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Factorization of high-order-harmonic-generation yields in impurity-doped materials
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We present a theoretical investigation of high-order-harmonic generation (HHG) from impurity-doped
materials. Based on the analysis of the exact numerical solutions of the time-dependent Schrödinger equation
(TDSE) for one-dimensional models, we demonstrate the factorization of HHG yields as a product of an electron
wave packet and the recombination cross section, in analogy to HHG from atoms and molecules in the gas phase.
Furthermore, we show that the quantitative rescattering model based on this factorization accurately reproduces
the TDSE results. This opens up new possibilities to study impurities in materials using the available techniques
from strong-field physics.

DOI: 10.1103/PhysRevA.102.023112

I. INTRODUCTION

High-order-harmonic generation (HHG) from atoms and
molecules in gas phase is one of the most important phe-
nomena in intense laser-matter interactions. It provides not
only table-top coherent XUV to soft-x-ray light sources, but
also a powerful technique to produce attosecond pulses for
applications in science and technology [1]. It has been studied
over the last three decades and the mechanism behind HHG in
gases is now well understood based on the three-step recolli-
sion model [2,3]. Only recently, HHG in solids was demon-
strated experimentally with midinfrared [4–6], visible [7],
and terahertz lasers [8,9]. The recollision was also found to
be responsible for a related process of high-order-sideband
generation using terahertz lasers [10]. Subsequently, HHG
has been observed in a variety of materials, including wide
band-gap dielectrics [11–13], amorphous common glass [14],
and graphene [15]. Recently, improvements of the recollision
model in HHG from solids have been reported [16,17]. Due to
their high atomic density, it has been expected that solids have
the potential to produce more efficient HHG, as compared to
atoms and molecules in the gas phase.

Quite recently, it was demonstrated both experimentally
and theoretically that HHG from solids can be enhanced if the
material is doped by impurities [6,18–21]. In fact, impurities
or target engineering in general are typically used to alter the
band structures of a solid, therefore allowing one to actively
control various processes in the material. Conceptually, it was
shown that the three-step recollision model can be extended
for HHG from impurities in solids [19,20]. This indicates that
the HHG process from impurities in solids is very similar to
that from gases.

*hoangvanhung@tdtu.edu.vn

In this paper we show that HHG yields from impurities
can be expressed as a product of a returning electron wave
packet and the photorecombination cross section for electrons
in conduction bands back to the impurity ground state. This
indicates that the quantitative rescattering theory (QRS) for
atoms and molecules in the gas phase [22–27] can be ex-
tended to HHG from impurities in solids. Our results therefore
confirm the validity of the three-step model and recollision
picture for HHG from impurities [19,20] and elevate it to a
more quantitative level.

II. THEORETICAL METHODS

To simulate a HHG process, we solve the time-dependent
Schrödinger equation (TDSE) for solids in an intense laser
pulse within the single-active-electron approximation (SAE).
This approach has been used by different groups [28–36].
Electron correlation has typically been taken into account
empirically via dephasing times in the semiconductor Bloch
equations (SBEs) approach [28,37–39]. To reproduce typical
“clean” experimental spectra, a small dephasing time of the
order of 1 fs has been used. Note that an approach based on
the solution of the time-dependent density functional theory
(TDDFT) has also been used, in which the electron exchange
and correlation can be taken into account [20,39–42]. How-
ever, it was shown that within the TDDFT the spectra are quite
noisy [39,40], although the results agree well with the SBEs
when a large dephasing time is used. Furthermore, it was
shown that the use of the frozen Kohn-Sham potential leads
to quite similar results as of the full TDDFT calculations.
An attempt to treat electron correlation was also reported for
HHG in a strongly correlated system [43]. We remark that the
adequacy and limitations of the SAE approximation have been
addressed recently [35]. They pointed out that the SAE model
agrees well with the SBEs approach if contributions from all
the states in the valence band (VB) are taken into account in
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FIG. 1. The model potentials used in this paper (a) and the
probability density of the impurity ground-state orbitals for four
models (b). The results are shown near the doping site, chosen to
be at x = 0.

the SAE and when the dephasing time in the SBEs is relatively
large.

We model the undoped solid as a linear chain of N atoms
located with a separation a0. The effective potential for the
active electron inside the undoped solid is modeled by a
Mathieu-type potential as (atomic units are used throughout
this paper, unless otherwise indicated)

v(x) = −v0[1 + cos(2πx/a0)]. (1)

In this paper we choose N = 101, v0 = 0.55, and the lattice
constant a0 = 8. This model potential has been used by dif-
ferent groups [18,31,32]. For the doped materials, we consider
the case when dopant atoms substitute atoms of the undoped
solid. To describe the effect of different impurity species on
HHG spectra, we use four different model potentials for v(x)
near the doping site. We have limited ourselves to simple
model potentials in order to illustrate the main physics. To
be specific, we choose the doping site to be at x = 0. This
means that the doping rate is 1%. As compared to the undoped
case, the model potential is assumed to be modified only in
the region close to the impurity atom with |x| � a1/2. In this
region, we use Mathieu-type potential

v(x) = −v1[1 + cos(2πx/a1)] (2)

with parameters v1 = 0.83 and a1 = 8 and v1 = 0.45 and
a1 = 12 for model 1 and 2, respectively. For model 3, we
use v(x) = −v1 with v1 = 0.7 and a1 = 8 for |x| � a1/2. For
model 4 we use

v(x) = − v1√
x2 + 3

+ v1√
(a1/2)2 + 3

, (3)

with v1 = 2.8 and a1 = 12. The four model potentials near the
impurity are shown in Fig. 1(a).

The time-independent Schrödinger equation can be written
as

Ĥ0ψn(x) = Enψn(x), (4)
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FIG. 2. Band structures of the undoped solid (a) and doped solids
with model 1 (b), 2 (c), 3 (d), and 4 (e), as given by the probability
densities for the eigenstates of Ĥ0 in the momentum space. The
maximum of the probability densities for each energy is shown by
a red dot. In (b)–(e), the isolated horizontal lines correspond to the
impurity orbitals. The bands below the top valence band are not
shown, since they practically are not involved in HHG process.

where Ĥ0 = p̂2/2 + v(x). The above equation is solved by the
discrete variable representation method with a uniform grid
in the basis of Fourier functions [44]. For N = 101 atoms
and the lattice constant a0 = 8 a.u., we use the box size
of [−404 : 404] a.u. Following Refs. [42,45], we calculate
the band structures using the spatial Fourier transforms of
the eigenfunctions of Hamiltonian H0. This is illustrated in
Figs. 2(a)–2(e) for the undoped and doped solids with model
1, 2, 3, and 4, respectively, where the probability densities in
the momentum space (k space) are plotted at their respective
energies on a logarithmic scale. To verify the results, we also
calculated the band structure of the undoped solid using the
Bloch state basis. The two results are identical. At such a low
doping rate (1%), the band structures do not change much and
the impurity states are energetically isolated. This is consistent
with the earlier results [20], in which the density-functional
theory was used.

In all four cases, there is an isolated energy level around
−5 eV, i.e., in between the VB and the first conduction
band (CB1). Clearly, this energy level is associated with an
impurity state. Within the single-active-electron model, we
choose to associate this state with the highest occupied orbital
of the impurity atom, which will also be called the impurity
“ground” state for simplicity in the following. The probability
densities of the impurity ground states for the four models are
shown in Fig. 1(b). Clearly, the impurity wave functions are
mostly localized around the impurity site. Since the energy
gap between the the impurity ground state and CB1 is much
smaller than the band gap between the VB and CB1, it is
expected that the HHG yields from doped solids in all four
cases are significantly stronger than that from the undoped
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material. Our calculations based on the solutions of the TDSE
indeed confirmed this expectation, in general agreements with
results based on the TDDFT for donor-doped materials [20].

The time-dependent Hamiltonian for the doped material
interacting with an intense laser pulse polarized along the
x axis can be written in the length gauge within the dipole
approximation as

Ĥ = Ĥ0 + xE (t ), (5)

where the laser pulse is given by

E (t ) = E0 cos2

(
πt

τ

)
cos(ω0t + ϕ) (6)

for the time interval (−τ/2, τ/2) and zero elsewhere. Here
E0 is the laser peak electric-field amplitude, ω0 is the carrier
frequency, and ϕ is the carrier-envelope phase. For this choice
of laser envelope, the pulse duration, defined as the full width
at half maximum of the intensity, is given as � = τ/2.75.

The TDSE with Hamiltonian (5) is solved by the split-
operator method with the impurity ground-state wave function
taken as the initial wave function. To avoid the unphysical
reflection due to a finite box size, we use an absorbing
boundary of the form of cos1/4. The numerical calculations
are performed on a uniform spatial grid with �x = 0.1 and
a time step �t = 0.2. We have checked these parameters to
make sure that converged results were obtained. Once the
time-dependent wave function is obtained, the time-dependent
laser-induced currents j(t ) can be calculated. The HHG spec-
trum is then given as the modulus square of the Fourier
transform of time-dependent laser-induced currents, where a
window function cos8 ( πt

τ
) has been applied before the Fourier

transform is carried out [46]. We have also found that identical
spectra are obtained by using the laser-induced dipoles.

III. RESULTS AND DISCUSSION

A. Enhancement of HHG yields in donor-doped models

Before presenting our main results, we remark that in this
paper we only consider the case of donor-type doping. Within
the SAE model this means that the impurity orbital with
energy near −5 eV is occupied, as discussed above. In the case
of acceptor-type doping, that impurity orbital is unoccupied.
As reported in Ref. [20], a donor-doped material can enhance
HHG yields by several orders of magnitude. Furthermore,
they showed that the enhancement was mainly due to the
contribution from the highest occupied orbital alone, which
is the orbital of the impurity. Our calculations based on the
SAE model generally confirm that finding. Within the SAE
model for the impurity-doped solid the initial state is chosen to
be the impurity ground state. For the undoped solid, previous
works showed that only the VB contributes, with the dominant
contribution from the state on the top of the VB. In fact, except
for a few cases [20,34], the majority of the works have only
focused on the contribution from this state. In that case, the
initial state was chosen to be the state on the top of the VB. In
principle, the induced dipoles from other states in the VB can
be calculated in the same manner. The total induced dipole is
then obtained by adding up all the contributions coherently.
We note in passing that HHG from acceptor-type doped solids
was also reported in Refs. [18,20].

FIG. 3. (a) Comparison of HHG spectra from the undoped and
impurity-doped (with model 1) solids. The results were obtained
from the TDSE with ten-cycle laser pulse at wavelength of 5.6 μm
and intensity of 2 × 1011 W/cm2. (b) Same as in (a), but for model 4
at the laser intensity of 1.6 × 1011 W/cm2.

For illustration, we show in Fig. 3(a) the comparison of
the HHG spectra from the undoped and impurity-doped (1%
doping, with model 1) solids. The results were obtained from
the TDSE with a ten-cycle laser pulse at wavelength of 5.6 μm
and intensity of 2 × 1011 W/cm2. For the contribution from
the highest occupied orbital, an enhancement of about five
orders of magnitude can be seen for energies above 15 eV.
This is in general agreement with the previous finding [20,36].
Our calculations also show that, although the contribution
from each of the lower states in the VB decreases as its energy
gap with the CB increases, the total contribution from the
whole VB is quite comparable with that from the impurity
alone. This is somewhat different from the TDDFT results
by Yu et al. [20]. Nevertheless, the significant contribution
from the lower states in the VB is in a good agreement with
Navarrete et al. [34], who used the Kronig-Penney model
potential instead of the Mathieu-type potential. It is possible
that the SAE model overestimates the total yields from the
VB, since the active electron is allowed to populate the other
states in the VB during the laser pulse, even though these
states are occupied by other electrons. This effect is negligible
for the impurity state since it is energetically well separated
from the neighboring states.

Similar enhancements were found for other impurity mod-
els considered in this paper. As another illustration, we show
in Fig. 3(b) a comparison for model 4 at the laser intensity
of 1.6 × 1011 W/cm2. In this case, the HHG from impurities
largely dominates over the HHG from the whole VB, except
for the energies near 12 and 27 eV, where they are comparable.
Again, we see that the HHG from the top of the VB is much
weaker than that from the impurities.

We found a rather similar level of enhancement for other
laser parameters as well. Clearly, the enhancement can be
further increased with a higher doping rate. Therefore in
the following we only focus on the HHG from the impurity
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FIG. 4. (a) Comparison of HHG spectra from model 1 and model
2 obtained from the TDSE with the same ten-cycle laser pulse at
wavelength of 5.6 μm and intensity of 7 × 1010 W/cm2. The QRS
result for model 2 is shown as the dashed line. (b) Same as (a) but
for model 1 and 3 for the laser pulse at wavelength of 4.8 μm
and intensity of 1011 W/cm2. (c) Same as (a) but for model 1 and
4 for the laser pulse at wavelength of 4.8 μm and intensity of
8 × 1010 W/cm2.

state, assuming that the HHG contribution from the VB1
can largely be neglected for the donor-type doping with a
sufficient doping rate of a few percent.

B. Analysis of HHG spectra: Main features and their origins

In the following, we will use model 1 as a reference system
for comparison with the other models. In Fig. 4(a) we compare
HHG spectra obtained from the TDSE for model 1 and model
2 under the same ten-cycle laser pulse at wavelength of
5.6 μm and intensity of 7 × 1010 W/cm2. There are three
distinct energy regions (or plateaus) above the threshold at
about 5 eV. By comparing with Fig. 2, the first plateau (from
5 eV to about 10 eV) can be associated with the recombination
from CB1 back to the impurity ground state. Similarly, the
second and third plateau, from 13 to 22 eV and from 25 to
35 eV, respectively, is associated with the recombination from
CB2 and CB3 to the impurity, respectively. For each model,
there are significant drops in HHG yields for energy regions
between the plateaus. This can be attributed to the exponential
decrease of excitation from a lower conduction band to the
next one. Note that the first plateau in model 1 is slightly more
extended than that of model 2. This is due to the presence of

FIG. 5. Modulus squared of transition dipoles from the impurity
ground state to the conduction bands vs photon energy for model 1,
2, 3, and 4.

an impurity level in the energy gap between CB1 and CB2 in
model 1.

Furthermore, for the harmonics below 20 eV, the HHG
yield from model 2 is about two orders of magnitude stronger
than that of model 1. This is not entirely surprising, since
the energy gap between the highest occupied orbital of the
impurity and CB1 in model 2 is about 2 eV smaller (see
Fig. 2). However, for the energies above 23 eV, the HHG
yields from the two models are nearly identical, except that
model 2 shows two minima near 25 and 32 eV while there is
no obvious structure in model 1.

To understand the origin of this behavior, we compare in
Fig. 5 the modulus square of the transition dipoles from the
conduction bands to the impurity ground state for models
1–4, as they are proportional to the photoexcitation and pho-
torecombination cross sections. For models 1 and 2 in the
energy range below 10 eV, the cross sections are quite similar.
Therefore the difference in the HHG yields in this energy
range from the two models could be attributed mainly to the
differences in tunneling excitation (or “ionization”) from the
impurity ground state to CB1, which in turn depends on the
energy gaps as discussed above. For the energies between 12
and 20 eV, the two cross sections start to deviate from one
another and the HHG yields from the two models start to come
closer. For the energies above 23 eV, the cross section from
model 1 is about two to three orders of magnitude stronger
than that of model 2. That somewhat compensates the weaker
“ionization” in model 1 so that the HHG yields from the two
models are nearly identical above 23 eV. Furthermore, a closer
look at the HHG spectrum from model 2 reveals two minima
near 25 and 31 eV, at the same energies that its cross section
has minima. In contrast, model 1 shows no obvious minimum
in that energy range in both HHG and cross section.

Similar comparisons for model 3 and model 4 with model
1 are shown in Figs. 4(b) and 4(c), respectively. The laser
parameters are given in the figure caption. Here, the loca-
tions of the plateaus are quite similar to that of Fig. 4(a).
More importantly, for all the cases, the structures in HHG
spectra follow closely the cross sections, shown in Fig. 5. In
particular, the pronounced minima in the HHG spectrum for
model 3 near 13, 21, and 31 eV are clearly associated with the
three minima in the cross sections at the same energies. For

023112-4



FACTORIZATION OF HIGH-ORDER-HARMONIC-GENERATION … PHYSICAL REVIEW A 102, 023112 (2020)

model 4, the broad minimum in the HHG spectrum near 26 eV
is caused by the respective minimum in the cross section.
Again, there is no obvious minimum in the same energy
regions in both HHG and cross section for model 1.

C. The validity of the QRS and the retrieval
of the transition dipoles

The above analysis indicates a close relationship between
HHG and the transition dipole. In the following we will
present the main result of this paper: we will show that
the QRS [22–25] can be extended for impurities in solids.
According to the QRS theory, HHG yields can be calculated as
a product of an electron wave packet W (ω) and the transition
dipole d (ω) as

S(ω) ∝ |W (ω)d (ω)|2, (7)

where

d (ω) = 〈ψ0|x|ψn〉, (8)

with ψ0(x) and ψn(x) being the wave function of the impurity
ground state and a state in the CB, respectively. The emitted
HHG photon energy ω is related to the energies of these two
states by ω = En − E0.

The above equations are formally the same as in the
original QRS which was developed for atoms and molecules
in the gas phase. For those targets, the electron returning wave
packet W (ω) can be calculated within certain approximations
(for example, the strong-field approximation). It turns out that
the wave packets from different targets, as functions of energy,
are nearly identical (up to an overall factor), under the same
laser parameters. Therefore, for practical applications of the
QRS, one can “borrow” the wave packet from a reference sys-
tem. In fact, assuming that Eq. (7) is valid, the wave packet for
the reference target would be |W ref(ω)|2 ∝ Sref(ω)/|d ref (ω)|2.
One then uses this wave packet to calculate the HHG spectrum
for a new target by using Eq. (7). Results from this proce-
dure will be compared with available the “exact” TDSE or
experimental results and good agreements would validate this
procedure and the QRS.

Since the conduction bands are not affected much by the
presence of the impurities for a relatively low doping rate,
one can reasonably expect that the electron wave packets
for different impurities under the same laser are nearly iden-
tical (up to overall constants, which account for different
excitation probabilities from the impurity ground states to
the conduction bands). Therefore, by following the above
procedure, one can, for example, obtain the HHG spectrum
for a target, if a HHG spectrum for a reference target under
the same laser is known [22–24]. To be specific, we assume
that the QRS can be applied to target 1 and target 2 under
the same laser. We then have S1(ω) ∝ |W1(ω)d1(ω)|2 and
S2(ω) ∝ |W2(ω)d2(ω)|2. Since |W2(ω)|2 = C|W1(ω)|2, with C
being an overall constant, we then have

S2(ω) = CS1(ω)
|d2(ω)|2
|d1(ω)|2 . (9)

HHG spectra obtained with the QRS model are shown in
Fig. 4 as dashed lines. In all the cases, they agree very well
with the exact TDSE for the whole energy region above the

FIG. 6. Retrieved modulus squared of transition dipole from the
impurity ground state to the conduction bands vs photon energy for
model 2 using HHG with different lasers. The laser parameters are
given in the labels. Here, I0 = 1011 W/cm2. The theoretical result for
the laser-free transition dipole is also shown as black solid dots.

threshold. Here, model 1 was used as the reference target for
all the cases.

Using the QRS in the same manner as it is done for gases,
one can also extract the transition dipole for an unknown
impurities target, if HHG spectra for the target and a reference
target under the same laser are known. In fact, Eq. (9) can be
written as

|d2(ω)|2 = C−1|d1(ω)|2 S2(ω)

S1(ω)
. (10)

If the QRS is valid, the retrieved transition dipole would
be independent of laser parameters. We show the results for
model 2 in Fig. 6. The retrieved transition dipoles squared,
obtained from HHG spectra with different lasers, indeed agree
well with the theoretical data (black solid dots) for a broad
range of energy from the threshold to 35 eV. In particular, the
minima near 25 and 32 eV are nicely retrieved. Here, we use
model 1 as the reference target.

The above results were obtained under the condition that
HHG from the impurities dominates the spectra. It illustrates
the level of accuracy the retrieval could achieve in this ideal
case. Or one can put it in another way: our method allows us
to simulate the contribution from the impurities. In practice,
the retrievals need to be checked carefully by varying exper-
imental parameters, including laser intensity and wavelength
as well as the doping rate. This would allow experimentalists
to assess the quality of the retrieval especially for the energy
region where contribution from impurities might not quite
dominate. We remark that photoionization cross sections for
atoms and molecules in the gas phase have been retrieved
experimentally from HHG measurements by using the same
method (see, for example, Refs. [47–49]). Quite recently, a
tomographic reconstruction of impurity orbitals using HHG
was suggested based on the three-step model [19]. Further-
more, it was experimentally demonstrated that the transition
dipole moment in momentum space in two-dimensional semi-
conductors can be probed using polarization-resolved HHG
measurements [50].

Our microscopic treatment of HHG needs to be comple-
mented by macroscopic propagation simulations for realistic
comparisons with experiments. In principle, this can be done
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by solving coupled TDSE and Maxwell’s equations. Progress
along this direction was reported recently [39].

IV. CONCLUSIONS

In conclusion, we have established that HHG yields from
impurities in doped materials can be expressed as a product
of an electron wave packet and transition dipole for the
electron in a conduction band back to the impurity ground
state. This process therefore resembles very closely the HHG
process in atoms and molecules in the gas phase, except that
the conduction bands now play the role of the continuum.
Based on this approximate factorization, we have extended
the quantitative rescattering theory for HHG from impurities
in solids. We expect that our theory can serve as a simple
starting point to study HHG in solids for realistic systems.
Research along this direction could provide detailed infor-
mation about impurities in a solid environment, needed for

understanding and controlling various processes in engineered
solid structures. Finally, we remark that the effect of disorder
and vacancies on HHG in solids has been reported [42,51–54].
We expect that our approach can be extended to these cases as
well.
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