(
Z

1
α1

(
ξ1(t)

)
P1(t – m + k1, t – m)

)α2 .

In summary, Z is a positive and decreasing solution of

�Z(t) + (θκ)α2�1(t)Z
1
α1

(
ξ1(t)

) ≤ 0.



Alzabut et al. Advances in Difference Equations          (2021) 2021:3 Page 10 of 18

Employing Lemma 2.1 (I), (3.3) also has an eventually positive solution, which is a contra-
diction.

Cases NNN and NPN. Throughout the remainder of the proof, we introduce Z again by
(3.11). First note that, eventually,

y(t) = x(t) + p4(t)xα4 (t – k) – p5(t)xα5 (t – k) ≥ –p5(t)xα5 (t – k).

Hence, eventually,

x(t – k) ≥ –
(

y(t)
p5(t)

) 1
α5

. (3.15)

Thus, eventually,

–�Z(t) (1.1)= p2(t)xα2 (t – m + 1) + p3(t)xα5
(
t + m∗)

≥ p2(t)xα2 (t – m + 1)
(3.15)≥ –p2(t)

(
y(t – m + k + 1)

p5(t – m + k + 1)

) α2
α5

= –Q(t)y
α2
α5 (t – m + k + 1). (3.16)

Case NNN. First note that, eventually,

�y(t) = �y(t1) +
t–1∑

τ=t1

�2y(τ ) ≤
t–1∑

τ=t1

�2y(τ )

(3.11)= –
t–1∑

τ=t1

Z
1
α1 (τ )

p1
1
α1 (τ )

(3.6)≤ –
t–1∑

τ=t1

Z
1
α1 (t – 1)

p1
1
α1 (τ )

= –Z
1
α1 (t – 1)P1(t, t1),

and therefore, eventually,

y(t) = y(t1) +
t–1∑

τ=t1

�y(τ )

≤
t–1∑

τ=t1

�y(τ ) ≤ –
t–1∑

τ=t1

Z
1
α1 (τ – 1)P1(τ , t1)

(3.6)≤ –Z
1
α1 (t – 2)

t–1∑

τ=t1

P1(τ , t1),
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and thus, eventually,

–�Z(t)
(3.16)≥ –Q(t)y

α2
α5 (t – m + k + 1)

≥ Q(t)

(

Z
1
α1 (t – m + k – 1)

t–m+k∑

τ=t1

P1(τ , t1)

) α2
α5

= Q(t)

(t–m+k∑

τ=t1

P1(τ , t1)

) α2
α5

Z
α2

α1α5
(
ξ2(t)

)
.

In summary, Z is a positive and decreasing solution of

�Z(t) + �2(t)Z
α2

α1α5
(
ξ2(t)

) ≤ 0.

Employing Lemma 2.1 (I), (3.4) also has an eventually positive solution, which is a contra-
diction.

Case NPN. We let

u := t – m + k + 1, v := u + k2 > u, and w := u + k3 – 1 > v – 1.

First, we have, eventually,

0 ≥ y(v) = y(u) +
v–1∑

τ=u
�y(τ )

≥ y(u) +
v–1∑

τ=u
�y(v – 1) = y(u) + (v – u)�y(v – 1),

so,

–y(u) ≥ (v – u)�y(v – 1). (3.17)

Next, we have, eventually,

0 ≤ �y(w) = �y(v – 1) +
w–1∑

τ=v–1

�2y(τ )

(3.11)= �y(v – 1) –
w–1∑

τ=v–1

Z
1
α1 (τ )

p1
1
α1 (τ )

(3.6)≤ �y(v – 1) –
w–1∑

τ=v–1

Z
1
α1 (w – 1)

p1
1
α1 (τ )

= �y(v – 1) – Z
1
α1 (w – 1)P1(w, v – 1),

so,

�y(v – 1) ≥ Z
1
α1 (w – 1)P1(w, v – 1). (3.18)
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Thus, we see that

–�Z(t)
(3.16)≥ –Q(t)y

α2
α5 (t – m + k + 1) = –Q(t)y

α2
α5 (u)

(3.17)≥ Q(t)
(
(v – u)�y(v – 1)

) α2
α5 = Q(t)k

α2
α5

2
(
�y(v – 1)

) α2
α5

(3.18)≥ Q(t)k
α2
α5
2

(
Z

1
α1 (w – 1)P1(w, v – 1)

) α2
α5

= Q(t)k
α2
α5
2 P1

α2
α5 (t – m + k + k3, t – m + k + k2)Z

α2
α1α5

(
ξ3(t)

)
.

In summary, Z is a positive and decreasing solution of

�Z(t) + �3(t)Z
α2

α1α5
(
ξ3(t)

) ≤ 0.

Employing Lemma 2.1 (I), (3.5) also has an eventually positive solution, which is a contra-
diction. �

We now prove the following consequence of Theorem 3.1.

Theorem 3.2 Let α4 < 1 < α5. Suppose that (i)–(iii), (1.2), (2.17), and (3.1) hold. Let
θ0, θ1 ∈ (0, 1). If the first-order advanced difference equation (3.2) and the first-order de-
lay difference equations (3.3) and

�Z(t) + min
{
�2(t),�3(t)

}
Z

α2
α1α5

(
ξ3(t)

)
= 0 (3.19)

are oscillatory, then so is (1.1).

Proof We claim that oscillation of (3.19) implies oscillation of both (3.4) and (3.5). As all
the other assumptions are the same as in Theorem 3.1, the statement then follows from
Theorem 3.1. So assume that (3.19) is oscillatory. First, suppose that (3.4) is not oscillatory,
say, there exists eventually positive Z satisfying

0 = �Z(t) + �2(t)Z
α2

α1α5
(
ξ2(t)

) ≥ �Z(t) + min
{
�2(t),�3(t)

}
Z

α2
α1α5

(
ξ2(t)

)
. (3.20)

From the equality in (3.20), we see that Z is eventually decreasing, and since

ξ3(t) = ξ2(t) + k3 > ξ2(t),

we obtain Z(ξ3(t)) ≤ Z(ξ2(t)) eventually. Using this in (3.20), we get

0 ≥ �Z(t) + min
{
�2(t),�3(t)

}
Z

α2
α1α5

(
ξ2(t)

) ≥ �Z(t) + min
{
�2(t),�3(t)

}
Z

α2
α1α5

(
ξ3(t)

)
.

By Lemma 2.1 (I), (3.19) also has an eventually positive solution, a contradiction, showing
that (3.4) is indeed oscillatory. Next, suppose that (3.5) is not oscillatory, say, there exists
eventually positive Z satisfying

0 = �Z(t) + �3(t)Z
α2

α1α5
(
ξ3(t)

) ≥ �Z(t) + min
{
�2(t),�3(t)

}
Z

α2
α1α5

(
ξ3(t)

)
.
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By Lemma 2.1 (I), (3.19) also has an eventually positive solution, a contradiction, showing
that (3.5) is indeed oscillatory as well. Thus, the proof is complete. �

Remark 3.3 Observe that the minimum occurring in (3.19) may be calculated as follows:

min
{
�2(t),�3(t)

}
= Q(t)

(

min

{t–m+k∑

τ=t1

P1(τ , t1), k2P1(t – m + k + k3, t – m + k + k2)

}) α2
α5

.

The following theorem gives some further criteria for a special case.

Theorem 3.4 Let α4 < 1 < α5 and α2 ≤ α1 ≤ α3. Suppose that (i)–(iii), (1.2), (2.17), and
(3.1) hold. If

lim sup
t→∞

ξ0(t)–1∑

τ=t
�0(τ ) = ∞, (3.21)

lim sup
t→∞

t∑

τ=ξ1(t)

�1(τ ) = ∞, (3.22)

lim sup
t→∞

t∑

τ=ξ2(t)

�2(τ ) = ∞, (3.23)

and

lim sup
t→∞

t∑

τ=ξ3(t)

�3(τ ) = ∞, (3.24)

then (1.1) is oscillatory.

Proof We claim that under the additional assumption α2 ≤ α1 ≤ α3, (3.21), (3.22), (3.23),
and (3.24) imply oscillation of (3.2), (3.3), (3.4), and (3.5), respectively. As all the other
assumptions are the same as in Theorem 3.1, the statement then follows from Theorem
3.1. First, suppose that (3.2) is not oscillatory, say, there exists eventually positive y satis-
fying (3.2). As can be seen from (3.2), y is eventually increasing and thus bounded below
by some C > 0. Summing (3.2) from τ = t to τ = ξ0(t) – 1, we obtain, eventually,

y
(
ξ0(t)

) ≥ y
(
ξ0(t)

)
– y(t) (3.2)=

ξ0(t)–1∑

τ=t
θ0�0(τ )y

α3
α1

(
ξ0(τ )

) ≥
ξ0(t)–1∑

τ=t
θ0�0(τ )y

α3
α1

(
ξ0(t)

)
,

and thus, as α3 ≥ α1,

θ0

ξ0(t)–1∑

τ=t
�0(τ ) ≤ 1

y
α3–α1

α1 (ξ0(t))
≤ 1

C
α3–α1

α1
,

contradicting (3.21). Next, suppose that (3.3) is not oscillatory, say, there exists eventually
positive Z satisfying (3.3). As can be seen from (3.3), Z is eventually decreasing and thus
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bounded above by some C > 0. Summing (3.3) from τ = ξ1(t) to τ = t, we obtain, eventually,

Z
(
ξ1(t)

) ≥ Z
(
ξ1(t)

)
– Z(t + 1) (3.3)=

t∑

τ=ξ1(t)

θ1�1(τ )Z
α2
α1

(
ξ1(t)

)
,

and thus, as α1 ≥ α2,

θ1

t∑

τ=ξ1(t)

�1(τ ) ≤ Z
α1–α2

α1
(
ξ1(t)

) ≤ C
α1–α2

α1 ,

contradicting (3.22). Next, suppose that (3.4) is not oscillatory, say, there exists eventually
positive Z satisfying (3.4). As can be seen from (3.4), Z is eventually decreasing and thus
bounded above by some C > 0. Summing (3.4) from τ = ξ2(t) to τ = t, we obtain, eventually,

Z
(
ξ2(t)

) ≥ Z
(
ξ2(t)

)
– Z(t + 1) (3.4)=

t∑

τ=ξ2(t)

�2(τ )Z
α2

α1α5
(
ξ2(τ )

)

≥
t∑

τ=ξ2(t)

�2(τ )Z
α2

α1α5
(
ξ2(t)

)
,

and thus, as α1α5 ≥ α1 ≥ α2,

t∑

τ=ξ2(t)

�2(τ ) ≤ Z
α1α5–α2

α1α5
(
ξ2(t)

) ≤ C
α1α5–α2

α1α5 ,

contradicting (3.23). The proof that (3.24) implies oscillation of (3.5) follows exactly like
the proof that (3.23) implies oscillation of (3.4), only with ξ2 and �2 replaced by ξ3 and
�3, respectively. �

Remark 3.5 Note that Tang and Liu [34] have developed other oscillation criteria for sub-
linear delay difference equations, which could be used in place of (3.22), (3.23), and (3.24)
to examine the oscillation of (3.3), (3.4), and (3.5). Similar criteria for superlinear advanced
difference equations could not be found in the literature.

Now, we focus on the case α4 < α5 ≤ 1.

Theorem 3.6 Let α4 < α5 ≤ 1. Suppose that (i)–(iii), (1.2), and (2.17) hold. Assume

lim
t→∞ P(t) = 0, where P(t) :=

α5 – α4

α4

(
α4

α5
p4(t)

) α5
α5–α4 (

p5(t)
) α4

α4–α5 . (3.25)

Let θ0, θ1 ∈ (0, 1). If (3.2), (3.3), (3.4), and (3.5) are oscillatory, then so is (1.1).

Proof Inspecting the proof of Theorem 3.1, we see that α5 > 1 was needed only in the
discussions under the headline “Cases PPP and PPN” leading to (3.7). The rest of the proof
does not use α5 > 1 and remains unaffected. Thus, while we used (3.1) in Theorem 3.1 to



Alzabut et al. Advances in Difference Equations          (2021) 2021:3 Page 15 of 18

show (3.7), we will now use (3.25) to show (3.7), hence completing the proof. Applying
(2.1) with

λ :=
α5

α4
> 1, X := xα4 (t – k), Y :=

(
α4p4(t)
α5p5(t)

) α4
α5–α4

,

we obtain

xα5 (t – k) +
α5 – α4

α4

(
α4p4(t)
α5p5(t)

) α5
α5–α4 ≥ α5

α4
xα4 (t – k)

α4p4(t)
α5p5(t)

,

and thus

x(t) = y(t) –
(
p4(t)xα4 (t – k) – p5(t)xα5 (t – k)

)

≥ y(t) – P(t) =
(

1 –
P(t)
y(t)

)
y(t).

Since y is positive and nondecreasing, there exists C > 0 such that y(t) ≥ C, and so we have

x(t) ≥
(

1 –
P(t)
C

)
y(t).

Next, due to (3.25), there exists κ ∈ (0, 1) such that (3.7) is satisfied. This completes the
proof. �

As before in Theorem 3.2 and Theorem 3.4, we now obtain the following results.

Theorem 3.7 Let α4 < α5 ≤ 1. Suppose that (i)–(iii), (1.2), (2.17), and (3.25) hold. Let
θ0, θ1 ∈ (0, 1). If (3.2), (3.3), and (3.19) are oscillatory, then so is (1.1).

Theorem 3.8 Let α4 < α5 ≤ 1 and α2/α5 ≤ α1 ≤ α3. Suppose that (i)–(iii), (1.2), (2.17), and
(3.25) hold. If (3.21), (3.22), (3.23), and (3.24) hold, then (1.1) is oscillatory.

4 Examples
We conclude this paper by giving two examples, illustrating our theoretical findings.

Example 4.1 We consider the equation

�

(
(t + 1)3

(
�2

(
x(t) +

1
t

x
1
3 (t – 1) – x3(t – 1)

))3)

= t2x(t – 2) + (t + 2)4x(t + 6). (4.1)

Then (4.1) is in the form (1.1), where

α1 = α3 = α5 = 3, α2 = 1, α4 =
1
3

, k = 1, m = 3, m∗ = 6,

p1(t) = (t + 1)3, p2(t) = t2, p3(t) = (t + 2)4, p4(t) =
1
t

, p5(t) = 1.
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Next, (i)–(iii) are satisfied, and so is (1.2) due to

P1(v, u) =
v–1∑

τ=u

(
1

p1(τ )

) 1
3

=
v–1∑

τ=u

1
τ + 1

=
v∑

τ=u+1

1
τ

→ ∞.

Now we may pick (see Remark 2.4)

k0 = k1 = k2 = 1 and k3 = 2,

and then (2.17) is satisfied, and we have

ξ0(t) = t + 4, ξ1(t) = ξ2(t) = t – 3, ξ3(t) = t – 1.

Moreover, we have α4 < 1 < α5 and α2 < α1 = α3, so we will apply Theorem 3.4. We pick
p = p4, and then

g1(t) + g2(t) =
2
3

(
1
3

) 1
2 (

p(t)
)– 1

2
(
p4(t)

) 3
2 + 2 · 3– 3

2
(
p(t)

) 3
2
(
p5(t)

)– 1
2

=
2

3
√

3t

(
1 +

1√
t

)
→ 0 as t → ∞,

and thus, (3.1) is satisfied. We also calculate

�0(t) =
t–1∑

τ=t–1

(
1

p1(τ )

τ–1∑

s=τ–1

p3(s)

) 1
3

=
(

p3(t – 2)
p1(t – 1)

) 1
3

=
(

t4

t3

) 1
3

= t
1
3 ,

�1(t) = p2(t)(t – 2)P1(t – 2, t – 3) = p2(t) = t2,

�2(t) = p2(t)
t–2∑

τ=t1

P1(τ , t1) ≥ t2

t – 2
≥ t,

and

�3(t) = p2(t)
(
P1(t, t – 1)

) 1
3 = p2(t)

(
1
t

) 1
3

= t
5
3 .

Hence, (3.21), (3.22), (3.23), and (3.24) hold. Now all the conditions of Theorem 3.4 are
fulfilled, and thus, (4.1) is oscillatory.

Example 4.2 We consider the equation

�

(
(t + 1)3

(
�2

(
x(t) +

1
t

x
1
3 (t – 1) – x

2
3 (t – 1)

))3)

= t2x(t – 2) + (t + 2)4x(t + 6). (4.2)

Note that all data in (4.2) are the same as in (4.1), except

α5 =
2
3

.
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Moreover, we have α4 < α5 < 1 and α2/α5 < α1 = α3, so we will apply Theorem 3.8. We
calculate

P(t) =
(

1
2

p4(t)
)2(

p5(t)
)–1 =

1
4t2 → 0 as t → ∞,

and thus, (3.25) is satisfied. The fulfillment of all other conditions of Theorem 3.8 follows
in the same way as in Example 4.1, and hence (4.2) is oscillatory.

Remark 4.3 The results of this paper may be extended to higher-order difference equa-
tions of the form

�
(
p1(t)

(
�n–1y(t)

)α1) = p2(t)xα2 (t – m + 1) + p3(t)xα3
(
t + m∗),

where y(t) = x(t)+p4(t)xα4 (t –k)–p5xα5 (t –k). We leave the details for future consideration.
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